This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Most Metal-poor Stars in Omega Centauri (NGC 5139)111This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

Christian I. Johnson Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Andrea K. Dupree Center for Astrophysics || Harvard & Smithsonian, 60 Garden Street, MS-15, Cambridge, MA 02138, USA Mario Mateo Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA John I. Bailey, III Department of Physics, UCSB, Santa Barbara, CA 93016, USA Edward W. Olszewski Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA Matthew G. Walker McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
(Received XXX; Revised XXX; Accepted XXX)
Abstract

The most massive and complex globular clusters in the Galaxy are thought to have originated as the nuclear cores of now tidally disrupted dwarf galaxies, but the connection between globular clusters and dwarf galaxies is tenuous with the M54/Sagittarius system representing the only unambiguous link. The globular cluster Omega Centauri (ω\omega Cen) is more massive and chemically diverse than M 54, and is thought to have been the nuclear star cluster of either the Sequoia or Gaia-Enceladus galaxy. Local Group dwarf galaxies with masses equivalent to these systems often host significant populations of very metal-poor stars ([Fe/H] << -2.5), and one might expect to find such objects in ω\omega Cen. Using high resolution spectra from Magellan-M2FS, we detected 11 stars in a targeted sample of 395 that have [Fe/H] ranging from -2.30 to -2.52. These are the most metal-poor stars discovered in the cluster, and are 5×\times more metal-poor than ω\omega Cen’s dominant population. However, these stars are not so metal-poor as to be unambiguously linked to a dwarf galaxy origin. The cluster’s metal-poor tail appears to contain two populations near [Fe/H] \sim -2.1 and -2.4, which are very centrally concentrated but do not exhibit any peculiar kinematic signatures. Several possible origins for these stars are discussed.

globular clusters: general, globular clusters: individual: Omega Centauri, stars: abundances, stars: Population II, Astrophysics - Solar and Stellar Astrophysics
journal: AJfacilities: Magellan(M2FS)

1 Introduction

Omega Centauri (ω\omega Cen) possesses an elegant complexity that is unmatched by any other Galactic globular cluster. While most globular clusters exhibit metallicity dispersions of \sim 0.05 dex or less (e.g., Carretta et al., 2009; Bailin, 2019), stars in ω\omega Cen span at least a factor of 100 in [Fe/H]222[A/B] \equiv log(NA/NB)star - log(NA/NB) for elements A and B. and are distributed into at least 5 distinct populations with unique metallicities (e.g., Suntzeff & Kraft, 1996; Norris & Da Costa, 1995; Norris et al., 1996; Villanova et al., 2007; Johnson & Pilachowski, 2010; Marino et al., 2011; Pancino et al., 2011b). Each distinct metallicity group can be further partitioned into at least 2-3 sub-populations with variable light element chemistry, and ω\omega Cen may host as many as 15 unique stellar populations (Bellini et al., 2017).

The origin and enrichment history of ω\omega Cen is currently an open question, but several lines of evidence suggest that the cluster may be the remnant core of a now disrupted dwarf galaxy. For example, ω\omega Cen is the brightest and most massive globular cluster in the Milky Way, but has a strong retrograde orbit (Dinescu et al., 1999) that may be associated with the capture and disruption of the “Sequoia” galaxy discussed in Myeong et al. (2019). Alternatively, ω\omega Cen could have once been the nuclear star cluster of the more massive Gaia-Enceladus galaxy (Massari et al., 2019). Bekki & Freeman (2003) used dynamical models to show that a compact nuclear core like ω\omega Cen could survive such a disruption event, and in fact the long tidal stream recently found by Ibata et al. (2019), which stretches several degrees along the cluster’s orbit, seems to support an accretion origin (see also Simpson et al., 2019). We also note that ω\omega Cen shares many physical and chemical characteristics with M 54 (e.g., Carretta et al., 2010a), which is the most massive cluster in the Sagittarius dwarf galaxy that is currently being tidally destroyed by the Milky Way.

In terms of size and luminosity, ω\omega Cen and M 54 lie at the intersection between globular clusters, nuclear star clusters, and Ultra Compact Dwarfs (e.g., Mackey & van den Bergh, 2005; Georgiev et al., 2009; Tolstoy et al., 2009), and may be prototypes for “iron-complex” clusters333Note that iron-complex clusters are generally the same as the “anomalous” and “Type II” clusters identified by Marino et al. (2015) and Milone et al. (2017), respectively. that host multiple generations of stars with different light and heavy element abundances (e.g., Yong et al., 2014; Johnson et al., 2015a; Marino et al., 2015; Da Costa, 2016; Milone et al., 2017). Although a definitive connection between iron-complex clusters and dwarf galaxy nuclei has not yet been established (e.g., see Da Costa, 2016), one possible investigation path is to search for cluster members that may have originally been part of the progenitor galaxy’s field star population. Such stars could be identified as having chemistry that is inconsistent with known globular cluster patterns.

For ω\omega Cen, the two most likely populations to have originated as dwarf galaxy field stars are those at the highest ([Fe/H] \gtrsim -1) and lowest ([Fe/H] \lesssim -2) metallicities. On the high metallicity end, stars exhibit relatively small light element abundance variations and critically show an O-Na correlation rather than the expected anti-correlation (Johnson & Pilachowski, 2010; Marino et al., 2011; Pancino et al., 2011a). However, several authors have noted that this particular pattern may be attributed to self-enrichment driven by an unusually long star formation history (Johnson & Pilachowski, 2010; D’Antona et al., 2011; Marino et al., 2011). The iron-complex clusters M 2 (Yong et al., 2014) and NGC 6273 (Johnson et al., 2015a, 2017) also contain minority populations of metal-rich stars with small star-to-star abundance variations, but in these cases no clear O-Na correlations are present. For all three clusters the origins of their metal-rich populations remain ambiguous, and it is not yet possible to differentiate whether these stars were captured from a progenitor galaxy or simply trace prolonged chemical enrichment.

The most metal-poor ω\omega Cen stars have a greater potential to unambiguously link the cluster with a dwarf galaxy formation environment. For example, Milky Way and extragalactic globular cluster systems exhibit a clear metallicity floor of [Fe/H] \sim -2.3 to -2.5 (e.g., Beasley et al., 2019), which suggests that any ω\omega Cen stars more metal-poor than this limit likely did not originate in the cluster. The metallicity distribution function of the Sequoia galaxy, proposed by Myeong et al. (2019) as the progenitor system for ω\omega Cen, is not currently well-constrained, but several estimates indicate that it likely had a mass in excess of 107 M (e.g., Bekki & Tsujimoto, 2019; Myeong et al., 2019). The dwarf galaxy mass-metallicity relation from Kirby et al. (2013) suggests that such a system should have a mean [Fe/H] \sim -1.5, but if ω\omega Cen formed in a 1010 M system, such as Gaia-Enceladus (Helmi et al., 2018), then the host galaxy’s mean metallicity may have been closer to [Fe/H] \sim -0.5. In either case, the metallicity distribution functions of most existing dwarf galaxies exhibit long metal-poor tails that reach at least 1-2 dex lower than their mean [Fe/H] values (e.g., Starkenburg et al., 2010; Kirby et al., 2011; Leaman et al., 2013), which suggests that any dwarf galaxy massive enough to host ω\omega Cen likely had \sim 1-10%\% of its stars with [Fe/H] \lesssim -2.5.

Previous analyses of ω\omega Cen’s red giant branch (RGB) and subgiant branch (SGB) populations have so far failed to find any stars with [Fe/H] \lesssim -2.25, which is still within the metallicity realm of Galactic globular clusters. Recent RR Lyrae investigations by Bono et al. (2019) and Magurno et al. (2019) found a small number of stars with [Fe/H] \lesssim -2.5; however, the mean cluster metallicities of these studies are \sim 0.2-0.3 dex lower than spectroscopic analyses of RGB stars (e.g., Johnson & Pilachowski, 2010), which suggests their true metallicity floor may be closer to [Fe/H] \sim -2.3.

Broad-band color-magnitude diagram analyses alone are unlikely to find very low metallicity stars in ω\omega Cen because the RGB evolutionary sequences of old populations become difficult to distinguish in color below [Fe/H] \sim -2 (e.g., see Figure 7 of Simpson, 2018). Furthermore, the isochrones of very metal-poor RGB stars in ω\omega Cen may overlap in color and magnitude space with asymptotic giant branch (AGB) sequences as well. Many of the bluer ω\omega Cen stars, especially in regions where RGB and AGB stars of different metallicity can mix, do not yet have spectroscopic [Fe/H] determinations, and as a result the most metal-poor stars in the cluster may have been missed by previous surveys. Therefore, we derive spectroscopic [Fe/H] measurements for 395 of the bluest RGB stars in ω\omega Cen to search for the cluster’s most metal-poor constituents that may link the system to formation in a dwarf galaxy environment.

2 Observations and Data Reduction

All spectroscopic data for this project were obtained using the Michigan-Magellan Fiber System (M2FS; Mateo et al., 2012) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. The spectra were acquired in three runs via the M2FS queue that spanned 2015 February 19, 21, 22, 23, and 25 for the first set, 2015 March 01, 02, and 04 for the second set, and 2015 July 18 and 20 for the third set. Ten different fiber configurations were used for seven unique pointings, which are illustrated in the right panel of Figure 1. Three of the fields that overlapped with the cluster core included two separate fiber configurations in order to maximize the number of observed stars. The remaining 4 fields each only included a single fiber configuration.

Refer to caption
Figure 1: The left panel shows a V versus B-V color-magnitude diagram for all stars with membership probabilities >> 70%\% in the van Leeuwen et al. (2000) catalog. Stars observed in Johnson & Pilachowski (2010) and the present study are indicated with open blue circles and filled red circles, respectively. The right panel uses the same symbols to illustrate the sky coordinates of the targets observed in both spectroscopic studies. The M2FS configuration fields are identified with green dashed circles.

Target stars were selected using the photometry and coordinates from van Leeuwen et al. (2000). Only objects identified by van Leeuwen et al. (2000) as having membership probabilities >> 70%\% were targeted, and we prioritized stars on the blue half of the RGB with V magnitudes between about 13.5 and 14.5 (see Figure 1). Although most stars in our sample are first ascent RGB stars, we also included some AGB and red horizontal branch (HB) stars since the isochrones for very metal-poor RGB stars are difficult to distinguish from these later evolutionary stages in more metal-rich populations. Including all configurations, fibers were placed on 458 unique targets spanning a variety of cluster radii (see Figure 1; Table 1); however, we were only able to measure [Fe/H] values for 395 targets. The remaining 63 targets had poor S/N spectra, were heavily blended spectroscopic binaries, or were cases in which we could not converge to a stable model atmosphere solution.

Refer to caption
Figure 2: Sample M2FS spectra (black lines) are shown for ω\omega Cen stars that span [Fe/H] = -2.50 to -1.11 in increments of approximately 0.35 dex. A smoothed and resampled MIKE spectrum of the metal-poor giant HD 122563 is shown in blue for comparison. Note that all of the stars illustrated here have similar temperature and surface gravity values. A simple line strength comparison shows that LEID 40301 and LEID 39309 are clearly more metal-poor than LEID 51031, which represents the dominant ω\omega Cen population, but do not reach the very low level of [Fe/H] = -2.92 found by Afsar et al. (2016) for HD 122563.

All observations utilized the “Mg_\_Wide” filters that permit continuous wavelength coverage from approximately 5125-5410 Å. This particular setup was chosen because we are searching for stars with [Fe/H] \lesssim -2.3 and the Fe lines in this region remain detectable in the spectra of Teff \sim 5000 K RGB stars down to at least [Fe/H] = -4 (e.g., see Figure 1 of Frebel et al., 2015). The “red” and “blue” spectrographs employed identical configurations with 1 ×\times 2 (dispersion ×\times spatial) CCD binning, 95μ\mum slits, a four amplifier slow readout, and provided a resolving power of R \equiv λ\lambda/Δ\Deltaλ\lambda \approx 32,000. Since the Mg_\_Wide filter spans four consecutive orders, we were only able to observe a maximum of 24 targets per spectrograph at a time. Each fiber configuration was observed for one hour with a set of 3×\times1200 second exposures.

The data reduction procedure generally followed the methods outlined in Johnson et al. (2015b). Briefly, the IRAF444IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. CCDPROC routine was used to apply the bias corrections, trim the overscan regions, and subtract dark current for each amplifier image. The IMTRANSPOSE and IMJOIN routines were then used to align and combine the four amplifier images of every exposure to create sets of monolithic 2K×\times4K images. The DOHYDRA task was utilized to handle aperture identification, aperture tracing, flat-fielding, wavelength calibration via ThAr comparison spectra, scattered light and cosmic ray removal, throughput corrections, and spectrum extraction. Median sky spectra were generated for each order on each night from the designated sky fiber data, and were subtracted from the appropriate science spectra. The sky subtracted data were then corrected for heliocentric velocity variations, continuum normalized, and median combined. Sample combined spectra for several stars with different [Fe/H] but similar temperature and surface gravity values are provided in Figure 2. Signal-to-noise (S/N) ratios for the combined spectra ranged from \sim 20-50 per reduced pixel.

3 Data Analysis

3.1 Model Atmospheres

For consistency with the Johnson & Pilachowski (2010) temperature/gravity scale, model atmosphere parameters were determined for each star using dereddened B, V, and KS-band photometry from van Leeuwen et al. (2000) and the Two Micron All Sky Survey (2MASS; Skrutskie et al., 2006). Although several authors note the existence of minor (Δ\Delta \sim 0.02 mag.) differential reddening near the cluster core (e.g., Calamida et al., 2005; van Loon et al., 2007; McDonald et al., 2009), we assumed a constant E(B-V) = 0.11 (Calamida et al., 2005) across the cluster and also utilized the relation E(V-KS)/E(B-V) = 2.70 from McCall (2004). For target stars with clear 2MASS matches, effective temperatures (Teff) were determined using the V-KTCS color-temperature relation from Alonso et al. (1999)555Note that the 2MASS KS-band photometry were transformed onto the KTCS system using the transformations listed in Johnson et al. (2005).. In the few cases where clear 2MASS matches could not be obtained we used the B-V color-temperature relation from Alonso et al. (1999) to derive Teff values. The estimated Teff uncertainty is approximately 30 K for temperatures derived from V-KTCS and 130 K for B-V, based on the scatter of the empirical color-temperature relations in Alonso et al. (1999, see their Table 2).

Similar to Teff, surface gravity (log g) values were determined for each star using photometric temperatures and absolute bolometric magnitudes (Mbol.). The bolometric magnitude values were calculated using the corrections provided by Alonso et al. (1999) and a distance modulus of (m-M)V = 13.7 (van de Ven et al., 2006). Final surface gravity values were determined using the relation,

log(g)=0.40(Mbol.Mbol.)+log(g)+\displaystyle log(g_{*})=0.40(M_{bol.}-M_{bol.\sun})+log(g_{\sun})+ (1)
4[log(TT)]+log(MM),\displaystyle 4[log(\frac{T}{T_{\sun}})]+log(\frac{M}{M_{\sun}}),

where we assumed a mass of 0.8 M for all stars. Although a mass of 0.8 M is a reasonable assumption for most cluster RGB stars, Figure 1 shows that some of our targets may be lower mass AGB or red HB stars. McDonald et al. (2011) showed that ω\omega Cen RGB stars lose \sim 25%\% of their mass between the RGB and AGB sequences so a significant fraction of our targets may have masses closer to 0.6 M. Fortunately, the photometric surface gravity estimate shown above is only sensitive to the log of the mass difference, and we have restricted the present analysis to only include Fe I lines, which are not strongly pressure sensitive in the stars targeted here. Assuming the difference between RGB and AGB masses does not exceed \sim0.2 M, we adopt a log(g) uncertainty of 0.15 (cgs).

