This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Method of Hirota Bilinearization

Metin Gürses
Department of Mathematics, Faculty of Science
Bilkent University, 06800 Ankara - Turkey
Aslı Pekcan
Department of Mathematics, Faculty of Science
Hacettepe University, 06800 Ankara - Turkey
[email protected]@hacettepe.edu.tr
Abstract

Bilinearization of a given nonlinear partial differential equation is very important not only to find soliton solutions but also to obtain other solutions such as the complexitons, positons, negatons, and lump solutions. In this work we study the bilinearization of nonlinear partial differential equations in (2+1)(2+1)-dimensions. We write the most general sixth order Hirota bilinear form in (2+1)(2+1)-dimensions and give the associated nonlinear partial differential equations for each monomial of the product of the Hirota operators DxD_{x}, DyD_{y}, and DtD_{t}. The nonlinear partial differential equations corresponding to the sixth order Hirota bilinear equations are in general nonlocal. Among all these we give the most general sixth order Hirota bilinear equation whose nonlinear partial differential equation is local which contains 12 arbitrary constants. Some special cases of this equation are the KdV, KP, KP-fifth order KdV, and Ma-Hua equations. We also obtain a nonlocal nonlinear partial differential equation whose Hirota form contains all possible triple products of DxD_{x}, DyD_{y}, and DtD_{t}. We give one- and two-soliton solutions, lump solutions with one, two, and three functions, and hybrid solutions of local and nonlocal (2+1)(2+1)-dimensional equations. We proposed also solutions of these equations depending on dynamical variables.

Keywords. Hirota bilinear form, Integrability of nonlinear partial differential equations, Soliton solutions, Lump solutions, Hybrid solutions.

1 Introduction

Integrability of nonlinear partial differential equations is one of the major research area in applied mathematics and mathematical physics. There are various ways of attacking to such problems. The standard way is to search for Lax pairs associated to a given system of nonlinear partial differential equations. Another and equivalent approach is to obtain a recursion operator where one can write all the hierarchy of higher symmetries in a compact form. There are also other important approaches such as the Hirota bilinear formalism [1]-[8]. These approaches are particularly more effective and practical for non-evolutionary equations. In particular we observed that the Hirota method played a very important role in finding soliton solutions of nonlocal integrable nonlinear partial differential equations [9]-[14]. However the integrability of nonlinear partial differential equations by Hirota approach may not imply the Lax integrability and existence of recursion operators. In spite of this fact there is an increasing interest in Hirota integrability in the last decade. The definition of Hirota integrability was given by Hietarinta [15]. If any number NN of one-soliton solutions of an equation can be combined into NN-soliton solution consisting of exponential functions then the equation is Hirota integrable. The first attempt to search for integrable nonlinear partial differential equations admitting Hirota bilinear form is due to Hietarinta [15]. He proposed the following Hirota bilinear form

(Dx4DxDt3+aDx2+bDxDt+cDt2){ff}=0,\left(D_{x}^{4}-D_{x}\,D_{t}^{3}+aD_{x}^{2}+bD_{x}\,D_{t}+cD_{t}^{2}\right)\{f\cdot f\}=0, (1.1)

where a,b,a,b, and cc are constants. Hietarinta showed that this equation has four-soliton solutions and passes the Painlevé test. Hietarinta’s bilinear equation in (1.1) corresponds to the following nonlinear (nonlocal) partial differential equation in (1+1)(1+1)-dimension

uxxxx+6uxuxxutttx3ututt3uxt(D1utt)+auxx+buxt+cutt=0,u_{xxxx}+6u_{x}u_{xx}-u_{tttx}-3u_{t}u_{tt}-3u_{xt}\,(D^{-1}\,u_{tt})+au_{xx}+bu_{xt}+cu_{tt}=0, (1.2)

which can be made local when we let u=vxu=v_{x}.

In this work we shall continue on the Hietarinta’s work further by increasing the powers of the operators Dx,DyD_{x},D_{y}, and DtD_{t} in (2+1)(2+1)-dimensions. In the last decade we observe some interesting works on extending the works of Hietarinta. In particular Ma and his colleagues produced some examples of (2+1)(2+1)-dimensional Hirota integrable partial differential equations [16]-[22], [23], [24]. The main idea in all these works is to obtain the soliton solutions of the associated nonlinear partial differential equations for a given Hirota bilinear form. Another important reason for studying Hirota bilinearization is to obtain not only soliton solutions by the Hirota method but also other kind of solutions such as the complexitons, positons, negatons, lump, and hybrid solutions of the nonlinear partial differential equations whose bilinearization is possible.

Let (x,y,t)(x,y,t) denote the independent variables and u=a0(lnf)xu=a_{0}(\ln f)_{x} be the dependent variable. Here a0a_{0} is a constant. Then the most general Hirota bilinear form, having only binary products of order 2n2n is given by

k=02n[αkDxkDt2nk+βkDxkDy2nk+γkDykDt2nk]{ff}=0,\sum_{k=0}^{2n}\left[\alpha_{k}\,D^{k}_{x}\,D^{2n-k}_{t}+\beta_{k}\,D^{k}_{x}\,D^{2n-k}_{y}+\gamma_{k}\,D^{k}_{y}\,D^{2n-k}_{t}\right]\{f\cdot f\}=0, (1.3)

where αk,βk,γk\alpha_{k},\beta_{k},\gamma_{k} are constants to be adjusted to obtain new integrable equations in (2+1)(2+1)-dimensions. Superposition of the above forms may be given as

n=1Nk=02n[αknDxkDt2nk+βknDxkDy2nk+γknDykDt2nk]{ff}=0,\sum_{n=1}^{N}\,\sum_{k=0}^{2n}\left[\alpha_{kn}\,D^{k}_{x}\,D^{2n-k}_{t}+\beta_{kn}\,D^{k}_{x}\,D^{2n-k}_{y}+\gamma_{kn}\,D^{k}_{y}\,D^{2n-k}_{t}\right]\,\{f\cdot f\}=0, (1.4)

where NN is a natural number and αkn,βkn\alpha_{kn},\beta_{kn}, and γkn\gamma_{kn} are constants. In the above forms we have only binary products of Dx,DyD_{x},D_{y}, and DtD_{t}. We have further generalization of these bilinear forms by including the triple products of these operators as well:

(m=1n=1CnmDtmDxnDyNmn){ff}=0,\left(\sum_{m=1}\,\sum_{n=1}\,C_{nm}\,D_{t}^{m}\,D_{x}^{n}\,D_{y}^{N-m-n}\right)\{f\cdot f\}=0, (1.5)

where CnmC_{nm}’s are constants. Any bilinear form of degree NN in (2+1)(2+1)-dimensions must contain both binary and triple products of the operators Dx,DyD_{x},D_{y}, and DtD_{t}.

In Appendix A we give all bilinear forms with four and six orders in (2+1)(2+1)-dimensions. One of the main purpose of this work is to obtain nonlinear partial differential equations corresponding to the above bilinear forms by letting u=2(lnf)xu=2\,(\ln f)_{x}. When N=3N=3 we have the following most general sixth order Hirota bilinear form in (2+1)(2+1)-dimensions

F(Dx,Dy,Dt){ff}=0,F(D_{x},D_{y},D_{t})\,\{f\cdot f\}=0, (1.6)

where

F(Dx,Dy,Dt)\displaystyle F(D_{x},D_{y},D_{t}) =k=02[αk1DxkDt2k+βk1DxkDy2k+γk1DykDt2k]\displaystyle=\sum_{k=0}^{2}\left[\alpha_{k1}\,D^{k}_{x}\,D^{2-k}_{t}+\beta_{k1}\,D^{k}_{x}\,D^{2-k}_{y}+\gamma_{k1}\,D^{k}_{y}\,D^{2-k}_{t}\right]
+k=04[αk2DxkDt4k+βk2DxkDy4k+γk2DykDt4k]\displaystyle+\sum_{k=0}^{4}\left[\alpha_{k2}\,D^{k}_{x}\,D^{4-k}_{t}+\beta_{k2}\,D^{k}_{x}\,D^{4-k}_{y}+\gamma_{k2}\,D^{k}_{y}\,D^{4-k}_{t}\right]
+k=06[αk3DxkDt6k+βk3DxkDy6k+γk3DykDt6k]\displaystyle+\sum_{k=0}^{6}\left[\alpha_{k3}\,D^{k}_{x}\,D^{6-k}_{t}+\beta_{k3}\,D^{k}_{x}\,D^{6-k}_{y}+\gamma_{k3}\,D^{k}_{y}\,D^{6-k}_{t}\right]
+m=13n=13mBnmDtmDxnDy4mn+m=15n=15mCnmDtmDxnDy6mn,\displaystyle+\sum_{m=1}^{3}\,\sum_{n=1}^{3-m}\,B_{nm}\,D_{t}^{m}\,D_{x}^{n}\,D^{4-m-n}_{y}+\sum_{m=1}^{5}\,\sum_{n=1}^{5-m}\,C_{nm}\,D_{t}^{m}\,D_{x}^{n}\,D^{6-m-n}_{y}, (1.7)

where αij\alpha_{ij}, βij\beta_{ij}, γij\gamma_{ij}, BijB_{ij}, and CijC_{ij} are constants. Now we list the important results in this work.

1. The most general bilinear form of sixth degree and the nonlinear partial differential equation associated with it: The above equations (1.6) and (1.7) give the most general Hirota bilinear equation of sixth order in (2+1)(2+1)-dimensions. It is straightforward to find the corresponding nonlinear differential equations via u=2(lnf)xu=2(\ln f)_{x} by using the list of monomials of Hirota bilinear forms in Appendix A. It is of course not so practical to obtain the above partial differential equation in its general form. Hence we will focus on some special cases which cover the most of the well-known nonlinear differential equations of third and fifth order in (2+1)(2+1)-dimensions.

How to use the Appendix A is as follows: Let the nonlinear differential equation be E(u,ut,ux,uy,)=0E(u,u_{t},u_{x},u_{y},\cdots)=0 then the equation corresponding to the Hirota bilinear equation (1.6) is obtained through

(F(Dx,Dy,Dt){ff}f2)x=E(u,ut,ux,uy,),\left(\frac{F(D_{x},D_{y},D_{t})\,\{f\cdot f\}}{f^{2}}\right)_{x}=E(u,u_{t},u_{x},u_{y},\cdots), (1.8)

by letting u=2(lnf)xu=2\,(\ln f)_{x}.

By using some ansatzes on the function ff we can obtain different type of solutions such as solitons, complexitons, positons, negatons, and lumps.

2. Some special cases of the equation (1.8): We first obtain the most general sixth order local nonlinear partial differential equation in (2+1)(2+1)-dimensions obtainable from (1.6)-(1.7) and then a nonlocal partial differential equation in (2+1)(2+1)-dimensions obtained by including triple bilinear forms.

3. Soliton, lump, hybrid solutions and solutions depending on dynamical variables: We obtain soliton, lump, and hybrid solutions of the special equations we obtain. All the solitonic solutions we obtain look similar to those soliton solutions of integrable nonlinear partial differential equations [13], [14], [25] in (2+1)(2+1)-dimensions. We obtain first one- and two-soliton solutions of these equations. We observe that for three-soliton solutions the parameters of the equations should satisfy certain conditions. We then obtain lump solutions with one, two, and three functions. The lump solutions are rational functional solutions localized in all directions in the space which were first discovered by Manakov et al. [26]. We are able to find the mixture of soliton and the lump solutions which are named as hybrid solutions. In this work we also consider solutions of our special equations depending on some dynamical variables in three dimensions. As far as we know such solutions are new in literature.

We have three Appendicies at the end. Appendix A contains all monomials of Hirota bilinear form and the corresponding expressions of the field variable u(x,y,t)u(x,y,t). Appendix B and Appendix C contain long expressions obtained to find the lump and hybrid solutions of our special equations (2.2) and (2.4).

2 Some special equations

Nonlinear partial differential equations in (2+1)(2+1)-dimensions obtainable from (1.6) and (1.7) are mostly nonlocal as we can see from the list given in the Appendix A. The differential equation associated to the general bilinear form (1.6) and (1.7) is quite lengthy and complicated. Instead of studying this general equation we prefer to consider some special cases which cover most of the integrable differential equations.

2.1 The most general local equation

As the first example we now wish to give the most general Hirota bilinear equation of sixth degree which leads to a local differential equation in (2+1)(2+1)-dimensions.

(a0Dt2+\displaystyle\Big{(}a_{0}\,D_{t}^{2}+ a1Dx2+a2Dy2+a3DtDx+a4DtDy+a5DxDy\displaystyle a_{1}\,D_{x}^{2}+a_{2}\,D_{y}^{2}+a_{3}\,D_{t}\,D_{x}+a_{4}\,D_{t}\,D_{y}+a_{5}\,D_{x}\,D_{y}
+b0DyDx3+b1DtDx3+b2Dx4+c0Dx6+c1DtDx5+c2DyDx5){ff}=0,\displaystyle+b_{0}\,D_{y}\,D_{x}^{3}+b_{1}\,D_{t}\,D_{x}^{3}+b_{2}\,D_{x}^{4}+c_{0}\,D_{x}^{6}+c_{1}\,D_{t}\,D_{x}^{5}+c_{2}\,D_{y}\,D_{x}^{5}\Big{)}\,\{f\cdot f\}=0, (2.1)

where a0,a1,a2,a3,a4,a5a_{0},a_{1},a_{2},a_{3},a_{4},a_{5}, b0,b1,b2b_{0},b_{1},b_{2}, c0,c1,c2c_{0},c_{1},c_{2} are constants. This bilinear equation, through u=2(lnf)xu=2\,(\ln f)_{x}, leads to the following nonlinear partial differential equation.

a0utt+a1uxx+a2uyy+a3utx+a4uty+a5uxy+b0(uyxx+3uxuy)x\displaystyle a_{0}\,u_{tt}+a_{1}\,u_{xx}+a_{2}\,u_{yy}+a_{3}\,u_{tx}+a_{4}\,u_{ty}+a_{5}\,u_{xy}+b_{0}\,(u_{yxx}+3u_{x}u_{y})_{x}
+b1(utxx+3utux)x+b2(uxxx+3ux2)x+c0(uxxxxx+15uxuxxx+15ux3)x\displaystyle+b_{1}\,(u_{txx}+3u_{t}u_{x})_{x}+b_{2}\,(u_{xxx}+3u_{x}^{2})_{x}+c_{0}\,(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+c1(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+c_{1}\,(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
+c2(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle+c_{2}\,(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (2.2)

We have the following special cases: a30a_{3}\neq 0, b20b_{2}\neq 0, (KdV equation); a30a_{3}\neq 0, c00c_{0}\neq 0, (Sawada-Kotera equation); a20a_{2}\neq 0, a30a_{3}\neq 0, b20b_{2}\neq 0, (KP equation; a00a_{0}\neq 0, a10a_{1}\neq 0, b20b_{2}\neq 0, (Boussinesq equation); a00a_{0}\neq 0, a10a_{1}\neq 0, b20b_{2}\neq 0, c00c_{0}\neq 0, (Higher order Boussinesq equation [27]); a30a_{3}\neq 0, b20b_{2}\neq 0, c00c_{0}\neq 0, (KP+Fifth order KdV equation); a00a_{0}\neq 0, b10b_{1}\neq 0, c00c_{0}\neq 0, (KdV(6) equation [28]); a10a_{1}\neq 0, a20a_{2}\neq 0, a40a_{4}\neq 0, b00b_{0}\neq 0, (Ma-Hua equation [18]); a10a_{1}\neq 0, a40a_{4}\neq 0, b10b_{1}\neq 0, (Hirota-Satsuma-Ito equation [15]); a00a_{0}\neq 0, b10b_{1}\neq 0, c00c_{0}\neq 0, (6th order Ramani equation [29]); a00a_{0}\neq 0, a50a_{5}\neq 0, b10b_{1}\neq 0, c00c_{0}\neq 0, (Sawada-Kotera-Ramani equation); aj0a_{j}\neq 0, j=1,2,3,4,5j=1,2,3,4,5, b10b_{1}\neq 0, (Generalized Hirota-Satsuma-Ito equation [30], [31]); a20a_{2}\neq 0, a30a_{3}\neq 0, b00b_{0}\neq 0, c00c_{0}\neq 0, (BKP equation [32], [33]), a10a_{1}\neq 0, a20a_{2}\neq 0, a30a_{3}\neq 0, b10b_{1}\neq 0, (KP-Benjamin-Bona-Mahony equation); a30a_{3}\neq 0, b00b_{0}\neq 0, b20b_{2}\neq 0, (Generalized Bogoyavlensky-Konopelchenko equation [34], [35]); a10a_{1}\neq 0, a50a_{5}\neq 0, b00b_{0}\neq 0, c00c_{0}\neq 0, (Generalized BKP equation [16]); aj0a_{j}\neq 0, j=0,1,2,3,4,5j=0,1,2,3,4,5, b20b_{2}\neq 0, (Generalized KP equation [16]).

We obtain one- and two-soliton solutions of these equations in Section 4, lump solutions with one, two, and three functions in Section 5, hybrid solutions in Section 6, and solutions depending on some dynamical variables in three dimensions in Section 7.

2.2 A nonlocal equation

The general sixth order nonlinear partial differential equations associated to the Hirota bilinear equation (1.6) are mostly nonlocal. Although these equations are nonlocal we can solve them obtaining one-, two-, and three-soliton solutions by using the Hirota method. We can consider the following particular case of (1.7),

(a0DtDx+a1Dy2+a2Dx4+b0DtDx2Dy+b1Dt2DxDy+b2DtDxDy2){ff}=0,\left(a_{0}\,D_{t}\,D_{x}+a_{1}\,D_{y}^{2}+a_{2}\,D_{x}^{4}+b_{0}\,D_{t}\,D_{x}^{2}\,D_{y}+b_{1}\,D_{t}^{2}\,D_{x}\,D_{y}\,+b_{2}\,D_{t}\,D_{x}\,D_{y}^{2}\right)\{f\cdot f\}=0, (2.3)

where a0,a1,a2a_{0},a_{1},a_{2}, b0,b1,b2b_{0},b_{1},b_{2} are constants. The above bilinear equation, through u=2(lnf)xu=2\,(\ln f)_{x}, leads to the following nonlocal nonlinear partial differential equation:

a0uxt+a1uyy+a2(uxxx+3ux2)x+b0(uxxyt+uxuyt+2uyuxt+2utuxy+uxxD1uyt)\displaystyle a_{0}\,u_{xt}+a_{1}\,u_{yy}+a_{2}(u_{xxx}+3u_{x}^{2})_{x}+b_{0}\,(u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}\,D^{-1}\,u_{yt})
+b1(uxytt+uyutt+2utuyt+uxyD1utt+2uxtD1uyt)\displaystyle+b_{1}\,(u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}\,D^{-1}\,u_{tt}+2u_{xt}\,D^{-1}\,u_{yt})
+b2(uxtyy+utuyy+2uyuyt+uxtD1uyy+2uxyD1uyt)=0,\displaystyle+b_{2}\,(u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}\,D^{-1}\,u_{yy}+2u_{xy}\,D^{-1}\,u_{yt})=0, (2.4)

where D1f=xf𝑑xD^{-1}\,f=\int^{x}\,f\,dx^{\prime} for any ff. The above equation can be made local by defining new dependent variable u=vxu=v_{x}. This nonlocal equation (2.4) is a generalization of the KP equation where the corresponding Hirota bilinear form is a fourth order equation. We obtain one- and two-soliton solutions of this equation in Section 4, lump solutions in Section 5, and hybrid solutions in Section 6.

