This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Minimal Denominator Function and Geometric Generalizations

Albert Artiles
University of Washington, Seattle, USA
Abstract.

We provide a geometric interpretation for a normalized version of the minimal denominator function,

qmin(x,δ)=min{q: there exists p such that pq(xδ,x+δ)},q_{\min}(x,\delta)=\min\left\{q\in\mathbb{N}:\text{ there exists }p\in\mathbb{Z}\text{ such that }\frac{p}{q}\in(x-\delta,x+\delta)\right\},

introduced by Chen and Haynes in [4]. We use this interpretation to compute the limiting distribution of a suitably normalized version of qmin(x,δ)q_{\min}(x,\delta) as a function of xx, and give generalizations of the idea of minimal denominators to higher-dimensional unimodular lattices, linear forms, and translation surfaces. The key idea is to turn this circle of problems into equidistribution problems for translates of unipotent orbits of a Lie group action on an appropriate moduli space.

1. Introduction

The study of the distribution of rational numbers in \mathbb{R} has been a subject of interest for many decades. A well-known result due to Dirichlet gives quantitative information of the distribution of rational numbers with small denominators: Given x[0,1]x\in[0,1] and Q1Q\geq 1, there exists p,qp,q\in\mathbb{Z} such that qQq\leq Q and

|qxp|<1Q.\absolutevalue{qx-p}<\frac{1}{Q}. (1.1)

In this paper we explore the connection between approximations of real numbers by rational numbers with small denominators and the theory of lattices. We also provide generalizations to these ideas in the contexts of linear forms with entries in [0,1][0,1] and saddle connections of translation surfaces.

1.1. Minimal Denominators

Inspired by the work of Sander-Weiss [16], Chen-Haynes [4] defined the minimal denominator function, qmin(x,δ)q_{\min}(x,\delta), which extracts the lowest denominator of a rational number contained in (xδ,x+δ)(x-\delta,x+\delta). More precisely, for δ>0\delta>0, define qmin(,δ):[0,1]q_{\min}(\cdot,\delta):[0,1]\rightarrow\mathbb{N} by

qmin(x,δ)=min{q:there exists p such that pq(xδ,x+δ)}.q_{\min}(x,\delta)=\min\left\{q\in\mathbb{N}:\text{there exists }p\in\mathbb{Z}\text{ such that }\frac{p}{q}\in(x-\delta,x+\delta)\right\}. (1.2)

Asymptotics

A main result of [4] is the computation of the asymptotics of the expected value of qmin(x,δ)q_{\min}(x,\delta) when xx is chosen randomly uniformly with respect to the Lebesgue measure on [0,1][0,1] and δ0\delta\rightarrow 0.

𝔼x[qmin(x,δ)]=01qmin(x,δ)𝑑x.\mathbb{E}_{x}\left[q_{\min}(x,\delta)\right]=\int_{0}^{1}q_{\min}(x,\delta)dx. (1.3)
Theorem 1.1.

(Chen-Haynes [4]) As δ0\delta\rightarrow 0

𝔼x[qmin(x,δ)]16π21δ+O(log2(δ)).\mathbb{E}_{x}\left[q_{\min}(x,\delta)\right]\sim\frac{16}{\pi^{2}}\frac{1}{\sqrt{\delta}}+O(\log^{2}(\delta)). (1.4)

1.2. A geometric interpretation and generalizations

Our key contribution is to show how to interpret an appropriately normalized version of qminq_{\min} geometrically. This allows us to compute its limiting distribution through dynamical and geometric methods. These methods of proof in turn allow us to generalize the minimal denominator function to a variety of new contexts, including higher-dimensional Diophantine approximation and the distribution of holonomy vectors of saddle connections on translation surfaces. We first consider a higher dimensional version of our question and then specialize to our problem at hand in §3.

The space of unimodular lattices

Let Xm=SL(m,)/SL(m,)X_{m}=SL(m,\mathbb{R})/SL(m,\mathbb{Z}) denote the space of unimodular lattices in m\mathbb{R}^{m} equipped with the measure μm\mu_{m}, arising from the Haar measure on SL(m,)SL(m,\mathbb{R}) normalized so that μm\mu_{m} is a probability measure on XmX_{m}. Define the function F1m:Xm+1F^{m}_{1}:X_{m+1}\rightarrow\mathbb{R} by

F1m(Λ)=min{x>0: there exists 𝐲m such that [x𝐲]ΛC1},F^{m}_{1}(\Lambda)=\min\left\{x>0:\text{ there exists }\mathbf{y}\in\mathbb{R}^{m}\text{ such that }\begin{bmatrix}x\\ \mathbf{y}\end{bmatrix}\in\Lambda\cap C_{1}\right\}, (1.5)

where C1={[x𝐲]Tm:x>0 and 𝐲m,𝐲m<x}C_{1}=\left\{\begin{bmatrix}x&\mathbf{y}\end{bmatrix}^{T}\in\mathbb{R}^{m}:x>0\text{ and }\mathbf{y}\in\mathbb{R}^{m},\norm{\mathbf{y}}_{m}<x\right\} and k\norm{\cdot}_{k} denotes the max norm on k\mathbb{R}^{k}.

Normalized qminq_{\min} and FδmF^{m}_{\delta}

A key application of our interpretation of qmin(x,δ)q_{\min}(x,\delta) is the following theorem which describes the limiting distribution of the normalized function δ12qmin(x,δ)\delta^{\frac{1}{2}}q_{\min}(x,\delta) in terms of the function F11(Λ)F^{1}_{1}(\Lambda), where Λ\Lambda is a random unimodular lattice chosen from X2X_{2} according to the probability measure μ2\mu_{2}.

Theorem 1.2.

Let PP denote the uniform probability measure on [0,1][0,1]. Then for every T>0T>0, as δ0\delta\rightarrow 0,

P({x:δqmin(x,δ)T})μ2({ΛX2:F11(Λ)T}).P\left(\left\{x:\sqrt{\delta}q_{\min}(x,\delta)\leq T\right\}\right)\rightarrow\mu_{2}\left(\left\{\Lambda\in X_{2}:F^{1}_{1}(\Lambda)\leq T\right\}\right). (1.6)

Generalizations

The framework developed above can be generalized in two ways. One, motivated by Diophantine approximation, is to consider higher dimensional versions of the minimal denominator function and connections to dynamics on space of unimodular lattices. Another is to consider different discrete subsets of the plane which arise from geometric constructions, in particular, we look at holonomy vectors of saddle connections on translation surfaces. We explore higher-dimensions in §5 and discuss saddle connections in §6.

A higher dimensional version of qminq_{\min}

For mm\in\mathbb{N}, x[0,1]m\textbf{x}\in[0,1]^{m}, and δ>0\delta>0, we define

Qm(x,δ)=min{q: there exists pm such that x1qpm<δ}.Q^{m}(\textbf{x},\delta)=\min\left\{q\in\mathbb{N}:\text{ there exists }\textbf{p}\in\mathbb{Z}^{m}\text{ such that }\norm{\textbf{x}-\frac{1}{q}\textbf{p}}_{m}<\delta\right\}.

Qm(𝐱,δ)Q^{m}(\mathbf{x},\delta) computes the smallest least common multiple of the denominators of the rational points in a δ\delta neighborhood of the point xx in [0,1]m.[0,1]^{m}. In particular, QmQ^{m} measures the complexity of rational points in a δ\delta neighborhood of each point in the mm-dimensional unit cube. In this aspect we see that Q1(x,δ)=qmin(x,δ)Q^{1}(x,\delta)=q_{\min}(x,\delta). We then have the following generalization of Theorem 1.2

Theorem 1.3.

Let PP denote the uniform distribution on [0,1]m[0,1]^{m}. Then, as δ0\delta\rightarrow 0,

P({𝐱[0,1]m:δmm+1Qm(𝐱,δ)T})μm+1({ΛXm+1:F1m(Λ)T}).P\left(\left\{\mathbf{x}\in[0,1]^{m}:\delta^{\frac{m}{m+1}}Q^{m}(\mathbf{x},\delta)\leq T\right\}\right)\rightarrow\mu_{m+1}\left(\left\{\Lambda\in X_{m+1}:F^{m}_{1}(\Lambda)\leq T\right\}\right).

1.3. Translation surfaces

Another context in which our geometric interpretation for δ12qmin(,δ)\delta^{\frac{1}{2}}q_{\min}(\cdot,\delta) can be generalized is in the context of the distribution of saddle connections of translation surfaces. We will review the necessary background on translation surfaces for this paper in this section. For further background on translation surfaces, see, for example, the survey articles of Zorich [19] and Hubert-Schmidt [9].

Refer to caption
Figure 1. A genus 22 translation surface where sides are identified via color and a depiction of a saddle connection in black.

Translation surfaces and polygonal presentation

A compact translation surface is an ordered pair (X,ω)(X,\omega) where XX is a compact Riemann surface and ω\omega is a non-zero holomorphic 1-form on XX. We usually write ω\omega to represent the translation surface (X,ω)(X,\omega) for convenience and write (X,ω)(X,\omega) if clarification is needed. A geometric way to think about a translation surface is as follows: Let P=i=1kPiP=\bigsqcup_{i=1}^{k}P_{i} be a disjoint union of connected polygons (not necessarily convex) PiP_{i}\subset\mathbb{C} such that the collection of the sides can be partitioned into parallel pairs {sa,sb}\{s_{a},s_{b}\} of the same length; which are subsequently identified via the Euclidean translation Ta,bT_{a,b} sending sas_{a} onto sbs_{b}, to produce a surface. Since translations are holomorphic, the surface obtained from this procedure can be endowed with a complex structure. Moreover, since for each cc\in\mathbb{C} we have that d(z+c)=dzd(z+c)=dz, the holomorphic 11-form dzdz on the plane descends to this surface and endows it with a (non-zero) holomorphic one form ω\omega.

