This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Moduli Space of Genus Six Curves and K-stability: VGIT and the Hassett-Keel Program

Junyan Zhao 851 S Morgan St, 60607, Chicago, Illinois, USA [email protected]
Abstract.

A general curve CC of genus six is canonically embedded into the smooth del Pezzo surface Σ1×2\Sigma\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} of degree 55 as a divisor in the class 𝒪Σ(2,2)\mathcal{O}_{\Sigma}(2,2). In this article, we study the variation of geometric invariant theory (VGIT) for such pairs (Σ,C)(\Sigma,C), and relate the VGIT moduli spaces to the K-moduli of pairs (Σ,C)(\Sigma,C) and the Hassett–Keel program for moduli of genus six curves. We prove that the K-moduli spaces M¯K(c)\overline{M}^{K}(c) give the final several steps in the Hassett–Keel program for M¯6\overline{M}_{6}.

1. Introduction

This is the second article among three of the author in which we study the moduli space of curves of genus six using moduli spaces of pairs. A general genus six curve CC is canonically embedded into the smooth quintic del Pezzo surface Σ\Sigma as a divisor in the class 2KΣ-2K_{\Sigma}. Moreover, this embedding is unique up to Aut(Σ)\operatorname{Aut}(\Sigma), which is isomorphic to the symmetric group 𝔖5\mathfrak{S}_{5}. Thus we expect a moduli space parameterizing pairs in which a general member is of the form (Σ,C)(\Sigma,C), where C|2KΣ|C\in|-2K_{\Sigma}|, to be related to the moduli space M¯6\overline{M}_{6} of curves of genus six. A good candidate for such a moduli space is the K-moduli space M¯K(c)\overline{M}^{K}(c), 0<c<1/20<c<1/2, parameterizing K-polystable pairs (X,cD)(X,cD) which admit a \mathbb{Q}-Gorenstein smoothing to (Σ,cC)(\Sigma,cC). This is the main object studied in [Zha22].

For any C|2KΣ|C\in|-2K_{\Sigma}|, we may view (Σ,C)(\Sigma,C) as a complete intersection in 1×2\mathbb{P}^{1}\times\mathbb{P}^{2} of type (𝒪1×2(1,2),𝒪1×2(2,2))(\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2),\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2)). A natural parameter space for such complete intersections is a projective bundle 9\mathbb{P}\mathcal{E}\rightarrow\mathbb{P}^{9}, which is equipped with a natural G=SL(2)×SL(3)G=\operatorname{SL}(2)\times\operatorname{SL}(3)-action. The Picard rank of \mathbb{P}\mathcal{E} is 2, thus the GIT quotient involves a choice of linearization parameterized by t(0,1/2)t\in(0,1/2). We will denote these GIT quotients by M¯GIT(t)\overline{M}^{\operatorname{GIT}}(t).

The case for curves of genus 44 is analyzed in [CMJL14], in which the authors proved that the VGIT moduli spaces give the final steps in the Hassett-Keel program for genus 4 curves. Unfortunately, this cannot be expected to hold in our set-up. The main reason is the following: for any X𝒪1×2(1,2)X\in\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2) such that XΣX\simeq\Sigma, the subgroup of SL(2)×SL(3)\operatorname{SL}(2)\times\operatorname{SL}(3) fixing the point [X]9[X]\in\mathbb{P}^{9} is an 𝔖4\mathfrak{S}_{4}, which is not isomorphic to Aut(Σ)=𝔖5\operatorname{Aut}(\Sigma)=\mathfrak{S}_{5}. The right thing we should expect is a generically 5:15:1 map from the VGIT quotient to the moduli spaces which are birational to M¯6\overline{M}_{6}. Denote by K(c)\mathbb{P}\mathcal{E}^{K}(c) and GIT(t)\mathbb{P}\mathcal{E}^{\operatorname{GIT}}(t) the subsets of \mathbb{P}\mathcal{E} consisting of pairs (X,D)(X,D) which are c-K-semistable and GITt-semistable, respectively. Then we have the following result.

Theorem 1.1.

(Theorem 4.4) For any c(0,1/17)c\in(0,1/17), set t=t(c)=5c4+2ct=t(c)=\frac{5c}{4+2c}. Then we have K(c)=GIT(t)\mathbb{P}\mathcal{E}^{K}(c)=\mathbb{P}\mathcal{E}^{\operatorname{GIT}}(t), and identifications

M¯GIT(c)|2KΣ|//𝔖4,andM¯K(c)|2KΣ|//𝔖5.\overline{M}^{\operatorname{GIT}}(c)\simeq|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\mathfrak{S}_{4},\quad\textup{and}\quad\overline{M}^{K}(c)\simeq|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\mathfrak{S}_{5}.

Moreover, we have a finite map

M¯GIT(c)M¯K(c)\overline{M}^{\operatorname{GIT}}(c)\longrightarrow\overline{M}^{K}(c)

of degree 55.

Moreover, by analyzing the GIT stability conditions carefully, we can find out all the GIT walls, i.e. the values tit_{i} such that the moduli spaces M¯GIT(t)\overline{M}^{\operatorname{GIT}}(t) change when tt varies in (0,1/2)(0,1/2) and crosses tit_{i}. These walls turn out to be connected with walls for K-moduli spaces.

Theorem 1.2.

(Theorem 4.3) The VGIT walls are

t0=0,t1=114,t2=18,t3=16,t4=15,t5=14,t6=13,t7=12,t_{0}=0,\quad t_{1}=\frac{1}{14},\quad t_{2}=\frac{1}{8},\quad t_{3}=\frac{1}{6},\quad t_{4}=\frac{1}{5},\quad t_{5}=\frac{1}{4},\quad t_{6}=\frac{1}{3},\quad t_{7}=\frac{1}{2},

which bijectively correspond via the relation t(c)=5c4+2c\displaystyle t(c)=\frac{5c}{4+2c} to the K-moduli walls

c0=0,c1=117,c2=219,c3=17,c4=423,c5=29,c6=413,c7=12.c_{0}=0,\quad c_{1}=\frac{1}{17},\quad c_{2}=\frac{2}{19},\quad c_{3}=\frac{1}{7},\quad c_{4}=\frac{4}{23},\quad c_{5}=\frac{2}{9},\quad c_{6}=\frac{4}{13},\quad c_{7}=\frac{1}{2}.

Among the walls ti(0,1/2)t_{i}\in(0,1/2), only the one t1=114t_{1}=\frac{1}{14} is a divisorial contraction, and the remaining 5 walls are flips.

Although the GIT quotients are not birational to M¯6\overline{M}_{6}, with the help of the projective bundle \mathbb{P}\mathcal{E}, we can identify the K-moduli spaces with some of the log canonical models of M¯6\overline{M}_{6}.

Recall that for each α[0,1]\alpha\in[0,1], we define a log canonical model of M¯6\overline{M}_{6} to be

M¯6(α):=Projn0H0(M¯6,n(KM¯6+αδ)),\overline{M}_{6}(\alpha):=\operatorname{Proj}\bigoplus_{n\geq 0}H^{0}\left(\overline{M}_{6},n(K_{\overline{M}_{6}}+\alpha\delta)\right),

where δ=δ0+δ1+δ2+δ3\delta=\delta_{0}+\delta_{1}+\delta_{2}+\delta_{3} is the boundary divisor M¯6M6\overline{M}_{6}\setminus M_{6}. For any genus g4g\geq 4, when varying α\alpha from 11 to 0, the first three walls are at α1=911\alpha_{1}=\frac{9}{11}, α2=710\alpha_{2}=\frac{7}{10} and α3=23\alpha_{3}=\frac{2}{3} (ref. [HH09, HH13, AFSv17]). For g=6g=6, it is also known that the last non-trivial model is given by the GIT quotient |2KΣ|//Aut(Σ)|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\operatorname{Aut}(\Sigma) (ref. [Mül14, Fed18]). The last main result in this paper is the following.

Theorem 1.3.

(Theorem 5.5) Let 0c11520\leq c\leq\frac{11}{52} be a rational number, and α(c)=3219c9468c[1647,97276]\alpha(c)=\frac{32-19c}{94-68c}\in\left[\frac{16}{47},\frac{97}{276}\right]. Then we have an isomorphism

M¯6(α(c))M¯K(c).\overline{M}_{6}(\alpha(c))\simeq\overline{M}^{K}(c).

In particular, the last walls of the log canonical models M¯6(α)\overline{M}_{6}(\alpha) are

{1647,35102,2955,41118,2263,47134}.\left\{\frac{16}{47},\frac{35}{102},\frac{29}{55},\frac{41}{118},\frac{22}{63},\frac{47}{134}\right\}.

Acknowledgements The author would like to thank Izzet Coskun, Maksym Fedorchuk, Yuchen Liu and Fei Si for many stimulating discussions, and Ben Gould for comments on the draft.

2. Preliminaries

In this section, we collect some facts about the projective bundle we consider and state some results in VGIT.

2.1. Geometry of projective bundles

Let 11=H0(1×2,𝒪1×2(1,2))\mathbb{P}^{11}=\mathbb{P}H^{0}(\mathbb{P}^{1}\times\mathbb{P}^{2},\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2)) be the projective space parameterizing quintic del Pezzo surfaces in 1×2\mathbb{P}^{1}\times\mathbb{P}^{2}, and 𝒬1×2×11\mathscr{Q}\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2}\times\mathbb{P}^{11} be the universal quintic. Let π1:1×2×111×2\pi_{1}:\mathbb{P}^{1}\times\mathbb{P}^{2}\times\mathbb{P}^{11}\rightarrow\mathbb{P}^{1}\times\mathbb{P}^{2} and π2:1×2×1111\pi_{2}:\mathbb{P}^{1}\times\mathbb{P}^{2}\times\mathbb{P}^{11}\rightarrow\mathbb{P}^{11} be the two projections. Consider the locally free sheaf

:=π2(𝒪𝒬π1𝒪1×2(2,2))\mathcal{E}:=\pi_{2*}(\mathcal{O}_{\mathscr{Q}}\otimes\pi_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))

of rank 16 on 11\mathbb{P}^{11} and set π:11\pi:\mathbb{P}\mathcal{E}\rightarrow\mathbb{P}^{11} the corresponding projective bundle. Then

Pic()ηξ,\operatorname{Pic}(\mathbb{P}\mathcal{E})\simeq\mathbb{Z}\eta\oplus\mathbb{Z}\xi,

where η=π𝒪11(1)\eta=\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1) and ξ=𝒪(1)\xi=\mathcal{O}_{\mathbb{P}\mathcal{E}}(1).