3 Solitonic Solutions

3.1 Soliton solutions of (2.2)

1.  One-soliton solutions of (2.2)

To obtain one-soliton solutions of (2.2) we take f=1+εf1f=1+\varepsilon f_{1} where f1=ek1x+ω1t+l1y+α1f_{1}=e^{k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1}} for arbitrary constants k1,ω1,l1,α1k_{1},\omega_{1},l_{1},\alpha_{1} and insert it into (2.1). Analyzing the coefficients of the powers of ε\varepsilon gives the dispersion relation as

l1=\displaystyle l_{1}= 12a2(b0k13a4ω1a5k1c2k15±[b02k16+2b0a4k13ω1+2b0a5k14+2b0c2k18+a42ω12\displaystyle\frac{1}{2a_{2}}(-b_{0}k_{1}^{3}-a_{4}\omega_{1}-a_{5}k_{1}-c_{2}k_{1}^{5}\pm[b_{0}^{2}k_{1}^{6}+2b_{0}a_{4}k_{1}^{3}\omega_{1}+2b_{0}a_{5}k_{1}^{4}+2b_{0}c_{2}k_{1}^{8}+a_{4}^{2}\omega_{1}^{2}
+2a4a5ω1k1+2a4c2ω1k15+a52k12+2a5c2k16+c22k1104a2a0ω124a2a1k12\displaystyle+2a_{4}a_{5}\omega_{1}k_{1}+2a_{4}c_{2}\omega_{1}k_{1}^{5}+a_{5}^{2}k_{1}^{2}+2a_{5}c_{2}k_{1}^{6}+c_{2}^{2}k_{1}^{10}-4a_{2}a_{0}\omega_{1}^{2}-4a_{2}a_{1}k_{1}^{2}
4a2c1ω1k154a2a3ω1k14a2b2k144a2c0k164a2b1ω1k13)]1/2).\displaystyle-4a_{2}c_{1}\omega_{1}k_{1}^{5}-4a_{2}a_{3}\omega_{1}k_{1}-4a_{2}b_{2}k_{1}^{4}-4a_{2}c_{0}k_{1}^{6}-4a_{2}b_{1}\omega_{1}k_{1}^{3})]^{1/2}). (3.1)

Letting ε=1\varepsilon=1 we obtain one-soliton solutions of the equation (2.2) as

u(x,y,t)=2(ln(f(x,y,t)))x=k1e(k1x+ω1t+l1y+α1)/2sech((k1x+ω1t+l1y+α1)/2).u(x,y,t)=2(\ln(f(x,y,t)))_{x}=k_{1}e^{(k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1})/2}\mathrm{sech}((k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1})/2). (3.2)

2.  Two-soliton solutions of (2.2)

Let f=1+εf1+ε2f2f=1+\varepsilon f_{1}+\varepsilon^{2}f_{2} where f1=eθ1+eθ2f_{1}=e^{\theta_{1}}+e^{\theta_{2}} for θj=kjx+ωjt+ljy+αj\theta_{j}=k_{j}x+\omega_{j}t+l_{j}y+\alpha_{j}, j=1,2j=1,2. Inserting ff into the Hirota bilinear form (2.1) and making the coefficients of the powers of ε\varepsilon zero yield the dispersion relations

lj=\displaystyle l_{j}= 12a2(b0kj3a4ωja5kjc2kj5±[b02kj6+2b0a4kj3ωj+2b0a5kj4+2b0c2kj8+a42ωj2\displaystyle\frac{1}{2a_{2}}(-b_{0}k_{j}^{3}-a_{4}\omega_{j}-a_{5}k_{j}-c_{2}k_{j}^{5}\pm[b_{0}^{2}k_{j}^{6}+2b_{0}a_{4}k_{j}^{3}\omega_{j}+2b_{0}a_{5}k_{j}^{4}+2b_{0}c_{2}k_{j}^{8}+a_{4}^{2}\omega_{j}^{2}
+2a4a5ωjkj+2a4c2ωjkj5+a52kj2+2a5c2kj6+c22kj104a2a0ωj24a2a1kj2\displaystyle+2a_{4}a_{5}\omega_{j}k_{j}+2a_{4}c_{2}\omega_{j}k_{j}^{5}+a_{5}^{2}k_{j}^{2}+2a_{5}c_{2}k_{j}^{6}+c_{2}^{2}k_{j}^{10}-4a_{2}a_{0}\omega_{j}^{2}-4a_{2}a_{1}k_{j}^{2}
4a2c1ωjkj54a2a3ωjkj4a2b2kj44a2c0kj64a2b1ωjkj3]1/2)\displaystyle-4a_{2}c_{1}\omega_{j}k_{j}^{5}-4a_{2}a_{3}\omega_{j}k_{j}-4a_{2}b_{2}k_{j}^{4}-4a_{2}c_{0}k_{j}^{6}-4a_{2}b_{1}\omega_{j}k_{j}^{3}]^{1/2}) (3.3)

for j=1,2j=1,2. The coefficient of ε2\varepsilon^{2} gives f2=A12eθ1+θ2f_{2}=A_{12}e^{\theta_{1}+\theta_{2}} for A12=P1(p1p2)P1(p1+p2)A_{12}=-\frac{P_{1}(p_{1}-p_{2})}{P_{1}(p_{1}+p_{2})}, where

P1(p1p2)=a0(ω1ω2)2+a1(k1k2)2+a2(l1l2)2+a3(ω1ω2)(k1k2)\displaystyle P_{1}(p_{1}-p_{2})=a_{0}(\omega_{1}-\omega_{2})^{2}+a_{1}(k_{1}-k_{2})^{2}+a_{2}(l_{1}-l_{2})^{2}+a_{3}(\omega_{1}-\omega_{2})(k_{1}-k_{2})
+a4(ω1ω2)(l1l2)+a5(k1k2)(l1l2)+b0(l1l2)(k1k2)3\displaystyle+a_{4}(\omega_{1}-\omega_{2})(l_{1}-l_{2})+a_{5}(k_{1}-k_{2})(l_{1}-l_{2})+b_{0}(l_{1}-l_{2})(k_{1}-k_{2})^{3}
+b1(ω1ω2)(k1k2)3+b2(k1k2)4+c0(k1k2)6+c1(ω1ω2)(k1k2)5\displaystyle+b_{1}(\omega_{1}-\omega_{2})(k_{1}-k_{2})^{3}+b_{2}(k_{1}-k_{2})^{4}+c_{0}(k_{1}-k_{2})^{6}+c_{1}(\omega_{1}-\omega_{2})(k_{1}-k_{2})^{5}
+c2(l1l2)(k1k2)5,\displaystyle+c_{2}(l_{1}-l_{2})(k_{1}-k_{2})^{5}, (3.4)
P1(p1+p2)=a0(ω1+ω2)2+a1(k1+k2)2+a2(l1+l2)2+a3(ω1+ω2)(k1+k2)\displaystyle P_{1}(p_{1}+p_{2})=a_{0}(\omega_{1}+\omega_{2})^{2}+a_{1}(k_{1}+k_{2})^{2}+a_{2}(l_{1}+l_{2})^{2}+a_{3}(\omega_{1}+\omega_{2})(k_{1}+k_{2})
+a4(ω1+ω2)(l1+l2)+a5(k1+k2)(l1+l2)+b0(l1+l2)(k1+k2)3\displaystyle+a_{4}(\omega_{1}+\omega_{2})(l_{1}+l_{2})+a_{5}(k_{1}+k_{2})(l_{1}+l_{2})+b_{0}(l_{1}+l_{2})(k_{1}+k_{2})^{3}
+b1(ω1+ω2)(k1+k2)3+b2(k1+k2)4+c0(k1+k2)6+c1(ω1+ω2)(k1+k2)5\displaystyle+b_{1}(\omega_{1}+\omega_{2})(k_{1}+k_{2})^{3}+b_{2}(k_{1}+k_{2})^{4}+c_{0}(k_{1}+k_{2})^{6}+c_{1}(\omega_{1}+\omega_{2})(k_{1}+k_{2})^{5}
+c2(l1+l2)(k1+k2)5.\displaystyle+c_{2}(l_{1}+l_{2})(k_{1}+k_{2})^{5}. (3.5)

Without loss of generality we take ε=1\varepsilon=1. Hence two-soliton solution of the equation (2.2) is

u(x,y,t)=2(ln(f(x,y,t)))x=2[k1eθ1(1+A12eθ2)+k2eθ2(1+A12eθ1)]1+eθ1+eθ2+A12eθ1+θ2,u(x,y,t)=2(\ln(f(x,y,t)))_{x}=\frac{2[k_{1}e^{\theta_{1}}(1+A_{12}e^{\theta_{2}})+k_{2}e^{\theta_{2}}(1+A_{12}e^{\theta_{1}})]}{1+e^{\theta_{1}}+e^{\theta_{2}}+A_{12}e^{\theta_{1}+\theta_{2}}}, (3.6)

where θj=kjx+ωjt+ljy+αj\theta_{j}=k_{j}x+\omega_{j}t+l_{j}y+\alpha_{j}, j=1,2j=1,2, with the dispersion relations (3.1) satisfied.

3.2 Soliton solutions of (2.4)

1.  One-soliton solutions of (2.4)

We insert f=1+εf1f=1+\varepsilon f_{1} where f1=ek1x+ω1t+l1y+α1f_{1}=e^{k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1}} into (2.3) to obtain one-soliton solutions of the equation (2.4). Here k1,ω1,l1,α1k_{1},\omega_{1},l_{1},\alpha_{1} are arbitrary constants. Making the coefficients of the powers of ε\varepsilon zero yields the dispersion relation as

l1=\displaystyle l_{1}= 12(a1+b2ω1k1)(b0ω1k12b1ω12k1±[b02ω12k14+2b0b1ω13k13+b12ω14k12\displaystyle\frac{1}{2(a_{1}+b_{2}\omega_{1}k_{1})}(-b_{0}\omega_{1}k_{1}^{2}-b_{1}\omega_{1}^{2}k_{1}\pm[b_{0}^{2}\omega_{1}^{2}k_{1}^{4}+2b_{0}b_{1}\omega_{1}^{3}k_{1}^{3}+b_{1}^{2}\omega_{1}^{4}k_{1}^{2}
4a1a0ω1k14a1a2k144b2a0ω12k124b2a2ω1k15]1/2).\displaystyle-4a_{1}a_{0}\omega_{1}k_{1}-4a_{1}a_{2}k_{1}^{4}-4b_{2}a_{0}\omega_{1}^{2}k_{1}^{2}-4b_{2}a_{2}\omega_{1}k_{1}^{5}]^{1/2}). (3.7)

We let ε=1\varepsilon=1 and obtain one-soliton solution of the equation (2.4) as

u(x,y,t)=2(ln(f(x,y,t)))x=k1e(k1x+ω1t+l1y+α1)/2sech((k1x+ω1t+l1y+α1)/2),u(x,y,t)=2(\ln(f(x,y,t)))_{x}=k_{1}e^{(k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1})/2}\mathrm{sech}((k_{1}x+\omega_{1}t+l_{1}y+\alpha_{1})/2), (3.8)

where the dispersion relation (3.2) holds.

2.  Two-soliton solutions of (2.4)

To obtain two-soliton solutions of (2.4), we take f=1+εf1+ε2f2f=1+\varepsilon f_{1}+\varepsilon^{2}f_{2} where f1=eθ1+eθ2f_{1}=e^{\theta_{1}}+e^{\theta_{2}} for θj=kjx+ωjt+ljy+αj\theta_{j}=k_{j}x+\omega_{j}t+l_{j}y+\alpha_{j}, j=1,2j=1,2 and insert ff into the Hirota bilinear form (2.3). Analyzing the coefficients of the powers of ε\varepsilon we obtain the dispersion relations as

lj=\displaystyle l_{j}= 12(a1+b2ωjkj)(b0ωjkj2b1ωj2kj±(b02ωj2kj4+2b0b1ωj3kj3+b12ωj4kj2\displaystyle\frac{1}{2(a_{1}+b_{2}\omega_{j}k_{j})}(-b_{0}\omega_{j}k_{j}^{2}-b_{1}\omega_{j}^{2}k_{j}\pm(b_{0}^{2}\omega_{j}^{2}k_{j}^{4}+2b_{0}b_{1}\omega_{j}^{3}k_{j}^{3}+b_{1}^{2}\omega_{j}^{4}k_{j}^{2}
4a1a0ωjkj4a1a2kj44b2a0ωj2kj24b2a2ωjkj5)1/2)\displaystyle-4a_{1}a_{0}\omega_{j}k_{j}-4a_{1}a_{2}k_{j}^{4}-4b_{2}a_{0}\omega_{j}^{2}k_{j}^{2}-4b_{2}a_{2}\omega_{j}k_{j}^{5})^{1/2}) (3.9)

for j=1,2j=1,2 and the function f2=A12eθ1+θ2f_{2}=A_{12}e^{\theta_{1}+\theta_{2}} for A12=P2(p1p2)P2(p1+p2)A_{12}=-\frac{P_{2}(p_{1}-p_{2})}{P_{2}(p_{1}+p_{2})}, where

P2(p1p2)=a0(ω1ω2)(k1k2)+a1(l1l2)2+a2(k1k2)4\displaystyle P_{2}(p_{1}-p_{2})=a_{0}(\omega_{1}-\omega_{2})(k_{1}-k_{2})+a_{1}(l_{1}-l_{2})^{2}+a_{2}(k_{1}-k_{2})^{4}
+b0(ω1ω2)(k1k2)2(l1l2)+b1(ω1ω2)2(k1k2)(l1l2)\displaystyle+b_{0}(\omega_{1}-\omega_{2})(k_{1}-k_{2})^{2}(l_{1}-l_{2})+b_{1}(\omega_{1}-\omega_{2})^{2}(k_{1}-k_{2})(l_{1}-l_{2})
+b2(ω1ω2)(k1k2)(l1l2)2,\displaystyle+b_{2}(\omega_{1}-\omega_{2})(k_{1}-k_{2})(l_{1}-l_{2})^{2}, (3.10)
P2(p1+p2)=a0(ω1+ω2)(k1+k2)+a1(l1+l2)2+a2(k1+k2)4\displaystyle P_{2}(p_{1}+p_{2})=a_{0}(\omega_{1}+\omega_{2})(k_{1}+k_{2})+a_{1}(l_{1}+l_{2})^{2}+a_{2}(k_{1}+k_{2})^{4}
+b0(ω1+ω2)(k1+k2)2(l1+l2)+b1(ω1+ω2)2(k1+k2)(l1+l2)\displaystyle+b_{0}(\omega_{1}+\omega_{2})(k_{1}+k_{2})^{2}(l_{1}+l_{2})+b_{1}(\omega_{1}+\omega_{2})^{2}(k_{1}+k_{2})(l_{1}+l_{2})
+b2(ω1+ω2)(k1+k2)(l1+l2)2.\displaystyle+b_{2}(\omega_{1}+\omega_{2})(k_{1}+k_{2})(l_{1}+l_{2})^{2}. (3.11)

Take ε=1\varepsilon=1. Hence two-soliton solutions of the equation (2.4) are given by

u(x,y,t)=2(ln(f(x,y,t)))x=2[k1eθ1(1+A12eθ2)+k2eθ2(1+A12eθ1)]1+eθ1+eθ2+A12eθ1+θ2,u(x,y,t)=2(\ln(f(x,y,t)))_{x}=\frac{2[k_{1}e^{\theta_{1}}(1+A_{12}e^{\theta_{2}})+k_{2}e^{\theta_{2}}(1+A_{12}e^{\theta_{1}})]}{1+e^{\theta_{1}}+e^{\theta_{2}}+A_{12}e^{\theta_{1}+\theta_{2}}}, (3.12)

where θj=kjx+ωjt+ljy+αj\theta_{j}=k_{j}x+\omega_{j}t+l_{j}y+\alpha_{j}, j=1,2j=1,2, with the dispersion relations (3.2) satisfied.

Solitonic solutions of (2.2) and (2.4) show exactly similar properties of the soliton solutions of the standard integrable equations. We shall investigate the three-soliton solutions of these equations in a later communication.

3.3 Three-soliton solutions of (2.2) and (2.4)

We have studied three-soliton solutions of the equations (2.2) and (2.4). First of all there exists no three-soliton solutions with arbitrary values of parameters of the equations. This means that parameters a0,a1,a_{0},a_{1},\cdots, b0,b1,b_{0},b_{1},\cdots and c0,c1,c_{0},c_{1},\cdots satisfy certain conditions. These constraints are quite lengthy and hence we leave the study on the three-soliton solutions of (2.2) and (2.4) for a later communication.

4 Lump solutions

Lump solutions of bilinear equations are obtained by taking [16]-[22], [36]-[39],

f=β0+j=1Mpj,f=\beta_{0}+\sum_{j=1}^{M}p_{j}, (4.1)

where pj=β1jx+β2jy+β3jt+β4jp_{j}=\beta_{1}^{j}x+\beta_{2}^{j}y+\beta_{3}^{j}t+\beta_{4}^{j}, β0,βsj\beta_{0},\beta_{s}^{j}, s=1,2,3,4s=1,2,3,4, j=1,,Mj=1,\cdots,M are arbitrary constants. Inserting (4.1) into the bilinear equations of ff we obtain some conditions on the constants β0,βsj\beta_{0},\beta_{s}^{j}. The bilinear form of (2.2) is given by

a0(ffttft2)+a1(ffxxfx2)+a2(ffyyfy2)+a3(ffxtfxft)+a4(fftyftfy)\displaystyle a_{0}(ff_{tt}-f_{t}^{2})+a_{1}(ff_{xx}-f_{x}^{2})+a_{2}(ff_{yy}-f_{y}^{2})+a_{3}(ff_{xt}-f_{x}f_{t})+a_{4}(ff_{ty}-f_{t}f_{y})
+a5(ffxyfxfy)+b0(ffxxxy3fxfxxy+3fxxfxyfyfxxx)\displaystyle+a_{5}(ff_{xy}-f_{x}f_{y})+b_{0}(ff_{xxxy}-3f_{x}f_{xxy}+3f_{xx}f_{xy}-f_{y}f_{xxx})
+b1(ffxxxt3fxfxxt+3fxxfxtftfxxx)+b2(ffxxxx4fxfxxx+3fxx2)\displaystyle+b_{1}(ff_{xxxt}-3f_{x}f_{xxt}+3f_{xx}f_{xt}-f_{t}f_{xxx})+b_{2}(ff_{xxxx}-4f_{x}f_{xxx}+3f_{xx}^{2})
+c0(ffxxxxxx6fxfxxxxx+15fxxfxxxx10fxxx2)\displaystyle+c_{0}(ff_{xxxxxx}-6f_{x}f_{xxxxx}+15f_{xx}f_{xxxx}-10f_{xxx}^{2})
+c1(fftxxxxx5fxftxxxx+10fxxftxxx10fxxxfxxt+5fxtfxxxxftfxxxxx)\displaystyle+c_{1}(ff_{txxxxx}-5f_{x}f_{txxxx}+10f_{xx}f_{txxx}-10f_{xxx}f_{xxt}+5f_{xt}f_{xxxx}-f_{t}f_{xxxxx})
+c2(ffyxxxxx5fxfyxxxx+10fxxfyxxx10fxxxfxxy+5fxyfxxxxfyfxxxxx)=0,\displaystyle+c_{2}(ff_{yxxxxx}-5f_{x}f_{yxxxx}+10f_{xx}f_{yxxx}-10f_{xxx}f_{xxy}+5f_{xy}f_{xxxx}-f_{y}f_{xxxxx})=0, (4.2)

and the bilinear form of (2.4) is

a0(ffxtfxft)+a1(ffyyfy2)+a2(ffxxxx4fxfxxx+3fxx2)\displaystyle a_{0}(ff_{xt}-f_{x}f_{t})+a_{1}(ff_{yy}-f_{y}^{2})+a_{2}(ff_{xxxx}-4f_{x}f_{xxx}+3f_{xx}^{2})
+b0(fftyxx2fxfxyt+fxxftyfyftxx+2fxtfxyftfyxx)\displaystyle+b_{0}(ff_{tyxx}-2f_{x}f_{xyt}+f_{xx}f_{ty}-f_{y}f_{txx}+2f_{xt}f_{xy}-f_{t}f_{yxx})
+b1(ffxytt2ftfxyt+fttfxyfyfxtt+2fxtfytfxfytt)\displaystyle+b_{1}(ff_{xytt}-2f_{t}f_{xyt}+f_{tt}f_{xy}-f_{y}f_{xtt}+2f_{xt}f_{yt}-f_{x}f_{ytt})
+b2(ffxtyy2fyfxyt+fyyfxtftfxyy+2fxyfytfxftyy)=0.\displaystyle+b_{2}(ff_{xtyy}-2f_{y}f_{xyt}+f_{yy}f_{xt}-f_{t}f_{xyy}+2f_{xy}f_{yt}-f_{x}f_{tyy})=0. (4.3)

4.1 Lump solutions with one function

To obtain lump solutions of (2.2) and (2.4) we take M=1M=1 in (4.1) i.e.

f=β0+p2,f=\beta_{0}+p^{2}, (4.4)

where p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4} for arbitrary constants βj\beta_{j}, j=0,1,2,3,4j=0,1,2,3,4.