For most stars in our analysis, the available Fe I lines are too strong to tightly constrain the microturbulence (ξ\ximic.). Therefore, we determined an empirical relation between Teff and ξ\ximic. as,

ξmic.=6.46×104Teff+4.66,\xi_{\rm mic.}=-6.46\times 10^{\rm-4}T_{\rm eff}+4.66, (2)

using data from Johnson & Pilachowski (2010) that spanned the same Teff range as the stars presented here. The adopted microturbulence calibration has a dispersion of 0.17 km s-1.

Since the photometric color-temperature relation is dependent on metallicity and the surface gravity and microturbulence estimates require accurate temperature measurements, generating a global model atmosphere solution for each star is an iterative process. Therefore, we initially determined Teff, log(g), and ξ\ximic. for each star assuming [Fe/H] = -1.7, and iteratively solved for all four parameters as the metallicity determination improved (see also §\S3.3). We interpolated within the ATLAS9 grid of model atmospheres from Castelli & Kurucz (2003), and in general a stable solution was reached after \sim 3 iterations. The adopted model atmosphere parameters, [Fe/H] values, photometry, star identifiers, and coordinates are provided in Table 1.

3.2 Membership and Radial Velocities

Although cluster membership probabilities were provided by van Leeuwen et al. (2000) based on proper motion measurements, we verified membership using radial velocity measurements as well. Radial velocities were determined using the first exposure of each configuration and comparing it with a synthetic reference spectrum at rest velocity that matched the resolution and sampling of the data. The observed radial velocity values were determined using the XCSAO routine from Kurtz & Mink (1998), and heliocentric corrections were calculated using IRAF’s rvcor routine. The final heliocentric radial velocities and XCSAO error measurements for each star are provided in Table 1.

We found a mean heliocentric radial velocity of ++232.5 km s-1 for ω\omega Cen with a dispersion of 12.8 km s-1. These values are in good agreement with previous work (e.g., Reijns et al., 2006; Sollima et al., 2009). A direct comparison of stars in common between this work and Reijns et al. (2006) gives a mean velocity difference, in the sense of the present work minus the literature, of ++1.0 km s-1 with a dispersion of 1.7 km s-1 (55 stars). A similar comparison with Sollima et al. (2009) gives a mean difference of ++2.2 km s-1 and a dispersion of 2.9 km s-1 (215 stars). The data presented in Table 1 indicate a radial velocity range spanning ++186.7 to ++271.1 km s-1; however, given the cluster’s high radial velocity relative to the background and its large velocity dispersion, we designate all stars in our sample as cluster members666We reiterate that the targets have already been selected to have membership probabilities >> 70%\%, based on the van Leeuwen et al. (2000) proper motion analysis..

3.3 [Fe/H] Determinations

Given the modest S/N ratios of the spectra and the small number of available Fe II lines, all iron abundance determinations were made using synthetic spectrum fits to Fe I features. We first selected a subset of 14 Fe I lines between 5140 and 5390 Å that were visible in a majority of our spectra but had typical equivalent widths lower than about 150 mÅ. The spectrum synthesis line lists were augmented to include significant lines within 5 Å of each Fe I feature listed in Table 2. Due to a paucity of high accuracy experimental log gf values for the features given in Table 2, empirical log gf values were determined for all lines by first adopting atomic data from the Vienna Atomic Line Database (Ryabchikova et al., 2015) compilation and then adjusting the log gf values until a satisfactory fit to an M2FS daylight solar spectrum was achieved. We adopted the Anders & Grevesse (1989) solar abundances for all elements777Note that the Anders & Grevesse (1989) solar abundances were used for consistency with Johnson & Pilachowski (2010).. Although MgH lines may be present at wavelengths bluer than \sim 5200 Å, the roughly 4800 K temperatures and low metallicities of our stars inhibited significant molecular contamination. Furthermore, we only selected Fe I lines that were at least \sim 0.5 Å away from significant molecular blends. As a result, the adopted line list only included atomic features. The adopted atomic parameters for all Fe I lines of interest are provided in Table 2.

As mentioned previously, an initial estimate of Teff, log(g), and ξ\ximic. was made for each star assuming [Fe/H] = -1.7. For the first iteration, the Teff, log(g), and ξ\ximic. values were held fixed while model atmospheres and synthetic spectra were generated for [Fe/H] values ranging from -2.75 to -0.5, in 0.01 dex steps, using the LTE line analysis code MOOG (Sneden, 1973). The fits for each line were visually inspected to identify and remove lines affected by spectrum flaws, to set appropriate smoothing/broadening parameters, and to remove extreme outliers (\gtrsim 0.3 dex from the mean). The [Fe/H] abundance that minimized the fitting residuals between the synthetic and observed spectra was selected as the new metallicity parameter, which enabled an update to the Teff, log(g), and ξ\ximic. values. This process was repeated until the difference in mean [Fe/H] between consecutive runs decreased to << 0.03 dex, and then a final iteration was performed. The adopted [Fe/H] abundances for each star are provided in Table 1 and also summarized as a histogram in Figure 3.

Refer to caption
Figure 3: The top, middle, and bottom panels illustrate binned metallicity distribution functions for the new observations, the Johnson & Pilachowski (2010, JP10) measurements, and the combined data sets. Note that the biased sample presented here finds fewer stars with [Fe/H] >> -1.5 but more stars with [Fe/H] << -2.0. The new observations indicate an apparent population of very metal-poor stars that peak near [Fe/H] \sim -2.4. These stars are near or below the globular cluster metallicity floor found in the Milky Way and other galaxies.

The targets were selected to have minimal overlap with other high resolution spectroscopic studies; however, the present sample does have 8 stars in common with Marino et al. (2011). A comparison between the two studies indicates good agreement with a mean offset in [Fe/H] of 0.0 dex and a dispersion of 0.13 dex, which is comparable to the mean line-to-line [Fe/H] dispersion reported in Table 1 for our analysis. We also have 52 stars in common with the low resolution (R \sim 2000) spectroscopic analysis by An et al. (2017) that shows a mean offset, in the sense of the present work minus the literature value, of ++0.12 dex and a dispersion of 0.15 dex. We attribute the worse agreement to the order of magnitude lower resolution in the An et al. (2017) data.

The [Fe/H] error values (Δ\Delta[Fe/H]) provided in Table 1 take into account several factors added in quadrature, including the standard error of the mean [Fe/H] value and uncertainties related to temperature (Δ\DeltaTeff = 100 K), surface gravity (Δ\Deltalog(g) = 0.15 cgs), model atmosphere metallicity (Δ\Delta[M/H] = 0.15 dex), and microturbulence (Δ\Deltaξ\ximic. = 0.13 km s-1) errors. However, since we exclusively used Fe I lines the error budget is dominated by the Teff, ξ\ximic., and measurement uncertainties, which also includes log gf and continuum normalization and/or fitting errors. Typical uncertainties are approximately 0.14 dex in [Fe/H]. Since corrections for departures from local thermodynamic equilibrium (LTE) are not available for several of the lines used here, all [Fe/H] measurements assume LTE. Fortunately, calculations from several authors (Bergemann et al., 2012; Lind et al., 2012; Mashonkina et al., 2016) indicate that absolute Fe I non-LTE corrections should be \lesssim 0.05-0.10 dex in magnitude for the parameter space analyzed here. Relative differences between stars with similar temperatures should be even smaller.

4 Results and Discussion

As mentioned in §\S1, one of ω\omega Cen’s most intriguing properties is its large metallicity spread. Numerous authors have used large sample spectroscopic (Norris & Da Costa, 1995; Norris et al., 1996; Suntzeff & Kraft, 1996; Villanova et al., 2007; Johnson et al., 2008; Johnson & Pilachowski, 2010; Marino et al., 2011; Pancino et al., 2011b, a; Villanova et al., 2014; An et al., 2017; Mucciarelli et al., 2018) and photometric (Lee et al., 1999; Hilker & Richtler, 2000; Pancino et al., 2000; Rey et al., 2004; Sollima et al., 2005; Calamida et al., 2009; Bellini et al., 2010; Calamida et al., 2017) surveys to show that the cluster has at least 5-6 populations with unique [Fe/H] values. Peaks in the metallicity distribution function are generally found near [Fe/H] \sim -1.75, -1.50, -1.20, and -0.70 (see also Figure 3), and tend to cluster on well-defined RGB sequences. Pancino et al. (2011b) claim to find a more metal-poor population, rather than simply a metal-poor tail, near [Fe/H] \sim -2, which suggests that additional minority populations of very metal-poor stars may still be awaiting discovery.

Finding cluster members with [Fe/H] \lesssim -2.3 would be important for linking ω\omega Cen’s formation to a dwarf galaxy environment because such stars are not expected in globular clusters. A nearly universal globular cluster metallicity floor exists near [Fe/H] \sim -2.3 to -2.5 for Local Group galaxies (e.g., Beasley et al., 2019) as well as the Milky Way (e.g., Simpson, 2018), and ω\omega Cen’s retrograde, but confined to the plane (e.g., Majewski et al., 2012), orbit precludes capturing metal-poor stars from the Galactic halo. Therefore, very metal-poor stars found in ω\omega Cen today would likely have originated as a field population in the cluster’s progenitor system. If ω\omega Cen formed in an environment similar to the dwarf galaxies observed today, then knowledge of the cluster’s [Fe/H] floor could help place constraints on the metallicity distribution function of its host galaxy.

Refer to caption
Figure 4: An ω\omega Cen V versus B-V color-magnitude diagram is shown using the photometric data from van Leeuwen et al. (2000, black circles). The large filled circles are color coded by [Fe/H] using spectroscopic abundances from Johnson & Pilachowski (2010) and the present work. The large open magenta circles indicate stars in either study with [Fe/H] << -2.2 dex. Note that the color gradient is saturated at [Fe/H] = -2 dex on the metal-poor end and [Fe/H] = -1.1 dex on the metal-rich end.

4.1 Very Metal-poor Stars in ω\omega Cen

In Figure 3 we compare the biased metallicity distribution function derived here against the relatively unbiased distribution found by Johnson & Pilachowski (2010). The new observations clearly confirm the presence of the dominant metal-poor population near [Fe/H] \sim -1.7 and the intermediate metallicity group at [Fe/H] \sim -1.5, and as expected from our selection procedure we find far fewer stars with [Fe/H] \gtrsim -1.3. Figure 4 further shows that our [Fe/H] determinations follow the expected correlation between metallicity and RGB color, and that most of the stars in our sample with [Fe/H] \gtrsim -1.3 lie on the AGB or red HB sequences.

We find a possible metal-poor population near [Fe/H] \sim -2.1 that appears separate from the dominant group at [Fe/H] \sim -1.7 (see also §\S 4.1.1), and we suspect that these RGB stars are part of the same metal-poor faction identified by Pancino et al. (2011b) on the SGB. Interestingly, we also find a new population of 11 stars with metallicities below the [Fe/H] = -2.26 limit set by Johnson & Pilachowski (2010). These stars represent 2.8%\% of our sample and span from [Fe/H] = -2.30 to -2.52. Figure 4 further shows that these very metal-poor stars generally fall on the blue edge of the cluster RGB, as expected, but 2-3 of the targets could be AGB or HB stars. The very metal-poor stars identified here are close to the empirically determined globular cluster metallicity floor noted in Beasley et al. (2019).

The existence of a metal-poor tail in ω\omega Cen is already a unique trait among iron-complex clusters. The metallicity distribution functions for all iron-complex clusters except ω\omega Cen possess a sharp rise at low metallicity, one or more populations at higher metallicity, and occasionally a metal-rich tail. The only other compelling case for a cluster hosting a metal-poor tail or a minor population at low metallicity is Terzan 5, which has a dominant population near [Fe/H] \sim -0.3, a secondary population at [Fe/H] \sim ++0.25, and a minority (\lesssim 6%\%) metal-poor group at [Fe/H] \sim -0.8 (Origlia et al., 2013; Massari et al., 2014). However, the various Terzan 5 sub-populations do not possess the complex light element variations observed in ω\omega Cen.

Refer to caption
Figure 5: Top left: the black circles indicate the J2000 sky coordinates of all ω\omega Cen giants observed for the present study while the large red circles indicate stars with [Fe/H] << -2 dex. The most metal-poor stars with [Fe/H] << -2.25 are indicated as large blue circles. The green ellipse illustrates the cluster’s approximate half-light radius (5\arcmin). Although nearly all of the metal-poor stars identified in the present work reside within the cluster half-light radius, the stars farther out are only found within a narrow declination range. Top right: heliocentric radial velocities are plotted as a function of [Fe/H] using the same symbols as in the left panel. The metal-poor stars do not exhibit any obvious radial velocity peculiarities. Bottom left: [Fe/H] is plotted as a function of radial distance from the cluster center. Note that the stars with [Fe/H] << -2 appear to be centrally concentrated. Bottom right: Gaia DR2 proper motion values are plotted using the same symbols as the left panel. We do not find the metal-poor stars to exhibit any systematic proper motion differences relative to the higher metallicity stars.

Other than metallicity, do the most metal-poor stars in ω\omega Cen possess any unusual properties? Figure 5 compares the radial and spatial distributions, radial velocities, and Gaia DR2 proper motions for the stars analyzed in the present study. Visual inspection of the two left panels in Figure 5 indicate that: (1) stars with [Fe/H] << -2 span a broad range in right ascension but only populate a narrow range in declination and (2) the most metal-poor stars may be very centrally concentrated. First addressing the spatial distribution, we note that the dispersion in declination for stars with [Fe/H] >> -2 is 0.128 degrees while the dispersions for stars with -2.25 \leq [Fe/H] \leq -2 and [Fe/H] << -2.25 are 0.023 and 0.029 degrees, respectively. Similarly, two-sided Kolmogorov-Smirnov (KS) tests comparing the declination distributions of all stars versus first those with [Fe/H] << -2 and then those with [Fe/H] << -2.25 returned pp-values888We adopt the common convention that a pp-value << 0.05 is sufficient to reject the null hypothesis. of 0.002 and 0.095, respectively. From these data we can conclude that there is marginal evidence indicating that the most metal-poor ω\omega Cen stars may be confined to a more narrow plane than the majority of cluster stars. However, a larger sample size is required to draw any strong conclusions.

Regarding the radial distributions, Figure 5 shows that nearly all of the stars with [Fe/H] << -2 are projected within 12\arcmin of the cluster core and 84%\% are within 3\arcmin. Similarly, all of the stars with [Fe/H] << -2.25 are within 10\arcmin and 81%\% are inside of 3\arcmin. These results match previous observations by Johnson & Pilachowski (2010) who noted that 88%\% of the stars in their sample with [Fe/H] << -2 were found within 5\arcmin of the cluster core. The combination of the present work with the larger sample of Johnson & Pilachowski (2010) hints that the most metal-poor stars in ω\omega Cen may be mostly confined to within a half-light radius (5\arcmin). A two-sided KS test comparing the radial distributions of stars with [Fe/H] >> -2 against those with [Fe/H] << -2 returned a pp-value of 2.91×\times10-10 while a similar test comparing the radial distributions of stars with [Fe/H] >> -2 and [Fe/H] << -2.25 returned a pp-value of 8.66×\times10-5. The extremely low pp-values indicate a low probability that stars with [Fe/H << -2 follow the same radial distribution as their higher metallicity counterparts. We did not detect any further differences between the most metal-poor stars and any other populations when examining radial velocity or proper motion distributions; however, larger sample sizes are required to draw any firm conclusions.

