This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Milky Way atlas for linear filaments II. clump rotation versus filament orientation

Xuefang Xu1,2, Ke Wang3, Qian Gou1,2,Tapas Baug4, Di Li5,6, Chunguo Duan1, and Juncheng Lei1
1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
2Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
3Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
4S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
5Department of Astronomy, Tsinghua University, Beijing 100084, China
6National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
E-mail:[email protected]:[email protected]
Abstract

Dense clumps distributed along filaments are the immediate medium for star formation. Kinematic properties of the clumps, such as velocity gradient and angular momentum, combined with filament orientation, provide important clues to the formation mechanism of filament-clump configurations and the role of filaments in star formation. By cross-matching the Milky Way atlas for linear filaments and the Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium (SEDIGISM) 13CO (2-1) data, we aim to derive the velocity gradient (𝒢{\cal{}G}) and its direction (θ𝒢\theta_{\cal{}G}), the specific angular momentum (J/MJ/M), and the ratio (β\beta) between the rotational energy and gravitational energy of clumps, as well as to investigate the alignment between clump rotation and filament orientation. We found a monotonic increase in J/MJ/M as a function of clump size (RR), following a power-law relation J/MR1.5±0.2J/M~{}\propto~{}R^{1.5\pm 0.2}. The ratio β\beta ranges from 1.1 ×\times 10-5 to 0.1, with a median value 1.0 ×\times 10-3, suggesting that clump rotation provides insignificant support against gravitational collapse. The distribution of the angle between clump rotation (θ𝒢\theta_{\cal{}G}) and natal filament orientation is random, indicating that the clumps’ rotational axes have no discernible correlation with the orientation of their hosting filaments. Counting only the most massive clump in each filament also finds no alignment between clump rotation and filament orientation.

keywords:
ISM: clouds — ISM: molecules — ISM: structure — ISM: kinematics and dynamics
pagerange: The Milky Way atlas for linear filaments II. clump rotation versus filament orientation The Milky Way atlas for linear filaments II. clump rotation versus filament orientation

1 Introduction

Filamentary structures are ubiquitous in the interstellar medium (ISM) (Molinari et al., 2010; André et al., 2014). They are believed to play an important role in star formation, because dense molecular clumps and cores (the immediate medium for star formation) are predominantly observed along the filamentary ridges compared to other parts within a molecular cloud. Clumps along filaments often form a Necklace-like geometric configuration, which is a natural consequence of the so called “sausage” instability in a plasma/magnetized gaseous cylinder (Chandrasekhar & Fermi, 1953).  Wang et al. (2016) developed a customized minimum spaning tree (MST) algorithm to identify such filaments by connecting clumps in position-position velocity (PPV) space into a velocity-coherent linear structure. They have applied the MST method to Galactic surveys (BGPS, ALASGAL, SEDIGISM, and HiGAL) and revealed a panoramic view of the filamentary structures in the Galaxy (Wang et al., 2016; Ge & Wang, 2022; Ge et al., 2023; Wang et al., 2024). Of particular interest to this study is the first Milky Way atlas of 42 linear filaments in the full Galactic plane (Wang et al., 2024), providing well-defined filament orientation in an unbiased sample. In the Necklace configuration, filaments can channel gas flows to feed star formation in the clumps, which has been observed in many filaments (e.g. Wang et al., 2014; Ge & Wang, 2022; Ge et al., 2023; Xu et al., 2023).

In sufficiently young filaments, such as those identified in Herschel far-IR emission of cold dust (Li & Goldsmith, 2012; Wang et al., 2015; Wang et al., 2024), it is believed that the clumps may still retain the kinematic signatures inherited from the cylindrical fragmentation (Shimajiri et al., 2019; Sharma et al., 2020). For example, Ren et al. (2023) reported that the central massive core in massive filament G352.63-1.07 has a spatial extent parallel to the main filament. On the other hand, simulations (Misugi et al., 2019, 2023) found that most of the cores, formed from filament fragmentation, rotate perpendicular to the filament’s long-axis. This may be due to the fact that gas in filaments predominantly flows either perpendicular or parallel to the filament axis as also observed by Sharma et al. (2020). Classically, the angular momentum of a star-forming molecular cloud is anticipated to be hierarchically transferred to the clumps/cores and eventually to the protostar. As the gas flow is believed to occur either parallel or perpendicular to the long-axis of the filament, the rotation axis (of the clumps, core or accretion disk) is expected to be preferentially parallel or perpendicular to the core minor axis and the filament structure. Thus, the orientation of clump angular momentum and their host filaments may provide important clues about their formation mechanisms and the role of filaments in star formation.

To explore the alignment between clump rotation and the natal environment, the distribution of angles between the rotational axes of clump and the orientation of natal filament were analyzed. Such angles could potentially differentiate between various mechanisms of clump formation. For instance, the angular momentum of a clump is oriented perpendicularly to its natal filament’s axis (e.g. Anathpindika & Whitworth, 2008; Wang et al., 2011; Kong et al., 2019), providing evidence for the clump-formation mechanism proposed by Whitworth et al. (1995). Conversely, a near parallel relation can be clarified by another clump formation mechanism, namely Gravo-turbulent fragmentation (Banerjee et al., 2006; Offner et al., 2008; Clarke et al., 2017; Aizawa et al., 2020; Anathpindika & Di Francesco, 2022). Furthermore, Baug et al. (2020) found a random distribution between angular momentum and filament orientation. In these cases, the direction of angular momentum is traced by outflow or disk axes. Velocity gradients were fitted by Xu et al. (2020a) following Goodman et al. (1993) to trace the rotational direction of cores, revealing no preferred trend between cores and their natal filaments specially in the Orion Molecular Cloud (OMC)-2 and OMC-3 filamentary regions (Li et al., 2003, 2013b; Yue et al., 2021). Additionally, their defined orientation of gas-flow axis, as per the auto-correlation function in the N2H+ integrated density map (similar to Li et al., 2013a), did not show any preferred relation with the embedded cores.

In this work, the alignment between clump rotation and the natal filament in eight linear filaments was investigated. The paper is organized as follows: Section 2.1 outlines the target filaments selected from an unbiased linear filament sample (Wang et al., 2024) and describes the 13CO (2-1) data used in this study. Section 2.2 details the definitions of the orientations of the target filaments, while Section 2.3 discusses the velocity gradient measurements of HiGAL clumps (Elia et al., 2021) following the methodology established by Goodman et al. (1993). Section 3 shows the result of the specific angular momentum (J/MJ/M), the ratio (β\beta) between the rotational energy and gravitational energy, and the angles between filaments and clump velocity gradients (|θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|). In Section 4, we compare J/MJ/M and β\beta in this work with that in previous works, and discuss the distribution of |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|. The main results are summarized in Section 5.