Saddle connections and holonomy vectors.

Let {z1,z2,,zj}\left\{z_{1},z_{2},...,z_{j}\right\} be the zeros of ω\omega on XX. ω\omega induces a flat Riemannian metric on the surface X{z1,,zj}X\setminus\left\{z_{1},...,z_{j}\right\}. A saddle connection is a geodesic γ\gamma starting and ending at two (possibly the same) zeros of ω\omega without passing through any other zeros.

We may record saddle connections as complex numbers as follows: given a saddle connection γ\gamma on a translation surface ω\omega, we define the holonomy vector of γ\gamma by

zγ=γω.z_{\gamma}=\int_{\gamma}\omega\in\mathbb{C}.

The holonomy vector

zγ=xγ+iyγz_{\gamma}=x_{\gamma}+iy_{\gamma}

records the horizontal (xγx_{\gamma}) and vertical (yγy_{\gamma}) displacement of γ\gamma on ω\omega. Denote the collection of all holonomy vectors of ω\omega by

Λω:={zγ:γ is a saddle connection on ω}.\Lambda_{\omega}:=\{z_{\gamma}:\gamma\mbox{ is a saddle connection on }\omega\}.

Masur showed in [15] that for any ω\omega, there exists positive constants c1c_{1} and c2c_{2} (only dependent on ω\omega) such that

c1R2|ΛωB(0,R)|c2R2,c_{1}R^{2}\leq\absolutevalue{\Lambda_{\omega}\cap B(0,R)}\leq c_{2}R^{2},

characterizing the growth rate of the Λω\Lambda_{\omega}. Much work has been done since then to understand the distribution of saddles for different kinds of translation surfaces.

Short Saddle Connections

Let ω\omega be a translation surface and δ>0\delta>0 and consider the following function:

Ψ(ω,δ)=min{Re(zγ):γ is a saddle connection of ω and zγΛ(ω)Cδ},\Psi(\omega,\delta)=\min\left\{\real(z_{\gamma}):\gamma\text{ is a saddle connection of }\omega\text{ and }z_{\gamma}\in\Lambda(\omega)\cap C_{\delta}\right\},

where Cδ={x+iy:x>0 and y<δx}C_{\delta}=\{x+iy\in\mathbb{C}:x>0\text{ and }y<\delta x\}.

The next result computes the limiting distribution of δΨ(ω,δ)\sqrt{\delta}\Psi(\omega,\delta) as δ0\delta\rightarrow 0 whenever ω\omega is a Veech surface with Veech group Γω\Gamma_{\omega}. We also set the notation that Yω=SL(2,)/ΓωY_{\omega}=SL(2,\mathbb{R})/\Gamma_{\omega} and μω\mu_{\omega} is the induced measure on YωY_{\omega} by the Haar measure on SL(2,)SL(2,\mathbb{R}). Denote the matrix [10α1]\begin{bmatrix}1&0\\ -\alpha&1\end{bmatrix} by hαh_{\alpha}. We then have the following result on the distribution of short saddle connections.

Theorem 1.4.

Let ω\omega be a Veech surface and suppose that hαΓωh_{\alpha}\in\Gamma_{\omega} for some α>0\alpha>0. Let PP be the uniform probability measure on [0,α][0,\alpha]. Then as δ0\delta\rightarrow 0,

P({s[0,α]:δΨ(hsω,δ)T})μω({gΓωYω:Ψ(gΓω,1)T})μω(Yω).P\left(\left\{s\in[0,\alpha]:\sqrt{\delta}\Psi(h_{s}\omega,\delta)\leq T\right\}\right)\rightarrow\frac{\mu_{\omega}\left(\left\{g\Gamma_{\omega}\in Y_{\omega}:\Psi(g\Gamma_{\omega},1)\leq T\right\}\right)}{\mu_{\omega}\left(Y_{\omega}\right)}.

1.4. History

The contents of this paper create a link between number theory, the theory of homogeneous dynamics, and translation surfaces. We detail the connections more explicitly below.

Minimal denominators

In the 1920s Franel [7] and Landau [13] restated the Riemann Hypothesis as a problem on the distribution of the Farey Sequence in [0,1][0,1]. This contributed to the growth in interest of questions on the distribution of rational numbers with small denominators. For instance, Hall computed the distribution of the spacing between consecutive Farey fractions, when properly normalized [8]. More recently, Boca-Zaharescu computed correlation formulas for the Farey sequence in [3]. Theorem 1.2 describes the distributions of the waiting time to for the Farey Sequence to intersect a randomly chosen small interval in [0,1][0,1], expanding on the work of Chen-Haynes in [4].

Short lattice vectors

Given a lattice Λ\Lambda in n\mathbb{R}^{n} and a norm, \norm{\cdot}, on n\mathbb{R}^{n}, we may ask the following question: What is the shortest non-zero vector in Λ\Lambda? This question is known as the short vector problem (SVP) and it has been of interest in cryptography. This problem is NP-hard. We create a dictionary that allows us to connect the minimal denominator function to the minimization of the lengths of vectors inside a thin cone. Other variants of the SVP have been studied in the past. The work of Siegel [17] allows us to compute the average number of intersections between a randomly chosen unimodular lattice and a region of the n\mathbb{R}^{n}. More recently, Kim [10] computed the distribution for the lengths of the the first kk-short vectors in a randomly chosen lattice.

Holonomy vectors

Translation surfaces arise naturally from problems in rational billiards, Riemann surfaces, and number theory. Masur [15] characterized the growth rate of the set of their holonomy vectors in 1990. Over the past few decades a lot of work has been done to get finer statistics on the distribution of saddle connections of different kinds of translation surfaces. Athreya-Chaika [1] described the decay of smallest angle gaps between saddle connections in almost any surface. More recently, Kumanduri-Sanchez-Wang proved the existence of gap distribution for any Veech surface in [12]. A consequence of our setup and generalizations is found in Theorem 1.4, where we compute the limiting distribution of the length of the shortest saddle connection in a thin cone.

1.5. Organization of the paper

§2 contains the background information needed for the ideas used throughout the paper. In §3, we explore the relation between qminq_{\min} and the theory lattices in detail. We also provide geometric motivation for the proof of Theorem 1.2. §4 explores a general setup for a broad range of equidistribution results. We use this section to describe a motivating theorem for the generalizations of all results in this paper. The subsequent sections are applications of the general philosophy developed in § 4 to generalizations of Theorem 1.2. §5 contains higher dimensional versions of Theorem 1.2 in two contexts: higher dimensional lattices and linear forms. §6 contains more information on translation surface and the proof of Theorem 1.4.

Acknowledgements

I would like to thank my advisor, Jayadev Athreya, for introducing me to this collection of ideas, their exceptional patience, enthusiasm, and unconditional support.

2. Preliminaries

In this section we introduce the relevant background to follow the ideas in this paper.

2.1. The space of unimodular lattices

Our setup in §3 and §5 will be on the space of unimodular lattices. A unimodular lattice Λ\Lambda is a maximal discrete subgroup of m\mathbb{R}^{m} such that the volume of the quotient m/Λ\mathbb{R}^{m}/\Lambda is one.

The space of unimodular lattices in m\mathbb{R}^{m} will be denoted by XmX_{m}. The group SL(m,)SL(m,\mathbb{R}) acts on m\mathbb{R}^{m} via linear transformations. This transfers to a transitive action on XmX_{m}. Notice that the stabilizer of the unimodular lattice m\mathbb{Z}^{m} under the SL(m,)SL(m,\mathbb{R}) action is SL(m,)SL(m,\mathbb{Z}). This observation allows us to identify SL(m,)/SL(m,)SL(m,\mathbb{R})/SL(m,\mathbb{Z}) with XmX_{m} via gmgSL(m,).g\mathbb{Z}^{m}\leftrightarrow gSL(m,\mathbb{Z}). In the remaining of the paper we will identify XmX_{m} and SL(m,)/SL(m,)SL(m,\mathbb{R})/SL(m,\mathbb{Z}) via this correspondence implicitly. We equip SL(m,)SL(m,\mathbb{R}) with its Borel σ\sigma-algebra and its Haar measure μ~m\tilde{\mu}_{m}. We denote by μm\mu_{m} the Haar probability measure on XmX_{m}. With this setup, we have that μm\mu_{m} is an ergodic measure with respect to the SL(m,)SL(m,\mathbb{R}) action on XmX_{m}.

2.2. Geodesic and Horocyclic flows on X2X_{2}

We use this section to describe two flows, the geodesic and the horocylcic flows on X2X_{2}. For each s,ts,t\in\mathbb{R}, define

hs=[10s1] and gt=[et200et2].h_{s}=\begin{bmatrix}1&0\\ -s&1\end{bmatrix}\mbox{ and }g_{t}=\begin{bmatrix}e^{\frac{t}{2}}&0\\ 0&e^{-\frac{t}{2}}\end{bmatrix}.

Note that

gthsgt=hsetg_{t}h_{s}g_{-t}=h_{se^{-t}} (2.1)
Definition 2.1.

The geodesic and horocyclic flow on X2X_{2} are defined by (t,g2)(gtg)2(t,g\mathbb{Z}^{2})\mapsto(g_{t}g)\mathbb{Z}^{2} and (s,g2)(hsg)2(s,g\mathbb{Z}^{2})\mapsto(h_{s}g)\mathbb{Z}^{2}, respectively.

Since the horocyclic and geodesic flows are defined by left translation by elements of SL(2,)SL(2,\mathbb{R}), it follows that μ2\mu_{2} is preserved by the two flows.

