This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The monoatomic FPU system
as a limit of a diatomic FPU system

Dmitry E. Pelinovsky Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada, L8S 4K1 [email protected]  and  Guido Schneider Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany [email protected]
Abstract.

We consider a diatomic infinite Fermi–Pasta–Ulam (FPU) system with light and heavy particles. For a small mass ratio, we prove error estimates for the approximation of the dynamics of this system by the dynamics of the monoatomic FPU system. The light particles are squeezed by the heavy particles at the mean value of their displacements. The error estimates are derived by means of the energy method and hold for sufficiently long times, for which the dynamics of the monoatomic FPU system is observed. The approximation result is restricted to sufficiently small displacements of the heavy particles relatively to each other.

1. Introduction

We consider a diatomic infinite Fermi–Pasta–Ulam (FPU) system depicted schematically on Figure 1. Displacements of heavy particles are denoted by QjQ_{j} with j2j\in 2\mathbb{Z}, whereas displacements of light particles are denoted by qjq_{j}, with j2+1j\in 2\mathbb{Z}+1. For convenience, we normalize the mass of the heavy particles to unity and denote the mass ratio between masses of light and heavy particles by the parameter ε2\varepsilon^{2}. The total energy of the diatomic system is

(1) E=j212Q˙j2+12ε2q˙j+12+W(qj+1Qj)+W(Qjqj1),E=\sum_{j\in 2\mathbb{Z}}\frac{1}{2}\dot{Q}_{j}^{2}+\frac{1}{2}\varepsilon^{2}\dot{q}_{j+1}^{2}+W(q_{j+1}-Q_{j})+W(Q_{j}-q_{j-1}),

where the dot denotes the derivative in time tt and W:W:\mathbb{R}\mapsto\mathbb{R} is a smooth potential for the pairwise interaction force between the adjacent light and heavy particles. Equations of motion are generated from the total energy (1) by using the standard symplectic structure for the dynamics of particles. They are written in the form:

(2) Q¨j\displaystyle\ddot{Q}_{j} =\displaystyle= W(qj+1Qj)W(Qjqj1),\displaystyle W^{\prime}(q_{j+1}-Q_{j})-W^{\prime}(Q_{j}-q_{j-1}),
(3) ε2q¨j+1\displaystyle\varepsilon^{2}\ddot{q}_{j+1} =\displaystyle= W(Qj+2qj+1)W(qj+1Qj),\displaystyle W^{\prime}(Q_{j+2}-q_{j+1})-W^{\prime}(q_{j+1}-Q_{j}),

where j2j\in 2\mathbb{Z}.

Qj2Q_{j-2}qj1q_{j-1}QjQ_{j}qj+1q_{j+1}Qj+2Q_{j+2}qj+3q_{j+3}
Figure 1. A diatomic FPU system with heavy and light particles.

The dynamics of diatomic lattices, e.g. propagation of traveling solitary waves, has always been important in physical applications and has been studied in numerous works, e.g. [3, 9, 21]. More recently, such diatomic systems were considered in the context of granular chains [13, 14, 18]. In particular, the authors of [13] proposed to consider the following reduction of the diatomic system in the limit of vanishing mass ratio ε0\varepsilon\to 0:

0=W(Qj+2qj+1)W(qj+1Qj)Qj+2qj+1=qj+1Qj,0=W^{\prime}(Q_{j+2}-q_{j+1})-W^{\prime}(q_{j+1}-Q_{j})\quad\Rightarrow\quad Q_{j+2}-q_{j+1}=q_{j+1}-Q_{j},

which yields

(4) qj+1=Qj+2+Qj2.q_{j+1}=\frac{Q_{j+2}+Q_{j}}{2}.

If qj+1q_{j+1} is expressed by (4), the dynamics of the heavy particles is governed by the monoatomic FPU system:

(5) Q¨j=W(Qj+2Qj2)W(QjQj22),\ddot{Q}_{j}=W^{\prime}\left(\frac{Q_{j+2}-Q_{j}}{2}\right)-W^{\prime}\left(\frac{Q_{j}-Q_{j-2}}{2}\right),

where j2j\in 2\mathbb{Z}. It follows from (4) and (5) that the light particles are squeezed by the heavy particles and move according to the mean values of their displacements, whereas the heavy particles move according to their pairwise interactions.