We first compute the Chern characters of \mathcal{E}. Notice that \mathcal{E} fits into the short exact sequence

0π2(𝒬π1𝒪1×2(2,2))π2(π1𝒪1×2(2,2))0,0\longrightarrow\pi_{2*}(\mathcal{I}_{\mathscr{Q}}\otimes\pi_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))\longrightarrow\pi_{2*}(\pi_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))\longrightarrow\mathcal{E}\longrightarrow 0,

and that

π2(𝒬π1𝒪1×2(2,2))=H0(1×2,𝒪1×2(1,0))𝒪11(1),\pi_{2*}(\mathcal{I}_{\mathscr{Q}}\otimes\pi_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))=H^{0}(\mathbb{P}^{1}\times\mathbb{P}^{2},\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,0))\otimes\mathcal{O}_{\mathbb{P}^{11}}(-1),
π2(π1𝒪1×2(2,2))=H0(1×2,𝒪1×2(2,2))𝒪11.\pi_{2*}(\pi_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))=H^{0}(\mathbb{P}^{1}\times\mathbb{P}^{2},\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2))\otimes\mathcal{O}_{\mathbb{P}^{11}}.

It follows that

ch()=182ch(𝒪9(1))=182i=0(1)iηii!.\operatorname{ch}(\mathcal{E})=18-2\operatorname{ch}(\mathcal{O}_{\mathbb{P}^{9}}(-1))=18-2\sum_{i=0}^{\infty}\frac{(-1)^{i}\eta^{i}}{i!}.

In particular, we have c1()=2ηc_{1}(\mathcal{E})=2\eta and hence the following result.

Proposition 2.1.

The canonical line bundle of \mathbb{P}\mathcal{E} is

K14η16ξ.K_{\mathbb{P}\mathcal{E}}\sim-14\eta-16\xi.
Proof.

By [Laz04, Section 7.3.A], we have that

K=π(ω11det())𝒪(rank)=14η16ξ.K_{\mathbb{P}\mathcal{E}}=\pi^{*}(\omega_{\mathbb{P}^{11}}\otimes\det(\mathcal{E}^{*}))\otimes\mathcal{O}_{\mathbb{P}\mathcal{E}}(-\operatorname{rank}\mathcal{E})=-14\eta-16\xi.

Let UU\subseteq\mathbb{P}\mathcal{E} be the Zariski big open subset parameterizing complete intersections (X,D)(X,D) with XX irreducible. Let i:(𝒳,𝒟)1×2×Ui:(\mathscr{X},\mathscr{D})\hookrightarrow\mathbb{P}^{1}\times\mathbb{P}^{2}\times U be the tautological family of the pairs, p1,p2p_{1},p_{2} the projection maps from (1×2)×U(\mathbb{P}^{1}\times\mathbb{P}^{2})\times U to the two factors, respectively, and f:=p2if:=p_{2}\circ i. In summary, we have the following commutative diagram

(𝒳,𝒟)fi(1×2)×Up2p11×2Uπ11
.
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.84724pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\\\&\crcr}}}\ignorespaces{\hbox{\kern-15.84724pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\mathscr{X},\mathscr{D})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-10.18057pt\raise-34.94388pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-60.05444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.84726pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.44455pt\raise 5.30833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.30833pt\hbox{$\scriptstyle{i\quad}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.84724pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.84724pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\mathbb{P}^{1}\times\mathbb{P}^{2})\times U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.11661pt\raise-40.13136pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 6.95901pt\raise-62.96953pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 96.51373pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\quad p_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 124.75417pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 124.75417pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}^{1}\times\mathbb{P}^{2}}$}}}}}}}{\hbox{\kern-3.0pt\raise-35.56888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.95901pt\raise-69.88776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.15526pt\raise-65.38081pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 61.09792pt\raise-69.88776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 61.09792pt\raise-69.88776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}^{11}}$}}}}}}}\ignorespaces}}}}\ignorespaces.
Proposition 2.2.

The nef cone of \mathbb{P}\mathcal{E} is generated by η\eta and η+12ξ\eta+\frac{1}{2}\xi.

Proof.

It is clear that η\eta is an extremal ray. The argument in [Ben14, Theorem 2.7] shows that the other extremal ray is η+12ξ\eta+\frac{1}{2}\xi. ∎

2.2. Variation of GIT

Now our main object is a polarized variety (X,L)(X,L) together with an action by a reductive group GG.

Lemma 2.3.

(ref. [Rad13, Lemma 3.10]) Let (X,L)(X,L) be a polarized projective variety, and GG a reductive group acting on (X,L)(X,L). Let L0L_{0} be a GG-linearized line bundle on XX. For any rational number 0<ε10<\varepsilon\ll 1, we define L±ε:=LL0(±ε)L_{\pm\varepsilon}:=L\otimes L_{0}^{\otimes(\pm\varepsilon)}. Let Xss(0)X^{ss}(0) and Xss(±)X^{ss}(\pm) denote the semistable loci, respectively. Then

  1. (i)

    there are open immersions Xss(±)Xss(0)X^{ss}(\pm)\subseteq X^{ss}(0), and

  2. (ii)

    for any xXss(0)Xss(±)x\in X^{ss}(0)\setminus X^{ss}(\pm), there is a 1-parameter subgroup σ\sigma of GG such that

    μL(x,σ)=0,andμL±(x,σ)<0.\mu^{L}(x,\sigma)=0,\quad\textup{and}\quad\mu^{L_{\pm}}(x,\sigma)<0.

For simplicity, we denote X//LGX\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{L_{\bullet}}G by X//GX\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{\bullet}G, where {+,,0}\bullet\in\{+,-,0\}. As a consequence, the functorial properties of the GIT quotients give the following commutative diagram:

Xs(L±)/GXs(L0)/GX//±Gφ±X//0G
,
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 26.9701pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.9701pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X^{s}(L_{\pm})/G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-59.76942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.9701pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 80.9701pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X^{s}(L_{0})/G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 80.9701pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{-1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 26.97011pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 107.16241pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 107.16241pt\raise-59.76942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-35.26942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-19.75484pt\raise-70.26942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{\pm}G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.73607pt\raise-65.01248pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.75696pt\hbox{$\scriptstyle{\varphi_{\pm}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.18536pt\raise-70.26942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.9701pt\raise-70.26942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 88.18536pt\raise-70.26942pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{0}G}$}}}}}}}\ignorespaces}}}}\ignorespaces,

where Xs(L)X^{s}(L_{\bullet}) are the stable loci, and Xs(L)/GX^{s}(L_{\bullet})/G are geometric quotients.

Theorem 2.4.

(ref. [Tha96, Theorem 3.3]) With notation as in Lemma 2.3, if both X//GX\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{-}G and X//+GX\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{+}G are non-empty, then φ\varphi_{-} and φ+\varphi_{+} are proper and birational. If they are both small contractions, then the rational map

g:X//GX//+Gg:X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{-}G\dashrightarrow X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{+}G

is a flip with respect to 𝒪(1)\mathcal{O}(1) on X//+GX\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{+}G, which is the relative bundle of the projective morphism g:X//+GX//0Gg:X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{+}G\rightarrow X\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{0}G.

3. Stability of points in \mathbb{P}\mathcal{E}

In this section, we determine the stability conditions on the projective bundle \mathbb{P}\mathcal{E} using the Hilbert-Mumford (abbv. HM) criterion as the slope tt varies.

For any point (f,[g])(f,[g])\in\mathbb{P}\mathcal{E}, we will not distinguish the pair (f,[g])(f,[g]) of equations and the corresponding pair (X,D)(X,D) of schemes. For any polarization L=aη+bξL=a\eta+b\xi and any 1-parameter subgroup (abbv. 1-PS) λ\lambda, we denote by

μba(X,D;λ)=μaη+bξ(X,D;λ)\mu^{\frac{b}{a}}(X,D;\lambda)=\mu^{a\eta+b\xi}(X,D;\lambda)

the HM-invariant of the point (X,D)(X,D). The following result about the HM-invariant will be widely used.

Proposition 3.1.

(ref. [Ben14, Proposition 2.15]) The HM-invariant of a point (f,[g])=(X,D)(f,[g])=\left(X,D\right)\in\mathbb{P}\mathcal{E} is given by

μaη+bξ((X,D);λ)=aμ(f;λ)+bμ(g;λ),\mu^{a\eta+b\xi}((X,D);\lambda)=a\mu(f;\lambda)+b\mu(g;\lambda),

where gH0(1×2,𝒪1×2(2,2))g\in H^{0}(\mathbb{P}^{1}\times\mathbb{P}^{2},\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2)) is a representative of [g][g] with minimal λ\lambda-weight.

3.1. Stability thresholds for singular surfaces

The main goal in this part is to show that for each type of singular surface XX of class 𝒪1×2(1,2)\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2), the pair (X,D)(X,D) is not t-semistable for any D|2KX|D\in|-2K_{X}| when tt is small. We will see later that the bounds given in this section are indeed the stability thresholds.

Lemma 3.2.

Let Xu,v1×x,y,z2X\subseteq\mathbb{P}^{1}_{u,v}\times\mathbb{P}^{2}_{x,y,z} be an irreducible surface of class 𝒪1×2(1,2)\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2), then XX satisfies one of the followings:

  1. (i)

    XX is smooth;

  2. (ii)

    XX has a unique A1A_{1}-singularity;

  3. (iii)

    XX has exactly two A1A_{1}-singularities;

  4. (iv)

    XX has a unique A2A_{2}-singularity.

  5. (v)

    XX has a unique A3A_{3}-singularity.

  6. (vi)

    XX is singular along a line, which is a fiber of 1×22\mathbb{P}^{1}\times\mathbb{P}^{2}\rightarrow\mathbb{P}^{2}.

Proof.