4.1.1 Do the Very Metal-poor Stars Form Distinct Populations?

An important question when examining the metallicity distribution function of ω\omega Cen is whether the stars with [Fe/H] << -2 form distinct populations or simply an extended tail. As noted previously, the binned distributions shown in Figure 3 indicate possible “peaks” near [Fe/H] \sim -2.1 and -2.4, but the sample sizes are small. To help determine whether the most metal-poor stars are separate populations, we utilize the Gaussian mixture model (GMM) method described in Ashman et al. (1994) via the implementation outlined in Muratov & Gnedin (2010) to examine: (1) if the peak near [Fe/H] = -2.1 is distinct from the dominant population near [Fe/H] = -1.7; and (2) if the groups at [Fe/H] = -2.1 and -2.4 are separate or part of a broad unimodal population.

The modality analysis described in Muratov & Gnedin (2010) includes an algorithm for a likelihood ratio test that determines whether the sum of two Gaussian profiles provides an improvement over fitting a unimodal Gaussian distribution. Note that we have adopted the homoschedastic case (equal variance) for all GMM tests, which is a reasonable assumption if the [Fe/H] spread within each population is dominated by equivalent measurement errors. Since the likelihood ratio test assumes Gaussian distributions, Ashman et al. (1994) and Muratov & Gnedin (2010) also include a dimensionless mode separation statistic defined as,

D|μ1μ2|(σ1σ2)/2,D\equiv\frac{\left|\mu_{1}-\mu_{2}\right|}{\sqrt{(\sigma_{1}-\sigma_{2})/2}}, (3)

where D >> 2 is required for a clear separation between two modes when the mean (μ\mu) and dispersion (σ\sigma) values for two populations are known. Muratov & Gnedin (2010) also note that a negative kurtosis is a “necessary but not sufficient condition of bimodality”. However, since the number of very metal-poor stars in our sample is small, especially relative to the dominant population at [Fe/H] \sim -1.7, we do not include kurtosis measurements here.

For the first case listed above, we compiled a list of stars with -2.25 \leq [Fe/H] \leq -1.60 from Table 1 and ran the Muratov & Gnedin (2010) algorithm to determine whether a bimodal distribution was an improvement over fitting a single Gaussian profile. The Muratov & Gnedin (2010) test found that the data were better fit assuming two Gaussian distributions with means of [Fe/H] = -2.07 and -1.76 (σ\sigma = 0.09 dex) over a single Gaussian with a mean of [Fe/H] = -1.78 and a larger dispersion (σ\sigma = 0.11 dex) at more than the 99.9%\% level. A bootstrap analysis yielded a separation statistic of D = 3.38 ±\pm 0.41, which provides a high level of confidence that the peak at [Fe/H] = -2.07 represents a legitimate population rather than a metal-poor tail for the [Fe/H] = -1.76 group.

For the second case, we examined the [Fe/H] distribution for all stars in Table 1 with [Fe/H] << -2 to determine if these objects form two narrow populations or one broad distribution. We determined that a unimodal distribution was ruled out at the more than 99.6%\% level, and that two populations were preferred having means of [Fe/H] = -2.4 and -2.1 with dispersions of 0.07 dex. The bootstrap mode separation statistic was calculated to be D = 4.37 ±\pm 0.8, which suggests that if two populations are present below [Fe/H] = -2 then their mean metallicities are well-separated.

4.2 Origin of the Very Metal-poor Stars

If the stars in ω\omega Cen with [Fe/H] << -2, and especially those with [Fe/H] << -2.25, are truly distinct from the other cluster populations, then their presence may reveal important details about the cluster’s early formation history. The available evidence suggests several possible origins for ω\omega Cen’s very metal-poor stars, including: (1) early star formation in the unenriched primordial cloud, (2) the capture of surrounding field stars, assuming the cluster formed in a dwarf galaxy, or (3) an early merger between ω\omega Cen and a pre-existing but metal-poor sub-structure.

4.2.1 Early Star Formation

The primordial cloud scenario is the most straight-forward, and would imply that the very metal-poor stars trace the original composition of the molecular cloud from which ω\omega Cen formed. Data from Johnson & Pilachowski (2010) and Pancino et al. (2011b) indicate that stars with [Fe/H] << -2 may have reduced light element abundance variations compared to their more metal-rich counterparts, which might be consistent with an early proto-cluster environment that had not yet been polluted by sources such as intermediate mass AGB stars. However, if ω\omega Cen actually has two populations of very metal-poor stars at [Fe/H] \sim -2.1 and -2.4, as is suggested in Figure 3 and §\S 4.1.1, then the cluster could have experienced at least two early small bursts of star formation. Detailed light and heavy element abundance measurements for the [Fe/H] \sim -2.4 stars identified here would help determine if the two groups are chemically similar.

Examining the published metallicity distribution functions of other iron-complex clusters, we note that aside from Terzan 5 only M 54 appears as a possible candidate to host a metal-poor tail. However, the most metal-poor stars in this system were clearly polluted, as evidenced by their large (anti-)correlated light element abundance variations (e.g., Carretta et al., 2010b), and would therefore not represent a pristine population. Similarly, we note that monometallic clusters have significant populations of “primordial” stars that appear to be almost entirely polluted by supernovae, but these stars do not have different [Fe/H] abundances from other cluster members. Therefore, either ω\omega Cen and Terzan 5 were unique in their ability to retain stars that formed before the first major star formation and light element enrichment episode, or their very metal-poor populations have a different origin.

4.2.2 Captured Field Stars

The captured field star scenario is intriguing because it could provide a direct link between present day iron-complex clusters and dwarf galaxies. However, if ω\omega Cen formed within a dwarf galaxy should we expect such a system to host many very metal-poor stars? We can draw two reasonable conclusions based on ω\omega Cen’s properties alone. First, ω\omega Cen’s mass of \sim 4×\times106 M (D’Souza & Rix, 2013) means that its host galaxy must have had a mass of at least 107-108 M (see also Bekki & Tsujimoto, 2019; Myeong et al., 2019). Second, the dwarf galaxy mass-metallicity relation from Kirby et al. (2013) implies that the cluster’s host galaxy likely had a mean metallicity of at least [Fe/H] = -1.5 to -1. A comparatively high metallicity field star population is qualitatively in agreement with the M 54/Sagittarius system where the mean metallicity of M 54 ([Fe/H] \sim -1.6) is several times lower than the Sagittarius field (e.g., Carretta et al., 2010b). Nevertheless, dwarf galaxies tend to have long metal-poor tails (e.g., Leaman et al., 2013), and even cases such as Sagittarius that have a majority of stars with [Fe/H] >> -1 contain stars with metallicities as low as -2.2 (Chiti & Frebel, 2019). It therefore remains plausible that ω\omega Cen could have existed in an environment that also hosted very metal-poor field stars.

The ability of ω\omega Cen to capture very metal-poor stars might depend not only on the metallicity distribution of its host galaxy, but also the cluster’s typical galactocentric radius and the galaxy’s star formation history before tidal disruption. Existing Local Group dwarf galaxies generally exhibit negative metallicity gradients such that the mean metallicity decreases at larger galactocentric distances (e.g., Harbeck et al., 2001; Battaglia et al., 2006; Faria et al., 2007; Carrera et al., 2008; Kirby et al., 2011; Kacharov et al., 2017). If ω\omega Cen resided in the core of its host galaxy and a significant fraction of the cluster’s metal-poor stars were captured, then ω\omega Cen’s host galaxy might have had an unusually metal-poor core. Alternatively, the cluster’s host galaxy could have had an inverted metallicity gradient (e.g., Wang et al., 2019).

Although ω\omega Cen is the most massive cluster associated with the Sequoia (Myeong et al., 2019) or Gaia-Enceladus (Massari et al., 2019) merger events, that does not necessarily mean the cluster always (or ever) resided in its host galaxy’s center. For example, M 54 is the most massive cluster associated with Sagittarius and presently lies near the galaxy’s core, but the cluster could have formed outside the galaxy nucleus and drifted to the center via dynamical friction (e.g., Bellazzini et al., 2008). Furthermore, the Fornax dwarf galaxy has five globular clusters (Shapley, 1938; Hodge, 1961) and all except one (Fornax 4), including the most massive and metal-poor cluster Fornax 3 (de Boer & Fraser, 2016), reside well outside the core radius. One might expect that if ω\omega Cen were in a configuration similar to that of Fornax 3 it would have a reasonable chance of capturing metal-poor field stars.

Regardless of where ω\omega Cen may have resided within a host galaxy, it could not capture metal-poor field stars unless they were present in significant numbers. Combining the present sample with Johnson & Pilachowski (2010), 3.9%\% of stars in ω\omega Cen have [Fe/H] << -2 and about 1%\% have [Fe/H] << -2.3. For comparison, Starkenburg et al. (2010) showed that the fractions of stars with [Fe/H] << -2.5 were 1%\%, 8%\%, 8%\%, and 33%\% for the Fornax, Carina, Sculptor, and Sextans Local Group dwarf galaxies, respectively.

These observations suggest that ω\omega Cen’s host galaxy probably had a higher fraction of metal-poor stars than Fornax, especially if all ω\omega Cen stars with [Fe/H] << -2 were captured. In contrast, the metallicity distribution of Sextans may be too metal-poor since we did not find any stars with [Fe/H] \lesssim -2.5. However, we investigated the color-color distribution of stars in ω\omega Cen using recent Sky Mapper (Wolf et al., 2018) photometry and found a small number of stars that may have [Fe/H] << -2.5 to -3. A galaxy like Sculptor, but with the globular cluster specific frequency of Fornax, may serve as a reasonable model of ω\omega Cen’s host galaxy since it has: (1) a mean [Fe/H] value that is higher than ω\omega Cen, (2) a small but significant population of field stars down to [Fe/H] \sim -3.0, and (3) few stars with [Fe/H] \gtrsim -1 (e.g., Kirby et al., 2009; Starkenburg et al., 2010). The small (\sim 10 km s-1) velocity dispersion of Fornax globular clusters and field stars (e.g., Hendricks et al., 2014) would also provide a model that is conducive to tidal capture, but it remains to be seen whether such a scenario could be reconciled with the observed central concentration of very metal-poor stars in ω\omega Cen.

4.2.3 Merging Sub-clumps

Globular clusters are likely the end results of complicated hierarchical merging processes (e.g., Bonnell et al., 2003; Smilgys & Bonnell, 2017), and in this sense the rarity of very metal-poor stars among iron-complex clusters could be a result of this stochastic process. Sub-clump and cluster-cluster mergers have been invoked to explain several globular cluster properties in the past (e.g., van den Bergh, 1996; Lee et al., 1999; Carretta et al., 2010c; Bekki & Tsujimoto, 2019), and we posit that such a model may explain the existence of the metal-poor populations in ω\omega Cen, and possibly Terzan 5, as well.

In this model, the early ω\omega Cen environment would have been subject to intense star formation and molecular cloud and/or cluster mergers. As a result, the main ω\omega Cen structure could have coalesced with a sub-structure that was either in the process of forming or already fully formed, but that had a very low metallicity and not enough time to experience significant light element self-enrichment. Since the most metal-poor stars in ω\omega Cen do not reach below the empirical globular cluster limit of [Fe/H] \sim -2.5 and Figure 3 hints at two different populations with [Fe/H] << -2 rather than a continuous metal-poor tail, a merging sub-structure scenario may be favored over a field star capture model. If the merging sub-structures were also relatively massive, they might naturally fall to the cluster center and help explain the central concentration of stars with [Fe/H] << -2 shown in Figure 5.

Although the stars with [Fe/H] << -2 constitute only a small fraction of ω\omega Cen’s mass, we did not detect any unusual kinematic properties for these populations. As a result, the sub-clump merger origin for very metal-poor stars may only be plausible if their initial kinematic signature was erased by dynamical evolution or was very similar to the existing ω\omega Cen proto-cluster.

5 Summary

We present [Fe/H] measurements, based on high resolution M2FS spectra, for 395 giants in the massive globular cluster ω\omega Cen. The targets were chosen to reside on the blue half of the RGB in an effort to find the most metal-poor stars in the cluster. Previous attempts identified a metal-poor population with [Fe/H] \sim -2.1 but failed to find any stars with [Fe/H] \lesssim -2.25. However, we have identified 11 new stars with metallicities ranging from [Fe/H] = -2.30 to -2.52, which places these stars near the empirical globular cluster metallicity floor observed among the Milky Way and other Local Group galaxies.

The metal-poor stars identified here and in previous studies appear to be very centrally concentrated, and may also be confined to a narrow declination plane. However, these stars do not appear to exhibit any peculiar kinematic properties that distinguish them from the more metal-rich populations in ω\omega Cen. We examine three possible scenarios in which ω\omega Cen could form or capture stars that are significantly more metal-poor than its dominant population at [Fe/H] \sim -1.7. Specifically, the very metal-poor stars could: (1) trace very early star formation in the cluster, (2) have originated as captured field stars from ω\omega Cen’s original host galaxy, or (3) represent an early merger event between ω\omega Cen and metal-poor sub-clumps. Although none of these scenarios is clearly favored, the merging sub-clump model may have the greatest chance for describing the paucity of very metal-poor stars in other clusters, the possibly reduced light element spread for stars with [Fe/H] << -2, and the observed central concentration of these populations.

CIJ and AKD gratefully acknowledge support from the Scholarly Studies Program of the Smithsonian Institution. EWO, MGW, and MM acknowledge support from the National Science Foundation under grants AST-1815767, AST-1813881, and AST-1815403.