Numerical results on existence and non-existence of traveling solitary waves in the diatomic system (3) which are close to the traveling solitary waves of the monoatomic system (5) were reported in [13]. These numerical results inspired a number of analytical works where the authors developed the existence theory for traveling solitary waves with oscillatory tails [5, 8], beyond-all-order theory [16, 17], and the linearized analysis of perturbations [22]. It is the purpose of this paper to give rigorous error estimates for this approximation in the context of the initial-value problem.

Note that the small mass ratio limit for diatomic FPU system has been considered before in the context of the existence of breathers [11, 12, 15, 24] and traveling periodic waves [2, 10, 19, 20]. However, these works rely on the ideas of the so-called anti-continuum limit, for which the heavy particles do not move after rescaling of the time variable, whereas the light particles perform uncoupled oscillations in between the heavy particles. The limit (4) and (5) is clearly different from the anti-continuum limit.

Other relevant results on travelling solitary waves in diatomic lattices include persistence results near the equal mass ratio limit [4], asymptotic approximations near the long-wave limit [6, 23], and numerically assisted study of radiation generated from long-wave solitons in the time evolution [7].

We shall now present the main approximation theorem. We use the standard notation 2\ell^{2} to denote square summable sequences equipped with the norm

u2:=(k|uk|2)1/2,\|u\|_{\ell^{2}}:=\left(\sum_{k\in\mathbb{Z}}|u_{k}|^{2}\right)^{1/2},

from which it is obvious that supk|uk|u2\sup_{k\in\mathbb{Z}}|u_{k}|\leq\|u\|_{\ell^{2}}. Another useful property of the 2\ell^{2} space is being a Banach algebra with respect to pointwise multiplication.

Theorem 1.

Assume that QC1([0,T0],2)Q^{*}\in C^{1}([0,T_{0}],\ell^{2}) is a solution of the scalar FPU lattice (5) wit WC3()W\in C^{3}(\mathbb{R}) and W′′(0)>0W^{\prime\prime}(0)>0 for a fixed T0>0T_{0}>0. There exist ε0>0\varepsilon_{0}>0, C0>0C_{0}>0, and C>0C>0 such that for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}), the following is true. If (Q(0),q(0))2×2(Q(0),q(0))\in\ell^{2}\times\ell^{2} satisfy the bound

(6) supj2(|Qj(0)Qj(0)|+|qj+1(0)Qj+2(0)+Qj(0)2|)ε,\sup_{j\in 2\mathbb{Z}}\left(|Q_{j}(0)-Q^{*}_{j}(0)|+\left|q_{j+1}(0)-\frac{Q^{*}_{j+2}(0)+Q^{*}_{j}(0)}{2}\right|\right)\leq\varepsilon,

and QC1([0,T0],2)Q^{*}\in C^{1}([0,T_{0}],\ell^{2}) satisfy the bound

(7) supt[0,T0]supj2|Qj+2(t)Qj(t)|<C0,\sup_{t\in[0,T_{0}]}\sup_{j\in 2{\mathbb{Z}}}|Q^{*}_{j+2}(t)-Q^{*}_{j}(t)|<C_{0},

then there exists the unique solution (Q,q)C1([0,T0],2×2)(Q,q)\in C^{1}([0,T_{0}],\ell^{2}\times\ell^{2}) to the diatomic FPU system (2)-(3), which satisfies the bound

(8) supt[0,T0]supj2(|Qj(t)Qj(t)|+|qj+1(t)Qj+2(t)+Qj(t)2|)Cε.\sup_{t\in[0,T_{0}]}\sup_{j\in 2\mathbb{Z}}\left(|Q_{j}(t)-Q^{*}_{j}(t)|+\left|q_{j+1}(t)-\frac{Q^{*}_{j+2}(t)+Q^{*}_{j}(t)}{2}\right|\right)\leq C\varepsilon.
Remark 2.

The approximation result of Theorem 1 is nontrivial since the right hand side of the associated first order system to (2), and (3) multiplied with ε2\varepsilon^{-2}, is of order 𝒪(ε1)\mathcal{O}(\varepsilon^{-1}). Standard Gronwall’s inequality only gives estimates on an 𝒪(ε)\mathcal{O}(\varepsilon)-time scale and not on the natural 𝒪(1)\mathcal{O}(1)-time scale.

Remark 3.