Dani-Smillie proved in [5] the following result concerning the distribution of the orbits of points in X2X_{2} under the horocyclic flow and characterization of Borel probability measures preserved by the horocyclic flow.

Theorem 2.1.

(Dani-Smillie [5]) Let {Λi}i\{\Lambda_{i}\}_{i\in\mathbb{N}} be a sequence of points in X2X_{2}. Suppose that Λi\Lambda_{i} have period sis_{i} under the horocyclic flow. Let νi\nu_{i} be the uniform measure on the orbit of Λi\Lambda_{i}, then if sis_{i}\rightarrow\infty,

νiμ2,\nu_{i}\stackrel{{\scriptstyle\ast}}{{\rightharpoonup}}\mu_{2},

where the convergence above refers to weak convergence.

Notice hsh_{s}-periodic lattices are precisely those with a vertical vector. In particular 2\mathbb{Z}^{2} has period 1 with respect to the horocyclic flow. Since gthsgt=hsetg_{t}h_{s}g_{-t}=h_{se^{-t}}, it follows that gt2g_{t}\mathbb{Z}^{2} has period ete^{-t} under the horocyclic flow.

3. Existence of limiting distribution for qminq_{\min}

In this section we are interested in the distribution of vectors with small slope and small horizontal part in a lattice and their relation to the minimal denominator function. To this end, we define the following family of functions on X2X_{2}: given δ>0\delta>0, Fδ1:X2F^{1}_{\delta}:X_{2}\rightarrow\mathbb{R} is given by

Fδ1(Λ)=min{u: there exists v such that [uv]ΛCδ},F^{1}_{\delta}(\Lambda)=\min\left\{u\in\mathbb{R}:\text{ there exists }v\in\mathbb{R}\text{ such that }\begin{bmatrix}u\\ v\end{bmatrix}\in\Lambda\cap C_{\delta}\right\},

where Cδ={[x,y]T2:x>0,|y|<δx}.C_{\delta}=\left\{[x,y]^{T}\in\mathbb{R}^{2}:x>0,\absolutevalue{y}<\delta x\right\}.

Refer to caption
Figure 2. Depiction of a unimodular lattice and its intersection with CδC_{\delta}.
Refer to caption
Figure 3. Action of gtg_{t} on lines though the origin.
Refer to caption
Figure 4. Action of hsh_{s} on lines though the origin.

hsh_{s} and gtg_{t} act on 2\mathbb{R}^{2} via linear transformations and hence they act on lines through the origin. In particular, hsh_{s} preserves the difference of slopes between any two lines through the origin while gtg_{t} multiplies the slope of any line by ete^{-t}. See figures 3 and 4.

We begin by working out the ways in which Fδ1F^{1}_{\delta} behaves when precomposed with the flows gtg_{t} and hsh_{s}.

Lemma 3.1.

fsdfa

  1. (1)

    For each tt\in\mathbb{R},

    Fδ1(gtΛ)=et2Fδet1(Λ).F^{1}_{\delta}(g_{t}\Lambda)=e^{\frac{t}{2}}F^{1}_{\delta e^{t}}(\Lambda). (3.1)
  2. (2)

    For each x[0,1]x\in[0,1],

    Fδ1(hx2)=qmin(x,δ).F^{1}_{\delta}(h_{x}\mathbb{Z}^{2})=q_{\min}(x,\delta). (3.2)
Proof.

We will prove equation (3.1) by doing a computation.

Fδ1(gtΛ)\displaystyle F^{1}_{\delta}(g_{t}\Lambda) =min{u:[uv]gtΛCδ}\displaystyle=\min\left\{u:\begin{bmatrix}u\\ v\end{bmatrix}\in g_{t}\Lambda\cap C_{\delta}\right\}
=min{u:gt[uv]ΛgtCδ}\displaystyle=\min\left\{u:g_{-t}\begin{bmatrix}u\\ v\end{bmatrix}\in\Lambda\cap g_{-t}C_{\delta}\right\}
=min{u:[et2uet2v]ΛCδet}\displaystyle=\min\left\{u:\begin{bmatrix}e^{-\frac{t}{2}}u\\ e^{\frac{t}{2}}v\end{bmatrix}\in\Lambda\cap C_{\delta e^{t}}\right\}
=et2min{u:[uv]ΛCδet}\displaystyle=e^{\frac{t}{2}}\min\left\{u^{\prime}:\begin{bmatrix}u^{\prime}\\ v^{\prime}\end{bmatrix}\in\Lambda\cap C_{\delta e^{t}}\right\}
=et2Fδet1(Λ).\displaystyle=e^{\frac{t}{2}}F^{1}_{\delta e^{t}}(\Lambda).

This completes the proof of (3.1).

We now proceed to prove equation (3.2). We begin by defining a correspondence between rational numbers and lattice points. If pq\frac{p}{q} is a rational number written in simplest form, we identify it with the integer vector [q,p]T[q,p]^{T}. We claim that pq(xδ,x+δ)\frac{p}{q}\in(x-\delta,x+\delta) precisely when hx[q,p]TCδh_{x}[q,p]^{T}\in C_{\delta}.

Proof of claim: Notice that hx[q,p]T=[q,pqx]Th_{x}[q,p]^{T}=[q,p-qx]^{T}. Then we have that [q,pqx]TCδ[q,p-qx]^{T}\in C_{\delta} precisely when δ>|pqxq|=|xpq|\delta>\absolutevalue{\frac{p-qx}{q}}=\absolutevalue{x-\frac{p}{q}} which is equivalent to pq(xδ,x+δ)\frac{p}{q}\in(x-\delta,x+\delta). This completes the proof of our claim.

Our claim implies that the set of denominators of fractions in (xδ,x+δ)(x-\delta,x+\delta) is precisely the set of xx-coordinates of the lattice points in hx2Cδh_{x}\mathbb{Z}^{2}\cap C_{\delta}. In particular they have the same minimum, which means qmin(x,δ)=Fδ1(hx2)q_{\min}(x,\delta)=F^{1}_{\delta}(h_{x}\mathbb{Z}^{2}) as desired.

Refer to caption
Figure 5. Action of glogδg_{\log\delta} on Cδ{(x,y):xT}C_{\delta}\cap\{(x,y):x\leq T\}.

Equation (3.1) in particular allows us understand how the quantity Fδ1(Λ)F^{1}_{\delta}(\Lambda) changes as we change Λ\Lambda in relation to the geodesic flow. Notice that if t=logδt=-\log\delta, we have that

Fδ1(glogδΛ)=δ12F11(Λ)F^{1}_{\delta}(g_{-\log\delta}\Lambda)=\delta^{-\frac{1}{2}}F^{1}_{1}(\Lambda) (3.3)

for each ΛX2\Lambda\in X_{2}. The identity (3.3) allows us to exchange the problem of understanding qminq_{\min} as a problem with a fixed lattice and changing region of intersection with a randomly selected lattice intersecting a fixed region of 2\mathbb{R}^{2}. Figure 5 contains a visual representation of the effect of glogδg_{\log\delta} on the cone CδC_{\delta}.

Theorem 1.2.

Let PP denote the uniform probability measure on [0,1][0,1]. Then for every T>0T>0, as δ0\delta\rightarrow 0,

P({x:δqmin(x,δ)T})μ2({ΛX2:F11(Λ)T}).P\left(\left\{x:\sqrt{\delta}q_{\min}(x,\delta)\leq T\right\}\right)\rightarrow\mu_{2}\left(\left\{\Lambda\in X_{2}:F^{1}_{1}(\Lambda)\leq T\right\}\right). (3.4)
Proof.

By equation (3.2), δqmin(x,δ)T\sqrt{\delta}q_{\min}(x,\delta)\leq T precisely when δFδ1(hx2)T\sqrt{\delta}F^{1}_{\delta}(h_{x}\mathbb{Z}^{2})\leq T. This means that

P({x:δqmin(x,δ)T})=P({x:δFδ1(hx2)T}).P\left(\left\{x:\sqrt{\delta}q_{\min}(x,\delta)\leq T\right\}\right)=P\left(\left\{x:\sqrt{\delta}F^{1}_{\delta}(h_{x}\mathbb{Z}^{2})\leq T\right\}\right).

Using equation (3.3), we get that

P({x:δFδ1(hx2)T})\displaystyle P\left(\left\{x:\sqrt{\delta}F^{1}_{\delta}(h_{x}\mathbb{Z}^{2})\leq T\right\}\right) =P({x:δFδ1(glogδglogδhx2)T})\displaystyle=P\left(\left\{x:\sqrt{\delta}F^{1}_{\delta}(g_{-\log\delta}g_{\log\delta}h_{x}\mathbb{Z}^{2})\leq T\right\}\right)
=P({x:F11(glogδhx2)T}).\displaystyle=P\left(\left\{x:F^{1}_{1}(g_{\log\delta}h_{x}\mathbb{Z}^{2})\leq T\right\}\right).

Notice that glogδhx=hxδglog(δ)g_{\log\delta}h_{x}=h_{\frac{x}{\delta}}g_{\log{\delta}}. This means that the lattice glogδ2g_{\log\delta}\mathbb{Z}^{2} has period δ1\delta^{-1} under the horocyclic flow. Hence, by Theorem 2.1, we have that as δ0\delta\rightarrow 0,

P({x:F11(glogδhx2)T})μ2({Λ:F11(Λ)T})P\left(\left\{x:F^{1}_{1}(g_{\log\delta}h_{x}\mathbb{Z}^{2})\leq T\right\}\right)\rightarrow\mu_{2}\left(\left\{\Lambda:F^{1}_{1}(\Lambda)\leq T\right\}\right)

as desired.

Theorem 1.2 immediately gives us the following corollary which provides a geometric interpretation of the scalar found in equation (1.4) as the solution to the integral below.