We may assume that

X={uf2(x,y,z)+vg2(x,y,z)=0}X=\{uf_{2}(x,y,z)+vg_{2}(x,y,z)=0\}

has a singularity at p=((0:1),(1:0:0))p=((0:1),(1:0:0)). Then f2f_{2} has no x2x^{2} term, and g2g_{2} has no x2,xy,xzx^{2},xy,xz. After a change of coordinates via a linear action on (y,z)(y,z), we may also assume that f2f_{2} has no xyxy term. Notice that the coefficient of xzxz and y2y^{2} in f2f_{2} is non-zero: otherwise XX will either be singular along the line ((u:v),(1:0:0))((u:v),(1:0:0)) or have an irreducible component {z=0}\{z=0\}, a contradiction to the irreducibility of XX. Thus if g2g_{2} has a non-zero term y2y^{2}, then XX has an A1A_{1}-singularity at pp. In this case, we may assume XX has another singularity q=((uq:vq),(xq:yq:zq))q=((u_{q}:v_{q}),(x_{q}:y_{q}:z_{q})). Taking partial derivative for xx, we see that either uq=0u_{q}=0 or zq=0z_{q}=0.

  1. (a)

    If uq=0u_{q}=0, then (yq:zq)(y_{q}:z_{q}) has to be a singular point of g2g_{2}. If g2g_{2} is reduced, then zq=yq=0z_{q}=y_{q}=0, and hence q=pq=p, which is a contradiction. Thus g2=(ay+bz)2g_{2}=(ay+bz)^{2}, where a0a\neq 0. In this case, XX has two A1A_{1} singularities at pp and qq.

  2. (b)

    If zq=0z_{q}=0, then taking the vv derivative, one gets that either yq=0y_{q}=0 because g2g_{2} has a non-zero y2y^{2} term. In the former case, taking the xx derivative, one obtains that uq=0u_{q}=0 and hence q=pq=p.

Now we assume that g2g_{2} has no y2y^{2} term, and thus g2=z(ay+bz)g_{2}=z(ay+bz). There are also two cases:

  1. (a)

    a=0a=0, and hence {g2=0}\{g_{2}=0\} is a double line tangent to the smooth conic {f2=0}\{f_{2}=0\} at the point pp. In this case, pp is the only singularity of XX, which is of A3A_{3}-type.

  2. (b)

    a0a\neq 0, and thus {g2=0}=L1L2\{g_{2}=0\}=L_{1}\cup L_{2} is a union of two lines in 2\mathbb{P}^{2}, where L1L_{1} is tangent to the smooth conic {f2=0}\{f_{2}=0\} at the point pp, and L2L_{2} passes through pp and intersects the conic properly. In this case, pp is the only singularity of XX, which is of A2A_{2}-type.

For any rational number 0<t<1/20<t<1/2, we say that (X,D)(X,D) is t-(semi)stable if (X,D)(X,D) is GIT-(semi)stable with respect to the polarization Lt:=η+tξL_{t}:=\eta+t\xi. By the HM criterion, this is equivalent to saying that μt(X,D;λ)0\mu^{t}(X,D;\lambda)\geq 0 for any 1-PS λ\lambda of (X,D)(X,D). We say that a 1-PS λ\lambda induced by the 𝔾m\mathbb{G}_{m} action of weight (t0,t1;s0,s1,s2)(t_{0},t_{1};s_{0},s_{1},s_{2}), or for short a 1-PS λ\lambda of weight (t0,t1;s0,s1,s2)(t_{0},t_{1};s_{0},s_{1},s_{2}), if

λ((u:v),(x:y:z))=((λt0u:λt1v),(λs0x:λs1y:λs2z)).\lambda\cdot((u:v),(x:y:z))=((\lambda^{t_{0}}u:\lambda^{t_{1}}v),(\lambda^{s_{0}}x:\lambda^{s_{1}}y:\lambda^{s_{2}}z)).

We first show that if XX has non-isolated singularities, then (X,D)(X,D) is never t-semistable for 0<t<1/20<t<1/2 and D|2KX|D\in|-2K_{X}|.

Proposition 3.3.

If a point ([f],[g])([f],[g])\in\mathbb{P}\mathcal{E} is t-semistable for some 0<t<120<t<\frac{1}{2}, then X=𝕍(f)X=\mathbb{V}(f) is irreducible.

Proof.

Notice that if XX is reducible, then it has a component of the class either 𝒪1×2(0,1)\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(0,1) or 𝒪1×2(1,0)\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,0). In the former case, we may assume this component is defined by {x=0}\{x=0\}. Consider the action λ\lambda of weight (0,0;2,1,1)(0,0;-2,1,1). Then μ(f;λ)1\mu(f;\lambda)\leq-1 and μ(g;λ)2\mu(g;\lambda)\leq 2 so that μt(X,D;λ)<0\mu^{t}(X,D;\lambda)<0 for any t<12t<\frac{1}{2}. In the latter case, assuming this component is defined by {u=0}\{u=0\}, the action λ\lambda of weight (1,1;0,0,0)(-1,1;0,0,0) satisfies μ(f;λ)=1\mu(f;\lambda)=-1 and μ(g;λ)2\mu(g;\lambda)\leq 2 so that μt(X,D;λ)<0\mu^{t}(X,D;\lambda)<0 for any t<12t<\frac{1}{2}. ∎

Proposition 3.4.

If X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} is singular along a line, which is a fiber over 2\mathbb{P}^{2}, then XX is t-unstable for any 0<t<1/20<t<1/2.

Proof.

The defining equation of XX is of the form uf2(y,z)+vf2(y,z)=0uf_{2}(y,z)+vf_{2}(y,z)=0. Consider the 1-PS λ\lambda induced by the 𝔾m\mathbb{G}_{m}-action of weight (0,0;2,1,1)(0,0;2,-1,-1). Then μ(X;λ)=2\mu(X;\lambda)=-2, and hence

μt(X,D;λ)2+4t<0\mu^{t}(X,D;\lambda)\leq-2+4t<0

for any 0<t<1/20<t<1/2. ∎

Corollary 3.5.

For any 0<t<120<t<\frac{1}{2}, the locus of t-semistable points (X,D)(X,D)\in\mathbb{P}\mathcal{E} is contained in the open subset UU of \mathbb{P}\mathcal{E} parameterizing complete intersections. Moreover, for any t-semistable point (X,D)(X,D), the surface has only isolated singularities of type A1A_{1}, A2A_{2} or A3A_{3}.

Proposition 3.6.

Suppose XX is an irreducible singular surface with an A1A_{1}-singularity. Then (X,D)(X,D) is t-unstable for any DH0(1×2,𝒪X(2,2))D\in H^{0}(\mathbb{P}^{1}\times\mathbb{P}^{2},\mathcal{O}_{X}(2,2)) and 0<t<1140<t<\frac{1}{14}.

Proof.

We may assume XX is given by the equation uyz+vx(x+y+z)=0uyz+vx(x+y+z)=0 with an A1A_{1}-singularities p=((0:0:1),(0:1))p=((0:0:1),(0:1)). Consider the action λ\lambda of weight (3,3;2,4,2)(-3,3;-2,4,-2). Then we have μ(X,λ)=1\mu(X,\lambda)=-1, and

μt(X,D;λ)1+14t<0\mu^{t}(X,D;\lambda)\leq-1+14t<0

for 0<t<1140<t<\frac{1}{14}. ∎

Proposition 3.7.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface with two A1A_{1}-singularities at pp and qq, and D|2KX|D\in|-2K_{X}| a boundary divisor. Then for t<18t<\frac{1}{8}, the point (X,D)(X,D) is t-unstable.

Proof.

We may assume XX is given by the equation uyz+vx2=0uyz+vx^{2}=0 with two A1A_{1}-singularities at p=((0:0:1),(0:1))p=((0:0:1),(0:1)) and q=((0:1:0),(0:1))q=((0:1:0),(0:1)). Consider the action λ\lambda of weight (3,3;2,1,1)(-3,3;-2,1,1). Then we have μ(f,λ)=1\mu(f,\lambda)=-1, and

μt(X,D;λ)1+8t<0\mu^{t}(X,D;\lambda)\leq-1+8t<0

for 0<t<180<t<\frac{1}{8}. ∎

Proposition 3.8.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface with an A2A_{2}-singularity at pp, and D|2KX|D\in|-2K_{X}| a boundary divisor. Then for t<16t<\frac{1}{6}, the point (X,D)(X,D) is t-unstable.

Proof.

We may assume XX is given by the equation uyz+v(xzy2)=0uyz+v(xz-y^{2})=0 with an A2A_{2}-singularity at p=((0:0:1),(1:0))p=((0:0:1),(1:0)). Consider the action λ\lambda of weight (1,1;2,0,2)(1,-1;-2,0,2). Then we have μ(f,λ)=1\mu(f,\lambda)=-1, and

μt(X,D;λ)1+6t<0\mu^{t}(X,D;\lambda)\leq-1+6t<0

for 0<t<160<t<\frac{1}{6}. ∎

Proposition 3.9.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface with an A3A_{3}-singularity at pp, and D|2KX|D\in|-2K_{X}| a boundary divisor. Then for t<14t<\frac{1}{4}, the point (X,D)(X,D) is t-unstable.

Proof.

We may assume XX is given by the equation ux2+v(xzy2)=0ux^{2}+v(xz-y^{2})=0 with an A3A_{3}-singularity at p=((0:0:1),(1:0))p=((0:0:1),(1:0)). Consider the action λ\lambda of weight (1,1;1,0,1)(1,-1;-1,0,1). Then we have μ(f,λ)=1\mu(f,\lambda)=-1, and

μt(X,D;λ)1+4t<0\mu^{t}(X,D;\lambda)\leq-1+4t<0

for 0<t<140<t<\frac{1}{4}. ∎

3.2. Surfaces with exactly one singularity

From now on, we take the boundary divisor DD into consideration. We will determine the value TT for which a pair (X,D)(X,D) is TT-semistable but not t-semistable for any t<Tt<T. Since the surface XX with two A1A_{1}-singularities is a toric surface, which is more complicated than the others, we first deal with the surfaces with a single singularity.

Lemma 3.10.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be the quintic del Pezzo surface defined by the equation

uyz+vx(y+z)=0,uyz+vx(y+z)=0,

which has an A1A_{1}-singularity at p=((1:0:0),(1:0))p=((1:0:0),(1:0)). Let D|2KX|D\in|-2K_{X}| be the curve on XX which contains a line of multiplicity 44, defined by the equation u2x2=0u^{2}x^{2}=0. Then (X,D)(X,D) is t-semistable if and only if t=1/14t=1/14.

Proof.