2 Data and Methodology

2.1 Filament sample and Data

The unbiased linear filament sample, the first large-scale linear filaments across the full Galactic plane (Wang et al., 2024), was combined with the SEDIGISM survey (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium), resulting eight target filaments (F2, F3, F34, F35, F36, F39, F40, and F41). The filament sample includes filaments of varying distances, lengths, masses, luminosities, and linearities (Wang et al., 2024).

Data from the SEDIGISM survey, conducted with the Atacama Pathfinder Experiment 12 m submillimetre telescope (APEX, Güsten et al., 2006) were used. The survey overview papers (Schuller et al., 2017, 2021; Duarte-Cabral et al., 2021) provide a comprehensive account of the observations, data reduction, and data-quality checks. In total, the SEDIGISM survey observed 84 deg2, covering from -60l{}^{\circ}{}\leq{}l{}\leq{}+18, and |b||{}b{}|{}\leq{}0.5, with a few extensions in bb towards some regions, as well as an additional field towards the W43 region (+29l{}^{\circ}{}\leq{}l{}\leq{}+31). The 13CO (2-1) images used here are from the DR1 data set (Schuller et al., 2021), which has a typical 1σ\sigma sensitivity of 0.8 - 1.0 K (in Tmb) per 0.25 km s-1 channel and an FWHM beam size of 28′′.

2.2 Orientations of the Target Filaments

The filaments were identified from Hi-GAL clumps (Elia et al., 2021) using the Minimum Spanning Tree (MST) algorithm developed by Wang et al. (2016). The specialized MST algorithm is applied to identify filaments in Position-Position-Velocity space, implying that clumps are only clustered as a filament when they are in close proximity with comparable velocities. In Figure 1, the clumps are marked with circles and linked by minimizing the total length of connecting edges. The edges represented by blue solid lines are straight lines joining the clumps, and the lengths of the edges indicate the distance between each pair of clumps. The fitted filaments are marked by end-to-end lines connecting two clumps at the filament tips, shown as the black solid lines in Figure 1. Details of the identified linear filaments can be found in Wang et al. (2024). Orientations (θf\theta_{f}) of the target filaments were determined by using the positions of the clumps at the two tips, with measurements taken clockwise from the East.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Clumps plotted on the integrated intensity map of 13CO (2-1). The circles show the size and location of the clumps. The red arrows with varying length represent the velocity gradients. The lengths of red arrows reflect the values of the measured velocity gradients. The blue solid lines are the the fitted filaments, whose orientations are represent by the black solid lines (see Section 2.2). The black solid circles are the most massive clumps in each target filament.

2.3 Velocity Gradient Fitting

For most filaments, the distances between clumps are consistent with the findings reported by Elia et al. (2021). According to Wang et al. (2024), there is no evident selection bias in the distance distributions of the target filaments, supporting the assumption that all clumps within a target filament are equidistant. Consequently the related parameters of the clumps reported in Elia et al. (2021) are scaled to derive the velocity gradient, the specific angular momentum (J/MJ/M), and the ratio (β\beta) between the rotational energy and gravitational energy. The scaled properties of clumps in target filaments are listed in Table 1. Clumps, which appear as localized increases in column density within clouds, are generally assumed to be spherical in shape with rigid-body rotation, producing a linear gradient, vLSR\mathbf{\nabla}{}v_{\mathrm{LSR}}. In the local standard of rest (LSR) velocity field, the linear gradient aligns perpendicular to the rotation axis.

Table 1: The information of clumps in filaments.
Filaments \ell b Distance FWHM250 Diameter Mass v0v_{0}
(degree) (degree) (kpc) ′′ (pc) (M) (km s-1)
(1) (2) (3) (4) (5) (6) (7) (8)
11.89 -0.40 12.0 15.8 0.9 1.9E+3(4.8) 47.2
11.91 -0.40 12.0 34.5 2.0 4.7E+2(0.1) 46.4
F2 11.95 -0.40 12.0 29.7 1.7 1.1E+3(2.0) 45.9
12.0 -0.42 12.0 20.9 1.2 3.0E+2(0.6) 44.2
12.05 -0.42 12.0 41.3 2.4 2.3E+3(3.9E+1) 42.9
14.65 0.26 2.7 17.4 0.2 1.7E+1(1.7E+1) 26.9
14.64 0.30 2.7 15.9 0.2 3.8E+1(1.3) 26.4
F3 14.63 0.31 2.7 16.1 0.2 4.0E+2(1.5E+2) 25.6
14.62 0.33 2.7 20.4 0.3 2.5E+2(6.7) 27.0
14.61 0.38 2.7 33.7 0.4 5.2E+1(1.5) 27.0
328.84 0.04 12.1 28.5 1.7 5.5E+2(2.7) -33.8
328.83 0.05 12.1 12.5 0.7 5.7E+2(5.0E+2) -33.8
F34 328.82 0.06 12.1 12.7 0.7 4.8E+2(4.1E+2) -33.0
328.81 0.07 12.1 14.2 0.8 1.8E+3(1.9E+2) -32.5
328.81 0.07 12.1 13.3 0.8 2.7E+3(5.8E+2) -31.2
338.47 0.21 2.8 12.8 0.2 9.0E+1(2.7E+1) -35.6
338.50 0.21 2.8 10.8 0.1 2.3E+2(2.8) -36.6
F35 338.53 0.21 2.8 28.4 0.4 2.8E+2(8.4E+2) -38.2
338.56 0.22 2.8 8.6 0.1 1.9E+2(7.9) -35.5
338.58 0.21 2.8 29.8 0.4 1.3E+1(1.1E+1) -36.8
338.52 -0.43 2.9 30.2 0.4 1.8E+2(8.3E+2) -38.8
338.55 -0.42 2.9 22.7 0.3 3.2E+2(1.1E+2) -38.3
338.60 -0.44 2.9 10.9 0.2 7.6E+1(1.8E+1) -38.4
338.65 -0.45 2.9 15.3 0.2 3.1E+2(8.4E+1) -39.3
338.66 -0.45 2.9 14.8 0.2 5.0E+1(7.3) -38.6
F36 338.69 -0.48 2.9 28.0 0.4 1.9E+2(4.0E+1) -39.1
338.72 -0.46 2.9 12.5 0.2 5.8E+1(1.5E+1) -39.5
338.77 -0.46 2.9 27.5 0.4 1.6E+3(3.7E+3) -38.8
338.82 -0.45 2.9 22.0 0.3 2.0E+2(7.9E+2) -40.7
338.82 -0.47 2.9 22.2 0.3 1.9E+2(1.9E+3) -37.9
338.87 -0.48 2.9 14.1 0.2 3.7E+2(1.0E+1) -37.2
346.02 -0.02 10.8 14.2 0.7 3.2E+2(5.0E+2) -80.9
345.88 -0.01 10.8 19.9 1.0 1.1E+3(2.4E+3) -78.8
345.92 0. 10.8 15.2 0.8 1.3E+3(3.1E+2) -79.6
F39 345.93 0. 10.8 27.2 1.4 2.4E+3(1.4E+2) -79.8
345.98 -0.02 10.8 10.2 0.5 1.6E+3(1.6E+2) -80.9
346.06 -0.03 10.8 25.0 1.3 4.9E+3(2.6E+3) -81.6
347.97 -0.43 6.0 21.9 0.6 4.7E+3(8.6E+2) -94.9
347.99 -0.43 6.0 16.7 0.5 2.9E+2(2.3E+2) -94.2
F40 348.02 -0.44 6.0 37.0 1.1 5.0E+2(1.5E+3) -93.5
348.04 -0.44 6.0 13.6 0.4 2.7E+1(2.7E+1) -95.6
348.05 -0.43 6.0 29.6 0.9 8.0E+2(3.9E+2) -95.2
348.62 -0.32 2.2 10.4 0.1 2.6E+1(3.0) -19.1
348.64 -0.31 2.2 14.7 0.2 5.4E+1(2.3E+2) -19.1
F41 348.69 -0.31 2.2 41.5 0.4 1.0E+2(3.1E+3) -19.2
348.73 -0.29 2.2 25.1 0.3 7.0E+1(2.1E+3) -19.4
348.77 -0.26 2.2 25.5 0.3 4.5E+1(9.1E+1) -19.8
Columns are (1) filament name, (2) galactic longitude, (3) galactic latitude, (4) distance of the clump, adopted from Wang et al. (2024),
(5) the scaled size of the clump as estimated by ‘CuTEx’ (Elia et al., 2017) in the 250 μ\mum band,
(6) the scaled linear diameter of the clump, obtained combining FWHM250 and distance,
(7) the scaled mass and its uncertainty of the clump, (8) velocity of the clump, assigned by Mège et al. (2021).