Lump solutions of (2.2) with one function

In this part we will obtain lump solutions of the equation (2.2) with one function. We first insert (4.4) into (4) and get two conditions to be satisfied by βj\beta_{j}, j=0,1,2,3,4j=0,1,2,3,4 given below.

1)a0β32+a2β22+a3β1β3+a4β2β3+a5β1β2=0,\displaystyle 1)\,a_{0}\beta_{3}^{2}+a_{2}\beta_{2}^{2}+a_{3}\beta_{1}\beta_{3}+a_{4}\beta_{2}\beta_{3}+a_{5}\beta_{1}\beta_{2}=0, (4.5)
2)a1β12β0+6b0β13β2+6b1β13β3+6b2β14=0.\displaystyle 2)\,a_{1}\beta_{1}^{2}\beta_{0}+6b_{0}\beta_{1}^{3}\beta_{2}+6b_{1}\beta_{1}^{3}\beta_{3}+6b_{2}\beta_{1}^{4}=0. (4.6)

Let us give a particular example where the solution parameters are satisfying (4.5) and (4.6).

Example 1.  Choose a0=1,a1=2,a2=4,a3=5,a4=1,a5=6,b0=4,b1=2,b2=3,c0=5,c1=2,c2=1a_{0}=1,a_{1}=-2,a_{2}=4,a_{3}=5,a_{4}=-1,a_{5}=6,b_{0}=-4,b_{1}=2,b_{2}=3,c_{0}=5,c_{1}=2,c_{2}=-1 yielding the equation

utt2uxx+4uyy+5utxuty+6uxy4(uyxx+3uxuy)x+2(utxx+3utux)x\displaystyle u_{tt}-2u_{xx}+4u_{yy}+5u_{tx}-u_{ty}+6u_{xy}-4(u_{yxx}+3u_{x}u_{y})_{x}+2(u_{txx}+3u_{t}u_{x})_{x}
+3(uxxx+3ux2)x+5(uxxxxx+15uxuxxx+15ux3)x\displaystyle+3(u_{xxx}+3u_{x}^{2})_{x}+5(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+2(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+2(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle-(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (4.7)

Pick also β0=2,β3=1,β4=4\beta_{0}=2,\beta_{3}=-1,\beta_{4}=4 giving β1=2\beta_{1}=2 and β2=1\beta_{2}=1 obtained from (4.5) and (4.6). Hence a lump solution of (4.7) is

u(x,y,t)=8(2x+yt+4)2+(2x+yt+4)2.\displaystyle u(x,y,t)=\frac{8(2x+y-t+4)}{2+(2x+y-t+4)^{2}}. (4.8)

The graphs of the above solution at t=0t=0 and t=10t=10 with the corresponding contour plots are given in Figure 1.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Lump solutions of (4.7) at t=0t=0 and t=10t=10. (a), (c) t=0t=0; (b), (d) t=10t=10.

Lump solutions of (2.4) with one function

Here we consider the equation (2.4). When we insert (4.4) into (4) we obtain two equations to be satisfied by βj\beta_{j}, j=0,1,2,3,4j=0,1,2,3,4 as

1)a0β1β3+a1β22=0,\displaystyle 1)\,a_{0}\beta_{1}\beta_{3}+a_{1}\beta_{2}^{2}=0, (4.9)
2)a0β12(a0a2β13a1b0β23)+a1β24=0.\displaystyle 2)\,a_{0}\beta_{1}^{2}(a_{0}a_{2}\beta_{1}^{3}-a_{1}b_{0}\beta_{2}^{3})+a_{1}\beta_{2}^{4}=0. (4.10)

We give the following example.

Example 2.  Take a0=3,a1=2,a2=18,b0=1,b1=1,b2=2a_{0}=3,a_{1}=-2,a_{2}=-18,b_{0}=-1,b_{1}=1,b_{2}=2 giving the equation

3uxt2uyy18(uxxx+3ux2)x(uxxyt+uxuyt+2uyuxt+2utuxy+uxxD1uyt)\displaystyle 3u_{xt}-2u_{yy}-18(u_{xxx}+3u_{x}^{2})_{x}-(u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}\,D^{-1}\,u_{yt})
+(uxytt+uyutt+2utuyt+uxyD1utt+2uxtD1uyt)\displaystyle+(u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}\,D^{-1}\,u_{tt}+2u_{xt}\,D^{-1}\,u_{yt})
+2(uxtyy+utuyy+2uyuyt+uxtD1uyy+2uxyD1uyt)=0.\displaystyle+2(u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}\,D^{-1}\,u_{yy}+2u_{xy}\,D^{-1}\,u_{yt})=0. (4.11)

In addition to that choose β0=2,β1=3,β4=4\beta_{0}=2,\beta_{1}=-3,\beta_{4}=4 yielding β2=9\beta_{2}=9 and β3=18\beta_{3}=-18 from the equations (4.9) and (4.10). Thus a lump solution of (4.11) is

u(x,y,t)=12(3x9y+18t4)2+(3x9y+18t4)2.\displaystyle u(x,y,t)=\frac{12(3x-9y+18t-4)}{2+(3x-9y+18t-4)^{2}}. (4.12)

The graphs of the above solution at t=0t=0 and t=2t=2 with the corresponding contour plots are given in Figure 2.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Lump solutions of (4.11) at t=0t=0 and t=2t=2. (a), (c) t=0t=0; (b), (d) t=2t=2.

4.2 Lump solutions with two functions

To obtain lump solutions of the equations (2.2) and (2.4) with two functions we take M=2M=2 in (4.1) that is

f=β0+p2+q2,f=\beta_{0}+p^{2}+q^{2}, (4.13)

where p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4} and q=β5x+β6y+β7t+β8q=\beta_{5}x+\beta_{6}y+\beta_{7}t+\beta_{8} for arbitrary constants β0,β1,,β8\beta_{0},\beta_{1},\cdots,\beta_{8}. Inserting this ansatz into the bilinear equations of ff we obtain some conditions on the constants β0,β1,,β8\beta_{0},\beta_{1},\cdots,\beta_{8}.

Lump solutions of (2.2) with two functions

Inserting (4.13) into the bilinear form of the equation (2.2) yields the following system of equations:

1) 2β3β7a0+(β1β6+β2β5)a5+2β1β5a1+(β3β5+β1β7)a3+2β2β6a2\displaystyle 1)\,2\beta_{3}\beta_{7}a_{0}+(\beta_{1}\beta_{6}+\beta_{2}\beta_{5})a_{5}+2\beta_{1}\beta_{5}a_{1}+(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})a_{3}+2\beta_{2}\beta_{6}a_{2}
+(β3β6+β2β7)a4=0,\displaystyle+(\beta_{3}\beta_{6}+\beta_{2}\beta_{7})a_{4}=0, (4.14)
2)(β22β62)a2+(β32β72)a0+(β1β2β5β6)a5+(β12β52)a1+(β1β3β5β7)a3\displaystyle 2)\,(\beta_{2}^{2}-\beta_{6}^{2})a_{2}+(\beta_{3}^{2}-\beta_{7}^{2})a_{0}+(\beta_{1}\beta_{2}-\beta_{5}\beta_{6})a_{5}+(\beta_{1}^{2}-\beta_{5}^{2})a_{1}+(\beta_{1}\beta_{3}-\beta_{5}\beta_{7})a_{3}
+(β2β3β6β7)a4=0,\displaystyle+(\beta_{2}\beta_{3}-\beta_{6}\beta_{7})a_{4}=0, (4.15)
3) 6(β12+β52)2b2+β0(β22+β62)a2+β0(β32+β72)a0+β0(β12+β52)a1+β0(β1β2+β5β6)a5\displaystyle 3)\,6(\beta_{1}^{2}+\beta_{5}^{2})^{2}b_{2}+\beta_{0}(\beta_{2}^{2}+\beta_{6}^{2})a_{2}+\beta_{0}(\beta_{3}^{2}+\beta_{7}^{2})a_{0}+\beta_{0}(\beta_{1}^{2}+\beta_{5}^{2})a_{1}+\beta_{0}(\beta_{1}\beta_{2}+\beta_{5}\beta_{6})a_{5}
+β0(β1β3+β5β7)a3+β0(β2β3+β6β7)a4+6(β12+β52)(β1β2+β5β6)b0\displaystyle+\beta_{0}(\beta_{1}\beta_{3}+\beta_{5}\beta_{7})a_{3}+\beta_{0}(\beta_{2}\beta_{3}+\beta_{6}\beta_{7})a_{4}+6(\beta_{1}^{2}+\beta_{5}^{2})(\beta_{1}\beta_{2}+\beta_{5}\beta_{6})b_{0}
+6(β12+β52)(β1β3+β5β7)b1=0.\displaystyle+6(\beta_{1}^{2}+\beta_{5}^{2})(\beta_{1}\beta_{3}+\beta_{5}\beta_{7})b_{1}=0. (4.16)

We solve the above system for the constants βj\beta_{j}, j=0,1,,8j=0,1,\cdots,8 and use them to find lump solutions of (2.2). Consider the following particular example.

Example 3.  Choose a0=1,a1=2,a2=a3=1,a4=1,a5=1,b0=1,b1=2a_{0}=1,a_{1}=2,a_{2}=a_{3}=1,a_{4}=-1,a_{5}=-1,b_{0}=1,b_{1}=2, b2=1,c0=2,c1=1,c2=1b_{2}=1,c_{0}=2,c_{1}=-1,c_{2}=1 i.e. we have the equation

utt+2uxx+uyy+utxutyuxy+(uyxx+3uxuy)x+2(utxx+3utux)x+(uxxx+3ux2)x\displaystyle u_{tt}+2\,u_{xx}+u_{yy}+u_{tx}-u_{ty}-u_{xy}+(u_{yxx}+3u_{x}u_{y})_{x}+2\,(u_{txx}+3u_{t}u_{x})_{x}+\,(u_{xxx}+3u_{x}^{2})_{x}
+2(uxxxxx+15uxuxxx+15ux3)x(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+2\,(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}-(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
+(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle+(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (4.17)

In addition we pick β1=2,β2=1,β4=1,β5=1,β6=1,β8=2\beta_{1}=2,\beta_{2}=-1,\beta_{4}=1,\beta_{5}=-1,\beta_{6}=-1,\beta_{8}=2 yielding

β0=15α(37+α1129)4+21129,β3=32+14α,β7=10α\displaystyle\beta_{0}=\frac{15\alpha(37+\alpha-\sqrt{1129})}{-4+2\sqrt{1129}},\quad\beta_{3}=-\frac{3}{2}+\frac{1}{4}\alpha,\quad\beta_{7}=\frac{10}{\alpha} (4.18)

from the equations given in (4.14)-(4.16). Hence we get a lump solution of the equation (4.17) as

u(x,y,t)=4[5xy+(3+α210α)t]15α(37+α1129)4+21129+(2xy+(32+14α)t+1)2+(x+y10αt2)2\displaystyle u(x,y,t)=\frac{4[5x-y+(-3+\frac{\alpha}{2}-\frac{10}{\alpha})t]}{\frac{15\alpha(37+\alpha-\sqrt{1129})}{-4+2\sqrt{1129}}+(2x-y+(-\frac{3}{2}+\frac{1}{4}\alpha)t+1)^{2}+(x+y-\frac{10}{\alpha}t-2)^{2}} (4.19)

for α=54+21129\alpha=\sqrt{-54+2\sqrt{1129}}. The graphs of the above solution at t=0t=0 and t=5t=5 with the corresponding contour plots are given in Figure 3.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Lump solutions of (4.17) at t=0t=0 and t=5t=5. (a), (c) t=0t=0; (b), (d) t=5t=5.

Lump solutions of (2.4) with two functions

Inserting the lump solution form (4.13) into the bilinear form (4) we get the following system of equations to be satisfied by the constants βj\beta_{j}, 0j80\leq j\leq 8:

1)a0(β3β5+β1β7)+2a1β2β6=0,\displaystyle 1)\,a_{0}(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})+2a_{1}\beta_{2}\beta_{6}=0, (4.20)
2)a1(β22β62)+a0(β1β3β5β7)=0,\displaystyle 2)\,a_{1}(\beta_{2}^{2}-\beta_{6}^{2})+a_{0}(\beta_{1}\beta_{3}-\beta_{5}\beta_{7})=0, (4.21)
3)β0(β22+β62)a1+β0(β1β3+β5β7)a0+6(β12+β52)2a2\displaystyle 3)\,\beta_{0}(\beta_{2}^{2}+\beta_{6}^{2})a_{1}+\beta_{0}(\beta_{1}\beta_{3}+\beta_{5}\beta_{7})a_{0}+6(\beta_{1}^{2}+\beta_{5}^{2})^{2}a_{2}
+2[β22(β5β7+3β1β3)+β62(3β5β7+β1β3)+2β2β6(β2β7+β3β5)]b2\displaystyle+2[\beta_{2}^{2}(\beta_{5}\beta_{7}+3\beta_{1}\beta_{3})+\beta_{6}^{2}(3\beta_{5}\beta_{7}+\beta_{1}\beta_{3})+2\beta_{2}\beta_{6}(\beta_{2}\beta_{7}+\beta_{3}\beta_{5})]b_{2}
+2[β22(β2β3+3β6β7)+β62(3β2β3+β6β7)+2β1β5(β3β6+β2β7)]b0\displaystyle+2[\beta_{2}^{2}(\beta_{2}\beta_{3}+3\beta_{6}\beta_{7})+\beta_{6}^{2}(3\beta_{2}\beta_{3}+\beta_{6}\beta_{7})+2\beta_{1}\beta_{5}(\beta_{3}\beta_{6}+\beta_{2}\beta_{7})]b_{0}
+2[β22(β1β2+3β5β6)+β62(3β1β2+β5β6)+2β3β7(β1β6+β2β5)]b1=0.\displaystyle+2[\beta_{2}^{2}(\beta_{1}\beta_{2}+3\beta_{5}\beta_{6})+\beta_{6}^{2}(3\beta_{1}\beta_{2}+\beta_{5}\beta_{6})+2\beta_{3}\beta_{7}(\beta_{1}\beta_{6}+\beta_{2}\beta_{5})]b_{1}=0. (4.22)

Consider the following particular example.

Example 4.  Take a0=2,a1=1,a2=1,b0=4,b1=5,b2=2a_{0}=2,a_{1}=1,a_{2}=-1,b_{0}=4,b_{1}=5,b_{2}=-2 yielding the equation

2uxt+uyy(uxxx+3ux2)x+4(uxxyt+uxuyt+2uyuxt+2utuxy+uxxD1uyt)\displaystyle 2u_{xt}+u_{yy}-(u_{xxx}+3u_{x}^{2})_{x}+4(u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}\,D^{-1}\,u_{yt})
+5(uxytt+uyutt+2utuyt+uxyD1utt+2uxtD1uyt)\displaystyle+5(u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}\,D^{-1}\,u_{tt}+2u_{xt}\,D^{-1}\,u_{yt})
2(uxtyy+utuyy+2uyuyt+uxtD1uyy+2uxyD1uyt)=0.\displaystyle-2(u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}\,D^{-1}\,u_{yy}+2u_{xy}\,D^{-1}\,u_{yt})=0. (4.23)

We choose also β1=2,β2=1,β4=2,β5=1,β6=1,β8=2\beta_{1}=2,\beta_{2}=-1,\beta_{4}=2,\beta_{5}=-1,\beta_{6}=-1,\beta_{8}=2 giving β0=44,β3=15,β7=25\beta_{0}=44,\beta_{3}=\frac{1}{5},\beta_{7}=-\frac{2}{5} from the equations (4.20)-(4.22). Hence we obtain a lump solution of the equation (4.23) as

u=4(5xy+45t+2)44+(2xy+15t+2)2+(x+y+25t2)2.\displaystyle u=\frac{4(5x-y+\frac{4}{5}t+2)}{44+(2x-y+\frac{1}{5}t+2)^{2}+(x+y+\frac{2}{5}t-2)^{2}}. (4.24)

The graphs of the above solution at t=0t=0 and t=60t=60 with the corresponding contour plots are given in Figure 4.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Lump solutions of (4.23) at t=0t=0 and t=60t=60. (a), (c) t=0t=0; (b), (d) t=60t=60.

4.3 Lump solutions with three functions

We can consider a more general form for the function ff by taking M=3M=3 in (4.1) [16], [38], [39]

f=β0+p2+q2+r2,f=\beta_{0}+p^{2}+q^{2}+r^{2}, (4.25)

with p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4}, q=β5x+β6y+β7t+β8q=\beta_{5}x+\beta_{6}y+\beta_{7}t+\beta_{8}, and r=β9x+β10y+β11t+β12r=\beta_{9}x+\beta_{10}y+\beta_{11}t+\beta_{12} where β0,β1,,β12\beta_{0},\beta_{1},\cdots,\beta_{12} are arbitrary constants. Similar to the previous section inserting the above ansatz into the bilinear equations of (4) and (4), we obtain systems of equations for the constants β0,β1,,β12\beta_{0},\beta_{1},\cdots,\beta_{12} given in Appendix B.

For the equation (2.2) the relations given in Appendix B result in

p=β3(ηx+ξy+t)+β4,\displaystyle p=\beta_{3}(\eta x+\xi y+t)+\beta_{4}, (4.26)
q=β7(ηx+ξy+t)+β8,\displaystyle q=\beta_{7}(\eta x+\xi y+t)+\beta_{8}, (4.27)
r=β11(ηx+ξy+t)+β12,\displaystyle r=\beta_{11}(\eta x+\xi y+t)+\beta_{12}, (4.28)

where ξ=β10β11\xi=\frac{\beta_{10}}{\beta_{11}} and η\eta is given by (Appendix B: Conditions for the lump solutions). In this case we have a lump solution to (2.2) similar to a lump solution with one function.

For the equation (2.4) the relations given in Appendix B yields

p=β3(λμ2x+μy+t)+β4,\displaystyle p=\beta_{3}(-\lambda\mu^{2}x+\mu y+t)+\beta_{4}, (4.29)
q=β7(λμ2x+μy+t)+β8,\displaystyle q=\beta_{7}(-\lambda\mu^{2}x+\mu y+t)+\beta_{8}, (4.30)
r=β11(λμ2x+μy+t)+β12,\displaystyle r=\beta_{11}(-\lambda\mu^{2}x+\mu y+t)+\beta_{12}, (4.31)

which gives a lump solution to (2.4) similar to a lump solution with one function.

We now give particular examples for lump solutions of (2.2) and (2.4) with three functions.