References

  • Afsar et al. (2016) Afsar, M., Sneden, C., Frebel, A., et al. 2016, ApJ, 819, 103, doi: 10.3847/0004-637X/819/2/103
  • Alonso et al. (1999) Alonso, A., Arribas, S., & Martínez-Roger, C. 1999, A&AS, 140, 261, doi: 10.1051/aas:1999521
  • An et al. (2017) An, D., Lee, Y. S., In Jung, J., et al. 2017, AJ, 154, 150, doi: 10.3847/1538-3881/aa8364
  • Anders & Grevesse (1989) Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197, doi: 10.1016/0016-7037(89)90286-X
  • Ashman et al. (1994) Ashman, K. M., Bird, C. M., & Zepf, S. E. 1994, AJ, 108, 2348, doi: 10.1086/117248
  • Bailin (2019) Bailin, J. 2019, arXiv e-prints, arXiv:1909.11731. https://arxiv.org/abs/1909.11731
  • Battaglia et al. (2006) Battaglia, G., Tolstoy, E., Helmi, A., et al. 2006, A&A, 459, 423, doi: 10.1051/0004-6361:20065720
  • Beasley et al. (2019) Beasley, M. A., Leaman, R., Gallart, C., et al. 2019, MNRAS, 487, 1986, doi: 10.1093/mnras/stz1349
  • Bekki & Freeman (2003) Bekki, K., & Freeman, K. C. 2003, MNRAS, 346, L11, doi: 10.1046/j.1365-2966.2003.07275.x
  • Bekki & Tsujimoto (2019) Bekki, K., & Tsujimoto, T. 2019, arXiv e-prints, arXiv:1909.11295. https://arxiv.org/abs/1909.11295
  • Bellazzini et al. (2008) Bellazzini, M., Ibata, R. A., Chapman, S. C., et al. 2008, AJ, 136, 1147, doi: 10.1088/0004-6256/136/3/1147
  • Bellini et al. (2010) Bellini, A., Bedin, L. R., Piotto, G., et al. 2010, AJ, 140, 631, doi: 10.1088/0004-6256/140/2/631
  • Bellini et al. (2017) Bellini, A., Milone, A. P., Anderson, J., et al. 2017, ApJ, 844, 164, doi: 10.3847/1538-4357/aa7b7e
  • Bergemann et al. (2012) Bergemann, M., Lind, K., Collet, R., Magic, Z., & Asplund, M. 2012, MNRAS, 427, 27, doi: 10.1111/j.1365-2966.2012.21687.x
  • Bonnell et al. (2003) Bonnell, I. A., Bate, M. R., & Vine, S. G. 2003, MNRAS, 343, 413, doi: 10.1046/j.1365-8711.2003.06687.x
  • Bono et al. (2019) Bono, G., Iannicola, G., Braga, V. F., et al. 2019, ApJ, 870, 115, doi: 10.3847/1538-4357/aaf23f
  • Calamida et al. (2005) Calamida, A., Stetson, P. B., Bono, G., et al. 2005, ApJ, 634, L69, doi: 10.1086/498691
  • Calamida et al. (2009) Calamida, A., Bono, G., Stetson, P. B., et al. 2009, ApJ, 706, 1277, doi: 10.1088/0004-637X/706/2/1277
  • Calamida et al. (2017) Calamida, A., Strampelli, G., Rest, A., et al. 2017, AJ, 153, 175, doi: 10.3847/1538-3881/aa6397
  • Carrera et al. (2008) Carrera, R., Gallart, C., Aparicio, A., et al. 2008, AJ, 136, 1039, doi: 10.1088/0004-6256/136/3/1039
  • Carretta et al. (2009) Carretta, E., Bragaglia, A., Gratton, R., D’Orazi, V., & Lucatello, S. 2009, A&A, 508, 695, doi: 10.1051/0004-6361/200913003
  • Carretta et al. (2010a) Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010a, ApJ, 714, L7, doi: 10.1088/2041-8205/714/1/L7
  • Carretta et al. (2010b) —. 2010b, A&A, 520, A95, doi: 10.1051/0004-6361/201014924
  • Carretta et al. (2010c) Carretta, E., Gratton, R. G., Lucatello, S., et al. 2010c, ApJ, 722, L1, doi: 10.1088/2041-8205/722/1/L1
  • Castelli & Kurucz (2003) Castelli, F., & Kurucz, R. L. 2003, in IAU Symposium, Vol. 210, Modelling of Stellar Atmospheres, ed. N. Piskunov, W. W. Weiss, & D. F. Gray, A20. https://arxiv.org/abs/astro-ph/0405087
  • Chiti & Frebel (2019) Chiti, A., & Frebel, A. 2019, ApJ, 875, 112, doi: 10.3847/1538-4357/ab0f9f
  • Da Costa (2016) Da Costa, G. S. 2016, in IAU Symposium, Vol. 317, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, ed. A. Bragaglia, M. Arnaboldi, M. Rejkuba, & D. Romano, 110–115, doi: 10.1017/S174392131500678X
  • D’Antona et al. (2011) D’Antona, F., D’Ercole, A., Marino, A. F., et al. 2011, ApJ, 736, 5, doi: 10.1088/0004-637X/736/1/5
  • de Boer & Fraser (2016) de Boer, T. J. L., & Fraser, M. 2016, A&A, 590, A35, doi: 10.1051/0004-6361/201527580
  • Dinescu et al. (1999) Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792, doi: 10.1086/300807
  • D’Souza & Rix (2013) D’Souza, R., & Rix, H.-W. 2013, MNRAS, 429, 1887, doi: 10.1093/mnras/sts426
  • Faria et al. (2007) Faria, D., Feltzing, S., Lundström, I., et al. 2007, A&A, 465, 357, doi: 10.1051/0004-6361:20065244
  • Frebel et al. (2015) Frebel, A., Chiti, A., Ji, A. P., Jacobson, H. R., & Placco, V. M. 2015, ApJ, 810, L27, doi: 10.1088/2041-8205/810/2/L27
  • Georgiev et al. (2009) Georgiev, I. Y., Hilker, M., Puzia, T. H., Goudfrooij, P., & Baumgardt, H. 2009, MNRAS, 396, 1075, doi: 10.1111/j.1365-2966.2009.14776.x
  • Harbeck et al. (2001) Harbeck, D., Grebel, E. K., Holtzman, J., et al. 2001, AJ, 122, 3092, doi: 10.1086/324232
  • Helmi et al. (2018) Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85, doi: 10.1038/s41586-018-0625-x
  • Hendricks et al. (2014) Hendricks, B., Koch, A., Walker, M., et al. 2014, A&A, 572, A82, doi: 10.1051/0004-6361/201424645
  • Hilker & Richtler (2000) Hilker, M., & Richtler, T. 2000, A&A, 362, 895. https://arxiv.org/abs/astro-ph/0008500
  • Hodge (1961) Hodge, P. W. 1961, AJ, 66, 83, doi: 10.1086/108378
  • Ibata et al. (2019) Ibata, R. A., Bellazzini, M., Malhan, K., Martin, N., & Bianchini, P. 2019, Nature Astronomy, 3, 667, doi: 10.1038/s41550-019-0751-x
  • Johnson et al. (2017) Johnson, C. I., Caldwell, N., Rich, R. M., et al. 2017, ApJ, 836, 168, doi: 10.3847/1538-4357/836/2/168
  • Johnson et al. (2005) Johnson, C. I., Kraft, R. P., Pilachowski, C. A., et al. 2005, PASP, 117, 1308, doi: 10.1086/497435
  • Johnson & Pilachowski (2010) Johnson, C. I., & Pilachowski, C. A. 2010, ApJ, 722, 1373, doi: 10.1088/0004-637X/722/2/1373
  • Johnson et al. (2008) Johnson, C. I., Pilachowski, C. A., Simmerer, J., & Schwenk, D. 2008, ApJ, 681, 1505, doi: 10.1086/588634
  • Johnson et al. (2015a) Johnson, C. I., Rich, R. M., Pilachowski, C. A., et al. 2015a, AJ, 150, 63, doi: 10.1088/0004-6256/150/2/63
  • Johnson et al. (2015b) Johnson, C. I., McDonald, I., Pilachowski, C. A., et al. 2015b, AJ, 149, 71, doi: 10.1088/0004-6256/149/2/71
  • Kacharov et al. (2017) Kacharov, N., Battaglia, G., Rejkuba, M., et al. 2017, MNRAS, 466, 2006, doi: 10.1093/mnras/stw3188
  • Kirby et al. (2013) Kirby, E. N., Cohen, J. G., Guhathakurta, P., et al. 2013, ApJ, 779, 102, doi: 10.1088/0004-637X/779/2/102
  • Kirby et al. (2009) Kirby, E. N., Guhathakurta, P., Bolte, M., Sneden, C., & Geha, M. C. 2009, ApJ, 705, 328, doi: 10.1088/0004-637X/705/1/328
  • Kirby et al. (2011) Kirby, E. N., Lanfranchi, G. A., Simon, J. D., Cohen, J. G., & Guhathakurta, P. 2011, ApJ, 727, 78, doi: 10.1088/0004-637X/727/2/78
  • Kurtz & Mink (1998) Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934, doi: 10.1086/316207
  • Leaman et al. (2013) Leaman, R., Venn, K. A., Brooks, A. M., et al. 2013, ApJ, 767, 131, doi: 10.1088/0004-637X/767/2/131
  • Lee et al. (1999) Lee, Y. W., Joo, J. M., Sohn, Y. J., et al. 1999, Nature, 402, 55, doi: 10.1038/46985
  • Lind et al. (2012) Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50, doi: 10.1111/j.1365-2966.2012.21686.x
  • Mackey & van den Bergh (2005) Mackey, A. D., & van den Bergh, S. 2005, MNRAS, 360, 631, doi: 10.1111/j.1365-2966.2005.09080.x
  • Magurno et al. (2019) Magurno, D., Sneden, C., Bono, G., et al. 2019, ApJ, 881, 104, doi: 10.3847/1538-4357/ab2e76
  • Majewski et al. (2012) Majewski, S. R., Nidever, D. L., Smith, V. V., et al. 2012, ApJ, 747, L37, doi: 10.1088/2041-8205/747/2/L37
  • Marino et al. (2011) Marino, A. F., Milone, A. P., Piotto, G., et al. 2011, ApJ, 731, 64, doi: 10.1088/0004-637X/731/1/64
  • Marino et al. (2015) Marino, A. F., Milone, A. P., Karakas, A. I., et al. 2015, MNRAS, 450, 815, doi: 10.1093/mnras/stv420
  • Mashonkina et al. (2016) Mashonkina, L. I., Sitnova, T. N., & Pakhomov, Y. V. 2016, Astronomy Letters, 42, 606, doi: 10.1134/S1063773716080028
  • Massari et al. (2019) Massari, D., Koppelman, H. H., & Helmi, A. 2019, A&A, 630, L4, doi: 10.1051/0004-6361/201936135
  • Massari et al. (2014) Massari, D., Mucciarelli, A., Ferraro, F. R., et al. 2014, ApJ, 795, 22, doi: 10.1088/0004-637X/795/1/22
  • Mateo et al. (2012) Mateo, M., Bailey, J. I., Crane, J., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Proc. SPIE, 84464Y, doi: 10.1117/12.926448
  • McCall (2004) McCall, M. L. 2004, AJ, 128, 2144, doi: 10.1086/424933
  • McDonald et al. (2011) McDonald, I., Johnson, C. I., & Zijlstra, A. A. 2011, MNRAS, 416, L6, doi: 10.1111/j.1745-3933.2011.01086.x
  • McDonald et al. (2009) McDonald, I., van Loon, J. T., Decin, L., et al. 2009, MNRAS, 394, 831, doi: 10.1111/j.1365-2966.2008.14370.x
  • Milone et al. (2017) Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636, doi: 10.1093/mnras/stw2531
  • Mucciarelli et al. (2018) Mucciarelli, A., Salaris, M., Monaco, L., et al. 2018, A&A, 618, A134, doi: 10.1051/0004-6361/201833457
  • Muratov & Gnedin (2010) Muratov, A. L., & Gnedin, O. Y. 2010, ApJ, 718, 1266, doi: 10.1088/0004-637X/718/2/1266
  • Myeong et al. (2019) Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W., & Belokurov, V. 2019, MNRAS, 488, 1235, doi: 10.1093/mnras/stz1770
  • Norris & Da Costa (1995) Norris, J. E., & Da Costa, G. S. 1995, ApJ, 447, 680, doi: 10.1086/175909
  • Norris et al. (1996) Norris, J. E., Freeman, K. C., & Mighell, K. J. 1996, ApJ, 462, 241, doi: 10.1086/177145
  • Origlia et al. (2013) Origlia, L., Massari, D., Rich, R. M., et al. 2013, ApJ, 779, L5, doi: 10.1088/2041-8205/779/1/L5
  • Pancino et al. (2000) Pancino, E., Ferraro, F. R., Bellazzini, M., Piotto, G., & Zoccali, M. 2000, ApJ, 534, L83, doi: 10.1086/312658
  • Pancino et al. (2011a) Pancino, E., Mucciarelli, A., Bonifacio, P., Monaco, L., & Sbordone, L. 2011a, A&A, 534, A53, doi: 10.1051/0004-6361/201117378
  • Pancino et al. (2011b) Pancino, E., Mucciarelli, A., Sbordone, L., et al. 2011b, A&A, 527, A18, doi: 10.1051/0004-6361/201016024
  • Reijns et al. (2006) Reijns, R. A., Seitzer, P., Arnold, R., et al. 2006, A&A, 445, 503, doi: 10.1051/0004-6361:20053059
  • Rey et al. (2004) Rey, S.-C., Lee, Y.-W., Ree, C. H., et al. 2004, AJ, 127, 958, doi: 10.1086/380942
  • Ryabchikova et al. (2015) Ryabchikova, T., Piskunov, N., Kurucz, R. L., et al. 2015, Phys. Scr, 90, 054005, doi: 10.1088/0031-8949/90/5/054005
  • Shapley (1938) Shapley, H. 1938, Nature, 142, 715, doi: 10.1038/142715b0
  • Simpson (2018) Simpson, J. D. 2018, MNRAS, 477, 4565, doi: 10.1093/mnras/sty847
  • Simpson et al. (2019) Simpson, J. D., Martell, S. L., Da Costa, G., et al. 2019, arXiv e-prints, arXiv:1911.01548. https://arxiv.org/abs/1911.01548
  • Skrutskie et al. (2006) Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708
  • Smilgys & Bonnell (2017) Smilgys, R., & Bonnell, I. A. 2017, MNRAS, 472, 4982, doi: 10.1093/mnras/stx2396
  • Sneden (1973) Sneden, C. 1973, ApJ, 184, 839, doi: 10.1086/152374
  • Sollima et al. (2009) Sollima, A., Bellazzini, M., Smart, R. L., et al. 2009, MNRAS, 396, 2183, doi: 10.1111/j.1365-2966.2009.14864.x
  • Sollima et al. (2005) Sollima, A., Ferraro, F. R., Pancino, E., & Bellazzini, M. 2005, MNRAS, 357, 265, doi: 10.1111/j.1365-2966.2005.08646.x
  • Starkenburg et al. (2010) Starkenburg, E., Hill, V., Tolstoy, E., et al. 2010, A&A, 513, A34, doi: 10.1051/0004-6361/200913759