The velocity gradients were measured following the method described in Goodman et al. (1993), which fits the function

vLSR=v0+c1Δl+c2Δb.v_{LSR}=v_{0}+c_{1}{}\Delta{}l+c_{2}{}\Delta{}b. (1)

Here, vLSRv_{LSR} represents an intensity weighted average velocity along the line of sight and v0v_{0} is velocities of clumps (see column (8) in Table 1). Δl\Delta{}l and Δb\Delta{}b are the offsets from the center positions (listed in column (2) and (3) of Table 1) of clumps in the Galactic longitude and Galactic latitude in radians, respectively, while c1c_{1} and c2c_{2} are the projections of the gradient per radian onto the ll and bb axes, respectively. Finally, the magnitude of the velocity gradient is defined by

𝒢=|vLSR|=(c12+c22)1/2D,{\cal{}G}=|\mathbf{\nabla}v_{\mathrm{LSR}}|=\frac{(c_{1}^{2}+c_{2}^{2})^{1/2}}{D}, (2)

where DD is the distance (column (4) in Table 1) of clumps. Its orientation (i.e., the orientation of the increasing velocity) measured east of north is given by

θ𝒢=tanc1c2.\theta_{\cal{}G}=\tan{}\frac{c_{1}}{c_{2}}. (3)

Based on the spherical shape of clumps, the velocity field of the HiGAL clumps within the target linear filaments was fitted using a least-squares method as outlined in Equation (1) from the 13CO (2-1) images. The magnitude of the gradient (𝒢\cal{}G), its direction (θ𝒢\theta_{\cal{}G}), and their errors were then calculated based on the resulted c1c_{1} and c2c_{2} of the least-squares fit. According to the confidence-level simulation results in Goodman et al. (1993), the velocity gradient of the target clumps can be reliably fitted when they contain at least nine spatial pixels in the 13CO (2-1) images. One clump in each of the two filaments (F35 and F39) was not well fitted. The derived 𝒢\cal{}G values distribute between 7.0 ×\times 10-2 km s-1pc-1 and 4.8 km s-1pc-1, listed in column (4) of Table 2. Its direction, θ𝒢\theta_{\cal{}G}, are presented in column (5) of Table 2. Figure 2 shows the distribution of the obtained 𝒢\cal{}G values compared with the clump radius (RR) and mass (MM). One could note that 𝒢\cal{}G tends to decrease as RR and MM increase.

Refer to caption
Refer to caption
Figure 2: Velocity gradients plotted with (a) clump mass and (b) clump radius.