Approximation results for systems with a small perturbation parameter in front of one time derivative, similar to system (2)-(3) have been considered in [1]. However, the abstract theorem from [1] does not apply since the nonlinear interaction appearing here is different as the one considered in Eq. (14) of [1]. The approach in [1] is based on a normal form transformation, where the proof presented here is based on a suitable choice of coordinates and energy estimates.

The remainder of the paper is organized as follows. In Section 2, we rewrite the diatomic FPU system in new coordinates which are more suitable to express perturbations to the motion given by the limit system (4) and (5). The bounds in Theorem 1 are obtained with the energy estimates in Section 3 for the simple case with W(u)=u+u2W^{\prime}(u)=u+u^{2}. Generalizations to other nonlinear interaction potentials W(u)W(u) are discussed in Section 4.

Acknowledgement. G. Schneider is partially supported by the Deutsche Forschungsgemeinschaft DFG through the CRC 1173 “Wave phenomena”. D. Pelinovsky is partially supported by the grant of the President of the Russian Federation for scientific research of leading scientific schools of the Russian Federation NSh-2485.2020.5.

2. Change of coordinates

By using suitable chosen coordinates, we will separate the fast and slow dynamics of the diatomic FPU system (2)–(3) and will introduce perturbations to the motion given by the limit system (4)–(5). Note that the same choice of coordinates was used in [8] in the study of traveling waves. Let us set

Uj:=12(Qj+2Qj)andwj+1:=qj+112(Qj+2+Qj),U_{j}:=\frac{1}{2}(Q_{j+2}-Q_{j})\quad\textrm{and}\quad w_{j+1}:=q_{j+1}-\frac{1}{2}(Q_{j+2}+Q_{j}),

so that

qj+1Qj=Uj+wj+1andQj+2qj+1=Ujwj+1.q_{j+1}-Q_{j}=U_{j}+w_{j+1}\quad\textrm{and}\quad Q_{j+2}-q_{j+1}=U_{j}-w_{j+1}.

The diatomic FPU system (2)–(3) is now written as

2U¨j\displaystyle 2\ddot{U}_{j} =\displaystyle= W(Uj+2+wj+3)W(Ujwj+1)W(Uj+wj+1)+W(Uj2wj1)\displaystyle W^{\prime}(U_{j+2}+w_{j+3})-W^{\prime}(U_{j}-w_{j+1})-W^{\prime}(U_{j}+w_{j+1})+W^{\prime}(U_{j-2}-w_{j-1})

and

ε2w¨j+1\displaystyle\varepsilon^{2}\ddot{w}_{j+1} =\displaystyle= W(Ujwj+1)W(Uj+wj+1)12ε2W(Uj+2+wj+3)\displaystyle W^{\prime}(U_{j}-w_{j+1})-W^{\prime}(U_{j}+w_{j+1})-\frac{1}{2}\varepsilon^{2}W^{\prime}(U_{j+2}+w_{j+3})
+12ε2W(Ujwj+1)12ε2W(Uj+wj+1)+12ε2W(Uj2wj1).\displaystyle+\frac{1}{2}\varepsilon^{2}W^{\prime}(U_{j}-w_{j+1})-\frac{1}{2}\varepsilon^{2}W^{\prime}(U_{j}+w_{j+1})+\frac{1}{2}\varepsilon^{2}W^{\prime}(U_{j-2}-w_{j-1}).

For the particular choice W(u)=u+u2W^{\prime}(u)=u+u^{2} we obtain

W(Ujwj+1)+W(Uj+wj+1)\displaystyle W^{\prime}(U_{j}-w_{j+1})+W^{\prime}(U_{j}+w_{j+1}) =\displaystyle= 2Uj+2Uj2+2wj+12,\displaystyle 2U_{j}+2U_{j}^{2}+2w_{j+1}^{2},
W(Ujwj+1)W(Uj+wj+1)\displaystyle W^{\prime}(U_{j}-w_{j+1})-W^{\prime}(U_{j}+w_{j+1}) =\displaystyle= 2wj+14Ujwj+1,\displaystyle-2w_{j+1}-4U_{j}w_{j+1},

which yields the following system of equations:

