This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The maximum entropy principle of self-gravitating fluid system and field equations

Hikaru Yumisaki
 
Gunma University, 3-39-22 Showa, Maebashi 371-8511, Japan
e-mail: [email protected]
Abstract

We investigate the maximum entropy principle for general field theory, including a metric tensor gμνg_{\mu\nu}, a vector field AμA_{\mu}, and a scalar field φ\varphi as the fundamental fields, and find (i) imposing an ordinary constraint relation on ε\varepsilon, the field equations, which is constructed of the Euler-Lagrange derivative of an arbitrary Lagrangian density, the stress tensor of a perfect fluid, and the electric current vector, in ordinary manner, are compatible with the maximum entropy principle, and (ii) varying also the constraint relation on ε\varepsilon, the maximum entropy principle requires an extra scalar field η\eta, which is introduced as the difference from the ordinary constraint relation on ε\varepsilon. The field η\eta is also interpreted as the difference between two geometries, i.e., one is the geometry, defined by gμνg_{\mu\nu}, in which the thermodynamical relations are written in the ordinary and simplest form, and the other is the geometry, defined by

g~μν=e2ηgμν,\tilde{g}_{\mu\nu}=e^{2\eta}g_{\mu\nu},

in which a force-free fluid flows along a geodesic orbit, instead the thermodynamical relations, the first law of thermodynamics and the Gibbs-Duhem relation, are modified.

We also calculate the variation of the entropy δS\delta S in the Lovelock theory, in which δS\delta S is expressed as a linear combination of the variations of the Kodama energy and the size of the system. Finally, with the field η\eta introduced, we propose a set of field equations in the thermodynamical and kinematical geometries, which possesses appropriate scaling properties, and point out that in vacuum spacetime they resemble those of the dilaton gravity in the string and Einstein frame, respectively.

1 Introduction

1.1 Background and motivation

One of the properties of gravity that leads to difficulties in studying thermodynamics of self-gravitating fluid is that it generates long range self-interactions. In statistical picture, long range self-interactions affect the additivity of the macroscopic quantities, and it becomes impossible to understand the phenomena of the whole system as a simple sum of small parts. Therefore, the traditional statistical procedure does not guarantee the validity of the simple combination of thermodynamics and a gravity theory. On the other hand, in purely thermodynamical picture, since the presence of long range self-interaction relates the thermodynamical phenomena and dynamics of fields, requiring the compatibility of the two theories, namely thermodynamics and field theory, may give us some perspectives for macroscopic long range self-interacting system. In this work, we focus on features of the final state of a system in thermodynamical and field theoretical pictures, namely equilibrium and stationary states, respectively, and investigate their compatibility.

In thermodynamical picture, an essential feature of the final state of a system is stated by the concept of “entropy”. The second law of thermodynamics states that, given an arbitrary isolated system 𝒱\mathcal{V}, there exist a quantity SS, which is called entropy, for each states such that the irreversibility of the system is represented by forbidding the entropy to decrease. Therefore, if there exists the final state of the system, called the equilibrium state, then the equilibrium state is the state of maximum entropy among all the allowed states, which is called “the maximum entropy principle”. The range of the allowed states mentioned above depends on the give situation.

On the other hand, including also kinematical picture, we believe that the final state of a system is static or more generally stationary. For example, in an ordinary field theory with a self-interact fluid system, if a state is not static nor stationary, namely dynamical, then the entropy of a system can increase without violating the energy and the other conservation laws by converting the kinetic energy into heat energy.111We have assumed the positivity of kinetic energy of the fields including the gravity, the conservation of total energy, and that the entropy is monotonically increasing function for heat energy. It is well known that the first two assumptions are delicate problems in gravitational field theories [1]. Therefore, it is obvious that the entropy of a static state is a maximum among those of all the states that satisfy the given field equations, so-called “on-shell” states, with the total energy and the other conserved charges fixed. However, it is a nontrivial problem whether the entropy of a static state is maximum among those of all the states that contains also the states that do not satisfy the field equations, namely “off-shell” states.

Is it necessary that the entropy of a static solution of the given field equations is maximum among those of configurations including off-shell ones? Suppose that an infinitesimal variation increase the entropy of a static solution, then the second law of thermodynamics indicates that the “static” solution varies so as to increase its own entropy222In general, a force acting in a system resulting from the tendency to increase the total entropy is called an “entropic force”., that is to say, the requirement of field theory conflicts with that of thermodynamics. One can interpret the situation as an instability of the static solution to thermal fluctuations.

In this work, we adopt as the maximum entropy principle for field theory that the entropy of an arbitrary static solution of the field equations should be maximum among those of all the configurations that satisfy given appropriate boundary conditions. The aim of this study is to reveal the condition for field theories to be compatible with the maximum entropy principle. Indeed, one finds below that in such a field theory not only static solutions but also stationary ones satisfy the maximum entropy principle.

Related calculations are found in literature. In [2], it is stated that requiring to vanish the variation of the entropy among spherically symmetric solutions of the Einstein equation is consistent with the equation of hydrostatic equilibrium. In [3], for a spherically symmetric and static radiation fluid system in general relativity, it is shown that the initial value constraint equations (equivalent to the time-time component of the Einstein equation) and requiring for the total entropy to be maximum with the total mass fixed derive the Tolman-Oppenheimer-Volkoff (TOV) equation of hydrostatic equilibrium. Generalizations have been done, i.e., for arbitrary equation of state of fluids [4], non-spherically symmetric system [5], and attempts to apply other field theories, namely, the Lovelock theory [6], the f(R)f(R) theory [7], Einstein-Maxwell theory [8], and generally covariant purely gravitational theories [9]. However, since these calculations are based on variations restricted by some constraint conditions such as spherical or time translational symmetries, Tolman’s law, or the time-time component of the gravitational field equation, calculations for general field theories and based on general variations have not yet done.

In this paper, in order to keep the generality, we do not use any assumptions about the field equations, except for that the thermodynamical quantities, including the entropy, are functions of a symmetric second-order tensor field gμνg^{\mu\nu}, a vector field AμA_{\mu}, some scalar fields, and their arbitrarily high order derivatives.

This paper is organized as follows. In section 2, using thermodynamical relations, we calculate the first order variation of the entropy. In section 3, the Euler-Lagrange operator is generalized to deal with functions that contain arbitrarily high order derivatives of fields. In section 4, we consider the volume term of the variation of the entropy, and derive the conditions for the stationary states to be equilibrium. Redefining the metric tensor and extensive quantities in order for them to have physically reasonable features, for example force-free fluids flow along geodesic orbits, we introduce the kinematical geometry, which is described by the redefined metric tensor g~μν\tilde{g}_{\mu\nu}. In this frame, we obtain the field equations (172) - (175) for arbitrary Lagrangian that are compatible with the maximum entropy principle. In section 5, we consider the surface term of the variation of the entropy. Each surface term is interpreted as the product of a “chemical potential” and the variation of the conjugate quantity. As an example, we explicitly calculate the variation of the entropy of a spherically symmetric system in the Lovelock theory and show that the variation of the entropy is expressed as a linear combination of those of the Kodama energy and the size of the system. In section 6, a Lagrangian which has thermodynamically reasonable properties is presented. In section 7, we summarize the conclusions, and briefly discuss their applications to other topics, such as cosmology, thermodynamical aspects of black hole, and so on.

1.2 Conventions and notations

In this paper, we use symbols in the following conventions. The dimension of spacetime is denoted by dd. The signature of Lorentzian metric tensor obeys the mostly plus convention (,+,,+)(-,+,\cdots,+). Greek indexes α,β,\alpha,\beta,\cdots span the full dimension of spacetime, namely {0,1,,d1}\{0,1,\cdots,d-1\}. The index 0 often represents a timelike coordinate, whereas Latin indexes a,b,a,b,\cdots do spacelike ones, so a,b,{1,,d}a,b,\cdots\in\{1,\cdots,d\}.

The Levi-Civita symbol ϵμ1μd\epsilon_{\mu_{1}\cdots\mu_{d}} is defined by

ϵμ1μd={+1if(μ1,,μd)isanevenpermutationof(0,1,,d1),1if(μ1,,μd)isanoddpermutationof(0,1,,d1), 0otherwise,\displaystyle\epsilon_{\mu_{1}\cdots\mu_{d}}=\begin{cases}+1\ \ \ \ \ \ {\rm if\ }(\mu_{1},\cdots,\mu_{d}){\rm\ is\ an\ even\ permutation\ of\ }(0,1,\cdots,d-1),&\\ -1\ \ \ \ \ \ {\rm if\ }(\mu_{1},\cdots,\mu_{d}){\rm\ is\ an\ odd\ permutation\ of\ }(0,1,\cdots,d-1),&\\ \ \ \ 0\ \ \ \ \ \ {\rm otherwise,}&\end{cases} (1)

in any coordinates, which is a (0,d)(0,d)-type covariant tensor density of weight 1-1.

We use the symbols which have nn subscripts for the bases of (dn)(d-n)-forms defined by

(ddnx)μ1μn:=1(dn)!ϵμ1μnν1νdndxν1dxνd1,\displaystyle({\mathrm{d}}^{d-n}x)_{\mu_{1}\cdots\mu_{n}}:=\frac{1}{(d-n)!}\epsilon_{\mu_{1}\cdots\mu_{n}\nu_{1}\cdots\nu_{d-n}}{\mathrm{d}}x^{\nu_{1}}\wedge\cdots\wedge{\mathrm{d}}x^{\nu_{d-1}}, (2)

so that a (n,0)(n,0)-type covariant tensor density gXμ1μn\sqrt{-g}X^{\mu_{1}\cdots\mu_{n}} is naturally associated with a (dn)(d-n)-form 𝕏\mathbb{X}, i.e.,

𝕏=1n!(ddnx)μ1μngXμ1μn.\displaystyle\mathbb{X}=\frac{1}{n!}({\mathrm{d}}^{d-n}x)_{\mu_{1}\cdots\mu_{n}}\sqrt{-g}X^{\mu_{1}\cdots\mu_{n}}. (3)

A set of fields which are taken for the fundamental ones are denoted by ff. For example, when we think of gμνg^{\mu\nu}, AμA_{\mu}, and φ\varphi as fundamental fields, then f={gμν,Aμ,φ}f=\{g^{\mu\nu},A_{\mu},\varphi\}.

2 Thermodynamical relations and the second law

Consider a (d1)(d-1)-dimensional region 𝒱\mathcal{V} of a fluid system in dd-dimensional spacetime \mathcal{M}. The dd-velocity of the fluid is denoted by uμu^{\mu}. The entropy SS of the region 𝒱\mathcal{V} is defied as a real number such that we can represent the irreversibility of 𝒱\mathcal{V} by asserting that the quantity SS never decrease, which is called the second law of thermodynamics. We assume that the entropy SS always exists and is written in the form

S=𝒱(dd1x)μguμs(ε,n),\displaystyle S=\int_{\mathcal{V}}({\mathrm{d}}^{d-1}x)_{\mu}\sqrt{-g}u^{\mu}s(\varepsilon,n), (4)

for an arbitrary region 𝒱\mathcal{V}. We employ a second-order symmetric Lorentzian tensor gμνg_{\mu\nu} and its determinant gg. The type of the fluid determines the form of the scalar function s(ε,n)s(\varepsilon,n) which depends on two scalar quantities ε\varepsilon and nn. The generalization to the case that there exist more than one nn is straightforward. Since we do not specify the type of fluid, s(ε,n)s(\varepsilon,n) is an arbitrary function. The quantity guμs\sqrt{-g}u^{\mu}s is called the entropy current density.

The dd-velocity of the fluid uμu^{\mu} is normalized by

gμνuμuν=1.\displaystyle g_{\mu\nu}u^{\mu}u^{\nu}=-1. (5)

In this paper, we often use a coordinate, called a “co-moving coordinate”, in which the dd-velocity uμu^{\mu} is parallel to the time axis, namely uμμ=g000u^{\mu}\partial_{\mu}=\sqrt{-g^{00}}\partial_{0}, and the hypersurface defied by x0=0x^{0}=0 contains the region 𝒱\mathcal{V}, i.e., {x1,,xd1}\{x^{1},\cdots,x^{d-1}\} is a coordinate of 𝒱\mathcal{V}.

Supposing that the conservation law of the entropy current density

μ(guμs)=0\displaystyle\partial_{\mu}\Big{(}\sqrt{-g}u^{\mu}s\Big{)}=0 (6)

is satisfied, and the boundary of the system 𝒱\partial\mathcal{V} is fixed, then the entropy SS does not depend on the choice of the region 𝒱\mathcal{V}. We also assume the conservation law of guμn\sqrt{-g}u^{\mu}n, namely,

μ(guμn)=0,\displaystyle\partial_{\mu}\Big{(}\sqrt{-g}u^{\mu}n\Big{)}=0, (7)

so that the quantity

N=𝒱(dd1x)μguμn\displaystyle N=\int_{\mathcal{V}}\big{(}{\mathrm{d}}^{d-1}x\big{)}_{\mu}\sqrt{-g}u^{\mu}n (8)

is a conserved charge. In section 4.2, we check whether Eqs. (6) and (7) hold, or not.

Define the “intensive” quantities TT, μ\mu, and pp by

1T\displaystyle\frac{1}{T} :=\displaystyle:= sε\displaystyle\frac{\partial s}{\partial\varepsilon} (9)
μT\displaystyle\frac{\mu}{T} :=\displaystyle:= sn\displaystyle-\frac{\partial s}{\partial n} (10)
p\displaystyle p :=\displaystyle:= Ts+μnε.\displaystyle Ts+\mu n-\varepsilon. (11)

These relations are often represented in the form

δε=Tδs+μδn\displaystyle\delta\varepsilon=T\delta s+\mu\delta n (12)
Ts+μn=ε+p.\displaystyle Ts+\mu n=\varepsilon+p. (13)

The relation (12) is a local representation of the first law of thermodynamics, and (13) is the Gibbs-Duhem relation. The relation (13) comes from the extensive properties of the extensive quantities for sufficiently small region (See appendix A for details). Comparing Eq. (12) and the variation of Eq. (13), one finds the constraint relation among the variation of the intensive quantities:

δp=sδT+nδμ.\displaystyle\delta p=s\delta T+n\delta\mu. (14)

Here, we emphasize that although usually gμνg_{\mu\nu}, ε\varepsilon, nn, TT, μ\mu, and pp are interpreted as the metric tensor, energy density, particle number density, temperature, chemical potential, and pressure, respectively, we have not said about the physical meanings of them yet, except for the volume element g\sqrt{-g}, which is introduced respecting the additivity of the entropy. In this work, we call the geometry defined by gμνg_{\mu\nu} the “thermodynamical geometry”. In section 4.3, we will discuss whether the interpretation of these quantities are appropriate even if the kinematical features are taken into account, or not.