3 Results

Table 2: Derived clump properties
Filaments \ell b 𝒢\cal G θ𝒢\theta_{\cal G} J/M β\beta |θfθ𝒢||{}\theta_{f}-\theta_{\cal G}{}|
(degree) (degree) (km s-1 pc-1) (degree E of N) (pc km s-1) (degree)
(1) (2) (3) (4) (5) (6) (7) (8)
11.89 -0.40 0.3 ±\pm 0.1 56.5 ±\pm 25.8 1.5 ×\times 10-2 ±\pm 8.9 ×\times 10-3 1.1 ×\times 10-3 ±\pm 3.9 ×\times 10-4 43.5 ±\pm 25.8
11.91 -0.40 0.3 ±\pm 0.03 90.7 ±\pm 6.1 7.2 ×\times 10-2 ±\pm 9.1 ×\times 10-3 4.5 ×\times 10-2 ±\pm 7.4 ×\times 10-4 10.3 ±\pm 6.1
F2 11.95 -0.40 0.1 ±\pm 0.04 155.6 ±\pm 12.9 2.0 ×\times 10-2 ±\pm 7.2 ×\times 10-3 1.8 ×\times 10-3 ±\pm 2.3 ×\times 10-4 55.7 ±\pm 12.9
12.0 -0.42 0.5 ±\pm 0.06 -100.0 ±\pm 5.5 4.7 ×\times 10-2 ±\pm 6.2 ×\times 10-3 4.8 ×\times 10-2 ±\pm 8.5 ×\times 10-4 20.9 ±\pm 5.5
12.05 -0.42 0.2 ±\pm 0.03 -15.2 ±\pm 8.1 3.4 ×\times 10-2 ±\pm 3.6 ×\times 10-3 4.3 ×\times 10-2 ±\pm 4.8 ×\times 10-4 64.8 ±\pm 8.1
14.65 0.26 1.8 ±\pm 0.6 138.3 ±\pm 4.7 3.2 ×\times 10-2 ±\pm 7.5 ×\times 10-3 1.8 ×\times 10-2 ±\pm 1.4 ×\times 10-3 13.6 ±\pm 4.7
14.63 0.30 0.3 ±\pm 0.02 -16.2 ±\pm 6.0 7.8 ×\times 10-4 ±\pm 4.2 ×\times 10-5 7.0 ×\times 10-4 ±\pm 9.9 ×\times 10-5 11.9 ±\pm 6.0
F3 14.63 0.31 0.9 ±\pm 0.3 23.1 ±\pm 30.4 2.6 ×\times 10-2 ±\pm 7.7 ×\times 10-4 7.4 ×\times 10-4 ±\pm 6.6 ×\times 10-5 47.3 ±\pm 30.4
14.62 0.33 1.2 ±\pm 0.3 -56.7 ±\pm 11.0 5.8 ×\times 10-3 ±\pm 3.1 ×\times 10-4 4.2 ×\times 10-3 ±\pm 2.1 ×\times 10-4 30.6 ±\pm 11.0
14.61 0.38 1.7 ±\pm 0.5 123.0 ±\pm 11.3 2.2 ×\times 10-3 ±\pm 6.4 ×\times 10-4 1.3 ×\times 10-1 ±\pm 1.5 ×\times 10-2 30.9 ±\pm 11.3
328.84 0.04 0.1 ±\pm 0.04 147.3 ±\pm 16.1 2.0 ×\times 10-3 ±\pm 7.7 ×\times 10-4 3.8 ×\times 10-3 ±\pm 5.4 ×\times 10-4 4.5 ±\pm 16.1
328.83 0.05 0.4 ±\pm 0.1 28.3 ±\pm 14.1 1.4 ×\times 10-3 ±\pm 5.4 ×\times 10-4 3.9 ×\times 10-3 ±\pm 6.0 ×\times 10-4 65.5 ±\pm 14.1
F34 328.82 0.06 0.3 ±\pm 0.2 162.3 ±\pm 2.9 1.2 ×\times 10-3 ±\pm 7.8 ×\times 10-4 3.2 ×\times 10-3 ±\pm 1.4 ×\times 10-4 21.5 ±\pm 2.9
328.81 0.07 0.3 ±\pm 0.2 126.4 ±\pm 30.4 1.4 ×\times 10-3 ±\pm 1.1 ×\times 10-3 1.1 ×\times 10-3 ±\pm 6.2 ×\times 10-4 16.3 ±\pm 30.4
328.81 0.07 0.9 ±\pm 0.04 47.5 ±\pm 7.6 3.7 ×\times 10-3 ±\pm 1.4 ×\times 10-3 5.4 ×\times 10-3 ±\pm 7.5 ×\times 10-4 79.8 ±\pm 7.6
338.47 0.21 - - - - -
338.50 0.21 4.8 ±\pm 0.7 -5.0 ±\pm 23.2 9.7 ×\times 10-4 ±\pm 6.5 ×\times 10-4 5.7 ×\times 10-2 ±\pm 1.9 ×\times 10-3 79.3 ±\pm 23.2
F35 338.53 0.21 3.7 ±\pm 0.4 -72.4 ±\pm 14.6 4.9 ×\times 10-3 ±\pm 5.4 ×\times 10-4 6.6 ×\times 10-3 ±\pm 8.2 ×\times 10-5 30.9 ±\pm 14.6
338.56 0.22 3.0 ±\pm 0.2 -153.6 ±\pm 43.5 6.8 ×\times 10-3 ±\pm 7.3 ×\times 10-4 3.5 ×\times 10-3 ±\pm 4.1 ×\times 10-4 75.3 ±\pm 43.5
338.58 0.21 1.4 ±\pm 0.2 72.8 ±\pm 6.2 2.5 ×\times 10-3 ±\pm 4.0 ×\times 10-4 3.1 ×\times 10-3 ±\pm 6.3 ×\times 10-5 6.0 ±\pm 6.2
338.52 -0.43 0.8 ±\pm 0.2 6.9 ±\pm 8.4 1.0 ×\times 10-2 ±\pm 2.1 ×\times 10-3 1.2 ×\times 10-2 ±\pm 5.1 ×\times 10-4 89.3 ±\pm 8.4
338.55 -0.42 1.3 ±\pm 0.3 83.4 ±\pm 7.9 8.5 ×\times 10-3 ±\pm 1.7 ×\times 10-3 6.5 ×\times 10-3 ±\pm 2.6 ×\times 10-4 14.2 ±\pm 7.9
338.60 -0.44 0.1 ±\pm 0.04 46.9 ±\pm 18.5 1.5 ×\times 10-3 ±\pm 3.7 ×\times 10-4 1.7 ×\times 10-4 ±\pm 1.1 ×\times 10-6 50.7 ±\pm 18.5
338.65 -0.45 0.9 ±\pm 0.5 101.5 ±\pm 2.8 3.1 ×\times 10-3 ±\pm 1.7 ×\times 10-4 1.1 ×\times 10-3 ±\pm 3.4 ×\times 10-4 3.9 ±\pm 2.8
338.66 -0.45 0.6 ±\pm 0.06 135.4 ±\pm 42.2 1.8 ×\times 10-3 ±\pm 1.9 ×\times 10-4 2.6 ×\times 10-3 ±\pm 2.9 ×\times 10-4 41.9 ±\pm 42.2
F36 338.69 -0.48 1.6 ±\pm 0.2 -77.9 ±\pm 5.2 1.7 ×\times 10-2 ±\pm 2.3 ×\times 10-3 3.4 ×\times 10-2 ±\pm 5.9 ×\times 10-4 4.5 ±\pm 5.2
338.72 -0.46 0.5 ±\pm 0.07 -177.4 ±\pm 30.0 1.1 ×\times 10-3 ±\pm 1.7 ×\times 10-4 1.0 ×\times 10-3 ±\pm 2.2 ×\times 10-4 80.0 ±\pm 30.0
338.77 -0.46 1.6 ±\pm 0.3 162.8 ±\pm 6.4 1.6 ×\times 10-2 ±\pm 2.5 ×\times 10-3 3.4 ×\times 10-3 ±\pm 8.6 ×\times 10-5 65.3 ±\pm 6.4
338.82 -0.45 0.8 ±\pm 0.4 61.1 ±\pm 23.4 5.5 ×\times 10-3 ±\pm 3.1 ×\times 10-4 3.8 ×\times 10-3 ±\pm 1.2 ×\times 10-4 40.4 ±\pm 23.4
338.82 -0.47 2.7 ±\pm 0.4 -168.4 ±\pm 6.2 1.7 ×\times 10-2 ±\pm 2.7 ×\times 10-3 4.6 ×\times 10-2 ±\pm 1.1 ×\times 10-3 86.0 ±\pm 6.2
338.87 -0.48 1.6 ±\pm 0.5 -53.1 ±\pm 12.1 4.1 ×\times 10-3 ±\pm 1.2 ×\times 10-4 2.1 ×\times 10-3 ±\pm 1.9 ×\times 10-4 31.4 ±\pm 12.1
345.88 -0.01 0.3 ±\pm 0.1 115.8 ±\pm 17.9 1.0 ×\times 10-2 ±\pm 2.1 ×\times 10-3 3.7 ×\times 10-3 ±\pm 1.5 ×\times 10-4 20.8 ±\pm 17.9
345.92 0. 0.1 ±\pm 0.02 -114.8 ±\pm 6.2 2.5 ×\times 10-2 ±\pm 1.0 ×\times 10-3 4.3 ×\times 10-3 ±\pm 7.5 ×\times 10-4 31.9 ±\pm 6.2
F39 345.93 0. 0.3 ±\pm 0.04 -24.4 ±\pm 16.6 5.7 ×\times 10-3 ±\pm 8.8 ×\times 10-4 2.6 ×\times 10-4 ±\pm 6.1 ×\times 10-5 61.6 ±\pm 16.6
345.98 -0.02 1.6 ±\pm 0.2 2.2 ±\pm 5.4 4.5 ×\times 10-2 ±\pm 6.3 ×\times 10-3 5.1 ×\times 10-3 ±\pm 9.9 ×\times 10-4 85.2 ±\pm 5.4
346.02 -0.012 0.3 ±\pm 0.06 1.3 ±\pm 7.5 3.1 ×\times 10-2 ±\pm 3.3 ×\times 10-3 9.8 ×\times 10-3 ±\pm 1.1 ×\times 10-4 79.2 ±\pm 7.5
346.06 -0.03 - - - - -
347.97 -0.43 0.07±\pm 0.008 -73.5 ±\pm 12.8 2.1 ×\times 10-3 ±\pm 2.2 ×\times 10-4 1.1 ×\times 10-5 ±\pm 1.4 ×\times 10-6 14.4 ±\pm 12.8
347.99 -0.43 0.6 ±\pm 0.1 -114.7 ±\pm 6.8 1.0 ×\times 10-2 ±\pm 1.7 ×\times 10-3 6.1 ×\times 10-3 ±\pm 1.8 ×\times 10-4 26.8 ±\pm 6.8
F40 348.02 -0.44 0.2 ±\pm 0.03 -98.7 ±\pm 5.8 1.8 ×\times 10-2 ±\pm 2.4 ×\times 10-3 4.9 ×\times 10-3 ±\pm 9.3 ×\times 10-5 10.8 ±\pm 5.8
348.04 -0.44 3.0 ±\pm 0.4 6.2 ±\pm 13.4 5.6 ×\times 10-2 ±\pm 2.6 ×\times 10-3 4.9 ×\times 10-2 ±\pm 2.2 ×\times 10-4 85.9 ±\pm 13.4
348.05 -0.43 0.3 ±\pm 0.01 -120.1 ±\pm 12.5 2.5 ×\times 10-2 ±\pm 7.1 ×\times 10-3 1.5 ×\times 10-3 ±\pm 1.2 ×\times 10-4 32.2 ±\pm 12.5
348.62 -0.32 1.1 ±\pm 0.3 -158.36 ±\pm 2.7 9.4 ×\times 10-4 ±\pm 2.2 ×\times 10-5 2.5 ×\times 10-3 ±\pm 1.4 ×\times 10-4 52.9 ±\pm 2.7
348.64 -0.31 0.8 ±\pm 0.07 26.7 ±\pm 23.3 1.3 ×\times 10-3 ±\pm 8.4 ×\times 10-4 1.7 ×\times 10-3 ±\pm 6.8 ×\times 10-4 43.9 ±\pm 23.3
F41 348.69 -0.31 0.6 ±\pm 0.07 -148.8 ±\pm 34.8 7.5 ×\times 10-3 ±\pm 9.0 ×\times 10-4 1.1 ×\times 10-2 ±\pm 1.6 ×\times 10-4 43.4 ±\pm 34.8
348.73 -0.29 0.6 ±\pm 0.2 63.3 ±\pm 2.2 3.2 ×\times 10-3 ±\pm 8.3 ×\times 10-4 4.6 ×\times 10-3 ±\pm 3.1 ×\times 10-4 7.3 ±\pm 2.2
348.77 -0.26 0.7 ±\pm 0.2 128.3 ±\pm 14.3 3.4 ×\times 10-3 ±\pm 1.2 ×\times 10-3 8.0 ×\times 10-3 ±\pm 9.8 ×\times 10-4 60.7 ±\pm 14.3
Columns are (1) filament name, (2) galactic longitude, (3) galactic latitude, (4) fitted velocity gradient, (5) the direction of the fitted velocity gradient,
(6) the specific angular momentum,(7) the ratio between rotational energy and gravitational energy, (8) angles between filaments and velocity gradients.
- represents no fitted.