(9) U¨j+Uj+Uj2+wj+12\displaystyle\ddot{U}_{j}+U_{j}+U_{j}^{2}+w_{j+1}^{2} =\displaystyle= g(Uj+2,Uj2,wj+3,wj1),\displaystyle g(U_{j+2},U_{j-2},w_{j+3},w_{j-1}),
(10) ε2w¨j+1+(2+ε2)wj+1(1+2Uj)\displaystyle\varepsilon^{2}\ddot{w}_{j+1}+(2+\varepsilon^{2})w_{j+1}(1+2U_{j}) =\displaystyle= ε2h(Uj+2,Uj2,wj+3,wj1),\displaystyle\varepsilon^{2}h(U_{j+2},U_{j-2},w_{j+3},w_{j-1}),

where

g(Uj+2,Uj2,wj+3,wj1)\displaystyle g(U_{j+2},U_{j-2},w_{j+3},w_{j-1}) =\displaystyle= 12W(Uj+2+wj+3)+12W(Uj2wj1),\displaystyle\frac{1}{2}W^{\prime}(U_{j+2}+w_{j+3})+\frac{1}{2}W^{\prime}(U_{j-2}-w_{j-1}),
h(Uj+2,Uj2,wj+3,wj1)\displaystyle h(U_{j+2},U_{j-2},w_{j+3},w_{j-1}) =\displaystyle= 12W(Uj+2+wj+3)+12W(Uj2wj1).\displaystyle-\frac{1}{2}W^{\prime}(U_{j+2}+w_{j+3})+\frac{1}{2}W^{\prime}(U_{j-2}-w_{j-1}).

The dynamics of UU and ww occurs now at two different scales: UU changes on the time scale of 𝒪(1)\mathcal{O}(1), whereas ww changes on the faster time scale of 𝒪(ε)\mathcal{O}(\varepsilon). The approximation result of Theorem 1 justifies the dynamics of UU on the time scale of 𝒪(1)\mathcal{O}(1). The dynamics of ww is slaved to the dynamics of UU on this time scale.

3. The error estimates

The leading-order approximation in the new coordinates is denoted by (U,w)=(Ψ,0)(U,w)=(\Psi,0), where Ψ\Psi satisfies

(11) Ψ¨j+Ψj+Ψj2=g(Ψj+2,Ψj2,0,0).\ddot{\Psi}_{j}+\Psi_{j}+\Psi_{j}^{2}=g(\Psi_{j+2},\Psi_{j-2},0,0).

After inserting this approximation into the equations of motion, the remaining terms are collected in the residual, which is given by

ResU,j\displaystyle\textrm{Res}_{U,j} =\displaystyle= 0,\displaystyle 0,
Resw,j\displaystyle\textrm{Res}_{w,j} =\displaystyle= ε2h(Ψj+2,Ψj2,0,0).\displaystyle\varepsilon^{2}h(\Psi_{j+2},\Psi_{j-2},0,0).

Thanks for 2\ell^{2} being a Banach algebra with respect to pointwise multiplication, the residual terms obey the following estimate.

Lemma 4.

Assume that ΨC([0,T0],2)\Psi\in C([0,T_{0}],\ell^{2}) is a solution of the scalar equation (11) for some T0>0T_{0}>0. Then there exists a constant C>0C>0 that depends on Ψ\Psi such that for all ε(0,1)\varepsilon\in(0,1) we have

(12) supt[0,T0]Resw2Cε2.\displaystyle\sup_{t\in[0,T_{0}]}\|\textrm{Res}_{w}\|_{\ell^{2}}\leq C\varepsilon^{2}.

For estimating the difference between the approximation and true solutions we introduce the error functions RR and vv by using the decomposition

(13) Uj=Ψj+εRjandwj+1=εvj+1.U_{j}=\Psi_{j}+\varepsilon R_{j}\quad\textrm{and}\quad w_{j+1}=\varepsilon v_{j+1}.

These functions satisfy the following system

R¨j+Rj+2ΨjRj+εRj2+εvj+12\displaystyle\ddot{R}_{j}+R_{j}+2\Psi_{j}R_{j}+\varepsilon R_{j}^{2}+\varepsilon v_{j+1}^{2} =\displaystyle= LU,j(Ψ)(R,v)+εNU,j(Ψ,R,v),\displaystyle L_{U,j}(\Psi)(R,v)+\varepsilon N_{U,j}(\Psi,R,v),
ε2v¨j+1+2vj+1(1+2Ψj+2εRj)\displaystyle\varepsilon^{2}\ddot{v}_{j+1}+2v_{j+1}(1+2\Psi_{j}+2\varepsilon R_{j}) =\displaystyle= ε2Lw,j(Ψ)(R,v)+ε3Nw,j(Ψ,R,v)+ε1Resw,j,\displaystyle\varepsilon^{2}L_{w,j}(\Psi)(R,v)+\varepsilon^{3}N_{w,j}(\Psi,R,v)+\varepsilon^{-1}\textrm{Res}_{w,j},