  • Suntzeff & Kraft (1996) Suntzeff, N. B., & Kraft, R. P. 1996, AJ, 111, 1913, doi: 10.1086/117930
  • Tolstoy et al. (2009) Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371, doi: 10.1146/annurev-astro-082708-101650
  • van de Ven et al. (2006) van de Ven, G., van den Bosch, R. C. E., Verolme, E. K., & de Zeeuw, P. T. 2006, A&A, 445, 513, doi: 10.1051/0004-6361:20053061
  • van den Bergh (1996) van den Bergh, S. 1996, ApJ, 471, L31, doi: 10.1086/310331
  • van Leeuwen et al. (2000) van Leeuwen, F., Le Poole, R. S., Reijns, R. A., Freeman, K. C., & de Zeeuw, P. T. 2000, A&A, 360, 472
  • van Loon et al. (2007) van Loon, J. T., van Leeuwen, F., Smalley, B., et al. 2007, MNRAS, 382, 1353, doi: 10.1111/j.1365-2966.2007.12478.x
  • Villanova et al. (2014) Villanova, S., Geisler, D., Gratton, R. G., & Cassisi, S. 2014, ApJ, 791, 107, doi: 10.1088/0004-637X/791/2/107
  • Villanova et al. (2007) Villanova, S., Piotto, G., King, I. R., et al. 2007, ApJ, 663, 296, doi: 10.1086/517905
  • Wang et al. (2019) Wang, X., Jones, T. A., Treu, T., et al. 2019, ApJ, 882, 94, doi: 10.3847/1538-4357/ab3861
  • Wolf et al. (2018) Wolf, C., Onken, C. A., Luvaul, L. C., et al. 2018, PASA, 35, e010, doi: 10.1017/pasa.2018.5
  • Yong et al. (2014) Yong, D., Roederer, I. U., Grundahl, F., et al. 2014, MNRAS, 441, 3396, doi: 10.1093/mnras/stu806
Table 1: Sky Coordinates, Photometry, Model Atmosphere Parameters, Iron Abundances, Errors, and Radial Velocities
LEID RA DEC V J KS Teff log(g) [Fe/H] ξ\ximic. σ\sigma/N\sqrt{N} N Δ\Delta[Fe/H] RVHelio. Error
(degrees) (degrees) (mag.) (mag.) (mag.) (K) (cgs) (dex) (km s-1) (dex) (dex) (km s-1) (km s-1)
4013 201.44247 -47.18851 13.982 12.111 11.511 4960 2.03 -1.49 1.46 0.05 14 0.12 220.6 0.4
4022 201.69444 -47.18516 14.635 12.745 12.158 4953 2.28 -1.43 1.46 0.03 14 0.12 220.1 0.6
6012 201.52474 -47.20504 13.685 11.881 11.278 5035 1.94 -1.95 1.41 0.05 12 0.14 232.2 0.3
7010 201.45608 -47.21242 14.662 12.858 12.307 5097 2.36 -1.72 1.37 0.03 12 0.14 236.9 0.7
7022 201.92768 -47.20907 14.338 12.399 11.790 4874 2.12 -1.85 1.51 0.06 12 0.14 205.1 0.4
8004 201.07113 -47.22082 14.508 12.687 12.007 4928 2.22 -1.48 1.48 0.02 13 0.12 244.3 0.3
8022 201.66668 -47.21645 14.034 12.085 11.454 4840 1.99 -1.74 1.53 0.05 13 0.14 244.9 0.3
8026 201.78482 -47.21673 14.315 12.397 11.785 4894 2.12 -1.77 1.50 0.04 13 0.14 229.3 0.5
8028 201.79297 -47.21472 13.931 12.172 11.652 5191 2.10 -1.44 1.31 0.06 10 0.13 222.4 0.9
9008 201.51840 -47.22127 13.851 12.241 11.747 5418 2.16 -1.79 1.16 0.05 11 0.14 237.8 0.4
10006 201.16314 -47.23357 13.710 11.887 11.300 5031 1.95 -1.90 1.41 0.05 12 0.14 239.8 0.3
10029 201.80897 -47.22988 14.296 12.359 11.726 4851 2.10 -1.79 1.53 0.04 13 0.14 225.4 0.3
11020 201.63017 -47.24044 13.851 11.896 11.230 4797 1.89 -1.52 1.56 0.03 13 0.14 229.9 0.4
12025 201.72957 -47.24688 14.224 12.406 11.781 4993 2.13 -1.64 1.43 0.05 11 0.14 235.4 1.1
13014 201.44182 -47.25608 14.195 12.239 11.598 4822 2.04 -1.48 1.55 0.03 12 0.12 226.2 0.7
13028 201.70258 -47.25524 14.434 12.627 12.030 5039 2.24 -1.67 1.41 0.03 11 0.14 218.7 0.3
14008 201.36780 -47.26070 13.650 11.911 11.370 5190 1.99 -1.33 1.31 0.04 12 0.12 252.9 0.4
14028 201.67091 -47.26057 13.706 11.755 11.122 4836 1.85 -1.75 1.54 0.05 12 0.14 226.5 0.3
14035 201.82702 -47.26180 14.142 12.243 11.618 4901 2.06 -1.46 1.49 0.03 12 0.12 221.6 0.9
14040 201.91045 -47.26064 13.869 12.079 11.527 5114 2.05 -1.70 1.36 0.04 10 0.14 239.5 0.3
14041 201.92318 -47.26065 14.307 12.388 11.745 4859 2.10 -1.61 1.52 0.05 13 0.14 237.0 0.3
14042 201.93956 -47.26221 14.475 12.588 11.947  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 232.4 2.0
15012 201.40686 -47.26967 14.251 12.411 11.778 4959 2.13 -1.70 1.46 0.04 13 0.14 225.4 0.4
15018 201.67301 -47.27263 13.782 11.987 11.402 5067 1.99 -1.74 1.39 0.04 13 0.14 209.1 0.3
17025 201.60253 -47.28719 13.809 12.073 11.509 5166 2.04 -1.90 1.32 0.05 10 0.14 253.4 0.4
18021 201.50836 -47.29494 13.530 11.682 11.063 4965 1.84 -1.84 1.45 0.03 12 0.14 242.1 0.3
18028 201.65542 -47.29263 13.768 11.830 11.176 4827 1.87 -1.72 1.54 0.03 13 0.14 228.5 0.3
18050 201.86680 -47.28925 14.232 12.626 12.125 5415 2.31 -1.90 1.16 0.07 8 0.15 223.9 0.4
19031 201.63658 -47.29775 13.915 12.058 11.443 4959 2.00 -1.54 1.46 0.03 12 0.14 237.3 0.3
19037 201.71141 -47.30118 14.420 12.583 11.975 4991 2.21 -1.78 1.44 0.03 13 0.14 235.3 0.4
19048 201.83571 -47.29851 14.183 12.325 11.719 4969 2.11 -1.52 1.45 0.04 13 0.14 230.5 0.3
19055 201.89532 -47.29739 13.592 11.794 11.163 5010 1.89 -1.58 1.42 0.05 12 0.14 239.1 0.4
19065 202.01444 -47.29983 14.539 12.641 12.004 4889 2.21 -1.43 1.50 0.04 13 0.12 243.0 0.5
20015 201.41369 -47.30916 14.284 12.494 11.904 5067 2.19 -1.66 1.39 0.05 12 0.14 255.6 0.7
20017 201.43875 -47.30781 14.064 12.253 11.610 4981 2.06 -1.70 1.44 0.04 12 0.14 234.6 0.4
20026 201.54652 -47.31119 14.351 12.533 11.924 5012 2.19 -1.65 1.42 0.03 12 0.14 227.8 0.3
20036 201.70374 -47.30357 14.117 12.275 11.640 4954 2.07 -1.70 1.46 0.04 13 0.14 230.2 0.3
21029 201.60882 -47.31443 14.046 12.452 11.925 5396 2.23 -1.73 1.17 0.05 11 0.14 234.5 0.4
21036 201.65793 -47.31665 14.488 12.690 12.073 5026 2.26 -1.57 1.41 0.04 12 0.14 224.8 0.3
22030 201.61720 -47.32318 14.479 12.695 12.094 5062 2.27 -1.65 1.39 0.04 12 0.14 245.5 0.5
22035 201.65267 -47.32575 14.410 12.570 11.933 4954 2.19 -1.67 1.46 0.03 11 0.14 220.5 0.3
22062 201.98775 -47.32039 14.320 12.426 11.815 4922 2.14 -1.79 1.48 0.05 10 0.14 215.9 0.3
23041 201.62290 -47.33342 14.121 12.400 11.688 5006 2.10 -1.56 1.43 0.04 12 0.14 239.6 0.3
23051 201.71487 -47.33170 14.355 12.466 11.839 4910 2.15 -1.79 1.49 0.02 13 0.13 238.7 0.4
23054 201.75562 -47.32885 13.815 12.124 11.555 5216 2.07 -1.74 1.29 0.05 10 0.14 233.8 0.3
23064 201.89567 -47.32890 14.096 12.129 11.493 4815 2.00 -1.72 1.55 0.05 11 0.14 246.3 0.6
24042 201.63385 -47.33654 13.553 11.651 10.971 4838 1.79 -1.82 1.53 0.02 13 0.13 239.3 0.3
24069 201.84379 -47.34082 13.695 11.905 11.315 5067 1.96 -1.55 1.39 0.03 13 0.14 234.8 0.8
25044 201.66382 -47.34868 14.442 12.608 11.974 4964 2.21 -1.75 1.45 0.04 11 0.14 230.5 0.3
26040 201.62653 -47.35031 13.907 12.079 11.460 4988 2.01 -1.56 1.44 0.02 13 0.13 229.5 0.4
26052 201.66562 -47.35633 14.165 12.359 11.723 4995 2.11 -1.74 1.43 0.03 12 0.14 231.1 0.3
26061 201.68779 -47.35565 14.425 12.562 11.959 4966 2.20 -1.75 1.45 0.03 13 0.14 249.7 0.3
27016 201.41071 -47.35936 14.622 12.848 12.267 5098 2.34 -1.57 1.37 0.05 12 0.14 232.8 0.4
27040 201.59212 -47.35953 13.797 11.861 11.199 4821 1.88 -1.70 1.55 0.04 13 0.14 233.1 0.3
27043 201.59750 -47.36325 14.092 12.284 11.664 5011 2.09 -1.54 1.42 0.06 13 0.14 231.7 0.5
27066 201.73032 -47.36012 14.394 12.874 12.389 5556 2.43 -1.82 1.07 0.06 7 0.15 211.1 0.5
27102 201.95822 -47.35650 14.269 12.628 12.153  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 229.5 0.6
28017 201.44673 -47.36660 14.277 12.445 11.862 5025 2.17 -1.58 1.41 0.04 12 0.14 233.8 0.4
28021 201.47546 -47.37077 14.417 12.581 11.951 4967 2.20 -1.73 1.45 0.04 13 0.14 232.5 0.3
28029 201.52547 -47.37133 14.095 12.194 11.549 4877 2.03 -1.52 1.51 0.04 13 0.14 236.7 0.4
28094 201.85231 -47.37121 13.837 11.910 11.276 4860 1.92 -1.75 1.52 0.04 12 0.14 249.2 0.9
28104 202.01604 -47.36317 13.866 11.886 11.212 4762 1.88 -1.61 1.58 0.04 12 0.14 229.4 0.6
29012 201.45369 -47.37645 13.692 11.734 11.068 4794 1.83 -1.81 1.56 0.02 12 0.13 230.3 0.3
29057 201.67804 -47.37545 14.060 12.260 11.610 4985 2.07 -1.80 1.44 0.04 12 0.14 246.0 0.3
29095 201.87980 -47.37223 14.302 12.461 11.798 4924 2.13 -1.75 1.48 0.04 12 0.14 240.2 0.7
29111 201.98572 -47.37736 14.323 12.426 11.776 4876 2.12 -1.70 1.51 0.05 11 0.14 224.8 0.9
30016 201.38634 -47.38739 14.285 12.421 11.790 4934 2.13 -1.50 1.47 0.04 13 0.14 235.9 0.4
30024 201.48549 -47.38079 14.139 12.299 11.720 5021 2.11 -1.57 1.42 0.04 12 0.14 222.2 0.4
30033 201.52477 -47.38331 14.216 12.414 11.798 5022 2.14 -1.53 1.42 0.05 11 0.14 232.2 0.4
30041 201.55331 -47.38549 13.973 12.123 11.506 4965 2.02 -1.71 1.45 0.03 12 0.14 224.3 0.3
30105 201.78461 -47.38307 14.145 12.304 11.703 4994 2.10 -1.69 1.43 0.04 12 0.14 209.7 0.4
31018 201.37651 -47.39283 13.631 11.702 11.079 4870 1.84 -1.67 1.51 0.04 13 0.14 217.0 1.1
31031 201.47083 -47.38866 13.887 11.949 11.311 4844 1.93 -1.68 1.53 0.04 11 0.14 240.9 0.4
31037 201.49467 -47.39425 13.806 11.844 11.198 4810 1.88 -1.60 1.55 0.02 13 0.13 230.1 0.4
31062 201.58966 -47.38771 14.423 12.568 11.953 4962 2.20 -1.21 1.45 0.04 12 0.12 217.9 0.6
31082 201.65619 -47.39125 13.507 11.608 10.951 4866 1.79 -1.70 1.52 0.04 13 0.14 255.1 0.3
31114 201.73152 -47.38935 13.756 12.089 11.542 5274 2.07 -1.76 1.25 0.04 10 0.14 221.1 1.8
32015 201.41028 -47.40040 12.411 10.896 10.393 5538 1.63 -1.98 1.08 0.04 9 0.14 226.9 1.1
32040 201.56659 -47.39700 14.161 12.381 11.746 5026 2.12 -1.71 1.41 0.04 11 0.14 244.1 0.4
32045 201.59365 -47.39851 14.361 12.549 11.918 4993 2.19 -1.43 1.43 0.03 13 0.12 230.8 0.4
33027 201.48522 -47.40622 13.824 12.133 11.567 5220 2.07 -1.87 1.29 0.04 11 0.14 208.0 0.5
33031 201.50705 -47.40851 14.437 12.578 11.921 4910 2.18 -1.37 1.49 0.03 12 0.12 225.1 0.4
33033 201.53108 -47.40287 14.228 12.418 11.817 5030 2.15 -1.69 1.41 0.03 10 0.14 227.1 0.3
33117 201.73694 -47.40605 13.321 11.536 10.928 5052 1.80 -1.92 1.40 0.07 9 0.15 232.2 0.4
33147 201.80917 -47.40322 13.837 11.863 11.216 4796 1.88 -1.87 1.56 0.04 13 0.14 235.9 0.5
34012 201.31212 -47.41251 14.370 12.560 11.942 5011 2.20 -1.51 1.42 0.04 13 0.14 222.7 0.4
34015 201.40628 -47.41161 14.457 12.570 11.937 4906 2.19 -1.85 1.49 0.03 12 0.14 235.0 0.7
34018 201.42983 -47.41121 14.319 12.425 11.822 4931 2.14 -1.75 1.47 0.04 11 0.14 240.9 0.3
34033 201.52815 -47.41256 14.207 12.385 11.820 5059 2.16 -1.64 1.39 0.03 9 0.14 215.4 0.4
34063 201.59383 -47.41040 13.711 11.850 11.194 4909 1.89 -1.68 1.49 0.04 13 0.14 221.2 0.6
34202 201.83066 -47.41326 14.141 12.550 12.023 5400 2.27 -1.78 1.17 0.04 10 0.14 229.9 0.3
35038 201.45658 -47.41751 13.693 11.711 11.064 4788 1.82 -1.86 1.57 0.04 11 0.14 242.5 0.5
35051 201.51153 -47.41889 13.698 11.804 11.172 4899 1.88 -1.62 1.50 0.03 13 0.14 214.7 0.3
35076 201.57772 -47.41723 14.010 12.188 11.561 4986 2.05 -1.52 1.44 0.05 13 0.14 211.4 0.4
35206 201.75761 -47.41718 14.195 12.367 11.713 4949 2.10 -1.86 1.46 0.04 12 0.14 247.7 1.1
35268 202.03099 -47.42299 14.167 12.196 11.549 4800 2.02 -1.72 1.56 0.04 11 0.14 232.7 0.6
36020 201.43352 -47.42713 14.425 12.573 11.955 4962 2.20 -1.56 1.45 0.03 13 0.14 236.9 0.3
36024 201.48592 -47.42517 14.191 12.330 11.750 4995 2.12 -1.39 1.43 0.03 13 0.12 225.9 0.4
36032 201.53233 -47.43151 14.203 12.357 11.762 4995 2.13 -1.56 1.43 0.05 11 0.14 254.9 0.5
36037 201.54602 -47.43044 14.122 12.099 11.567 4865 2.03 -1.81 1.52 0.04 12 0.14 244.5 0.4
36043 201.57655 -47.42716 13.944 12.132 11.544 5043 2.05 -1.53 1.40 0.05 12 0.14 214.1 0.3
36051 201.59115 -47.42981 14.467 12.618 12.055 5029 2.25 -1.52 1.41 0.04 9 0.14 238.8 0.8
36058 201.60027 -47.42722 13.829 11.978 11.325 4924 1.94 -1.71 1.48 0.04 12 0.14 222.5 0.5