Consider the two one-parameter subgroups given by the 𝔾m\mathbb{G}_{m}-actions of weights (3,3;4,2,2)(3,-3;4,-2,-2) and (3,3;4,2,2)(-3,3;-4,2,2). We see that if (X,D)(X,D) is t-semistable, then t=1/14t=1/14. Now we prove the converse: the HM-invariant is non-negative with respect to any 1-PS. Let λ\lambda be a 1-PS, and we will discuss by cases.

  1. (1)

    Suppose the weight of λ\lambda is (0,0;a+b,a,b)(0,0;a+b,-a,-b). Then we have

    μ(X;λ)=max{a,b,ab}.\mu(X;\lambda)=\max\{a,b,-a-b\}.

    We may moreover assume aba\geq b. There are three subcases.

    1. (i)

      ababa\geq b\geq-a-b: we have μ(X;λ)=a\mu(X;\lambda)=a and μ(D;λ)=2(a+b)a\mu(D;\lambda)=2(a+b)\geq a. It follows that

      μt(X,D;λ)1514a0\mu^{t}(X,D;\lambda)\geq\frac{15}{14}a\geq 0

      for t=1/14t=1/14.

    2. (ii)

      abab-a-b\geq a\geq b: we have μ(X;λ)=ab\mu(X;\lambda)=-a-b and μ(D;λ)=2(a+b)\mu(D;\lambda)=2(a+b). It follows that

      μt(X,D;λ)67(a+b)0\mu^{t}(X,D;\lambda)\geq-\frac{6}{7}(a+b)\geq 0

      for t=1/14t=1/14.

    3. (iii)

      aabba\geq-a-b\geq b: we have μ(X;λ)=a\mu(X;\lambda)=a and μ(D;λ)=a2(a+b)a\mu(D;\lambda)=a\geq 2(a+b)\leq a. It follows that

      μt(X,D;λ)=a+17(a+b)=67a+17(2a+b)0\mu^{t}(X,D;\lambda)=a+\frac{1}{7}(a+b)=\frac{6}{7}a+\frac{1}{7}(2a+b)\geq 0

      for t=1/14t=1/14.

  2. (2)

    Suppose the weight of λ\lambda is (1,1;a+b,a,b)(1,-1;a+b,-a,-b). Then we have

    μ(X;λ)=max{a1,b1,1ab}.\mu(X;\lambda)=\max\{a-1,b-1,1-a-b\}.

    Again, we can assume that aba\geq b. There are still three subcases to discuss.

    1. (i)

      ababa\geq b\geq-a-b : If a11aba-1\geq 1-a-b, i.e. b22ab\geq 2-2a, then we have μ(X;λ)=a1\mu(X;\lambda)=a-1 and μ(D;λ)=2+2(a+b)\mu(D;\lambda)=2+2(a+b). It follows that

      μ114(X,D;λ)=a1+17(1+a+b)a1+17(3a)=27(3a2)0\mu^{\frac{1}{14}}(X,D;\lambda)=a-1+\frac{1}{7}(1+a+b)\geq a-1+\frac{1}{7}(3-a)=\frac{2}{7}(3a-2)\geq 0

      since we have ab22aa\geq b\geq 2-2a. Similarly, if 1aba11-a-b\geq a-1, i.e. b22ab\leq 2-2a, then we have μ(X;λ)=1ab\mu(X;\lambda)=1-a-b and μ(D;λ)=2+2(a+b)\mu(D;\lambda)=2+2(a+b). It follows that

      μ114(X,D;λ)=1ab+17(1+a+b)=27(43a3b)=27((44a2b)+(ab))0.\begin{split}\mu^{\frac{1}{14}}(X,D;\lambda)&=1-a-b+\frac{1}{7}(1+a+b)\\ &=\frac{2}{7}(4-3a-3b)\\ &=\frac{2}{7}((4-4a-2b)+(a-b))\geq 0.\end{split}
    2. (ii)

      abab-a-b\geq a\geq b : we have μ(X;λ)=1ab\mu(X;\lambda)=1-a-b and μ(D;λ)=2+2(a+b)\mu(D;\lambda)=2+2(a+b). It follows that

      μ114(X,D;λ)=1ab+17(1+a+b)=27(43a3b)0,\begin{split}\mu^{\frac{1}{14}}(X,D;\lambda)&=1-a-b+\frac{1}{7}(1+a+b)\\ &=\frac{2}{7}(4-3a-3b)\geq 0,\end{split}

      since in this case we always have a+b0a+b\geq 0.

    3. (iii)

      aabba\geq-a-b\geq b : If a11aba-1\geq 1-a-b, i.e. b22ab\geq 2-2a, then we have μ(X;λ)=a1\mu(X;\lambda)=a-1 and μ(D;λ)=2+2(a+b)\mu(D;\lambda)=2+2(a+b). It follows that

      μ114(X,D;λ)=a1+17(1+a+b)a1+17(3a)=27(3a2)0\mu^{\frac{1}{14}}(X,D;\lambda)=a-1+\frac{1}{7}(1+a+b)\geq a-1+\frac{1}{7}(3-a)=\frac{2}{7}(3a-2)\geq 0

      since we have ab22aa\geq b\geq 2-2a. Similarly, if 1aba11-a-b\geq a-1, i.e. b22ab\leq 2-2a, then we have μ(X;λ)=1ab\mu(X;\lambda)=1-a-b and μ(D;λ)=2+2(a+b)\mu(D;\lambda)=2+2(a+b). It follows that

      μ114(X,D;λ)=1ab+17(1+a+b)=27(43a3b)=27((44a2b)+(ab))0.\begin{split}\mu^{\frac{1}{14}}(X,D;\lambda)&=1-a-b+\frac{1}{7}(1+a+b)\\ &=\frac{2}{7}(4-3a-3b)\\ &=\frac{2}{7}((4-4a-2b)+(a-b))\geq 0.\end{split}
  3. (3)

    The case when the weight of λ\lambda is (1,1;a+b;a;b)(-1,1;a+b;-a;-b) is similar to the case (2), so we omit it here.

Proposition 3.11.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface with exactly one A1A_{1}-singularity at pp, and D|2KX|D\in|-2K_{X}| a boundary divisor. Then for t=114+εt=\frac{1}{14}+\varepsilon, the point (X,D)(X,D) is t-semistable if and only if pDp\notin D and DD contains no curves of multiplicity 44.

Proof.

We may assume XX is given by the equation uyz+vx(y+z)=0uyz+vx(y+z)=0 with an A1A_{1}-singularity at p=((1:0:0),(1:0))p=((1:0:0),(1:0)). If DD passes through pp, then any defining equation of DD does not contain the term u2x2u^{2}x^{2}. Taking the 1-PS λ\lambda of weight (3,3;4,2,2)(3,-3;4,-2,-2), one has that μ(X,λ)=1\mu(X,\lambda)=-1 and μ(D;f)8\mu(D;f)\leq 8 so that μt(X,D;λ)<0\mu^{t}(X,D;\lambda)<0. In fact, the same argument shows that if multpD2\operatorname{mult}_{p}D\geq 2, then (X,D)(X,D) is t-unstable for any 0<t<1/20<t<1/2.

Now we may assume DD does not contain pp and DD0:={x2u2=0}D\neq D_{0}:=\{x^{2}u^{2}=0\} by Lemma 3.10. Then any defining equation for DD has a non-zero x2u2x^{2}u^{2} term. The GmG_{m}-action

λ((u:v),(x:y:z))=((λu:λ1v),(λ2x:y:z))\lambda((u:v),(x:y:z))=((\lambda u:\lambda^{-1}v),(\lambda^{2}x:y:z))

induces a 1-PS, where the central fibre is (X,D0)(X,D_{0}) and any other fibre is isomorphic to (X,D)(X,D). By Lemma 3.10 and openness of GIT-semistability, we have that (X,D)(X,D) is t-semistable for t=1/14t=1/14. The wall-crossing structure for VGIT implies that at least one (and hence a general one) of the DD0D\neq D_{0} such that pDp\notin D satisfies that (X,D)(X,D) is t-semistable for t=1/14+εt=1/14+\varepsilon. Moreover, since for a general such DD, the automorphism group of (X,D)(X,D) is finite, then (X,D)(X,D) is in fact t-stable for t=1/14+εt=1/14+\varepsilon. Notice that we have an exact sequence of group scheme

0Aut0(X)=𝔾mStab(X)G00,0\longrightarrow\operatorname{Aut}^{0}(X)=\mathbb{G}_{m}\longrightarrow\operatorname{Stab}(X)\longrightarrow G_{0}\longrightarrow 0,

where Stab(X)\operatorname{Stab}(X) is the stabilizer of XX under the SL(2)×SL(3)\operatorname{SL}(2)\times\operatorname{SL}(3)-action and G0G_{0} is a finite group. Let VV be the affine subspace of H0(X,𝒪Xn(2,2))H^{0}(X,\mathcal{O}_{X_{n}}(2,2)) consisting of polynomials whose coefficient of x2u2x^{2}u^{2} is 11. Viewing VV as a vector space, the GmG_{m}-action on V{0}V\setminus\{0\} is induced by

t((u:v),(x:y:z))=((tu:t1v),(t2x:y:z)).t((u:v),(x:y:z))=((tu:t^{-1}v),(t^{2}x:y:z)).

Then (V{0})/𝔾m(V-\{0\})/\mathbb{G}_{m} is a weighted projective space (12,25,35,43)\mathbb{P}(1^{2},2^{5},3^{5},4^{3}) with a GG-action. Let E+E_{+} be the exceptional locus of the wall-crossing morphism

M¯GIT(1/14+ε)M¯GIT(1/14).\overline{M}^{\operatorname{GIT}}(1/14+\varepsilon)\rightarrow\overline{M}^{\operatorname{GIT}}(1/14).

Observe that there is an injective dominant morphism E+(12,25,35,43)/GE_{+}\hookrightarrow\mathbb{P}(1^{2},2^{5},3^{5},4^{3})/G. Since both of them are proper and normal, and the later is irreducible, then this is an isomorphism by Zariski’s Main Theorem (ref. [Har13, Theorem 3.11.4]).

It is seen in the proof to Proposition 3.11 that for the quintic del Pezzo surface XX with exactly one A1A_{1}-singularity, and D|2KX|D\in|-2K_{X}| such that pDp\in D, we have that (X,D)(X,D) is t-unstable for any t<1/2t<1/2 if multpD2\operatorname{mult}_{p}D\geq 2; for any t<1/8t<1/8 if multpD=1\operatorname{mult}_{p}D=1. Now we prove the following result, which is a complement to this statement.