where the linear terms in (R,v)(R,v) are given by

LU,j(Ψ)(R,v)\displaystyle L_{U,j}(\Psi)(R,v) =\displaystyle= 12(Rj+2+Rj2)+12(vj+3vj1)\displaystyle\frac{1}{2}(R_{j+2}+R_{j-2})+\frac{1}{2}(v_{j+3}-v_{j-1})
+Ψj+2(Rj+2+vj+3)+Ψj2(Rj2vj1),\displaystyle+\Psi_{j+2}(R_{j+2}+v_{j+3})+\Psi_{j-2}(R_{j-2}-v_{j-1}),
Lw,j(Ψ)(R,v)\displaystyle L_{w,j}(\Psi)(R,v) =\displaystyle= (1+2Ψj)vj+112(Rj+2Rj2)12(vj+3+vj1)\displaystyle-(1+2\Psi_{j})v_{j+1}-\frac{1}{2}(R_{j+2}-R_{j-2})-\frac{1}{2}(v_{j+3}+v_{j-1})
Ψj+2(Rj+2+vj+3)+Ψj2(Rj2vj1),\displaystyle-\Psi_{j+2}(R_{j+2}+v_{j+3})+\Psi_{j-2}(R_{j-2}-v_{j-1}),

and quadratic terms in (R,v)(R,v) are given by

NU,j(Ψ,R,v)\displaystyle N_{U,j}(\Psi,R,v) =\displaystyle= 12(Rj+2+vj+3)2+12(Rj2vj1)2,\displaystyle\frac{1}{2}(R_{j+2}+v_{j+3})^{2}+\frac{1}{2}(R_{j-2}-v_{j-1})^{2},
Nw,j(Ψ,R,v)\displaystyle N_{w,j}(\Psi,R,v) =\displaystyle= 2Rjvj+112(Rj+2+vj+3)2+12(Rj2vj1)2.\displaystyle-2R_{j}v_{j+1}-\frac{1}{2}(R_{j+2}+v_{j+3})^{2}+\frac{1}{2}(R_{j-2}-v_{j-1})^{2}.

Thanks again for 2\ell^{2} being a Banach algebra with respect to pointwise multiplication, the linear and quadratic terms obey the following estimate.

Lemma 5.

Assume that ΨC([0,T0],2)\Psi\in C([0,T_{0}],\ell^{2}) is a solution of the scalar equation (11) for some T0>0T_{0}>0. Then there exists a constant C>0C>0 that depends on Ψ\Psi such that for all ε(0,1)\varepsilon\in(0,1) we have

(14) LU(Ψ)(R,v)2+Lw(Ψ)(R,v)2\displaystyle\|L_{U}(\Psi)(R,v)\|_{\ell^{2}}+\|L_{w}(\Psi)(R,v)\|_{\ell^{2}} \displaystyle\leq C(R2+v2),\displaystyle C(\|R\|_{\ell^{2}}+\|v\|_{\ell^{2}}),
(15) NU(Ψ,R,v)2+Nw(Ψ,R,v)2\displaystyle\|N_{U}(\Psi,R,v)\|_{\ell^{2}}+\|N_{w}(\Psi,R,v)\|_{\ell^{2}} \displaystyle\leq C(R22+v22).\displaystyle C(\|R\|_{\ell^{2}}^{2}+\|v\|_{\ell^{2}}^{2}).

The dynamics of the error functions is estimated with the help of a suitable chosen energy. We define the energy function by

(16) E(t)=12j2R˙j2+Rj2+ε2v˙j+12+2vj+12+2Ψj(Rj2+2vj+12)+4εRjvj+12.\displaystyle E(t)=\frac{1}{2}\sum_{j\in 2{\mathbb{Z}}}\dot{R}_{j}^{2}+R_{j}^{2}+\varepsilon^{2}\dot{v}_{j+1}^{2}+2v_{j+1}^{2}+2\Psi_{j}(R_{j}^{2}+2v_{j+1}^{2})+4\varepsilon R_{j}v_{j+1}^{2}.