3.1 Specific Angular Momentum and Energy

If molecular clouds are rotating, their current angular momentum could provide insights into their evolution processes. The specific angular momentum (J/MJ/M), which represents angular momentum per unit mass, is commonly used to compare angular momenta in different parts with comparable masses. For a spherical clump with a power-law density distribution, ρr𝒜\rho~{}\propto~{}r^{-\cal{}A}, J/MJ/M is computed as in Xu et al. (2020b):

JM=2(3𝒜)3(5𝒜)𝒢R2.\frac{J}{M}=\frac{2(3-{\cal{}A})}{3(5-{\cal{}A})}{}{\cal{}G}{}R^{2}. (4)

When the density of a clump is uniform, 𝒜\cal{}A is set to 0. Here, 𝒜\cal{}A = 1.6 (Bonnor, 1956) is adopted, resulting in J/MJ/M being reduced by about 30% compared to a uniform density. The assumption of spherical geometry introduces a systematic difference of 20% in the results of specific angular momentum for elongated clumps when the rotation axis is considered parallel to the clump axis. The gradient direction, which in our assumption is a direction of clump rotation, is not always parallel to either of the clump axes. In fact, the angles appear to be random, suggesting that a spherical geometry is the most reasonable assumption for our analysis. The derived J/MJ/M values are listed in column (6) of Table 2 and are plotted in Figure 3(a). The derived J/MJ/M values range from 8.0 ×\times 10-4 pc kms-1 to 0.1 pc kms-1. We found a monotonic increase of J/MJ/M as a function of clump size (RR), following a power-law relation J/MR1.5±0.2J/M~{}\propto~{}R^{1.5\pm 0.2}, which is consistent with  Goodman et al. (1993).