Let us calculate the variation of the entropy

δS=𝒱(dd1x)μδ(guμs).\displaystyle\delta S=\int_{\mathcal{V}}({\mathrm{d}}^{d-1}x)_{\mu}\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}. (15)

Using Eq. (12), (13), and the Leibniz rule of δ\delta, the integrand of δS\delta S is arranged as follows:

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)} =\displaystyle= guμδs+sδ(guμ)\displaystyle\sqrt{-g}u^{\mu}\delta s+s\delta\Big{(}\sqrt{-g}u^{\mu}\Big{)} (16)
=\displaystyle= guμT(δεμδn)+ε+pμnTδ(guμ)\displaystyle\sqrt{-g}\frac{u^{\mu}}{T}(\delta\varepsilon-\mu\delta n)+\frac{\varepsilon+p-\mu n}{T}\delta\Big{(}\sqrt{-g}u^{\mu}\Big{)} (17)
=\displaystyle= 1T[guμδε+(ε+p)δ(guμ)μδ(guμn)]\displaystyle\frac{1}{T}\bigg{[}\sqrt{-g}u^{\mu}\delta\varepsilon+(\varepsilon+p)\delta\Big{(}\sqrt{-g}u^{\mu}\Big{)}-\mu\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}\bigg{]} (18)
=\displaystyle= 1Tδ(guμε)+pTδ(guμ)μT(guμn).\displaystyle\frac{1}{T}\delta\Big{(}\sqrt{-g}u^{\mu}\varepsilon\Big{)}+\frac{p}{T}\delta\Big{(}\sqrt{-g}u^{\mu}\Big{)}-\frac{\mu}{T}\Big{(}\sqrt{-g}u^{\mu}n\Big{)}. (19)

Decomposing the variation by the Leibniz rule,

δ(guμs)=μTδ(guμn)+1T[uμδ(gε)+gεδuμ+p(gδuμ+uμδg)].\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}=-\frac{\mu}{T}\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{1}{T}\bigg{[}u^{\mu}\delta\Big{(}\sqrt{-g}\varepsilon\Big{)}+\sqrt{-g}\varepsilon\delta u^{\mu}+p\Big{(}\sqrt{-g}\delta u^{\mu}+u^{\mu}\delta\sqrt{-g}\Big{)}\bigg{]}. (20)

The relations among the variations of uμu^{\mu}, g\sqrt{-g}, and gμνg^{\mu\nu} are required. Varying the normalization condition (5),

uμδuμ\displaystyle u_{\mu}\delta u^{\mu} =\displaystyle= 12uμuνδgμν\displaystyle-\frac{1}{2}u^{\mu}u^{\nu}\delta g_{\mu\nu} (21)
=\displaystyle= 12uμuνδgμν,\displaystyle\frac{1}{2}u_{\mu}u_{\nu}\delta g^{\mu\nu}, (22)

where we use the relation gμρgρν=δνμg^{\mu\rho}g_{\rho\nu}=\delta^{\mu}_{\nu}. Therefore, the variations of uμu^{\mu} can be written in the form

δuμ=(12uρuσδgρσ)uμ+(uμuν+δνμ)δuν.\displaystyle\delta u^{\mu}=-\Big{(}\frac{1}{2}u_{\rho}u_{\sigma}\delta g^{\rho\sigma}\Big{)}u^{\mu}+\big{(}u^{\mu}u_{\nu}+\delta^{\mu}_{\nu}\big{)}\delta u^{\nu}. (23)

Notice that uμuν-u^{\mu}u_{\nu} is the projection operator on the direction parallel to uμu^{\mu}, and uμuν+δνμu^{\mu}u_{\nu}+\delta^{\mu}_{\nu} is that of the (d1)(d-1)-dimensional hypersurface orthogonal to uμu^{\mu}. The first term of the right hand side of Eq. (23) represents the variation through the change of the normalization condition, whereas the second term does that of the direction of dd-velocity uμu^{\mu}. As we are interested in the variation with the direction of dd-velocity uμu^{\mu} fixed, the second term of Eq. (23) is ignored, namely

δuμ=(12uρuσδgρσ)uμ.\displaystyle\delta u^{\mu}=-\Big{(}\frac{1}{2}u_{\rho}u_{\sigma}\delta g^{\rho\sigma}\Big{)}u^{\mu}. (24)

The variation of uμu_{\mu} is

δuμ\displaystyle\delta u_{\mu} =\displaystyle= δ(gμνuν)\displaystyle\delta\big{(}g_{\mu\nu}u^{\nu}\big{)} (25)
=\displaystyle= uρ(12uμuσ+gμσ)δgρσ.\displaystyle-u_{\rho}\Big{(}\frac{1}{2}u_{\mu}u_{\sigma}+g_{\mu\sigma}\Big{)}\delta g^{\rho\sigma}. (26)

The variation of the projection operator uμuν-u_{\mu}u^{\nu} is

δ(uμuν)=uνuρ(uμuσ+gμσ)δgρσ.\displaystyle\delta\big{(}-u_{\mu}u^{\nu}\big{)}=u^{\nu}u_{\rho}\big{(}u_{\mu}u_{\sigma}+g_{\mu\sigma}\big{)}\delta g^{\rho\sigma}. (27)

Substituting Eq. (24) and the formula [1]

δg=12ggμνδgμν,\displaystyle\delta\sqrt{-g}=-\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu}, (28)

into Eq. (20), one obtains the following variational equation:

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)+uμT{δ(gε)12g[εuρuσ+p(uρuσ+gρσ)]δgρσ},\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{T}\bigg{\{}\delta\Big{(}\sqrt{-g}\varepsilon\Big{)}-\frac{1}{2}\sqrt{-g}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\bigg{\}},

where the quantity λ\lambda is introduced by

λ:=μT.\displaystyle\lambda:=\frac{\mu}{T}. (30)

3 The Euler-Lagrange operator

In this work, we deal with the variations of quantities which contain arbitrarily high order derivatives of fields, so that the higher-order Euler-Lagrange procedures often appear in the following calculations. In this section, we define the Euler-Lagrange operator 𝒟fEL\,{}^{\rm EL}\!\mathcal{D}_{f} and present some formulae.

3.1 Definition

Consider the variation of a quantity AA that depends on arbitrarily high order derivatives of fundamental fields ff. Using the Leibniz’s rule of the partial derivative μ\partial_{\mu} and the commutative relation δμ=μδ\delta\partial_{\mu}=\partial_{\mu}\delta, the first-order variation of a function AA is expanded in the following form:

δA\displaystyle\delta A =\displaystyle= j=0A(μ1μjf)δμ1μjf\displaystyle\sum_{j=0}^{\infty}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f (33)
=\displaystyle= j=0[μ1(A(μ1μjf)δμ2μjf)μ1A(μ1μjf)δμ2μjf]\displaystyle\sum_{j=0}^{\infty}\Bigg{[}\partial_{\mu_{1}}\bigg{(}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{2}}\cdots\partial_{\mu_{j}}f\bigg{)}-\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{2}}\cdots\partial_{\mu_{j}}f\Bigg{]}
=\displaystyle= j=0[μ1(A(μ1μjf)δμ2μjf)μ2(μ1A(μ1μjf)δμ3μjf)\displaystyle\sum_{j=0}^{\infty}\Bigg{[}\partial_{\mu_{1}}\bigg{(}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{2}}\cdots\partial_{\mu_{j}}f\bigg{)}-\partial_{\mu_{2}}\bigg{(}\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{3}}\cdots\partial_{\mu_{j}}f\bigg{)}
+μ2μ1A(μ1μjf)δμ3μjf]\displaystyle+\partial_{\mu_{2}}\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{3}}\cdots\partial_{\mu_{j}}f\Bigg{]}
=\displaystyle= \displaystyle\cdots
=\displaystyle= j=0[i=0j1μi+1((1)iμiμ1A(μ1μi+1μjf)δμi+2μjf)\displaystyle\sum_{j=0}^{\infty}\Bigg{[}\sum_{i=0}^{j-1}\partial_{\mu_{i+1}}\bigg{(}(-1)^{i}\partial_{\mu_{i}}\cdots\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{i+1}}\cdots\partial_{\mu_{j}}f)}\delta\partial_{\mu_{i+2}}\cdots\partial_{\mu_{j}}f\bigg{)}
+(1)jμjμ1A(μ1μjf)δf].\displaystyle+(-1)^{j}\partial_{\mu_{j}}\cdots\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta f\Bigg{]}.

Notice that in variational calculation, the quantities μ1μjf\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f are regarded as independent quantities each other, after that those quantities are identified. Therefore, there are ambiguities in the partial derivatives in terms of μ1μjf\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f. In this work, those ambiguities are removed so that all the (anti-)symmetries in the arguments are inherited by the partial derivatives, for example

A(μ1μjf)=A(μP(1)μP(j)f),\displaystyle\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}=\frac{\partial A}{\partial(\partial_{\mu_{P(1)}}\cdots\partial_{\mu_{P(j)}}f)}, (34)

where P(i)P(i) is a permutation of ii.

Introducing a subscript kk by

j=i+k+1,\displaystyle j=i+k+1, (35)

the variation of AA is written in the following form

δA\displaystyle\delta A =\displaystyle= k=0i=0μi+1((1)iμiμ1A(μ1μi+1μi+k+1f)δμi+2μi+k+1f)\displaystyle\sum_{k=0}^{\infty}\sum_{i=0}^{\infty}\partial_{\mu_{i+1}}\bigg{(}(-1)^{i}\partial_{\mu_{i}}\cdots\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{i+1}}\cdots\partial_{\mu_{i+k+1}}f)}\delta\partial_{\mu_{i+2}}\cdots\partial_{\mu_{i+k+1}}f\bigg{)} (36)
+j=0(1)jμjμ1A(μ1μjf)δf.\displaystyle+\sum_{j=0}^{\infty}(-1)^{j}\partial_{\mu_{j}}\cdots\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}\delta f.

Defining the Euler-Lagrange operator 𝒟fEL\,{}^{\rm EL}\!\mathcal{D}_{f} by

𝒟fELA:=j=0(1)jμjμ1A(μ1μjf),\,{}^{\rm EL}\!\mathcal{D}_{f}A:=\sum_{j=0}^{\infty}(-1)^{j}\partial_{\mu_{j}}\cdots\partial_{\mu_{1}}\frac{\partial A}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}f)}, (37)

the variation of AA can be written as

δA=EL𝒟fAδf+μ(k=0𝒟μμ1μkfELAδμ1μkf).\displaystyle\delta A=\,^{\rm EL}\!\mathcal{D}_{f}A\cdot\delta f+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}. (38)

We call 𝒟fELA\,{}^{\rm EL}\!\mathcal{D}_{f}A the Euler-Lagrange “derivative” 333The Euler-Lagrange derivative 𝒟fEL\,{}^{\rm EL}\!\mathcal{D}_{f} does not satisfy the Leibniz’s rule. of AA with respect to ff.

The commutative relation δ\delta and μ\partial_{\mu} derives some formulae. From Eq. (33) and (38), the variation of μA\partial_{\mu}A and the divergence of δAμ\delta A^{\mu} are written in the following forms respectively:

δμAμ=EL𝒟fμAμδf+ρ(k=0𝒟ρμ1μkfELμAμδμ1μkf),\displaystyle\delta\partial_{\mu}A^{\mu}=\,^{\rm EL}\!\mathcal{D}_{f}\partial_{\mu}A^{\mu}\cdot\delta f+\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\partial_{\mu}A^{\mu}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}, (39)

and

δμAμ=ρδAρ=ρ(k=0Aρ(μ1μkf)δμ1μkf).\displaystyle\delta\partial_{\mu}A^{\mu}=\partial_{\rho}\delta A^{\rho}=\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\frac{\partial A^{\rho}}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f)}\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}. (40)

Comparing the two representations, one obtains following two formulae:

𝒟fELμAμ\,{}^{\rm EL}\!\mathcal{D}_{f}\partial_{\mu}A^{\mu} =\displaystyle= 0,\displaystyle 0, (41)
𝒟ρμ1μkfELμAμ\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\partial_{\mu}A^{\mu} =\displaystyle= Aρ(μ1μkf).\displaystyle\frac{\partial A^{\rho}}{\partial(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f)}. (42)

When the variable ff is a function of hh that does not depend on the derivatives of hh, namely f=f(h)f=f(h),

δA\displaystyle\delta A =\displaystyle= 𝒟fELAδf+μ(k=0𝒟μμ1μkfELAδμ1μkf)\,{}^{\rm EL}\!\mathcal{D}_{f}A\cdot\delta f+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)} (43)
=\displaystyle= 𝒟fELAf,hδh+μ[k=0𝒟μμ1μkfELAμ1μk(f,hδh)]\,{}^{\rm EL}\!\mathcal{D}_{f}A\cdot f_{,h}\delta h+\partial_{\mu}\bigg{[}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\big{(}f_{,h}\delta h\big{)}\bigg{]} (44)
=\displaystyle= 𝒟fELAf,hδh+μ[k=0j=0k(kj)EL𝒟μμ1μkfAμj+1μkf,hδμ1μjh].\,{}^{\rm EL}\!\mathcal{D}_{f}A\cdot f_{,h}\delta h+\partial_{\mu}\bigg{[}\sum_{k=0}^{\infty}\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}f_{,h}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}h\bigg{]}. (47)

Comparing Eq. (LABEL:varyAh) with

δA=EL𝒟hAδh+μ(j=0𝒟μμ1μjhELAδμ1μjh),\displaystyle\delta A=\,^{\rm EL}\!\mathcal{D}_{h}A\cdot\delta h+\partial_{\mu}\bigg{(}\sum_{j=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}h}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}h\bigg{)}, (49)

one obtains the transformation formulae for change of variables:

𝒟hELA\,{}^{\rm EL}\!\mathcal{D}_{h}A =\displaystyle= f,hEL𝒟fA\displaystyle f_{,h}\,^{\rm EL}\!\mathcal{D}_{f}A (50)
𝒟μ1μihELA\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu_{1}}\cdots\partial_{\mu_{i}}h}A =\displaystyle= k=i(ki)(μi+1μkf,h)EL𝒟μ1μkfA(i1).\displaystyle\sum_{k=i}^{\infty}\bigg{(}\begin{array}[]{c}k\\ i\end{array}\bigg{)}\big{(}\partial_{\mu_{i+1}}\cdots\partial_{\mu_{k}}f_{,h}\big{)}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\ \ \ \ \ \ (i\geq 1). (53)

More generally, when the variable ff is a function of hh, μh\partial_{\mu}h, and their higher derivatives, namely f=f(h,μh,)f=f(h,\partial_{\mu}h,\cdots), the variations of ff, hh, and their derivatives are related by

δf=fhδh+f(μh)δμh+.\displaystyle\delta f=\frac{\partial f}{\partial h}\delta h+\frac{\partial f}{\partial(\partial_{\mu}h)}\delta\partial_{\mu}h+\cdots. (54)

The variation of a quantity AA is rearranged as

δA\displaystyle\delta A =\displaystyle= Afδf+μ(k=0Aμμ1μkfμ1μkf)\displaystyle A_{f}\delta f+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}A_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)} (56)
=\displaystyle= [Affhμ(Aff(μh))+]δh\displaystyle\bigg{[}A_{f}\frac{\partial f}{\partial h}-\partial_{\mu}\bigg{(}A_{f}\frac{\partial f}{\partial(\partial_{\mu}h)}\bigg{)}+\cdots\bigg{]}\delta h
+μ[k=0Aμμ1μkfμ1μkf+Aff(μh)δh+]\displaystyle+\partial_{\mu}\bigg{[}\sum_{k=0}^{\infty}A_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f+A_{f}\frac{\partial f}{\partial(\partial_{\mu}h)}\delta h+\cdots\bigg{]}
=:\displaystyle=: Bhδh+μ(k=0Bμμ1μkhμ1μkh),\displaystyle B_{h}\delta h+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}B_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h\bigg{)}, (57)

where AfA_{f}, AμfA_{\partial_{\mu}f}, \cdots are arbitrary coefficients. In general, two quantities

μ(k=0Aμμ1μkfμ1μkf)\displaystyle\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}A_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)} (58)

and

μ(k=0Bμμ1μkhμ1μkh)\displaystyle\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}B_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h\bigg{)} (59)

are different. However, when the coefficient AfA_{f} vanishes, then BhB_{h} also vanishes and the above two coincide:

μ(k=0Aμμ1μkfμ1μkf)=μ(k=0Bμμ1μkhμ1μkh).\displaystyle\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}A_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}=\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}B_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h}\cdot\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}h\bigg{)}. (60)

3.2 The variation of gμνg^{\mu\nu} and uμu^{\mu}

Since the normalization condition of uμu^{\mu} depends on gμνg^{\mu\nu}, the variation of quantities that depend on uμu^{\mu} and gμνg^{\mu\nu} should be calculated carefully.

Using the relation (38), the variation of A=A[gμν,uμ]A=A[g^{\mu\nu},u^{\mu}] is arranged as

δA\displaystyle\delta A =\displaystyle= 𝒟gμνELAδgμν+EL𝒟uμAδuμ+ρ(k=0𝒟ρμ1μkfELAδμ1μkf)\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}A\cdot\delta g^{\mu\nu}+\,^{\rm EL}\!\mathcal{D}_{u^{\mu}}A\cdot\delta u^{\mu}+\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}
=\displaystyle= (EL𝒟gμνA12uμuνuρ𝒟uρELA)δgμν+ρ(k=0𝒟ρμ1μkfELAδμ1μkf).\displaystyle\Big{(}\,^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}A-\frac{1}{2}u_{\mu}u_{\nu}u^{\rho}\,{}^{\rm EL}\!\mathcal{D}_{u^{\rho}}A\Big{)}\cdot\delta g^{\mu\nu}+\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}.