Computing the time derivative of E(t)E(t) yields

ddtE(t)\displaystyle\frac{d}{dt}E(t) =\displaystyle= R˙,R¨+R+2ΨR+2εv22\displaystyle\langle\dot{R},\ddot{R}+R+2\Psi R+2\varepsilon v^{2}\rangle_{\ell^{2}}
+v˙,ε2v¨+2v+4Ψv+4εRv2+Ψ˙,R2+2v22,\displaystyle+\langle\dot{v},\varepsilon^{2}\ddot{v}+2v+4\Psi v+4\varepsilon Rv\rangle_{\ell^{2}}+\langle\dot{\Psi},R^{2}+2v^{2}\rangle_{\ell^{2}},

where (ΨR)j=ΨjRj(\Psi R)_{j}=\Psi_{j}R_{j} and (Ψv)j=Ψjvj+1(\Psi v)_{j}=\Psi_{j}v_{j+1}. By substituting the dynamical equations for (R,v)(R,v) into (3), we obtain

ddtE(t)\displaystyle\frac{d}{dt}E(t) =\displaystyle= R˙,εR2+εv2+LU(Ψ)(R,v)+εNU(Ψ,R,v)2\displaystyle\langle\dot{R},-\varepsilon R^{2}+\varepsilon v^{2}+L_{U}(\Psi)(R,v)+\varepsilon N_{U}(\Psi,R,v)\rangle_{\ell^{2}}
+εv˙,εLw(Ψ)(R,v)+ε2Nw(Ψ,R,v)+ε2Resw2\displaystyle+\langle\varepsilon\dot{v},\varepsilon L_{w}(\Psi)(R,v)+\varepsilon^{2}N_{w}(\Psi,R,v)+\varepsilon^{-2}\textrm{Res}_{w}\rangle_{\ell^{2}}
+Ψ˙,R2+2v22.\displaystyle+\langle\dot{\Psi},R^{2}+2v^{2}\rangle_{\ell^{2}}.

The energy function controls the perturbations and their time derivative if displacements of heavy particles relatively to each other are sufficiently small, as in the condition (7) of Theorem 1. The following lemma gives the corresponding result.

Lemma 6.

Assume that ΨC([0,T0],2)\Psi\in C([0,T_{0}],\ell^{2}) is a solution of the scalar equation (11) for some T0>0T_{0}>0. There exist C0>0C_{0}>0 and C>0C>0 such that if

(19) supt[0,T0]supj2|Ψj(t)|<C0,\sup_{t\in[0,T_{0}]}\sup_{j\in 2{\mathbb{Z}}}|\Psi_{j}(t)|<C_{0},

then

(20) R˙(t)22+R(t)22+εv˙(t)22+v(t)22CE(t).\|\dot{R}(t)\|_{\ell^{2}}^{2}+\|R(t)\|_{\ell^{2}}^{2}+\|\varepsilon\dot{v}(t)\|_{\ell^{2}}^{2}+\|v(t)\|_{\ell^{2}}^{2}\leq CE(t).

The essential point in the proof of the approximation result of Theorem 1 is that the fast dynamics of vv can be controlled by the εv˙(t)22\|\varepsilon\dot{v}(t)\|_{\ell^{2}}^{2} term in the energy bound (20) and in the energy balance equation (3). By using the Cauchy-Schwarz inequality and the estimates (12), (14), and (15), we obtain the following estimate.

Lemma 7.

Assume that ΨC1([0,T0],2)\Psi\in C^{1}([0,T_{0}],\ell^{2}) is a solution of the scalar equation (11) for some T0>0T_{0}>0 satisfying (19) for some small C0>0C_{0}>0. Then there exists constants C1,C2,C3>0C_{1},C_{2},C_{3}>0 that depends on Ψ\Psi such that for all ε(0,1)\varepsilon\in(0,1) we have

(21) ddtE(t)C1E(t)1/2+C2E(t)+C3εE(t)3/2,t[0,T0].\frac{d}{dt}E(t)\leq C_{1}E(t)^{1/2}+C_{2}E(t)+C_{3}\varepsilon E(t)^{3/2},\quad t\in[0,T_{0}].