Example 5. Take the coefficients of the equation (2.2) as a0=1,a1=2,a2=1,a3=2,a4=1,a5=1,b0=3,b1=2,b2=1,c0=1,c1=2,c2=1a_{0}=1,a_{1}=-2,a_{2}=1,a_{3}=2,a_{4}=-1,a_{5}=1,b_{0}=3,b_{1}=2,b_{2}=-1,c_{0}=1,c_{1}=-2,c_{2}=1 yielding

utt2uxx+uyy+2utxuty+uxy+3(uyxx+3uxuy)x\displaystyle u_{tt}-2\,u_{xx}+u_{yy}+2u_{tx}-u_{ty}+u_{xy}+3\,(u_{yxx}+3u_{x}u_{y})_{x}
+2(utxx+3utux)x(uxxx+3ux2)x+(uxxxxx+15uxuxxx+15ux3)x\displaystyle+2\,(u_{txx}+3u_{t}u_{x})_{x}-(u_{xxx}+3u_{x}^{2})_{x}+(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
2(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle-2\,(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
+(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle+\,(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (4.32)

In addition to that if we pick β3=2,β5=1,β10=3\beta_{3}=2,\beta_{5}=1,\beta_{10}=-3 we obtain β1=2,β2=2,β6=1,β7=1,β9=3,\beta_{1}=-2,\beta_{2}=-2,\beta_{6}=1,\beta_{7}=-1,\beta_{9}=-3, and β11=3\beta_{11}=3. Choose also β0=2\beta_{0}=2, β4=1\beta_{4}=-1, β8=4\beta_{8}=4, and β12=1\beta_{12}=1. Hence a lump solution of the equation (4.32) is

u(x,y,t)=4[14(x+yt)+3]2+(2[x+yt]+1)2+([x+yt]+4)2+(3[x+yt]1)2.\displaystyle u(x,y,t)=\frac{4[14(x+y-t)+3]}{2+(2[x+y-t]+1)^{2}+([x+y-t]+4)^{2}+(3[x+y-t]-1)^{2}}. (4.33)

The graphs of the above solution at t=0t=0 and t=20t=20 with the corresponding contour plots are given in Figure 5.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Lump solutions of (4.32) at t=0t=0 and t=20t=20. (a), (c) t=0t=0; (b), (d) t=20t=20.

Example 6. Choose the coefficients of the equation (2.4) as a0=1,a1=3,a2=6,b0=16,b1=2,b2=3a_{0}=1,a_{1}=3,a_{2}=6,b_{0}=16,b_{1}=2,b_{2}=3 yielding

uxt+3uyy+6(uxxx+3ux2)x+16(uxxyt+uxuyt+2uyuxt+2utuxy+uxxD1uyt)\displaystyle u_{xt}+3u_{yy}+6(u_{xxx}+3u_{x}^{2})_{x}+16(u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}\,D^{-1}\,u_{yt})
+2(uxytt+uyutt+2utuyt+uxyD1utt+2uxtD1uyt)\displaystyle+2(u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}\,D^{-1}\,u_{tt}+2u_{xt}\,D^{-1}\,u_{yt})
+3(uxtyy+utuyy+2uyuyt+uxtD1uyy+2uxyD1uyt)=0.\displaystyle+3(u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}\,D^{-1}\,u_{yy}+2u_{xy}\,D^{-1}\,u_{yt})=0. (4.34)

We take β3=1,β7=5,β10=2,β11=3\beta_{3}=1,\beta_{7}=-5,\beta_{10}=2,\beta_{11}=-3 yielding β1=43,β2=23,β5=203,β6=103,β9=4\beta_{1}=-\frac{4}{3},\beta_{2}=-\frac{2}{3},\beta_{5}=\frac{20}{3},\beta_{6}=\frac{10}{3},\beta_{9}=4 from the relations given in Appendix B. Choose also β0=1,β4=2,β8=1\beta_{0}=1,\beta_{4}=2,\beta_{8}=-1, and β12=7\beta_{12}=7. Hence we obtain a lump solution of the equation (4.34) as

u(x,y,t)=16(140x+70y105t+42)9(1+(43x+23yt2)2+(203x+103y5t1)2+(4x+2y3t+7)2).\displaystyle u(x,y,t)=\frac{16(140x+70y-105t+42)}{9(1+(\frac{4}{3}x+\frac{2}{3}y-t-2)^{2}+(\frac{20}{3}x+\frac{10}{3}y-5t-1)^{2}+(4x+2y-3t+7)^{2})}. (4.35)

The graphs of the above solution at t=0t=0 and t=20t=20 with the corresponding contour plots are given in Figure 6.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Lump solutions of (4.34) at t=0t=0 and t=20t=20. (a), (c) t=0t=0; (b), (d) t=20t=20.

All the lump solutions of (2.2) and (2.4) are regular everywhere and asymptotically decaying to zero.

5 Hybrid solutions

Case 1. Consider the following ansatz

f=β0+p2+q,f=\beta_{0}+p^{2}+q, (5.1)

where p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4}, q=eβ5x+β6y+β7t+β8q=e^{\beta_{5}x+\beta_{6}y+\beta_{7}t+\beta_{8}} with arbitrary constants β0,β1,,β8\beta_{0},\beta_{1},\cdots,\beta_{8}. Inserting the above ansatz into the bilinear equations (4) and (4), we obtain systems of equations for the constants β0,β1,,β8\beta_{0},\beta_{1},\cdots,\beta_{8} given in Appendix C.

For the equation (2.2) due to the condition (7.75) we have two possibilities:

i)β1=0,ii)β10,β3=(b2β1+b0β2)b1.i)\,\beta_{1}=0,\quad\quad ii)\,\beta_{1}\neq 0,\,\,\beta_{3}=-\frac{(b_{2}\beta_{1}+b_{0}\beta_{2})}{b_{1}}. (5.2)

Let β1=0\beta_{1}=0. Consider the following example for this case.

Example 7. Take the coefficients of the equation (2.2) as a0=1,a1=1,a2=3,a3=1,a4=2,a5=b0=b1=1,b2=1,c0=c1=1,c2=1a_{0}=1,a_{1}=1,a_{2}=-3,a_{3}=1,a_{4}=2,a_{5}=b_{0}=b_{1}=1,b_{2}=-1,c_{0}=c_{1}=1,c_{2}=-1 giving

utt+uxx3uyy+utx+2uty+uxy+(uyxx+3uxuy)x\displaystyle u_{tt}+u_{xx}-3u_{yy}+u_{tx}+2u_{ty}+u_{xy}+(u_{yxx}+3u_{x}u_{y})_{x}
+(utxx+3utux)x(uxxx+3ux2)x+(uxxxxx+15uxuxxx+15ux3)x\displaystyle+(u_{txx}+3u_{t}u_{x})_{x}-(u_{xxx}+3u_{x}^{2})_{x}+(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle-(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (5.3)

Pick also β0=1,β3=1,β4=2,β7=3\beta_{0}=1,\beta_{3}=1,\beta_{4}=-2,\beta_{7}=3, β8=2\beta_{8}=2 yielding β2=13,β5=22,β6=1621\beta_{2}=-\frac{1}{3},\beta_{5}=-\frac{\sqrt{2}}{2},\beta_{6}=\frac{1}{6}\sqrt{2}-1. Hence a lump solution of the equation (5.3) is

u(x,y,t)=2e22x+(1621)y+3t+21+(213y+t)2+e22x+(1621)y+3t+2.\displaystyle u(x,y,t)=\frac{\sqrt{2}e^{\frac{-\sqrt{2}}{2}x+(\frac{1}{6}\sqrt{2}-1)y+3t+2}}{1+(-2-\frac{1}{3}y+t)^{2}+e^{\frac{-\sqrt{2}}{2}x+(\frac{1}{6}\sqrt{2}-1)y+3t+2}}. (5.4)

The graphs of the above solution at t=0t=0 and t=5t=5 with the corresponding contour plots are given in Figure 7.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Lump solutions of (5.3) at t=0t=0 and t=5t=5. (a), (c) t=0t=0; (b), (d) t=5t=5.

Now we will consider the case when β10,β3=(b2β1+b0β2)b1\beta_{1}\neq 0,\beta_{3}=-\frac{(b_{2}\beta_{1}+b_{0}\beta_{2})}{b_{1}} for the equation (2.2) and give the following example.

Example 8. Choose the coefficients of the equation (2.2) as a0=a1=1,a2=1,a3=a4=a5=b0=b1=b2=c0=c1=c2=1a_{0}=a_{1}=1,a_{2}=-1,a_{3}=a_{4}=a_{5}=b_{0}=b_{1}=b_{2}=c_{0}=c_{1}=c_{2}=1. Hence we have the equation

utt+uxxuyy+utx+uty+uxy+(uyxx+3uxuy)x\displaystyle u_{tt}+u_{xx}-u_{yy}+u_{tx}+u_{ty}+u_{xy}+(u_{yxx}+3u_{x}u_{y})_{x}
+(utxx+3utux)x(uxxx+3ux2)x+(uxxxxx+15uxuxxx+15ux3)x\displaystyle+(u_{txx}+3u_{t}u_{x})_{x}-(u_{xxx}+3u_{x}^{2})_{x}+(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
+(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle+(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (5.5)

We take also β0=1,β3=1,β4=2,β6=2\beta_{0}=1,\beta_{3}=1,\beta_{4}=-2,\beta_{6}=2, β8=4\beta_{8}=4 yielding β1=32+125\beta_{1}=-\frac{3}{2}+\frac{1}{2}\sqrt{5}, β2=12125\beta_{2}=\frac{1}{2}-\frac{1}{2}\sqrt{5}, β5=1+5\beta_{5}=-1+\sqrt{5}, and β7=15\beta_{7}=-1-\sqrt{5}. Therefore a lump solution of the equation (5.5) is u(x,y,t)=U(x,y,t)V(x,y,t)u(x,y,t)=\frac{U(x,y,t)}{V(x,y,t)}, where

U(x,y,t)\displaystyle U(x,y,t) =2[2(32+125)((32+125)x+(12125)y+t2)\displaystyle=2[2(-\frac{3}{2}+\frac{1}{2}\sqrt{5})((-\frac{3}{2}+\frac{1}{2}\sqrt{5})x+(\frac{1}{2}-\frac{1}{2}\sqrt{5})y+t-2)
+(1+5)e(1+5)x+2y(1+5)t+4],\displaystyle+(-1+\sqrt{5})e^{(-1+\sqrt{5})x+2y-(1+\sqrt{5})t+4}], (5.6)
V(x,y,t)\displaystyle V(x,y,t) =1+((32+125)x+(12125)y+t2)2+e(1+5)x+2y(1+5)t+4.\displaystyle=1+((-\frac{3}{2}+\frac{1}{2}\sqrt{5})x+(\frac{1}{2}-\frac{1}{2}\sqrt{5})y+t-2)^{2}+e^{(-1+\sqrt{5})x+2y-(1+\sqrt{5})t+4}. (5.7)

The graphs of the above solution at t=0t=0 and t=5t=5 with the corresponding contour plots are given in Figure 8.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: Lump solutions of (5.5) at t=0t=0 and t=5t=5. (a), (c) t=0t=0; (b), (d) t=6t=6.

For the equation (2.4) by following the constraints for the parameters given in Appendix C, we give the following example.

Example 9. Let a0=2,a1=a2=1,b0=1,b1=4,b2=3a_{0}=-2,a_{1}=a_{2}=1,b_{0}=-1,b_{1}=4,b_{2}=-3 in (2.4). We have the equation

2uxt+uyy+(uxxx+3ux2)x(uxxyt+uxuyt+2uyuxt+2utuxy+uxxD1uyt)\displaystyle-2u_{xt}+u_{yy}+(u_{xxx}+3u_{x}^{2})_{x}-(u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}\,D^{-1}\,u_{yt})
+4(uxytt+uyutt+2utuyt+uxyD1utt+2uxtD1uyt)\displaystyle+4(u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}\,D^{-1}\,u_{tt}+2u_{xt}\,D^{-1}\,u_{yt})
3(uxtyy+utuyy+2uyuyt+uxtD1uyy+2uxyD1uyt)=0,\displaystyle-3(u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}\,D^{-1}\,u_{yy}+2u_{xy}\,D^{-1}\,u_{yt})=0, (5.8)

Take also β0=2,β1=1,β4=1,β5=3,β8=1\beta_{0}=2,\beta_{1}=1,\beta_{4}=-1,\beta_{5}=3,\beta_{8}=1 yielding β2=1,β3=12,β6=3,β7=32\beta_{2}=1,\beta_{3}=\frac{1}{2},\beta_{6}=3,\beta_{7}=\frac{3}{2}. Hence a lump solution of the equation (5.8) is

u(x,y,t)=2[2(x+y+12t1)+3e3x+3y+32t+1]2+(x+y+12t1)2+e3x+3y+32t+1.\displaystyle u(x,y,t)=\frac{2[2(x+y+\frac{1}{2}t-1)+3e^{3x+3y+\frac{3}{2}t+1}]}{2+(x+y+\frac{1}{2}t-1)^{2}+e^{3x+3y+\frac{3}{2}t+1}}. (5.9)

The graphs of the above solution at t=0t=0 and t=10t=10 with the corresponding contour plots are given in Figure 9.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 9: Lump solutions of (5.8) at t=0t=0 and t=10t=10. (a), (c) t=0t=0; (b), (d) t=10t=10.

Case 2. Here we consider

f=β0+p2+q+Ap2q,f=\beta_{0}+p^{2}+q+Ap^{2}q, (5.10)

where p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4}, q=eβ5x+β6y+β7t+β8q=e^{\beta_{5}x+\beta_{6}y+\beta_{7}t+\beta_{8}} with arbitrary constants β0,β1,,β8,A\beta_{0},\beta_{1},\cdots,\beta_{8},A. Inserting the above ansatz into the bilinear equations of (4) and (4), we obtain systems of equations for the constants β0,β1,,β8,A\beta_{0},\beta_{1},\cdots,\beta_{8},A given in Appendix C. If A=0A=0 then this case turns to be the Case 1. Hence here we only consider when A0A\neq 0.

For the equation (2.2) here also we have two possibilities:

i)β1=0,ii)β10,β3=(b2β1+b0β2)b1.i)\,\beta_{1}=0,\quad\quad ii)\,\beta_{1}\neq 0,\,\,\beta_{3}=-\frac{(b_{2}\beta_{1}+b_{0}\beta_{2})}{b_{1}}. (5.11)

Let us first give an example corresponding to β1=0\beta_{1}=0.

Example 10. Take the coefficients of the equation (2.2) as a0=a1=1,a2=3a_{0}=a_{1}=1,a_{2}=-3, a3=1a_{3}=1, a4=2a_{4}=2, a5=b0=b1=1a_{5}=b_{0}=b_{1}=1, b2=1b_{2}=-1, c0=c1=1,c2=1c_{0}=c_{1}=1,c_{2}=-1. Hence we have the equation

utt+uxx3uyy+utx+2uty+uxy+(uyxx+3uxuy)x\displaystyle u_{tt}+u_{xx}-3u_{yy}+u_{tx}+2u_{ty}+u_{xy}+(u_{yxx}+3u_{x}u_{y})_{x}
+(utxx+3utux)x(uxxx+3ux2)x+(uxxxxx+15uxuxxx+15ux3)x\displaystyle+(u_{txx}+3u_{t}u_{x})_{x}-(u_{xxx}+3u_{x}^{2})_{x}+(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle-(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (5.12)

Choose also β0=1,β2=3,β4=2,β6=1,β8=2,A=4\beta_{0}=1,\beta_{2}=3,\beta_{4}=-2,\beta_{6}=1,\beta_{8}=2,A=4 yielding β3=3,β5=22,β7=1382\beta_{3}=3,\beta_{5}=\frac{\sqrt{2}}{2},\beta_{7}=1-\frac{3}{8}\sqrt{2}. Thus a lump solution of the equation (5.12) is

u(x,y,t)=2[22e22x+y+(1382)t+2+2(2+3y+3t)22e22x+y+(1382)t+2]1+(2+3y+3t)2+e22x+y+(1382)t+2+4(2+3y+3t)2e22x+y+(1382)t+2.\displaystyle u(x,y,t)=\frac{2[\frac{\sqrt{2}}{2}e^{\frac{\sqrt{2}}{2}x+y+(1-\frac{3}{8}\sqrt{2})t+2}+2(-2+3y+3t)^{2}\sqrt{2}e^{\frac{\sqrt{2}}{2}x+y+(1-\frac{3}{8}\sqrt{2})t+2}]}{1+(-2+3y+3t)^{2}+e^{\frac{\sqrt{2}}{2}x+y+(1-\frac{3}{8}\sqrt{2})t+2}+4(-2+3y+3t)^{2}e^{\frac{\sqrt{2}}{2}x+y+(1-\frac{3}{8}\sqrt{2})t+2}}. (5.13)

The graphs of the above solution at t=0t=0 and t=5t=5 with the corresponding contour plots are given in Figure 10.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 10: Lump solutions of (5.12) at t=0t=0 and t=5t=5. (a), (c) t=0t=0; (b), (d) t=5t=5.

Now consider the case when β10,β3=(b2β1+b0β2)b1\beta_{1}\neq 0,\beta_{3}=-\frac{(b_{2}\beta_{1}+b_{0}\beta_{2})}{b_{1}}. By following the constraints given in Appendix C, we give the following example.

Example 11. Take the coefficients of the equation (2.2) as a0=a1=1,a2=2,a3=a4=a5=b0=b1=b2=c0=c1=1,c2=2a_{0}=a_{1}=1,a_{2}=-2,a_{3}=a_{4}=a_{5}=b_{0}=b_{1}=b_{2}=c_{0}=c_{1}=1,c_{2}=-2. Hence we have the equation

utt+uxx2uyy+utx+uty+uxy+(uyxx+3uxuy)x\displaystyle u_{tt}+u_{xx}-2u_{yy}+u_{tx}+u_{ty}+u_{xy}+(u_{yxx}+3u_{x}u_{y})_{x}
+(utxx+3utux)x+(uxxx+3ux2)x+(uxxxxx+15uxuxxx+15ux3)x\displaystyle+(u_{txx}+3u_{t}u_{x})_{x}+(u_{xxx}+3u_{x}^{2})_{x}+(u_{xxxxx}+15u_{x}u_{xxx}+15u_{x}^{3})_{x}
+(utxxxx+10uxuxxt+5utuxxx+15ux2ut)x\displaystyle+(u_{txxxx}+10u_{x}u_{xxt}+5u_{t}u_{xxx}+15u_{x}^{2}u_{t})_{x}
2(uyxxxx+10uxuxxy+5uyuxx+15ux2uy)x=0.\displaystyle-2(u_{yxxxx}+10u_{x}u_{xxy}+5u_{y}u_{xx}+15u_{x}^{2}u_{y})_{x}=0. (5.14)

Pick also β0=12,β1=1,β4=2,β8=2,A=2\beta_{0}=\frac{1}{2},\beta_{1}=-1,\beta_{4}=-2,\beta_{8}=2,A=2 yielding β2=12,β3=12,β5=359295,β6=10296962295\beta_{2}=\frac{1}{2},\beta_{3}=\frac{1}{2},\beta_{5}=\frac{3}{59}\sqrt{295},\beta_{6}=\frac{1029}{6962}\sqrt{295}, and β7=3213481295\beta_{7}=\frac{321}{3481}\sqrt{295}. Hence a lump solution of the equation (5.14) is

u(x,y,t)=U(x,y,t)V(x,y,t),u(x,y,t)=\frac{U(x,y,t)}{V(x,y,t)}, (5.15)

where

U(x,y,t)\displaystyle U(x,y,t) =2[2(x+12y+12t2)+359295e359295x+10296962295y+3213481295t+2\displaystyle=2[-2(-x+\frac{1}{2}y+\frac{1}{2}t-2)+\frac{3}{59}\sqrt{295}e^{\frac{3}{59}\sqrt{295}x+\frac{1029}{6962}\sqrt{295}y+\frac{321}{3481}\sqrt{295}t+2}
4(x+12y+12t2)e359295x+10296962295y+3213481295t+2\displaystyle-4(-x+\frac{1}{2}y+\frac{1}{2}t-2)e^{\frac{3}{59}\sqrt{295}x+\frac{1029}{6962}\sqrt{295}y+\frac{321}{3481}\sqrt{295}t+2}
+629559(x+12y+12t2)2e359295x+10296962295y+3213481295t+2],\displaystyle+\frac{6\sqrt{295}}{59}(-x+\frac{1}{2}y+\frac{1}{2}t-2)^{2}e^{\frac{3}{59}\sqrt{295}x+\frac{1029}{6962}\sqrt{295}y+\frac{321}{3481}\sqrt{295}t+2}], (5.16)
V(x,y,t)\displaystyle V(x,y,t) =12+(x+12y+12t2)2+e359295x+10296962295y+3213481295t+2\displaystyle=\frac{1}{2}+(-x+\frac{1}{2}y+\frac{1}{2}t-2)^{2}+e^{\frac{3}{59}\sqrt{295}x+\frac{1029}{6962}\sqrt{295}y+\frac{321}{3481}\sqrt{295}t+2}
+2(x+12y+12t2)2e359295x+10296962295y+3213481295t+2\displaystyle+2(-x+\frac{1}{2}y+\frac{1}{2}t-2)^{2}e^{\frac{3}{59}\sqrt{295}x+\frac{1029}{6962}\sqrt{295}y+\frac{321}{3481}\sqrt{295}t+2} (5.17)

The graphs of the above solution at t=0t=0 and t=10t=10 with the corresponding contour plots are given in Figure 11.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 11: Lump solutions of (5.14) at t=0t=0 and t=10t=10. (a), (c) t=0t=0; (b), (d) t=10t=10.