Defining the new operator 𝒟¯gμνEL\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\mu\nu}} by

𝒟¯gμνEL:=EL𝒟gμν12uμuνuρ𝒟uρEL,\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\mu\nu}}:=\,^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}-\frac{1}{2}u_{\mu}u_{\nu}u^{\rho}\,{}^{\rm EL}\!\mathcal{D}_{u^{\rho}}, (63)

the variation of AA is written in the form

δA\displaystyle\delta A =\displaystyle= 𝒟¯gμνELAδgμν+ρ(k=0𝒟ρμ1μkfELAδμ1μkf).\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\mu\nu}}A\cdot\delta g^{\mu\nu}+\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}A\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}. (64)

4 Volume term

Let us consider the variation of the entropy current density in terms of fundamental fields f={gρσ,Aα,φ}f=\{g^{\rho\sigma},A_{\alpha},\varphi\} with the direction of the dd-velocity uμu^{\mu} fixed. To avoid unnecessary complexity, anti-symmetric second-order tensor BμνB_{\mu\nu} is removed, and including them is straightforward.

As seen in the last of section 2, the first-order variation of the entropy current density is

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)+uμT{δ(gε)12g[εuρuσ+p(uρuσ+gρσ)]δgρσ}.\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{T}\bigg{\{}\delta\Big{(}\sqrt{-g}\varepsilon\Big{)}-\frac{1}{2}\sqrt{-g}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\bigg{\}}.

If the second term of the right hand side of Eq. (LABEL:varyS2) becomes a (d1)(d-1)-dimensional total derivative of a quantity, namely

δ(gε)12g[εuρuσ+p(uρuσ+gρσ)]δgρσ=stationarya(a)\displaystyle\delta\Big{(}\sqrt{-g}\varepsilon\Big{)}-\frac{1}{2}\sqrt{-g}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\overset{\mathrm{stationary}}{=}\partial_{a}\Big{(}\cdots^{a}\Big{)} (66)

and the coefficients λ\lambda and uμ/Tu^{\mu}/T are constants in the stationary states

λ=stationaryconst.\displaystyle\lambda\overset{\mathrm{stationary}}{=}{\rm const.} (67)
uμT=stationaryconst.,\displaystyle\frac{u^{\mu}}{T}\overset{\mathrm{stationary}}{=}{\rm const.}, (68)

then the maximum entropy principle is satisfied at least in the first-order variation.

However, this set of the conditions (66) - (68) is not the only one for the maximum entropy principle because the coefficients uμ/Tu^{\mu}/T and λ\lambda are not necessarily constants. For example, dividing ε\varepsilon into two parts

ε=eηξ,\displaystyle\varepsilon=e^{-\eta}\xi, (69)

the variation of the entropy density (LABEL:varyS2) can be arranged as

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)+uμT{δ(geηξ)12geηeη[εuρuσ+p(uρuσ+gρσ)]δgρσ}\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{T}\bigg{\{}\delta\Big{(}\sqrt{-g}e^{-\eta}\xi\Big{)}-\frac{1}{2}\sqrt{-g}e^{-\eta}e^{\eta}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\bigg{\}}
=\displaystyle= λδ(guμn)+uμTeη{δ(gξ)gξδη12geη[εuρuσ+p(uρuσ+gρσ)]δgρσ}.\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{T}e^{-\eta}\bigg{\{}\delta\Big{(}\sqrt{-g}\xi\Big{)}-\sqrt{-g}\xi\delta\eta-\frac{1}{2}\sqrt{-g}e^{\eta}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\bigg{\}}.

By this expression, the conditions

δ(gξ)gξδη12geη[εuρuσ+p(uρuσ+gρσ)]δgρσ=stationarya(a)\displaystyle\delta\Big{(}\sqrt{-g}\xi\Big{)}-\sqrt{-g}\xi\delta\eta-\frac{1}{2}\sqrt{-g}e^{\eta}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\overset{\mathrm{stationary}}{=}\partial_{a}\Big{(}\cdots^{a}\Big{)} (72)

and

λ=stationaryconst.\displaystyle\lambda\overset{\mathrm{stationary}}{=}{\rm const.} (73)
uμTeη=stationaryconst.\displaystyle\frac{u^{\mu}}{T}e^{-\eta}\overset{\mathrm{stationary}}{=}{\rm const.} (74)

also make the maximum entropy principle be satisfied.

We regard the scalar field η\eta as a fundamental field, and every cases in which the field η\eta is not fundamental can be considered as a case with an extra constraint condition on ε\varepsilon.

4.1 From the maximum entropy principle to field equations

Let us deform gε\sqrt{-g}\varepsilon as

gε=eηuρuσ𝒟¯gρσELg,\displaystyle\sqrt{-g}\varepsilon=-e^{-\eta}u^{\rho}u^{\sigma}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}, (75)

where \mathcal{L} is an arbitrary function of the fundamental fields and uμu^{\mu}. If η\eta is not restricted to a fundamental field, this decomposition is possible for arbitrary ε\varepsilon, but not unique. Although in general the quantity η\eta is not a fundamental field, i.e., may be a function of the other fundamental fields, firstly we take η\eta for a independent fundamental field. The case in which η\eta is an general function can be obtained by imposing an extra constraint relation upon η\eta.

Using Eq. (LABEL:varyS2) and (75),

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}
uμ2Teη{2δ(uρuσ𝒟¯gρσELg)+2geηεδη+geη[εuρuσ+p(uρuσ+gρσ)]δgρσ}.\displaystyle-\frac{u^{\mu}}{2T}e^{-\eta}\bigg{\{}2\delta\Big{(}u^{\rho}u^{\sigma}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}\Big{)}+2\sqrt{-g}e^{\eta}\varepsilon\delta\eta+\sqrt{-g}e^{\eta}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}\bigg{\}}.

The Noether’s identity (LABEL:id3bar) for =\mathcal{F}=\mathcal{L} and f={gμν,Aμ,uμ,η,φ}f=\{g^{\mu\nu},A_{\mu},u^{\mu},\eta,\varphi\}, namely

2uρuν𝒟¯gρνELguνAνuμEL𝒟Aμgg\displaystyle 2u^{\rho}u^{\nu}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\nu}}\sqrt{-g}\mathcal{L}-u^{\nu}A_{\nu}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{L}-\sqrt{-g}\mathcal{L}
\displaystyle\equiv uμuνρΩνρμ[g]+k=0uμEL𝒟μμ1μkfguννμ1μkf.\displaystyle-u_{\mu}u^{\nu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{L}]+\sum_{k=0}^{\infty}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot u^{\nu}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f.

is useful for our calculation. The variation of Eq. (LABEL:id3barLag) is arranges in the form,

2δ(uρuσ𝒟¯gρσELg)\displaystyle 2\delta\Big{(}u^{\rho}u^{\sigma}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}\Big{)}
\displaystyle\equiv δ(g)+Aαδ(uαuβEL𝒟Aβg)+uαuβEL𝒟AβgδAα\displaystyle\delta\Big{(}\sqrt{-g}\mathcal{L}\Big{)}+A_{\alpha}\delta\Big{(}u^{\alpha}u_{\beta}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\Big{)}+u^{\alpha}u_{\beta}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\cdot\delta A_{\alpha}
δ(uμuνρΩνρμ[g])+k=0[δ(uμuν)EL𝒟μμ1μkfgνμ1μkf\displaystyle-\delta\Big{(}u_{\mu}u^{\nu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{L}]\Big{)}+\sum_{k=0}^{\infty}\bigg{[}\delta\big{(}u_{\mu}u^{\nu}\big{)}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f
+uμuνν(EL𝒟μμ1μkfgδμ1μkf)\displaystyle+u_{\mu}u^{\nu}\partial_{\nu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\Big{)}
+uμδEL𝒟μμ1μkfguννμ1μkfuμuννEL𝒟μμ1μkfgδμ1μkf].\displaystyle+u_{\mu}\delta\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot u^{\nu}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-u_{\mu}u^{\nu}\partial_{\nu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}.

Substituting Eq. (LABEL:varyDL) into Eq. (LABEL:varyS3), we obtain the following expression of the variation of the entropy current:

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)uμ2TeηAαδ(uαuβEL𝒟Aβg)\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}-\frac{u^{\mu}}{2T}e^{-\eta}A_{\alpha}\delta\Big{(}u^{\alpha}u_{\beta}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\Big{)}
uμ2Teη{δ(g)+2geηεδη+geη[εuρuσ+p(uρuσ+gρσ)]δgρσ\displaystyle-\frac{u^{\mu}}{2T}e^{-\eta}\Bigg{\{}\delta\Big{(}\sqrt{-g}\mathcal{L}\Big{)}+2\sqrt{-g}e^{\eta}\varepsilon\delta\eta+\sqrt{-g}e^{\eta}\Big{[}\varepsilon u_{\rho}u_{\sigma}+p\big{(}u_{\rho}u_{\sigma}+g_{\rho\sigma}\big{)}\Big{]}\delta g^{\rho\sigma}
+uαuβEL𝒟AβgδAαδ(uαuβρΩβρα[g])\displaystyle+u^{\alpha}u_{\beta}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\cdot\delta A_{\alpha}-\delta\Big{(}u_{\alpha}u^{\beta}\partial_{\rho}\Omega^{\rho\alpha}_{\ \ \ \beta}[\sqrt{-g}\mathcal{L}]\Big{)}
+uρuσσ(k=0𝒟ρμ1μkfELgδμ1μkf)\displaystyle+u_{\rho}u^{\sigma}\partial_{\sigma}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}
+k=0[δ(uρuσ)EL𝒟ρμ1μkfgσμ1μkf\displaystyle+\sum_{k=0}^{\infty}\bigg{[}\delta\big{(}u_{\rho}u^{\sigma}\big{)}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\partial_{\sigma}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f
+uρδEL𝒟ρμ1μkfguσσμ1μkfuρuσσEL𝒟ρμ1μkfgδμ1μkf]}\displaystyle+u_{\rho}\delta\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot u^{\sigma}\partial_{\sigma}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-u_{\rho}u^{\sigma}\partial_{\sigma}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}\Bigg{\}}

Expanding δ(g)\delta(\sqrt{-g}\mathcal{L}) as

δ(g)\displaystyle\delta\Big{(}\sqrt{-g}\mathcal{L}\Big{)} (80)
=\displaystyle= 𝒟¯gρσELgδgρσ+EL𝒟AαgδAα+EL𝒟ηgδη+EL𝒟φgδφ\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}\cdot\delta g^{\rho\sigma}+\,^{\rm EL}\!\mathcal{D}_{A_{\alpha}}\sqrt{-g}\mathcal{L}\cdot\delta A_{\alpha}+\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\cdot\delta\eta+\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}\cdot\delta\varphi
+ρ(k=0𝒟ρμ1μkfELgδμ1μkf),\displaystyle+\partial_{\rho}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)},

then Eq. (LABEL:varyS4) is

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)uμ2TeηAαδ(uαuβEL𝒟Aβg)\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}-\frac{u^{\mu}}{2T}e^{-\eta}A_{\alpha}\delta\Big{(}u^{\alpha}u_{\beta}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\Big{)}
uμ2Teη{(EL𝒟¯gρσg+geη[εuρuσ+p(uρuσ+gρσ)])δgρσ\displaystyle-\frac{u^{\mu}}{2T}e^{-\eta}\Bigg{\{}\Big{(}\,^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}+\sqrt{-g}e^{\eta}\big{[}\varepsilon u_{\rho}u_{\sigma}+p(u_{\rho}u_{\sigma}+g_{\rho\sigma})\big{]}\Big{)}\delta g^{\rho\sigma}
+(EL𝒟ηg+2geηε)δη+(δβα+uαuβ)EL𝒟AβgδAα+EL𝒟φgδφ\displaystyle+\Big{(}\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}+2\sqrt{-g}e^{\eta}\varepsilon\Big{)}\delta\eta+\big{(}\delta^{\alpha}_{\beta}+u^{\alpha}u_{\beta}\big{)}\,^{\rm EL}\!\mathcal{D}_{A_{\beta}}\sqrt{-g}\mathcal{L}\cdot\delta A_{\alpha}+\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}\cdot\delta\varphi
δ(uαuβρΩβρα[g])+(δρσ+uσuρ)σ(k=0𝒟ρμ1μkfELgδμ1μkf)\displaystyle-\delta\Big{(}u_{\alpha}u^{\beta}\partial_{\rho}\Omega^{\rho\alpha}_{\ \ \ \beta}[\sqrt{-g}\mathcal{L}]\Big{)}+\big{(}\delta^{\sigma}_{\rho}+u^{\sigma}u_{\rho}\big{)}\partial_{\sigma}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}
+k=0[δ(uρuσ)EL𝒟ρμ1μkfgσμ1μkf\displaystyle+\sum_{k=0}^{\infty}\bigg{[}\delta\big{(}u_{\rho}u^{\sigma}\big{)}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\partial_{\sigma}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f
+uρδEL𝒟ρμ1μkfguσσμ1μkfuρuσσEL𝒟ρμ1μkfgδμ1μkf]}.\displaystyle+u_{\rho}\delta\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot u^{\sigma}\partial_{\sigma}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-u_{\rho}u^{\sigma}\partial_{\sigma}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}\Bigg{\}}.

This is the most general expression of the first-order variation of the entropy current.

Here, we introduce the “co-moving coordinate” in which the x0x^{0}-axis is parallel to the dd-velocity uμu^{\mu} so that ua=0u^{a}=0, u0u0=1u^{0}u_{0}=-1, and 0X\partial_{0}X for an arbitrary quantity XX in a stationary state. Therefore, in this coordinate, the last two lines of Eq. (LABEL:varySgeneral) vanish in a stationary state:

δ(guμs)\displaystyle\delta\Big{(}\sqrt{-g}u^{\mu}s\Big{)}
=\displaystyle= λδ(guμn)+uμ2TeηA0δ(EL𝒟A0g)\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{2T}e^{-\eta}A_{0}\delta\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{0}}\sqrt{-g}\mathcal{L}\Big{)}
uμ2Teη{(EL𝒟¯gρσg+geη[εuρuσ+p(uρuσ+gρσ)])δgρσ\displaystyle-\frac{u^{\mu}}{2T}e^{-\eta}\Bigg{\{}\Big{(}\,^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}+\sqrt{-g}e^{\eta}\big{[}\varepsilon u_{\rho}u_{\sigma}+p(u_{\rho}u_{\sigma}+g_{\rho\sigma})\big{]}\Big{)}\delta g^{\rho\sigma}
+(EL𝒟ηg+2geηε)δη+EL𝒟AagδAa+EL𝒟φgδφ\displaystyle+\Big{(}\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}+2\sqrt{-g}e^{\eta}\varepsilon\Big{)}\delta\eta+\,^{\rm EL}\!\mathcal{D}_{A_{a}}\sqrt{-g}\mathcal{L}\cdot\delta A_{a}+\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}\cdot\delta\varphi
+δ(ρΩ 0ρ0[g])+a(k=0𝒟aμ1μkfELgδμ1μkf)\displaystyle+\delta\Big{(}\partial_{\rho}\Omega^{\rho 0}_{\ \ \ 0}[\sqrt{-g}\mathcal{L}]\Big{)}+\partial_{a}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}
k=0[δEL𝒟0μ1μkfg0μ1μkf0EL𝒟0μ1μkfgδμ1μkf]}\displaystyle-\sum_{k=0}^{\infty}\bigg{[}\delta\,^{\rm EL}\!\mathcal{D}_{\partial_{0}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\partial_{0}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-\partial_{0}\,^{\rm EL}\!\mathcal{D}_{\partial_{0}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}\Bigg{\}}
=stationary\displaystyle\overset{\mathrm{stationary}}{=} λδ(guμn)+uμ2TeηA0δ(EL𝒟A0g)\displaystyle-\lambda\delta\Big{(}\sqrt{-g}u^{\mu}n\Big{)}+\frac{u^{\mu}}{2T}e^{-\eta}A_{0}\delta\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{0}}\sqrt{-g}\mathcal{L}\Big{)}
uμ2Teη{(EL𝒟¯gρσg+geη[εuρuσ+p(uρuσ+gρσ)])δgρσ\displaystyle-\frac{u^{\mu}}{2T}e^{-\eta}\Bigg{\{}\Big{(}\,^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}+\sqrt{-g}e^{\eta}\big{[}\varepsilon u_{\rho}u_{\sigma}+p(u_{\rho}u_{\sigma}+g_{\rho\sigma})\big{]}\Big{)}\delta g^{\rho\sigma}
+(EL𝒟ηg+2geηε)δη+EL𝒟AagδAa+EL𝒟φgδφ\displaystyle+\Big{(}\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}+2\sqrt{-g}e^{\eta}\varepsilon\Big{)}\delta\eta+\,^{\rm EL}\!\mathcal{D}_{A_{a}}\sqrt{-g}\mathcal{L}\cdot\delta A_{a}+\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}\cdot\delta\varphi
+δ(ρΩ 0ρ0[g])+a(k=0𝒟aμ1μkfELgδμ1μkf).\displaystyle+\delta\Big{(}\partial_{\rho}\Omega^{\rho 0}_{\ \ \ 0}[\sqrt{-g}\mathcal{L}]\Big{)}+\partial_{a}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}.