Proposition 3.12.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface XX with exactly one A1A_{1}-singularity, and D|2KX|D\in|-2K_{X}| such that multpD=1\operatorname{mult}_{p}D=1. Then (X,D)(X,D) is t-semistable for t=1/8t=1/8.

Proof.

The condition multpD=1\operatorname{mult}_{p}D=1 comes down to saying that for any defining equation gg of DD, gg has no x2u2x^{2}u^{2} term, but at least one of the coefficients of u2xy,u2xz,uvx2u^{2}xy,u^{2}xz,uvx^{2} is non-zero. Notice that for any DD such that multpD=1\operatorname{mult}_{p}D=1, there is a 𝔾m\mathbb{G}_{m}-action inducing a degeneration from (X,D)(X,D) to (X,D0)(X,D_{0}), where D0D_{0} has only u2xy,u2xz,uvx2u^{2}xy,u^{2}xz,uvx^{2}. Thus by the openness of GIT-semistability, it suffices to show that (X,D0)(X,D_{0}) is 18\frac{1}{8}-semistable for any D0D_{0} given by the equation

au2xy+bu2xz+cuvx2=0,au^{2}xy+bu^{2}xz+cuvx^{2}=0,

where (a:b:c)2(a:b:c)\in\mathbb{P}^{2}. Indeed, this is true using the same argument as in the proof of Lemma 3.10. ∎

The next result involves the surfaces with an A2A_{2} or an A3A_{3} singularity. The proof is identical to that of Proposition 3.12, hence we wrap up the statements together and omit the details of the proof but only give the 1-parameter subgroups that imposes conditions on the stability thresholds.

Proposition 3.13.

Let X1×2X\subseteq\mathbb{P}^{1}\times\mathbb{P}^{2} be a quintic del Pezzo surface with exactly one singularity pp, and D|2KX|D\in|-2K_{X}| a boundary divisor.

  1. (1)

    Suppose X={uyz+v(xzy2)=0}X=\{uyz+v(xz-y^{2})=0\} and pp is an A2A_{2}-singularity.

    1. (i)

      If pDp\notin D, then (X,D)(X,D) is 16\frac{1}{6}-semistable but not tt-semistable for t<1/4t<1/4;

    2. (ii)

      if multpD=1\operatorname{mult}_{p}D=1, then (X,D)(X,D) is 14\frac{1}{4}-semistable but not tt-semistable for t<1/4t<1/4;

    3. (iii)

      if multpD2\operatorname{mult}_{p}D\geq 2, then (X,D)(X,D) is t-unstable for any 0<t<1/20<t<1/2.

  2. (2)

    Suppose X={ux2+v(xzy2)=0}X=\{ux^{2}+v(xz-y^{2})=0\} and pp is an A3A_{3}-singularity.

    1. (i)

      If pDp\notin D, then (X,D)(X,D) is 14\frac{1}{4}-semistable but not tt-semistable for t<1/4t<1/4;

    2. (ii)

      if multpD=1\operatorname{mult}_{p}D=1, then (X,D)(X,D) is 13\frac{1}{3}-semistable but not tt-semistable for t<1/3t<1/3;

    3. (iii)

      if multpD2\operatorname{mult}_{p}D\geq 2, then (X,D)(X,D) is t-unstable for any 0<t<1/20<t<1/2.

Then for 1/4<t<1/31/4<t<1/3, the point (X,D)(X,D) is t-semistable if and only if pDp\notin D and DD\neq

Proof.

Consider the 𝔾m\mathbb{G}_{m}-action of weight (1,1:2,0,2)(1,-1:-2,0,2) for (1), and weight (1,1;1,0,1)(1,-1;-1,0,1) for (2). ∎

3.3. Surfaces with two singularities

For the rest of the this section, let us deal with the surface XX with exactly two A1A_{1}-singularities p,qp,q. The complexity stems from the fact that this surface is toric, and hence has a number of 𝔾m\mathbb{G}_{m}-actions.

As before, we may assume the defining equation of XX is uyz+vx2=0uyz+vx^{2}=0, and hence p=((0:0:1),(0:1))p=((0:0:1),(0:1)) and q=((0:1:0),(0:1))q=((0:1:0),(0:1)).

Lemma 3.14.

Let D|2KX|D\in|-2K_{X}| be a divisor. If either multpD2\operatorname{mult}_{p}D\geq 2 or multqD2\operatorname{mult}_{q}D\geq 2, then (X,D)(X,D) is t-unstable for any 0<t<1/20<t<1/2.

Proof.

We may assume that multpD2\operatorname{mult}_{p}D\geq 2, i.e. for any defining equation gg of DD, the coefficients of v2z2,v2xz,v2yzv^{2}z^{2},v^{2}xz,v^{2}yz and uvz2uvz^{2} in gg are all zero. Consider the 1-PS λ\lambda of weight (3,3;2,2,4)(-3,3;-2,-2,4). We have that μ(X;λ)=1\mu(X;\lambda)=-1 and μ(D;λ)2\mu(D;\lambda)\leq 2, thus μt(X,D;λ)<0\mu^{t}(X,D;\lambda)<0 for any 0<t<1/20<t<1/2. ∎

Observe that pDp\notin D comes down to saying that any defining equation gg of DD has non-zero z2v2z^{2}v^{2} term, and multpD1\operatorname{mult}_{p}D\leq 1 is equivalent to saying that at least one of the coefficients of z2v2,v2xz,v2yz,z2uvz^{2}v^{2},v^{2}xz,v^{2}yz,z^{2}uv is non-zero. A similar equivalent condition for qDq\notin D also holds.

Proposition 3.15.

Let D|2KX|D\in|-2K_{X}| be a divisor. Then (X,D)(X,D) is 18\frac{1}{8}-semistable if either p,qDp,q\notin D or a defining equation of DD has a non-zero v2yzv^{2}yz term.

Proof.

Notice that any such pair specializes to the pair (X,D0)(X,D_{0}) (i.e. one can find a 1-PS, where general fibers are isomorphic to (X,D)(X,D), and the central fiber is (X,D0)(X,D_{0})), where D0D_{0} is defined by the equation v2f(y,z)v^{2}f(y,z) for some quadratic homogeneous function in yy and zz which is not equal to y2y^{2} or z2z^{2}. By the openness of GIT-semistability, it suffices prove for the pair (X,D0)(X,D_{0}). This is true by the same argument as in the proof of Lemma 3.10. ∎

To make our notation succinct, we set ax2uva_{x^{2}uv} be the coefficient of x2uvx^{2}uv in a defining equation of DD, and same for the other monomial terms. Now we only need to consider the divisor D|2KX|D\in|-2K_{X}| such that either av2yz=av2z2=0a_{v^{2}yz}=a_{v^{2}z^{2}}=0 or av2yz=av2y2=0a_{v^{2}yz}=a_{v^{2}y^{2}}=0. We may assume the latter case.

Case 1.

ay2v20a_{y^{2}v^{2}}\neq 0 and av2xz0a_{v^{2}xz}\neq 0:

Each such pair specializes via the 𝔾m\mathbb{G}_{m}-action of weight (3,3;2,0,2)(-3,3;-2,0,2) to (X,D1)(X,D_{1}) where D0D_{0} is defined by an equation v2(y2axz)v^{2}(y^{2}-axz) for some a0a\neq 0. Consider the same 𝔾m\mathbb{G}_{m}-action on the pair (X,D1)(X,D_{1}), we see that it is t-unstable for any t<1/6t<1/6. In fact, using the same argument as in Lemma 3.10, we can prove the following.

Lemma 3.16.

The pair (X,D1)(X,D_{1}) is 16\frac{1}{6}-semistable but not t-semistable for any t<16t<\frac{1}{6}.

Case 2.

ay2v20a_{y^{2}v^{2}}\neq 0, av2xz=0a_{v^{2}xz}=0 and auvz20a_{uvz^{2}}\neq 0:

Each such pair specializes via the 𝔾m\mathbb{G}_{m}-action of weight (6,6;4,1,5)(-6,6;-4,-1,5) to (X,D2)(X,D_{2}) where D2D_{2} is defined by an equation v(vy2+az2u)v(vy^{2}+az^{2}u) for some a0a\neq 0. As in the previous case, we have the following result.

Lemma 3.17.

The pair (X,D3)(X,D_{3}) is 15\frac{1}{5}-semistable but not t-semistable for any t<15t<\frac{1}{5}.

For the remaining cases, we can assume moreover ay2v2=0a_{y^{2}v^{2}}=0.

Case 3.

av2xy0a_{v^{2}xy}\neq 0 and av2xz0a_{v^{2}xz}\neq 0:

Each such pair specializes via the 𝔾m\mathbb{G}_{m}-action of weight (3,3;2,1,1)(-3,3;-2,1,1) to (X,D3)(X,D_{3}) where D3D_{3} is defined by an equation v2x(y+az)v^{2}x(y+az) for some a0a\neq 0. Similar as above case, we have the following result.

Lemma 3.18.

The pair (X,D3)(X,D_{3}) is 15\frac{1}{5}-semistable but not t-semistable for any t<15t<\frac{1}{5}.

Now we can assume at least one of av2xya_{v^{2}xy} and av2xza_{v^{2}xz} is zero. Suppose av2xz=0a_{v^{2}xz}=0. There are two remaining cases.

Case 4.

az2uv0a_{z^{2}uv}\neq 0 and av2xy0a_{v^{2}xy}\neq 0:

Each such pair specializes via the 𝔾m\mathbb{G}_{m}-action of weight (3,3;2,0,2)(-3,3;-2,0,2) to (X,D4)(X,D_{4}) where D4D_{4} is defined by an equation v(zu+avxy)v(z^{u}+avxy) for some a0a\neq 0. Similarly, we have the following result.

Lemma 3.19.

The pair (X,D4)(X,D_{4}) is 14\frac{1}{4}-semistable but not t-semistable for any t<14t<\frac{1}{4}.

Case 5.

az2uv0a_{z^{2}uv}\neq 0, ay2uv0a_{y^{2}uv}\neq 0 and av2xy=0a_{v^{2}xy}=0:

In this case, we have multpD,multqD2\operatorname{mult}_{p}D,\operatorname{mult}_{q}D\geq 2, and thus (X,D)(X,D) is t-unstable for any t<1/2t<1/2.

