This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Moore-Penrose inverses of unbounded closable operators and the direct sum of closed operators in Hilbert spaces

\nameArup Majumdar and P. Sam Johnson Arup Majumdar (corresponding author). Email address: [email protected] P. Sam Johnson. Email address: [email protected] Department of Mathematical and Computational Sciences,
National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India.
Abstract

In this paper, we present some interesting results to characterize the Moore-Penrose inverses of unbounded closable operators and the direct sum of closed operators in Hilbert spaces.

keywords:
Moore-Penrose inverse, closable operator, closed operator.
{amscode}

47A05; 47B02.

1 Introduction

The Moore-Penrose inverse is a fundamental concept in linear algebra and functional analysis, providing a generalized notion of inverses for matrices and linear operators that may not have traditional inverses. The Moore-Penrose inverse is named after E. H. Moore and Roger Penrose, who independently introduced the concept in 1920 and 1955, respectively. Moreover, Yu. Ya. Tseng defines the Moore-Penrose (Generalized) inverses of densely defined linear operators on Hilbert spaces in [10, 9, 8]. The Moore-Penrose inverses of closed operators are extensively studied in [4, 3]. In [3], a series representation for the Moore-Penrose inverse of a closed linear operator has been established. In paper [2], authors have introduced the Moore-Penrose inverses of closable operators with decomposable domains while establishing Lemma 2.10 [2]. The Moore-Penrose inverse has been extensively investigated over the years due to its usefulness in Optimization Problems, Singular Value Decomposition, Signal Processing and Control Theory. This paper delves into the exploration of the Moore-Penrose inverses of unbounded closable operators in Hilbert spaces, elucidating an example of a closable operator which is not closed in Section 2. Section 3 investigates some properties of the Moore-Penrose inverses of the direct sum of closed operators in Hilbert spaces.

From now on, we shall mean HH, KK, HiH_{i}, KiK_{i} (i=1,2,,ni=1,2,\dots,n) as Hilbert spaces. The specification of a domain is an essential part of the definition of an unbounded operator, usually defined on a subspace. Consequently, for an operator TT, the specification of the subspace DD on which TT is defined, called the domain of TT, denoted by D(T)D(T), is to be given. The null space and range space of TT are denoted by N(T)N(T) and R(T)R(T), respectively. W1W_{1}^{\perp} denotes the orthogonal complement of a set W1W_{1} whereas W1W2W_{1}\oplus^{\perp}W_{2} denotes the orthogonal direct sum of the subspaces W1W_{1} and W2W_{2} of a Hilbert space. Moreover, T|WT|_{W} denotes the restriction of TT to a subspace WW of a specified Hilbert space. We call D(T)N(T)D(T)\cap N(T)^{\perp}, the carrier of TT and it is denoted by C(T)C(T). TT^{*} denotes the adjoint of TT, when D(T)D(T) is densely defined in the specified Hilbert space. Here, PVP_{V} is the orthogonal projection on the closed subspace VV in the specified Hilbert space and the set of bounded operators from HH into KK is denoted by B(H,K)B(H,K). For the sake of completeness of exposition, we first begin with the definition of closed and closable operators.

Definition 1.1.

Let TT be an operator from a Hilbert space HH with domain D(T)D(T) to a Hilbert space KK. If the graph of TT defined by

G(T)={(x,Tx):xD(T)}G(T)=\left\{(x,Tx):x\in D(T)\right\}

is closed in H×KH\times K, then TT is called a closed operator. Equivalently, TT is a closed operator if {xn}\{x_{n}\} in D(T)D(T) such that xnxx_{n}\rightarrow x and TxnyTx_{n}\rightarrow y for some xH,yKx\in H,y\in K, then xD(T)x\in D(T) and Tx=yTx=y. That is, G(T)G(T) is a closed subspace of H×KH\times K with respect to the graph norm (x,y)T=(x2+y2)1/2\|(x,y)\|_{T}=(\|x\|^{2}+\|y\|^{2})^{1/2}. It is easy to show that the graph norm (x,y)T\|(x,y)\|_{T} is equivalent to the norm x+y\|x\|+\|y\|. We note that, for any densely defined closed operator TT, the closure of C(T)C(T), that is, C(T)¯\overline{C(T)} is N(T)N(T)^{\perp}. We say that SS is an extension of TT (denoted by TST\subset S) if D(T)D(S)D(T)\subset D(S) and Sx=TxSx=Tx for all xD(T)x\in D(T).

An operator TT is said to be closable if TT has a closed extension. It follows that TT is closable if the closure G(T)¯\overline{G(T)} of G(T)G(T) is a graph of an operator. It is also possible for a closable operator to have many closed extensions. Its minimal closed extension is denoted by T¯\overline{T}. That is, every closed extension of TT is also an extension of T¯\overline{T}.

Definition 1.2.

Let TT be a closed operator from D(T)HD(T)\subset H to KK. The generalized inverse of TT is the map T:R(T)R(T)HT^{\dagger}:R(T)\oplus^{\perp}R(T)^{\perp}\to H defined by

Ty={(T|C(T))1yifyR(T)0ifyR(T).T^{\dagger}y=\begin{cases}({T}|_{C(T)})^{-1}y&\text{if}~{}y\in R(T)\\ 0&\text{if}~{}y\in R(T)^{\perp}.\end{cases} (1)

It can be shown that TT^{\dagger} is closed when TT is closed.

Definition 1.3.

[2] A linear operator TT from D(T)HD(T)\subset H to KK has a decomposable domain if D(T)=N(T)C(T)D(T)=N(T)\oplus^{\perp}C(T). The generalized inverse of TT is the map T:R(T)R(T)HT^{\dagger}:R(T)\oplus^{\perp}R(T)^{\perp}\to H defined as follows:

Ty={(T|C(T))1yifyR(T)0ifyR(T).T^{\dagger}y=\begin{cases}(T|_{C(T)})^{-1}y&\text{if}~{}y\in R(T)\\ 0&\text{if}~{}y\in R(T)^{\perp}.\end{cases} (2)
Theorem 1.4.

[1] Let TT be a densely defined closed operator from D(T)HD(T)\subset H into KK. Then the following statements hold good:

  1. 1.

    TT^{\dagger} is a closed operator from KK into HH;

  2. 2.

    D(T)=R(T)N(T)D(T^{\dagger})=R(T)\oplus^{\perp}N(T^{*}); N(T)=N(T)N(T^{\dagger})=N(T^{*});

  3. 3.

    R(T)=C(T)R(T^{\dagger})=C(T);

  4. 4.

    TTx=PR(T)¯x, for all xD(T)T^{\dagger}Tx=P_{\overline{R(T^{\dagger})}}x,\text{ for all }x\in D(T);

  5. 5.

    TTy=PR(T)¯y, for all yD(T)TT^{\dagger}y=P_{\overline{R(T)}}y,\text{ for all }y\in D(T^{\dagger});

  6. 6.

    (T)=T(T^{\dagger})^{\dagger}=T;

  7. 7.

    (T)=(T)(T^{*})^{\dagger}=(T^{\dagger})^{*};

  8. 8.

    N((T))=N(T)N((T^{*})^{\dagger})=N(T);

  9. 9.

    (TT)=T(T)(T^{*}T)^{\dagger}=T^{\dagger}(T^{*})^{\dagger};

  10. 10.

    (TT)=(T)T(TT^{*})^{\dagger}=(T^{*})^{\dagger}T^{\dagger}.

2 Characterization of the Moore-Penrose inverses of unbounded closable operators:

Throughout this section, we assume that TT is a closable operator from D(T)HD(T)\subset H into KK with the decomposable domain D(T)=N(T)C(T)D(T)=N(T)\oplus^{\perp}C(T) and N(T¯)=N(T)¯N(\overline{T})=\overline{N(T)}.

Proposition 2.1.

Let TT be a closable operator from D(T)HD(T)\subset H into KK. Then TT^{\dagger} is also closable and T¯(T¯)\overline{T^{\dagger}}\subset(\overline{T})^{\dagger}.

Proof.

(T¯)(\overline{T})^{\dagger} is closed with domain D((T¯))=R(T¯)R(T)D(T)D((\overline{T})^{\dagger})=R(\overline{T})\oplus^{\perp}R(T)^{\perp}\supset D(T^{\dagger}). Moreover, C(T)C(T¯)C(T)\subset C(\overline{T}) because of N(T¯)=N(T)¯N(\overline{T})=\overline{N(T)}. Thus,

T(y)\displaystyle T^{\dagger}(y) =0=(T¯)(y), when yR(T)\displaystyle=0=(\overline{T})^{\dagger}(y),\text{ when }y\in R(T)^{\perp}
=(T|C(T))1(y)=(T¯|C(T¯))1(y)=(T¯)(y), when yR(T).\displaystyle=(T|_{C(T)})^{-1}(y)=(\overline{T}|_{C(\overline{T})})^{-1}(y)=(\overline{T})^{\dagger}(y),\text{ when }y\in R(T).

It confirms that TT^{\dagger} is closable and T¯(T¯)\overline{T^{\dagger}}\subset(\overline{T})^{\dagger}. ∎

Theorem 2.2.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then (T)=(T)(T^{\dagger})^{*}=(T^{*})^{\dagger}.

Proof.

(T)(T^{\dagger})^{*} exists because of the denseness of domain D(T)D(T^{\dagger}). The denseness of D(T)D(T) confirms that the existence of TT^{*}. From Proposition 2.1 and the closeness of T¯\overline{T} guarantee that the relation (T)(T)(T^{*})^{\dagger}\subset(T^{\dagger})^{*}. Now we will show that D((T))D((T))D((T^{\dagger})^{*})\subset D((T^{*})^{\dagger}). Let us consider zD((T))z\in D((T^{\dagger})^{*}). Then f(y)=Ty,z, for all yD(T),f(y)=\langle T^{\dagger}y,z\rangle,\text{ for all }y\in D(T^{\dagger}), is continuous. The denseness of D(T)D(T^{\dagger}) and D(T)D((T¯))D(T^{\dagger})\subset D((\overline{T})^{\dagger}) say that g(y)=T¯y,z, for all yD((T¯)),g(y)=\langle\overline{T}^{\dagger}y,z\rangle,\text{ for all }y\in D((\overline{T})^{\dagger}), is also continuous. So, zD(T)z\in D(T^{*})^{\dagger} which confirms that D((T))D(T)D((T^{\dagger})^{*})\subset D(T^{*})^{\dagger}. Therefore, (T)=(T)(T^{\dagger})^{*}=(T^{*})^{\dagger}. ∎

Theorem 2.3.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then T(T)T¯T\subset(T^{\dagger})^{\dagger}\subset\overline{T}.

Proof.

TT^{\dagger} has decomposable domain because

D(T)\displaystyle D(T^{\dagger}) =R(T)R(T)\displaystyle=R(T)\oplus^{\perp}R(T)^{\perp}
=R(T)¯D(T)N(T)\displaystyle=\overline{R(T)}\cap D(T^{\dagger})\oplus^{\perp}N(T^{\dagger})
=N(T)D(T)N(T)\displaystyle=N(T^{\dagger})^{\perp}\cap D(T^{\dagger})\oplus^{\perp}N(T^{\dagger})
=C(T)N(T).\displaystyle=C(T^{\dagger})\oplus^{\perp}N(T^{\dagger}).