If the field equations

𝒟¯gρσELg\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L} =stationary\displaystyle\overset{\mathrm{stationary}}{=} geη[εuρuσ+p(uρuσ+gρσ)]\displaystyle-\sqrt{-g}e^{\eta}\big{[}\varepsilon u_{\rho}u_{\sigma}+p(u_{\rho}u_{\sigma}+g_{\rho\sigma})\big{]} (84)
𝒟ηELg\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L} =stationary\displaystyle\overset{\mathrm{stationary}}{=} 2geηε\displaystyle-2\sqrt{-g}e^{\eta}\varepsilon (85)
𝒟AρELg\,{}^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L} =stationary\displaystyle\overset{\mathrm{stationary}}{=} guρqn\displaystyle-\sqrt{-g}u^{\rho}qn (86)
𝒟φELg\,{}^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L} =stationary\displaystyle\overset{\mathrm{stationary}}{=} 0,\displaystyle 0, (87)

and the “consistency conditions”

λ+u02TeηqA0=stationaryconst.\displaystyle\lambda+\frac{u^{0}}{2T}e^{-\eta}qA_{0}\overset{\mathrm{stationary}}{=}{\rm const.} (88)
u0Teη=stationaryconst.\displaystyle\frac{u^{0}}{T}e^{-\eta}\overset{\mathrm{stationary}}{=}{\rm const.} (89)

hold for any stationary states, any variation of the fundamental fields with the conserved charges fixed and appropriate boundary conditions held does not change the total entropy, i.e.,

δS\displaystyle\delta S =stationary\displaystyle\overset{\mathrm{stationary}}{=} (λ+u02TeηqA0)δN+u02TeηδMNoether\displaystyle-\bigg{(}\lambda+\frac{u^{0}}{2T}e^{-\eta}qA_{0}\bigg{)}\delta N+\frac{u^{0}}{2T}e^{-\eta}\delta M_{\rm Noether}
u02Teη𝒱(dd2x)0ak=0𝒟aμ1μkfELgδμ1μkf,\displaystyle-\frac{u^{0}}{2T}e^{-\eta}\oint_{\partial\mathcal{V}}({\mathrm{d}}^{d-2}x)_{0a}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{L}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f,

where (dd2x)μν:=1(d2)!dxμ1dxμd2ϵμνμ1μd2({\mathrm{d}}^{d-2}x)_{\mu\nu}:=\frac{1}{(d-2)!}{\mathrm{d}}x^{\mu_{1}}\wedge\cdots\wedge{\mathrm{d}}x^{\mu_{d-2}}\epsilon_{\mu\nu\mu_{1}\cdots\mu_{d-2}}. From only the maximum entropy principle, one cannot know what equations hold in non-stationary states. In section 4.2, one finds that if Eqs. (84) - (87) hold in not only stationary but also non-stationary states, the entropy current density is conserved, i.e., entropy production is forbidden. Therefore, such a fluid is called a perfect fluid.

It should be noticed that the field equations (84) - (87) are compatible with Eq. (75), i.e., contracting with uρuσ-u^{\rho}u^{\sigma}, Eq. (84) is

uρuσ𝒟¯gρσELg=stationarygeηε,\displaystyle-u^{\rho}u^{\sigma}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L}\overset{\mathrm{stationary}}{=}\sqrt{-g}e^{\eta}\varepsilon, (91)

that coincides with Eq. (75) in a stationary state. This is a nontrivial feature of ε\varepsilon that is described by Eq. (75) with a fundamental scalar field η\eta.

The current density 𝒟AμELg=guμqn\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{L}=-\sqrt{-g}u^{\mu}qn should also conserve, i.e.,

μ(EL𝒟Aμg)=0.\displaystyle\partial_{\mu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{L}\Big{)}=0. (92)

If one imposes the U(1)U(1) gauge symmetry on the Lagrangian, the identity (383) shows that the conservation law (92) requires the field η\eta to be electrically neutral (See appendix B.3).

4.2 Consistency conditions

In this subsection, we see that the field equations (84) - (87) are consistent with the relations which we have assumed above:

μ(uμs)=0,\displaystyle\nabla_{\mu}\big{(}u^{\mu}s\big{)}=0, (93)
μ(uμn)=0,\displaystyle\nabla_{\mu}\big{(}u^{\mu}n\big{)}=0, (94)
uμTeη=stationaryconst.in𝒱,\displaystyle\frac{u^{\mu}}{T}e^{-\eta}\overset{\mathrm{stationary}}{=}{\rm const.\ in\ \mathcal{V}}, (95)
λδνμ+q2TeηuμAν=stationaryconst.in𝒱,\displaystyle\lambda\delta^{\mu}_{\nu}+\frac{q}{2T}e^{-\eta}u^{\mu}A_{\nu}\overset{\mathrm{stationary}}{=}{\rm const.\ in\ \mathcal{V}}, (96)

where μ\nabla_{\mu} is the covariant derivative compatible with gμνg_{\mu\nu}. In this subsection, we use μ\nabla_{\mu} rather than μ\partial_{\mu} for simpler calculation. We call Eqs. (93) - (96) consistency conditions.

From Noether’s theorem (LABEL:id1arrange) with replacing \mathcal{F} into \mathcal{L}, the following identity holds:

2gνE¯μν[g]\displaystyle 2\sqrt{-g}\nabla_{\nu}\bar{E}^{\nu}_{\mu}[\sqrt{-g}\mathcal{L}]
\displaystyle\equiv Aμν(EL𝒟Aνg)FμνEL𝒟Aνg\displaystyle A_{\mu}\partial_{\nu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}\Big{)}-F_{\mu\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}
ν[uν(uμuρ+δμρ)EL𝒟uρg][μuρ12(μgαβ)uαuβuρ]EL𝒟uρg\displaystyle-\partial_{\nu}\Big{[}u^{\nu}\big{(}u_{\mu}u^{\rho}+\delta^{\rho}_{\mu}\big{)}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{L}\Big{]}-\bigg{[}\partial_{\mu}u^{\rho}-\frac{1}{2}\big{(}\partial_{\mu}g_{\alpha\beta}\big{)}u^{\alpha}u^{\beta}u^{\rho}\bigg{]}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{L}
(μφ)EL𝒟φg(μη)EL𝒟ηg,\displaystyle-(\partial_{\mu}\varphi)\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}-(\partial_{\mu}\eta)\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L},

where

Eμν[g]\displaystyle E_{\mu\nu}[\sqrt{-g}\mathcal{L}] :=\displaystyle:= 1gEL𝒟gμνg\displaystyle\frac{1}{\sqrt{-g}}\,^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{L} (98)
E¯μν[g]\displaystyle\bar{E}_{\mu\nu}[\sqrt{-g}\mathcal{L}] :=\displaystyle:= 1gEL𝒟¯gμνg\displaystyle\frac{1}{\sqrt{-g}}\,^{\rm EL}\!\bar{\mathcal{D}}_{g^{\mu\nu}}\sqrt{-g}\mathcal{L} (99)
=\displaystyle= Eμν[g]12guμuνuρ𝒟uρELg\displaystyle E_{\mu\nu}[\sqrt{-g}\mathcal{L}]-\frac{1}{2\sqrt{-g}}u_{\mu}u_{\nu}u^{\rho}\,{}^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{L} (100)
Fμν\displaystyle F_{\mu\nu} :=\displaystyle:= μAννAμ.\displaystyle\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}. (101)

Notice that the third line of Eq. (4.2) vanishes in a stationary state. It is easier to check by direct calculation in a co-moving coordinate, in which ua=0u^{a}=0, u0=(g00)1/2u^{0}=(-g_{00})^{-1/2}, and 0X=0\partial_{0}X=0 for an arbitrary quantity XX. Since the third line of Eq. (4.2) is a covariant vector density, denoted by gVμ-\sqrt{-g}V_{\mu}, the following equation holds in any coordinates:

gVμ\displaystyle\sqrt{-g}V_{\mu} :=\displaystyle:= ν[uν(uμuρ+δμρ)EL𝒟uρg]+[μuρ12(μgαβ)uαuβuρ]EL𝒟uρg\displaystyle\partial_{\nu}\Big{[}u^{\nu}\big{(}u_{\mu}u^{\rho}+\delta^{\rho}_{\mu}\big{)}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{L}\Big{]}+\bigg{[}\partial_{\mu}u^{\rho}-\frac{1}{2}\big{(}\partial_{\mu}g_{\alpha\beta}\big{)}u^{\alpha}u^{\beta}u^{\rho}\bigg{]}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{L}
(102)
=stationary\displaystyle\overset{\mathrm{stationary}}{=} 0.\displaystyle 0. (103)

In more detail, one can check as well that the parallel part to uμu_{\mu} vanishes in an arbitrary state:

guμVμ=0.\displaystyle\sqrt{-g}u^{\mu}V_{\mu}=0. (104)

Substituting Eqs. (84), (87), and (4.2) into Eq. (4.2),

gν{eη[εuνuμ+p(uνuμ+δμν)]}=12FμνEL𝒟Aνg+12(μη)EL𝒟ηg+12gVμ.\displaystyle\sqrt{-g}\nabla_{\nu}\Big{\{}e^{\eta}\Big{[}\varepsilon u^{\nu}u_{\mu}+p(u^{\nu}u_{\mu}+\delta^{\nu}_{\mu})\Big{]}\Big{\}}=\frac{1}{2}F_{\mu\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}+\frac{1}{2}(\partial_{\mu}\eta)\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}+\frac{1}{2}\sqrt{-g}V_{\mu}.

Transposing all the terms in the left hand side which contain η\eta to the right hand side, and separating them into parallel and orthogonal parts to uμu_{\mu}, Eq. (4.2) is arranged as follows:

gν[εuνuμ+p(uνuμ+δμν)]\displaystyle\sqrt{-g}\nabla_{\nu}\Big{[}\varepsilon u^{\nu}u_{\mu}+p\big{(}u^{\nu}u_{\mu}+\delta^{\nu}_{\mu}\big{)}\Big{]}
=\displaystyle= g(νη)[εuνuμ+p(uνuμ+δμν)]+12(μη)eη𝒟ηELg+12geηVμ\displaystyle-\sqrt{-g}(\partial_{\nu}\eta)\Big{[}\varepsilon u^{\nu}u_{\mu}+p\big{(}u^{\nu}u_{\mu}+\delta^{\nu}_{\mu}\big{)}\Big{]}+\frac{1}{2}(\partial_{\mu}\eta)e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}+\frac{1}{2}\sqrt{-g}e^{-\eta}V_{\mu}
+12eηFμνEL𝒟Aνg\displaystyle+\frac{1}{2}e^{-\eta}F_{\mu\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}
=\displaystyle= uμuν(gε+12eη𝒟ηELg)νη\displaystyle-u_{\mu}u^{\nu}\Big{(}\sqrt{-g}\varepsilon+\frac{1}{2}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta
(δμν+uνuμ)[(gp12eη𝒟ηELg)νη12geηVν]\displaystyle-\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\bigg{[}\Big{(}\sqrt{-g}p-\frac{1}{2}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta-\frac{1}{2}\sqrt{-g}e^{-\eta}V_{\nu}\bigg{]}
+12eηFμνEL𝒟Aνg\displaystyle+\frac{1}{2}e^{-\eta}F_{\mu\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}
=\displaystyle= uμuν(gε+12eη𝒟ηELg)νη\displaystyle-u_{\mu}u^{\nu}\Big{(}\sqrt{-g}\varepsilon+\frac{1}{2}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta
(δμν+uνuμ)[(gp12eη𝒟ηELg)νη12geηVν12eηFνρEL𝒟Aρg],\displaystyle-\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\bigg{[}\Big{(}\sqrt{-g}p-\frac{1}{2}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta-\frac{1}{2}\sqrt{-g}e^{-\eta}V_{\nu}-\frac{1}{2}e^{-\eta}F_{\nu\rho}\,^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L}\bigg{]},

where we use the properties Eq. (104) and 𝒟AρELguρ\,{}^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L}\propto u^{\rho}. Similarly, the first line of Eq. (4.2) is also separated into two parts:

ν[εuνuμ+p(uνuμ+δμν)]\displaystyle\nabla_{\nu}\Big{[}\varepsilon u^{\nu}u_{\mu}+p\big{(}u^{\nu}u_{\mu}+\delta^{\nu}_{\mu}\big{)}\Big{]} (111)
=\displaystyle= [uνν(ε+p)+(ε+p)νuν]uμ+(ε+p)uννuμ+μp\displaystyle\Big{[}u^{\nu}\partial_{\nu}(\varepsilon+p)+(\varepsilon+p)\nabla_{\nu}u^{\nu}\Big{]}u_{\mu}+(\varepsilon+p)u^{\nu}\nabla_{\nu}u_{\mu}+\partial_{\mu}p
=\displaystyle= [uννε+(ε+p)νuν]uμ\displaystyle\Big{[}u^{\nu}\partial_{\nu}\varepsilon+(\varepsilon+p)\nabla_{\nu}u^{\nu}\Big{]}u_{\mu}
+(ε+p)uννuμ+(δμν+uνuμ)νp\displaystyle+(\varepsilon+p)u^{\nu}\nabla_{\nu}u_{\mu}+\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\partial_{\nu}p
=\displaystyle= [uννε+(ε+p)νuν]uμ\displaystyle\Big{[}u^{\nu}\partial_{\nu}\varepsilon+(\varepsilon+p)\nabla_{\nu}u^{\nu}\Big{]}u_{\mu}
+(δμν+uνuμ)[(ε+p)uρρuν+νp].\displaystyle+\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\Big{[}(\varepsilon+p)u^{\rho}\nabla_{\rho}u_{\nu}+\partial_{\nu}p\Big{]}.

The following calculation shows that the first term of the right hand side (111) is related to the conservation law of the entropy and particle number:

Tν(uνs)\displaystyle T\nabla_{\nu}\big{(}u^{\nu}s\big{)} =\displaystyle= Tuννs+Tsνuν\displaystyle Tu^{\nu}\partial_{\nu}s+Ts\nabla_{\nu}u^{\nu} (112)
=\displaystyle= Tuννε+pμnT+(ε+pμn)νuν\displaystyle Tu^{\nu}\partial_{\nu}\frac{\varepsilon+p-\mu n}{T}+(\varepsilon+p-\mu n)\nabla_{\nu}u^{\nu}
=\displaystyle= uνν(ε+pμn)(ε+pμn)uννTT+(ε+pμn)νuν\displaystyle u^{\nu}\partial_{\nu}(\varepsilon+p-\mu n)-(\varepsilon+p-\mu n)\frac{u^{\nu}\partial_{\nu}T}{T}+(\varepsilon+p-\mu n)\nabla_{\nu}u^{\nu}
=\displaystyle= uννε+(ε+p)νuν+uν(νpsνTnνμ)μν(uνn)\displaystyle u^{\nu}\partial_{\nu}\varepsilon+(\varepsilon+p)\nabla_{\nu}u^{\nu}+u^{\nu}\big{(}\partial_{\nu}p-s\partial_{\nu}T-n\partial_{\nu}\mu\big{)}-\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)}
=\displaystyle= uννε+(ε+p)νuνμν(uνn),\displaystyle u^{\nu}\partial_{\nu}\varepsilon+(\varepsilon+p)\nabla_{\nu}u^{\nu}-\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)},

where we use the relation νpsνTnνμ=0\partial_{\nu}p-s\partial_{\nu}T-n\partial_{\nu}\mu=0, which is equivalent to Eq. (14). Thus, one obtains the relation

uννε+(ε+p)νuν=Tν(uνs)+μν(uνn).\displaystyle u^{\nu}\partial_{\nu}\varepsilon+(\varepsilon+p)\nabla_{\nu}u^{\nu}=T\nabla_{\nu}\big{(}u^{\nu}s\big{)}+\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)}. (113)

Substituting Eq. (113) into (111),

ν[(ε+p)uνuμ+pδμν]=[Tν(uνs)+μν(uνn)]uμ+(δμν+uνuμ)[(ε+p)uρρuν+νp].\displaystyle\nabla_{\nu}\Big{[}(\varepsilon+p)u^{\nu}u_{\mu}+p\delta^{\nu}_{\mu}\Big{]}=\Big{[}T\nabla_{\nu}\big{(}u^{\nu}s\big{)}+\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)}\Big{]}u_{\mu}+\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\Big{[}(\varepsilon+p)u^{\rho}\nabla_{\rho}u_{\nu}+\partial_{\nu}p\Big{]}.