The ratio (β\beta) between rotational energy (Er) and gravitational energy (Eg) is used to quantify the dynamical role of rotation, defined by Xu et al. (2020b) as

β=ErEg=25𝒢2R33(5𝒜)(52𝒜)GM\beta=\frac{E_{r}}{E_{g}}=\frac{25{\cal{}G}^{2}R^{3}}{3(5-{\cal{}A}){}(5-2{\cal{}A})GM} (5)

In this equation,

Er=3𝒜3(5𝒜)MR2𝒢2,Eg=3𝒜52𝒜GM2R.E_{r}=\frac{3-{\cal{}A}}{3(5-{\cal{}A})}MR^{2}{\cal{}G}^{2},E_{g}=-\frac{3-{\cal{}A}}{5-2{\cal{}A}}{}\frac{GM^{2}}{R}.

The assumption of 𝒜\cal{}A = 1.6 (Bonnor, 1956) leads to a 70% reduction in Er and a 31% increase in Eg, which cumulatively results in β\beta being two times lower than that of a uniform sphere. The derived β\beta values range from 1.0 ×\times 10-5 to 0.1, as given in column (7) of Table 2 and plotted in Figure 3(b). The lack of variation in β\beta implies that it may remain constant regardless of RR, a conclusion consistent with the results from Goodman et al. (1993). As explored in previous studies  (e.g. Goodman et al., 1993; Curtis & Richer, 2011; Xu et al., 2020b), the small values of β\beta signifies that rotation alone provides insignificant support against gravitational collapse. To facilitate clear comparison, the obtained values of J/MJ/M and β\beta in this work were analyzed alongside those from previous woks, as illustrated in Figure 3(c). This discussion can be found in Section 4.1.

Refer to caption
Refer to caption
Refer to caption
Figure 3: (a) Specific angular momentum (J/MJ/M) and (b) the ratio (β\beta) between rotational energy and gravitational energy plotted with clump radii (RR). The best fitted power-law relation is obtained between J/MJ/M and RR. (c) The derived J/MJ/M and β\beta in this work together with those previously observed. In the left panel, the dotted black line shows the best-fit slope, 1.58, for the whole clump sample. The solid black line exhibits the finding, 1.5, of this work.

3.2 Angles Between Filaments and Velocity Gradients

To quantify the alignment between the velocity gradients of clumps and their natal filaments, the relative difference between the angles, |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|, is derived through

|θfθ𝒢|=MIN{|θfθ𝒢|,|180|θfθ𝒢||},|{}\theta_{f}-\theta_{\cal{}G}{}|=MIN\{{}|{}\theta_{f}-\theta_{\cal{}G}{}|,{}|{}180-|{}\theta_{f}-\theta_{\cal{}G}{}|{}|{}\}, (6)

where ‘MIN’ refers to the minimum angular difference between θf\theta_{f} and θ𝒢\theta_{\cal{}G}. The derived |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}| values range from 3.9 to 89.3, as presented in column (8) of Table 2.

To investigate the distribution of |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|, Monte Carlo simulations in three-dimensional (3D) space were conducted, following the approach described by Stephens et al. (2017). In this method, two random unit vectors are generated within a unit sphere in 3D, and the angle (θ3D\theta_{3D}) between these two vectors is measured. A total of 106 pairs of unit vectors are generated to produce 106 angles of θ3D\theta_{3D}, constrained to a range of 0 – 90. If θ3D\theta_{3D} exceeds 90, the values of 180 - θ3D\theta_{3D} values are adopted (Equation 6). Angles within 0 – 20 are defined as parallel, 20 – 70 as random, and 70 – 90 as perpendicular. The angles of θ3D\theta_{3D} are then projected onto a two-dimensional (2D) space. Figure 4 plots the cumulative distribution function of our |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}| and the projected θ3D\theta_{3D} (the three blue dashed lines), which were applied to illustrate what our sample might look like. The consistency between the two distributions is assessed using the p-values of the Anderson–Darling (AD) test. A p-value close to 1 suggests a likely consistency between the distributions, whereas a p-value close to 0 indicates their inconsistency. For our dataset, the AD test yields a p-value of 0.98, indicating that the observed distribution of angles bears more resemblance to a random distribution. This finding suggests a non-correlation between the gradient direction of a clump and the orientation of its natal filament. Furthermore, it indicates that the rotation axis of a clump does not depend on the orientation of its natal large-scale filament.

Refer to caption
Figure 4: The cumulative distribution function of |θfθ𝒢||\theta_{f}-\theta_{\cal{}G}| and the projected θ3D\theta_{3D}. The red step line is the |θfθ𝒢||\theta_{f}-\theta_{\cal{}G}| of our sample. The three blue dashed lines are results from Monte Carlo simulations, which were used to illustrate what an actual aligned sample might look like.

4 Discussion

4.1 J/MJ/M and β\beta in This Study and Previous Studies

The derived J/MJ/M and β\beta in this work were compared with those form earlier reports, which included clumps at various evolutionary stages (e.g. Phillips, 1999), ranging from starless and pre-stellar cores in dark clouds (Goodman et al., 1993; Caselli et al., 2002; Xu et al., 2020b) to dense cores/clumps in high-mass clouds (Pirogov et al., 2003; Li et al., 2012; Tatematsu et al., 2016; Xu et al., 2020b). Notably, the J/MJ/M and β\beta values for 30 well-resolved cores reported by Xu et al. (2020a) were obtained at the Jeans scale the Orion Molecular Cloud (OMC) 2/3 using high-resolution ALMA (Atacama Large Millimeter/submillimeter Array) N2H+ images. Additionally, Xu et al. (2020a) reported a random distribution for |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|, consistent with the findings of this study. When considering the complete sample (the values of J/MJ/M and β\beta from this study and previous studies), J/MJ/M and β\beta were fitted as functions of clump size RR, as presented in Figure 3(c). A power-law relation between J/MJ/M and RR persists across all measurements, yielding a best-fit slope of 1.58, which closely aligns with the value of 1.5 found in this study. The values of J/MJ/M for our clumps, represented by green circles in Figure 3(c), are lower than those reported in other studies. This is mainly due to a consistently higher density of our HiGAL clumps , which are distributed along condensed filaments. Other clumps shown in Figure 3(c), even those from high-mass star-formation regions, are often characterized by different observational methods, primarily using CO tracing lower densities. Although β\beta shows significant scatter, its small value suggests that rotational energy constitutes only a minor fraction of the gravitational energy, indicating that observed rotation cannot prevent the gravitational collapse of clumps in molecular clouds.