4. Relation to K-moduli spaces

4.1. Computation of CM-line bundles

The main purpose of this section is to compute the CM \mathbb{Q}-line bundle for the family (𝒳,c𝒟)U(\mathscr{X},c\mathscr{D})\rightarrow U\subseteq\mathbb{P}\mathcal{E}, where UU is the Zariski big open subset of \mathbb{P}\mathcal{E} parameterizing complete intersections (X,D)(X,D) with XX irreducible. Moreover, we will show that the CM \mathbb{Q}-line bundle is proportional to the polarization line bundle for taking VGIT.

Proposition 4.1.

We have that

f(K𝒳/Uc𝒟)3=3(12c)2(4+2c)(η+5c4+2cξ).-f_{*}(-K_{\mathscr{X}/U}-c\mathscr{D})^{3}=3(1-2c)^{2}(4+2c)\left(\eta+\frac{5c}{4+2c}\xi\right).
Proof.

It follows from our construction that

𝒪1×2×U(𝒳)=p1𝒪1×2(1,2)p2π𝒪11(1),\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}\times U}(\mathscr{X})=p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2)\otimes p_{2}^{*}\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1),
𝒪𝒳(𝒟)=p1𝒪1×2(2,2)|𝒳p1𝒪U(1)|𝒳.\mathcal{O}_{\mathscr{X}}(\mathscr{D})=p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2)|_{\mathscr{X}}\otimes p_{1}^{*}\mathcal{O}_{U}(1)|_{\mathscr{X}}.

By the adjunction formula, we have that

K𝒳=(K1×2×U+𝒳)|𝒳=p1𝒪1×2(1,1)|𝒳p2(KU+π𝒪11(1))|𝒳,\begin{split}K_{\mathscr{X}}&=(K_{\mathbb{P}^{1}\times\mathbb{P}^{2}\times U}+\mathscr{X})|_{\mathscr{X}}\\ &=p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(-1,-1)|_{\mathscr{X}}\otimes p_{2}^{*}(K_{U}+\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1))|_{\mathscr{X}},\end{split}

and thus

K𝒳/U=p1𝒪1×2(1,1)|𝒳fπ𝒪11(1)|𝒳.K_{\mathscr{X}/U}=p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(-1,-1)|_{\mathscr{X}}\otimes f^{*}\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1)|_{\mathscr{X}}.

Adding the class of 𝒟\mathscr{D}, we obtain that

K𝒳/Uc𝒟=(12c)p1𝒪1×2(1,1)|𝒳f(π𝒪11(1)c𝒪U(1)).-K_{\mathscr{X}/U}-c\mathscr{D}=(1-2c)p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,1)|_{\mathscr{X}}\otimes f^{*}(\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(-1)-c\mathcal{O}_{U}(1)).

For simplicity, we denote p1𝒪1×2(a,b)|𝒳p_{1}^{*}\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(a,b)|_{\mathscr{X}} by 𝒪𝒳(a,b)\mathcal{O}_{\mathscr{X}}(a,b). It is easy to see that

(𝒪1×2(1,1))3=3,and𝒪𝒳(1,1)2=5.(\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,1))^{3}=3,\quad\textup{and}\quad\mathcal{O}_{\mathscr{X}}(1,1)^{2}=5.

Now we compute that

f(K𝒳/Uc𝒟)3=f((12c)3𝒪𝒳(1,1)33(12c)3𝒪𝒳(1,1)2f(π𝒪11(1)c𝒪U(1))+3(12c)𝒪𝒳(1,1)f(π𝒪11(1)+c𝒪U(1))2f(π𝒪11(1)+c𝒪U(1))3)=3(12c)3π𝒪11(1)+3(12c)25(π𝒪11(1)+c𝒪U(1))=3(12c)2(5(η+cξ)(12c)η)=3(12c)2(4+2c)(η+5c4+2cξ).\begin{split}-f_{*}(-K_{\mathscr{X}/U}-c\mathscr{D})^{3}&=-f_{*}((1-2c)^{3}\mathcal{O}_{\mathscr{X}}(1,1)^{3}\\ &\quad\quad\quad-3(1-2c)^{3}\mathcal{O}_{\mathscr{X}}(1,1)^{2}f^{*}(\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(-1)-c\mathcal{O}_{U}(1))\\ &\quad\quad\quad+3(1-2c)\mathcal{O}_{\mathscr{X}(1,1)}f^{*}(\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1)+c\mathcal{O}_{U}(1))^{2}\\ &\quad\quad\quad-f^{*}(\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1)+c\mathcal{O}_{U}(1))^{3})\\ &=-3(1-2c)^{3}\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1)+3(1-2c)^{2}\cdot 5(\pi^{*}\mathcal{O}_{\mathbb{P}^{11}}(1)+c\mathcal{O}_{U}(1))\\ &=3(1-2c)^{2}\left(5(\eta+c\xi)-(1-2c)\eta\right)\\ &=3(1-2c)^{2}(4+2c)\left(\eta+\frac{5c}{4+2c}\xi\right).\end{split}

Corollary 4.2.

For any rational number 0<c<11520<c<\frac{11}{52}, we set

t=t(c):=5c4+2c.t=t(c):=\frac{5c}{4+2c}.

Then on the open subset UU of \mathbb{P}\mathcal{E}, the CM \mathbb{Q}-line bundle ΛCM,f,c\Lambda_{\operatorname{CM},f,c} and the polarization t:=η+tξ\mathcal{L}_{t}:=\eta+t\xi are proportional.

4.2. VGIT wall-crossings and K-moduli

Theorem 4.3.

The VGIT walls are

t0=0,t1=114,t2=18,t3=16,t4=15,t5=14,t6=13,t7=12,t_{0}=0,\quad t_{1}=\frac{1}{14},\quad t_{2}=\frac{1}{8},\quad t_{3}=\frac{1}{6},\quad t_{4}=\frac{1}{5},\quad t_{5}=\frac{1}{4},\quad t_{6}=\frac{1}{3},\quad t_{7}=\frac{1}{2},

which bijectively correspond via the relation t(c)=5c4+2c\displaystyle t(c)=\frac{5c}{4+2c} to the K-moduli walls

c0=0,c1=117,c2=219,c3=17,c4=423,c5=29,c6=413,c7=12.c_{0}=0,\quad c_{1}=\frac{1}{17},\quad c_{2}=\frac{2}{19},\quad c_{3}=\frac{1}{7},\quad c_{4}=\frac{4}{23},\quad c_{5}=\frac{2}{9},\quad c_{6}=\frac{4}{13},\quad c_{7}=\frac{1}{2}.

Among the walls ti(0,1/2)t_{i}\in(0,1/2), only the one t1=114t_{1}=\frac{1}{14} is a divisorial contraction, and the remaining 5 walls are flips.

Proof.

By the local structure of VGIT, new pairs appear in the GIT moduli stacks GIT(t)\mathcal{M}^{\operatorname{GIT}}(t) for each wall tt. By Lemma 3.2, Proposition 4.4 and discussions of stability thresholds in Section 3 about all the pairs that appear in GIT(t)\mathcal{M}^{\operatorname{GIT}}(t) for some 0<t<1/20<t<1/2, we conclude that t0,,t7t_{0},...,t_{7} listed above are all the walls for the VGIT quotient //tSL(2)×SL(3)\mathbb{P}\mathcal{E}\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}_{t}\operatorname{SL}(2)\times\operatorname{SL}(3).

Crossing the first wall, we replace (Σ,D0)(\Sigma,D_{0}) by (X,D)(X,D), where D0|2KΣ|D_{0}\in|-2K_{\Sigma}| is the curve with a component of multiplicity 44, XX is a quintic del Pezzo surface with exactly one A1A_{1}-singularity, and D|2KX|D\in|2K_{X}| does not pass through the singularity of XX. Counting dimensions, we see that the wall-crossing map

M¯GIT(114+ε)M¯GIT(114)\overline{M}^{\operatorname{GIT}}\left(\frac{1}{14}+\varepsilon\right)\longrightarrow\overline{M}^{\operatorname{GIT}}\left(\frac{1}{14}\right)

is a divisorial contraction. Similarly, we can prove that the other walls are all flips by computing the dimension of the exceptional locus of M¯GIT(ti+ε)M¯GIT(ti)\overline{M}^{\operatorname{GIT}}\left(t_{i}+\varepsilon\right)\rightarrow\overline{M}^{\operatorname{GIT}}\left(t_{i}\right). ∎

Recall that UU\subseteq\mathbb{P}\mathcal{E} is the open subset consisting of complete intersections (X,D)(X,D). Set UK(c)U^{K}(c) to be the subset of UU parameterizing pairs (X,D)(X,D) such that (X,cD)(X,cD) is K-semistable, and UGIT(c)U^{\operatorname{GIT}}(c) to be the subset of UU parameterizing GITt(c)\operatorname{GIT}_{t(c)}-semistable pairs (X,D)(X,D).

Theorem 4.4.

For any c(0,1/17)c\in(0,1/17), we have UK(c)=UGIT(c)U^{K}(c)=U^{\operatorname{GIT}}(c). Moreover, we have a finite map

M¯GIT(c)M¯K(c)\overline{M}^{\operatorname{GIT}}(c)\longrightarrow\overline{M}^{K}(c)

of degree 55. In fact, we have that

M¯GIT(c)|2KΣ|//𝔖4,andM¯K(c)|2KΣ|//𝔖5.\overline{M}^{\operatorname{GIT}}(c)\simeq|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\mathfrak{S}_{4},\quad\textup{and}\quad\overline{M}^{K}(c)\simeq|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\mathfrak{S}_{5}.
Proof.

We may assume that 0<c10<c\ll 1. Recall that UK(c)π1(V)U^{K}(c)\simeq\pi^{-1}(V), where VV is the open subset of 11\mathbb{P}^{11} consisting of all smooth surfaces, and π:11\pi:\mathbb{P}\mathcal{E}\rightarrow\mathbb{P}^{11} the projection. From Proposition 3.6, we get that UGIT(c)UK(c)U^{\operatorname{GIT}}(c)\subseteq U^{K}(c). As a consequence, one obtains a morphism

M¯GIT(c)M¯K(c).\overline{M}^{\operatorname{GIT}}(c)\longrightarrow\overline{M}^{K}(c).