Thus, (T)(T^{\dagger})^{\dagger} exists. Now,

D((T))\displaystyle D((T^{\dagger})^{\dagger}) =R(T)R(T)\displaystyle=R(T^{\dagger})\oplus^{\perp}R(T^{\dagger})^{\perp}
=C(T)R(T¯)\displaystyle=C(T)\oplus^{\perp}R(\overline{T^{\dagger}})^{\perp}
=C(T)N((T))\displaystyle=C(T)\oplus^{\perp}N(({T^{\dagger}})^{*})
=C(T)N((T))(Theorem 2.3)\displaystyle=C(T)\oplus^{\perp}N({(T^{*})^{\dagger}})~{}(\text{Theorem \ref{thm 2.3}})
=C(T)N(T¯).\displaystyle=C(T)\oplus^{\perp}N(\overline{T}).

So, The relations N(T¯)=N(T)¯N(\overline{T})=\overline{N(T)} and C(T)C(T¯)C(T)\subset C(\overline{T}) confirm that D(T)D((T))D(T¯)D(T)\subset D((T^{\dagger})^{\dagger})\subset D(\overline{T}). We know T¯=((T¯))\overline{T}=((\overline{T})^{\dagger})^{\dagger}. We claim that ((T¯))(T)((\overline{T})^{\dagger})^{\dagger}\supset(T^{\dagger})^{\dagger}.

(T)(x)\displaystyle(T^{\dagger})^{\dagger}(x) =T¯(x)=0, for all xN(T¯)\displaystyle=\overline{T}(x)=0,\text{ for all }x\in N(\overline{T})
=(T|C(T))1(x)=(T¯|C(T¯))1(x)=T(x), for all xC(T).\displaystyle=(T^{\dagger}|_{C(T^{\dagger})})^{-1}(x)=({\overline{T}}^{\dagger}|_{C({\overline{T}}^{\dagger})})^{-1}(x)=T(x),\text{ for all }x\in C(T).

Therefore, T(T)T¯T\subset(T^{\dagger})^{\dagger}\subset\overline{T}. ∎

Proposition 2.4.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then TTT^{\dagger}T and TTTT^{\dagger} both are symmetric operators.

Proof.

We know that TT=PN(T)|D(T)T^{\dagger}T=P_{N(T)^{\perp}}|_{D(T)} and TT=PR(T)¯|D(T)TT^{\dagger}=P_{\overline{R(T)}}|_{D(T^{\dagger})}, where PN(T)P_{N(T)^{\perp}} and PR(T)¯P_{\overline{R(T)}} both are orthogonal projection from HH onto N(T)N(T)^{\perp} and KK onto R(T)¯\overline{R(T)} respectively. Then, (TT)=PN(T)TT(T^{\dagger}T)^{*}=P_{N(T)^{\perp}}\supset T^{\dagger}T and (TT)=PR(T)¯TT(TT^{\dagger})^{*}=P_{\overline{R(T)}}\supset TT^{\dagger}. Therefore, TTT^{\dagger}T and TTTT^{\dagger} both are symmetric operators. ∎

Theorem 2.5.

Let TT be a closable operator from D(T)HD(T)\subset H into KK. Then the following statements hold good:

  1. 1.

    R(T)=R(TT)R(T^{\dagger})=R(T^{\dagger}T) and N(T)=N(TT)N(T)=N(T^{\dagger}T);

  2. 2.

    R(T)=R(TT)R(T)=R(TT^{\dagger}) and N(T)=N(TT)N(T^{\dagger})=N(TT^{\dagger});

  3. 3.

    When TT is densely defined then R(T)¯=C(T)¯=N(T)=R(T)¯\overline{R(T^{\dagger})}=\overline{C(T)}=N(T)^{\perp}=\overline{R(T^{*})}.

Proof.

(1)(\mathit{1}) R(T)=C(T)=R(TT)R(T^{\dagger})=C(T)=R(T^{\dagger}T).

The inclusion N(T)N(TT)N(T)\subset N(T^{\dagger}T) is obvious. To prove the reverse inclusion, we consider an element xN(TT)x\in N(T^{\dagger}T). So, TxR(T)R(T)Tx\in R(T)\cap R(T)^{\perp} which implies xN(T)x\in N(T). Therefore, N(T)=N(TT)N(T)=N(T^{\dagger}T).

(2)(\mathit{2}) The inclusion relation R(TT)R(T)R(TT^{\dagger})\subset R(T) is easy to prove. To prove that reverse inclusion, let us consider an element TxR(T)Tx\in R(T). Then Tx=TTTxR(TT)Tx=TT^{\dagger}Tx\in R(TT^{\dagger}). Therefore, R(T)=R(TT)R(T)=R(TT^{\dagger}).

The inclusion relation N(T)N(TT)N(T^{\dagger})\subset N(TT^{\dagger}) holds. Now, we consider yN(TT)y\in N(TT^{\dagger}). Then TyC(T)N(T)={0}T^{\dagger}y\in C(T)\cap N(T)=\{0\} which confirms that yN(T)y\in N(T^{\dagger}). Therefore, N(T)=N(TT)N(T^{\dagger})=N(TT^{\dagger}).

(3)(\mathit{3}) By the definition of the Moore-Penrose inverse, we say R(T)¯=C(T)¯\overline{R(T^{\dagger})}=\overline{C(T)}. Moreover, C(T)¯N(T)\overline{C(T)}\subset N(T)^{\perp} is obvious. Let us consider an element zN(T)z\in N(T)^{\perp}. There exists a sequence {zn}\{z_{n}\} in D(T)D(T) such that zn=zn+zn′′zz_{n}=z_{n}^{{}^{\prime}}+z_{n}^{{}^{\prime\prime}}\to z as nn\to\infty, where znN(T)z_{n}^{{}^{\prime}}\in N(T) and zn′′C(T) for all nz_{n}^{{}^{\prime\prime}}\in C(T)\text{ for all }n\in\mathbb{N}. So, zn′′zz_{n}^{{}^{\prime\prime}}\to z as nn\to\infty which implies that zC(T)¯z\in\overline{C(T)}. Thus, N(T)=C(T)¯N(T)^{\perp}=\overline{C(T)}.

The relation N(T¯)=N(T)¯N(\overline{T})=\overline{N(T)} guarantees that N(T)=N(T¯)=R(T¯)¯=R(T)¯N(T)^{\perp}=N(\overline{T})^{\perp}=\overline{R(\overline{T}^{*})}=\overline{R(T^{*})}. Therefore, the relation R(T)¯=C(T)¯=N(T)=R(T)¯\overline{R(T^{\dagger})}=\overline{C(T)}=N(T)^{\perp}=\overline{R(T^{*})} holds true. ∎

Theorem 2.6.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then (TT)T(T)(T^{*}T)^{\dagger}\supset T^{\dagger}(T^{*})^{\dagger} (without assuming the condition N(T¯)=N(T)¯N(\overline{T})=\overline{N(T)}).

Proof.

Firstly, we claim that TTT^{*}T has a decomposable domain. We know D(T)=N(T)C(T)D(T)=N(T)\oplus^{\perp}C(T) and N(TT)=N(T)N(T^{*}T)=N(T). It is obvious to show that N(TT)C(TT)D(TT)N(T^{*}T)\oplus^{\perp}C(T^{*}T)\subset D(T^{*}T). Let us consider xD(TT)D(T)x\in D(T^{*}T)\subset D(T). Then x=x1+x2x=x_{1}+x_{2}, where x1N(T)=N(TT) and x2C(T)x_{1}\in N(T)=N(T^{*}T)\text{ and }x_{2}\in C(T). So, x2D(TT)x_{2}\in D(T^{*}T). Again x2C(T)D(TT)=N(TT)D(TT)=C(TT)x_{2}\in C(T)\cap D(T^{*}T)=N(T^{*}T)^{\perp}\cap D(T^{*}T)=C(T^{*}T) which implies that xN(TT)C(TT)x\in N(T^{*}T)\oplus^{\perp}C(T^{*}T). Thus, N(TT)C(TT)=D(TT)N(T^{*}T)\oplus^{\perp}C(T^{*}T)=D(T^{*}T). The decomposable domain of TTT^{*}T confirms that the existence of (TT)(T^{*}T)^{\dagger}.

Now we will show that D(T(T))D((TT))D(T^{\dagger}(T^{*})^{\dagger})\subset D((T^{*}T)^{\dagger}). Let us consider an element zD(T(T))z\in D(T^{\dagger}(T^{*})^{\dagger}). Then z=z1+z2R(T)R(T)R(T)+R(TT)z=z_{1}+z_{2}\in R(T^{*})\oplus^{\perp}R(T^{*})^{\perp}\subset R(T^{*})+R(T^{*}T)^{\perp}. Moreover, (T)zD(T)=R(T)R(T)(T^{*})^{\dagger}z\in D(T^{\dagger})=R(T)\oplus^{\perp}R(T)^{\perp}. By the definition of the Moore-Penrose inverse, we get (T)zC(T)=N(T)D(T)=R(T)¯D(T)(T^{*})^{\dagger}z\in C(T^{*})=N(T^{*})^{\perp}\cap D(T^{*})=\overline{R(T)}\cap D(T^{*}). So, (T)zR(T)D(T)(T^{*})^{\dagger}z\in R(T)\cap D(T^{*}). We get w1Hw_{1}\in H such that

(T)z=Tw1\displaystyle(T^{*})^{\dagger}z=Tw_{1}
(T)z1=Tw1\displaystyle(T^{*})^{\dagger}z_{1}=Tw_{1}
z1=TTw1.\displaystyle z_{1}=T^{*}Tw_{1}.