Corollary 3.2.

As δ0\delta\rightarrow 0,

δ𝔼x[qmin(x,δ)]=δ01qmin(x,δ)𝑑P(x)X2F11(Λ)𝑑μ2(Λ).\sqrt{\delta}\mathbb{E}_{x}[q_{\min}(x,\delta)]=\sqrt{\delta}\int_{0}^{1}q_{\min}(x,\delta)dP(x)\rightarrow\int_{X_{2}}F^{1}_{1}(\Lambda)d\mu_{2}(\Lambda).
Proof.

Notice that

δ𝔼x[qmin(x,δ)]\displaystyle\sqrt{\delta}\mathbb{E}_{x}[q_{\min}(x,\delta)] =01δqmin(x,δ)𝑑P(x)\displaystyle=\int_{0}^{1}\sqrt{\delta}q_{\min}(x,\delta)dP(x)
=0P({x[0,1]:δqmin(x,δ)T})𝑑T.\displaystyle=\int_{0}^{\infty}P\left(\{x\in[0,1]:\sqrt{\delta}q_{\min}(x,\delta)\geq T\}\right)dT.

By Theorem 1.2, we have that

δ𝔼x[qmin(x,δ)]X2F11(Λ)𝑑μ2(Λ),\sqrt{\delta}\mathbb{E}_{x}[q_{\min}(x,\delta)]\rightarrow\int_{X_{2}}F^{1}_{1}(\Lambda)d\mu_{2}(\Lambda),

as desired. ∎

Corollary 3.3.
X2F11(Λ)𝑑μ2(Λ)=16π2.\int_{X_{2}}F^{1}_{1}(\Lambda)d\mu_{2}(\Lambda)=\frac{16}{\pi^{2}}.
Proof.

This is a consequence of Corollary 3.2 and Theorem 1.1.

X2F11(Λ)𝑑μ2(Λ)\displaystyle\int_{X_{2}}F^{1}_{1}(\Lambda)d\mu_{2}(\Lambda) =limδ0δ01qmin(x,δ)𝑑x\displaystyle=\lim_{\delta\rightarrow 0}\sqrt{\delta}\int_{0}^{1}q_{\min}(x,\delta)dx
=limδ0δ(16π21δ+O(log2(δ)))\displaystyle=\lim_{\delta\rightarrow 0}\sqrt{\delta}\left(\frac{16}{\pi^{2}}\frac{1}{\sqrt{\delta}}+O\left(\log^{2}(\delta)\right)\right)
=16π2\displaystyle=\frac{16}{\pi^{2}}

4. Equivariant processes

Before proceeding to generalize the minimal denominator function, we describe a general framework for equidistribution theorems. This circle of ideas have been inspired by the work of Marklof-Strömbergsson [14] and Veech [18], who in part was inspired by the work of Siegel [17] and Masur [6]. We take the setup as described in Athreya-Ghosh [2]. Let m2m\geq 2 and GGL(m,)G\subset GL(m,\mathbb{R}) be a subgroup. Suppose (X,λ)(X,\lambda) is a standard Borel space and GG acts on XX via measure-preserving transformations. A (GG-)equivariant process, also known as a Siegel measure, is a triple (X,μ,ν)(X,\mu,\nu) where ν\nu is a map ν:X(m)\nu:X\rightarrow\mathcal{M}(\mathbb{R}^{m}), where (m)\mathcal{M}(\mathbb{R}^{m}) is the space of σ\sigma-finite Radon Borel measures on m\mathbb{R}^{m} and we have that for each gGg\in G and xXx\in X, ν(gx)=gν(x)\nu(gx)=g_{*}\nu(x). We shall call ν\nu the equivariant process map.

4.1. Chen-Haynes distributions

Let 𝒮={ST}T>0\mathcal{S}=\{S_{T}\}_{T>0} be a family of Borel subsets of m\mathbb{R}^{m} with the property that if T1T2T_{1}\leq T_{2}, then ST1ST2S_{T_{1}}\subset S_{T_{2}}. Let (Xn,λn,νn)(X_{n},\lambda_{n},\nu_{n}) be a sequence of equivariant processes. We define the Chen-Haynes distribution associated to 𝒮\mathcal{S} and (Xn,λn,νn)(X_{n},\lambda_{n},\nu_{n}) by

ξ(Xn,λn,νn,𝒮)(T)=limnλn({xXn:νn(x)(ST)1}).\xi(X_{n},\lambda_{n},\nu_{n},\mathcal{S})(T)=\lim_{n\rightarrow\infty}\lambda_{n}\left(\left\{x\in X_{n}:\nu_{n}(x)(S_{T})\geq 1\right\}\right). (4.1)

Equidistribution

We specialize the setup above by looking at sequences of GG-equivariant processes over a fixed space and a fixed equivariant process map. Let (X,λn,ν)(X,\lambda_{n},\nu) be such a sequence of GG-equivariant processes. Then we have the following result which allows us to exchange weak convergence results for equidistribution results.

Theorem 4.1.

Suppose that λ({xX:ν(x)(ST)1})=0\lambda(\partial\{x\in X:\nu(x)(S_{T})\geq 1\})=0. If λnλ\lambda_{n}\stackrel{{\scriptstyle\ast}}{{\rightharpoonup}}\lambda, then

ξ(X,λn,ν,𝒮)(T)=λ({xX:ν(x)(ST)1}).\xi(X,\lambda_{n},\nu,\mathcal{S})(T)=\lambda\left(\left\{x\in X:\nu(x)(S_{T})\geq 1\right\}\right). (4.2)
Proof.

Since all of our measures are Radon Borel, we have that weak convergence of measures implies that for all bounded continuous functions f:Xf:X\rightarrow\mathbb{R}, λn(f)λ(f).\lambda_{n}(f)\rightarrow\lambda(f). This means that if AA is a set subset of XX with λ(A)=0\lambda(\partial A)=0, then we may approximate χA\chi_{A} from above and below via bounded continuous functions. This means that λn(A)λ(A)\lambda_{n}(A)\rightarrow\lambda(A). We complete the proof by setting A={xX:ν(x)(ST)1}A=\{x\in X:\nu(x)(S_{T})\geq 1\}.

Theorem 1.2 revisited

In the case of Theorem 1.2, we see that the sets ST=C1{[x,y]T2:xT}S_{T}=C_{1}\cap\{[x,y]^{T}\in\mathbb{R}^{2}:x\leq T\} and the measures λn\lambda_{n} given by the uniform measure on the hsh_{s}-orbit of glog(1/n)2g_{\log{1/n}}\mathbb{Z}^{2} in X2X_{2} provides us with a sequence of standard Borel spaces. Let G={hs:s}SL(2,)G=\{h_{s}:s\in\mathbb{R}\}\subset SL(2,\mathbb{R}) and ν:X2(2)\nu:X_{2}\rightarrow\mathcal{M}(\mathbb{R}^{2}) be given by

ν(Λ)=xΛδx,\nu(\Lambda)=\sum_{x\in\Lambda}\delta_{x}, (4.3)

where δx\delta_{x} is the Dirac-delta measure with support {x}\{x\}. This construction provides us with a sequence of equivariant processes (X2,λn,ν)(X_{2},\lambda_{n},\nu)

Notice that F11(Λ)TF_{1}^{1}(\Lambda)\leq T precisely when ν(Λ)(ST)1\nu(\Lambda)(S_{T})\geq 1. This rephrases Theorem 1.2 as the computation of the Chen-Haynes distribution associated to the sequence (X2,λn,ν)(X_{2},\lambda_{n},\nu) and the family of cones 𝒮\mathcal{S}.

ξ(X2,λn,ν,𝒮)(T)\displaystyle\xi(X_{2},\lambda_{n},\nu,\mathcal{S})(T) =limnλn({ΛX2:ν(Λ)(ST)1})\displaystyle=\lim_{n\rightarrow\infty}\lambda_{n}\left(\left\{\Lambda\in X_{2}:\nu(\Lambda)(S_{T})\geq 1\right\}\right)
=limnλn({ΛX2:F11(Λ)T})\displaystyle=\lim_{n\rightarrow\infty}\lambda_{n}\left(\left\{\Lambda\in X_{2}:F_{1}^{1}(\Lambda)\leq T\right\}\right)
=μ2({ΛX2:F11(Λ)T}).\displaystyle=\mu_{2}\left(\left\{\Lambda\in X_{2}:F_{1}^{1}(\Lambda)\leq T\right\}\right).

In what follows, we will compute the Chen-Haynes distribution of equivariant process associated to higher dimensional Diophantine approximations and the holonomy vectors of translation surfaces. We will proceed similarly, providing appropriate families of sets 𝒮\mathcal{S}, sequences of measure {λn}\{\lambda_{n}\} in the pertinent space, and weak convergence results in order to satisfy the hypotheses of Theorem 4.1. The equivariant process map will always be of the form seen in equation (4.3).

5. Generalization of qminq_{\min} in higher dimensions

The function qminq_{\min} arose from a question about minimizing denominators in a δ\delta neighborhood of a randomly chosen point in [0,1][0,1]. A natural generalization of this question is the the following:

Question: Let mm be a positive integer and endow m\mathbb{R}^{m} with the max norm, m\norm{\cdot}_{m}. Pick δ>0\delta>0 and 𝐱[0,1]m\mathbf{x}\in[0,1]^{m}. We ask, what is the smallest positive integer qq such that there is a vector 𝐩m\mathbf{p}\in\mathbb{Z}^{m} such that 𝐱1q𝐩m<δ?\norm{\mathbf{x}-\frac{1}{q}\mathbf{p}}_{m}<\delta?