As M¯K(c)\overline{M}^{K}(c) is irreducible and both of the moduli spaces are proper, then this map is surjective. In particular, the c-K-stability and t(c)-GIT-stability are equivalent on UU for 0<c<c10<c<c_{1}.

Notice that SL(2)×SL(3)\operatorname{SL}(2)\times\operatorname{SL}(3) acts transitively on the open subset of 11\mathbb{P}^{11} consisting of smooth surfaces, and for any point [X][X] in this locus, the stabilizer of [X][X] is isomorphic to 𝔖4\mathfrak{S}_{4}. In fact, viewing XX as a pencil of conics uf2(x,y,z)+vg2(x,y,z)=0uf_{2}(x,y,z)+vg_{2}(x,y,z)=0 in 2\mathbb{P}^{2}, the stabilizer of XX consists of gSL(3)g\in\operatorname{SL}(3) fixing the four distinct points

{(x:y:z)|f2(x,y,z)=g2(x,y,z)=0}.\{(x:y:z)|f_{2}(x,y,z)=g_{2}(x,y,z)=0\}.

It follows that

M¯GIT(c)|2KΣ|//𝔖4.\overline{M}^{\operatorname{GIT}}(c)\simeq|-2K_{\Sigma}|\mathbin{\mkern-3.0mu/\mkern-6.0mu/\mkern-3.0mu}\mathfrak{S}_{4}.

The last statement is exactly [Zha22, Theorem 1.1]. From this, one can also deduce the morphism M¯GIT(c)M¯K(c)\overline{M}^{\operatorname{GIT}}(c)\rightarrow\overline{M}^{K}(c) is finite of degree 55. ∎

5. Hassett-Keel program for curves of genus six

Hassett-Keel program aims to understand log minimal models of moduli space M¯g\overline{M}_{g} of curves. For any rational number α[0,1]\alpha\in[0,1] such that KM¯g+αΔK_{\overline{M}_{g}}+\alpha\Delta is big, we can define

M¯g(α):=Projn0n(KM¯g+αΔ).\overline{M}_{g}(\alpha):=\operatorname{Proj}\bigoplus_{n\geq 0}n\left(K_{\overline{M}_{g}}+\alpha\Delta\right).

A natural question is to look for modular interpretation of M¯g(α)\overline{M}_{g}(\alpha). We refer the reader to [HM06] for results on moduli of curves and the survey [FS13] for the Hassett-Keel program.

In this section, we will prove Theorem 1.3. Let us fix some notation first.

Notation.

Let UU\subseteq\mathbb{P}\mathcal{E} be the open subset parameterizing complete intersections (X,D)(X,D), where XX is irreducible, and V:=M¯6(Δ1Δ2Δ3)V:=\overline{M}_{6}\setminus(\Delta_{1}\cup\Delta_{2}\cup\Delta_{3}) be an open subset in M¯6\overline{M}_{6}. Let 0<c<11520<c<\frac{11}{52} be a rational number and M¯K(c)\overline{M}_{K}(c) be the K-moduli space of K-polystable pairs (X,cD)(X,cD) which admits a \mathbb{Q}-Gorenstein smoothable degeneration to (Σ5,cD0)(\Sigma_{5},cD_{0}), where D0D_{0} is a smooth curve of class 2KΣ5-2K_{\Sigma_{5}}. Let ϕ:UM¯K(c)\phi:U\dashrightarrow\overline{M}_{K}(c) be the natural rational map, ψ:UV\psi:U\dashrightarrow V be given by (X,D)D(X,D)\mapsto D, and φ:VM¯K(c)\varphi:V\rightarrow\overline{M}^{K}(c) be C(X,C)C\mapsto(X,C), where XX is the unique quintic del Pezzo surface containing CC. Denote by φ¯\overline{\varphi} the rational map M¯6M¯K(c)\overline{M}_{6}\dashrightarrow\overline{M}^{K}(c), which is an extension of φ\varphi.

5.1. The first chamber of α\alpha

Recall that the K-moduli for 0<c1/170<c\leq 1/17 is identified with one of the Hassett-Keel models.

Theorem 5.1.

(ref. [Mül14, Proposition 4.3]) Let 0<c1170<c\leq\frac{1}{17} be a rational number. Then the log canonical model M¯6(α)\overline{M}_{6}(\alpha) is isomorphic to |2KΣ5|/Aut(Σ5)|-2K_{\Sigma_{5}}|/\operatorname{Aut}(\Sigma_{5}) for 16/47<α35/10216/47<\alpha\leq 35/102, a point for α=16/47\alpha=16/47, and empty for α<16/47\alpha<16/47.

Proposition 5.2.

Neither one of Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3} is contracted under the natural birational map M¯6|2KΣ5|/Aut(Σ5)\overline{M}_{6}\dashrightarrow|-2K_{\Sigma_{5}}|/\operatorname{Aut}(\Sigma_{5}) to the point representing the curve 4L1+2L2+2E1+2E24L_{1}+2L_{2}+2E_{1}+2E_{2}.

Proof.

This is an immediate corollary of [Mül14, Proposition 2.1, Proposition 2.2, Proposition 2.3]. ∎

5.2. Wall-crossings in the Hassett-Keel program for M¯6\overline{M}_{6}

We may assume that 1/17<c<11/521/17<c<11/52.

Proposition 5.3.

Let λ\lambda be the Hodge line bundle on VV, and δ0\delta_{0} the divisor on VV consisting of the closure of the locus of irreducible curves. Then we have

ψλ=6η+6ξ,andψδ0=46η+47ξ.\psi^{*}\lambda=6\eta+6\xi,\quad\textup{and}\quad\psi^{*}\delta_{0}=46\eta+47\xi.
Proof.

Let T1T\simeq\mathbb{P}^{1} be a curve in \mathbb{P}\mathcal{E} given by a general pencil of curves in |2KX||-2K_{X}| for a fixed smooth surface X11X\in\mathbb{P}^{11}. Then we have that

(T.η)=0,and(T.ξ)=1.(T.\eta)=0,\quad\textup{and}\quad(T.\xi)=1.

The universal family 𝒞T\mathscr{C}\rightarrow T is the blow-up of XX at (𝒪X(2,2))2=20(\mathcal{O}_{X}(2,2))^{2}=20 general points, and hence χtop(𝒞)=27\chi_{\operatorname{top}}(\mathscr{C})=27. By topological Hurwitz formula, we have that the number of singular fibers is 272(10)=4727-2(-10)=47 since a general fiber is smooth of genus 66, and each singular fiber is a nodal curve with exactly one singularity. On the other hand, the class of 𝒞\mathscr{C} in T×XT\times X is 𝒪(1,2KX)\mathcal{O}(1,-2K_{X}), and hence by adjunction we have

K𝒞/T=𝒪𝒞(1,KX).K_{\mathscr{C}/T}=\mathscr{O}_{\mathscr{C}}(1,-K_{X}).

Thus the degree of the Hodge line bundle λT\lambda_{T} on TT is

degλT=c1(p1ω𝒞/T)=c1(𝒪1(1)H0(X,KX))=6.\begin{split}\deg\lambda_{T}&=c_{1}({p_{1}}_{*}\omega_{\mathscr{C}/T})\\ &=c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(1)\otimes H^{0}(X,-K_{X}))\\ &=6.\end{split}

Similarly, fix a general surface S|𝒪1×2(2,2)|S\in|\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(2,2)|, and take a general pencil of quintic del Pezzo surfaces in |𝒪1×2(1,2)||\mathcal{O}_{\mathbb{P}^{1}\times\mathbb{P}^{2}}(1,2)| to intersect SS, we obtain a one-parameter family of curves 𝒞T\mathscr{C}^{\prime}\rightarrow T^{\prime} over T1T^{\prime}\simeq\mathbb{P}^{1}. Here we view TT^{\prime} as a curve in \mathbb{P}\mathcal{E}, and we have that

(T.η)=1,and(T.ξ)=0.(T^{\prime}.\eta)=1,\quad\textup{and}\quad(T^{\prime}.\xi)=0.

The same computation as above yields that

(T.ψδ0)=46,and(T.ψλ)=6.(T^{\prime}.\psi^{*}\delta_{0})=46,\quad\textup{and}\quad(T^{\prime}.\psi^{*}\lambda)=6.

It follows immediately that

ψλ=6η+6ξ,andψδ0=46η+47ξ.\psi^{*}\lambda=6\eta+6\xi,\quad\textup{and}\quad\psi^{*}\delta_{0}=46\eta+47\xi.

Lemma 5.4.

The moduli spaces M¯6(α)\overline{M}_{6}(\alpha) and M¯K(c)\overline{M}^{K}(c) are all normal.

Proof.

Since the deformation of any curve [C]M¯6(α)[C]\in\overline{M}_{6}(\alpha) is unobstructed, there is an étale map

U/Aut(C)M¯6(α)U/\operatorname{Aut}(C)\longrightarrow\overline{M}_{6}(\alpha)

with image an open neighborhood of [C][C] where UU is the first order deformation space of [C][C]. Since Aut(X)\operatorname{Aut}(X) is finite, then M¯6(α)\overline{M}_{6}(\alpha) is normal by a general result of GIT (ref. [MFK94, Chapter 0]). The normality of K-moduli spaces can be proven as in [ADL19, Proposition 4.6(3)]. ∎

Theorem 5.5.

Let 0c11520\leq c\leq\frac{11}{52} be a rational number, and α(c)=3219c9468c[1647,97276]\alpha(c)=\frac{32-19c}{94-68c}\in\left[\frac{16}{47},\frac{97}{276}\right]. Then we have an isomorphism

M¯6(α(c))M¯K(c).\overline{M}_{6}(\alpha(c))\simeq\overline{M}^{K}(c).
Proof.

Recall that in our setting, there is a commutative diagram

UϕψVφM¯K(c)
.
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 14.13101pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\\\\crcr}}}\ignorespaces{\hbox{\kern-6.95901pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-10.17084pt\raise-34.2311pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-57.87111pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.82446pt\raise 12.21777pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-5.185pt\hbox{$\scriptstyle{\huge{\psi}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 68.13101pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 38.13101pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 68.13101pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 37.10416pt\raise-39.41858pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\varphi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 11.62538pt\raise-57.87111pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-33.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-14.13101pt\raise-68.4622pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\overline{M}^{K}(c)}$}}}}}}}\ignorespaces}}}}\ignorespaces.