This confirms that z=z1+z2R(TT)R(TT)=D(TT)z=z_{1}+z_{2}\in R(T^{*}T)\oplus^{\perp}R(T^{*}T)^{\perp}=D(T^{*}T)^{\dagger}. Hence, D(T(T))D((TT))D(T^{\dagger}(T^{*})^{\dagger})\subset D((T^{*}T)^{\dagger}). To prove the required relation, we consider sD(T(T))R(T)s\in D(T^{\dagger}(T^{*})^{\dagger})\cap R(T^{*})^{\perp}. Since, R(T)R(TT)R(T^{*})^{\perp}\subset R(T^{*}T)^{\perp} which implies T(T)s=(TT)s=0T^{\dagger}(T^{*})^{\dagger}s=(T^{*}T)^{\dagger}s=0. Let us look an element uD(T(T))R(T)u\in D(T^{\dagger}(T^{*})^{\dagger})\cap R(T^{*}). There exists an element vC(T)=R(T)¯D(T)v\in C(T^{*})=\overline{R(T)}\cap D(T^{*}) such that Tv=uT^{*}v=u. Furthermore, (T)u=vD(T)=R(T)R(T)(T^{*})^{\dagger}u=v\in D(T^{\dagger})=R(T)\oplus^{\perp}R(T)^{\perp}. So, vR(T)D(T)v\in R(T)\cap D(T^{*}) which guarantees that the existence of an element z0C(T)z_{0}\in C(T) such that Tz0=vTz_{0}=v. Again Tv=z0T^{\dagger}v=z_{0} implies T(T)u=z0T^{\dagger}(T^{*})^{\dagger}u=z_{0}. It is clear that z0D(TT)N(T)=D(TT)N(TT)=C(TT)z_{0}\in D(T^{*}T)\cap N(T)^{\perp}=D(T^{*}T)\cap N(T^{*}T)^{\perp}=C(T^{*}T). Then, (TT)u=(TT)(TT)z0=z0(T^{*}T)^{\dagger}u=(T^{*}T)^{\dagger}(T^{*}T)z_{0}=z_{0}. Therefore, T(T)(TT)T^{\dagger}(T^{*})^{\dagger}\subset(T^{*}T)^{\dagger}. ∎

Theorem 2.7.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then (TT)(T)T(TT^{*})^{\dagger}\supset(T^{*})^{\dagger}T^{\dagger}.

Proof.

Firstly, we claim that D(TT)D(TT^{*}) is decomposable. It is obvious that N(TT)C(TT)D(TT)N(TT^{*})\oplus^{\perp}C(TT^{*})\subset D(TT^{*}) and N(TT)=N(T)N(TT^{*})=N(T^{*}). To prove the reverse inclusion, we consider xD(TT)D(T)=N(TT)C(T)x\in D(TT^{*})\subset D(T^{*})=N(TT^{*})\oplus^{\perp}C(T^{*}). Now, we can write x=x1+x2x=x_{1}+x_{2}, where x1N(TT)x_{1}\in N(TT^{*}) and x2C(T)x_{2}\in C(T^{*}). So, x2C(T)D(TT)=C(TT)x_{2}\in C(T^{*})\cap D(TT^{*})=C(TT^{*}) which shows that xN(TT)C(TT)x\in N(TT^{*})\oplus^{\perp}C(TT^{*}). Thus, D(TT)D(TT^{*}) is a decomposable domain of TTTT^{*}. Moreover, (TT)(TT^{*})^{\dagger} exists.

Now, we will show that D((T)T)D((TT))D((T^{*})^{\dagger}T^{\dagger})\subset D((TT^{*})^{\dagger}). Let us consider an element yD((T)T)y\in D((T^{*})^{\dagger}T^{\dagger}). Then y=y1+y2R(T)R(T)R(T)+R(TT)y=y_{1}+y_{2}\in R(T)\oplus^{\perp}R(T)^{\perp}\subset R(T)+R(TT^{*})^{\perp}, where y1R(T)y_{1}\in R(T) and y2R(T)y_{2}\in R(T)^{\perp}. Again, Ty1R(T)R(T)T^{\dagger}y_{1}\in R(T^{*})\oplus^{\perp}R(T^{*})^{\perp} and Ty1C(T)=N(T¯)D(T)=R(T)¯D(T)T^{\dagger}y_{1}\in C(T)=N(\overline{T})^{\perp}\cap D(T)=\overline{R(T^{*})}\cap D(T) which implies Ty1R(T)D(T)T^{\dagger}y_{1}\in R(T^{*})\cap D(T). There exists wC(T)w\in C(T^{*}) such that

Ty1=Tw\displaystyle T^{\dagger}y_{1}=T^{*}w
y1=TTw.\displaystyle y_{1}=TT^{*}w.

So, yR(TT)R(TT)=D((TT))y\in R(TT^{*})\oplus^{\perp}R(TT^{*})^{\perp}=D((TT^{*})^{\dagger}) which implies that D((T)T)D(TT)D((T^{*})^{\dagger}T^{\dagger})\subset D(TT^{*})^{\dagger}. To establish the required statement, we consider sD((T)T)R(T)s\in D((T^{*})^{\dagger}T^{\dagger})\cap R(T)^{\perp}. Since R(T)R(TT)R(T)^{\perp}\subset R(TT^{*})^{\perp}. Thus, (T)Ts=(TT)s=0(T^{*})^{\dagger}T^{\dagger}s=(TT^{*})^{\dagger}s=0. Now, let us look an element zD((T)T)R(T)z\in D((T^{*})^{\dagger}T^{\dagger})\cap R(T). There exists z0C(T)=N(T¯)D(T)=R(T)¯D(T)z_{0}\in C(T)=N(\overline{T})^{\perp}\cap D(T)=\overline{R(T^{*})}\cap D(T) such that Tz0=zTz_{0}=z. Again, Tz=z0D((T))=R(T)R(T)T^{\dagger}z=z_{0}\in D((T^{*})^{\dagger})=R(T^{*})\oplus^{\perp}R(T^{*})^{\perp} which implies that z0R(T)D(T)z_{0}\in R(T^{*})\cap D(T). Now, we have an element vC(T)=N(T)D(T)v\in C(T^{*})=N(T^{*})^{\perp}\cap D(T^{*}) such that Tv=z0T^{*}v=z_{0}. Furthermore, (T)Tz=v(T^{*})^{\dagger}T^{\dagger}z=v. It is easy to show that vD(TT)N(TT)=C(TT)v\in D(TT^{*})\cap N(TT^{*})^{\perp}=C(TT^{*}). Hence, (TT)z=(TT)(TT)v=v(TT^{*})^{\dagger}z=(TT^{*})^{\dagger}(TT^{*})v=v. Therefore, (T)T(TT)(T^{*})^{\dagger}T^{\dagger}\subset(TT^{*})^{\dagger}. ∎

Corollary 2.8.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with R(T)R(T^{*}) be closed. Then T(TT)TT^{*}(TT^{*})^{\dagger}\supset T^{\dagger}.

Proof.

From Theorem 2.7, we say that T(TT)T(T)T=(PR(T)|D((T)))TT^{*}(TT^{*})^{\dagger}\supset T^{*}(T^{*})^{\dagger}T^{\dagger}=(P_{R(T^{*})}|_{D((T^{*})^{\dagger})})T^{\dagger}. Now, R(T)=C(T)=N(T¯)D(T)=R(T)D(T)R(T^{\dagger})=C(T)=N(\overline{T})^{\perp}\cap D(T)=R(T^{*})\cap D(T). Therefore, T(TT)TT^{*}(TT^{*})^{\dagger}\supset T^{\dagger}. ∎

Corollary 2.9.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with R(T)R(T) be closed. Then (TT)TT(T^{*}T)^{\dagger}T^{*}\subset T^{\dagger}.

Proof.

From Theorem 2.6, we get (TT)TT(T)T(T^{*}T)^{\dagger}T^{*}\supset T^{\dagger}(T^{*})^{\dagger}T^{*}. Since R(T)R(T) is closed. So, R(T)=C(T)=N(T)D(T)=R(T)D(T)R(T^{*})^{\dagger}=C(T^{*})=N(T^{*})^{\perp}\cap D(T^{*})=R(T)\cap D(T^{*}). Thus, D(T(T)T)=D(T)D((TT)T)D(T^{\dagger}(T^{*})^{\dagger}T^{*})=D(T^{*})\supset D((T^{*}T)^{\dagger}T^{*}) which implies (TT)T=T(T)T(T^{*}T)^{\dagger}T^{*}=T^{\dagger}(T^{*})^{\dagger}T^{*}. Let us consider an element xN(T)=R(T)x\in N(T^{*})=R(T)^{\perp}. Then Tx=T(T)Tx=0T^{\dagger}x=T^{\dagger}(T^{*})^{\dagger}T^{*}x=0. Similarly, for an element zN(T)D(T)R(T)z\in N(T^{*})^{\perp}\cap D(T^{*})\subset R(T), we have T(T)Tz=TzT^{\dagger}(T^{*})^{\dagger}T^{*}z=T^{\dagger}z. Therefore, (TT)TT(T^{*}T)^{\dagger}T^{*}\subset T^{\dagger}. ∎

Theorem 2.10.

Let TT be a closable operator from D(T)HD(T)\subset H into KK. Then the following statements hold good:

  1. 1.

    D(TT)=D(T)D(TT^{\dagger})=D(T^{\dagger}) and D(TT)=D(T)D(T^{\dagger}T)=D(T);

  2. 2.

    R(TT)=R(T) and R(TT)=R(T)R(TT^{\dagger})=R(T)\text{ and }R(T^{\dagger}T)=R(T^{\dagger});

  3. 3.

    when TT is densely defined then N(T¯)=N((T))N(\overline{T})=N((T^{*})^{\dagger}).

Proof.

(1)(\mathit{1}) D(TT)D(T)D(TT^{\dagger})\subset D(T^{\dagger}) and R(T)=C(T)D(T)R(T^{\dagger})=C(T)\subset D(T) confirm that D(TT)=D(T)D(TT^{\dagger})=D(T^{\dagger}).

Moreover, D(TT)D(T)D(T^{\dagger}T)\subset D(T) and R(T)D(T)R(T)\subset D(T^{\dagger}) guarantee that D(TT)=D(T)D(T^{\dagger}T)=D(T).

(2)(\mathit{2}) It is obvious that R(TT)R(T)R(TT^{\dagger})\subset R(T). To prove the reverse inclusion, let us consider an element yR(T)y\in R(T). Then there exist xC(T)x\in C(T) such that Tx=yTx=y and Ty=xT^{\dagger}y=x which implies TTy=yR(TT)TT^{\dagger}y=y\in R(TT^{\dagger}). Hence, R(T)=R(TT)R(T)=R(TT^{\dagger}).

Furthermore, R(TT)R(T)R(T^{\dagger}T)\subset R(T^{\dagger}). Now, consider an element xR(T)x\in R(T^{\dagger}). There exists an element zR(T)z\in R(T) such that Tz=xT^{\dagger}z=x. Again, we have an element wC(T)w\in C(T) with Tw=zTw=z. Thus, x=TTwR(TT)x=T^{\dagger}Tw\in R(T^{\dagger}T). Therefore, R(TT)=R(T)R(T^{\dagger}T)=R(T^{\dagger}).

(3)(\mathit{3}) N((T))=R(T)=N(T)=N(T¯)N((T^{*})^{\dagger})=R(T^{*})^{\perp}=N(T^{**})=N(\overline{T}). ∎

Theorem 2.11.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with R(T)R(T^{*}) be closed and R(T)D(T)R(T^{*})\subset D(T). Then TTT(T)T\subset TT^{*}(T^{*})^{\dagger}.

Proof.