4.2 The Distribution of |θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|

Modifications in the alignment between a clump and its natal filament can reveal their dynamical states, such as collapse, and the manner of gas transfer within filaments. Various angles (e.g., angle among outflow axes, velocity gradients, magnetic fields, disk axes, and filament orientation) between clump and its natal filament have been statistically analyzed to explore any existing trends of alignment. For example, Planck Collaboration et al. (2016) and Soler (2019) studied the relative angles between magnetic fields at local clumps and filament orientations. They found that magnetic fields predominantly align parallel to low column density filaments, whereas they tend to be perpendicular to high column density filaments. At smaller scales, Zhang et al. (2014) found that the magnetic fields at dense core scales align either parallel or perpendicular to parsec-scale magnetic fields. Furthermore, such bimodal distribution in the angles between the momentum (outflow axes) of clumps and filament orientation has also been detected in previous works (Anathpindika & Whitworth, 2008; Wang et al., 2011; Kong et al., 2019; Anathpindika & Di Francesco, 2022). Conversely, a random distribution of the relative angles between momentum and filament orientation/magnetic field has been reported in several recent studies (Stephens et al., 2017; Punanova et al., 2018; Xu et al., 2020a; Baug et al., 2020). Our finds are consistent with this random distribution, suggesting that the relative orientation between the rotational axis of clumps and filaments might not be as deterministic as previously thought. For the special location, whether located centrally or at one tip, the most massive clump (black solid circles in Figure 1) in each filament also has no obvious preference orientation, shown as Figure 5.

Compared to several previous studies (e.g. Arzoumanian et al., 2018; Zhang et al., 2020; Guo et al., 2022; Liu et al., 2023; Dewangan et al., 2024), our sample is robust because the orientation of the filaments considered here are closely related with the embedded clumps, characterized by the positions of the two tip clumps (see Section 2.2). In these works, the identification of filaments was carried out employing 2D identification schemes like FILFINDER (Koch & Rosolowsky, 2015), DisPerSE (Sousbie, 2011), and SExtractor (Bertin & Arnouts, 1996), which often have no direct relation with the embedded cores/clumps. Our experience suggests that these technical differences are unlikely to explain the observed diversity in the relative orientations between the rotational axes of clumps and filaments. A comprehensive study using high spectral and spatial resolution images of a larger sample is required to understand this inconsistency better.

Refer to caption
Figure 5: |θfθ𝒢||\theta_{f}-\theta_{\cal{}G}| for the most massive clump in each target filament. According to the definition of Monte Carlo simulation, the green area corresponds to the perpendicular direction (70 \sim 90), whereas the light pink area corresponds to the parallel direction, i.e. 0 \sim 20. For the F39 filament, the most massive clump is at the central, but has no reliably fitted θ𝒢\theta_{\cal{}G}.

5 Summary

The Milky Way atlas for linear filaments (Wang et al., 2024) was integrated with data from the SEDIGISM survey to study the relative orientations between the rotational axes of clumps and filament orientations. The 13CO (2-1) images from SEDIGISM were used to trace the rotational axes of massive molecular clumps along the filaments. The orientation of the filament was characterized by the positions of the clumps at two tips, measured clockwise from the East. Our key finds are summarized as follows:

1. Velocity Gradients and Specific Angular Momentum (J/M): Velocity gradients ranging form 7.0 ×\times 10-2 km s-1pc-1 to 4.8 km s-1pc-1 were derived, corresponding to J/MJ/M values between 7.8 ×\times 10-4 pc kms-1 and 7.2 ×\times 10-2 pc kms-1. A monotonic increase in J/MJ/M as a function of clump size (RR) was observed, following a power-law relation J/MR1.5±0.2J/M~{}\propto~{}R^{1.5\pm 0.2}, similar to the value reported by Goodman et al. (1993).

2.Ratio of Rotational to Gravitational Energy (β\beta): The ratio, β\beta, was found to range from 1.1 ×\times 10-5 to 0.1. Such small values of β\beta indicate that rotation alone does not provide sufficient support against the gravitational collapse.

3.Alignment between Filament Orientation and Velocity Gradient: The angle (|θfθ𝒢||{}\theta_{f}-\theta_{\cal{}G}{}|) between the orientation of the filaments (θf\theta_{f}) and the direction of velocity gradient of clumps (θ𝒢\theta_{\cal{}G}) appears to be random, as evidenced by comparisons with the distributions generated via Monte Carlo simulations. Additionally, it was observed that the most massive clump in each filament, whether located centrally or at one tip, exhibited no preferred orientation.

These conclusions enhance our understanding of the dynamics and structural alignments within molecular clouds, suggesting complex interactions rather than deterministic behavior in the formation and evolution of these structures.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant No. 11988101, 12103010, U1931104, 12041305 and 12033005), Fundamental Research Funds for the Central Universities (Grant No. 2024CDJGF-025), Chongqing Municipal Natural Science Foundation General Program (Grant No. cstc2021jcyj-msxmX0867), Chongqing Talents: Exceptional Young Talents Project (Grant No. cstc2021ycjh-bgzxm0027), the National Key R&D Program of China (2022YFA1603100), the China Manned Space Project (CMS-CSST-2021-A09, CMS-CSST-2021-B06), the Tianchi Talent Program of Xinjiang Uygur Autonomous Region, and the China-Chile Joint Research Fund (CCJRF No. 2211). CCJRF is provided by Chinese Academy of Sciences South America Center for Astronomy (CASSACA) and established by National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and Chilean Astronomy Society (SOCHIAS) to support China-Chile collaborations in astronomy. DL is a New Cornerstone Investigator.

Data Availability

This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) under programmes 092.F-9315 and 193.C-0584. APEX is a collaboration among the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The processed data products are available from the SEDIGISM survey database located at https://sedigism.mpifr-bonn.mpg.de/index.html, which was constructed by James Urquhart and hosted by the Max Planck Institute for Radio Astronomy.