36095 201.64704 -47.42934 13.298 11.390 10.704 4826 1.68 -1.74 1.54 0.03 13 0.14 219.7 0.3
36097 201.64935 -47.42799 14.031 12.252 11.644 5059 2.09 -1.93 1.39 0.05 9 0.14 221.2 0.9
36159 201.71318 -47.42592 14.244 12.508 11.920 5137 2.21 -1.47 1.34 0.03 12 0.12 213.2 1.1
36175 201.72638 -47.42917 14.265 12.438 11.777 4942 2.13 -1.81 1.47 0.05 11 0.14 235.5 0.6
36203 201.76517 -47.42612 14.014 12.214 11.576  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 219.8 0.7
36243 201.83821 -47.42440 14.251 12.345 11.694 4865 2.08 -1.49 1.52 0.02 13 0.12 242.5 0.4
36255 201.85339 -47.42474 14.251 12.384 11.766 4945 2.12 -1.75 1.47 0.04 12 0.14 223.6 0.6
36258 201.85705 -47.42666 14.315 12.397 11.743 4849 2.10 -1.79 1.53 0.02 12 0.13 239.4 0.5
36276 201.90026 -47.42541 14.137 12.284 11.658 4952 2.08 -1.80 1.46 0.04 12 0.14 236.4 0.4
36278 201.91641 -47.42488 13.820 12.067 11.505 5148 2.04 -1.80 1.33 0.04 10 0.14 247.7 1.1
37023 201.44027 -47.43511 14.443 12.615 12.061 5064 2.25 -1.50 1.39 0.02 10 0.13 219.5 0.5
37027 201.45894 -47.43578 14.228 12.403 11.812 5024 2.15 -1.71 1.41 0.03 12 0.14 229.8 0.3
37038 201.50406 -47.43944 14.456 12.580 11.948 4919 2.19 -1.54 1.48 0.04 13 0.14 236.7 0.4
37043 201.53100 -47.43611 14.380 12.570 11.959 5019 2.21 -1.71 1.42 0.04 10 0.14 239.4 0.3
37044 201.53863 -47.43623 14.230 12.450 11.867 5088 2.18 -1.60 1.37 0.05 10 0.14 217.7 0.4
37048 201.55376 -47.43404 14.186 12.377 11.779 5035 2.14 -1.54 1.41 0.04 10 0.14 233.1 0.3
37059 201.58576 -47.43315 13.930 12.111 11.461 4964 2.00 -1.60 1.45 0.04 13 0.14 238.8 0.3
37072 201.60695 -47.43960 14.347 12.824 12.320 5525 2.40 -2.03 1.09 0.09 4 0.16 248.4 0.5
37099 201.63168 -47.43614 14.002 12.555 11.888 5408 2.22 -1.46 1.17 0.05 9 0.12 220.4 0.7
37104 201.63899 -47.43193 14.192 12.342 11.762  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 231.2 1.1
37183 201.70897 -47.43702 13.717 11.755 11.113 4814 1.85 -1.70 1.55 0.05 12 0.14 211.2 0.3
37223 201.73871 -47.43699 14.312 12.511 11.874 4999 2.17 -1.86 1.43 0.05 12 0.14 231.0 0.4
37262 201.77927 -47.43276 14.174 12.497 11.933 5240 2.22 -1.61 1.27 0.04 12 0.14 255.0 0.4
37287 201.81556 -47.43386 12.883 10.783 10.060 4597 1.40 -1.80 1.69 0.03 13 0.14 226.6 0.3
38032 201.51473 -47.44189 13.815 12.214 11.710 5417 2.15 -1.75 1.16 0.04 10 0.14 229.9 1.2
38036 201.53299 -47.44377 14.389 12.575 11.990 5044 2.22 -1.67 1.40 0.04 10 0.14 247.8 0.3
38135 201.66470 -47.44132 13.315 11.575 10.958 5096 1.82 -1.75 1.37 0.04 12 0.14 232.6 0.3
38155 201.68262 -47.44376 14.293 99.999 99.999 4905 2.12 -1.91 1.49 0.04 11 0.14 229.6 0.4
38164 201.68948 -47.43944 13.845 11.615 11.400 4984 1.98 -1.61 1.44 0.03 10 0.14 238.9 0.6
38307 201.79761 -47.44688 14.387 13.005 12.488 5711 2.48 -0.81 0.97 0.05 13 0.11 249.3 0.5
38309 201.79846 -47.44037 14.131 12.313 11.713 5022 2.11 -0.97 1.42 0.08 8 0.13 237.5 0.4
38318 201.81336 -47.44301 13.516 11.634 11.010 4921 1.82 -1.97 1.48 0.05 11 0.14 255.9 0.6
38352 201.97004 -47.44269 13.512 11.615 11.010  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 246.5 0.3
38358 202.02845 -47.43972 14.382 12.865 12.387 5570 2.43 -2.14 1.06 0.06 7 0.15 238.8 0.6
39020 201.29048 -47.45508 13.741 11.835 11.197 4879 1.89 -1.77 1.51 0.03 11 0.14 230.0 0.3
39030 201.39691 -47.44988 14.191 12.469 11.890 5165 2.20 -2.01 1.32 0.05 11 0.14 233.1 0.4
39046 201.51347 -47.45357 13.042 11.261 10.687 5098 1.71 -1.74 1.37 0.03 10 0.14 253.0 0.3
39054 201.53397 -47.44775 14.487 13.072 12.662 5822 2.56 -1.57 0.90 0.04 10 0.14 222.3 0.2
39114 201.61253 -47.45104 14.299 12.839 12.352  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 233.8 0.9
39159 201.64595 -47.45127 13.594 11.770 11.205 5056 1.91 -1.58 1.39 0.03 10 0.14 230.1 1.0
39160 201.64740 -47.44837 14.148 12.401 11.755 5053 2.13 -1.42 1.40 0.04 12 0.12 252.8 0.8
39183 201.66459 -47.45215 13.490 11.689 11.051 4998 1.84 -1.96 1.43 0.05 9 0.14 230.8 0.6
39219 201.68658 -47.44704 12.985 10.981 10.302 4733 1.51 -1.60 1.60 0.04 13 0.14 233.3 1.9
39234 201.69320 -47.45213 12.910 10.791 10.040 4561 1.39 -2.00 1.71 0.02 11 0.13 245.0 0.4
39281 201.71736 -47.45365 13.681 11.950 11.383 5169 1.99 -1.51 1.32 0.05 12 0.14 234.8 0.3
39309 201.73811 -47.45247 13.661 11.643 11.015 4770 1.80 -2.50 1.58 0.05 11 0.14 242.4 0.4
39363 201.78667 -47.45088 13.769 11.928 11.282 4943 1.93 -1.78 1.47 0.04 10 0.14 203.4 0.3
39406 201.85778 -47.44707 13.695 11.892 11.311 5062 1.95 -1.87 1.39 0.04 10 0.14 240.2 0.7
40008 201.28278 -47.45599 14.189 12.180 11.523 4750 2.00 -1.50 1.59 0.02 13 0.13 251.1 0.3
40028 201.45841 -47.46064 13.962 12.090 11.447 4911 1.99 -1.91 1.49 0.04 10 0.14 224.9 0.3
40030 201.46704 -47.45655 14.663 12.869 12.343 5141 2.38 -1.62 1.34 0.04 13 0.14 229.4 0.6
40045 201.53151 -47.45737 13.475 11.569 10.944 4893 1.79 -1.68 1.50 0.04 13 0.14 224.4 0.3
40047 201.53223 -47.46138 13.569 11.650 11.020 4873 1.82 -1.53 1.51 0.04 12 0.14 220.2 0.3
40055 201.55656 -47.45951 14.157 12.342 11.715 4994 2.11 -1.74 1.43 0.05 10 0.14 201.6 0.4
40069 201.57362 -47.46253 14.392 13.083 12.702  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 259.4 0.8
40129 201.63316 -47.45951 14.074 12.256 11.578 4933 2.05 -1.77 1.47 0.02 11 0.13 223.0 0.5
40175 201.65817 -47.45646 13.381 11.273 10.329 4414 1.49 -2.50 1.81 0.05 11 0.14 221.6 0.8
40180 201.66068 -47.45642 14.375 12.472 11.775  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 220.8 1.9
40219 201.67663 -47.46117 13.177 11.329 10.687 4939 1.69 -1.74 1.47 0.04 11 0.14 218.3 0.5
40249 201.69299 -47.45999 14.051 12.237 11.588 4970 2.05 -1.86 1.45 0.03 11 0.14 248.8 0.4
40279 201.70587 -47.45789 13.097 11.023 10.308 4629 1.50 -1.85 1.67 0.01 12 0.13 210.1 0.3
40295 201.71174 -47.45937 13.304 11.339 10.661 4774 1.66 -2.16 1.58 0.03 11 0.14 206.8 0.4
40300 201.71378 -47.45719 14.230 12.365 11.822  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 209.2 0.6
40301 201.71392 -47.45495 13.831 11.885 11.169 4755 1.86 -2.08 1.59 0.04 12 0.14 225.9 0.4
40311 201.71853 -47.45987 13.552 11.746 11.098 4981 1.86 -1.95 1.44 0.04 12 0.14 242.5 0.4
40463 201.88460 -47.45819 14.176 12.455 11.919 5219 2.21 -2.04 1.29 0.05 10 0.14 237.3 0.5
40481 201.96171 -47.45389 13.900 12.191 11.668 5251 2.12 -1.98 1.27 0.02 8 0.13 235.9 0.5
41037 201.45566 -47.46877 14.450 12.660 12.048 5041 2.25 -1.70 1.40 0.03 11 0.14 227.7 0.7
41056 201.52534 -47.46639 14.449 12.630 12.029 5020 2.24 -1.39 1.42 0.03 10 0.12 229.0 0.4
41068 201.55448 -47.46479 14.217 12.525 11.988 5255 2.25 -1.16 1.27 0.06 9 0.13 198.0 1.0
41100 201.60006 -47.46929 13.523 11.681 11.042 4950 1.83 -1.80 1.46 0.02 11 0.13 218.0 0.3
41139 201.62823 -47.46595 13.337 11.286 10.598 4677 1.63 -1.82 1.64 0.03 11 0.14 253.0 1.2
41140 201.62859 -47.46718 12.321 10.134 9.355 4480 1.10 -1.96 1.77 0.02 12 0.13 226.0 0.3
41157 201.64021 -47.46664 14.045 12.698 12.022 5534 2.28 -0.88 1.08 0.05 10 0.11 226.4 0.5
41162 201.64342 -47.46544 14.067 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 197.5 1.3
41171 201.64731 -47.46420 13.867 11.964 11.302 4857 1.93 -1.34 1.52 0.02 13 0.12 212.5 0.4
41179 201.65113 -47.46830 13.811 12.009 11.121 4729 1.84 -2.35 1.61 0.04 11 0.14 208.6 0.3
41205 201.66382 -47.46953 14.134 12.315 11.691 4993 2.10 -1.57 1.43 0.04 11 0.14 236.6 0.6
41224 201.67256 -47.46648 13.247 11.156 10.410 4584 1.54 -1.90 1.70 0.03 10 0.13 212.4 0.6
41234 201.67791 -47.46711 13.635 11.879 11.239 5049 1.92 -1.54 1.40 0.03 9 0.14 230.9 0.4
41265 201.69279 -47.46851 13.339 11.240 10.437 4534 1.54 -2.41 1.73 0.03 10 0.14 257.8 0.4
41301 201.71083 -47.46861 13.259 11.262 10.582 4739 1.62 -1.70 1.60 0.04 12 0.14 271.1 0.6
41317 201.71686 -47.46540 13.860 11.897 11.179 4735 1.86 -2.10 1.60 0.05 10 0.14 234.7 0.5
41323 201.71949 -47.46918 13.375 11.379 10.617 4659 1.63 -2.14 1.65 0.04 12 0.14 228.5 0.3
41328 201.72165 -47.46376 14.272 12.736 12.127  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 228.8 0.8
41331 201.72388 -47.46735 13.499 11.644 11.022 4954 1.83 -1.92 1.46 0.05 11 0.14 250.5 0.3
41338 201.72804 -47.46432 14.081 12.262 11.610 4961 2.06 -1.85 1.46 0.02 11 0.13 235.9 0.3
41374 201.74611 -47.46323 13.428 11.515 10.829 4820 1.73 -1.77 1.55 0.04 11 0.14 250.8 0.3
41427 201.78341 -47.46329 14.133 12.744 12.288  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 253.6 0.6
41437 201.79138 -47.46561 14.500 12.757 12.314 5309 2.38 -1.51 1.23 0.05 8 0.14 239.3 0.6
41478 201.85750 -47.46839 14.123 12.568 12.038 5445 2.28 -1.66 1.14 0.05 9 0.14 228.4 0.4
41509 202.02779 -47.46745 14.174 12.239 11.632 4881 2.06 -1.79 1.51 0.03 10 0.14 251.9 0.4
42025 201.46468 -47.47735 13.679 11.736 11.095 4836 1.84 -1.81 1.54 0.03 12 0.14 230.0 0.3
42032 201.49242 -47.47554 14.183 12.301 11.709 4957 2.10 -1.74 1.46 0.03 10 0.14 237.0 0.3
42065 201.56859 -47.47507 14.238 12.652 12.066 5330 2.28 -1.44 1.22 0.03 8 0.12 214.2 0.9
42119 201.62091 -47.47195 14.064 12.148 11.522 4881 2.02 -1.59 1.51 0.04 11 0.14 222.6 0.6
42124 201.62389 -47.47390 13.407 11.603 10.936  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 203.0 0.6
42131 201.62780 -47.47064 13.973 11.368 10.695 4910 2.00 -1.70 1.49 0.06 7 0.15 196.3 0.9
42158 201.64343 -47.47615 14.246 12.151 11.474 4645 1.97 -1.54 1.66 0.05 9 0.14 225.0 0.6
42171 201.65129 -47.47293 13.742 11.818 11.148 4825 1.86 -1.96 1.54 0.04 10 0.14 241.2 0.5
42178 201.65447 -47.47389 14.368 99.999 99.999 4926 2.16 -1.79 1.48 0.06 10 0.15 215.2 0.9
42184 201.65710 -47.47548 13.952 99.999 99.999 4915 1.99 -1.78 1.49 0.05 11 0.14 241.5 0.2
42193 201.66296 -47.47630 14.487 13.123 12.773  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 222.7 0.6
42203 201.66732 -47.47358 14.016 12.316 11.691 5136 2.12 -1.67 1.34 0.04 11 0.14 192.9 0.6
42223 201.67616 -47.47493 13.871 12.167 11.622 5229 2.10 -1.74 1.28 0.05 10 0.14 248.5 0.3
42245 201.68489 -47.47360 13.655 11.852 11.261 5051 1.93 -1.73 1.40 0.05 8 0.14 199.6 0.8
42268 201.69523 -47.47334 14.126 12.312 11.670 4978 2.09 -2.21 1.44 0.06 10 0.15 246.4 1.9
42272 201.69778 -47.47186 13.831 11.925 10.585 4925 1.95 -1.79 1.48 0.04 9 0.14 222.8 1.0
42314 201.71214 -47.47268 14.308 12.532 11.923 5062 2.20 -1.74 1.39 0.04 10 0.14 229.0 0.4
42317 201.71346 -47.47610 13.624 11.310 10.588 4424 1.60 -2.21 1.80 0.03 10 0.14 233.6 0.4
42333 201.72101 -47.47531 13.401 11.307 10.605 4622 1.62 -2.37 1.67 0.03 10 0.14 241.8 0.4
42355 201.73550 -47.47057 13.752 11.566 10.958 4622 1.76 -2.38 1.67 0.03 12 0.14 223.5 0.4
42387 201.75225 -47.47556 13.372 10.707 9.755  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 231.5 0.3
42401 201.76274 -47.47304 13.048 11.525 10.925 5395 1.83 -1.63 1.17 0.05 10 0.14 256.0 0.4
42420 201.77644 -47.47119 14.387 12.400 11.796 4828 2.12 -1.87 1.54 0.03 11 0.14 246.0 1.2
42502 201.89481 -47.47509 14.495 12.540 11.950 4877 2.19 -1.85 1.51 0.05 11 0.14 207.6 0.8
42510 201.95694 -47.47643 13.837 11.913 11.294 4880 1.93 -1.55 1.51 0.03 12 0.14 232.3 0.4
43025 201.45411 -47.47994 14.246 12.387 11.797 4986 2.14 -1.70 1.44 0.04 12 0.14 241.5 0.4
43038 201.50916 -47.48003 13.663 11.754 11.107 4866 1.85 -1.86 1.52 0.03 11 0.14 243.8 1.0