Combining Eq. (4.2) and Eq. (4.2), we obtain the equation

g[Tν(uνs)+μν(uνn)+(ε+12geη𝒟ηELg)uννη]uμ\displaystyle\sqrt{-g}\bigg{[}T\nabla_{\nu}\big{(}u^{\nu}s\big{)}+\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)}+\Big{(}\varepsilon+\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}u^{\nu}\partial_{\nu}\eta\bigg{]}u_{\mu}
+g(δμν+uνuμ)[(ε+p)uρρuν+νp+(p12geη𝒟ηELg)νη\displaystyle+\sqrt{-g}\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\bigg{[}(\varepsilon+p)u^{\rho}\nabla_{\rho}u_{\nu}+\partial_{\nu}p+\Big{(}p-\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta
12eηVν12geηFνρEL𝒟Aρg]=0.\displaystyle-\frac{1}{2}e^{-\eta}V_{\nu}-\frac{1}{2\sqrt{-g}}e^{-\eta}F_{\nu\rho}\,^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L}\bigg{]}=0. (115)

Since the first term of the left hand side of Eq. (115) is parallel to uμu_{\mu} and the second is orthogonal, both the terms should be 0, respectively:

Tν(uνs)+μν(uνn)+(ε+12geη𝒟ηELg)uννη=0,\displaystyle T\nabla_{\nu}\big{(}u^{\nu}s\big{)}+\mu\nabla_{\nu}\big{(}u^{\nu}n\big{)}+\Big{(}\varepsilon+\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}u^{\nu}\partial_{\nu}\eta=0, (116)
(δμν+uνuμ)[(ε+p)uρρuν+νp\displaystyle\big{(}\delta^{\nu}_{\mu}+u^{\nu}u_{\mu}\big{)}\bigg{[}(\varepsilon+p)u^{\rho}\nabla_{\rho}u_{\nu}+\partial_{\nu}p
+(p12geη𝒟ηELg)νη12eηVν12geηFνρEL𝒟Aρg]=0.\displaystyle\ \ \ +\Big{(}p-\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{\nu}\eta-\frac{1}{2}e^{-\eta}V_{\nu}-\frac{1}{2\sqrt{-g}}e^{-\eta}F_{\nu\rho}\,^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L}\bigg{]}=0.

From Eq. (116), the conservation laws of uμsu^{\mu}s and uμnu^{\mu}n require the relation

(ε+12geη𝒟ηELg)uννη=0,\displaystyle\Big{(}\varepsilon+\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}u^{\nu}\partial_{\nu}\eta=0, (118)

that is,

𝒟ηELg=2geηε\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}=-2\sqrt{-g}e^{\eta}\varepsilon (119)

or

uννη=0.\displaystyle u^{\nu}\partial_{\nu}\eta=0. (120)

Next, let us consider Eq. (4.2). Using the relation among the variations pp, TT, and μ\mu,

νp\displaystyle\partial_{\nu}p =\displaystyle= sνT+nνμ\displaystyle s\partial_{\nu}T+n\partial_{\nu}\mu (121)
=\displaystyle= sνT+n(λνT+Tνλ)\displaystyle s\partial_{\nu}T+n(\lambda\partial_{\nu}T+T\partial_{\nu}\lambda) (122)
=\displaystyle= (ε+p)νTT+nTνλ.\displaystyle(\varepsilon+p)\frac{\partial_{\nu}T}{T}+nT\partial_{\nu}\lambda. (123)

Writing the definition of the covariant derivative explicitly,

uννuμ\displaystyle u^{\nu}\nabla_{\nu}u_{\mu} =\displaystyle= uννuμuνΓνμρuρ\displaystyle u^{\nu}\partial_{\nu}u_{\mu}-u^{\nu}\Gamma^{\rho}_{\nu\mu}u_{\rho} (124)
=\displaystyle= uννuμ12uνuρgρσ(μgσν+νgσμσgνμ)\displaystyle u^{\nu}\partial_{\nu}u_{\mu}-\frac{1}{2}u^{\nu}u_{\rho}g^{\rho\sigma}\big{(}\partial_{\mu}g_{\sigma\nu}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\nu\mu}\big{)} (125)
=\displaystyle= uννuμ12uνuσμgσν,\displaystyle u^{\nu}\partial_{\nu}u_{\mu}-\frac{1}{2}u^{\nu}u^{\sigma}\partial_{\mu}g_{\sigma\nu}, (126)

where Γνμρ\Gamma^{\rho}_{\nu\mu} is the Christoffel symbol. In a co-moving coordinate, the dd-velocity of a stationary fluid satisfies uρρuν=stationary0u^{\rho}\partial_{\rho}u_{\nu}\overset{\mathrm{stationary}}{=}0, so that

uρρuν\displaystyle u^{\rho}\nabla_{\rho}u_{\nu} =stationary\displaystyle\overset{\mathrm{stationary}}{=} 12uρuσνgρσ\displaystyle-\frac{1}{2}u^{\rho}u^{\sigma}\partial_{\nu}g_{\rho\sigma} (127)
=\displaystyle= 12u0u0νg00\displaystyle-\frac{1}{2}u^{0}u^{0}\partial_{\nu}g_{00} (128)
=\displaystyle= 12(u0)2ν(u0)2\displaystyle\frac{1}{2}\big{(}u^{0}\big{)}^{2}\partial_{\nu}\big{(}u^{0}\big{)}^{-2} (129)
=\displaystyle= νlnu0,\displaystyle-\partial_{\nu}\ln u^{0}, (130)

Vanishing the left hand side of Eq. (4.2) for stationary fluids in a co-moving coordinate is equivalent to

alnu0aTT1ε+p(p12geη𝒟ηELg)aη\displaystyle\partial_{a}\ln u^{0}-\frac{\partial_{a}T}{T}-\frac{1}{\varepsilon+p}\Big{(}p-\frac{1}{2\sqrt{-g}}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}\Big{)}\partial_{a}\eta
nTε+paλ+eη2(ε+p)Faν1gEL𝒟Aνg=stationary0,\displaystyle-\frac{nT}{\varepsilon+p}\partial_{a}\lambda+\frac{e^{-\eta}}{2(\varepsilon+p)}F_{a\nu}\frac{1}{\sqrt{-g}}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{L}\overset{\mathrm{stationary}}{=}0, (131)

where we use Eq. (103). Due to the relations 𝒟ηELg=2geηε\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{L}=-2\sqrt{-g}e^{\eta}\varepsilon, 𝒟AμELg=guμqn\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{L}=-\sqrt{-g}u^{\mu}qn, and 0Aa=0\partial_{0}A_{a}=0, the following relation is obtained:

[(u0Teη)1+qnTA02(ε+p)]a(u0Teη)nTε+pa(λ+u02TeηqA0)=stationary0.\displaystyle\bigg{[}\bigg{(}\frac{u^{0}}{T}e^{-\eta}\bigg{)}^{-1}+\frac{qnTA_{0}}{2(\varepsilon+p)}\bigg{]}\partial_{a}\bigg{(}\frac{u^{0}}{T}e^{-\eta}\bigg{)}-\frac{nT}{\varepsilon+p}\partial_{a}\bigg{(}\lambda+\frac{u^{0}}{2T}e^{-\eta}qA_{0}\bigg{)}\overset{\mathrm{stationary}}{=}0.

This equation and Eq. (116) show that the field equations (84) - (87) are compatible with the consistency conditions

μ(uμs)=0,\displaystyle\nabla_{\mu}\big{(}u^{\mu}s\big{)}=0, (133)
μ(uμn)=0,\displaystyle\nabla_{\mu}\big{(}u^{\mu}n\big{)}=0, (134)
a(u0Teη)=stationary0,\displaystyle\partial_{a}\bigg{(}\frac{u^{0}}{T}e^{-\eta}\bigg{)}\overset{\mathrm{stationary}}{=}0, (135)
a(λ+u02TeηqA0)=stationary0.\displaystyle\partial_{a}\bigg{(}\lambda+\frac{u^{0}}{2T}e^{-\eta}qA_{0}\bigg{)}\overset{\mathrm{stationary}}{=}0. (136)

One finds the constraint condition η=0\eta=0 works well as below. Since δη=0\delta\eta=0 in Eq. (4.1), one find the following field equations straightforwardly:

𝒟¯gρσELg\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\sigma}}\sqrt{-g}\mathcal{L} =\displaystyle= g[εuρuσ+p(uρuσ+gρσ)]\displaystyle-\sqrt{-g}\big{[}\varepsilon u_{\rho}u_{\sigma}+p(u_{\rho}u_{\sigma}+g_{\rho\sigma})\big{]} (137)
𝒟AρELg\,{}^{\rm EL}\!\mathcal{D}_{A_{\rho}}\sqrt{-g}\mathcal{L} =\displaystyle= guρqn\displaystyle-\sqrt{-g}u^{\rho}qn (138)
𝒟φELg\,{}^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L} =\displaystyle= 0.\displaystyle 0. (139)

4.3 Redefinition of the physical quantities

Using the field equations (85) and (86), Eq. (4.2) is arranged as

(uμuν+δμν)[uρρuν+νpε+p+νη+qn2(ε+p)eηFνρuρ]=0.\displaystyle\big{(}u_{\mu}u^{\nu}+\delta^{\nu}_{\mu}\big{)}\bigg{[}u^{\rho}\nabla_{\rho}u_{\nu}+\frac{\partial_{\nu}p}{\varepsilon+p}+\partial_{\nu}\eta+\frac{qn}{2(\varepsilon+p)}e^{-\eta}F_{\nu\rho}u^{\rho}\bigg{]}=0. (140)

Consider a situation in which ap=q=0\partial_{a}p=q=0 and aη0\partial_{a}\eta\neq 0, then

uρρua+aη=0,\displaystyle u^{\rho}\nabla_{\rho}u_{a}+\partial_{a}\eta=0, (141)

in a co-moving coordinate. This equation seems strange in that the electrically neutral fluid does not flow along geodesic orbits even when there are no gradient of the pressure, namely the fluid is force-free.

In this subsection, we redefine the metric tensor and other physical quantities so that a force-free fluid flows along geodesic orbits.

One finds that the new metric tensor g~μν\tilde{g}_{\mu\nu} defined by

g~μν\displaystyle\tilde{g}_{\mu\nu} :=\displaystyle:= e2ηgμν\displaystyle e^{2\eta}g_{\mu\nu} (142)

and g~μν\tilde{g}^{\mu\nu}, u~μ\tilde{u}^{\mu}, and u~μ\tilde{u}_{\mu}

g~μν\displaystyle\tilde{g}^{\mu\nu} :=\displaystyle:= e2ηgμν\displaystyle e^{-2\eta}g^{\mu\nu} (143)
u~μ\displaystyle\tilde{u}^{\mu} :=\displaystyle:= eηuμ\displaystyle e^{-\eta}u^{\mu} (144)
u~μ\displaystyle\tilde{u}_{\mu} :=\displaystyle:= eηuμ\displaystyle e^{\eta}u_{\mu} (145)
=\displaystyle= g~μνu~ν\displaystyle\tilde{g}_{\mu\nu}\tilde{u}^{\nu} (146)

are appropriate for our purpose. The normalization condition of the new dd-velocity is

g~μνu~μu~ν=1.\displaystyle\tilde{g}_{\mu\nu}\tilde{u}^{\mu}\tilde{u}^{\nu}=-1. (147)

Indeed, u~ρ~ρu~ν\tilde{u}^{\rho}\tilde{\nabla}_{\rho}\tilde{u}_{\nu} is deformed to yield

u~ρ~ρu~ν\displaystyle\tilde{u}^{\rho}\tilde{\nabla}_{\rho}\tilde{u}_{\nu} =\displaystyle= uρ~ρuν+u~ρuνρeη\displaystyle u^{\rho}\tilde{\nabla}_{\rho}u_{\nu}+\tilde{u}^{\rho}u_{\nu}\partial_{\rho}e^{\eta} (148)
=\displaystyle= uρρuν12uρΓ~ρνσuσ+uνuρρη\displaystyle u^{\rho}\partial_{\rho}u_{\nu}-\frac{1}{2}u^{\rho}\tilde{\Gamma}^{\sigma}_{\rho\nu}u_{\sigma}+u_{\nu}u^{\rho}\partial_{\rho}\eta (149)
=\displaystyle= uρρuν12uρuσg~σω(νg~ωρ+ρg~ωνωg~ρν)+uνuρρη\displaystyle u^{\rho}\partial_{\rho}u_{\nu}-\frac{1}{2}u^{\rho}u_{\sigma}\tilde{g}^{\sigma\omega}\big{(}\partial_{\nu}\tilde{g}_{\omega\rho}+\partial_{\rho}\tilde{g}_{\omega\nu}-\partial_{\omega}\tilde{g}_{\rho\nu}\big{)}+u_{\nu}u^{\rho}\partial_{\rho}\eta
=\displaystyle= uρρuν12uρuσgσωνgωρuρuσg~σωgωρe2ηνη+uνuρρη\displaystyle u^{\rho}\partial_{\rho}u_{\nu}-\frac{1}{2}u^{\rho}u_{\sigma}g^{\sigma\omega}\partial_{\nu}g_{\omega\rho}-u^{\rho}u_{\sigma}\tilde{g}^{\sigma\omega}g_{\omega\rho}e^{2\eta}\partial_{\nu}\eta+u_{\nu}u^{\rho}\partial_{\rho}\eta
=\displaystyle= uρρuν+νη+uνuρρη\displaystyle u^{\rho}\nabla_{\rho}u_{\nu}+\partial_{\nu}\eta+u_{\nu}u^{\rho}\partial_{\rho}\eta (151)
=\displaystyle= uρρuν+(δνρ+uνuρ)ρη,\displaystyle u^{\rho}\nabla_{\rho}u_{\nu}+\big{(}\delta^{\rho}_{\nu}+u_{\nu}u^{\rho}\big{)}\partial_{\rho}\eta, (152)

so that Eq. (140) is

(δμν+u~νu~μ)[u~ρ~ρu~ν+νpε+p+qn2(ε+p)Fνρu~ρ]=0.\displaystyle\big{(}\delta^{\nu}_{\mu}+\tilde{u}^{\nu}\tilde{u}_{\mu}\big{)}\bigg{[}\tilde{u}^{\rho}\tilde{\nabla}_{\rho}\tilde{u}_{\nu}+\frac{\partial_{\nu}p}{\varepsilon+p}+\frac{qn}{2(\varepsilon+p)}F_{\nu\rho}\tilde{u}^{\rho}\bigg{]}=0. (153)

In the situation νp=q=0\partial_{\nu}p=q=0,

u~ρ~ρu~ν=0.\displaystyle\tilde{u}^{\rho}\tilde{\nabla}_{\rho}\tilde{u}_{\nu}=0. (154)

Therefore, with constant pressure, the neutral fluid flows geodesic orbits defined by the new metric tensor g~μν\tilde{g}_{\mu\nu}. Notice that the relation (154) also holds for the metric tensor g~μν=e2(η+a)gμν\tilde{g}_{\mu\nu}=e^{2(\eta+a)}g_{\mu\nu}, where aa is an arbitrary constant.