This question gives a natural extension of the qminq_{\min} function: For mm\in\mathbb{N}, x[0,1]m\textbf{x}\in[0,1]^{m} and δ>0\delta>0. We define

Qm(x,δ)=min{q: there exists pm such that x1qpm<δ}.Q^{m}(\textbf{x},\delta)=\min\left\{q\in\mathbb{N}:\text{ there exists }\textbf{p}\in\mathbb{Z}^{m}\text{ such that }\norm{\textbf{x}-\frac{1}{q}\textbf{p}}_{m}<\delta\right\}.

Motivated by the work in §3, we study the statistics of Qm(x,δ)Q^{m}(\textbf{x},\delta) by relating it to the theory of lattices.

Define the following function Fδm:Xm+1F^{m}_{\delta}:X_{m+1}\rightarrow\mathbb{N} by

Fδm(Λ)=min{u:there exists vm such that [uv]ΛCδm},F^{m}_{\delta}(\Lambda)=\min\left\{u:\text{there exists }\textbf{v}\in\mathbb{R}^{m}\text{ such that }\begin{bmatrix}u\\ \textbf{v}\end{bmatrix}\in\Lambda\cap C^{m}_{\delta}\right\},

where Cδm={[tt𝐱]:xm<δ,t>0}C^{m}_{\delta}=\left\{\begin{bmatrix}t\\ t\mathbf{x}\end{bmatrix}:\norm{\textbf{x}}_{m}<\delta,t>0\right\}. With these new definitions, we are now able to compute the limiting cumulative distribution for a properly normalized version of Qm(x,δ)Q^{m}(\textbf{x},\delta), that being δmm+1Qm(x,δ)\delta^{\frac{m}{m+1}}Q^{m}(x,\delta).

Theorem 5.1.

Let PP denote the uniform distribution on [0,1]m[0,1]^{m}. Then, as δ0\delta\rightarrow 0,

P({𝐱[0,1]m:δmm+1Qm(𝐱,δ)T})μm+1({ΛXm+1:F1m(Λ)T}).P\left(\left\{\mathbf{x}\in[0,1]^{m}:\delta^{\frac{m}{m+1}}Q^{m}(\mathbf{x},\delta)\leq T\right\}\right)\rightarrow\mu_{m+1}\left(\left\{\Lambda\in X_{m+1}:F^{m}_{1}(\Lambda)\leq T\right\}\right).
Corollary 5.2.

As δ0\delta\rightarrow 0,

𝔼𝐱[δmm+1Qm(𝐱,δ)]=δmm+1[0,1]mQm(𝐱,δ)𝑑P(𝐱)Xm+1F1m(Λ)𝑑μm+1(Λ).\mathbb{E}_{\mathbf{x}}\left[\delta^{\frac{m}{m+1}}Q^{m}(\mathbf{x},\delta)\right]=\delta^{\frac{m}{m+1}}\int_{[0,1]^{m}}Q^{m}(\mathbf{x},\delta)dP(\mathbf{x})\rightarrow\int_{X_{m+1}}F_{1}^{m}(\Lambda)d\mu_{m+1}(\Lambda).

We omit the proof of Theorem 1.3 as it will be a consequence of Theorem 5.6.

5.1. Linear Forms

Let mm and nn be positive integers. Endow m\mathbb{R}^{m} and n\mathbb{R}^{n} with their max norms m\norm{\cdot}_{m} and n\norm{\cdot}_{n}, respectively. The norms m\norm{\cdot}_{m} and n\norm{\cdot}_{n} induce a norm, \norm{\cdot}, on mn=m+n\mathbb{R}^{m}\oplus\mathbb{R}^{n}=\mathbb{R}^{m+n} given by [𝐮,𝐯]T=𝐮n+𝐯m\norm{[\mathbf{u},\mathbf{v}]^{T}}=\norm{\mathbf{u}}_{n}+\norm{\mathbf{v}}_{m}. Let XX be an n×mn\times m matrix with entries in [0,1][0,1]. For δ>0\delta>0, define

Qm,n(X,δ)=min(𝐪,𝐩)n×m{𝐪n:X𝐪𝐩m<δ𝐪n}.Q^{m,n}(X,\delta)=\min_{(\mathbf{q},\mathbf{p})\in\mathbb{Z}^{n}\times\mathbb{Z}^{m}}\left\{\norm{\mathbf{q}}_{n}:\norm{X\mathbf{q}-\mathbf{p}}_{m}<\delta\norm{\mathbf{q}}_{n}\right\}.

Notice that the case when n=1n=1, Qm,1(𝐱,δ)=Qm(𝐱,δ)Q^{m,1}(\mathbf{x},\delta)=Q^{m}(\mathbf{x},\delta) and when mm and nn are both 11, Q1,1(x,δ)=qmin(x,δ)Q^{1,1}(x,\delta)=q_{\min}(x,\delta).

We may identify the collection of m×nm\times n matrices with entries in [0,1][0,1] with [0,1]mn[0,1]^{mn}. Qm,n(X,δ)Q^{m,n}(X,\delta) then models the question: Given a randomly selected X[0,1]mnX\in[0,1]^{mn}, what is the shortest integer vector 𝐪n\mathbf{q}\in\mathbb{Z}^{n} that lands within an appropriately sized neighborhood of m\mathbb{Z}^{m}. The size of this neighborhood depends itself on the size of 𝐪\mathbf{q}.

In order to study the statistics of Qm,nQ^{m,n} we will relate it to the theory of lattices just as we did in §3 and give appropriate generalizations of the geodesic and horocyclic flows.

5.2. Lattice Interpretation

Define Fδm,n:Xm+nF_{\delta}^{m,n}:X_{m+n}\rightarrow\mathbb{R} by

Fδm,n(Λ)=min{𝐮n:[𝐮𝐯]ΛCδm,n}F_{\delta}^{m,n}(\Lambda)=\min\left\{\norm{\mathbf{u}}_{n}:\begin{bmatrix}\mathbf{u}\\ \mathbf{v}\end{bmatrix}\in\Lambda\cap C^{m,n}_{\delta}\right\}

where

Cδm,n={r[𝐬𝐭]:r>0,𝐬n=1,𝐭m<δ}.C^{m,n}_{\delta}=\left\{r\begin{bmatrix}\mathbf{s}\\ \mathbf{t}\end{bmatrix}:r>0,\norm{\mathbf{s}}_{n}=1,\norm{\mathbf{t}}_{m}<\delta\right\}.

The higher-dimensional versions of the horocyclic and geodesic flows that we will use are the following: Let m,n1m,n\geq 1 and let X[0,1]mnX\in[0,1]^{mn}, define

hXm,n=[Idn0XIdm]\displaystyle h_{X}^{m,n}=\begin{bmatrix}\text{Id}_{n}&0\\ -X&\text{Id}_{m}\end{bmatrix} and gtm,n=[etm+nIdn00entm(m+n)Idm].\displaystyle g_{t}^{m,n}=\begin{bmatrix}e^{\frac{t}{m+n}}\text{Id}_{n}&0\\ 0&e^{\frac{-nt}{m(m+n)}}\text{Id}_{m}\end{bmatrix}.

The next lemma is a higher dimensional analogue of Lemma 3.1.

Lemma 5.3.

With the notation as above,

Fδm,n(gtm,nΛ)=etm+nFδetm(Λ).F_{\delta}^{m,n}(g^{m,n}_{t}\Lambda)=e^{\frac{t}{m+n}}F_{\delta e^{\frac{t}{m}}}(\Lambda). (5.1)

and

Qm,n(X,δ)=Fδm,n(hXm,nm+n).Q^{m,n}(X,\delta)=F_{\delta}^{m,n}(h^{m,n}_{X}\mathbb{Z}^{m+n}). (5.2)
Proof.

We begin with the proof of equation (5.1). We first explore the effects of the geodesic flow on the cone Cδm,nC^{m,n}_{\delta}. Just as in Lemma 3.1, we have that gtm,ng_{t}^{m,n} expands our cone in the the direction of m\mathbb{R}^{m} by etme^{\frac{t}{m}}. More precisely, we have

gtm,nCδm,n=Cδetmm,ng_{t}^{m,n}C^{m,n}_{\delta}=C^{m,n}_{\delta e^{-\frac{t}{m}}} (5.3)

Hence, we have the following computation:

Fδm,n(gtm,nΛ)\displaystyle F_{\delta}^{m,n}(g_{t}^{m,n}\Lambda) =min{𝐮n:[𝐮𝐯]gtm,nΛCδm,n}\displaystyle=\min\left\{\norm{\mathbf{u}}_{n}:\begin{bmatrix}\mathbf{u}\\ \mathbf{v}\end{bmatrix}\in g_{t}^{m,n}\Lambda\cap C_{\delta}^{m,n}\right\}
=min{𝐮n:gtm,n[𝐮𝐯]Λgtm,nCδm,n}\displaystyle=\min\left\{\norm{\mathbf{u}}_{n}:g_{-t}^{m,n}\begin{bmatrix}\mathbf{u}\\ \mathbf{v}\end{bmatrix}\in\Lambda\cap g_{-t}^{m,n}C_{\delta}^{m,n}\right\}
=min{𝐮n:[etm+n𝐮entm(m+n)𝐯]ΛCδetmm,n}\displaystyle=\min\left\{\norm{\mathbf{u}}_{n}:\begin{bmatrix}e^{-\frac{t}{m+n}}\mathbf{u}\\ e^{-\frac{nt}{m(m+n)}}\mathbf{v}\end{bmatrix}\in\Lambda\cap C_{\delta e^{\frac{t}{m}}}^{m,n}\right\}
=etm+nmin{𝐮n:[𝐮𝐯]ΛCδetmm,n}\displaystyle=e^{\frac{t}{m+n}}\min\left\{\norm{\mathbf{u^{\prime}}}_{n}:\begin{bmatrix}\mathbf{u^{\prime}}\\ \mathbf{v^{\prime}}\end{bmatrix}\in\Lambda\cap C_{\delta e^{\frac{t}{m}}}^{m,n}\right\}
=etm+nFδetmm,n(Λ)\displaystyle=e^{\frac{t}{m+n}}F^{m,n}_{\delta e^{\frac{t}{m}}}(\Lambda)

as desired.