We can now conclude the proof of Theorem 1. Let S(t):=E(t)1/2S(t):=E(t)^{1/2}. The initial bound (6) yields S(0)C0S(0)\leq C_{0} for some C0>0C_{0}>0 independently of ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}). The energy balance estimate (21) can be rewritten in the form

(22) ddtS(t)C1+C2S(t)+C3εS(t)2,t[0,T0],\frac{d}{dt}S(t)\leq C_{1}+C_{2}S(t)+C_{3}\varepsilon S(t)^{2},\quad t\in[0,T_{0}],

where the constants C1,C2,C3>0C_{1},C_{2},C_{3}>0 have been redefined. Let TT_{*} be defined by

T:=sup{T>0:S(t)ε1C31C2,t[0,T]},T_{*}:=\sup\{T>0:\quad S(t)\leq\varepsilon^{-1}C_{3}^{-1}C_{2},\quad t\in[0,T]\},

for the given constants ε\varepsilon, C2C_{2}, and C3C_{3}. Then, by Gronwall’s inequality, we obtain

S(t)[S(0)+(2C2)1C1]e2C2t[C0+(2C2)1C1]e2C2T0,t[0,T0].S(t)\leq\left[S(0)+(2C_{2})^{-1}C_{1}\right]e^{-2C_{2}t}\leq\left[C_{0}+(2C_{2})^{-1}C_{1}\right]e^{-2C_{2}T_{0}},\quad t\in[0,T_{0}].

Since T0<TT_{0}<T_{*} if ε>0\varepsilon>0 is appropriately small, we obtain S(t)CS(t)\leq C for some C>0C>0 independently of ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}), so that the final bound (8) holds. The approximation result of Theorem 1 is proven.

4. Generalization

We have proven the approximation result of Theorem 1 for the simplest nonlinear interaction potential W(u)=u+u2W^{\prime}(u)=u+u^{2}. For a more general interaction potential WC3()W\in C^{3}(\mathbb{R}), Taylor expansions around UU yield

W(Ujwj+1)+W(Uj+wj+1)=2W(Uj)+𝒪(|wj+1|2)W^{\prime}(U_{j}-w_{j+1})+W^{\prime}(U_{j}+w_{j+1})=2W^{\prime}(U_{j})+\mathcal{O}(|w_{j+1}|^{2})

and

W(Ujwj+1)W(Uj+wj+1)=2W′′(Uj)wj+1+𝒪(|wj+1|2),W^{\prime}(U_{j}-w_{j+1})-W^{\prime}(U_{j}+w_{j+1})=-2W^{\prime\prime}(U_{j})w_{j+1}+\mathcal{O}(|w_{j+1}|^{2}),

so that the system of coupled equations (9) and (10) is rewritten in the more general form:

(23) U¨j+W(Uj)+𝒪(|wj+1|2)\displaystyle\ddot{U}_{j}+W^{\prime}(U_{j})+\mathcal{O}(|w_{j+1}|^{2}) =\displaystyle= g(Uj+2,Uj2,wj+3,wj1),\displaystyle g(U_{j+2},U_{j-2},w_{j+3},w_{j-1}),
(24) ε2w¨j+1+(2+ε2)W′′(Uj)wj+1+𝒪(|wj+1|2)\displaystyle\varepsilon^{2}\ddot{w}_{j+1}+(2+\varepsilon^{2})W^{\prime\prime}(U_{j})w_{j+1}+\mathcal{O}(|w_{j+1}|^{2}) =\displaystyle= ε2h(Uj+2,Uj2,wj+3,wj1),\displaystyle\varepsilon^{2}h(U_{j+2},U_{j-2},w_{j+3},w_{j-1}),

The energy function for the perturbation terms in the decomposition (13) becomes

(25) E(t)=12j2R˙j2+W′′(Ψj)Rj2+ε2v˙j+12+2W′′(Ψj+Rj)vj+12.\displaystyle E(t)=\frac{1}{2}\sum_{j\in 2{\mathbb{Z}}}\dot{R}_{j}^{2}+W^{\prime\prime}(\Psi_{j})R_{j}^{2}+\varepsilon^{2}\dot{v}_{j+1}^{2}+2W^{\prime\prime}(\Psi_{j}+R_{j})v_{j+1}^{2}.

It follows by repeating the previous analysis that the same approximation result stated in Theorem 1 applies to the more general interaction potential satisfying the conditions WC3()W\in C^{3}(\mathbb{R}) and W′′(0)>0W^{\prime\prime}(0)>0.