Firstly, we claim that D(T)D(TT(T))D(T)\subset D(TT^{*}(T^{*})^{\dagger}). Let xD(T)x\in D(T). Then xC(T)N(T)=(N(T¯)D(T))N(T)=R(T)N(T)D((T))x\in C(T)\oplus^{\perp}N(T)=(N(\overline{T})^{\perp}\cap D(T))\oplus^{\perp}N(T)=R(T^{*})\oplus^{\perp}N(T)\subset D((T^{*})^{\dagger}). The mentioned two relations R(T)D(T)R(T^{*})\subset D(T) and R((T))=C(T)D(T)R((T^{*})^{\dagger})=C(T^{*})\subset D(T^{*}) confirm that xD(TT(T))x\in D(TT^{*}(T^{*})^{\dagger}). So, D(T)D(TT(T))D(T)\subset D(TT^{*}(T^{*})^{\dagger}). The closeness of R(T)R(T^{*}) says that R(T)=N(T)R(T^{*})=N(T)^{\perp}. Let us consider an element z=z1+z2N(T)C(T)z=z_{1}+z_{2}\in N(T)\oplus^{\perp}C(T), where z1N(T) and z2C(T)z_{1}\in N(T)\text{ and }z_{2}\in C(T). Then, TT(T)z=Tz2=TzTT^{*}(T^{*})^{\dagger}z=Tz_{2}=Tz. Therefore, TTT(T)T\subset TT^{*}(T^{*})^{\dagger}. ∎

Theorem 2.12.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with the condition R(T)D(T)R(T)\subset D(T^{*}). Then T=(T)TTT=(T^{*})^{\dagger}T^{*}T.

Proof.

It is obvious that D(T)D((T)TT)D(T)\supset D((T^{*})^{\dagger}T^{*}T). From the given condition R(T)D(T)R(T)\subset D(T^{*}) says that the inclusion D(T)D((T)TT)D(T)\subset D((T^{*})^{\dagger}T^{*}T) which implies D(T)=D((T)TT)D(T)=D((T^{*})^{\dagger}T^{*}T). Now let us consider an element xD(T)x\in D(T). Then, (T)TTx=PR(T)¯|D(T)(Tx)=Tx(T^{*})^{\dagger}T^{*}Tx=P_{\overline{R(T)}}|_{D(T^{*})}(Tx)=Tx. Therefore, T=(T)TTT=(T^{*})^{\dagger}T^{*}T. ∎

Theorem 2.13.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with R(T)R(T) be closed. Then (T)=TT(T)(T^{\dagger})^{*}=TT^{\dagger}(T^{\dagger})^{*}.

Proof.

It is obvious to prove the inclusion D(TT(T))D((T))D(TT^{\dagger}(T^{\dagger})^{*})\subset D((T^{\dagger})^{*}). From Theorem 2.2, we get R((T))=R((T))=C(T)=N(T)D(T)=R(T)D(T)R((T^{\dagger})^{*})=R((T^{*})^{\dagger})=C(T^{*})=N(T^{*})^{\perp}\cap D(T^{*})=R(T)\cap D(T^{*}) which confirms that D(TT(T))D((T))D(TT^{\dagger}(T^{\dagger})^{*})\supset D((T^{\dagger})^{*}). Thus, D(TT(T))=D((T))D(TT^{\dagger}(T^{\dagger})^{*})=D((T^{\dagger})^{*}). Now, consider an element xD(TT(T))x\in D(TT^{\dagger}(T^{\dagger})^{*}), we get x=x1+x2R(T)R(T)x=x_{1}+x_{2}\in R(T^{*})\oplus^{\perp}R(T^{*})^{\perp}, where x1R(T)x_{1}\in R(T^{*}) and x2R(T)x_{2}\in R(T^{*})^{\perp}. Then there exists an element wC(T)R(T)w\in C(T^{*})\subset R(T) such that x1=Twx_{1}=T^{*}w. Moreover,

TT(T)x=TTw=w=(T)Tw=(T)x1=(T)x.TT^{\dagger}(T^{\dagger})^{*}x=TT^{\dagger}w=w=(T^{*})^{\dagger}T^{*}w=(T^{*})^{\dagger}x_{1}=(T^{*})^{\dagger}x. (3)

Therefore, (T)=TT(T)(T^{\dagger})^{*}=TT^{\dagger}(T^{\dagger})^{*}. ∎

Theorem 2.14.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK with R(T)R(T^{*}) be closed and R(T)D(T)R(T^{*})\subset D(T). Then (T)TT(T)(T^{\dagger})^{*}T^{\dagger}T\subset(T^{\dagger})^{*}.

Proof.

Since, R(T)R(T^{*}) is closed. Then D((T))=D((T))=HD((T)TT)D((T^{\dagger})^{*})=D((T^{*})^{\dagger})=H\supset D((T^{\dagger})^{*}T^{\dagger}T). Let us consider an element xD((T)TT)x\in D((T^{\dagger})^{*}T^{\dagger}T). So, x=x1+x2Hx=x_{1}+x_{2}\in H, where x1R(T)x_{1}\in R(T^{*}) and x2R(T)x_{2}\in R(T^{*})^{\perp}. From Theorem 2.2, we get (T)TTx=(T)PR(T)|D(T)(x)=(T)x1=(T)x(T^{\dagger})^{*}T^{\dagger}Tx=(T^{\dagger})^{*}P_{R(T^{*})}|_{D(T)}(x)=(T^{\dagger})^{*}x_{1}=(T^{\dagger})^{*}x. Therefore, (T)TT(T)(T^{\dagger})^{*}T^{\dagger}T\subset(T^{\dagger})^{*}. ∎

Theorem 2.15.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then T=(TT)TT^{*}=(T^{\dagger}T)^{*}T^{*}.

Proof.

The denseness of D(T)D(T) and D(TT)=D(T)D(T^{\dagger}T)=D(T) confirm that the existence of (TT)(T^{\dagger}T)^{*}. It is obvious that D(T)D((TT)T)D(T^{*})\supset D((T^{\dagger}T)^{*}T^{*}). Now, we will show the reverse inclusion. It is enough to prove that R(T)D((TT))R(T^{*})\subset D((T^{\dagger}T)^{*}). The relations (TT)T(T)=T(T)(T^{\dagger}T)^{*}\supset T^{*}(T^{\dagger})^{*}=T^{*}(T^{*})^{\dagger} and R((T))D(T)R((T^{*})^{\dagger})\subset D(T^{*}) say that

D((TT))D(T(T))=D((T))R(T).\displaystyle D((T^{\dagger}T)^{*})\supset D(T^{*}(T^{*})^{\dagger})=D((T^{*})^{\dagger})\supset R(T^{*}).

Thus, D(T)=D((TT)T)D(T^{*})=D((T^{\dagger}T)^{*}T^{*}). Now consider an element yD((TT)T)y\in D((T^{\dagger}T)^{*}T^{*}). Then,

(TT)Ty\displaystyle(T^{\dagger}T)^{*}T^{*}y =(PN(T)|D(T))Ty\displaystyle=(P_{N(T)^{\perp}}|_{D(T)})^{*}T^{*}y
=PN(T)Ty\displaystyle=P_{N(T)^{\perp}}T^{*}y
=PN(T¯)Ty\displaystyle=P_{N(\overline{T})^{\perp}}T^{*}y
=PR(T)¯Ty\displaystyle=P_{\overline{R(T^{*})}}T^{*}y
=Ty.\displaystyle=T^{*}y.

Therefore, T=(TT)TT^{*}=(T^{\dagger}T)^{*}T^{*}. ∎

Theorem 2.16.

Let TT be a densely defined closable operator from D(T)HD(T)\subset H into KK. Then TTTTT^{*}\supset T^{\dagger}TT^{*}.

Proof.

We know, D(TTT)D(T)D(T^{\dagger}TT^{*})\subset D(T^{*}). Let us consider an element yD(TTT)y\in D(T^{\dagger}TT^{*}). Then TyR(T)D(T)N(T¯)D(T)=N(T)D(T)T^{*}y\in R(T^{*})\cap D(T)\subset N(\overline{T})^{\perp}\cap D(T)=N(T)^{\perp}\cap D(T). Moreover, TTTy=PN(T)|D(T)Ty=TyT^{\dagger}TT^{*}y=P_{N(T)^{\perp}}|_{D(T)}T^{*}y=T^{*}y. Therefore, TTTTT^{*}\supset T^{\dagger}TT^{*}. ∎

Now, we will present an illustrative example to justify our results.

Example 2.17.

Let TϕT_{\phi} be a multiplication operator on L2(M)L^{2}(M), where L2(M)=L2(M,Σ,μ)L^{2}(M)=L^{2}(M,\Sigma,\mu), μ\mu is a Borel regular measure, MM\subset\mathbb{R} and μ(M)<\mu(M)<\infty. Define TϕT_{\phi} as Tϕ(f)=ϕfT_{\phi}(f)=\phi f, for fD(Tϕ)={fL2(M):ϕfL2(M),ϕ𝒞(M),|ϕ(x)|1}f\in D(T_{\phi})=\{f\in L^{2}(M):\phi f\in L^{2}(M),\phi\in\mathcal{C}(M),|\phi(x)|\geq 1\}. Here, 𝒞(M)\mathcal{C}(M) is the set of all continuous functions from MM to \mathbb{C}. Then TϕT_{\phi} is closed and Tϕ=Tϕ=Tϕ¯T_{\phi}=T_{\phi}^{*}=T_{\overline{\phi}}, where ϕ¯\overline{\phi} is the complex conjugate of ϕ\phi. Moreover, R(Tϕ)=R(Tϕ)=L2(M)R(T_{\phi})=R{(T_{\phi}}^{*})=L^{2}(M) [2] and N(Tϕ)=N(Tϕ|𝒞0)¯={0}N(T_{\phi})=\overline{N(T_{\phi}|_{{\mathcal{C}}_{0}^{\infty}})}=\{0\}, where Tϕ|𝒞0{T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}} is the restriction of TϕT_{\phi} in the domain 𝒞0{\mathcal{C}}_{0}^{\infty}. Again, Tϕ|𝒞0{T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}} is not closed but it is closable because Tϕ|𝒞0Tϕ|𝒞0¯=Tϕ{T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}}\subsetneq\overline{{T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}}}=T_{\phi}. Tϕ|𝒞0{T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}} has decomposable domain because D(Tϕ|𝒞0)=C(Tϕ|𝒞0)D({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})=C({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}}). Thus, (Tϕ|𝒞0)({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger} exists and D((Tϕ|𝒞0))=R(Tϕ|𝒞0)D(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger})=R({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}}). We also get ((Tϕ|𝒞0))=(Tϕ|𝒞0)Tϕ(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger})^{\dagger}=({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})\subsetneq T_{\phi}. It is obvious to show that R(Tϕ¯)=L2(M)=R(Tϕ)=R((Tϕ|𝒞0))R(T_{\overline{\phi}})=L^{2}(M)=R(T_{\phi}^{*})=R(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{*}). D((Tϕ|𝒞0))D(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger}) is dense in L2(M)L^{2}(M) which implies that the existence of ((Tϕ|𝒞0))(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger})^{*}. Theorem 2.2 says that ((Tϕ|𝒞0))=(Tϕ¯)(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger})^{*}=(T_{\overline{\phi}})^{\dagger} with the whole domain L2(M)L^{2}(M). Therefore, g1L2(M)g_{1}\in L^{2}(M), we have

((Tϕ|𝒞0))(g1)=g2, where g2D(Tϕ¯) and Tϕ¯(g2)=g1.\displaystyle(({T_{\phi}}|_{{\mathcal{C}}_{0}^{\infty}})^{\dagger})^{*}(g_{1})=g_{2},\text{ where }g_{2}\in D(T_{\overline{\phi}})\text{ and }T_{\overline{\phi}}(g_{2})=g_{1}.