We now proceed to prove equation (5.2). We first show that Qm,n(X,δ)Fδm,n(hXm,nm+n)Q^{m,n}(X,\delta)\geq F_{\delta}^{m,n}(h^{m,n}_{X}\mathbb{Z}^{m+n}). Let (𝐪,𝐩)n×m(\mathbf{q},\mathbf{p})\in\mathbb{Z}^{n}\times\mathbb{Z}^{m} such that X𝐪𝐩m<δ𝐪n\norm{X\mathbf{q}-\mathbf{p}}_{m}<\delta\norm{\mathbf{q}}_{n} and 𝐪n\norm{\mathbf{q}}_{n} is minimized. Then by definition, Qm,n(X,δ)=𝐪nQ^{m,n}(X,\delta)=\norm{\mathbf{q}}_{n}. We then have that

hX[𝐪𝐩]=[𝐪𝐩X𝐪]hXm+nCδm,nh_{X}\begin{bmatrix}\mathbf{q}\\ \mathbf{p}\end{bmatrix}=\begin{bmatrix}\mathbf{q}\\ \mathbf{p}-X\mathbf{q}\end{bmatrix}\in h_{X}\mathbb{Z}^{m+n}\cap C_{\delta}^{m,n}

Hence we have that

Fδm,n(hXm+)𝐪n=Qδm,n(X,δ).F^{m,n}_{\delta}(h_{X}\mathbb{Z}^{m+})\leq\norm{\mathbf{q}}_{n}=Q_{\delta}^{m,n}(X,\delta).

Next we show that Fδm,n(hXm+n)Qm,n(X,δ).F^{m,n}_{\delta}(h_{X}\mathbb{Z}^{m+n})\geq Q^{m,n}(X,\delta). Let (𝐚,𝐛)hXm+nCδm,n(\mathbf{a},\mathbf{b})\in h_{X}\mathbb{Z}^{m+n}\cap C_{\delta}^{m,n} such that 𝐚n\norm{\mathbf{a}}_{n} is minimized. This means Fδm,n(hXm+n)=𝐚nF_{\delta}^{m,n}(h_{X}\mathbb{Z}^{m+n})=\norm{\mathbf{a}}_{n}. This means that there exist (𝐪,𝐩)nm(\mathbf{q},\mathbf{p})\in\mathbb{Z}^{n}\oplus\mathbb{Z}^{m} such that

hX[𝐪𝐩]=[𝐚𝐛]h_{X}\begin{bmatrix}\mathbf{q}\\ \mathbf{p}\end{bmatrix}=\begin{bmatrix}\mathbf{a}\\ \mathbf{b}\end{bmatrix}

That is 𝐚=𝐪\mathbf{a}=\mathbf{q} and 𝐩X𝐪=𝐛\mathbf{p}-X\mathbf{q}=\mathbf{b}. Since

[𝐚𝐛]=𝐚n[𝐚𝐚n𝐛𝐚n]Cδm,n\begin{bmatrix}\mathbf{a}\\ \mathbf{b}\end{bmatrix}=\norm{\mathbf{a}}_{n}\begin{bmatrix}\frac{\mathbf{a}}{\norm{\mathbf{a}}_{n}}\\ \frac{\mathbf{b}}{\norm{\mathbf{a}}_{n}}\end{bmatrix}\in C_{\delta}^{m,n}

it follows that 𝐛𝐚nm<δ\norm{\frac{\mathbf{b}}{\norm{\mathbf{a}}_{n}}}_{m}<\delta which means 𝐛m<δ𝐚n\norm{\mathbf{b}}_{m}<\delta\norm{\mathbf{a}}_{n}. This can be rewritten as 𝐩X𝐪m<δ𝐪n\norm{\mathbf{p}-X\mathbf{q}}_{m}<\delta\norm{\mathbf{q}}_{n}. That is

Qm,n(X,δ)𝐪n=𝐚n=Fδm,n(hXm+n).Q^{m,n}(X,\delta)\leq\norm{\mathbf{q}}_{n}=\norm{\mathbf{a}}_{n}=F_{\delta}^{m,n}(h_{X}\mathbb{Z}^{m+n}).

This completes the proof of Lemma 5.3. ∎

Notice that when t=log(δm)t=-\log(\delta^{m}), equation (5.1) says that

Fδm,n(glog(δm)m,nΛ)=δmm+nF1m,n(Λ).F_{\delta}^{m,n}(g^{m,n}_{-\log(\delta^{m})}\Lambda)=\delta^{-\frac{m}{m+n}}F_{1}^{m,n}(\Lambda). (5.4)

Before proceeding to state the main theorem of this section we state an equidistribition theorem due to Kleinbock and Margulis [11] which will play the roll Theorem 2.1 played in the proof of Theorem 1.2.

Almost uniformly continuous functions.

Let (Y,μ)(Y,\mu) be a topological space equipped with its Borel σ\sigma-algebra and a measure μ\mu. We say a function Ψ:Y\Psi:Y\rightarrow\mathbb{R} is almost uniformly continuous if there exist sequences {Ψi}i\{\Psi_{i}\}_{i\in\mathbb{N}} and {Ψj}j\{\Psi^{j}\}_{j\in\mathbb{N}} of uniformly continuous functions on YY such that Ψi\Psi_{i} increases almost surely to Ψ\Psi and Ψj\Psi_{j} decreases almost surely to Ψ\Psi. In particular, with the setup above, if μ\mu is a regular probability measure and AA is a measurable subset of YY with μ(A)=0\mu(\partial A)=0, then the indicator function of AA, χA\chi_{A}, is almost uniformly continuous.

Lemma 5.4.

(Kleinbock-Margulis [11]) Let fL2(Mm×n())f\in L^{2}(M_{m\times n}(\mathbb{R})) with compact support. Then for any almost uniformly continuous ΨL2(Xm+n)\Psi\in L^{2}(X_{m+n}), any compact subset L of Xm+nX_{m+n}, and any ε>0\varepsilon>0, the exists T>0T>0 such that

|Mm×n()f(hX)Ψ(gthXΛ)𝑑XMm×n()f(hX)𝑑XXm+nΨ(Λ)𝑑μm+n(Λ)|<ε\absolutevalue{\int_{M_{m\times n}(\mathbb{R})}f(h_{X})\Psi(g_{t}h_{X}\Lambda)dX-\int_{M_{m\times n}(\mathbb{R})}f(h_{X})dX\int_{X_{m+n}}\Psi(\Lambda)d\mu_{m+n}(\Lambda)}<\varepsilon (5.5)

for any ΛL\Lambda\in L and all t>Tt>T.

Before proving Theorem 5.6, we give some notation and a lemma which will be useful in the proof.

  1. (1)

    AT={ΛXm+n:F1m,n(Λ)TA_{T}=\{\Lambda\in X_{m+n}:F_{1}^{m,n}(\Lambda)\leq T},

  2. (2)

    BT=Xm+nATB_{T}=X_{m+n}\setminus A_{T},

  3. (3)

    CR=C1m,n¯{[𝐮,𝐯]Tnm:𝐮nR},C^{R}=\overline{C_{1}^{m,n}}\cap\{[\mathbf{u},\mathbf{v}]^{T}\in\mathbb{R}^{n}\oplus\mathbb{R}^{m}:\norm{\mathbf{u}}_{n}\leq R\},

  4. (4)

    For each ΛXm+n\Lambda\in X_{m+n}, Λ=Λ{𝟎}\Lambda^{*}=\Lambda\setminus\{\mathbf{0}\}.

Lemma 5.5.

With the notation as above, the following are true:

AT¯AT{ΛXm+n:ΛC1m,n},\overline{A_{T}}\subset A_{T}\cup\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\}, (5.6)
AT{ΛXm+n:F1m,n=T}{ΛXm+n:ΛC1m,n}\partial A_{T}\subset\{\Lambda\in X_{m+n}:F_{1}^{m,n}=T\}\cup\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\} (5.7)

and

μm+n(AT)=0.\mu_{m+n}(\partial A_{T})=0. (5.8)
Proof.