43057 201.53786 -47.48474 14.344 12.502 11.939 5037 2.20 -1.54 1.41 0.07 8 0.15 232.1 1.5
43103 201.60935 -47.47884 14.267 12.532 11.928  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 218.6 1.8
43105 201.61359 -47.47978 11.935 10.689 10.063  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 228.2 0.5
43107 201.61477 -47.48463 14.045 12.322 11.731  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 206.8 1.6
43136 201.63454 -47.48062 13.797 12.001 11.419  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 222.0 1.2
43153 201.64700 -47.48038 14.177 12.322 11.767  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 243.4 0.6
43167 201.65370 -47.48043 14.448 12.632 12.017 5007 2.23 -1.73 1.43 0.07 6 0.15 261.2 0.7
43212 201.67336 -47.47986 13.393 11.722 11.124 5205 1.90 -2.11 1.30 0.06 9 0.14 227.8 0.5
43227 201.67864 -47.48253 13.439 11.569 10.846 4827 1.74 -1.68 1.54 0.06 9 0.15 236.7 0.7
43244 201.68551 -47.48218 13.362 11.275 10.570 4626 1.61 -2.14 1.67 0.07 8 0.15 251.9 0.8
43271 201.69447 -47.48023 13.375 11.465 10.837 4886 1.74 -1.64 1.50 0.04 10 0.14 209.7 0.7
43303 201.70747 -47.48416 13.785 11.830 11.239 4876 1.90 -1.70 1.51 0.03 12 0.14 186.7 0.4
43338 201.72265 -47.47787 13.463 11.593 10.861 4818 1.75 -1.49 1.55 0.02 13 0.12 244.7 0.4
43344 201.72576 -47.48195 13.710 12.007 11.404 5159 2.00 -1.80 1.33 0.04 11 0.14 232.1 0.4
43380 201.74145 -47.48222 13.224 11.215 10.248 4474 1.46 -2.36 1.77 0.03 12 0.14 257.4 0.6
43402 201.75295 -47.48133 13.616 11.767 11.492 5387 2.06 -1.50 1.18 0.04 10 0.14 245.4 0.5
43415 201.76232 -47.48037 13.703 11.935 11.313 5056 1.95 -1.86 1.39 0.05 10 0.14 269.7 0.3
43430 201.77079 -47.48290 14.305 11.547 12.009 5153 2.24 -2.03 1.33 0.04 13 0.14 245.0 0.4
43445 201.77809 -47.48069 14.426 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 227.5 0.4
44013 201.28650 -47.48931 14.326 12.436 11.791 4889 2.13 -1.91 1.50 0.03 10 0.14 228.7 0.4
44016 201.35303 -47.48591 14.393 12.517 11.895 4930 2.17 -1.77 1.48 0.03 13 0.14 220.0 0.3
44021 201.38691 -47.48594 13.927 11.981 11.374 4869 1.96 -1.83 1.51 0.03 13 0.14 220.8 0.3
44028 201.46219 -47.48922 14.471 12.601 12.022 4985 2.23 -1.43 1.44 0.04 13 0.12 235.5 0.4
44073 201.57501 -47.48562 14.061 12.240 11.620 4995 2.07 -1.64 1.43 0.06 11 0.14 229.7 1.4
44091 201.59398 -47.49202 14.255 12.505 11.843  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 242.4 1.0
44144 201.63273 -47.49183 13.527 11.627 10.933 4826 1.78 -1.80 1.54 0.04 13 0.14 231.9 0.3
44154 201.64379 -47.48883 14.038 12.101 10.721  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 224.3 0.4
44156 201.64606 -47.49021 13.273 11.403 10.757 4910 1.72 -1.92 1.49 0.06 9 0.14 249.9 0.4
44164 201.64891 -47.48773 14.348 11.640 11.961 5043 2.21 -1.72 1.40 0.04 9 0.14 223.6 0.6
44182 201.65777 -47.48604 14.060 12.240 11.565  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 227.7 1.9
44186 201.66003 -47.48737 14.341 12.518 11.888 4982 2.18 -1.81 1.44 0.04 6 0.14 219.2 0.7
44232 201.67861 -47.49017 13.394 11.499 10.867 4898 1.76 -2.01 1.50 0.06 9 0.15 232.6 0.5
44238 201.68099 -47.48556 13.790 12.504 11.935  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 239.2 0.8
44241 201.68201 -47.49233 13.245 11.273 10.646 4819 1.66 -2.03 1.55 0.05 11 0.14 237.6 0.5
44252 201.68863 -47.49011 13.150 11.058 10.349  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 228.6 1.2
44299 201.70771 -47.48586 13.165 11.221 10.553 4806 1.62 -1.84 1.56 0.04 12 0.14 253.6 0.3
44324 201.71748 -47.49016 13.893 12.260 11.677 5272 2.12 -2.01 1.25 0.05 8 0.14 256.4 0.6
44336 201.72279 -47.48893 13.378 11.360 10.664 4702 1.65 -1.90 1.62 0.03 12 0.14 221.2 0.8
44348 201.72762 -47.48853 14.286 12.304 11.711  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 228.0 0.8
44409 201.76483 -47.48878 14.323 12.170 11.583 4674 2.02 -2.17 1.64 0.05 11 0.14 236.0 0.4
44513 201.98859 -47.48558 13.428 11.492 10.835 4826 1.74 -1.84 1.54 0.02 10 0.13 240.5 0.3
45017 201.27556 -47.49757 14.370 12.582 11.980 5056 2.22 -1.89 1.39 0.03 11 0.14 230.9 0.3
45018 201.28748 -47.49684 13.775 12.039 11.440 5124 2.01 -1.75 1.35 0.04 11 0.14 234.5 0.3
45034 201.47309 -47.49553 14.142 12.246 11.628 4912 2.06 -1.73 1.49 0.03 10 0.14 226.2 0.4
45054 201.55044 -47.49329 13.556 11.665 11.013 4880 1.81 -1.63 1.51 0.04 12 0.14 218.6 0.3
45146 201.63892 -47.49504 14.040 12.085 11.348  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 222.5 1.3
45147 201.63892 -47.49632 13.721 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 223.2 6.1
45167 201.65004 -47.49888 14.390 12.338 11.713  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 224.8 1.0
45169 201.65041 -47.49585 13.501 11.538 10.878 4795 1.75 -1.85 1.56 0.03 13 0.14 232.8 0.3
45186 201.66127 -47.49911 14.165 12.252 11.580 4835 2.04 -1.75 1.54 0.05 10 0.14 248.6 1.2
45214 201.67405 -47.49979 14.319 12.548 11.880 4999 2.18 -1.66 1.43 0.05 11 0.14 228.0 0.4
45216 201.67534 -47.49401 13.510 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 237.2 1.2
45241 201.68610 -47.49857 13.442 11.489 10.888 4868 1.76 -1.79 1.52 0.06 11 0.15 229.0 0.8
45251 201.69122 -47.49916 14.276 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 217.4 5.5
45261 201.69548 -47.49276 13.397 11.274 10.611 4631 1.62 -2.18 1.67 0.04 11 0.14 215.5 0.3
45284 201.70556 -47.49660 13.704 11.782 11.049 4762 1.81 -1.11 1.58 0.03 13 0.12 211.6 0.5
45301 201.71431 -47.49728 13.481 11.419 10.837 4771 1.73 -2.24 1.58 0.05 12 0.14 219.0 0.4
45302 201.71548 -47.49633 14.077 12.381 11.816 5215 2.17 -1.59 1.29 0.04 12 0.14 241.5 0.6
45314 201.71936 -47.49717 14.005 12.101 11.402 4816 1.96 -1.95 1.55 0.03 12 0.14 259.3 0.3
45347 201.73373 -47.49359 14.400 12.080 11.466  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 235.2 0.6
45352 201.73629 -47.49777 13.213 11.192 10.489 4692 1.58 -1.67 1.63 0.03 13 0.14 251.4 0.4
45368 201.74348 -47.49684 14.337 12.662 11.965  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 244.8 5.1
45405 201.76391 -47.49236 13.863 12.039 11.432 5007 2.00 -1.65 1.43 0.03 10 0.13 247.1 0.4
45456 201.80205 -47.49403 14.070 12.125 11.498 4848 2.00 -1.79 1.53 0.03 11 0.14 242.6 0.3
45486 201.84500 -47.49383 14.455 12.630 12.019 5001 2.23 -1.64 1.43 0.05 11 0.14 251.6 0.4
45516 201.98842 -47.49232 14.363 12.474 11.846 4909 2.15 -1.18 1.49 0.04 12 0.12 236.9 0.8
46132 201.63590 -47.50027 13.673 11.751 11.050 4795 1.82 -1.67 1.56 0.03 12 0.14 219.4 0.4
46135 201.63877 -47.50480 13.388 11.417 10.746 4775 1.69 -1.40 1.58 0.04 12 0.12 207.5 0.4
46157 201.65318 -47.50621 13.087 11.004 10.274 4606 1.49 -1.86 1.68 0.03 13 0.14 204.0 0.5
46177 201.66534 -47.50542 13.424 11.481 10.809 4803 1.72 -1.88 1.56 0.04 9 0.14 232.4 0.9
46188 201.66944 -47.50143 14.320 12.462 11.898 5017 2.18 -2.30 1.42 0.05 10 0.14 214.1 1.0
46224 201.68777 -47.50313 13.367 11.289 9.575  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 240.7 0.8
46226 201.68893 -47.50708 13.258 11.194 10.528 4685 1.59 -1.65 1.63 0.04 11 0.14 245.9 0.5
46228 201.68907 -47.50077 14.396 12.247 11.637  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 236.0 1.3
46239 201.69750 -47.50687 13.652 11.717 11.041 4807 1.82 -1.85 1.55 0.06 11 0.14 233.3 0.4
46252 201.70584 -47.50640 13.546 11.872 11.316  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 245.5 0.5
46257 201.70725 -47.50674 14.141 11.657 10.911 4282 1.71 -1.52 1.89 0.05 10 0.14 233.0 0.6
46299 201.72807 -47.50100 14.088 12.406 11.829  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 232.5 0.4
46310 201.73488 -47.50350 13.563 11.706 11.122 4995 1.87 -1.87 1.43 0.06 10 0.15 226.4 0.4
46330 201.74252 -47.50373 13.746 11.207 11.148 4812 1.86 -2.52 1.55 0.03 11 0.14 225.5 0.4
46332 201.74307 -47.50299 14.179 11.365 11.708 4945 2.09 -1.68 1.47 0.04 10 0.14 243.6 0.4
46344 201.75154 -47.50503 13.547 11.593 10.811 4681 1.71 -1.97 1.64 0.03 11 0.14 211.7 0.3
46357 201.75898 -47.50317 13.247 11.189 10.483 4653 1.58 -1.86 1.65 0.03 12 0.14 236.1 0.4
46360 201.76205 -47.50125 13.500 11.515 10.859 4776 1.74 -1.89 1.57 0.03 12 0.14 262.2 0.5
47027 201.47443 -47.51170 14.383 12.514 11.902 4949 2.18 -1.75 1.46 0.03 11 0.14 227.2 0.3
47093 201.60651 -47.50779 13.362 11.385 10.681 4735 1.66 -1.86 1.60 0.02 12 0.13 214.4 0.4
47214 201.68680 -47.51002 14.280 12.432 11.856 5015 2.17 -1.65 1.42 0.05 10 0.14 222.3 0.5
47221 201.69115 -47.51349 13.931 12.081 11.499 5005 2.02 -1.76 1.43 0.04 9 0.14 222.4 0.5
47241 201.69938 -47.50952 14.333 12.637 11.989 5114 2.23 -1.53 1.36 0.04 12 0.14 218.5 0.4
47266 201.71099 -47.50966 13.435 11.772 11.160 5198 1.91 -1.41 1.30 0.04 11 0.12 235.4 0.5
47267 201.71148 -47.50817 13.415 11.558 10.914 4927 1.78 -1.82 1.48 0.05 11 0.14 218.8 0.5
47311 201.73819 -47.51253 13.687 11.807 11.136 4872 1.86 -1.78 1.51 0.03 12 0.14 258.1 0.3
47316 201.74130 -47.51007 13.821 99.999 99.999 4920 1.94 -2.08 1.48 0.06 12 0.15 207.5 0.3
47393 201.81548 -47.51007 14.157 12.611 12.090 5470 2.31 -1.72 1.13 0.06 10 0.14 240.4 0.4
47448 201.94348 -47.50712 14.305 12.462 11.839 4967 2.15 -1.69 1.45 0.03 10 0.14 245.3 0.3
48029 201.47784 -47.51702 13.550 11.590 10.962 4831 1.79 -1.70 1.54 0.04 12 0.14 230.2 0.3
48062 201.57397 -47.51703 14.050 12.229 11.634 5024 2.08 -1.73 1.41 0.04 12 0.14 255.2 0.4
48142 201.65953 -47.51643 13.968 12.353 11.814  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 222.1 1.6
48184 201.68407 -47.51507 12.949 11.093 10.534 5025 1.64 -1.79 1.41 0.02 11 0.13 226.1 0.3
48190 201.68754 -47.51754 14.437 13.019 12.467  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 220.3 0.4
48204 201.69542 -47.51590 13.579 11.788 11.151 5011 1.88 -1.72 1.42 0.05 11 0.14 240.5 0.4
48412 201.93998 -47.51807 14.217 12.347 11.733 4946 2.11 -1.63 1.47 0.04 12 0.14 252.1 0.3
49021 201.39712 -47.52855 13.758 11.991 11.396 5089 1.99 -1.87 1.37 0.03 13 0.14 243.4 1.8
49040 201.49012 -47.52444 14.254 12.350 11.763 4937 2.12 -1.55 1.47 0.03 11 0.14 228.5 0.3
49051 201.53067 -47.52571 14.314 12.509 11.966 5107 2.22 -1.66 1.36 0.03 11 0.14 238.8 0.3
49096 201.62228 -47.52650 12.813 10.808 10.095 4698 1.42 -1.96 1.63 0.03 11 0.14 225.3 0.3
49112 201.63467 -47.52379 14.386 12.932 12.465  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 216.2 2.4
49227 201.73050 -47.52874 14.222 12.698 11.847 5078 2.17 -2.37 1.38 0.03 8 0.14 216.2 0.5
50014 201.39736 -47.53208 13.783 11.838 11.162 4797 1.86 -1.78 1.56 0.03 13 0.14 225.8 0.4
50032 201.48996 -47.53682 14.278 12.442 11.826 4983 2.15 -1.76 1.44 0.05 9 0.14 234.3 0.6
50059 201.57049 -47.53784 14.428 12.610 12.012 5024 2.23 -1.71 1.41 0.05 10 0.14 229.9 0.3
50229 201.75250 -47.53363 14.298 99.999 99.999  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 241.3 0.1
50282 201.81909 -47.53666 14.473 12.818 12.340 5379 2.40 -1.22 1.19 0.04 12 0.12 246.4 0.1
50313 201.95036 -47.53040 14.256 12.397 11.746 4917 2.11 -1.63 1.48 0.05 12 0.14 246.4 0.3
50322 202.01013 -47.53630 14.197 12.333 11.668 4896 2.08 -1.79 1.50 0.04 11 0.14 250.9 0.4
51010 201.28295 -47.54029 13.538 11.613 10.922 4802 1.77 -1.84 1.56 0.03 12 0.13 243.1 0.3
51028 201.49361 -47.53882 14.335 12.886 12.165 5335 2.32 -2.39 1.21 0.03 7 0.13 223.3 0.3