The determinant of g~μν\tilde{g}_{\mu\nu} is

g=edηg~.\displaystyle\sqrt{-g}=e^{-d\eta}\sqrt{-\tilde{g}}. (155)

The extensive quantities ss, nn and ε\varepsilon are redefined by

v~\displaystyle\tilde{v} :=\displaystyle:= e(d1)η\displaystyle e^{-(d-1)\eta} (156)
s~\displaystyle\tilde{s} :=\displaystyle:= sv~\displaystyle s\tilde{v} (157)
n~\displaystyle\tilde{n} :=\displaystyle:= nv~\displaystyle n\tilde{v} (158)
ε~\displaystyle\tilde{\varepsilon} :=\displaystyle:= εv~,\displaystyle\varepsilon\tilde{v}, (159)

so that their current densities are invariant under the redefinition:

g~u~μs~\displaystyle\sqrt{-\tilde{g}}\tilde{u}^{\mu}\tilde{s} =\displaystyle= guμs\displaystyle\sqrt{-g}u^{\mu}s (160)
g~u~μn~\displaystyle\sqrt{-\tilde{g}}\tilde{u}^{\mu}\tilde{n} =\displaystyle= guμn.\displaystyle\sqrt{-g}u^{\mu}n. (161)

The new Lagrangian ~\mathcal{\tilde{L}} is defined in order to make the Lagrangian density g\sqrt{-g}\mathcal{L} be invariant:

~\displaystyle\mathcal{\tilde{L}} :=\displaystyle:= edη.\displaystyle e^{-d\eta}\mathcal{L}. (162)

The relation between ε\varepsilon and fundamental fields, Eq. (75), transforms into

g~ε~=u~μu~ν𝒟g~μνELg~~.\displaystyle\sqrt{-\tilde{g}}\tilde{\varepsilon}=-\tilde{u}^{\mu}\tilde{u}^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{\tilde{g}^{\mu\nu}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}. (163)

From Eq. (157) - (159), the first law of thermodynamics and Gibbs-Duhem relation are modified:

δε~=Tδs~pδv~+μδn~\displaystyle\delta\tilde{\varepsilon}=T\delta\tilde{s}-p\delta\tilde{v}+\mu\delta\tilde{n} (164)
Ts~+μn~=ε~+pv~.\displaystyle T\tilde{s}+\mu\tilde{n}=\tilde{\varepsilon}+p\tilde{v}. (165)

The equation (153) is rewritten as

(δμν+u~νu~μ)[u~ρ~ρu~ν+v~νpε~+pv~+qn~2(ε~+pv~)Fμρu~ρ]=0.\displaystyle\big{(}\delta^{\nu}_{\mu}+\tilde{u}^{\nu}\tilde{u}_{\mu}\big{)}\bigg{[}\tilde{u}^{\rho}\tilde{\nabla}_{\rho}\tilde{u}_{\nu}+\frac{\tilde{v}\partial_{\nu}p}{\tilde{\varepsilon}+p\tilde{v}}+\frac{q\tilde{n}}{2(\tilde{\varepsilon}+p\tilde{v})}F_{\mu\rho}\tilde{u}^{\rho}\bigg{]}=0. (166)

We have two kinds of geometry defined by two metric tensors gμνg_{\mu\nu} and g~μν\tilde{g}_{\mu\nu}, respectively, those are related by the conformal transformation (142). While the former, that we call the thermodynamical geometry, makes the description of the thermodynamics be simple, the latter, we call the kinematical geometry, does that of kinematics of the fluid be simple. The quantity v~\tilde{v}, equivalently η\eta, represents the conformal factor between the two spatial volume elements h\sqrt{h} and h~\sqrt{\tilde{h}} defined by gμνg_{\mu\nu} and g~μν\tilde{g}_{\mu\nu}, respectively, i.e.,

h=v~h~.\displaystyle\sqrt{h}=\tilde{v}\sqrt{\tilde{h}}. (167)

We can interpret v~\tilde{v} as the thermodynamical volume element measured by kinematical one.

Let us rewrite the variation of the entropy current density. The variation of gμνg^{\mu\nu} is separated as

δgμν\displaystyle\delta g^{\mu\nu} =\displaystyle= δ(e2ηg~μν)\displaystyle\delta\big{(}e^{2\eta}\tilde{g}^{\mu\nu}\big{)} (168)
=\displaystyle= e2ηδg~μν+2e2ηg~μνδη.\displaystyle e^{2\eta}\delta\tilde{g}^{\mu\nu}+2e^{2\eta}\tilde{g}^{\mu\nu}\delta\eta. (169)

Therefore, substituting Eq. (169) into Eq. (4.1),

δ(g~u~0s~)+λ~0δ(g~u~0n~)\displaystyle\delta\Big{(}\sqrt{-\tilde{g}}\tilde{u}^{0}\tilde{s}\Big{)}+\tilde{\lambda}_{0}\delta\Big{(}\sqrt{-\tilde{g}}\tilde{u}^{0}\tilde{n}\Big{)} (170)
=stationary\displaystyle\overset{\mathrm{stationary}}{=} u02Teη{δ(g~~)EL𝒟A0g~~δA0+2(d1)g~pv~δη\displaystyle-\frac{u^{0}}{2T}e^{-\eta}\bigg{\{}\delta\Big{(}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}\Big{)}-\,^{\rm EL}\!\mathcal{D}_{A_{0}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}\cdot\delta A_{0}+2(d-1)\sqrt{-\tilde{g}}p\tilde{v}\delta\eta
+g~[ε~u~ρu~σ+pv~(u~ρu~σ+g~ρσ)]δg~ρσ+δ(ρΩ~ 0ρ0[g~~])\displaystyle+\sqrt{-\tilde{g}}\Big{[}\tilde{\varepsilon}\tilde{u}_{\rho}\tilde{u}_{\sigma}+p\tilde{v}\big{(}\tilde{u}_{\rho}\tilde{u}_{\sigma}+\tilde{g}_{\rho\sigma}\big{)}\Big{]}\delta\tilde{g}^{\rho\sigma}+\delta\Big{(}\partial_{\rho}\tilde{\Omega}^{\rho 0}_{\ \ \ 0}[\sqrt{-\tilde{g}}\mathcal{\tilde{L}}]\Big{)}
+a(k=0𝒟aμ1μkf~ELg~~δμ1μkf~)},\displaystyle+\partial_{a}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f}\bigg{)}\bigg{\}},

where

λ~0=μT+q2Tu~0A0,\displaystyle\tilde{\lambda}_{0}=\frac{\mu}{T}+\frac{q}{2T}\tilde{u}^{0}A_{0}, (171)

f~={g~ρσ,Aμ,η,φ}\tilde{f}=\{\tilde{g}^{\rho\sigma},A_{\mu},\eta,\varphi\}, and Ω~ 0ρ0\tilde{\Omega}^{\rho 0}_{\ \ \ 0} is defined by Eq. (361) with gρσg^{\rho\sigma} and uμu^{\mu} replaced by g~ρσ\tilde{g}^{\rho\sigma} and u~μ\tilde{u}^{\mu}, respectively. The following field equations are derived by the maximum entropy principle:

𝒟¯g~μνELg~~\,{}^{\rm EL}\!\bar{\mathcal{D}}_{\tilde{g}^{\mu\nu}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}} =\displaystyle= g~[ε~u~μu~ν+pv~(u~μu~ν+g~μν)]\displaystyle-\sqrt{-\tilde{g}}\Big{[}\tilde{\varepsilon}\tilde{u}_{\mu}\tilde{u}_{\nu}+p\tilde{v}\big{(}\tilde{u}_{\mu}\tilde{u}_{\nu}+\tilde{g}_{\mu\nu}\big{)}\Big{]} (172)
𝒟AμELg~~\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}} =\displaystyle= g~qn~u~μ\displaystyle-\sqrt{-\tilde{g}}q\tilde{n}\tilde{u}^{\mu} (173)
𝒟ηELg~~\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-\tilde{g}}\mathcal{\tilde{L}} =\displaystyle= 2(d1)g~pv~\displaystyle-2(d-1)\sqrt{-\tilde{g}}p\tilde{v} (174)
𝒟φELg~~\,{}^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-\tilde{g}}\mathcal{\tilde{L}} =\displaystyle= 0.\displaystyle 0. (175)

The consistency conditions are

u~0T=stationaryconst.\displaystyle\frac{\tilde{u}^{0}}{T}\overset{\mathrm{stationary}}{=}{\rm const.} (176)
λ~0=stationaryconst..\displaystyle\tilde{\lambda}_{0}\overset{\mathrm{stationary}}{=}{\rm const.}. (177)

The condition (176) coincides with Tolman’s law in the kinematical geometry.

5 Surface term

In section 4, we see that the field equations (172) - (175) maximize the total entropy SS in appropriate boundary conditions. When a configuration satisfies the field equations, the variation of the entropy is written in the following form:

δS\displaystyle\delta S =stationary\displaystyle\overset{\mathrm{stationary}}{=} (λ+u~02TA0)δN+u~02TδM~Noether\displaystyle-\bigg{(}\lambda+\frac{\tilde{u}^{0}}{2T}A_{0}\bigg{)}\delta N+\frac{\tilde{u}^{0}}{2T}\delta\tilde{M}_{\rm Noether}
u~02T𝒱(dd2x)0ak=0𝒟aμ1μkf~ELg~~δμ1μkf~,\displaystyle-\frac{\tilde{u}^{0}}{2T}\oint_{\partial\mathcal{V}}({\mathrm{d}}^{d-2}x)_{0a}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f},

where the quantities

𝒟aμ1μkf~ELg~~\,{}^{\rm EL}\!\mathcal{D}_{\partial_{a}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}} (179)

can be regarded as the chemical potentials444Notice that the variations δf~|𝒱\delta\tilde{f}\big{|}_{\partial\mathcal{V}} and δi1ikf~|𝒱\delta\partial_{i_{1}}\cdots\partial_{i_{k}}\tilde{f}\big{|}_{\partial\mathcal{V}} are not independent. conjugate to μ1μkf~\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\tilde{f}.

In this section, as an example, we calculate the variation of the entropy in the Lovelock theory including the surface terms, and see that the variation can be represented by those of the total Kodama energy and area of the boundary. For simplicity, in this section, the tilde “~\tilde{\ }” is omitted.

5.1 Spherically symmetric spacetime and the generalized Kodama flux

In the Lovelock theory, it is convenient to describe the spherically symmetric system by the warped product coordinate (181) due to the relation between the Lovelock tensors and Kodama flux. In this subsection, we introduce the warped product coordinate and briefly summarize the properties of the (generalized) Kodama flux [10, 11].

In any spherically symmetric spacetime, there are coordinates such that the line element dl{\mathrm{d}}l is written in the form

dl2\displaystyle{\mathrm{d}}l^{2} =\displaystyle= gμνdxμdxν\displaystyle g_{\mu\nu}{\mathrm{d}}x^{\mu}{\mathrm{d}}x^{\nu} (180)
=\displaystyle= gηξBdxηdxξ+χ(r)2gijFdxidxj,{}^{\mathrm{B}}\!\!g_{\eta\xi}{\mathrm{d}}x^{\eta}{\mathrm{d}}x^{\xi}+\chi(r)^{2}\ {}^{\mathrm{F}}\!\!g_{ij}{\mathrm{d}}x^{i}{\mathrm{d}}x^{j}, (181)

where η\eta and ξ\xi run over {0, 1}\{0,\,1\}, while ii and jj do {2,,d1}\{2,\,\dots,\,d-1\}, and rr is the radial component of the coordinate. In the restricted coordinate, one can see the total spacetime (d,gμν)(\mathcal{M}^{d},\,g_{\mu\nu}) as a “warped product” manifold with the 22-dimensional “base space” (B2,Bgηξ)(\,^{\mathrm{B}}\!\mathcal{M}^{2},\,\,^{\mathrm{B}}\!g_{\eta\xi}) and the (d2)(d-2)-dimensional “fibers” (Fd2,Fgij)(^{\mathrm{F}}\!\mathcal{M}^{d-2},\,\,^{\mathrm{F}}\!g_{ij}). The scalar function on the base space χ(r)\chi(r) is called the “warp factor”.

The square root of the determinant of the metric g\sqrt{-g} is decomposed as

g=χd2gFBg.\sqrt{-g}=\chi^{d-2}\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-^{\mathrm{B}}\!g}.

Define the following quantity:

ϵμν\displaystyle\epsilon^{\mu\nu} :=\displaystyle:= (Bϵηξ000)\displaystyle\left(\begin{array}[]{cc}^{\mathrm{B}}\!\epsilon^{\eta\xi}&0\\ 0&0\end{array}\right) (184)
=\displaystyle= (010100000),\displaystyle\left(\begin{array}[]{cccc}0&1&0&\ldots\\ -1&0&0&\ldots\\ 0&0&0&\ldots\\ \vdots&\vdots&\vdots&\ddots\end{array}\right), (189)

where ϵηξB{}^{\mathrm{B}}\!\epsilon^{\eta\xi} denotes the Levi-civita symbol on the base space, that transforms as a tensor density of weight 11 on the base space, and ϵμν\epsilon^{\mu\nu} transforms as a tensor density of weight 11 on the total spacetime under the restricted coordinate transformation. The quantity

eηξB:=ϵηξBBg{}^{\mathrm{B}}\!e^{\eta\xi}:=\frac{{}^{\mathrm{B}}\!\epsilon^{\eta\xi}}{\sqrt{-^{\mathrm{B}}\!g}} (190)

is the Levi-Civita tensor on the base space.

Note that under the restricted coordinate transformation, there are more fields that transform as tensor fields than ordinary tensor fields. In this section, the action of the covariant derivative μ\nabla_{\mu} on the generalized tensor fields are defied by the same way as the ordinary ones.

Consider the following covariant derivative:

μ(1χd2ϵμνBg)\displaystyle\nabla_{\mu}\bigg{(}\frac{1}{\chi^{d-2}}\frac{\epsilon^{\mu\nu}}{\sqrt{-\,^{\mathrm{B}}\!g}}\bigg{)} =\displaystyle= 1gμ(gχd2ϵμνBg)\displaystyle\frac{1}{\sqrt{-g}}\partial_{\mu}\bigg{(}\frac{\sqrt{-g}}{\chi^{d-2}}\frac{\epsilon^{\mu\nu}}{\sqrt{-\,^{\mathrm{B}}\!g}}\bigg{)} (191)
=\displaystyle= 1gμ(gFϵμν)\displaystyle\frac{1}{\sqrt{-g}}\partial_{\mu}\Big{(}\sqrt{\,{}^{\mathrm{F}}\!g}\epsilon^{\mu\nu}\Big{)} (192)
=\displaystyle= gFgμϵμν\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}}{\sqrt{-g}}\partial_{\mu}\epsilon^{\mu\nu} (193)
=\displaystyle= 0.\displaystyle 0. (194)

Therefore, defining eμν:=ϵμν/Bge^{\mu\nu}:=\epsilon^{\mu\nu}/\sqrt{-\,^{\mathrm{B}}\!g}, the quantity

eμνχd2\displaystyle\frac{e^{\mu\nu}}{\chi^{d-2}} (195)

is a covariantly divergence-free second-order anti-symmetric (generalized) tensor field. Using these features and an arbitrary (generalized) scalar field Ψ\Psi, one can construct a current J[Ψ]μJ_{[\Psi]}^{\mu}, called the generalized Kodama flux:

J[Ψ]μ\displaystyle J_{[\Psi]}^{\mu} :=\displaystyle:= eμνχd2νΨ\displaystyle\frac{e^{\mu\nu}}{\chi^{d-2}}\nabla_{\nu}\Psi (196)
=\displaystyle= gFϵμνgνΨ.\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\mu\nu}}{\sqrt{-g}}\partial_{\nu}\Psi. (197)

Due to the covariantly divergent-freeness of eμν/χd2e^{\mu\nu}/\chi^{d-2}, the divergence of J[Ψ]μJ_{[\Psi]}^{\mu} vanishes, i.e.,

μJ[Ψ]μ\displaystyle\nabla_{\mu}J_{[\Psi]}^{\mu} =\displaystyle= eμνχd2μνΨ\displaystyle\frac{e^{\mu\nu}}{\chi^{d-2}}\nabla_{\mu}\nabla_{\nu}\Psi (198)
=\displaystyle= 0.\displaystyle 0. (199)

For Ψ=1d1χd1\Psi=\frac{1}{d-1}\chi^{d-1},

kμ\displaystyle k^{\mu} :=\displaystyle:= J[1d1χd1]μ\displaystyle J^{\mu}_{[\frac{1}{d-1}\chi^{d-1}]} (200)
=\displaystyle= gFϵμνgχd2νχ\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\mu\nu}}{\sqrt{-g}}\chi^{d-2}\partial_{\nu}\chi (201)
=\displaystyle= ϵμνBgνχ\displaystyle\frac{\epsilon^{\mu\nu}}{\sqrt{-\,^{\mathrm{B}}\!g}}\partial_{\nu}\chi (202)
=\displaystyle= eμνμχ\displaystyle e^{\mu\nu}\partial_{\mu}\chi (203)

is called the “Kodama vector”.