We begin by proving equation (5.6). Fix T>0T>0. Let ΛAT¯\Lambda\in\overline{A_{T}}. Suppose ΛAT¯\Lambda\in\overline{A_{T}} and
Λ{ΛXm+n:ΛC1m,n}\Lambda\notin\left\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\right\}. If F1m,n(Λ)TF_{1}^{m,n}(\Lambda)\leq T, we are done, so suppose F1m,n(Λ)=T0>TF_{1}^{m,n}(\Lambda)=T_{0}>T. Let BB be the closed ball in m+n\mathbb{R}^{m+n} centered at the origin with radius RR, where RR is chosen such that CT0Int(B)C^{T_{0}}\subset\operatorname{Int}(B) and BΛ=\partial B\cap\Lambda=\emptyset. Since BB is compact, Λ\Lambda is discrete, and F1m,n(Λ)=T0<RF_{1}^{m,n}(\Lambda)=T_{0}<R, it follows that BΛB\cap\Lambda is finite and non-empty. This implies that there exists δ>0\delta>0 such that if [𝐮,𝐯]TBΛ[\mathbf{u},\mathbf{v}]^{T}\in B\cap\Lambda with 𝐮n(T0δ,T0+δ)\norm{\mathbf{u}}_{n}\in(T_{0}-\delta,T_{0}+\delta), then 𝐮n=T0\norm{\mathbf{u}}_{n}=T_{0}. Let d=dist(B,Λ)d=\operatorname{dist}(\partial B,\Lambda). d>0d>0 by our choice of RR. Define η=12min{d,δ,1,T0T}\eta=\frac{1}{2}\min\{d,\delta,1,T_{0}-T\}. Consider BB^{\prime} to be the ball centered at the origin with radius 2R2R. Since ΛB\Lambda\cap B^{\prime} is finite and the action of SL(m+n,)SL(m+n,\mathbb{R}) on m+n\mathbb{R}^{m+n} is continuous, there exists a neighborhood UU of IdSL(m+n,)\text{Id}\in SL(m+n,\mathbb{R}) such that if 𝐰BΛ\mathbf{w}\in B^{\prime}\cap\Lambda and gUg\in U, g𝐰𝐰<η\norm{g\mathbf{w}-\mathbf{w}}<\eta. Since ΛAT¯\Lambda\in\overline{A_{T}}, there exists a sequence ΛiAT\Lambda_{i}\in A_{T} converging to Λ\Lambda. Since Λi\Lambda_{i} is converging to Λ\Lambda, we can write Λi=giΛ\Lambda_{i}=g_{i}\Lambda where giUg_{i}\in U for ii large enough. Then this implies that

|T0T||F1m,n(Λ)F1m,n(Λi)|<η<|T0T|.\absolutevalue{T_{0}-T}\leq\absolutevalue{F_{1}^{m,n}(\Lambda)-F_{1}^{m,n}(\Lambda_{i})}<\eta<\absolutevalue{T_{0}-T}.

This is a contradiction. This means our assumption that F1m,n(Λ)=T0>TF_{1}^{m,n}(\Lambda)=T_{0}>T is false. Hence, F1m,n(Λ)TF_{1}^{m,n}(\Lambda)\leq T, so ΛAT\Lambda\in A_{T}. This completes the proof of equation (5.6).

We now proceed to prove equation (5.7). One can use the a similar argument as the one used in the proof of equation (5.6) to show that

BT¯BT{ΛXm+n:ΛC1m,n}.\overline{B_{T}}\subset B_{T}\cup\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\}.

This then implies

AT=AT¯BT¯{ΛXm+n:F1m,n(Λ)=T}{ΛXm+n:ΛC1m,n}\partial A_{T}=\overline{A_{T}}\cap\overline{B_{T}}\subset\left\{\Lambda\in X_{m+n}:F_{1}^{m,n}(\Lambda)=T\right\}\cup\left\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\right\} (5.9)

Finally, we prove equation (5.8). Let D={[𝐮,𝐯]Tm+n:𝐮n=T}C1m,n.D=\left\{[\mathbf{u},\mathbf{v}]^{T}\in\mathbb{R}^{m+n}:\norm{\mathbf{u}}_{n}=T\right\}\cup\partial C_{1}^{m,n}. DD has Lebesgue measure 0 on m+n\mathbb{R}^{m+n}, this then implies that {ΛXm+n:ΛD}\{\Lambda\in X_{m+n}:\Lambda^{*}\cap D\neq\emptyset\} has measure 0. Since

AT\displaystyle\partial A_{T} =AT¯BT¯{ΛXm+n:F1m,n(Λ)=T}{ΛXm+n:ΛC1m,n}\displaystyle=\overline{A_{T}}\cap\overline{B_{T}}\subset\left\{\Lambda\in X_{m+n}:F_{1}^{m,n}(\Lambda)=T\right\}\cup\left\{\Lambda\in X_{m+n}:\Lambda^{*}\cap\partial C_{1}^{m,n}\neq\emptyset\right\} (5.10)
={ΛXm+n:ΛD},\displaystyle=\{\Lambda\in X_{m+n}:\Lambda^{*}\cap D\neq\emptyset\}, (5.11)

we have that AT\partial A_{T} has measure zero.

We are now ready to state and prove Theorem 5.6

Theorem 5.6.

Let PP be the uniform probability measure on [0,1]mn[0,1]^{mn}. Then as δ0\delta\rightarrow 0,

P({XMm×n([0,1]):δmm+nQm,n(X,δ)T})μm+n({ΛXm+n:F1m,n(Λ)T})P\left(\left\{X\in M_{m\times n}([0,1]):\delta^{\frac{m}{m+n}}Q^{m,n}(X,\delta)\leq T\right\}\right)\rightarrow\mu_{m+n}\left(\left\{\Lambda\in X_{m+n}:F_{1}^{m,n}(\Lambda)\leq T\right\}\right)
Proof.

Equation (5.2), allows us to interchange P({XMm×n([0,1]):δmm+nQm,n(X,δ)T})P\left(\left\{X\in M_{m\times n}([0,1]):\delta^{\frac{m}{m+n}}Q^{m,n}(X,\delta)\leq T\right\}\right) for P({XMm×n([0,1]):δmm+nFδm,n(hXm+n)T}).P\left(\left\{X\in M_{m\times n}([0,1]):\delta^{\frac{m}{m+n}}F^{m,n}_{\delta}(h_{X}\mathbb{Z}^{m+n})\leq T\right\}\right). By equation (5.8) we get that χAT\chi_{A_{T}} is almost uniformly continuous.

Using equation (5.4), we get that

fds\displaystyle{\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}fds} P({XMm×n([0,1]):δmm+nFδm,n(hXm+n)T})\displaystyle P\left(\left\{X\in M_{m\times n}([0,1]):\delta^{\frac{m}{m+n}}F^{m,n}_{\delta}(h_{X}\mathbb{Z}^{m+n})\leq T\right\}\right)
=P({XMm×n([0,1]):Fδm,n(glog(δm)hXm+n)T})\displaystyle\hskip 21.68121pt=P\left(\left\{X\in M_{m\times n}([0,1]):F^{m,n}_{\delta}(g_{-\log(\delta^{m})}h_{X}\mathbb{Z}^{m+n})\leq T\right\}\right)
=[0,1]mnχAT(glog(δm)hXm+n)𝑑P(X).\displaystyle\hskip 21.68121pt=\int_{[0,1]^{mn}}\chi_{A_{T}}\left(g_{-\log(\delta^{m})}h_{X}\mathbb{Z}^{m+n}\right)dP(X).

We can then apply Lemma 5.4 by setting f=χ[0,1]mnf=\chi_{[0,1]^{mn}} and Ψ=χAT\Psi=\chi_{A_{T}}.

limδ0[0,1]mnχ[0,1]mn(X)χA(glog(δm)hXm+n)𝑑P(X)=Xm+nχAT(Λ)𝑑μm+n(Λ)=μ(AT).\lim_{\delta\rightarrow 0}\int_{[0,1]^{mn}}\chi_{[0,1]^{mn}}(X)\chi_{A}\left(g_{-\log(\delta^{m})}h_{X}\mathbb{Z}^{m+n}\right)dP(X)=\int_{X_{m+n}}\chi_{A_{T}}(\Lambda)d\mu_{m+n}(\Lambda)=\mu(A_{T}).

as claimed. ∎

Corollary 5.7.
limδ0𝔼X[δmm+nQm,n(X,δ)]=Xm+nF1m,n(Λ)𝑑μm+n(Λ).\lim_{\delta\rightarrow 0}\mathbb{E}_{X}\left[\delta^{\frac{m}{m+n}}Q^{m,n}(X,\delta)\right]=\int_{X_{m+n}}F_{1}^{m,n}(\Lambda)d\mu_{m+n}(\Lambda).

6. Short saddle connections

6.1. The SL(2,)SL(2,\mathbb{R}) action on the Moduli Space of Translation Surfaces and Veech Surfaces

Given g>0g>0 and an integer partition α\alpha of 2g22g-2, we define (α)\mathcal{H}(\alpha) to be the moduli space of translation surfaces ω\omega with genus gg, area 1, and zeros with orders given by α\alpha. The space (α)\mathcal{H}(\alpha) has a natural topology and finite Borel measure μMSV\mu_{MSV}. Zorich [19] contains a detailed discussion of this structure on (α)\mathcal{H}(\alpha).

Let s1s_{1} and s2s_{2} be two parallel segments of the same length on \mathbb{C}. If gSL(2,)g\in SL(2,\mathbb{R}), then it follows that g(s1)g(s_{1}) and g(s2)g(s_{2}) are also two parallel segments of the same length on \mathbb{C}. In particular, given that we may think of translation surfaces as polygons on the plane with identifications along its sides via Euclidean translation, it follows that the action of SL(2,)SL(2,\mathbb{R}) on \mathbb{C} transfers to an action on our translation surface. The action of SL(2,)SL(2,\mathbb{R}) is continuous and ergodic on each connected component of (α)\mathcal{H}(\alpha).

In this section we are particularly interested in translation surfaces which exhibit a large number of symmetries. To be precise, we provide the following definitions.

Definition 6.1.

Let ω\omega be a translation surface. The Veech group of ω\omega is the stabilizer of ω\omega under the SL(2,)SL(2,\mathbb{R}) action.

Definition 6.2.

We say ω\omega is a Veech surface if its Veech group is a discrete subgroup of SL(2,)SL(2,\mathbb{R}), where SL(2,)/ΓωSL(2,\mathbb{R})/\Gamma_{\omega} has finite volume.

For simplicity we will denote SL(2,)/ΓωSL(2,\mathbb{R})/\Gamma_{\omega} by YωY_{\omega}. In particular, YωY_{\omega} parameterizes the orbit of ω\omega under SL(2,)SL(2,\mathbb{R}). It turns out the the quotient space YωY_{\omega} is never compact. With this in mind, we state an important theorem due to Dani-Smillie [5].

Theorem 6.1.