For the equation (2.4) we present the following example.

Example 12. Note that the parameters satisfying the conditions of Case 1 for (2.4) given in Appendix C also satisfy the conditions of Case 2. Therefore we can consider the same equation (5.8) with same βj\beta_{j}, j=0,,8j=0,\cdots,8. In addition to that let us pick A=10A=10. Hence we find another lump solution u(x,y,t)=U(x,y,t)V(x,y,t)u(x,y,t)=\frac{U(x,y,t)}{V(x,y,t)} of (5.8) where

U(x,y,t)\displaystyle\displaystyle U(x,y,t) =2[2(x+y+t21)+3e3x+3y+32t+1+20(x+y+t21)e3x+3y+32t+1\displaystyle=2[2(x+y+\frac{t}{2}-1)+3e^{3x+3y+\frac{3}{2}t+1}+20(x+y+\frac{t}{2}-1)e^{3x+3y+\frac{3}{2}t+1}
+30(x+y+t21)2e3x+3y+32t+1],\displaystyle+30(x+y+\frac{t}{2}-1)^{2}e^{3x+3y+\frac{3}{2}t+1}], (5.18)
V(x,y,t)\displaystyle V(x,y,t) =2+(x+y+t21)2+e3x+3y+32t+1+10(x+y+t21)2e3x+3y+32t+1.\displaystyle=2+(x+y+\frac{t}{2}-1)^{2}+e^{3x+3y+\frac{3}{2}t+1}+10(x+y+\frac{t}{2}-1)^{2}e^{3x+3y+\frac{3}{2}t+1}. (5.19)

The graphs of the above solution at t=0t=0 and t=10t=10 with the corresponding contour plots are given in Figure 12.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 12: Lump solutions of (5.8) at t=0t=0 and t=10t=10. (a), (c) t=0t=0; (b), (d) t=10t=10.

6 Solutions with dynamical variables

Here we present a new kind of solutions of nonlinear partial differential equations which depend on the variables of dynamical variables. In this work we give some specific examples but study such kind of solutions later. In general we assume that the function ff depends on the dynamical variables pp, qq, rr, etc., either linearly or in a nonlinear way. It is possible to connect the bilinear equations to an nn-dimensional dynamical system, but just for illustration we take n=3n=3.

1. Linear dynamical system: Let f=β0+a00p(θ)+b00q(θ)+c00r(θ)f=\beta_{0}+a_{00}\,p(\theta)+b_{00}\,q(\theta)+c_{00}\,r(\theta), where pp, qq, and rr depend on the variable θ\theta satisfying

dpdθ=a11p+a12q+a13r,\displaystyle\frac{dp}{d\theta}=a_{11}\,p+a_{12}\,q+a_{13}\,r, (6.1)
dqdθ=a21p+a22q+a23r,\displaystyle\frac{dq}{d\theta}=a_{21}\,p+a_{22}\,q+a_{23}\,r, (6.2)
drdθ=a31p+a32q+a33r,\displaystyle\frac{dr}{d\theta}=a_{31}\,p+a_{32}\,q+a_{33}\,r, (6.3)

where aija_{ij} (i,j=1,2,3i,j=1,2,3) are constants and θ=β1x+β2t+β3y+β4\theta=\beta_{1}\,x+\beta_{2}\,t+\beta_{3}\,y+\beta_{4}. When we use such an assumption into the bilinear equation (4) we obtain 1010 constraints for the 1717 constants a00,b00,c00,β0,β1,β2,β3,β4a_{00},b_{00},c_{00},\beta_{0},\beta_{1},\beta_{2},\beta_{3},\beta_{4}, and aija_{ij}. The solutions of the dynamical system (6.1)-(6.3) depend on the eigenvalues of the matrix 𝐀=aij{\bf A}={a_{ij}}. We shall present examples of such solutions in a later communication. Next we shall give some interesting examples, the Lorentz, the Kermac-Mackendric, and the Lotka-Voltera systems where dynamical systems are nonlinear.

2. Lorentz system: In this case the dynamical equation reads [40]-[42]

dpdθ=q2,\displaystyle\frac{dp}{d\theta}=\frac{q}{2}, (6.4)
dqdθ=pr,\displaystyle\frac{dq}{d\theta}=-p\,r, (6.5)
drdθ=pq.\displaystyle\frac{dr}{d\theta}=p\,q. (6.6)

When we use this ansatz in (4) we obtain

β3=c1c2β2,β1=β2(b0c1b1c2)b1c2.\beta_{3}=-\frac{c_{1}}{c_{2}}\,\beta_{2},~{}~{}~{}\beta_{1}=\frac{\beta_{2}\,(b_{0}\,c_{1}-b_{1}\,c_{2})}{b_{1}\,c_{2}}. (6.7)

In addition we obtain some constraints on the system parameters: c0=0c_{0}=0 and

a0b12c22a1b02c12+2a1b0b1c1c2\displaystyle-a_{0}\,b_{1}^{2}\,c_{2}^{2}-a_{1}\,b_{0}^{2}c_{1}^{2}+2\,a_{1}\,b_{0}\,b_{1}\,c_{1}\,c_{2} a1b12c22a2b12c12a3b0b1c1c2\displaystyle-a_{1}\,b_{1}^{2}\,c_{2}^{2}-a_{2}\,b_{1}^{2}\,c_{1}^{2}-a_{3}\,b_{0}\,b_{1}\,c_{1}\,c_{2}
+a3b12c22+a4b12c1c2+a5b0b1c1ra5b12c1c2=0.\displaystyle+a_{3}\,b_{1}^{2}\,c_{2}^{2}+a_{4}\,b_{1}^{2}c_{1}\,c_{2}+a_{5}\,b_{0}\,b_{1}\,c_{1}r-a_{5}\,b_{1}^{2}\,c_{1}\,c_{2}=0. (6.8)

Hence it is possible to obtain solutions of a special case of (4) depending on the Lorentz system.

2. Kermac-Mackendric system: In this case the dynamical equation reads [40]

dpdθ=r0pq,\displaystyle\frac{dp}{d\theta}=-r_{0}\,p\,q, (6.9)
dqdθ=q(r0pα),\displaystyle\frac{dq}{d\theta}=q\,(r_{0}\,p-\alpha), (6.10)
drdθ=αq,\displaystyle\frac{dr}{d\theta}=\alpha\,q, (6.11)

where α\alpha and r0r_{0} are arbitrary constants. The only condition we obtain is a00=b00=c00a_{00}=b_{00}=c_{00}. This condition implies that f=β0+a00(p+q+r)f=\beta_{0}+a_{00}\,(p+q+r). In this dynamical system p+q+rp+q+r is one of the conserved quantities. Hence Kermac-Mackenderic system leads to the trivial solution f=f= constant.

3. Lotka-Voltera system: This system is given as [43]

dpdθ=p(αq+r+λ),\displaystyle\frac{dp}{d\theta}=p\,(\alpha\,q\,+r+\lambda), (6.12)
dqdθ=q(p+γr+μ),\displaystyle\frac{dq}{d\theta}=q\,(p+\gamma r+\mu), (6.13)
drdθ=r(ρp+q+ν),\displaystyle\frac{dr}{d\theta}=r\,(\rho\,p+q+\nu), (6.14)

where α,γ,ρ,μ,ν\alpha,\gamma,\rho,\mu,\nu, and λ\lambda are arbitrary constants. The conditions we obtain are b00=αa00b_{00}=-\alpha a_{00}, c00=a00ρc_{00}=-\frac{a_{00}}{\rho}, and

a0β22+a1β12\displaystyle a_{0}\beta_{2}^{2}+a_{1}\beta_{1}^{2} +a2β32+a3β1β2+a4β2β3+a5β1β3+b0β3β13λ2\displaystyle+a_{2}\beta_{3}^{2}+a_{3}\beta_{1}\beta_{2}+a_{4}\beta_{2}\beta_{3}+a_{5}\beta_{1}\beta_{3}+b_{0}\beta_{3}\beta_{1}^{3}\lambda^{2}
+b1β13β2λ2+b2β14λ2+c0β16λ4+c1β15β2λ4+c2β3β15λ4=0.\displaystyle+b_{1}\beta_{1}^{3}\beta_{2}\lambda^{2}+b_{2}\beta_{1}^{4}\lambda^{2}+c_{0}\beta_{1}^{6}\lambda^{4}+c_{1}\beta_{1}^{5}\beta_{2}\lambda^{4}+c_{2}\beta_{3}\beta_{1}^{5}\lambda^{4}=0. (6.15)

In addition to these conditions there are three restrictions for the parameters α,γ,ρ,μ,ν\alpha,\gamma,\rho,\mu,\nu, and λ\lambda,

μ=λ,ν=λ,ρ=1γα.\mu=\lambda,~{}~{}~{}\nu=\lambda,~{}~{}~{}\rho=-\frac{1}{\gamma\alpha}. (6.16)

All these conditions imply that f=β0+a00(pαq1ρr)f=\beta_{0}+a_{00}\,(p-\alpha\,q-\frac{1}{\rho}\,r). In this dynamical system the term (pαq1ρr)(p-\alpha\,q-\frac{1}{\rho}\,r) satisfies

ddθ(pαq1ρr)=λ(pαq1ρr).\frac{d}{d\theta}\,(p-\alpha\,q-\frac{1}{\rho}\,r)=\lambda\,(p-\alpha\,q-\frac{1}{\rho}\,r). (6.17)

Hence (pαq1ρr)=Aeλθ(p-\alpha\,q-\frac{1}{\rho}\,r)=A\,e^{\lambda\theta}, AA constant, which corresponds to one-soliton solution of ff.

The above dynamical systems are just few examples for the case of three dimensions. Some of them may lead to trivial solutions, some of which may provide the known solutions but there are examples which may give nontrivial solutions. The dynamical systems in three dimensions are very rich [40]-[42]. In a later publication we shall focus on the solutions of bilinear equations as functions of nonlinear dynamical systems and on the discussion of such solutions.

7 Conclusion

By writing the most general Hirota bilinear form of sixth degree in (2+1)(2+1)-dimensions we propose the most general nonlinear partial differential equation associated to this form. This differential equation covers all known Hirota integrable nonlinear partial differential equations. We have given two special cases of this differential equation: The most general local equation derivable from such a bilinear form and nonlocal differential equation derivable from this bilinear form containing the triple products. We obtained one- and two-soliton solutions of these equations and leave three-soliton solutions for later communication. The main reason for this is the constraints obtained for the existence of three-soliton solutions. We obtained also lump and hybrid solutions of our special equations. In addition we introduced a new kind of solutions of the partial differential equations connected to dynamical variables.

Appendix A: Fourth and sixth order bilinear forms

In this Appendix we give a list of monomials Hirota bilinear forms and their associated nonlinear partial differential equations in (2+1)(2+1)-dimensions. This list covers all monomials up to sixth order operators DxD_{x}, DyD_{y}, and DtD_{t}. Under the transformation u(x,y,t)=2(ln(f(x,y,t)))xu(x,y,t)=2(\ln(f(x,y,t)))_{x} we have the following equalities for the monomials of binary products DxkDt2nkD^{k}_{x}\,D^{2n-k}_{t}, DykDt2nkD^{k}_{y}\,D^{2n-k}_{t}, and DxkDy2nkD^{k}_{x}\,D^{2n-k}_{y} for k=0,1,2,,2nk=0,1,2,\cdots,2n, and n=1,2,3n=1,2,3.

A) Hirota bilinear forms with binary products

For n=1n=1: All monomials are second order.

(Dx2{ff}f2)x=uxx,(DxDt{ff}f2)x=uxt,\displaystyle\Big{(}\frac{D_{x}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xx},~{}~{}\Big{(}\frac{D_{x}\,D_{t}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xt}, (7.1)
(Dy2{ff}f2)x=uyy,(DxDy{ff}f2)x=uxy,\displaystyle\Big{(}\frac{D_{y}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yy},~{}~{}\Big{(}\frac{D_{x}\,D_{y}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xy}, (7.2)
(Dt2{ff}f2)x=utt,(DyDt{ff}f2)x=uyt.\displaystyle\Big{(}\frac{D_{t}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{tt},~{}~{}\Big{(}\frac{D_{y}\,D_{t}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yt}. (7.3)

For n=2n=2: All monomials are fourth order.

(Dx3Dy{ff}f2)x=uxxxy+3uxuxy+3uyuxx,\displaystyle\Big{(}\frac{D_{x}^{3}D_{y}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxy}+3u_{x}u_{xy}+3u_{y}u_{xx}, (7.4)
(Dy3Dx{ff}f2)x=uyyyx+3uyuyy+3uxy(D1uyy),\displaystyle\Big{(}\frac{D_{y}^{3}D_{x}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyx}+3u_{y}u_{yy}+3u_{xy}(D^{-1}u_{yy}), (7.5)
(Dt3Dx{ff}f2)x=utttx+3ututt+3uxt(D1utt),\displaystyle\Big{(}\frac{D_{t}^{3}D_{x}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{tttx}+3u_{t}u_{tt}+3u_{xt}(D^{-1}u_{tt}), (7.6)
(Dt3Dy{ff}f2)x=uttty+3uty(D1utt)+3utt(D1uty),\displaystyle\Big{(}\frac{D_{t}^{3}D_{y}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{ttty}+3u_{ty}(D^{-1}u_{tt})+3u_{tt}(D^{-1}u_{ty}), (7.7)
(Dy3Dt{ff}f2)x=uyyyt+3uyt(D1uyy)+3uyy(D1uyt),\displaystyle\Big{(}\frac{D_{y}^{3}D_{t}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyt}+3u_{yt}(D^{-1}u_{yy})+3u_{yy}(D^{-1}u_{yt}), (7.8)
(Dx2Dt2{ff}f2)x=uxxtt+4utuxt+uxutt+uxx(D1utt),\displaystyle\Big{(}\frac{D_{x}^{2}D_{t}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxtt}+4u_{t}u_{xt}+u_{x}u_{tt}+u_{xx}(D^{-1}u_{tt}), (7.9)
(Dx2Dy2{ff}f2)x=uxxyy+4uyuxy+uxuyy+uxx(D1uyy),\displaystyle\Big{(}\frac{D_{x}^{2}D_{y}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxyy}+4u_{y}u_{xy}+u_{x}u_{yy}+u_{xx}(D^{-1}u_{yy}), (7.10)
(Dy2Dt2{ff}f2)x=uyytt+utt(D1uyy)+uyy(D1utt)+4uyt(D1uyt),\displaystyle\Big{(}\frac{D_{y}^{2}D_{t}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yytt}+u_{tt}(D^{-1}u_{yy})+u_{yy}(D^{-1}u_{tt})+4u_{yt}(D^{-1}u_{yt}), (7.11)
(Dx4{ff}f2)x=uxxxx+6uxuxx,\displaystyle\Big{(}\frac{D_{x}^{4}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxx}+6u_{x}u_{xx}, (7.12)
(Dy4{ff}f2)x=uyyyy+6uyy(D1uyy),\displaystyle\Big{(}\frac{D_{y}^{4}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyy}+6u_{yy}(D^{-1}u_{yy}), (7.13)
(Dt4{ff}f2)x=utttt+6utt(D1utt).\displaystyle\Big{(}\frac{D_{t}^{4}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{tttt}+6u_{tt}(D^{-1}u_{tt}). (7.14)

For n=3n=3: All monomials are sixth order.