5.2 The Lovelock theory

In this subsection, we consider the Lovelock theory of gravity in the warped product coordinate (181). The Lagrangian of the Lovelock theory [12] is

Love.\displaystyle\mathcal{L}_{\rm Love.} =\displaystyle= 1κ2LLove.\displaystyle\frac{1}{\kappa^{2}}L_{\rm Love.} (204)
LLove.\displaystyle L_{\rm Love.} :=\displaystyle:= n=0[d/2]a(n)L(n)\displaystyle\sum_{n=0}^{[d/2]}a_{(n)}L_{(n)} (205)
L(n)\displaystyle L_{(n)} :=\displaystyle:= 12nδρ1ρnσ1σnμ1μnν1νnRμ1ν1ρ1σ1Rμnνnρnσn,\displaystyle\frac{1}{2^{n}}\delta^{\mu_{1}\cdots\mu_{n}\nu_{1}\cdots\nu_{n}}_{\rho_{1}\cdots\rho_{n}\sigma_{1}\cdots\sigma_{n}}R_{\mu_{1}\nu_{1}}^{\ \ \ \ \ \ \rho_{1}\sigma_{1}}\cdots R_{\mu_{n}\nu_{n}}^{\ \ \ \ \ \ \rho_{n}\sigma_{n}}, (206)

where

δρ1ρnμ1μn:=n!δ[ν1μ1δνn]μn,\displaystyle\delta^{\mu_{1}\cdots\mu_{n}}_{\rho_{1}\cdots\rho_{n}}:=n!\delta^{\mu_{1}}_{[\nu_{1}}\cdots\delta^{\mu_{n}}_{\nu_{n}]}, (207)
Rνρσμ:=ρΓνσμσΓνρμ+ΓαρμΓνσαΓασμΓνρα,\displaystyle R^{\mu}_{\ \ \nu\rho\sigma}:=\partial_{\rho}\Gamma^{\mu}_{\nu\sigma}-\partial_{\sigma}\Gamma^{\mu}_{\nu\rho}+\Gamma^{\mu}_{\alpha\rho}\Gamma^{\alpha}_{\nu\sigma}-\Gamma^{\mu}_{\alpha\sigma}\Gamma^{\alpha}_{\nu\rho}, (208)

and a(n)a_{(n)}, n=0, 1,,[d/2]n=0,\,1,\,\cdots,\,[d/2] are the parameters of the theory. The parameter a(0)a_{(0)} is related to the cosmological constant Λ\Lambda by a(0)=2Λa_{(0)}=-2\Lambda. The Euler-Lagrange derivative of gLove.\sqrt{-g}\mathcal{L}_{\rm Love.} is

Gνμ\displaystyle G^{\mu}_{\ \ \nu} :=\displaystyle:= gμρ𝒟gρνELgLove.\displaystyle g^{\mu\rho}\,{}^{\rm EL}\!\mathcal{D}_{g^{\rho\nu}}\sqrt{-g}\mathcal{L}_{\rm Love.} (209)
=\displaystyle= n=0[n/2]a(n)G(n)νμ,\displaystyle\sum_{n=0}^{[n/2]}a_{(n)}G_{(n)\ \nu}^{\ \ \ \mu}, (210)

where

G(n)νμ\displaystyle G_{(n)\ \nu}^{\ \ \ \mu} =\displaystyle= 12n+1δνν1νnσ1σnμμ1μnρ1ρnRμ1ρ1ν1σ1Rμnρnνnσn.\displaystyle-\frac{1}{2^{n+1}}\delta^{\mu\mu_{1}\cdots\mu_{n}\rho_{1}\cdots\rho_{n}}_{\nu\nu_{1}\cdots\nu_{n}\sigma_{1}\cdots\sigma_{n}}R_{\mu_{1}\rho_{1}}^{\ \ \ \ \ \ \nu_{1}\sigma_{1}}\cdots R_{\mu_{n}\rho_{n}}^{\ \ \ \ \ \ \nu_{n}\sigma_{n}}. (211)

The tensor G(n)νμG_{(n)\ \nu}^{\ \ \ \mu} is called the nn-th order Lovelock tensor.

In a spherically symmetric spacetime with a warped product structure of the metric (181), the (η,ξ)(\eta,\,\xi) components of the nn-th order Lovelock tensor is written in the form [13]

G(n)ξη\displaystyle G_{(n)\ \xi}^{\ \ \ \eta} =\displaystyle= n(d2)!(d12n)!ηBξBχ(BζζBχ)δξηχ(kF|Bχ|2χ2)n1\displaystyle-\frac{n(d-2)!}{(d-1-2n)!}\frac{{}^{\mathrm{B}}\!\nabla^{\eta}\!\,{}^{\mathrm{B}}\!\nabla_{\xi}\chi-(^{\mathrm{B}}\!\nabla^{\zeta}\!\,{}^{\mathrm{B}}\!\nabla_{\zeta}\chi)\delta^{\eta}_{\xi}}{\chi}\bigg{(}\frac{k_{\mathrm{F}}-|^{\mathrm{B}}\!\nabla\chi|^{2}}{\chi^{2}}\bigg{)}^{n-1} (212)
(d2)!2(d22n)!δξη(kF|Bχ|2χ2)n,\displaystyle-\frac{(d-2)!}{2(d-2-2n)!}\delta^{\eta}_{\xi}\bigg{(}\frac{k_{\mathrm{F}}-|^{\mathrm{B}}\!\nabla\chi|^{2}}{\chi^{2}}\bigg{)}^{n},

where η,ξ=0, 1\eta,\,\xi=0,\,1 and |Bχ|2:=BgηξηBχBξχ|\,^{\mathrm{B}}\!\nabla\chi|^{2}:=\,^{\mathrm{B}}\!g^{\eta\xi}\,{}^{\mathrm{B}}\!\nabla_{\eta}\chi\,^{\mathrm{B}}\!\nabla_{\xi}\chi. Consider the quantity

G(n)ξηkξ\displaystyle G_{(n)\ \xi}^{\ \ \ \eta}k^{\xi} =\displaystyle= gFϵηξg(d2)!2(d12n)![nχd12nξ(|Bχ|2)(kF|Bχ|2)n1\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\eta\xi}}{\sqrt{-g}}\frac{(d-2)!}{2(d-1-2n)!}\Big{[}n\chi^{d-1-2n}\partial_{\xi}\big{(}|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}\big{(}k_{\mathrm{F}}-|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}^{n-1} (213)
(d12n)χd22nξχ(kF|Bχ|2)n]\displaystyle-(d-1-2n)\chi^{d-2-2n}\partial_{\xi}\chi\big{(}k_{\mathrm{F}}-|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}^{n}\Big{]}
=\displaystyle= gFϵηξgξ[(d2)!(d12n)!χd12n2(kF|Bχ|2)n]\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\eta\xi}}{\sqrt{-g}}\partial_{\xi}\bigg{[}-\frac{(d-2)!}{(d-1-2n)!}\frac{\chi^{d-1-2n}}{2}\big{(}k_{\mathrm{F}}-|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}^{n}\bigg{]} (214)
=\displaystyle= gFϵηξgξ(κ2AFm(n)),\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\eta\xi}}{\sqrt{-g}}\partial_{\xi}\bigg{(}-\frac{\kappa^{2}}{A_{\mathrm{F}}}m_{(n)}\bigg{)}, (215)

where

m(n):=AF(d2)!2κ2(d12n)!χd12n(kF|Bχ|2)n.\displaystyle m_{(n)}:=\frac{A_{\mathrm{F}}(d-2)!}{2\kappa^{2}(d-1-2n)!}\chi^{d-1-2n}\big{(}k_{\mathrm{F}}-|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}^{n}. (216)

Define the following quantity mm, called the generalized Misner-Sharp mass [13], by

m\displaystyle m :=\displaystyle:= n=0[d/2]a(n)m(n)\displaystyle\sum_{n=0}^{[d/2]}a_{(n)}m_{(n)} (217)
=\displaystyle= n=0[d/2]a(n)AF(d2)!2κ2(d12n)!χd12n(kF|Bχ|2)n\displaystyle\sum_{n=0}^{[d/2]}\frac{a_{(n)}A_{\mathrm{F}}(d-2)!}{2\kappa^{2}(d-1-2n)!}\chi^{d-1-2n}\big{(}k_{\mathrm{F}}-|\,^{\mathrm{B}}\!\nabla\chi|^{2}\big{)}^{n} (218)
=static\displaystyle\overset{\mathrm{static}}{=} n=0[d/2]b(n)χd12n(kF(1χ)2g11)n,\displaystyle\sum_{n=0}^{[d/2]}b_{(n)}\chi^{d-1-2n}\bigg{(}k_{\mathrm{F}}-\frac{(\partial_{1}\chi)^{2}}{g_{11}}\bigg{)}^{n}, (219)

and

b(n):=a(n)AF(d2)!2κ2(d12n)!.\displaystyle b_{(n)}:=\frac{a_{(n)}A_{\mathrm{F}}(d-2)!}{2\kappa^{2}(d-1-2n)!}. (220)

The equation (219) relates mm, χ\chi, 1χ\partial_{1}\chi, and mm. Note that since in Eq. (219), g11g_{11} and 1χ\partial_{1}\chi appear only in the form (1χ)2/g11(\partial_{1}\chi)^{2}/g_{11}, the quantity (1χ)2/g11(\partial_{1}\chi)^{2}/g_{11} depends only on mm and χ\chi:

(1χ)2g11=W(m,χ),\displaystyle\frac{(\partial_{1}\chi)^{2}}{g_{11}}=W(m,\chi), (221)

where W(m,χ)W(m,\chi) is a function of mm and χ\chi. From Eq. (221), the partial derivative of g11g_{11} with respect to 1χ\partial_{1}\chi is obtained:

g111χ=2g111χ\displaystyle\frac{\partial g_{11}}{\partial\partial_{1}\chi}=\frac{2g_{11}}{\partial_{1}\chi} (222)
g111χ=2g111χ.\displaystyle\frac{\partial g^{11}}{\partial\partial_{1}\chi}=-\frac{2g^{11}}{\partial_{1}\chi}. (223)

When the coefficients a(n)a_{(n)} are constants, the contraction of the Lovelock tensor and the Kodama vector is arranged in the form

Gξηkξ\displaystyle G^{\eta}_{\ \ \xi}k^{\xi} =\displaystyle= gFϵηξgξ(κ2AFm).\displaystyle\sqrt{\,{}^{\mathrm{F}}\!g}\frac{\epsilon^{\eta\xi}}{\sqrt{-g}}\partial_{\xi}\bigg{(}-\frac{\kappa^{2}}{A_{\mathrm{F}}}m\bigg{)}. (224)

Comparing with the definition of the generalized Kodama flux (197),

G(n)νμkν\displaystyle G^{\ \ \ \mu}_{(n)\ \nu}k^{\nu} =\displaystyle= J[κ2m(n)/AF]μ\displaystyle J_{[-\kappa^{2}m_{(n)}/A_{\mathrm{F}}]}^{\mu} (225)
=:\displaystyle=: J(n)μ\displaystyle J_{(n)}^{\mu} (226)
Gνμkν\displaystyle G^{\mu}_{\ \ \nu}k^{\nu} =\displaystyle= J[κ2m/AF]μ\displaystyle J_{[-\kappa^{2}m/A_{\mathrm{F}}]}^{\mu} (227)
=:\displaystyle=: Jμ.\displaystyle J^{\mu}. (228)

The conserved current JμJ^{\mu} is called the Kodama current for the Lovelock theory [10].

5.3 The variation of the entropy in the Lovelock theory

Here, we calculate the variation of the entropy of a spherically symmetric and static neutral fluid system using the special form of the Lovelock tensor.

In a co-moving coordinate, the energy density gε\sqrt{-g}\varepsilon is arranged as

gε\displaystyle\sqrt{-g}\varepsilon =\displaystyle= 1κ2gG 00\displaystyle\frac{1}{\kappa^{2}}\sqrt{-g}G^{0}_{\ \ 0} (229)
=static\displaystyle\overset{\mathrm{static}}{=} gAFχd21χ1m\displaystyle\frac{\sqrt{-g}}{A_{\mathrm{F}}\chi^{d-2}\partial_{1}\chi}\partial_{1}m (230)
=\displaystyle= gFBg1mAF1χ\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-\,^{\mathrm{B}}\!g}\partial_{1}m}{A_{\mathrm{F}}\partial_{1}\chi} (231)
=\displaystyle= gFg00g111mAF1χ\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-g_{00}}\sqrt{g_{11}}\partial_{1}m}{A_{\mathrm{F}}\partial_{1}\chi} (232)
=\displaystyle= gFg001mAFW(m,χ).\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-g_{00}}\partial_{1}m}{A_{\mathrm{F}}\sqrt{W(m,\chi)}}. (233)

Let us employ f={g00,m,χ}f=\{g_{00},\,m,\,\chi\} as the fundamental fields. We see in Eq. (233) that gε\sqrt{-g}\varepsilon does not depend on neither 1g00\partial_{1}g_{00}, 11m\partial_{1}\partial_{1}m, 1χ\partial_{1}\chi nor their higher derivatives. Therefore, the variation of the entropy is

δS\displaystyle\delta S =static\displaystyle\overset{\mathrm{static}}{=} 𝒱dd1xu0T{EL𝒟g00gεδg00+EL𝒟mgεδm+EL𝒟χgεδχ\displaystyle\int_{\mathcal{V}}{\mathrm{d}}^{d-1}x\frac{u^{0}}{T}\bigg{\{}\,^{\rm EL}\!\mathcal{D}_{g_{00}}\sqrt{-g}\varepsilon\cdot\delta g_{00}+\,^{\rm EL}\!\mathcal{D}_{m}\sqrt{-g}\varepsilon\cdot\delta m+\,^{\rm EL}\!\mathcal{D}_{\chi}\sqrt{-g}\varepsilon\cdot\delta\chi (234)
12g[εuμuν+p(uμuν+gμν)]δgμν}\displaystyle\ \ \ \ \ \ -\frac{1}{2}\sqrt{-g}\Big{[}\varepsilon u^{\mu}u^{\nu}+p\big{(}u^{\mu}u^{\nu}+g^{\mu\nu}\big{)}\Big{]}\delta g_{\mu\nu}\bigg{\}}
+𝒱dd2xu0T(EL𝒟1mgεδm).\displaystyle+\oint_{\partial\mathcal{V}}{\mathrm{d}}^{d-2}x\frac{u^{0}}{T}\bigg{(}\,^{\rm EL}\!\mathcal{D}_{\partial_{1}m}\sqrt{-g}\varepsilon\cdot\delta m\bigg{)}.