(Dani-Smillie [5]) Let ω\omega be a Veech surface and (ωi)i(\omega_{i})_{i\in\mathbb{N}} be a sequence of points in YωY_{\omega}. Suppose ωi\omega_{i} has period sis_{i} under the the action of the horocyclic flow. Let νi\nu_{i} be the uniform measure on the orbit of ωi\omega_{i}. If sis_{i}\rightarrow\infty, then

νi1μω(Yω)μω,\nu_{i}\stackrel{{\scriptstyle\ast}}{{\rightharpoonup}}\frac{1}{\mu_{\omega}(Y_{\omega})}\mu_{\omega},

where μω\mu_{\omega} is the Haar measure on YωY_{\omega}.

6.2. Existence of limiting distribution for Veech surfaces

Refer to caption
Figure 6. Depiction of saddle connections on a genus 1 surface.

A natural extension of the function qminq_{\min} in the context of translation surfaces is the following:

Question: What is the point of smallest xx-coordinate in ΛωhsCδ\Lambda_{\omega}\cap h_{-s}C_{\delta} as ss ranges over \mathbb{R}.

Due to the Veech dichotomy [9], we know that in the context of Veech surfaces we can always find (up to rotating the surface if necessary the surface) an α>0\alpha>0 such that hαh_{\alpha} belongs to the Veech group of our surface.

Let δ>0\delta>0 and consider the following function:

Ψ(ω,δ)=min{Re(zγ):γ is a saddle connection of ω and zγΛ(ω)Cδ}.\Psi(\omega,\delta)=\min\left\{\real(z_{\gamma}):\gamma\text{ is a saddle connection of }\omega\text{ and }z_{\gamma}\in\Lambda(\omega)\cap C_{\delta}\right\}.
Lemma 6.2.

Let ω\omega be a translation surface, then

Ψ(gtω,δ)=et2Ψ(ω,etδ)\Psi(g_{t}\omega,\delta)=e^{\frac{t}{2}}\Psi(\omega,e^{t}\delta) (6.1)

and

Ψ(glogδω,δ)=δΨ(ω,1).\Psi(g_{-\log\delta}\omega,\delta)=\sqrt{\delta}\Psi(\omega,1). (6.2)
Theorem 1.4.

Let ω\omega be a Veech surface and suppose that hαΓωh_{\alpha}\in\Gamma_{\omega} for some α>0\alpha>0. Let PP be the uniform probability measure on [0,α][0,\alpha]. Then as δ0\delta\rightarrow 0,

P({s[0,α]:δΨ(hsω,δ)T})μω({gΓωYω:Ψ(gΓω,1)T})μω(Yω).P\left(\left\{s\in[0,\alpha]:\sqrt{\delta}\Psi(h_{s}\omega,\delta)\leq T\right\}\right)\rightarrow\frac{\mu_{\omega}\left(\left\{g\Gamma_{\omega}\in Y_{\omega}:\Psi(g\Gamma_{\omega},1)\leq T\right\}\right)}{\mu_{\omega}\left(Y_{\omega}\right)}.
Proof.

This proof has the same strategy as that of Theorem 1.2, we change to the appropriate equidistribution theorem to pass to the limit.

Let

A={kΓωYω:Ψ(kω,1)T}.A=\{k\Gamma_{\omega}\in Y_{\omega}:\Psi(k\omega,1)\leq T\}.

We now proceed to the computation

P({s[0,α]:δΨ(hsω,δ)T})\displaystyle P\left(\left\{s\in[0,\alpha]:\sqrt{\delta}\Psi(h_{s}\omega,\delta)\leq T\right\}\right) =P({s[0,α]:δΨ(glogδglogδhsω,δ)T})\displaystyle=P\left(\left\{s\in[0,\alpha]:\sqrt{\delta}\Psi(g_{-\log\delta}g_{\log\delta}h_{s}\omega,\delta)\leq T\right\}\right)
=P({s[0,α]:Ψ(glogδhsω,1)T})\displaystyle=P\left(\left\{s\in[0,\alpha]:\Psi(g_{\log\delta}h_{s}\omega,1)\leq T\right\}\right)
=1α0αχA(glogδhsω)𝑑s\displaystyle=\frac{1}{\alpha}\int_{0}^{\alpha}\chi_{A}(g_{\log\delta}h_{s}\omega)ds

Since glogδhs=hsδglogδg_{\log\delta}h_{s}=h_{\frac{s}{\delta}}g_{\log\delta}, we have that the period of glog(δ)ωg_{\log{\delta}}\omega under the horocyclic flow is αδ\frac{\alpha}{\delta} and hence by Theorem 6.1, the orbit glogδωg_{\log\delta}\omega under the horocyclic flow are becoming equidistributed as δ0\delta\rightarrow 0. This means that

limδ01α0αχA(glogδhsω)𝑑s=limδ0δα0αδχA(hsglogδω)𝑑s=1μω(Yω)YωχA(gΓω)𝑑μω.\displaystyle\lim_{\delta\rightarrow 0}\frac{1}{\alpha}\int_{0}^{\alpha}\chi_{A}(g_{\log\delta}h_{s}\omega)ds=\lim_{\delta\rightarrow 0}\frac{\delta}{\alpha}\int_{0}^{\frac{\alpha}{\delta}}\chi_{A}(h_{s}g_{\log\delta}\omega)ds=\frac{1}{\mu_{\omega}(Y_{\omega})}\int_{Y_{\omega}}\chi_{A}(g\Gamma_{\omega})d\mu_{\omega}.

And and we have that

1μω(Yω)YωχA(gΓω)𝑑μω=μω({gΓωYω:Ψ(gΓω,1)T})μω(Yω),\frac{1}{\mu_{\omega}(Y_{\omega})}\int_{Y_{\omega}}\chi_{A}(g\Gamma_{\omega})d\mu_{\omega}=\frac{\mu_{\omega}\left(\left\{g\Gamma_{\omega}\in Y_{\omega}:\Psi(g\Gamma_{\omega},1)\leq T\right\}\right)}{\mu_{\omega}\left(Y_{\omega}\right)},

which is what we wanted to show. ∎

Corollary 6.3.

Let ω\omega be a Veech surface and suppose that hαSL(ω)h_{\alpha}\in SL(\omega) for some α>0\alpha>0, then as δ0\delta\rightarrow 0,

𝔼x[δΨ(hsω,δ)]=δα0αΨ(hsω,δ)𝑑s1μω(Xω)XωΨ(gΓω,1)𝑑μω.\mathbb{E}_{x}\left[\sqrt{\delta}\Psi(h_{s}\omega,\delta)\right]=\frac{\sqrt{\delta}}{\alpha}\int_{0}^{\alpha}\Psi(h_{s}\omega,\delta)ds\rightarrow\frac{1}{\mu_{\omega}(X_{\omega})}\int_{X_{\omega}}\Psi(g\Gamma_{\omega},1)d\mu_{\omega}.

References

  • [1] Athreya, J. S., and Chaika, J. (2012). The distribution of gaps for Saddle Connection Directions. Geometric and Functional Analysis, 22(6), 1491–1516.
  • [2] Athreya, J., and Ghosh, A. (2019). The erdős–szüsz–turán distribution for Equivariant Processes. L’Enseignement Mathématique, 64(1), 1–21.
  • [3] Boca, F. P., and Zaharescu, A. (2005). The correlations of Farey fractions. Journal of the London Mathematical Society, 72(01), 25–39.
  • [4] Chen H. and Haynes A., “Expected value of the smallest denominator in a random interval of fixed radius”. available at arXiv:2109.12668, 2022
  • [5] Dani, S. G., and Smillie, J. (1984). Uniform distribution of Horocycle orbits for Fuchsian groups. Duke Mathematical Journal, 51(1).
  • [6] Eskin, A., and Masur, H. (2001). Asymptotic formulas on Flat Surfaces. Ergodic Theory and Dynamical Systems, 21(2), 443–478.
  • [7] Franel, J. (1924). Les suites de Farey et le problème des nombres premiers. Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse, 1924, 198–201.
  • [8] Hall, R. R. (1970). A note on Farey series. Journal of the London Mathematical Society, s2-2(1), 139–148.
  • [9] Hubert, P., and Schmidt, T. (2006). An Introduction to Veech Surfaces. Handbook of Dynamical Systems, 1B, 501–524.
  • [10] Kim, S. (2015). On the distribution of lengths of short vectors in a random lattice. Mathematische Zeitschrift, 282(3–4), 1117–1126.
  • [11] Kleinbock, D. and Margulis, G. (1996). Bounded orbits of nonquasiunipotent flows on homogeneous spaces. Amer. Math. Soc. Transl.. 171.
  • [12] Kumanduri, L., Sanchez, A., and Wang, J. (2021). Slope Gap Distributions of Veech Surfaces.
  • [13] Landau E.(1924). Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Gottinger Nachr., 202-206.
  • [14] Marklof, J., and Strömbergsson, A. (2010a). The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Annals of Mathematics, 172(3), 1949–2033.
  • [15] Masur, H. (1990). The growth rate of trajectories of a quadratic differential. Ergodic Theory and Dynamical Systems, 10(1), 151–176.
  • [16] Sander, E., and Meiss, J. D. (2020). Birkhoff averages and rotational invariant circles for area-preserving maps. Physica D: Nonlinear Phenomena, 411, 132569.
  • [17] Siegel, C. L. (1945). A mean value theorem in geometry of numbers. The Annals of Mathematics, 46(2), 340.
  • [18] Veech, W. A. (1998). Siegel measures. The Annals of Mathematics, 148(3), 895. https://doi.org/10.2307/121033
  • [19] Zorich, A. (2006). Flat surfaces. Frontiers in Number Theory, Physics, and Geometry I, 439–585.