3 Properties of Moore-Penrose inverses of the direct sum of closed operators in Hilbert spaces:

Let HH and KK be two Hilbert spaces. The space HKH\bigoplus K defined by HK={(h,k):hH,kK}H\bigoplus K=\{(h,k):h\in H,k\in K\} is a linear space with respect to addition and scalar multiplication defined by

(h1,k1)+(h2,k2)=(h1+h2,k1+k2), and\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(h_{1},k_{1})+(h_{2},k_{2})=(h_{1}+h_{2},k_{1}+k_{2}),\text{ and }
λ(h,k)=(λh,λk), for all h,h1,h2H, for all k,k1,k2K and λ𝕂,(𝕂= or ).\displaystyle\lambda(h,k)=(\lambda h,\lambda k),\text{ for all }h,h_{1},h_{2}\in H,\text{ for all }k,k_{1},k_{2}\in K\text{ and }\lambda\in\mathbb{K},~{}(\mathbb{K}=\mathbb{R}\text{ or }\mathbb{C}).

Now, HKH\bigoplus K is an inner product space with respect to the inner product given by

(h1,k1)(h2,k2)=h1,h2+k1,k2, for all h1,h2H, and  for all k1,k2K.\displaystyle\langle(h_{1},k_{1})(h_{2},k_{2})\rangle=\langle h_{1},h_{2}\rangle+\langle k_{1},k_{2}\rangle,\text{ for all }h_{1},h_{2}\in H,\text{ and }\text{ for all }k_{1},k_{2}\in K.

The norm on HKH\bigoplus K is defined by

(h,k)=(h2+k2)12, for all (h,k)H×K.\displaystyle\|(h,k)\|=(\|h\|^{2}+\|k\|^{2})^{\frac{1}{2}},\text{ for all }(h,k)\in H\times K.

Moreover, The direct sum of two operators T1 and T2T_{1}\text{ and }T_{2} from D(T1)H1D(T_{1})\subset H_{1} to K1K_{1} and from D(T2)H2D(T_{2})\subset H_{2} to K2K_{2} respectively is defined by

(T1T2)(h1,h2)=(T1h1,T2h2), for all h1D(T1), and for all h2D(T2).\displaystyle(T_{1}\bigoplus T_{2})(h_{1},h_{2})=(T_{1}h_{1},T_{2}h_{2}),\text{ for all }h_{1}\in D(T_{1}),\text{ and for all }h_{2}\in D(T_{2}).
Theorem 3.1.

Let T1:D(T1)H1K1T_{1}:D(T_{1})\subset H_{1}\to K_{1} and T2:D(T2)H2K2T_{2}:D(T_{2})\subset H_{2}\to K_{2} be two closed operators with closed ranges. Then T=T1T2:D(T1)D(T2)H1H2K1K2T=T_{1}\bigoplus T_{2}:D(T_{1})\bigoplus D(T_{2})\subset H_{1}\bigoplus H_{2}\to K_{1}\bigoplus K_{2} has the Moore-Penrose inverse. Moreover,

T=(T1T2)=T1T2.\displaystyle T^{\dagger}=(T_{1}\bigoplus T_{2})^{\dagger}=T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}.
Proof.

TT is closed because T1T_{1} and T2T_{2} both are closed. So, the Moore-Penrose inverse TT^{\dagger} exists in domain D(T)=R(T)R(T)D(T^{\dagger})=R(T)\oplus R(T)^{\perp}. It is obvious to show that R(T)=R(T1)R(T2)R(T)=R(T_{1})\bigoplus R(T_{2}) and N(T)=N(T1)N(T2)N(T)=N(T_{1})\bigoplus N(T_{2}). Here, the closed property of R(T1)R(T_{1}) and R(T2)R(T_{2}) guarantees that R(T)R(T) is also closed. We will show that

PR(T1)R(T2)=PR(T1)PR(T2).\displaystyle P_{R(T_{1})\bigoplus R(T_{2})}=P_{R(T_{1})}\bigoplus P_{R(T_{2})}.

For all h1D(T1) and h2D(T2)h_{1}\in D(T_{1})\text{ and }h_{2}\in D(T_{2}),

PR(T1)R(T2)(T1h1,T2h2)\displaystyle P_{R(T_{1})\bigoplus R(T_{2})}(T_{1}h_{1},T_{2}h_{2}) =(T1h1,T2h2)\displaystyle=(T_{1}h_{1},T_{2}h_{2})
=(PR(T1)(T1h1),PR(T2)(T2h2))\displaystyle=(P_{R(T_{1})}(T_{1}h_{1}),P_{R(T_{2})}(T_{2}h_{2}))
=PR(T1)PR(T2)(T1h1,T2h2).\displaystyle=P_{R(T_{1})}\bigoplus P_{R(T_{2})}(T_{1}h_{1},T_{2}h_{2}).

Now, let us consider (k1,k2)(R(T1)R(T2))(k_{1},k_{2})\in(R(T_{1})\bigoplus R(T_{2}))^{\perp}. Since R(T1) and R(T2)R(T_{1})\text{ and }R(T_{2}) both are closed then there exist k1,k1′′,k2,k2′′k_{1}^{{}^{\prime}},k_{1}^{{}^{\prime\prime}},k_{2}^{{}^{\prime}},k_{2}^{{}^{\prime\prime}} in R(T1),R(T1),R(T2) and R(T2)R(T_{1}),R(T_{1})^{\perp},R(T_{2})\text{ and }R(T_{2})^{\perp} respectively such that k1=k1+k1′′k_{1}=k_{1}^{{}^{\prime}}+k_{1}^{{}^{\prime\prime}} and k2=k2+k2′′k_{2}=k_{2}^{{}^{\prime}}+k_{2}^{{}^{\prime\prime}}. Again, for all (h1,h2)D(T1)D(T2)(h_{1},h_{2})\in D(T_{1})\bigoplus D(T_{2}),

T1h1,k1+T2h2,k2=(T1h1,T2h2),(k1,k2)=0.\langle T_{1}h_{1},k_{1}^{{}^{\prime}}\rangle+\langle T_{2}h_{2},k_{2}^{{}^{\prime}}\rangle=\langle(T_{1}h_{1},T_{2}h_{2}),(k_{1},k_{2})\rangle=0. (4)

there exist v1D(T1)v_{1}\in D(T_{1}) and v2D(T2)v_{2}\in D(T_{2}) such that T1v1=k1T_{1}v_{1}=k_{1}^{{}^{\prime}} and T2v2=k2T_{2}v_{2}=k_{2}^{{}^{\prime}}. We consider h1=v1h_{1}=v_{1} and h2=0h_{2}=0 in (4), we get k1=0k_{1}^{{}^{\prime}}=0. Similarly, when h1=0 and h2=v2h_{1}=0\text{ and }h_{2}=v_{2} then k2=0k_{2}^{{}^{\prime}}=0. Thus, (k1,k2)=(k1′′,k2′′)R(T1)R(T2)(k_{1},k_{2})=(k_{1}^{{}^{\prime\prime}},k_{2}^{{}^{\prime\prime}})\in R(T_{1})^{\perp}\bigoplus R(T_{2})^{\perp}. So,

PR(T1)R(T2)(k1,k2)=(0,0)\displaystyle P_{R(T_{1})\bigoplus R(T_{2})}(k_{1},k_{2})=(0,0)

and

PR(T1)PR(T2)(k1,k2)\displaystyle P_{R(T_{1})}\bigoplus P_{R(T_{2})}(k_{1},k_{2}) =PR(T1)PR(T2)(k1′′,k2′′)\displaystyle=P_{R(T_{1})}\bigoplus P_{R(T_{2})}(k_{1}^{{}^{\prime\prime}},k_{2}^{{}^{\prime\prime}})
=(PR(T1)k1′′,PR(T2)k2′′)\displaystyle=(P_{R(T_{1})}k_{1}^{{}^{\prime\prime}},P_{R(T_{2})}k_{2}^{{}^{\prime\prime}})
=(0,0).\displaystyle=(0,0).

Our above claim is proven which implies that

TT=PR(T)=PR(T1)R(T2)=PR(T1)PR(T2)=T1T1T2T2=T(T1T2).TT^{\dagger}=P_{R(T)}=P_{R(T_{1})\bigoplus R(T_{2})}=P_{R(T_{1})}\bigoplus P_{R(T_{2})}=T_{1}T_{1}^{\dagger}\bigoplus T_{2}T_{2}^{\dagger}=T(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}). (5)

We claim that P(N(T1)N(T2))|D(T)=PN(T1)|D(T1)PN(T2)|D(T2)P_{(N(T_{1})\bigoplus N(T_{2}))^{\perp}}|_{D(T)}=P_{N(T_{1})^{\perp}}|_{D(T_{1})}\bigoplus P_{N(T_{2})^{\perp}}|_{D(T_{2})}. Let us consider an arbitrary element (x1,x2)N(T)=N(T1)N(T2)D(T)(x_{1},x_{2})\in N(T)=N(T_{1})\bigoplus N(T_{2})\subset D(T). Then, P(N(T1)N(T2))|D(T)(x1,x2)=(PN(T1)|D(T1)(x1),PN(T2)|D(T2)(x2))=(0,0)P_{(N(T_{1})\bigoplus N(T_{2}))^{\perp}}|_{D(T)}(x_{1},x_{2})=(P_{N(T_{1})^{\perp}}|_{D(T_{1})}(x_{1}),P_{N(T_{2})^{\perp}}|_{D(T_{2})}(x_{2}))=(0,0). Again, for an element (w1,w2)(N(T1)N(T2))D(T)(w_{1},w_{2})\in(N(T_{1})\bigoplus N(T_{2}))^{\perp}\cap D(T), we have

P(N(T1)N(T2))|D(T)(w1,w2)=(w1,w2).\displaystyle P_{(N(T_{1})\bigoplus N(T_{2}))^{\perp}}|_{D(T)}(w_{1},w_{2})=(w_{1},w_{2}).