References

  • Aizawa et al. (2020) Aizawa M., Suto Y., Oya Y., Ikeda S., Nakazato T., 2020, ApJ, 899, 55
  • Anathpindika & Di Francesco (2022) Anathpindika S. V., Di Francesco J., 2022, MNRAS, 513, 1275
  • Anathpindika & Whitworth (2008) Anathpindika S., Whitworth A. P., 2008, A&A, 487, 605
  • André et al. (2014) André P., Di Francesco J., Ward-Thompson D., Inutsuka S. I., Pudritz R. E., Pineda J. E., 2014, in Beuther H., Klessen R. S., Dullemond C. P., Henning T., eds, Protostars and Planets VI. pp 27–51 (arXiv:1312.6232), doi:10.2458/azu_uapress_9780816531240-ch002
  • Arzoumanian et al. (2018) Arzoumanian D., Shimajiri Y., Inutsuka S.-i., Inoue T., Tachihara K., 2018, PASJ, 70, 96
  • Banerjee et al. (2006) Banerjee R., Pudritz R. E., Anderson D. W., 2006, MNRAS, 373, 1091
  • Baug et al. (2020) Baug T., et al., 2020, ApJ, 890, 44
  • Bertin & Arnouts (1996) Bertin E., Arnouts S., 1996, A&AS, 117, 393
  • Bonnor (1956) Bonnor W. B., 1956, MNRAS, 116, 351
  • Caselli et al. (2002) Caselli P., Benson P. J., Myers P. C., Tafalla M., 2002, ApJ, 572, 238
  • Chandrasekhar & Fermi (1953) Chandrasekhar S., Fermi E., 1953, ApJ, 118, 116
  • Clarke et al. (2017) Clarke S. D., Whitworth A. P., Duarte-Cabral A., Hubber D. A., 2017, MNRAS, 468, 2489
  • Curtis & Richer (2011) Curtis E. I., Richer J. S., 2011, MNRAS, 410, 75
  • Dewangan et al. (2024) Dewangan L. K., Bhadari N. K., Maity A. K., Eswaraiah C., Sharma S., Jadhav O. R., 2024, MNRAS, 527, 5895
  • Duarte-Cabral et al. (2021) Duarte-Cabral A., et al., 2021, The SEDIGISM survey: molecular clouds in the inner Galaxy (arXiv:2012.01502), doi:10.1093/mnras/staa2480
  • Elia et al. (2017) Elia D., et al., 2017, MNRAS, 471, 100
  • Elia et al. (2021) Elia D., et al., 2021, MNRAS, 504, 2742
  • Ge & Wang (2022) Ge Y., Wang K., 2022, ApJS, 259, 36
  • Ge et al. (2023) Ge Y., et al., 2023, A&A, 675, A119
  • Goodman et al. (1993) Goodman A. A., Benson P. J., Fuller G. A., Myers P. C., 1993, ApJ, 406, 528
  • Guo et al. (2022) Guo W., et al., 2022, ApJ, 938, 44
  • Güsten et al. (2006) Güsten R., Nyman L. Å., Schilke P., Menten K., Cesarsky C., Booth R., 2006, A&A, 454, L13
  • Koch & Rosolowsky (2015) Koch E. W., Rosolowsky E. W., 2015, MNRAS, 452, 3435
  • Kong et al. (2019) Kong S., Arce H. G., Maureira M. J., Caselli P., Tan J. C., Fontani F., 2019, ApJ, 874, 104
  • Li & Goldsmith (2012) Li D., Goldsmith P. F., 2012, ApJ, 756, 12
  • Li et al. (2003) Li D., Goldsmith P. F., Menten K., 2003, ApJ, 587, 262
  • Li et al. (2012) Li J., Wang J., Gu Q., Zhang Z.-y., Zheng X., 2012, ApJ, 745, 47
  • Li et al. (2013a) Li H.-b., Fang M., Henning T., Kainulainen J., 2013a, MNRAS, 436, 3707
  • Li et al. (2013b) Li D., Kauffmann J., Zhang Q., Chen W., 2013b, ApJ, 768, L5
  • Liu et al. (2023) Liu H.-L., et al., 2023, MNRAS, 522, 3719
  • Mège et al. (2021) Mège P., et al., 2021, A&A, 646, A74
  • Misugi et al. (2019) Misugi Y., Inutsuka S.-i., Arzoumanian D., 2019, ApJ, 881, 11
  • Misugi et al. (2023) Misugi Y., Inutsuka S.-i., Arzoumanian D., 2023, ApJ, 943, 76
  • Molinari et al. (2010) Molinari S., et al., 2010, A&A, 518, L100
  • Offner et al. (2008) Offner S. S. R., Klein R. I., McKee C. F., 2008, ApJ, 686, 1174
  • Phillips (1999) Phillips J. P., 1999, A&AS, 134, 241
  • Pirogov et al. (2003) Pirogov L., Zinchenko I., Caselli P., Johansson L. E. B., Myers P. C., 2003, A&A, 405, 639
  • Planck Collaboration et al. (2016) Planck Collaboration et al., 2016, A&A, 586, A135
  • Punanova et al. (2018) Punanova A., Caselli P., Pineda J. E., Pon A., Tafalla M., Hacar A., Bizzocchi L., 2018, A&A, 617, A27
  • Ren et al. (2023) Ren Z., et al., 2023, ApJ, 955, 104
  • Schuller et al. (2017) Schuller F., et al., 2017, A&A, 601, A124
  • Schuller et al. (2021) Schuller F., et al., 2021, MNRAS, 500, 3064
  • Sharma et al. (2020) Sharma E., et al., 2020, A&A, 639, A133
  • Shimajiri et al. (2019) Shimajiri Y., André P., Ntormousi E., Men’shchikov A., Arzoumanian D., Palmeirim P., 2019, A&A, 632, A83
  • Soler (2019) Soler J. D., 2019, A&A, 629, A96
  • Sousbie (2011) Sousbie T., 2011, MNRAS, 414, 350
  • Stephens et al. (2017) Stephens I. W., et al., 2017, ApJ, 846, 16
  • Tatematsu et al. (2016) Tatematsu K., Ohashi S., Sanhueza P., Nguyen Luong Q., Umemoto T., Mizuno N., 2016, PASJ, 68, 24
  • Wang et al. (2011) Wang K., Zhang Q., Wu Y., Zhang H., 2011, ApJ, 735, 64
  • Wang et al. (2014) Wang K., et al., 2014, MNRAS, 439, 3275
  • Wang et al. (2015) Wang K., Testi L., Ginsburg A., Walmsley C. M., Molinari S., Schisano E., 2015, MNRAS, 450, 4043
  • Wang et al. (2016) Wang K., Testi L., Burkert A., Walmsley C. M., Beuther H., Henning T., 2016, ApJS, 226, 9
  • Wang et al. (2024) Wang K., Ge Y., Baug T., 2024, A&A, 686, L11
  • Whitworth et al. (1995) Whitworth A. P., Chapman S. J., Bhattal A. S., Disney M. J., Pongracic H., Turner J. A., 1995, MNRAS, 277, 727
  • Xu et al. (2020a) Xu X., Li D., Dai Y. S., Fuller G. A., Yue N., 2020a, ApJ, 894, L20
  • Xu et al. (2020b) Xu X., Li D., Dai Y. S., Goldsmith P. F., Fuller G. A., 2020b, ApJ, 898, 122
  • Xu et al. (2023) Xu F.-W., et al., 2023, MNRAS, 520, 3259
  • Yue et al. (2021) Yue N.-N., Li D., Zhang Q.-Z., Zhu L., Henshaw J., Mardones D., Ren Z.-Y., 2021, Research in Astronomy and Astrophysics, 21, 024
  • Zhang et al. (2014) Zhang Q., et al., 2014, ApJ, 792, 116
  • Zhang et al. (2020) Zhang C., et al., 2020, MNRAS, 497, 793