51031 201.50104 -47.53942 13.442 11.452 10.794 4768 1.71 -1.85 1.58 0.03 12 0.14 239.4 1.6
51032 201.51265 -47.53860 14.114 12.290 11.691 5016 2.10 -1.72 1.42 0.03 9 0.14 223.7 0.3
51040 201.54198 -47.54162 14.162 12.335 11.699 4970 2.10 -1.71 1.45 0.05 13 0.14 221.8 0.3
51046 201.55975 -47.53970 14.394 12.504 11.861 4891 2.15 -1.44 1.50 0.02 10 0.12 225.5 0.7
51085 201.64340 -47.53882 13.796 12.163 11.641 5351 2.12 -1.88 1.20 0.05 10 0.14 213.3 0.3
51108 201.67527 -47.53969 14.027 12.044 11.406  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 217.2 0.7
51177 201.74708 -47.54476 14.150 12.489 11.988  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 260.8 0.5
51239 201.87329 -47.53890 14.307 12.437 11.835 4959 2.15 -1.90 1.46 0.03 11 0.14 233.9 0.4
51267 201.98687 -47.54246 14.327 12.449 11.831 4932 2.15 -1.78 1.47 0.04 11 0.14 244.3 0.8
52019 201.40733 -47.54643 14.265 12.353 11.737 4896 2.11 -1.61 1.50 0.04 11 0.14 242.0 0.5
52025 201.47100 -47.54838 14.489 12.582 11.982 4920 2.21 -1.67 1.48 0.04 11 0.14 236.0 0.8
52037 201.53966 -47.54875 14.424 12.981 12.526  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 237.3 1.1
52041 201.55465 -47.54696 13.798 12.035 11.458 5117 2.02 -1.64 1.35 0.03 11 0.14 218.8 0.5
52043 201.56430 -47.55214 14.444 12.644 12.093 5103 2.27 -1.59 1.36 0.03 10 0.14 223.7 1.2
52045 201.56806 -47.55065 14.118 12.319 11.687 5007 2.10 -1.74 1.43 0.03 13 0.14 216.2 0.4
52082 201.62810 -47.55199 13.765 12.065 11.519 5233 2.06 -1.77 1.28 0.03 11 0.14 226.2 0.4
52118 201.68085 -47.54927 14.093 12.324 11.742 5104 2.13 -1.42 1.36 0.04 10 0.12 242.1 0.3
53025 201.45390 -47.55708 14.388 12.426 11.779 4809 2.11 -1.66 1.55 0.03 11 0.14 234.1 1.3
53032 201.48967 -47.55965 14.390 12.637 11.995 5050 2.23 -1.91 1.40 0.04 10 0.14 235.3 1.8
53050 201.56889 -47.55654 14.328 12.555 11.990 5119 2.23 -1.39 1.35 0.04 10 0.12 249.5 0.4
53082 201.64826 -47.55623 13.836 12.219 11.697 5372 2.14 -1.45 1.19 0.03 13 0.12 231.1 0.3
53180 201.83751 -47.55401 14.038 12.597 12.116  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 241.4 0.4
53200 201.95580 -47.55700 13.405 11.568 10.946 4975 1.80 -1.79 1.45 0.03 10 0.14 242.4 0.3
54037 201.53744 -47.56313 14.001 12.358 11.924  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 225.1 1.7
54041 201.54282 -47.56370 14.280 12.459 11.874 5036 2.18 -1.77 1.41 0.04 13 0.14 238.8 0.4
54044 201.55257 -47.56216 14.488 12.712 12.080 5035 2.26 -1.70 1.41 0.03 9 0.13 231.2 1.0
54050 201.57163 -47.56129 13.413 11.642 11.054 5093 1.85 -1.76 1.37 0.04 12 0.14 231.0 0.3
54125 201.74154 -47.56530 14.486 12.746 12.130 5097 2.29 -1.74 1.37 0.03 9 0.14 253.9 0.3
54146 201.76961 -47.56391 13.520 11.756 11.178 5115 1.91 -1.90 1.36 0.03 10 0.14 219.2 0.5
54181 201.88319 -47.56176 14.168 12.356 11.718 4985 2.11 -1.65 1.44 0.03 10 0.14 251.8 0.4
55012 201.30233 -47.57475 14.472 12.573 11.954 4908 2.19 -1.65 1.49 0.03 10 0.14 246.2 0.3
55042 201.55485 -47.56928 14.075 12.203 11.582 4936 2.05 -1.84 1.47 0.04 10 0.14 231.4 0.8
55049 201.58400 -47.57140 14.130 12.340 11.726 5039 2.12 -1.74 1.40 0.03 10 0.14 235.2 0.4
55077 201.66220 -47.57002 14.389 12.630 12.016 5076 2.24 -1.67 1.38 0.04 12 0.14 254.8 0.9
55158 201.90458 -47.56882 14.182 12.388 11.773 5033 2.14 -1.88 1.41 0.04 11 0.14 215.4 0.9
55164 201.92870 -47.57214 14.240 12.400 11.777 4970 2.13 -1.91 1.45 0.05 9 0.14 241.9 0.6
56037 201.54433 -47.58036 14.024 12.231 11.573 4984 2.05 -1.65 1.44 0.03 10 0.14 228.2 0.6
56042 201.56000 -47.58253 13.284 11.443 10.835 4986 1.76 -1.75 1.44 0.05 11 0.14 218.2 0.3
56098 201.74012 -47.57588 13.583 11.719 11.064 4907 1.84 -1.66 1.49 0.04 11 0.14 257.3 0.4
56132 201.83768 -47.58037 13.296 11.366 10.673 4795 1.67 -1.73 1.56 0.04 10 0.14 238.3 0.3
57015 201.33044 -47.58518 13.749 11.798 11.141 4810 1.86 -1.89 1.55 0.02 12 0.13 237.4 0.3
57022 201.45888 -47.58740 14.291 12.383 11.794 4931 2.13 -1.80 1.47 0.06 10 0.14 226.8 0.4
57024 201.47709 -47.58522 14.497 12.665 12.082 5025 2.26 -1.79 1.41 0.03 11 0.14 236.9 0.8
57033 201.56192 -47.58920 12.646 10.703 10.036  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 235.5 1.4
57036 201.58403 -47.58583 13.878 12.342 11.843  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 235.0 0.3
57046 201.62135 -47.58582 13.609 11.909 11.322 5183 1.97 -1.79 1.31 0.03 9 0.14 243.9 0.3
57102 201.80102 -47.58615 13.762 12.138 11.559  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 244.1 0.5
58052 201.67242 -47.59132 14.241 12.411 11.781 4974 2.13 -1.80 1.45 0.04 11 0.14 225.9 0.6
58063 201.70190 -47.59772 13.680 11.969 11.404 5196 2.01 -1.71 1.30 0.01 8 0.13 226.3 1.3
58110 201.97838 -47.59468 14.407 12.516 11.894 4913 2.17 -1.58 1.49 0.03 13 0.14 245.5 0.3
59051 201.69281 -47.60028 14.451 12.715 12.110 5117 2.28 -1.71 1.35 0.04 9 0.14 234.5 0.3
60042 201.59675 -47.60921 14.351 12.562 11.951 5044 2.21 -1.69 1.40 0.03 11 0.14 237.7 0.3
60046 201.61021 -47.61211 14.041 11.913 11.510 4890 2.01 -1.67 1.50 0.04 10 0.14 240.8 2.1
60049 201.61766 -47.60890 13.364 11.566 10.976 5058 1.82 -1.83 1.39 0.03 10 0.14 239.6 0.5
60083 201.78864 -47.60989 13.592 12.122 11.638  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 238.0 0.4
60090 201.82755 -47.60608 14.141 12.246 11.652 4940 2.08 -1.84 1.47 0.05 11 0.14 225.3 1.5
60102 202.00752 -47.60517 13.849 11.914 11.238 4807 1.89 -1.57 1.55 0.04 12 0.14 241.9 0.3
61009 201.16032 -47.61620 13.496 11.533 10.890 4812 1.76 -1.79 1.55 0.05 10 0.14 239.0 0.3
61033 201.50668 -47.61997 14.157 12.256 11.603 4868 2.05 -1.55 1.52 0.03 13 0.14 233.4 0.3
61060 201.68778 -47.61749 14.034 12.206 11.611 5016 2.07 -1.74 1.42 0.04 11 0.14 245.6 0.7
61066 201.70629 -47.61632 14.071 12.620 12.149  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 223.7 0.5
61097 201.90081 -47.61942 14.378 12.493 11.869 4918 2.16 -1.82 1.48 0.04 10 0.14 251.3 0.5
61108 202.01601 -47.61328 14.387 12.529 11.928 4974 2.19 -1.45 1.45 0.04 13 0.12 238.2 0.4
62017 201.42814 -47.62581 14.319 12.478 11.886 5004 2.18 -1.68 1.43 0.05 10 0.14 237.1 0.5
62020 201.47093 -47.62440 14.224 12.524 11.946 5194 2.22 -1.23 1.30 0.05 10 0.12 245.5 0.3
62032 201.58416 -47.62839 13.819 12.134 11.595 5261 2.09 -1.96 1.26 0.07 9 0.15 233.0 0.9
62037 201.65559 -47.62419 13.720 12.020 11.417 5163 2.01 -1.77 1.32 0.04 10 0.14 227.3 1.4
62040 201.67039 -47.62541 14.315 12.942 12.494  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 219.3 0.5
62057 201.77140 -47.62317 13.803 12.134 11.555 5231 2.07 -1.75 1.28 0.03 11 0.14 232.1 0.2
63016 201.41210 -47.63108 14.415 12.548 11.914 4927 2.18 -1.67 1.48 0.03 10 0.14 228.3 0.7
63023 201.45965 -47.63408 14.409 12.598 12.014 5049 2.23 -1.21 1.40 0.04 13 0.12 229.8 0.8
63033 201.63483 -47.62931 14.249 12.491 11.858 5055 2.17 -1.68 1.39 0.05 12 0.14 239.2 0.1
63066 201.90607 -47.63452 14.195 12.560 12.027  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 239.7 0.5
64015 201.42154 -47.63920 13.776 11.859 11.199 4843 1.88 -1.88 1.53 0.03 9 0.14 230.8 0.3
65043 201.73680 -47.64760 13.592 11.894 11.306 5184 1.97 -1.74 1.31 0.04 9 0.14 234.0 1.1
65050 201.82334 -47.64782 14.498 12.690 12.125 5075 2.28 -1.69 1.38 0.04 11 0.14 227.9 1.3
65064 201.98375 -47.64622 13.623 11.750 11.124 4929 1.86 -1.86 1.48 0.03 10 0.14 244.9 0.4
66036 201.66758 -47.65382 13.545 11.740 11.160 5061 1.89 -1.79 1.39 0.04 10 0.14 227.7 0.8
67024 201.48737 -47.66483 14.097 12.514 12.016 5450 2.27 -1.83 1.14 0.04 11 0.14 240.5 0.4
67061 201.92552 -47.65901 14.044 12.399 11.872 5328 2.21 -1.75 1.22 0.03 10 0.14 231.1 0.4
68012 201.45530 -47.67380 13.819 11.929 11.252 4855 1.91 -1.84 1.52 0.04 11 0.14 232.6 0.3
68042 201.69650 -47.66772 13.878 12.278 11.771 5415 2.17 -1.32 1.16 0.06 11 0.13 246.4 0.3
68058 201.95519 -47.67270 14.284 12.654 12.091  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 229.6 0.7
69022 201.59596 -47.67690 13.606 11.903 11.314 5176 1.97 -1.78 1.32 0.05 10 0.14 233.1 1.3
69029 201.67483 -47.67970 13.966 12.109 11.514 4982 2.03 -1.46 1.44 0.03 12 0.12 231.3 0.4
70018 201.46893 -47.68703 14.348 12.500 11.899 4986 2.18 -1.65 1.44 0.03 11 0.14 233.3 0.3
70021 201.50974 -47.68662 14.229 12.390 11.749 4951 2.12 -1.74 1.46 0.03 10 0.14 237.0 0.3
70034 201.64550 -47.68823 14.696 12.910 12.339 5095 2.37 -1.72 1.37 0.04 10 0.14 230.9 0.5
71007 201.16956 -47.69628 14.175 12.902 12.481  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 245.4 0.4
72030 201.78780 -47.70323 14.204 12.379 11.737 4966 2.11 -1.77 1.45 0.04 11 0.14 224.9 0.9
72036 201.88234 -47.70068 14.524 12.697 12.096 5010 2.26 -1.61 1.42 0.04 11 0.14 244.1 0.4
72038 201.88711 -47.69996 14.342 12.459 11.807 4889 2.13 -1.71 1.50 0.03 11 0.14 234.8 0.5
73023 201.55469 -47.70494 13.879 12.002 11.316 4859 1.93 -1.69 1.52 0.03 12 0.14 235.3 0.3
74022 201.50340 -47.71515 14.383 12.504 11.891 4937 2.17 -1.75 1.47 0.05 11 0.14 234.8 0.3
75016 201.49426 -47.72636 13.599 11.609 10.925 4742 1.76 -1.90 1.60 0.02 11 0.13 243.7 0.6
76040 201.86016 -47.73142 14.474 12.643 12.021 4981 2.23 -1.69 1.44 0.04 13 0.14 243.8 0.4
77013 201.39428 -47.74240 14.377 12.595 12.011  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 241.3 3.8
78019 201.60662 -47.74807 14.385 12.586 11.940 4991 2.20 -1.65 1.44 0.03 11 0.14 241.2 0.6
79014 201.51713 -47.75403 14.302 12.443 11.762 4884 2.11 -1.59 1.50 0.03 13 0.14 232.1 0.4
79026 201.68852 -47.74982 14.046 12.139 11.505 4882 2.01 -1.69 1.51 0.03 10 0.14 212.0 0.5
80031 201.73648 -47.76091 14.071 12.187 11.547 4901 2.03 -1.43 1.49 0.02 13 0.12 227.0 0.4
80036 201.89616 -47.76113 13.819 11.850 11.187 4785 1.87 -1.82 1.57 0.03 12 0.14 229.3 0.7
82026 201.76406 -47.77511 14.217 12.290 11.632 4835 2.06 -1.65 1.54 0.03 11 0.14 246.6 1.1
82028 201.77773 -47.77823 14.335 12.458 11.809 4899 2.13 -1.84 1.50 0.05 9 0.14 236.9 1.2
82031 201.83208 -47.77207 14.319 12.684 12.130  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots  \cdots 227.5 0.5
83020 201.54861 -47.78255 14.300 12.449 11.835 4968 2.15 -1.68 1.45 0.05 10 0.14 237.9 0.6
84013 201.68779 -47.79316 13.658 11.697 11.030 4789 1.81 -1.68 1.57 0.03 12 0.14 247.3 0.4
89014 201.66544 -47.83110 13.607 11.639 10.967 4777 1.78 -1.53 1.57 0.04 13 0.14 231.3 0.4
90019 201.62529 -47.83825 13.509 11.537 10.911 4820 1.77 -1.76 1.55 0.04 13 0.14 231.2 0.6
90026 201.88385 -47.83773 13.958 12.049 11.392 4855 1.96 -1.56 1.52 0.04 13 0.14 224.5 1.2
92026 201.83944 -47.84879 13.600 11.778 11.184 5024 1.90 -1.84 1.41 0.05 11 0.14 232.3 0.3
93016 201.65058 -47.86211 14.479 12.620 12.031 4987 2.23 -1.54 1.44 0.04 13 0.14 231.5 0.3
96011 201.52316 -47.88203 12.975 11.027 10.416 4862 1.57 -1.79 1.52 0.03 10 0.14 228.7 0.4
98012 201.35549 -47.89600 13.623 12.034 11.471 5355 2.05 -1.67 1.20 0.04 11 0.14 228.6 0.9
Table 2: Fe I Line List
Wavelength E.P. log gf
(Å) (eV)
5141.739 2.422 -2.00
5145.094 2.196 -3.06
5150.839 0.989 -3.07
5159.058 4.280 -0.65
5198.711 2.221 -1.97
5213.344 4.383 -2.18
5216.274 1.607 -2.15
5242.491 3.632 -0.84
5243.776 4.253 -0.90
5247.050 0.087 -4.65
5288.527 3.692 -1.54
5321.108 4.431 -1.24
5322.041 2.277 -2.85
5379.574 3.692 -1.42