We have that

ψφΛCM,M¯cK,c=ϕΛCM,M¯cK,c=ΛCM,U,c=3(12c)2(4+2c)(η+5c4+2cξ).\psi^{*}\varphi^{*}\Lambda_{\operatorname{CM},\overline{M}^{K}_{c},c}=\phi^{*}\Lambda_{\operatorname{CM},\overline{M}^{K}_{c},c}=\Lambda_{\operatorname{CM},U,c}=3(1-2c)^{2}(4+2c)\left(\eta+\frac{5c}{4+2c}\xi\right).

On the other hand, we have that

ψ(KV+αδ0)=ψ(13λ(2α)δ0)=13(6η+6ξ)(2α)(46η+47ξ),\psi^{*}(K_{V}+\alpha\delta_{0})=\psi^{*}(13\lambda-(2-\alpha)\delta_{0})=13(6\eta+6\xi)-(2-\alpha)(46\eta+47\xi),

which is proportional, up to a positive constant, to

η+47α1646α14ξ=η+5c4+2cξ.\eta+\frac{47\alpha-16}{46\alpha-14}\xi=\eta+\frac{5c}{4+2c}\xi.

Thus there is a constant s>0s>0 such that KM¯6+αδφ¯(sΛCM,M¯cK,c)K_{\overline{M}_{6}}+\alpha\delta-\overline{\varphi}^{*}(s\Lambda_{\operatorname{CM},\overline{M}^{K}_{c},c}) is a φ¯\overline{\varphi}-exceptional \mathbb{Q}-divisor.

By Proposition 5.2, we see that the images of the divisors Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3} under the rational map

ϕ0<c1/17:M¯6|2KΣ5|/𝔖5\phi_{0<c\leq 1/17}:\overline{M}_{6}\dashrightarrow|-2K_{\Sigma_{5}}|/\mathfrak{S}_{5}

is not contained in the center of the weighted blow-up

M¯K(1/17+ε)M¯K(1/17).\overline{M}^{K}(1/17+\varepsilon)\longrightarrow\overline{M}^{K}(1/17).

Consider the commutative diagram

M¯6φ¯0<c1/17φ¯1/17<c11/52M¯K(1/17<c11/52)σM¯K(0<c1/17)
,
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.90001pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\\\&\crcr}}}\ignorespaces{\hbox{\kern-6.90001pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\overline{M}_{6}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 8.18373pt\raise-42.13443pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.58888pt\hbox{$\scriptstyle{\overline{\varphi}_{0<c\leq 1/17}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.05063pt\raise-59.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 42.52275pt\raise 9.54245pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.86469pt\hbox{$\scriptstyle{\huge{\overline{\varphi}_{1/17<c\leq 11/52}\quad}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 139.2729pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 70.08646pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 139.2729pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\overline{M}^{K}(1/17<c\leq 11/52)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 131.28442pt\raise-39.55249pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\sigma}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 91.31058pt\raise-59.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-35.04555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-3.0pt\raise-70.0911pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.90001pt\raise-70.0911pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\overline{M}^{K}(0<c\leq 1/17)}$}}}}}}}\ignorespaces}}}}\ignorespaces,

where σ\sigma is the weighted blow-up followed by some birational modifications in codimension 22. Since any non-special curve of genus 6 is contained in a unique ADE quintic del Pezzo surface, then φ¯1/17<c11/52\overline{\varphi}_{1/17<c\leq 11/52} maps the Gieseker-Petri divisor 𝒢𝒫¯6\overline{\mathcal{GP}}_{6} in M¯6\overline{M}_{6} birationally to the σ\sigma-exceptional divisor EE. By [Mül14, Proposition 4.3], there is a constant s>0s^{\prime}>0 such that KM¯6+αδsφ¯0<c1/17ΛCM,cK_{\overline{M}_{6}}+\alpha\delta-s^{\prime}\overline{\varphi}^{*}_{0<c\leq 1/17}\Lambda_{\operatorname{CM},c} is \mathbb{Q}-linearly equivalent to

(35/251α)𝒢𝒫¯6+(911α)δ1+(1929α)δ2+(3496α)δ3.(35/2-51\alpha)\overline{\mathcal{GP}}_{6}+(9-11\alpha)\delta_{1}+(19-29\alpha)\delta_{2}+(34-96\alpha)\delta_{3}.

It follows that

(KM¯6+αδ)sφ¯117<c1152ΛCM,c=(911α)δ1+(1929α)δ2+(3496α)δ3,\left(K_{\overline{M}_{6}}+\alpha\delta\right)-s\overline{\varphi}^{*}_{\frac{1}{17}<c\leq\frac{11}{52}}\Lambda_{\operatorname{CM},c}=(9-11\alpha)\delta_{1}+(19-29\alpha)\delta_{2}+(34-96\alpha)\delta_{3},

which is effective when α3496\alpha\leq\frac{34}{96}. Therefore by Lemma 5.4 we deduce

M¯6(α)=ProjnH0(M¯6,n(KM¯6+αδ))ProjnH0(M¯K(c),ns(ΛCM,c))=M¯K(c)\begin{split}\overline{M}_{6}(\alpha)&=\operatorname{Proj}\bigoplus_{n}H^{0}\left(\overline{M}_{6},n(K_{\overline{M}_{6}}+\alpha\delta)\right)\\ &\simeq\operatorname{Proj}\bigoplus_{n}H^{0}\left(\overline{M}^{K}(c),ns(\Lambda_{\operatorname{CM},c})\right)\\ &=\overline{M}^{K}(c)\end{split}

for 1/17<c11/521/17<c\leq 11/52. ∎

In [Zha22], we find the walls

{0,117,219,17,423}\left\{0,\frac{1}{17},\frac{2}{19},\frac{1}{7},\frac{4}{23}\right\}

for K-moduli spaces M¯K(c)\overline{M}^{K}(c). The only wall before 11/5211/52 that we miss is 1/51/5. This will be displayed in our upcoming work [SZ23]. As a consequence, the last walls of the log canonical models M¯6(α)\overline{M}_{6}(\alpha) are

{1647,35102,2955,41118,2263,47134}.\left\{\frac{16}{47},\frac{35}{102},\frac{29}{55},\frac{41}{118},\frac{22}{63},\frac{47}{134}\right\}.
Remark 5.6.

The value α(11/52)=329/964\alpha(11/52)=329/964 is not expected to be a wall for the Hassett-Keel. In fact, if it were, then by the local structure of VGIT, there will be divisor appearing in M¯6(329/964+ε)\overline{M}_{6}(329/964+\varepsilon). However, the Picard group of M¯6=M¯6(1)\overline{M}_{6}=\overline{M}_{6}(1) is of rank four, which is generated by Δ0,Δ1,Δ2,Δ3\Delta_{0},\Delta_{1},\Delta_{2},\Delta_{3} and 𝒢𝒫¯6\overline{\mathcal{GP}}_{6}. The divisor Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3} should not be the replacement of triple conics in |2KΣ||-2K_{\Sigma}|. In fact, the triple conic is replaced by trigonal curves in the wall-crossing

M¯K(11/52+ε)M¯K(11/52)M¯K(11/52ε)\overline{M}^{K}(11/52+\varepsilon)\rightarrow\overline{M}^{K}(11/52)\simeq\overline{M}^{K}(11/52-\varepsilon)

for K-moduli, and the locus of trigonal curves in M¯6\overline{M}_{6} is of codimension 2. As a result, the K-moduli spaces cannot characterize the Hassett-Keel for all α[0,1]\alpha\in[0,1].

References

  • [ADL19] Kenneth Ascher, Kristin DeVleming, and Yuchen Liu. Wall crossing for K-moduli spaces of plane curves. arXiv preprint arXiv:1909.04576, 2019.
  • [AFSv17] Jarod Alper, Maksym Fedorchuk, David Ishii Smyth, and Frederick van der Wyck. Second flip in the hassett–keel program: a local description. Compositio Mathematica, 153(8):1547–1583, 2017.
  • [Ben14] Olivier Benoist. Quelques espaces de modules d’intersections complètes lisses qui sont quasi-projectifs. Journal of the European Mathematical Society, 16(8):1749–1774, 2014.
  • [CMJL14] Sebastian Casalaina-Martin, David Jensen, and Radu Laza. Log canonical models and variation of git for genus 4 canonical curves. Journal of Algebraic Geometry, 23(4):727–764, 2014.
  • [Fed18] Maksym Fedorchuk. Geometric invariant theory of syzygies, with applications to moduli spaces. In Geometry of Moduli 14, pages 107–134. Springer, 2018.
  • [FS13] Maksym Fedorchuk and David Ishii Smyth. Alternate compactifications of moduli spaces of curves. Handbook of Moduli: Volume I, 2013.
  • [Har13] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
  • [HH09] Brendan Hassett and Donghoon Hyeon. Log canonical models for the moduli space of curves: the first divisorial contraction. Transactions of the American Mathematical Society, 361(8):4471–4489, 2009.
  • [HH13] Brendan Hassett and Donghoon Hyeon. Log minimal model program for the moduli space of stable curves: the first flip. Annals of Mathematics, pages 911–968, 2013.
  • [HM06] Joe Harris and Ian Morrison. Moduli of curves, volume 187. Springer Science & Business Media, 2006.
  • [Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. ii, volume 49,(2004). Springer-Verlag, 18(385):5, 2004.
  • [MFK94] David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34. Springer Science & Business Media, 1994.
  • [Mül14] Fabian Müller. The final log canonical model of M¯6\overline{M}_{6}. Algebra and Number Theory, 8(5):1113–1126, 2014.
  • [Rad13] Laza Radu. GIT and moduli with a twist. Handbook of moduli. Vol. II, Adv. Lect. Math., 25:259–297, 2013.
  • [SZ23] Fei Si and Junyan Zhao. Moduli space of genus six curves and K-stability: Hassett-Keel-Looijenga program. In preparation, 2023.
  • [Tha96] Michael Thaddeus. Geometric invariant theory and flips. Journal of the American Mathematical Society, 9(3):691–723, 1996.
  • [Zha22] Junyan Zhao. K-moduli of quintic del Pezzo pairs and moduli of genus six curves. arXiv preprint arXiv:2212.06992, 2022.