References

  • [1] S. Baumstark, G. Schneider, K. Schratz, and D. Zimmermann. Effective slow dynamics models for a class of dispersive systems. J Dyn Diff Equat, 2019.
  • [2] M. Betti and D.E. Pelinovsky. Periodic travelling waves in diatomic granular chains. Journal of Nonlinear Science, 23:689–730, 2013.
  • [3] M.A. Colin. Solitons in the diatomic chain. Physical Review A, 31(3):1754–1762, 1985.
  • [4] T.E. Faver and H.J. Hupkes. Micropteron traveling waves in diatomic fermi–pasta–ulam–tsingou lattices under the equal mass limit. Physica D, 2020.
  • [5] T.E. Faver and J.D. Wright. Exact diatomic fermi–pasta–ulam–tsingou solitary waves with optical band ripples at infinity. SIAM Journal of Mathematical Analysis, 50:182–250, 2018.
  • [6] J. Gaison, S. Moskow, Wright J.D., and Q. Zhang. Approximation of polyatomic fpu lattices by kdv equations. Multiscale Model. Simul., 12:953–995, 2014.
  • [7] N. Giardetti, A. Shapiro, S. Windle, and Wright J.D. Metastability of solitary waves in diatomic fput lattices. Mathematics in Engineering, 1:419–433, 2019.
  • [8] A. Hoffman and J.D. Wright. Nanopteron solutions of diatomic fermi–pasta–ulam–tsingou lattices with small mass-ratio. Physica D, 358:33–59, 2017.
  • [9] G. Huang. Soliton excitations in one-dimensional diatomic lattices. Physical Review B, 51(18):12347–12360, 1995.
  • [10] G. James. Periodic travelling waves and compactons in granular chains. Journal of Nonlinear Science, 22:813–848, 2012.
  • [11] G. James and P. Noble. Breathers on diatomic Fermi-Pasta-Ulam lattices. Phys. D, 196(1-2):124–171, 2004.
  • [12] G. James and P. Noble. Weak coupling limit and localized oscillations in euclidean invariant hamiltonian systems. Journal of Nonlinear Science, 18:433–461, 2008.
  • [13] K.R. Jayaprakash, Yu. Starosvetsky, and A.F. Vakakis. New family of solitary waves in granular dimer chains with no precompression. Physical Review E, 83:036606 (11 pages), 2011.
  • [14] K.R. Jayaprakash, Yu. Starosvetsky, A.F. Vakakis, and O.V. Gendelman. Nonlinear resonances leading to strong pulse attenuation in granular dimer chains. Journal of Nonlinear Science, 23(3):363–392, 2013.
  • [15] R. Livi, M. Spicci, and R. S. MacKay. Breathers on a diatomic FPU chain. Nonlinearity, 10(6):1421–1434, 1997.
  • [16] C.J. Lustri. Nanoptera and stokes curves in the 2-periodic fermi–pasta–ulam–tsingou equation. Physica D, 402:132239 (13 pages), 2020.
  • [17] C.J. Lustri and M.A. Porter. Nanoptera in a period-2 toda chain. SIAM Journal of Applied Dynamical Systems, 17:1182–1212, 2018.
  • [18] M.A. Porter, C. Daraio, I. Szelengowics, E.B. Herbold, and P.G. Kevrekidis. Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D, 238:666–676, 2009.
  • [19] W.X. Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete Contin. Dyn. Syst., 34(9):3773–3788, 2014.
  • [20] W.X. Qin. Wave propagation in diatomic lattices. SIAM Journal of Mathematical Analysis, 47(1):477–497, 2015.
  • [21] Y. Tabata. Stable solitary wave in diatomic toda lattice. Journal of Physical Society of Japan, 65(12):3689–3691, 1996.
  • [22] A. Vainchtein, Y. Starosvetsy, J.D. Wright, and R. Perline. Solitary waves in diatomic chains. Physical Review E, 93(4):042210, 2016.
  • [23] J.A.D. Wattis. Asymptotic approximations to travelling waves in the diatomic fermi–pasta–ulam lattice. Mathematics in Engineering, 1:327–342, 2019.
  • [24] K. Yoshimura. Existence and stability of discrete breathers in diatomic fermi–pasta–ulam type lattices. Nonlinearity, 24(4):293–317, 2011.