For all (s1,s2)N(T1)N(T2)(s_{1},s_{2})\in N(T_{1})\bigoplus N(T_{2}), we get

s1,w1+s2,w2=(s1,s2),(w1,w2)=0.\langle s_{1},w_{1}\rangle+\langle s_{2},w_{2}\rangle=\langle(s_{1},s_{2}),(w_{1},w_{2})\rangle=0. (6)

There are elements w1,w1′′,w2 and w2′′w_{1}^{{}^{\prime}},w_{1}^{{}^{\prime\prime}},w_{2}^{{}^{\prime}}\text{ and }w_{2}^{{}^{\prime\prime}} in N(T1),C(T1),N(T2) and C(T2)N(T_{1}),C(T_{1}),N(T_{2})\text{ and }C(T_{2}) respectively such that w1=w1+w1′′ and w2=w2+w2′′w_{1}=w_{1}^{{}^{\prime}}+w_{1}^{{}^{\prime\prime}}\text{ and }w_{2}=w_{2}^{{}^{\prime}}+w_{2}^{{}^{\prime\prime}}. From the equation (6), we get

s1,w1+s2,w2=(s1,s2),(w1,w2)=(0,0).\langle s_{1},w_{1}^{{}^{\prime}}\rangle+\langle s_{2},w_{2}^{{}^{\prime}}\rangle=\langle(s_{1},s_{2}),(w_{1},w_{2})\rangle=(0,0). (7)

Let us take s1=w1 and s2=0s_{1}=w_{1}^{{}^{\prime}}\text{ and }s_{2}=0, we have w1=0w_{1}^{{}^{\prime}}=0. Similarly, s1=0 and s2=w2s_{1}=0\text{ and }s_{2}=w_{2}^{{}^{\prime}} say that w2=0w_{2}^{{}^{\prime}}=0. Thus, (w1,w2)=(w1′′,w2′′)(w_{1},w_{2})=(w_{1}^{{}^{\prime\prime}},w_{2}^{{}^{\prime\prime}}) which implies

(PN(T1)|D(T1)PN(T2)|D(T2))(w1,w2)\displaystyle(P_{N(T_{1})^{\perp}}|_{D(T_{1})}\bigoplus P_{N(T_{2})^{\perp}}|_{D(T_{2})})(w_{1},w_{2}) =(PN(T1)|D(T1)(w1′′),PN(T2)|D(T2)(w2′′))\displaystyle=(P_{N(T_{1})^{\perp}}|_{D(T_{1})}(w_{1}^{{}^{\prime\prime}}),P_{N(T_{2})^{\perp}}|_{D(T_{2})}(w_{2}^{{}^{\prime\prime}}))
=(w1,w2).\displaystyle=(w_{1},w_{2}).

Hence, the relation P(N(T1)N(T2))|D(T)=PN(T1)|D(T1)PN(T2)|D(T2)P_{(N(T_{1})\bigoplus N(T_{2}))^{\perp}}|_{D(T)}=P_{N(T_{1})^{\perp}}|_{D(T_{1})}\bigoplus P_{N(T_{2})^{\perp}}|_{D(T_{2})} is true. So,

TT=P(N(T1)N(T2))|D(T)=PN(T1)|D(T1)PN(T2)|D(T2)=T1T1T2T2=(T1T2)T.T^{\dagger}T=P_{(N(T_{1})\bigoplus N(T_{2}))^{\perp}}|_{D(T)}=P_{N(T_{1})^{\perp}}|_{D(T_{1})}\bigoplus P_{N(T_{2})^{\perp}}|_{D(T_{2})}=T_{1}^{\dagger}T_{1}\bigoplus T_{2}^{\dagger}T_{2}=(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})T. (8)

Furthermore,

(T1T2)(T1T2)(T1T2)=(T1T1T1T2T2T2)=(T1T2).(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})(T_{1}\bigoplus T_{2})(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})=(T_{1}^{\dagger}T_{1}T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}T_{2}T_{2}^{\dagger})=(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}). (9)

Therefore, Theorem 5.7 [5] and the equations (5), (8) and (9) justify the relation T=T1T2T^{\dagger}=T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}. ∎

Corollary 3.2.

Let Ti:D(Ti)HiKi(i=1,2,,n)T_{i}:D(T_{i})\subset H_{i}\to K_{i}~{}(i=1,2,\dots,n) be closed operators with closed ranges R(Ti)(i=1,2,,nR(T_{i})~{}(i=1,2,\dots,n). Then the Moore-Penrose inverse of T1T2TnT_{1}\bigoplus T_{2}\bigoplus\dots\bigoplus T_{n} exists. Moreover, (T1T2Tn)=T1T2Tn(T_{1}\bigoplus T_{2}\bigoplus\dots\bigoplus T_{n})^{\dagger}=T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\bigoplus\dots\bigoplus T_{n}^{\dagger}.

Proof.

By induction hypothesis and Theorem 3.1 prove the relation

(T1T2Tn)=T1T2Tn.\displaystyle(T_{1}\bigoplus T_{2}\bigoplus\dots\bigoplus T_{n})^{\dagger}=T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\bigoplus\dots\bigoplus T_{n}^{\dagger}.

Lemma 3.3.

Let T1:D(T1)H1K1T_{1}:D(T_{1})\subset H_{1}\to K_{1} and T2:D(T2)H2K2T_{2}:D(T_{2})\subset H_{2}\to K_{2} be two densely defined operators. Then T1T2T_{1}\bigoplus T_{2} is a densely defined operator with

(T1T2)=T1T2.\displaystyle(T_{1}\bigoplus T_{2})^{*}=T_{1}^{*}\bigoplus T_{2}^{*}.
Proof.

It is obvious that D(T1T2)=D(T1)D(T2)D(T_{1}\bigoplus T_{2})=D(T_{1})\bigoplus D(T_{2}) is densely defined in H1H2H_{1}\bigoplus H_{2}. So, (T1T2)(T_{1}\bigoplus T_{2})^{*} exists.

D(T1T2)\displaystyle D(T_{1}\bigoplus T_{2})^{*} ={(u,v):(T1T2)(h1,h2),(u,v) is bounded for all(h1,h2)D(T1T2)}\displaystyle=\{(u,v):\langle(T_{1}\bigoplus T_{2})(h_{1},h_{2}),(u,v)\rangle\text{ is bounded for all}~{}(h_{1},h_{2})\in D(T_{1}\bigoplus T_{2})\}
={(u,v):T1h1,u+T2h2,v is bounded for all(h1,h2)D(T1T2)}}\displaystyle=\{(u,v):\langle T_{1}h_{1},u\rangle+\langle T_{2}h_{2},v\rangle\text{ is bounded for all}~{}(h_{1},h_{2})\in D(T_{1}\bigoplus T_{2})\}\}

Now consider, h2=0h_{2}=0. From above relation we get uD(T1)u\in D(T_{1}^{*}). Similarly, h1=0h_{1}=0 shows that vD(T2)v\in D(T_{2}^{*}). Thus,

D(T1T2)D(T1)D(T2).D(T_{1}\bigoplus T_{2})^{*}\subset D(T_{1}^{*})\bigoplus D(T_{2}^{*}). (10)

Taking an arbitrary element (w1,w2)D(T1)D(T2)(w_{1},w_{2})\in D(T_{1}^{*})\bigoplus D(T_{2}^{*}), for all (h1,h2)D(T1)D(T2)(h_{1},h_{2})\in D(T_{1})\bigoplus D(T_{2}), we get

|(T1T2)(h1,h2),(w1,w2)|\displaystyle|\langle(T_{1}\bigoplus T_{2})(h_{1},h_{2}),(w_{1},w_{2})\rangle| =|T1h1,w1+T2h2,w2|\displaystyle=|\langle T_{1}h_{1},w_{1}\rangle+\langle T_{2}h_{2},w_{2}\rangle|
=|(h1,h2)(T1w1,T2w2)|\displaystyle=|\langle(h_{1},h_{2})(T_{1}^{*}w_{1},T_{2}^{*}w_{2})\rangle|
(h1,h2)(T1w1,T2w2)\displaystyle\leq||(h_{1},h_{2})||||(T_{1}^{*}w_{1},T_{2}^{*}w_{2})||

Hence, D(T1)D(T2)D(T1T2)D(T_{1}^{*})\bigoplus D(T_{2}^{*})\subset D(T_{1}\bigoplus T_{2})^{*} with

(T1T2)(w1,w2)=(T1w1,T2w2).(T_{1}\bigoplus T_{2})^{*}(w_{1},w_{2})=(T_{1}^{*}w_{1},T_{2}^{*}w_{2}). (11)

By the equations (10) and (11) guarantee that (T1T2)=T1T2(T_{1}\bigoplus T_{2})^{*}=T_{1}^{*}\bigoplus T_{2}^{*}. ∎

Corollary 3.4.

Let T1:D(T1)H1K1 and T2:D(T2)H2K2T_{1}:D(T_{1})\subset H_{1}\to K_{1}\text{ and }T_{2}:D(T_{2})\subset H_{2}\to K_{2} be two densely defined closed operators with closed ranges R(T1)R(T_{1}) and R(T2)R(T_{2}). Then ((T1T2))=((T1T2))((T_{1}\bigoplus T_{2})^{\dagger})^{*}=((T_{1}\bigoplus T_{2})^{*})^{\dagger}.

Proof.

By Theorem 3.1, Lemma 3.3 and closed ranges R(Ti)(i=1,2)R(T_{i}^{*})~{}(i=1,2) say that

((T1T2))=(T1T2)=(T1)(T2)=(T1T2)=((T1T2)).\displaystyle((T_{1}\bigoplus T_{2})^{\dagger})^{*}=(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})^{*}=(T_{1}^{\dagger})^{*}\bigoplus({T_{2}^{\dagger}})^{*}=(T_{1}^{*}\bigoplus T_{2}^{*})^{\dagger}=((T_{1}\bigoplus T_{2})^{*})^{\dagger}.

Remark 3.5.

When Ti:D(Ti)HiKi(i=1,2,,n)T_{i}:D(T_{i})\subset H_{i}\to K_{i}~{}(i=1,2,\dots,n) are densely defined closed operators with closed ranges R(Ti),i=1,2,,nR(T_{i}),i=1,2,\dots,n. Then ((T1T2Tn))=((T1T2Tn))((T_{1}\bigoplus T_{2}\bigoplus\dots\bigoplus T_{n})^{\dagger})^{*}=((T_{1}\bigoplus T_{2}\bigoplus\dots\bigoplus T_{n})^{*})^{\dagger}.

Corollary 3.6.

Let Ti:D(Ti)HiKi(i=1,2)T_{i}:D(T_{i})\subset H_{i}\to K_{i}~{}(i=1,2) be two closed operators with closed ranges R(Ti),i=1,2R(T_{i}),~{}i=1,2. Then γ(T1T2)=min{γ(T1),γ(T2)}>0\gamma(T_{1}\bigoplus T_{2})=\min\{\gamma(T_{1}),\gamma(T_{2})\}>0, where γ(T)\gamma(T) is the reduced minimum modulus of TT.

Proof.

Since, R(T1)R(T_{1}) and R(T2)R(T_{2}) are closed. So, R(T1T2)R(T_{1}\bigoplus T_{2}) is also closed. Thus γ(T1T2)>0\gamma(T_{1}\bigoplus T_{2})>0. Now, for all (k1,k2)K1K2(k_{1},k_{2})\in K_{1}\bigoplus K_{2}, we have

(T1T2)(k1,k2)\displaystyle\|(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})(k_{1},k_{2})\| =(T1k1,T2k2)\displaystyle=\|(T_{1}^{\dagger}k_{1},T_{2}^{\dagger}k_{2})\|
=(T1k12+T2k22)12\displaystyle=(\|T_{1}^{\dagger}k_{1}\|^{2}+\|T_{2}^{\dagger}k_{2}\|^{2})^{\frac{1}{2}}
(T12k12+T22K22)12\displaystyle\leq(\|T_{1}^{\dagger}\|^{2}\|k_{1}\|^{2}+\|T_{2}^{\dagger}\|^{2}\|K_{2}\|^{2})^{\frac{1}{2}}
max{T1,T2}(k1,k2).\displaystyle\leq\max\{\|T_{1}^{\dagger}\|,\|T_{2}^{\dagger}\|\}\|(k_{1},k_{2})\|.