(Dx6{ff}f2)x=u6x+15uxuxxxx+15uxxuxxx+45ux2uxx,\displaystyle\Big{(}\frac{D_{x}^{6}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{6x}+15u_{x}u_{xxxx}+15u_{xx}u_{xxx}+45u_{x}^{2}u_{xx}, (7.15)
(Dy6{ff}f2)x=u6y+15uyyyy(D1uyy)+15uyy(D1uyyyy)+45uyy(D1uyy)2,\displaystyle\Big{(}\frac{D_{y}^{6}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{6y}+15u_{yyyy}(D^{-1}u_{yy})+15u_{yy}(D^{-1}u_{yyyy})+45u_{yy}(D^{-1}u_{yy})^{2}, (7.16)
(Dt6{ff}f2)x=u6t+15utttt(D1utt)+15utt(D1utttt)+45utt(D1utt)2,\displaystyle\Big{(}\frac{D_{t}^{6}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{6t}+15u_{tttt}(D^{-1}u_{tt})+15u_{tt}(D^{-1}u_{tttt})+45u_{tt}(D^{-1}u_{tt})^{2}, (7.17)
(Dx5Dy{ff}f2)x=uxxxxxy+10uxuxxxy+5uxxxuxy+5uyuxxxx+10uxxuxxy\displaystyle\Big{(}\frac{D_{x}^{5}D_{y}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxxxy}+10u_{x}u_{xxxy}+5u_{xxx}u_{xy}+5u_{y}u_{xxxx}+10u_{xx}u_{xxy}
+15ux2uxy+30uxuyuxx,\displaystyle\hskip 28.45274pt+15u_{x}^{2}u_{xy}+30u_{x}u_{y}u_{xx}, (7.18)
(Dx5Dt{ff}f2)x=uxxxxxt+10uxuxxxt+5uxxxuxt+5utuxxxx+10uxxuxxt\displaystyle\Big{(}\frac{D_{x}^{5}D_{t}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxxxt}+10u_{x}u_{xxxt}+5u_{xxx}u_{xt}+5u_{t}u_{xxxx}+10u_{xx}u_{xxt}
+15ux2uxt+30uxutuxx,\displaystyle\hskip 28.45274pt+15u_{x}^{2}u_{xt}+30u_{x}u_{t}u_{xx}, (7.19)
(Dx4Dy2{ff}f2)x=uxxxxyy+6uxuxxyy+6uxxuxyy+8uxyuxxy+8uyuxxxy\displaystyle\Big{(}\frac{D_{x}^{4}D_{y}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxxyy}+6u_{x}u_{xxyy}+6u_{xx}u_{xyy}+8u_{xy}u_{xxy}+8u_{y}u_{xxxy}
+uxxxuyy+uxxxx(D1uyy),\displaystyle\hskip 28.45274pt+u_{xxx}u_{yy}+u_{xxxx}(D^{-1}u_{yy}), (7.20)
(Dx4Dt2{ff}f2)x=uxxxxtt+6uxuxxtt+6uxxuxtt+8uxtuxxt+8utuxxxt\displaystyle\Big{(}\frac{D_{x}^{4}D_{t}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxxtt}+6u_{x}u_{xxtt}+6u_{xx}u_{xtt}+8u_{xt}u_{xxt}+8u_{t}u_{xxxt}
+uxxxutt+uxxxx(D1utt),\displaystyle\hskip 28.45274pt+u_{xxx}u_{tt}+u_{xxxx}(D^{-1}u_{tt}), (7.21)
(Dx3Dt3{ff}f2)x=uxxxttt+9utuxxtt+3uttuxxt+3uxxuttt+9utuxutt\displaystyle\Big{(}\frac{D_{x}^{3}D_{t}^{3}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxttt}+9u_{t}u_{xxtt}+3u_{tt}u_{xxt}+3u_{xx}u_{ttt}+9u_{t}u_{x}u_{tt}
+9uxtuxtt+3uxuxttt+18ut2uxt+[3uxxxt+9utuxx+9uxuxt](D1utt),\displaystyle\hskip 28.45274pt+9u_{xt}u_{xtt}+3u_{x}u_{xttt}+18u_{t}^{2}u_{xt}+\Big{[}3u_{xxxt}+9u_{t}u_{xx}+9u_{x}u_{xt}\Big{]}(D^{-1}u_{tt}), (7.22)
(Dx3Dy3{ff}f2)x=uxxxyyy+9uyuxxyy+3uyyuxxy+3uxxuyyy+9uyuxuyy\displaystyle\Big{(}\frac{D_{x}^{3}D_{y}^{3}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxyyy}+9u_{y}u_{xxyy}+3u_{yy}u_{xxy}+3u_{xx}u_{yyy}+9u_{y}u_{x}u_{yy}
+9uxyuxyy+3uxuxyyy+18uy2uxy+[3uxxxy+9uyuxx+9uxuxy](D1uyy),\displaystyle\hskip 28.45274pt+9u_{xy}u_{xyy}+3u_{x}u_{xyyy}+18u_{y}^{2}u_{xy}+\Big{[}3u_{xxxy}+9u_{y}u_{xx}+9u_{x}u_{xy}\Big{]}(D^{-1}u_{yy}), (7.23)
(Dx2Dt4{ff}f2)x=uxxtttt+8utuxttt+6uttuxtt+8uxtuttt+12ut2utt+uxx(D1utttt)\displaystyle\Big{(}\frac{D_{x}^{2}D_{t}^{4}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxtttt}+8u_{t}u_{xttt}+6u_{tt}u_{xtt}+8u_{xt}u_{ttt}+12u_{t}^{2}u_{tt}+u_{xx}(D^{-1}u_{tttt})
+uxutttt+[6uxxtt+24utuxt+6uxutt+3uxx(D1utt)](D1utt),\displaystyle+u_{x}u_{tttt}+\Big{[}6u_{xxtt}+24u_{t}u_{xt}+6u_{x}u_{tt}+3u_{xx}(D^{-1}u_{tt})\Big{]}(D^{-1}u_{tt}), (7.24)
(Dx2Dy4{ff}f2)x=uxxyyyy+8uyuxyyy+6uyyuxyy+8uxyuyyy+12uy2uyy+uxx(D1uyyyy)\displaystyle\Big{(}\frac{D_{x}^{2}D_{y}^{4}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxyyyy}+8u_{y}u_{xyyy}+6u_{yy}u_{xyy}+8u_{xy}u_{yyy}+12u_{y}^{2}u_{yy}+u_{xx}(D^{-1}u_{yyyy})
+uxuyyyy+[6uxxyy+24uyuxy+6uxuyy+3uxx(D1uyy)](D1uyy),\displaystyle+u_{x}u_{yyyy}+\Big{[}6u_{xxyy}+24u_{y}u_{xy}+6u_{x}u_{yy}+3u_{xx}(D^{-1}u_{yy})\Big{]}(D^{-1}u_{yy}), (7.25)
(Dy5Dx{ff}f2)x=uxyyyyy+5uyuyyyy+10uyyuyyy+5uxy(D1uyyyy)\displaystyle\Big{(}\frac{D_{y}^{5}D_{x}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xyyyyy}+5u_{y}u_{yyyy}+10u_{yy}u_{yyy}+5u_{xy}(D^{-1}u_{yyyy})
+[10uxyyy+30uyuyy+15uxy(D1uyy)](D1uyy),\displaystyle+\Big{[}10u_{xyyy}+30u_{y}u_{yy}+15u_{xy}(D^{-1}u_{yy})\Big{]}(D^{-1}u_{yy}), (7.26)
(Dt5Dx{ff}f2)x=uxttttt+5ututttt+10uttuttt+5uxt(D1utttt)\displaystyle\Big{(}\frac{D_{t}^{5}D_{x}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xttttt}+5u_{t}u_{tttt}+10u_{tt}u_{ttt}+5u_{xt}(D^{-1}u_{tttt})
+[10uxttt+30uyutt+15uxt(D1utt)](D1utt),\displaystyle+\Big{[}10u_{xttt}+30u_{y}u_{tt}+15u_{xt}(D^{-1}u_{tt})\Big{]}(D^{-1}u_{tt}), (7.27)
(Dy5Dt{ff}f2)x=uyyyyyt+10uyy(D1uyyyt)+10uyyyt(D1uyy)+5uyt(D1uyyyy)\displaystyle\Big{(}\frac{D_{y}^{5}D_{t}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyyyt}+10u_{yy}(D^{-1}u_{yyyt})+10u_{yyyt}(D^{-1}u_{yy})+5u_{yt}(D^{-1}u_{yyyy})
+5uyyyy(D1uyt)+15uyt(D1uyy)2+30uyy(D1uyy)(D1uyt),\displaystyle+5u_{yyyy}(D^{-1}u_{yt})+15u_{yt}(D^{-1}u_{yy})^{2}+30u_{yy}(D^{-1}u_{yy})(D^{-1}u_{yt}), (7.28)
(Dt5Dy{ff}f2)x=uttttty+10utt(D1uttty)+10uttty(D1utt)+5uyt(D1utttt)\displaystyle\Big{(}\frac{D_{t}^{5}D_{y}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{ttttty}+10u_{tt}(D^{-1}u_{ttty})+10u_{ttty}(D^{-1}u_{tt})+5u_{yt}(D^{-1}u_{tttt})
+5utttt(D1uyt)+15uyt(D1utt)2+30utt(D1utt)(D1uyt),\displaystyle+5u_{tttt}(D^{-1}u_{yt})+15u_{yt}(D^{-1}u_{tt})^{2}+30u_{tt}(D^{-1}u_{tt})(D^{-1}u_{yt}), (7.29)
(Dy4Dt2{ff}f2)x=uyyyytt+utt(D1uyyyy)+uyyyy(D1utt)+6uyy(D1utt)(D1uyy)\displaystyle\Big{(}\frac{D_{y}^{4}D_{t}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyytt}+u_{tt}(D^{-1}u_{yyyy})+u_{yyyy}(D^{-1}u_{tt})+6u_{yy}(D^{-1}u_{tt})(D^{-1}u_{yy})
+24uyt(D1uyt)(D1uyy)+6uyy(D1uyytt)+8uyt(D1uyyyt)\displaystyle+24u_{yt}(D^{-1}u_{yt})(D^{-1}u_{yy})+6u_{yy}(D^{-1}u_{yytt})+8u_{yt}(D^{-1}u_{yyyt})
+8uyyyt(D1uyt)+6uyytt(D1uyy)+3utt(D1uyy)2+2uyy(D1uyt)2,\displaystyle+8u_{yyyt}(D^{-1}u_{yt})+6u_{yytt}(D^{-1}u_{yy})+3u_{tt}(D^{-1}u_{yy})^{2}+2u_{yy}(D^{-1}u_{yt})^{2}, (7.30)
(Dt4Dy2{ff}f2)x=uttttyy+uyy(D1utttt)+utttt(D1uyy)+6utt(D1uyy)(D1utt)\displaystyle\Big{(}\frac{D_{t}^{4}D_{y}^{2}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{ttttyy}+u_{yy}(D^{-1}u_{tttt})+u_{tttt}(D^{-1}u_{yy})+6u_{tt}(D^{-1}u_{yy})(D^{-1}u_{tt})
+24uyt(D1uyt)(D1utt)+6utt(D1uyytt)+8uyt(D1uttty)\displaystyle+24u_{yt}(D^{-1}u_{yt})(D^{-1}u_{tt})+6u_{tt}(D^{-1}u_{yytt})+8u_{yt}(D^{-1}u_{ttty})
+8uttty(D1uyt)+6uyytt(D1utt)+3uyy(D1utt)2+2utt(D1uyt)2,\displaystyle+8u_{ttty}(D^{-1}u_{yt})+6u_{yytt}(D^{-1}u_{tt})+3u_{yy}(D^{-1}u_{tt})^{2}+2u_{tt}(D^{-1}u_{yt})^{2}, (7.31)
(Dy3Dt3{ff}f2)x=uyyyttt+3uyttt(D1uyy)+9uyt(D1uyytt)+9uyytt(D1uyt)\displaystyle\Big{(}\frac{D_{y}^{3}D_{t}^{3}\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyttt}+3u_{yttt}(D^{-1}u_{yy})+9u_{yt}(D^{-1}u_{yytt})+9u_{yytt}(D^{-1}u_{yt})
+3utt(D1uyyyt)+3uyyyt(D1utt)+18uyt(D1uyt)2+3uyy(D1uyttt)\displaystyle+3u_{tt}(D^{-1}u_{yyyt})+3u_{yyyt}(D^{-1}u_{tt})+18u_{yt}(D^{-1}u_{yt})^{2}+3u_{yy}(D^{-1}u_{yttt})
+9uyt(D1utt)(D1uyy)+9uyy(D1uyt)(D1utt)\displaystyle+9u_{yt}(D^{-1}u_{tt})(D^{-1}u_{yy})+9u_{yy}(D^{-1}u_{yt})(D^{-1}u_{tt})
+9utt(D1uyt)(D1uyy).\displaystyle+9u_{tt}(D^{-1}u_{yt})(D^{-1}u_{yy}). (7.32)

B) Hirota bilinear forms with triple products

For n=2n=2: Hirota bilinear forms of fourth order.

(DtDx2Dy{ff}f2)x=uxxyt+uxuyt+2uyuxt+2utuxy+uxx(D1uyt),\displaystyle\Big{(}\frac{D_{t}\,D_{x}^{2}\,D_{y}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxyt}+u_{x}u_{yt}+2u_{y}u_{xt}+2u_{t}u_{xy}+u_{xx}(D^{-1}u_{yt}), (7.33)
(Dt2DxDy{ff}f2)x=uxytt+uyutt+2utuyt+uxy(D1utt)+2uxt(D1uyt),\displaystyle\Big{(}\frac{D_{t}^{2}\,D_{x}\,D_{y}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xytt}+u_{y}u_{tt}+2u_{t}u_{yt}+u_{xy}(D^{-1}u_{tt})+2u_{xt}(D^{-1}u_{yt}), (7.34)
(DtDxDy2{ff}f2)x=uxtyy+utuyy+2uyuyt+uxt(D1uyy)+2uxy(D1uyt).\displaystyle\Big{(}\frac{D_{t}\,D_{x}\,D_{y}^{2}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xtyy}+u_{t}u_{yy}+2u_{y}u_{yt}+u_{xt}(D^{-1}u_{yy})+2u_{xy}(D^{-1}u_{yt}). (7.35)

For n=3n=3: Hirota bilinear forms of order six.

(DtDxDy4{ff}f2)x=uyyyyxt+utuyyyy+4uytuyyy+6uyyutyy+4uyutyyy+uxt(D1uyyyy)\displaystyle\Big{(}\frac{D_{t}\,D_{x}\,D_{y}^{4}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyyxt}+u_{t}u_{yyyy}+4u_{yt}u_{yyy}+6u_{yy}u_{tyy}+4u_{y}u_{tyyy}+u_{xt}(D^{-1}u_{yyyy})
+(6utuyy+12uyuyt+6uxtyy+3uxt(D1uyy))(D1uyy)+4uxy(D1utyyy)\displaystyle+\Big{(}6u_{t}u_{yy}+12u_{y}u_{yt}+6u_{xtyy}+3u_{xt}(D^{-1}u_{yy})\Big{)}(D^{-1}u_{yy})+4u_{xy}(D^{-1}u_{tyyy})
+(4uxyyy+12uyuyy+12uxy(D1uyy))(D1uyt),\displaystyle+\Big{(}4u_{xyyy}+12u_{y}u_{yy}+12u_{xy}(D^{-1}u_{yy})\Big{)}(D^{-1}u_{yt}), (7.36)
(DtDx2Dy3{ff}f2)x=uyyyxxt+uxuyyyt+6uyuxyyt+6uy2uyt+2utuxyyy+6utuyuyy\displaystyle\Big{(}\frac{D_{t}\,D_{x}^{2}\,D_{y}^{3}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyxxt}+u_{x}u_{yyyt}+6u_{y}u_{xyyt}+6u_{y}^{2}u_{yt}+2u_{t}u_{xyyy}+6u_{t}u_{y}u_{yy}
+6uxyuyyt+3uytuxyy+2uyyyuxt+(3uxuyt+6uyuxt+6utuxy+3uxxyt)(D1uyy)\displaystyle+6u_{xy}u_{yyt}+3u_{yt}u_{xyy}+2u_{yyy}u_{xt}+\Big{(}3u_{x}u_{yt}+6u_{y}u_{xt}+6u_{t}u_{xy}+3u_{xxyt}\Big{)}(D^{-1}u_{yy})
+3uyyuxyt+(3uxxyy+12uyuxy+3uxuyy+3uxx(D1uyy))(D1uyt)+uxx(D1uyyyt),\displaystyle+3u_{yy}u_{xyt}+\Big{(}3u_{xxyy}+12u_{y}u_{xy}+3u_{x}u_{yy}+3u_{xx}(D^{-1}u_{yy})\Big{)}(D^{-1}u_{yt})+u_{xx}(D^{-1}u_{yyyt}), (7.37)
(DtDx3Dy2{ff}f2)x=uxxxyyt+6uxyuxyt+3uxxuyyt+2uytuxxy+3uxtuxyy+6uyuxxyt\displaystyle\Big{(}\frac{D_{t}\,D_{x}^{3}\,D_{y}^{2}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxyyt}+6u_{xy}u_{xyt}+3u_{xx}u_{yyt}+2u_{yt}u_{xxy}+3u_{xt}u_{xyy}+6u_{y}u_{xxyt}
+3uxuxyyt+6uxtuy2+3utuxxyy+3uxutuyy+uyyuxxt+12utuyuxy+6uxuyuyt\displaystyle+3u_{x}u_{xyyt}+6u_{xt}u_{y}^{2}+3u_{t}u_{xxyy}+3u_{x}u_{t}u_{yy}+u_{yy}u_{xxt}+12u_{t}u_{y}u_{xy}+6u_{x}u_{y}u_{yt}
+(2uxxxy+6uxuxy+6uyuxx)(D1uyt)+(uxxxt+3uxuxt+3utuxx)(D1uyy),\displaystyle+\Big{(}2u_{xxxy}+6u_{x}u_{xy}+6u_{y}u_{xx}\Big{)}(D^{-1}u_{yt})+\Big{(}u_{xxxt}+3u_{x}u_{xt}+3u_{t}u_{xx}\Big{)}(D^{-1}u_{yy}), (7.38)
(DtDx4Dy{ff}f2)x=uxxxxyt+12utuyuxx+uxxxuyt+12uxuyuxt+12uxutuxy\displaystyle\Big{(}\frac{D_{t}\,D_{x}^{4}\,D_{y}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxxyt}+12u_{t}u_{y}u_{xx}+u_{xxx}u_{yt}+12u_{x}u_{y}u_{xt}+12u_{x}u_{t}u_{xy}
+4uxyuxxt+6uxxuxyt+4uxtuxxy+4uyuxxxt+6uxuxxyt+3ux2uyt+4utuxxxy\displaystyle+4u_{xy}u_{xxt}+6u_{xx}u_{xyt}+4u_{xt}u_{xxy}+4u_{y}u_{xxxt}+6u_{x}u_{xxyt}+3u_{x}^{2}u_{yt}+4u_{t}u_{xxxy}
+(uxxxx+6uxuxx)(D1uyt),\displaystyle+\Big{(}u_{xxxx}+6u_{x}u_{xx}\Big{)}(D^{-1}u_{yt}), (7.39)
(DxDt2Dy3{ff}f2)x=uyyyxtt+3uyttuyy+6uytuyyt+3uyuyytt+2utuyyyt+uttuyyy\displaystyle\Big{(}\frac{D_{x}\,D_{t}^{2}\,D_{y}^{3}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{yyyxtt}+3u_{ytt}u_{yy}+6u_{yt}u_{yyt}+3u_{y}u_{yytt}+2u_{t}u_{yyyt}+u_{tt}u_{yyy}
+(3uxytt+3uyutt+6utuyt+6uxt(D1uyt))(D1uyy)+3uxy(D1uyytt)\displaystyle+\Big{(}3u_{xytt}+3u_{y}u_{tt}+6u_{t}u_{yt}+6u_{xt}(D^{-1}u_{yt})\Big{)}(D^{-1}u_{yy})+3u_{xy}(D^{-1}u_{yytt})
+(uxyyy+3uyuyy+3uxy(D1uyy))(D1utt)+2uxt(D1uyyyt)\displaystyle+\Big{(}u_{xyyy}+3u_{y}u_{yy}+3u_{xy}(D^{-1}u_{yy})\Big{)}(D^{-1}u_{tt})+2u_{xt}(D^{-1}u_{yyyt})
+(6uxyyt+6utuyy+12uyuyt+6uxy(D1uyt))(D1uyt),\displaystyle+\Big{(}6u_{xyyt}+6u_{t}u_{yy}+12u_{y}u_{yt}+6u_{xy}(D^{-1}u_{yt})\Big{)}(D^{-1}u_{yt}), (7.40)
(DxDt4Dy{ff}f2)x=uttttxy+uyutttt+4uytuttt+6uttuytt+4utuyttt+uxy(D1utttt)\displaystyle\Big{(}\frac{D_{x}\,D_{t}^{4}\,D_{y}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{ttttxy}+u_{y}u_{tttt}+4u_{yt}u_{ttt}+6u_{tt}u_{ytt}+4u_{t}u_{yttt}+u_{xy}(D^{-1}u_{tttt})
+(6uyutt+12utuyt+6uxytt+3uxy(D1utt))(D1utt)+4uxt(D1uyttt)\displaystyle+\Big{(}6u_{y}u_{tt}+12u_{t}u_{yt}+6u_{xytt}+3u_{xy}(D^{-1}u_{tt})\Big{)}(D^{-1}u_{tt})+4u_{xt}(D^{-1}u_{yttt})
+(4uxttt+12ututt+12uxt(D1utt))(D1uyt),\displaystyle+\Big{(}4u_{xttt}+12u_{t}u_{tt}+12u_{xt}(D^{-1}u_{tt})\Big{)}(D^{-1}u_{yt}), (7.41)
(DxDt3Dy2{ff}f2)x=utttxyy+3utyyutt+6uytutty+3utuyytt+2uyuttty+uyyuttt\displaystyle\Big{(}\frac{D_{x}\,D_{t}^{3}\,D_{y}^{2}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{tttxyy}+3u_{tyy}u_{tt}+6u_{yt}u_{tty}+3u_{t}u_{yytt}+2u_{y}u_{ttty}+u_{yy}u_{ttt}
+(3uxtyy+3utuyy+6uyuyt+6uxy(D1uyt))(D1utt)+3uxt(D1uyytt)\displaystyle+\Big{(}3u_{xtyy}+3u_{t}u_{yy}+6u_{y}u_{yt}+6u_{xy}(D^{-1}u_{yt})\Big{)}(D^{-1}u_{tt})+3u_{xt}(D^{-1}u_{yytt})
+(uxttt+3ututt+3uxt(D1utt))(D1uyy)+2uxy(D1uttty)\displaystyle+\Big{(}u_{xttt}+3u_{t}u_{tt}+3u_{xt}(D^{-1}u_{tt})\Big{)}(D^{-1}u_{yy})+2u_{xy}(D^{-1}u_{ttty})
+(6uxtty+6uyutt+12utuyt+6uxt(D1uyt))(D1uyt),\displaystyle+\Big{(}6u_{xtty}+6u_{y}u_{tt}+12u_{t}u_{yt}+6u_{xt}(D^{-1}u_{yt})\Big{)}(D^{-1}u_{yt}), (7.42)
(DyDx2Dt3{ff}f2)x=utttxxy+uxuttty+6utuxtty+6ut2uyt+2uyuxttt+6utuyutt+3uttuxyt\displaystyle\Big{(}\frac{D_{y}\,D_{x}^{2}\,D_{t}^{3}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{tttxxy}+u_{x}u_{ttty}+6u_{t}u_{xtty}+6u_{t}^{2}u_{yt}+2u_{y}u_{xttt}+6u_{t}u_{y}u_{tt}+3u_{tt}u_{xyt}
+6uxtutty+3uytuxtt+2utttuxy+(3uxuyt+6utuxy+3uxxyt+6uyuxt)(D1utt)\displaystyle+6u_{xt}u_{tty}+3u_{yt}u_{xtt}+2u_{ttt}u_{xy}+\Big{(}3u_{x}u_{yt}+6u_{t}u_{xy}+3u_{xxyt}+6u_{y}u_{xt}\Big{)}(D^{-1}u_{tt})
+(3uxxtt+3uxutt+12utuxt+3uxx(D1utt))(D1uyt)+uxx(D1uttty),\displaystyle+\Big{(}3u_{xxtt}+3u_{x}u_{tt}+12u_{t}u_{xt}+3u_{xx}(D^{-1}u_{tt})\Big{)}(D^{-1}u_{yt})+u_{xx}(D^{-1}u_{ttty}), (7.43)
(DyDx3Dt2{ff}f2)x=uxxxtty+6uxtuxyt+3uxxutty+2uytuxxt+3uxyuxtt+6utuxxyt\displaystyle\Big{(}\frac{D_{y}\,D_{x}^{3}\,D_{t}^{2}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxxtty}+6u_{xt}u_{xyt}+3u_{xx}u_{tty}+2u_{yt}u_{xxt}+3u_{xy}u_{xtt}+6u_{t}u_{xxyt}
+3uxuxtty+6uxyut2+3uyuxxtt+3uxuyutt+uttuxxy+12utuyuxt+6uxutuyt\displaystyle+3u_{x}u_{xtty}+6u_{xy}u_{t}^{2}+3u_{y}u_{xxtt}+3u_{x}u_{y}u_{tt}+u_{tt}u_{xxy}+12u_{t}u_{y}u_{xt}+6u_{x}u_{t}u_{yt}
+(2uxxxt+6uxuxt+6utuxx)(D1uyt)+(uxxxy+3uxuxy+3uyuxx)(D1utt),\displaystyle+\Big{(}2u_{xxxt}+6u_{x}u_{xt}+6u_{t}u_{xx}\Big{)}(D^{-1}u_{yt})+\Big{(}u_{xxxy}+3u_{x}u_{xy}+3u_{y}u_{xx}\Big{)}(D^{-1}u_{tt}), (7.44)
(Dx2Dt2Dy2{ff}f2)x=uxxyytt+8utuyuyt+uyyuxtt+uxuyytt+uttuyyx+4uxtuyyt\displaystyle\Big{(}\frac{D_{x}^{2}\,D_{t}^{2}\,D_{y}^{2}\,\{f\cdot f\}}{f^{2}}\Big{)}_{x}=u_{xxyytt}+8u_{t}u_{y}u_{yt}+u_{yy}u_{xtt}+u_{x}u_{yytt}+u_{tt}u_{yyx}+4u_{xt}u_{yyt}
+4uyuxytt+4utuyyxt+4uyxuytt+2uy2utt+2ut2uyy+4uytuxyt\displaystyle+4u_{y}u_{xytt}+4u_{t}u_{yyxt}+4u_{yx}u_{ytt}+2u_{y}^{2}u_{tt}+2u_{t}^{2}u_{yy}+4u_{yt}u_{xyt}
+uxx(D1uyytt)+(4uyuxy+uxuyy+uyyxx)(D1utt)\displaystyle+u_{xx}(D^{-1}u_{yytt})+\Big{(}4u_{y}u_{xy}+u_{x}u_{yy}+u_{yyxx}\Big{)}(D^{-1}u_{tt})
+(4utuxt+uxutt+uxxtt+uxx(D1utt))(D1uyy)\displaystyle+\Big{(}4u_{t}u_{xt}+u_{x}u_{tt}+u_{xxtt}+u_{xx}(D^{-1}u_{tt})\Big{)}(D^{-1}u_{yy})
+(8uyuxt+4uxuyt+8utuxy+4uyxxt+2uxx(D1uyt))(D1uyt).\displaystyle+\Big{(}8u_{y}u_{xt}+4u_{x}u_{yt}+8u_{t}u_{xy}+4u_{yxxt}+2u_{xx}(D^{-1}u_{yt})\Big{)}(D^{-1}u_{yt}). (7.45)