So,

T1T2max{T1,T2}\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|\leq\max\{\|T_{1}^{\dagger}\|,\|T_{2}^{\dagger}\|\} (12)

Again, for all w1K1w_{1}\in K_{1}, (T1T2)(w1,0)=T1w1T1T2w1\|(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})(w_{1},0)\|=\|T_{1}^{\dagger}w_{1}\|\leq\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|\|w_{1}\|. Similarly, For all w2K2w_{2}\in K_{2}, (T1T2)(0,w2)=T2w2T1T2w2\|(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})(0,w_{2})\|=\|T_{2}^{\dagger}w_{2}\|\leq\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|\|w_{2}\|. Hence,

max{T1,T2}T1T2.\max\{\|T_{1}^{\dagger}\|,\|T_{2}^{\dagger}\|\}\leq\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|. (13)

The equations (12) and (13) guarantee that max{T1,T2}=T1T2\max\{\|T_{1}^{\dagger}\|,\|T_{2}^{\dagger}\|\}=\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|. Therefore,

γ(T1T2)=1T1T2=min{1T1,1T2}=min{γ(T1),γ(T2)}>0.\displaystyle\gamma(T_{1}\bigoplus T_{2})=\frac{1}{\|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}\|}=\min\{\frac{1}{\|T_{1}^{\dagger}\|},\frac{1}{\|T_{2}^{\dagger}\|}\}=\min\{\gamma(T_{1}),\gamma(T_{2})\}>0.

Theorem 3.7.

Let T1:D(T1)H1K1T_{1}:D(T_{1})\subset H_{1}\to K_{1} and T2:D(T2)H2K2T_{2}:D(T_{2})\subset H_{2}\to K_{2} be two densely defined closed operators with closed ranges R(T1)R(T_{1}) and R(T2)R(T_{2}). Then |(T1T2)|=|T1||T2||(T_{1}\bigoplus T_{2})^{\dagger}|=|T_{1}^{\dagger}|\bigoplus|T_{2}^{\dagger}|.

Proof.

By Theorem 3.1, we have

|(T1T2)|=|T1T2|\displaystyle|(T_{1}\bigoplus T_{2})^{\dagger}|=|T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}| =((T1T2)(T1T2))12\displaystyle=((T_{1}^{\dagger}\bigoplus T_{2}^{\dagger})^{*}(T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}))^{\frac{1}{2}}
=((T1)T1(T2)T2)12\displaystyle=((T_{1}^{*})^{\dagger}T_{1}^{\dagger}\bigoplus(T_{2}^{*})^{\dagger}T_{2}^{\dagger})^{\frac{1}{2}}
=((T1T1)(T2T2))12\displaystyle=((T_{1}T_{1}^{*})^{\dagger}\bigoplus(T_{2}T_{2}^{*})^{\dagger})^{\frac{1}{2}}
=((|T1|2)(|T2|2))12\displaystyle=((|T_{1}^{*}|^{2})^{\dagger}\bigoplus(|T_{2}^{*}|^{2})^{\dagger})^{\frac{1}{2}}

Now, we claim (|T1|2)=(|T1|)2(|T_{1}^{*}|^{2})^{\dagger}=(|T_{1}^{*}|^{\dagger})^{2}. Since, R(T1)R(T_{1}) is closed. So, R(|T1|2)=R(T1T1)=R(T1)R(|T_{1}^{*}|^{2})=R(T_{1}T_{1}^{*})=R(T_{1}) is closed which implies R(|T1|2)=R(|T1|)R(|T_{1}^{*}|^{2})=R(|T_{1}^{*}|). Then, N(|T1|2)=N(|T1|)N(|T_{1}^{*}|^{2})^{\perp}=N(|T_{1}^{*}|)^{\perp}. It is easy to prove that D(|T1|2(|T1|)2)=K1=PR(|T1|2)D(|T_{1}^{*}|^{2}(|T_{1}^{*}|^{\dagger})^{2})=K_{1}=P_{R(|T_{1}^{*}|^{2})} and D((|T1|)2|T1|2)=D(|T1|2)D((|T_{1}^{*}|^{\dagger})^{2}|T_{1}^{*}|^{2})=D(|T_{1}^{*}|^{2}). So,

|T1|2(|T1|)2\displaystyle|T_{1}^{*}|^{2}(|T_{1}^{*}|^{\dagger})^{2} =|T1||T1||T1||T1|\displaystyle=|T_{1}^{*}||T_{1}^{*}||T_{1}^{*}|^{\dagger}|T_{1}^{*}|^{\dagger}
=|T1|PR(|T1|)|T1|\displaystyle=|T_{1}^{*}|P_{R(|T_{1}^{*}|)}|T_{1}^{*}|^{\dagger}
=|T1||T1|\displaystyle=|T_{1}^{*}||T_{1}^{*}|^{\dagger}
=PR(|T1|)\displaystyle=P_{R(|T_{1}^{*}|)}
=PR(|T1|2).\displaystyle=P_{R(|T_{1}^{*}|^{2})}.

Again,

(|T1|)2|T1|2\displaystyle(|T_{1}^{*}|^{\dagger})^{2}|T_{1}^{*}|^{2} =|T1||T1||T1||T1|\displaystyle=|T_{1}^{*}|^{\dagger}|T_{1}^{*}|^{\dagger}|T_{1}^{*}||T_{1}^{*}|
=PN(|T1|)|D(|T1|2)\displaystyle=P_{N(|T_{1}^{*}|)^{\perp}}{|_{D(|T_{1}^{*}|^{2})}}
=PN(|T1|2)|D(|T1|2)\displaystyle=P_{N(|T_{1}^{*}|^{2})^{\perp}}{|_{D(|T_{1}^{*}|^{2})}}

Moreover, (|T1|)2|T1|2(|T1|)2=|T1|PN(|T1|)|D(|T1|)PR(|T1|)|T1|=(|T1|)2(|T_{1}^{*}|^{\dagger})^{2}|T_{1}^{*}|^{2}(|T_{1}^{*}|^{\dagger})^{2}=|T_{1}^{*}|^{\dagger}P_{N(|T_{1}^{*}|)^{\perp}}{|_{D(|T_{1}^{*}|)}}P_{R(|T_{1}^{*}|)}|T_{1}^{*}|^{\dagger}=(|T_{1}^{*}|^{\dagger})^{2}. By Theorem 5.7 [5], we get (|T1|)2=(|T1|2)(|T_{1}^{*}|^{\dagger})^{2}=(|T_{1}^{*}|^{2})^{\dagger}. Similarly, we have (|T2|)2=(|T2|2)(|T_{2}^{*}|^{\dagger})^{2}=(|T_{2}^{*}|^{2})^{\dagger}. Hence,

|(T1T2)|\displaystyle|(T_{1}\bigoplus T_{2})^{\dagger}| =((|T1|2)(|T2|2))12\displaystyle=((|T_{1}^{*}|^{2})^{\dagger}\bigoplus(|T_{2}^{*}|^{2})^{\dagger})^{\frac{1}{2}}
=((|T1|)2(|T2|)2)12\displaystyle=((|T_{1}^{*}|^{\dagger})^{2}\bigoplus(|T_{2}^{*}|^{\dagger})^{2})^{\frac{1}{2}}
=(|T1|)(|T2|)\displaystyle=(|T_{1}^{*}|^{\dagger})\bigoplus(|T_{2}^{*}|^{\dagger})
=|T1||T2|(by Proposition 3.19 [7]).\displaystyle=|T_{1}^{\dagger}|\bigoplus|T_{2}^{\dagger}|~{}(\text{by Proposition 3.19 \cite[cite]{[\@@bibref{Number}{MR4282727}{}{}]}}).

Corollary 3.8.

Let T1:D(T1)H1K1T_{1}:D(T_{1})\subset H_{1}\to K_{1} and T2:D(T2)H2K2T_{2}:D(T_{2})\subset H_{2}\to K_{2} be two densely defined closed operators with closed ranges R(T1)R(T_{1}) and R(T2)R(T_{2}). Then |T1T2|=|T1||T2|=|((T1T2))||T_{1}\bigoplus T_{2}|^{\dagger}=|T_{1}|^{\dagger}\bigoplus|T_{2}|^{\dagger}=|((T_{1}\bigoplus T_{2})^{*})^{\dagger}|

Proof.

Since R(T1)R(T_{1}) is closed. So, R(|T1|2)=R(T1T1)=R(T1)R(|T_{1}|^{2})=R(T_{1}^{*}T_{1})=R(T_{1}^{*}) which implies R(|T1|2)R(|T_{1}|^{2}) is closed and R(|T1|2)=R(|T1|)R(|T_{1}|^{2})=R(|T_{1}|). Similarly, R(|T2|2)=R(|T2|)R(|T_{2}|^{2})=R(|T_{2}|) is closed.

|T1T2|=(((T1T2)(T1T2))12)\displaystyle|T_{1}\bigoplus T_{2}|^{\dagger}=(((T_{1}\bigoplus T_{2})^{*}(T_{1}\bigoplus T_{2}))^{\frac{1}{2}})^{\dagger} =((T1T1T2T2)12)\displaystyle=((T_{1}^{*}T_{1}\bigoplus T_{2}^{*}T_{2})^{\frac{1}{2}})^{\dagger}
=((|T1|2|T2|2)12)\displaystyle=((|T_{1}|^{2}\bigoplus|T_{2}|^{2})^{\frac{1}{2}})^{\dagger}
=(|T1||T2|)\displaystyle=(|T_{1}|\bigoplus|T_{2}|)^{\dagger}
=|T1||T2|(by Theorem 3.1).\displaystyle=|T_{1}|^{\dagger}\bigoplus|T_{2}|^{\dagger}~{}(\text{by Theorem \ref{thm 3.1}}).

Now,

|T1||T2|\displaystyle|T_{1}|^{\dagger}\bigoplus|T_{2}|^{\dagger} =|(T1)||(T2)|( by Theorem 3.19 [7])\displaystyle=|(T_{1}^{*})^{\dagger}|\bigoplus|(T_{2}^{*})^{\dagger}|~{}(\text{ by Theorem 3.19 \cite[cite]{[\@@bibref{Number}{MR4282727}{}{}]}})
=|(T1T2)|( by Theorem 3.7)\displaystyle=|(T_{1}^{*}\bigoplus T_{2}^{*})^{\dagger}|~{}(\text{ by Theorem \ref{thm 3.7}})
=|((T1T2))|( by Lemma 3.3)\displaystyle=|((T_{1}\bigoplus T_{2})^{*})^{\dagger}|~{}(\text{ by Lemma \ref{lemma 3.3}})

Therefore, |T1T2|=|T1||T2|=|((T1T2))||T_{1}\bigoplus T_{2}|^{\dagger}=|T_{1}|^{\dagger}\bigoplus|T_{2}|^{\dagger}=|((T_{1}\bigoplus T_{2})^{*})^{\dagger}|. ∎

Example 3.9.

Let us define T1:22T_{1}:\ell^{2}\to\ell^{2} by T1(x1,x2,,xn,)=(x1,2x2,,nxn,)T_{1}(x_{1},x_{2},\dots,x_{n},\dots)=(x_{1},2x_{2},\dots,nx_{n},\dots) and T2:22T_{2}:\ell^{2}\to\ell^{2} by T2(x1,x2,,xn,)=(0,2x2,,nxn,)T_{2}(x_{1},x_{2},\dots,x_{n},\dots)=(0,2x_{2},\dots,nx_{n},\dots). Then T1=T1T_{1}=T_{1}^{*} with R(T1)=2R(T_{1})=\ell^{2} is closed (Example 2.4 [2]). Again, T2=T2T_{2}=T_{2}^{*} with R(T2)={(0,y2,y3,,yn,):(0,y2,y3,,yn,)2}R(T_{2})=\{(0,y_{2},y_{3},\dots,y_{n},\dots):(0,y_{2},y_{3},\dots,y_{n},\dots)\in\ell^{2}\} is closed (Example 2.19 [2]). Theorem 3.1 says that (T1T2)=T1T2(T_{1}\bigoplus T_{2})^{\dagger}=T_{1}^{\dagger}\bigoplus T_{2}^{\dagger}. Here,

T1(x1,x2,,xn,)=(x1,x22,,xnn,), for all (x1,x2,,xn,)2.\displaystyle T_{1}^{\dagger}(x_{1},x_{2},\dots,x_{n},\dots)=(x_{1},\frac{x_{2}}{2},\dots,\frac{x_{n}}{n},\dots),\text{ for all }(x_{1},x_{2},\dots,x_{n},\dots)\in\ell^{2}.

and

T2(0,x2,,xn,)=(0,x22,,xnn,), for all(0,x2,,xn,)R(T2)\displaystyle T_{2}^{\dagger}(0,x_{2},\dots,x_{n},\dots)=(0,\frac{x_{2}}{2},\dots,\frac{x_{n}}{n},\dots),\text{ for all}~{}(0,x_{2},\dots,x_{n},\dots)\in R(T_{2})
T2(x1,0,,0,)=(0,0,,0,), for all (x1,0,,0,)R(T2)\displaystyle T_{2}^{\dagger}(x_{1},0,\dots,0,\dots)=(0,0,\dots,0,\dots),\text{ for all }(x_{1},0,\dots,0,\dots)\in R(T_{2})^{\perp}

Then,  for all (w,z)=((w1,w2,,wn,),(0,z1,,zn,))R(T1)R(T2)\text{ for all }(w,z)=((w_{1},w_{2},\dots,w_{n},\dots),(0,z_{1},\dots,z_{n},\dots))\in R(T_{1})\bigoplus R(T_{2}), we have

(T1T2)(w,z)\displaystyle(T_{1}\bigoplus T_{2})^{\dagger}(w,z) =(T1T2)((w1,w2,,wn,),(0,z1,,zn,))\displaystyle=(T_{1}\bigoplus T_{2})^{\dagger}((w_{1},w_{2},\dots,w_{n},\dots),(0,z_{1},\dots,z_{n},\dots))
=((w1,w22,,wnn,),(0,z22,,znn,))\displaystyle=((w_{1},\frac{w_{2}}{2},\dots,\frac{w_{n}}{n},\dots),(0,\frac{z_{2}}{2},\dots,\frac{z_{n}}{n},\dots))

with

(T1T2)(u,v)=(0,0), for all (u,v)(R(T1)R(T2)).\displaystyle(T_{1}\bigoplus T_{2})^{\dagger}(u,v)=(0,0),\text{ for all }(u,v)\in(R(T_{1})\bigoplus R(T_{2}))^{\perp}.

In the next theorem, we present the Moore-Penrose inverse of the sum of two operators.

Theorem 3.10.

Let SB(H,K)S\in B(H,K) and TT be a densely defined closed operator from HH into KK with the following conditions:

  1. 1.

    TS<1\|T^{\dagger}S\|<1.

  2. 2.

    SxbTx, for all xD(T)and0<b<1\|Sx\|\leq b\|Tx\|,\text{ for all }x\in D(T)~{}\text{and}~{}0<b<1.

  3. 3.

    SxcTx, for all xD(T) and 0<c<1\|S^{*}x\|\leq c\|T^{*}x\|,\text{ for all }x\in D(T^{*})\text{ and }0<c<1.

Then (T+S)=(I+TS)1T(T+S)^{\dagger}=(I+T^{\dagger}S)^{-1}T^{\dagger}.

Proof.

From the given condition (3), we get SSx,xcTTx,x, for all xD(TT)\langle SS^{*}x,x\rangle\leq c\langle TT^{*}x,x\rangle,\text{ for all }x\in D(TT^{*}). By Theorem 2 [6] and 0<c<10<c<1, we get a contraction operator UU such that S=TUS=TU (Since, D(S)=HD(S)=H). Then R(S)R(T)R(S)\subset R(T) which justifies the boundedness of TST^{\dagger}S. By condition (1), we have the existence of the bounded operator (I+TS)1(I+T^{\dagger}S)^{-1} in B(H)B(H). We will show that the domain of (T+S)(T+S) is decomposable.

Condition (2) says that N(T+S)=N(T)N(T+S)=N(T). Again, C(T+S)=N(T+S)D(T+S)=N(T)D(T)=C(T)C(T+S)=N(T+S)^{\perp}\cap D(T+S)=N(T)^{\perp}\cap D(T)=C(T). So,

D(T+S)=D(T)=N(T)+C(T)=N(T+S)+C(T+S).\displaystyle D(T+S)=D(T)=N(T)+C(T)=N(T+S)+C(T+S).

Thus, D(T+S)D(T+S) is decomposable and the Moore-Penrose inverse of (T+S)(T+S) exists. Let us consider vR(T+S)v\in R(T+S), then there exists v1Hv_{1}\in H such that v=(T+S)v1=(T+TU)v1R(T)v=(T+S)v_{1}=(T+TU)v_{1}\in R(T). Thus, R(T+S)R(T)R(T+S)\subset R(T). Considering an arbitrary element pR(T)p\in R(T), then there are two elements p1,p2Hp_{1},p_{2}\in H with p1=(I+TS)p2p_{1}=(I+T^{\dagger}S)p_{2} such that

p=Tp1=T(I+TS)p2=(T+S)p2R(T+S).\displaystyle p=Tp_{1}=T(I+T^{\dagger}S)p_{2}=(T+S)p_{2}\in R(T+S).

Hence, R(T)=R(T+S)R(T)=R(T+S). It is true that TTS=S(because R(S)R(T))TT^{\dagger}S=S~{}(\text{because }R(S)\subset R(T)). Moreover, z=z1+z2D(TT)z=z_{1}+z_{2}\in D(T^{\dagger}T) where z1N(T) and z2C(T)z_{1}\in N(T)\text{ and }z_{2}\in C(T), we have

STTz=SPN(T)|D(T)z=Sz2=Sz\displaystyle ST^{\dagger}Tz=S{P_{N(T)^{\perp}}}{|_{D(T)}z}=Sz_{2}=Sz

which shows that STT=SST^{\dagger}T=S on domain D(TT)D(T^{\dagger}T). Now,

(T+S)(I+TS)1T\displaystyle(T+S)(I+T^{\dagger}S)^{-1}T^{\dagger} =(T+TTS)(I+TS)1T\displaystyle=(T+TT^{\dagger}S)(I+T^{\dagger}S)^{-1}T^{\dagger}
=TT\displaystyle=TT^{\dagger}
=PR(T)|D(T)\displaystyle=P_{R(T)}{|_{D(T^{\dagger})}}
=PR(T+S)|(D(T+S)).\displaystyle=P_{R(T+S)}{|_{(D(T+S)^{\dagger})}}.

Similarly,

(I+TS)1T(T+S)\displaystyle(I+T^{\dagger}S)^{-1}T^{\dagger}(T+S) =(I+TS)1(TT+TSTT)\displaystyle=(I+T^{\dagger}S)^{-1}(T^{\dagger}T+T^{\dagger}ST^{\dagger}T)
=TT\displaystyle=T^{\dagger}T
=PN(T)|D(T)\displaystyle=P_{N(T)^{\perp}}{|_{D(T)}}
=PN(T+S)|D(T+S).\displaystyle=P_{N(T+S)^{\perp}}{|_{D(T+S)}}.

Therefore, the Moore-Penrose inverse of (T+S)(T+S) is (I+TS)1T(I+T^{\dagger}S)^{-1}T^{\dagger}.

Acknowledgements

The present work of the second author was partially supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Reference Number: MTR/2023/000471) under the scheme “Mathematical Research Impact Centric Support (MATRICS)”.

References

  • [1] Adi Ben-Israel and Thomas N. E. Greville. Generalized inverses: theory and applications. Pure and Applied Mathematics. Wiley-Interscience[John Wiley & Sons], New York-London-Sydney, 1974.
  • [2] Arup Majumdar, P Sam Johnson, and Ram N Mohapatra. Hyers-Ulam Stability of Unbounded Closable Operators in Hilbert Spaces. arXiv preprint arXiv:2403.06477, 2024.
  • [3] Lawrence J. Lardy. A series representation for the generalized inverse of a closed linear operator. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58(2):152-157, 1975.
  • [4] Magnus R. Hestenes. Relative self-adjoint operators in Hilbert space. Pacific J. Math., 11:1315-1357, 1961.
  • [5] M. Zuhair Nashed, Generalized inverses and applications, Proceedings of an Advanced Seminar sponsored by the Mathematics Research Center at the University of Wisconsin- Madison, October 8-10, 1973, Publication of Mathematics Research Center, the University of Wisconsin-Madison, Elsevier Science, 1976.
  • [6] R. G. Douglas. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17:413–415, 1966.
  • [7] S. H. Kulkarni and G. Ramesh, Absolutely minimum attaining closed operators, The Journal of Analysis,29:473–492, 2021.
  • [8] Ya. Yu. Tseng. Generalized inverses of unbounded operators between two unitary spaces. Doklady Akad. Nauk SSSR (N.S.), 67:431-434, 1949.
  • [9] Ya. Yu. Tseng. Properties and classification of generalized inverses of closed operators. Doklady Akad. Nauk SSSR (N.S.),67:607-610, 1949.
  • [10] Yuan-Yung Tseng. Sur les solutions des équations opératrices fonctionnelles entre les espaces unitaires. Solutions extrémales. Solutions virtuelles. C. R. Acad. Sci. Paris, 228:640-641, 1949.