Appendix B: Conditions for the lump solutions

Lump solutions of differential equations are obtained by letting

f=β0+p2+q2+r2,f=\beta_{0}+p^{2}+q^{2}+r^{2}, (7.46)

where p=β1x+β2y+β3t+β4p=\beta_{1}x+\beta_{2}y+\beta_{3}t+\beta_{4}, q=β5x+β6y+β7t+β8q=\beta_{5}x+\beta_{6}y+\beta_{7}t+\beta_{8}, and r=β9x+β10y+β11t+β12r=\beta_{9}x+\beta_{10}y+\beta_{11}t+\beta_{12} where β0,β1,,β12\beta_{0},\beta_{1},\cdots,\beta_{12} are arbitrary constants. The system of equations satisfied by βj\beta_{j}’s obtained from the bilinear equations (4) and (4) are given below.

1. For the equation (4)

1) 6(β12+β52+β92)2b2+6(β12+β52+β92)(β1β3+β1β9+β5β7)b1\displaystyle 1)\,6(\beta_{1}^{2}+\beta_{5}^{2}+\beta_{9}^{2})^{2}b_{2}+6(\beta_{1}^{2}+\beta_{5}^{2}+\beta_{9}^{2})(\beta_{1}\beta_{3}+\beta_{1}\beta_{9}+\beta_{5}\beta_{7})b_{1}
+6(β12+β52+β92)(β1β2+β9β10+β5β6)b0+β0(β32+β72+β112)a0\displaystyle+6(\beta_{1}^{2}+\beta_{5}^{2}+\beta_{9}^{2})(\beta_{1}\beta_{2}+\beta_{9}\beta_{10}+\beta_{5}\beta_{6})b_{0}+\beta_{0}(\beta_{3}^{2}+\beta_{7}^{2}+\beta_{11}^{2})a_{0}
+β0(β12+β52+β92)a1+β0(β22+β62+β102)a2+β0(β1β3+β9β11+β5β7)a3\displaystyle+\beta_{0}(\beta_{1}^{2}+\beta_{5}^{2}+\beta_{9}^{2})a_{1}+\beta_{0}(\beta_{2}^{2}+\beta_{6}^{2}+\beta_{10}^{2})a_{2}+\beta_{0}(\beta_{1}\beta_{3}+\beta_{9}\beta_{11}+\beta_{5}\beta_{7})a_{3}
+β0(β6β7+β10β11+β2β3)a4+β0(β1β2+β9β10+β5β6)a5=0,\displaystyle+\beta_{0}(\beta_{6}\beta_{7}+\beta_{10}\beta_{11}+\beta_{2}\beta_{3})a_{4}+\beta_{0}(\beta_{1}\beta_{2}+\beta_{9}\beta_{10}+\beta_{5}\beta_{6})a_{5}=0, (7.47)
2)(β2β5+β1β6)a5+(β3β6+β2β7)a4+(β3β5+β1β7)a3+2β2β6a2\displaystyle 2)\,(\beta_{2}\beta_{5}+\beta_{1}\beta_{6})a_{5}+(\beta_{3}\beta_{6}+\beta_{2}\beta_{7})a_{4}+(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})a_{3}+2\beta_{2}\beta_{6}a_{2}
+2β1β5a1+2β3β7a0=0,\displaystyle+2\beta_{1}\beta_{5}a_{1}+2\beta_{3}\beta_{7}a_{0}=0, (7.48)
3)(β6β9+β5β10)a5+(β6β11+β7β10)a4+(β5β11+β7β9)a3+2β6β10a2\displaystyle 3)\,(\beta_{6}\beta_{9}+\beta_{5}\beta_{10})a_{5}+(\beta_{6}\beta_{11}+\beta_{7}\beta_{10})a_{4}+(\beta_{5}\beta_{11}+\beta_{7}\beta_{9})a_{3}+2\beta_{6}\beta_{10}a_{2}
+2β5β9a1+2β7β11a0=0,\displaystyle+2\beta_{5}\beta_{9}a_{1}+2\beta_{7}\beta_{11}a_{0}=0, (7.49)
4)(β1β10+β2β9)a5+(β3β10+β2β11)a4+(β1β11+β3β9)a3+2β2β10a2\displaystyle 4)\,(\beta_{1}\beta_{10}+\beta_{2}\beta_{9})a_{5}+(\beta_{3}\beta_{10}+\beta_{2}\beta_{11})a_{4}+(\beta_{1}\beta_{11}+\beta_{3}\beta_{9})a_{3}+2\beta_{2}\beta_{10}a_{2}
+2β1β9a1+2β3β11a0=0,\displaystyle+2\beta_{1}\beta_{9}a_{1}+2\beta_{3}\beta_{11}a_{0}=0, (7.50)
5)(β9β10+β1β2β5β6)a5+(β2β3+β10β11β6β7)a4+(β1β3+β9β11β5β7)a3\displaystyle 5)\,(\beta_{9}\beta_{10}+\beta_{1}\beta_{2}-\beta_{5}\beta_{6})a_{5}+(\beta_{2}\beta_{3}+\beta_{10}\beta_{11}-\beta_{6}\beta_{7})a_{4}+(\beta_{1}\beta_{3}+\beta_{9}\beta_{11}-\beta_{5}\beta_{7})a_{3}
+(β102+β22β62)a2+(β92+β12β52)a1+(β112+β32β72)a0=0,\displaystyle+(\beta_{10}^{2}+\beta_{2}^{2}-\beta_{6}^{2})a_{2}+(\beta_{9}^{2}+\beta_{1}^{2}-\beta_{5}^{2})a_{1}+(\beta_{11}^{2}+\beta_{3}^{2}-\beta_{7}^{2})a_{0}=0, (7.51)
6)(β1β2+β5β6β9β10)a5+(β2β3+β6β7β10β11)a4+(β5β7+β1β3β9β11)a3\displaystyle 6)\,(\beta_{1}\beta_{2}+\beta_{5}\beta_{6}-\beta_{9}\beta_{10})a_{5}+(\beta_{2}\beta_{3}+\beta_{6}\beta_{7}-\beta_{10}\beta_{11})a_{4}+(\beta_{5}\beta_{7}+\beta_{1}\beta_{3}-\beta_{9}\beta_{11})a_{3}
+(β62+β22β102)a2+(β52+β12β92)a1+(β72+β32β112)a0=0,\displaystyle+(\beta_{6}^{2}+\beta_{2}^{2}-\beta_{10}^{2})a_{2}+(\beta_{5}^{2}+\beta_{1}^{2}-\beta_{9}^{2})a_{1}+(\beta_{7}^{2}+\beta_{3}^{2}-\beta_{11}^{2})a_{0}=0, (7.52)
7)(β5β6+β9β10β1β2)a5+(β6β7+β10β11β2β3)a4+(β9β11+β5β7β1β3)a3\displaystyle 7)\,(\beta_{5}\beta_{6}+\beta_{9}\beta_{10}-\beta_{1}\beta_{2})a_{5}+(\beta_{6}\beta_{7}+\beta_{10}\beta_{11}-\beta_{2}\beta_{3})a_{4}+(\beta_{9}\beta_{11}+\beta_{5}\beta_{7}-\beta_{1}\beta_{3})a_{3}
+(β102+β62β22)a2+(β92+β52β12)a1+(β72+β112β32)a0=0.\displaystyle+(\beta_{10}^{2}+\beta_{6}^{2}-\beta_{2}^{2})a_{2}+(\beta_{9}^{2}+\beta_{5}^{2}-\beta_{1}^{2})a_{1}+(\beta_{7}^{2}+\beta_{11}^{2}-\beta_{3}^{2})a_{0}=0. (7.53)

From the last three equations we get

β1=12a1[a3β3a5β2+a52β22+2a5a3β2β3+a32β324a1a2β224a1a4β2β34a0a1β32],\displaystyle\beta_{1}=\frac{1}{2a_{1}}[-a_{3}\beta_{3}-a_{5}\beta_{2}+\sqrt{a_{5}^{2}\beta_{2}^{2}+2a_{5}a_{3}\beta_{2}\beta_{3}+a_{3}^{2}\beta_{3}^{2}-4a_{1}a_{2}\beta_{2}^{2}-4a_{1}a_{4}\beta_{2}\beta_{3}-4a_{0}a_{1}\beta_{3}^{2}}], (7.54)
β5=12a1[a3β7a5β6+a32β72+2a5a3β6β7+a52β624a1a2β624a1a4β6β74a0a1β72],\displaystyle\beta_{5}=\frac{1}{2a_{1}}[-a_{3}\beta_{7}-a_{5}\beta_{6}+\sqrt{a_{3}^{2}\beta_{7}^{2}+2a_{5}a_{3}\beta_{6}\beta_{7}+a_{5}^{2}\beta_{6}^{2}-4a_{1}a_{2}\beta_{6}^{2}-4a_{1}a_{4}\beta_{6}\beta_{7}-4a_{0}a_{1}\beta_{7}^{2}}], (7.55)
β9=12a1[a3β11a5β10\displaystyle\beta_{9}=\frac{1}{2a_{1}}[-a_{3}\beta_{11}-a_{5}\beta_{10}
+a32β112+2a5a3β10β11+a52β1024a1a2β1024a1a4β10β114a0a1β112].\displaystyle\hskip 42.67912pt+\sqrt{a_{3}^{2}\beta_{11}^{2}+2a_{5}a_{3}\beta_{10}\beta_{11}+a_{5}^{2}\beta_{10}^{2}-4a_{1}a_{2}\beta_{10}^{2}-4a_{1}a_{4}\beta_{10}\beta_{11}-4a_{0}a_{1}\beta_{11}^{2}}]. (7.56)

Using the above equalities in the equations (7.48)-(7.50) gives

β2=β3β10β11,β6=β7β10β11,\displaystyle\beta_{2}=\frac{\beta_{3}\beta_{10}}{\beta_{11}},\quad\beta_{6}=\frac{\beta_{7}\beta_{10}}{\beta_{11}}, (7.57)

yielding

β1=ηβ3,β5=ηβ7,β9=ηβ11,\beta_{1}=\eta\beta_{3},\quad\beta_{5}=\eta\beta_{7},\quad\beta_{9}=\eta\beta_{11}, (7.58)

where

η=\displaystyle\displaystyle\eta= 12a1β11a52β102+2a5a3β10β11+a32β1124a1a2β1024a1a4β10β114a0a1β112\displaystyle\frac{1}{2a_{1}\beta_{11}}\sqrt{a_{5}^{2}\beta_{10}^{2}+2a_{5}a_{3}\beta_{10}\beta_{11}+a_{3}^{2}\beta_{11}^{2}-4a_{1}a_{2}\beta_{10}^{2}-4a_{1}a_{4}\beta_{10}\beta_{11}-4a_{0}a_{1}\beta_{11}^{2}}
a5β102a1β11a32a1.\displaystyle-\frac{a_{5}\beta_{10}}{2a_{1}\beta_{11}}-\frac{a_{3}}{2a_{1}}. (7.59)

Under these results the equation (7.47) turns to be

6b2(β32+β72+β112)η4+6(β32+β72+β112)β11(b0β10+b1β11)η3+a1β0η2\displaystyle 6b_{2}(\beta_{3}^{2}+\beta_{7}^{2}+\beta_{11}^{2})\eta^{4}+\frac{6(\beta_{3}^{2}+\beta_{7}^{2}+\beta_{11}^{2})}{\beta_{11}}(b_{0}\beta_{10}+b_{1}\beta_{11})\eta^{3}+a_{1}\beta_{0}\eta^{2}
+β0(a3β11+a5β10)η+β0β112(a2β102+a4β10β11+a0β112)=0.\displaystyle+\beta_{0}(a_{3}\beta_{11}+a_{5}\beta_{10})\eta+\frac{\beta_{0}}{\beta_{11}^{2}}(a_{2}\beta_{10}^{2}+a_{4}\beta_{10}\beta_{11}+a_{0}\beta_{11}^{2})=0. (7.60)

2. For the equation (4)

1)(β62+β22β102)a1+(β1β3+β5β7β9β11)a0=0,\displaystyle 1)\,(\beta_{6}^{2}+\beta_{2}^{2}-\beta_{10}^{2})a_{1}+(\beta_{1}\beta_{3}+\beta_{5}\beta_{7}-\beta_{9}\beta_{11})a_{0}=0, (7.61)
2)(β102+β22β62)a1+(β1β3+β9β11β5β7)a0=0,\displaystyle 2)\,(\beta_{10}^{2}+\beta_{2}^{2}-\beta_{6}^{2})a_{1}+(\beta_{1}\beta_{3}+\beta_{9}\beta_{11}-\beta_{5}\beta_{7})a_{0}=0, (7.62)
3)(β62+β102β22)a1+(β5β7+β9β11β1β3)a0=0,\displaystyle 3)\,(\beta_{6}^{2}+\beta_{10}^{2}-\beta_{2}^{2})a_{1}+(\beta_{5}\beta_{7}+\beta_{9}\beta_{11}-\beta_{1}\beta_{3})a_{0}=0, (7.63)
4)(β3β5+β1β7)a0+2β2β6a1=0,\displaystyle 4)\,(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})a_{0}+2\beta_{2}\beta_{6}a_{1}=0, (7.64)
5)(β1β11+β3β9)a0+2β2β10a1=0,\displaystyle 5)\,(\beta_{1}\beta_{11}+\beta_{3}\beta_{9})a_{0}+2\beta_{2}\beta_{10}a_{1}=0, (7.65)
6)(β5β11+β7β9)a0+2β6β10a1=0,\displaystyle 6)\,(\beta_{5}\beta_{11}+\beta_{7}\beta_{9})a_{0}+2\beta_{6}\beta_{10}a_{1}=0, (7.66)
7) 2(β22[3β1β3+β5β7+β9β11]+β62[β1β3+3β5β7+β9β11]\displaystyle 7)\,2\Big{(}\beta_{2}^{2}[3\beta_{1}\beta_{3}+\beta_{5}\beta_{7}+\beta_{9}\beta_{11}]+\beta_{6}^{2}[\beta_{1}\beta_{3}+3\beta_{5}\beta_{7}+\beta_{9}\beta_{11}]
+β102[β1β3+β5β7+3β9β11]+2β1β2[β6β7+β10β11]+2β5β6[β2β3+β10β11]\displaystyle+\beta_{10}^{2}[\beta_{1}\beta_{3}+\beta_{5}\beta_{7}+3\beta_{9}\beta_{11}]+2\beta_{1}\beta_{2}[\beta_{6}\beta_{7}+\beta_{10}\beta_{11}]+2\beta_{5}\beta_{6}[\beta_{2}\beta_{3}+\beta_{10}\beta_{11}]
+2β9β10[β2β3+β6β7])b2+2(β32[3β1β2+β5β6+β9β10]+β72[β1β2+3β5β6+β9β10]\displaystyle+2\beta_{9}\beta_{10}[\beta_{2}\beta_{3}+\beta_{6}\beta_{7}]\Big{)}b_{2}+2\Big{(}\beta_{3}^{2}[3\beta_{1}\beta_{2}+\beta_{5}\beta_{6}+\beta_{9}\beta_{10}]+\beta_{7}^{2}[\beta_{1}\beta_{2}+3\beta_{5}\beta_{6}+\beta_{9}\beta_{10}]
+β112[β1β2+β5β6+3β9β10]+2β1β3[β6β7+β10β11]+2β2β3[β6β7+β9β11]\displaystyle+\beta_{11}^{2}[\beta_{1}\beta_{2}+\beta_{5}\beta_{6}+3\beta_{9}\beta_{10}]+2\beta_{1}\beta_{3}[\beta_{6}\beta_{7}+\beta_{10}\beta_{11}]+2\beta_{2}\beta_{3}[\beta_{6}\beta_{7}+\beta_{9}\beta_{11}]
+2β5β7[β2β3+β10β11])b1+2(β52[3β6β7+β2β3+β10β11]+β12[β6β7+3β2β3+β10β11]\displaystyle+2\beta_{5}\beta_{7}[\beta_{2}\beta_{3}+\beta_{10}\beta_{11}]\Big{)}b_{1}+2\Big{(}\beta_{5}^{2}[3\beta_{6}\beta_{7}+\beta_{2}\beta_{3}+\beta_{10}\beta_{11}]+\beta_{1}^{2}[\beta_{6}\beta_{7}+3\beta_{2}\beta_{3}+\beta_{10}\beta_{11}]
+β92[β6β7+β2β3+3β10β11]+2β5β7[β1β2+β9β10]+2β5β6[β1β3+β9β11]\displaystyle+\beta_{9}^{2}[\beta_{6}\beta_{7}+\beta_{2}\beta_{3}+3\beta_{10}\beta_{11}]+2\beta_{5}\beta_{7}[\beta_{1}\beta_{2}+\beta_{9}\beta_{10}]+2\beta_{5}\beta_{6}[\beta_{1}\beta_{3}+\beta_{9}\beta_{11}]
+2β1β9[β2β11+β3β10])b0+6(β12+β52+β92)2a2+β0(β22+β62+β102)a1\displaystyle+2\beta_{1}\beta_{9}[\beta_{2}\beta_{11}+\beta_{3}\beta_{10}]\Big{)}b_{0}+6(\beta_{1}^{2}+\beta_{5}^{2}+\beta_{9}^{2})^{2}a_{2}+\beta_{0}(\beta_{2}^{2}+\beta_{6}^{2}+\beta_{10}^{2})a_{1}
+β0(β9β11+β1β3+β5β7)a0=0.\displaystyle+\beta_{0}(\beta_{9}\beta_{11}+\beta_{1}\beta_{3}+\beta_{5}\beta_{7})a_{0}=0. (7.67)

From the first three equations we obtain

β22a1+β1β3a0=0,\displaystyle\beta_{2}^{2}\,a_{1}+\beta_{1}\,\beta_{3}a_{0}=0, (7.68)
β62a1+β5β7a0=0,\displaystyle\beta_{6}^{2}\,a_{1}+\beta_{5}\,\beta_{7}a_{0}=0, (7.69)
β102a1+β11β9a0=0.\displaystyle\beta_{10}^{2}\,a_{1}+\beta_{11}\,\beta_{9}a_{0}=0. (7.70)

Hence

β1=β22β3λ,β5=β62β7λ,β9=β102β7λ,\beta_{1}=-\frac{\beta_{2}^{2}}{\beta_{3}}\lambda,~{}~{}\beta_{5}=-\frac{\beta_{6}^{2}}{\beta_{7}}\lambda,~{}~{}\beta_{9}=-\frac{\beta_{10}^{2}}{\beta_{7}}\lambda, (7.71)

where we assume β3,β7,β11\beta_{3},\beta_{7},\beta_{11}, and a0a_{0} are different than zero. Here λ=a1a0\lambda=\frac{a_{1}}{a_{0}}. By using the above βj\beta_{j}’s, the next three equations (7.64)-(7.66) give

β2=β3β10β11,β6=β7β10β11.\beta_{2}=\frac{\beta_{3}\,\beta_{10}}{\beta_{11}},~{}~{}~{}~{}\beta_{6}=\frac{\beta_{7}\,\beta_{10}}{\beta_{11}}. (7.72)

Inserting all the equalities that we obtain for βj\beta_{j}’s in the last equation we obtain a single equation for β10\beta_{10}, β11\beta_{11}, and λ\lambda as

λb0β102β113+λ3a2β105b2β10β114b1β115=0.\lambda b_{0}\beta_{10}^{2}\beta_{11}^{3}+\lambda^{3}a_{2}\beta_{10}^{5}-b_{2}\beta_{10}\beta_{11}^{4}-b_{1}\beta_{11}^{5}=0. (7.73)

Letting μ=β10β11\mu=\frac{\beta_{10}}{\beta_{11}}, then μ\mu satisfies the following nonlinear algebraic equation

λb0μ2+λ3a2μ5b2μb1=0.\lambda b_{0}\,\mu^{2}+\lambda^{3}a_{2}\,\mu^{5}-b_{2}\,\mu-b_{1}=0. (7.74)

Appendix C: Conditions for the hybrid solutions

Case 1

1. For the equation (4)

1)β1(b0β2+b1β3+b2β1)=0,\displaystyle 1)\,\beta_{1}(b_{0}\beta_{2}+b_{1}\beta_{3}+b_{2}\beta_{1})=0, (7.75)
2)a0β32+a1β12+a2β22+a3β1β3+a4β2β3+a5β1β2=0,\displaystyle 2)\,a_{0}\beta_{3}^{2}+a_{1}\beta_{1}^{2}+a_{2}\beta_{2}^{2}+a_{3}\beta_{1}\beta_{3}+a_{4}\beta_{2}\beta_{3}+a_{5}\beta_{1}\beta_{2}=0, (7.76)
3)a0β72+a1β52+a2β62+a3β5β7+a4β6β7+a5β5β6+β53(b0β6+b1β7+b2β5)\displaystyle 3)\,a_{0}\beta_{7}^{2}+a_{1}\beta_{5}^{2}+a_{2}\beta_{6}^{2}+a_{3}\beta_{5}\beta_{7}+a_{4}\beta_{6}\beta_{7}+a_{5}\beta_{5}\beta_{6}+\beta_{5}^{3}(b_{0}\beta_{6}+b_{1}\beta_{7}+b_{2}\beta_{5})
+β55(c0β5+c1β7+c2β6)=0,\displaystyle+\beta_{5}^{5}(c_{0}\beta_{5}+c_{1}\beta_{7}+c_{2}\beta_{6})=0, (7.77)
4)β1β5[3(β2β5+β1β6)b0+3(β3β5+β1β7)b1+6β1β5b2+15β1β53c0\displaystyle 4)\,\beta_{1}\beta_{5}[3(\beta_{2}\beta_{5}+\beta_{1}\beta_{6})b_{0}+3(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})b_{1}+6\beta_{1}\beta_{5}b_{2}+15\beta_{1}\beta_{5}^{3}c_{0}
+5β52(β3β5+2β1β7)c1+5β52(β2β5+2β1β6)c2]=0,\displaystyle+5\beta_{5}^{2}(\beta_{3}\beta_{5}+2\beta_{1}\beta_{7})c_{1}+5\beta_{5}^{2}(\beta_{2}\beta_{5}+2\beta_{1}\beta_{6})c_{2}]=0, (7.78)
5) 2a0β3β7+2a1β1β5+2a2β2β6+a3(β1β7+β3β5)+a4(β2β7+β3β6)+a5(β1β6+β2β5)\displaystyle 5)\,2a_{0}\beta_{3}\beta_{7}+2a_{1}\beta_{1}\beta_{5}+2a_{2}\beta_{2}\beta_{6}+a_{3}(\beta_{1}\beta_{7}+\beta_{3}\beta_{5})+a_{4}(\beta_{2}\beta_{7}+\beta_{3}\beta_{6})+a_{5}(\beta_{1}\beta_{6}+\beta_{2}\beta_{5})
+b0(β2β53+3β52β1β6)+b1(β3β53+3β1β7β52)+4b2β1β53+6c0β1β55+c1(β3β55+5β1β7β54)\displaystyle+b_{0}(\beta_{2}\beta_{5}^{3}+3\beta_{5}^{2}\beta_{1}\beta_{6})+b_{1}(\beta_{3}\beta_{5}^{3}+3\beta_{1}\beta_{7}\beta_{5}^{2})+4b_{2}\beta_{1}\beta_{5}^{3}+6c_{0}\beta_{1}\beta_{5}^{5}+c_{1}(\beta_{3}\beta_{5}^{5}+5\beta_{1}\beta_{7}\beta_{5}^{4})
+c2(β2β55+5β1β6β54)=0.\displaystyle+c_{2}(\beta_{2}\beta_{5}^{5}+5\beta_{1}\beta_{6}\beta_{5}^{4})=0. (7.79)

2. For the equation (4)

1)a0β1β3+a1β22=0,\displaystyle 1)\,a_{0}\beta_{1}\beta_{3}+a_{1}\beta_{2}^{2}=0, (7.80)
2)β1(a1β13+b0β1β2β3+b1β2β32+b2β22β3)=0,\displaystyle 2)\,\beta_{1}(a_{1}\beta_{1}^{3}+b_{0}\beta_{1}\beta_{2}\beta_{3}+b_{1}\beta_{2}\beta_{3}^{2}+b_{2}\beta_{2}^{2}\beta_{3})=0, (7.81)
3)a0β5β7+a1β62+a2β54+b0β52β6β7+b1β5β6β72+b2β5β62β7=0,\displaystyle 3)\,a_{0}\beta_{5}\beta_{7}+a_{1}\beta_{6}^{2}+a_{2}\beta_{5}^{4}+b_{0}\beta_{5}^{2}\beta_{6}\beta_{7}+b_{1}\beta_{5}\beta_{6}\beta_{7}^{2}+b_{2}\beta_{5}\beta_{6}^{2}\beta_{7}=0, (7.82)
4) 6a2β12β52+(β2β3β52+2β1β2β5β7+β6β7β12+2β1β3β5β6)b0\displaystyle 4)\,6a_{2}\beta_{1}^{2}\beta_{5}^{2}+(\beta_{2}\beta_{3}\beta_{5}^{2}+2\beta_{1}\beta_{2}\beta_{5}\beta_{7}+\beta_{6}\beta_{7}\beta_{1}^{2}+2\beta_{1}\beta_{3}\beta_{5}\beta_{6})b_{0}
+(β1β2β72+2β1β3β6β7+β5β6β32+2β2β3β5β7)b1\displaystyle+(\beta_{1}\beta_{2}\beta_{7}^{2}+2\beta_{1}\beta_{3}\beta_{6}\beta_{7}+\beta_{5}\beta_{6}\beta_{3}^{2}+2\beta_{2}\beta_{3}\beta_{5}\beta_{7})b_{1}
+(β5β7β22+2β1β2β6β7+β1β3β62+2β2β3β5β6)b1=0,\displaystyle+(\beta_{5}\beta_{7}\beta_{2}^{2}+2\beta_{1}\beta_{2}\beta_{6}\beta_{7}+\beta_{1}\beta_{3}\beta_{6}^{2}+2\beta_{2}\beta_{3}\beta_{5}\beta_{6})b_{1}=0, (7.83)
5)(β3β5+β1β7)a0+2a1β2β6+4a2β1β53+(β52β3β6+2β1β5β6β7+β52β2β7)b0\displaystyle 5)\,(\beta_{3}\beta_{5}+\beta_{1}\beta_{7})a_{0}+2a_{1}\beta_{2}\beta_{6}+4a_{2}\beta_{1}\beta_{5}^{3}+(\beta_{5}^{2}\beta_{3}\beta_{6}+2\beta_{1}\beta_{5}\beta_{6}\beta_{7}+\beta_{5}^{2}\beta_{2}\beta_{7})b_{0}
+(β72β1β6+2β3β5β6β7+β72β2β5)b1+(β62β3β5+2β2β5β6β7+β62β1β7)b2=0.\displaystyle+(\beta_{7}^{2}\beta_{1}\beta_{6}+2\beta_{3}\beta_{5}\beta_{6}\beta_{7}+\beta_{7}^{2}\beta_{2}\beta_{5})b_{1}+(\beta_{6}^{2}\beta_{3}\beta_{5}+2\beta_{2}\beta_{5}\beta_{6}\beta_{7}+\beta_{6}^{2}\beta_{1}\beta_{7})b_{2}=0. (7.84)

Case 2

In this case the conditions (7.75)-(7.78) given for Case 1 are same with the conditions obtained for the equation (4). The fifth constraint for (4) is the condition (7.79) multiplied by (β0A1)(\beta_{0}A-1). There is also sixth constraint given below:

(1+β0A)φ+60Aβ13β5(3β1β5c0+(β1β7+2β3β5)c1+(β1β6+2β2β5)c2)=0,(1+\beta_{0}A)\varphi+60A\beta_{1}^{3}\beta_{5}(3\beta_{1}\beta_{5}c_{0}+(\beta_{1}\beta_{7}+2\beta_{3}\beta_{5})c_{1}+(\beta_{1}\beta_{6}+2\beta_{2}\beta_{5})c_{2})=0, (7.85)

where φ\varphi is the condition (7.78).

For the equation (4), the conditions (7.80)-(7.83) given for Case 1 are same with the ones obtained for Case 2. The fifth constraint for (4) is the condition (7.84) multiplied by (β0A1)(\beta_{0}A-1).

References

  • [1] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, (2004).
  • [2] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192, (1971).
  • [3] R. Hirota, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan 33, 1456, (1972).
  • [4] R. Hirota, Exact solution of the sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Japan 33, 1459, (1972).
  • [5] J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: I. KdV-type bilinear equations, J. Math. Phys. 28, 1732–1742, (1987).
  • [6] J. Hietarinta, Searching for integrable PDE’s by testing Hirota’s three-soliton condition, In: Proc. 1991 International Symposium on Symbolic and Algebraic Computation, Ed. S. Watt, ACM Press, Bonn, 295–300, (1991).
  • [7] J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: II. mKdV-type bilinear equations, J. Math. Phys. 28, 2094–2101, (1987).
  • [8] J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: III. sine-Gordon-type bilinear equations, J. Math. Phys. 28, 2586–2592, (1987).
  • [9] M. Gürses, A. Pekcan, Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys. 59, 051501, (2018).
  • [10] M. Gürses, A. Pekcan, Integrable Nonlocal Reductions, ”Symmetries, Differential Equations and Applications SDEA-III, Istanbul, Turkey, August 2017”, Editors: V.G. Kac, P.J. Olver, P. Winternitz, and T. Ozer, Springer Proceedings in Mathematics and Statistics, 266, (2018).
  • [11] M. Gürses, A. Pekcan, Nonlocal nonlinear modified KdV equations and their soliton solutions, Commun. Nonlinear Sci. Numer. Simulat. 67, 427–448, (2019).
  • [12] M. Gürses, A. Pekcan, Multi-component AKNS systems, Wave Motion 117, 103104, (2023).
  • [13] M. Gürses, A. Pekcan, (2+1)(2+1)-dimensional local and nonlocal reductions of the negative AKNS system: Soliton solutions, Commun. Nonlinear Sci. Numer. Simulat. 71, 161–173, (2019).
  • [14] M. Gürses, A. Pekcan, 2+12+1-dimensional AKNS(N-N) systems II, Commun. Nonlinear Sci. Numer. Simulat. 92, 105736, (2021).
  • [15] J. Hietarinta, Introduction to the Hirota bilinear method. In: Integrability of Nonlinear Systems. Lecture Notes in Physics, Eds: Y. Kosmann-Schwarzbach, B. Grammaticos, K.M. Tamizhmani, Springer, Berlin, Heidelberg, 495, (1997). https://doi.org/10.1007/BFb0113694
  • [16] W.X. Ma, Lump Solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equ. 264, 2633–2659, (2018).
  • [17] X. Lü, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn. 85, 1217–1222, (2016).
  • [18] Y.F. Hua, B.L. Guo, W.X. Ma, and X. Lü, Interaction behavior associated with a generalized (2+1)(2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model. 74, 184–198, (2019).
  • [19] S. Batwa, W.X. Ma, Lump solutions to a generalized Hietarinta- type equation via symbolic computation, Front. Math. China 15 (3), 435–450, (2020).
  • [20] L. Zhang, W.X. Ma, and Y. Huang, Lump solutions of a nonlinear PDE combining with a new fourth-order term Dx2Dt2D_{x}^{2}D_{t}^{2}\ast, Adv. Math. Phys. 2020, Art. ID 3542320, (2020).
  • [21] W.X. Ma, S. Manukure, H. Wang, and S. Batwa, Lump solutions to a (2+1)-dimensional fourth-order nonlinear PDE possessing a Hirota bilinear form, Modern Phys. Lett. B 35 (9), 2150160, (2021).
  • [22] L. Ding, W.X. Ma, Q. Chen, and Y. Huang, Lump solutions of a nonlinear PDE containing a third order derivative of time, Appl. Math. Lett. 112, 106809, (2021).
  • [23] B. He, Q. Meng, Bilinear form and new interaction solutions for the sixth-order Ramani equation, Appl. Math. Lett. 98, 411–418, (2019).
  • [24] B. Ren, J. Lin, The integrability of a (2+1)(2+1)-dimensional nonlinear wave equation: Painlevé property, multi-order breathers, multi-order lumps and hybrid solutions, Wave Motion 117, 103110, (2023).
  • [25] M. Gürses, A. Pekcan, 2+12+1 KdV(N) equations, J. Math. Phys. 52 (8), 083516, (2011).
  • [26] S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, and V.B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A 63 (3), 205–206, (1977).
  • [27] B. Ren, Characteristics of the soliton molecule and lump solution in the (2+1)-dimensional higher-order Boussinesq equation, Adv. Math. Phys. 2021, Art. ID 5545984, (2021).
  • [28] A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, and R. Turhan, A new integrable generalization of the Korteweg–de Vries equation, J. Math. Phys. 49, 073516 (2008).
  • [29] A. Ramani, Inverse scattering ordinary differential equations of Painlevé type and Hirota’s bilinear formalism, Ann. New York Acad. Sci. 373, 54–67, (1981).
  • [30] W.X. Ma, J. Li, and C.M. Kalique, A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)(2+1)-dimensions, Complexity 2018, 9059858, (2018).
  • [31] J.J. Huang, W. Tan, and X.M. Wang, Degeneration of NN-solitons and interaction of higher-order solitons for the (2+1)(2+1)-dimensional generalized Hirota-Satsuma-Ito equation, Phys. Scr. 98 (4), 045226, (2023).
  • [32] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, KP hierarchies of orthogonal and symplectic type-Transformation groups for soliton equations VI-, J. Phys. Soc. Japan 50 (11), 3813–3818, (1981).
  • [33] M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Int. Math. Sci. 19, 943–1001, (1983).
  • [34] F. Calogero, A method to generate solvab;e nonlinear evolution equations, Lett. Nuovo Cim. 14, 443, (1975).
  • [35] O.I. Bogoyavlenskii, Overturning solitons in new two dimensional integrable equations, Izv. Akad. Nauk SSSR Ser. Mat. 53 (2), 243–257, (1989).
  • [36] F.H. Qi, Multiple lump solutions of the (2+1)(2+1)-dimensional Sawada-Kotera-Like equation, Front. Phys. 10, 1041100, (2022).
  • [37] C.T. Lee, Some remarks on the fifth-order KdV equations, J. Math. Anal. Appl. 425, 281–294, (2015).
  • [38] Y. Zhou, X. Zhang, C. Zhang, J. Jia, and W.X. Ma, New lump solutions to a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, Appl. Math. Lett. 141, 108598, (2023).
  • [39] H. Ma, Y. Bai, and A. Deng, Multiple lump solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equation, Math. Met. Appl. Sci. 43 (12), 7041–7505, (2020).
  • [40] A. Ay, M. Gürses, and K. Zheltukhin, Hamiltonian equations in R3R^{3}, J. Math. Phys. 44, 5688–5705, (2003).
  • [41] M. Gürses, K. Zheltukhin, Poisson structures in R3R^{3}, In: Fifth International Conference on Geometry, Integrability and Quantization June 4-12, 2003, Varna, Bulgaria. Eds. I.M. Mladenov and A.H. Hirsfeld. SOFTEX, (Sofia 2004), pp 144–148.
  • [42] M. Gürses, G.Sh. Guseinov, and K. Zheltukhin, Systems and Poisson structures, J. Math. Phys. 50, 112703, (2009).
  • [43] Y. Nutku, Hamiltonian structure ofthe Lotka-Voltera equations, Phys. Lett. A 145, 27, (1990).