From the expression (233), the Euler-Lagrange derivatives of gG 00\sqrt{-g}G^{0}_{\ \ 0} are easily obtained:

𝒟1mELgε\,{}^{\rm EL}\!\mathcal{D}_{\partial_{1}m}\sqrt{-g}\varepsilon =\displaystyle= 1κ2EL𝒟1mgG 00\displaystyle\frac{1}{\kappa^{2}}\,^{\rm EL}\!\mathcal{D}_{\partial_{1}m}\sqrt{-g}G^{0}_{\ \ 0} (235)
=\displaystyle= gFBgAF1χ\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-\,^{\mathrm{B}}\!g}}{A_{\mathrm{F}}\partial_{1}\chi} (236)
=\displaystyle= gFg00g11AF1χ.\displaystyle\frac{\sqrt{\,{}^{\mathrm{F}}\!g}\sqrt{-g_{00}}\sqrt{g_{11}}}{A_{\mathrm{F}}\partial_{1}\chi}. (237)

The second line of Eq. (234) is arranged as

12g[εuρuσ+p(uρuσ+gρσ)]δgρσ\displaystyle\frac{1}{2}\sqrt{-g}\Big{[}\varepsilon u^{\rho}u^{\sigma}+p(u^{\rho}u^{\sigma}+g^{\rho\sigma})\Big{]}\delta g_{\rho\sigma} (238)
=static\displaystyle\overset{\mathrm{static}}{=} 12g[εg00δg00+pg11δg11+pgijδgij]\displaystyle\frac{1}{2}\sqrt{-g}\Big{[}-\varepsilon g^{00}\delta g_{00}+pg^{11}\delta g_{11}+pg^{ij}\delta g_{ij}\Big{]}
=\displaystyle= 12g[εBg00δBg00+pBg11δBg11+pχ2gijFδ(χ2gijF)]\displaystyle\frac{1}{2}\sqrt{-g}\Big{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\delta\,^{\mathrm{B}}\!g_{11}+p\chi^{-2}\,{}^{\mathrm{F}}\!g^{ij}\delta\big{(}\chi^{2}\,{}^{\mathrm{F}}\!g_{ij}\big{)}\Big{]}
=\displaystyle= 12g[εBg00δBg00+pBg11δBg11+(d2)pχ2δ(χ2)]\displaystyle\frac{1}{2}\sqrt{-g}\Big{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\delta\,^{\mathrm{B}}\!g_{11}+(d-2)p\chi^{-2}\delta\big{(}\chi^{2}\big{)}\Big{]}
(245)
=\displaystyle= 12g[εBg00δBg00+pBg11(Bg11mδm+Bg11χδχ+Bg111χδ1χ)\displaystyle\frac{1}{2}\sqrt{-g}\bigg{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\bigg{(}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial m}\delta m+\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\chi}\delta\chi+\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\partial_{1}\chi}\delta\partial_{1}\chi\bigg{)}
+2(d2)pχ1δχ]\displaystyle+2(d-2)p\chi^{-1}\delta\chi\bigg{]}
=\displaystyle= 12g[εBg00δBg00+pBg11(Bg11mδm+Bg11χδχ)+2(d2)pχ1δχ]\displaystyle\frac{1}{2}\sqrt{-g}\bigg{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\bigg{(}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial m}\delta m+\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\chi}\delta\chi\bigg{)}+2(d-2)p\chi^{-1}\delta\chi\bigg{]}
1(12gpBg11Bg111χ)δχ+1(12gpBg11Bg111χδχ)\displaystyle-\partial_{1}\bigg{(}\frac{1}{2}\sqrt{-g}p\,^{\mathrm{B}}\!g^{11}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\partial_{1}\chi}\bigg{)}\delta\chi+\partial_{1}\bigg{(}\frac{1}{2}\sqrt{-g}p\,^{\mathrm{B}}\!g^{11}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\partial_{1}\chi}\delta\chi\bigg{)}
=\displaystyle= 12g[εBg00δBg00+pBg11(Bg11mδm+Bg11χδχ)+2(d2)pχ1δχ]\displaystyle\frac{1}{2}\sqrt{-g}\bigg{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\bigg{(}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial m}\delta m+\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\chi}\delta\chi\bigg{)}+2(d-2)p\chi^{-1}\delta\chi\bigg{]}
1(gp1χ)δχ+1(gp1χδχ)\displaystyle-\partial_{1}\bigg{(}\frac{\sqrt{-g}p}{\partial_{1}\chi}\bigg{)}\delta\chi+\partial_{1}\bigg{(}\frac{\sqrt{-g}p}{\partial_{1}\chi}\delta\chi\bigg{)}
=\displaystyle= 12g[εBg00δBg00+pBg11(Bg11mδm+Bg11χδχ)+2(d2)pχ1δχ]\displaystyle\frac{1}{2}\sqrt{-g}\bigg{[}-\varepsilon\,^{\mathrm{B}}\!g^{00}\delta\,^{\mathrm{B}}\!g_{00}+p\,^{\mathrm{B}}\!g^{11}\bigg{(}\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial m}\delta m+\frac{\partial\,^{\mathrm{B}}\!g_{11}}{\partial\chi}\delta\chi\bigg{)}+2(d-2)p\chi^{-1}\delta\chi\bigg{]}
1(gp1χ)δχ+1(t0n11χγpδχ)\displaystyle-\partial_{1}\bigg{(}\frac{\sqrt{-g}p}{\partial_{1}\chi}\bigg{)}\delta\chi+\partial_{1}\bigg{(}-t_{0}\frac{n_{1}}{\partial_{1}\chi}\sqrt{\gamma}p\delta\chi\bigg{)}

The variation of the total entropy δS\delta S of the system that satisfies the field equations is

δS+λ0δN\displaystyle\delta S+\lambda_{0}\delta N =\displaystyle= 𝒱dd2xu0T(1κ2EL𝒟1mgG 00δmt0n11χγpδχ)\displaystyle\oint_{\partial\mathcal{V}}{\mathrm{d}}^{d-2}x\frac{u^{0}}{T}\bigg{(}-\frac{1}{\kappa^{2}}\,^{\rm EL}\!\mathcal{D}_{\partial_{1}m}\sqrt{-g}G^{0}_{\ \ 0}\cdot\delta m-t_{0}\frac{n_{1}}{\partial_{1}\chi}\sqrt{\gamma}p\delta\chi\bigg{)} (246)
=static\displaystyle\overset{\mathrm{static}}{=} 𝒱dd2xu0T(t0)n11χ(gFAFδm+pγδχ)\displaystyle\oint_{\partial\mathcal{V}}{\mathrm{d}}^{d-2}x\frac{u^{0}}{T}(-t_{0})\frac{n_{1}}{\partial_{1}\chi}\bigg{(}\frac{\sqrt{\,{}^{\mathrm{F}}\!g}}{A_{\mathrm{F}}}\delta m+p\sqrt{\gamma}\delta\chi\bigg{)}
=static\displaystyle\overset{\mathrm{static}}{=} (n1T1χδm+n1T1χAFχd2pδχ)|𝒱\displaystyle\bigg{(}\frac{n_{1}}{T\partial_{1}\chi}\delta m+\frac{n_{1}}{T\partial_{1}\chi}A_{\mathrm{F}}\chi^{d-2}p\delta\chi\bigg{)}\bigg{|}_{\partial\mathcal{V}} (247)
=:\displaystyle=: 1Tglobalδm|𝒱+AFχd2TglobalPglobalδχ|𝒱.\displaystyle\frac{1}{T_{\rm global}}\delta m|_{\partial\mathcal{V}}+\frac{A_{\mathrm{F}}\chi^{d-2}}{T_{\rm global}}P_{\rm global}\delta\chi|_{\partial\mathcal{V}}. (248)

The globally defied temperature TglobalT_{\rm global} and pressure PglobalP_{\rm global} are

Tglobal\displaystyle T_{\rm global} =\displaystyle= 1χn1T|𝒱\displaystyle\frac{\partial_{1}\chi}{n_{1}}T\bigg{|}_{\partial\mathcal{V}} (249)
Pglobal\displaystyle P_{\rm global} =\displaystyle= p|𝒱.\displaystyle p|_{\partial\mathcal{V}}. (250)

For example, in general relativity without the cosmological constatn in 44-dimensional spacetime, a(0)=0,a(1)=1,a(2)==0a_{(0)}=0,\ a_{(1)}=1,a_{(2)}=\cdots=0, d=4d=4, AF=4πA_{\mathrm{F}}=4\pi, and κ2=8π\kappa^{2}=8\pi,

g11\displaystyle g_{11} =static\displaystyle\overset{\mathrm{static}}{=} (1χ)2(12mχ)1.\displaystyle(\partial_{1}\chi)^{2}\bigg{(}1-\frac{2m}{\chi}\bigg{)}^{-1}. (251)

The global temperature and pressure in general relativity are

TglobalGR\displaystyle T_{\rm global}^{\rm GR} =\displaystyle= [(12mχ)1/2T]|𝒱\displaystyle\Bigg{[}\bigg{(}1-\frac{2m}{\chi}\bigg{)}^{1/2}T\Bigg{]}\Bigg{|}_{\partial\mathcal{V}} (252)
PglobalGR\displaystyle P_{\rm global}^{\rm GR} =\displaystyle= p|𝒱.\displaystyle p|_{\partial\mathcal{V}}. (253)

6 Constraints on the Lagrangian

In this section, we determine the form of the Lagrangian supposing following two assumptions:

  1. 1.

    The variation of the entropy δS\delta S is represented by a linear combination of the variations of a conserved energy δM~\delta\tilde{M}, the particle number δN~\delta\tilde{N}, and the size of the system δχ~\delta\tilde{\chi} in the kinematical geometry.

  2. 2.

    The uniform rescaling of the kinematical volume element with the thermodynamical geometry fixed, namely

    ηη+a,a=const.\displaystyle\eta\rightarrow\eta+a,\ \ \ \ \ \ a={\rm const.} (254)
    gμνgμν\displaystyle g_{\mu\nu}\rightarrow g_{\mu\nu} (255)

    does not affect the dynamics of the fields in vacuum resion.

In the previous section, we saw that the Lovelock theory satisfies the assumption 1. However, the assumption 2 is not satisfied, due to the dependence of the uniform rescaling of Lovelock’s Lagrangian L(n)L_{(n)} on their order nn, i.e.,

L(n)e2naL(n).\displaystyle L_{(n)}\rightarrow e^{-2na}L_{(n)}. (256)

Therefore, the gravitational part of the Lagrangian should be one of nn-th order Lovelock’s Lagrangians. In this work, we adopt the 11st order, namely the Einstein-Hilbert Lagrangian RR.

Let us consider the Lagrangian including AμA_{\mu}, η\eta, and φ\varphi. For satisfying the assumption 2, the Lagrangian should be written in the form

=1κ2ekη𝒦[gμν,Aμ,μη,φ],\displaystyle\mathcal{L}=\frac{1}{\kappa^{2}}e^{k\eta}\mathcal{K}[g^{\mu\nu},A_{\mu},\partial_{\mu}\eta,\varphi], (257)

so that the rescaling of ε\varepsilon and nn

gε\displaystyle\sqrt{-g}\varepsilon =\displaystyle= 1κ2uρuσeη𝒟gρσEL[gekη𝒦]\displaystyle-\frac{1}{\kappa^{2}}u^{\rho}u^{\sigma}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\rho\sigma}}[\sqrt{-g}e^{k\eta}\mathcal{K}] (258)
\displaystyle\rightarrow e(k1)aκ2uρuσeη𝒟gρσEL[gekη𝒦]\displaystyle-\frac{e^{(k-1)a}}{\kappa^{2}}u^{\rho}u^{\sigma}e^{-\eta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\rho\sigma}}[\sqrt{-g}e^{k\eta}\mathcal{K}] (259)
gn\displaystyle\sqrt{-g}n =\displaystyle= 1qκ2uρEL𝒟Aρ[gekη𝒦]\displaystyle\frac{1}{q\kappa^{2}}u_{\rho}\,^{\rm EL}\!\mathcal{D}_{A_{\rho}}[\sqrt{-g}e^{k\eta}\mathcal{K}] (260)
\displaystyle\rightarrow ekaqκ2uρEL𝒟Aρ[gekη𝒦]\displaystyle\frac{e^{ka}}{q\kappa^{2}}u_{\rho}\,^{\rm EL}\!\mathcal{D}_{A_{\rho}}[\sqrt{-g}e^{k\eta}\mathcal{K}] (261)

can be canceled by re-defining the gravitational constant κ2\kappa^{2} and electrical charge density qq, such as κ2=κ02e(k1)η0\kappa^{2}=\kappa^{2}_{0}e^{(k-1)\eta_{0}}, q=q0eη0q=q_{0}e^{\eta_{0}}, and η0\eta_{0} is the value of η\eta at an arbitrary point.

Imposing the U(1)U(1) gauge invariance (369) and (370), Noether’s identity (383) shows that the conservation law of NN demands the field η\eta to be electrically neutral. The following Lagrangian density satisfies all the demands:

=1κ2e(d2)η(R14FμνFμν+ωμημηDμφDμφ),\displaystyle\mathcal{L}=\frac{1}{\kappa^{2}}e^{(d-2)\eta}\bigg{(}R-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\omega\partial_{\mu}\eta\partial^{\mu}\eta-D_{\mu}\varphi D^{\mu}\varphi\bigg{)}, (262)

where Dμφ:=(μieφAμ)φD_{\mu}\varphi:=(\partial_{\mu}-ie_{\varphi}A_{\mu})\varphi is the gauge covariant derivative.

Under the conformal transformation (142), the scalar curvature RR transforms into

R=e2η[R~+2(d1)~2η(d2)(d1)μη~μη],\displaystyle R=e^{2\eta}\Big{[}\tilde{R}+2(d-1)\tilde{\nabla}^{2}\eta-(d-2)(d-1)\partial_{\mu}\eta\tilde{\partial}^{\mu}\eta\Big{]}, (263)

and the Lagrangian density in thermodynamical frame (262) into kinematical frame as

g\displaystyle\sqrt{-g}\mathcal{L} =\displaystyle= 1κ2g~[R~+2(d1)~2η(d2)(d1)μη~μη\displaystyle\frac{1}{\kappa^{2}}\sqrt{-\tilde{g}}\bigg{[}\tilde{R}+2(d-1)\tilde{\nabla}^{2}\eta-(d-2)(d-1)\partial_{\mu}\eta\tilde{\partial}^{\mu}\eta (265)
14e2ηFμνF~μν+ωg~μνμηνηg~μνDμφDνφ]\displaystyle-\frac{1}{4}e^{2\eta}F_{\mu\nu}\tilde{F}^{\mu\nu}+\omega\tilde{g}^{\mu\nu}\partial_{\mu}\eta\partial_{\nu}\eta-\tilde{g}^{\mu\nu}D_{\mu}\varphi D_{\nu}\varphi\bigg{]}
=\displaystyle= 1κ2g~{R~14e2ηFμνF~μν+[ω(d2)(d1)]μη~μηDμφD~μφ}\displaystyle\frac{1}{\kappa^{2}}\sqrt{-\tilde{g}}\bigg{\{}\tilde{R}-\frac{1}{4}e^{2\eta}F_{\mu\nu}\tilde{F}^{\mu\nu}+\big{[}\omega-(d-2)(d-1)\big{]}\partial_{\mu}\eta\tilde{\partial}^{\mu}\eta-D_{\mu}\varphi\tilde{D}^{\mu}\varphi\bigg{\}}
+μ[2(d1)g~~μη].\displaystyle+\partial_{\mu}\Big{[}2(d-1)\sqrt{-\tilde{g}}\tilde{\partial}^{\mu}\eta\Big{]}.

Omitting the total derivative, the Lagrangian density in kinematical frame g~~\sqrt{-\tilde{g}}\mathcal{\tilde{L}} satisfying the assumption 1 and 2 is written by

g~~=1κ2g~{R~14e2ηFμνF~μν+[ω(d2)(d1)]μη~μηDμφD~μφ}.\displaystyle\sqrt{-\tilde{g}}\mathcal{\tilde{L}}=\frac{1}{\kappa^{2}}\sqrt{-\tilde{g}}\bigg{\{}\tilde{R}-\frac{1}{4}e^{2\eta}F_{\mu\nu}\tilde{F}^{\mu\nu}+\big{[}\omega-(d-2)(d-1)\big{]}\partial_{\mu}\eta\tilde{\partial}^{\mu}\eta-D_{\mu}\varphi\tilde{D}^{\mu}\varphi\bigg{\}}.

7 Conclusion and discussion

We calculate the first order variation of the entropy of a self-interacting system using only the first law of thermodynamics (12), the Gibbs-Duhem relation (13), and Noether’s theorem for the invariance of the coordinate and U(1)U(1) gauge transformations. We find that as long as there exists a Lagrangian density \mathcal{L} and the ordinary constraint relation

gε=uμuν𝒟gμνELg\displaystyle\sqrt{-g}\varepsilon=-u^{\mu}u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{L} (267)

is imposed, every stationary state satisfying the following ordinary field equations for a charged perfect fluid

δε=Tδs+μδn\displaystyle\delta\varepsilon=T\delta s+\mu\delta n (268)
Ts+μn=ε+p\displaystyle Ts+\mu n=\varepsilon+p (269)
𝒟gμνELg=g[εuμuν+p(uμuν+gμν)]\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{L}=\sqrt{-g}\Big{[}\varepsilon u_{\mu}u_{\nu}+p(u_{\mu}u_{\nu}+g_{\mu\nu})\Big{]} (270)
𝒟AμELg=guμqn\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{L}=\sqrt{-g}u^{\mu}qn (271)
𝒟φELg=0\,{}^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{L}=0 (272)

maximizes the total entropy under appropriate boundary conditions, no matter what the form of the Lagrangian density \mathcal{L} that depends on gμνg^{\mu\nu}, AμA_{\mu}, φ\varphi, and uμu^{\mu}. Therefore, the compatibility between ordinary field equations (268) - (272) and the maximum entropy principle requires a physical necessity for the constraint relation (267) to hold.

Further, enlarging the region of the constraint relation to

gε=eηuμuν𝒟gμνELg,\displaystyle\sqrt{-g}\varepsilon=-e^{-\eta}u^{\mu}u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{L}, (273)

and varying the additional field η\eta independently, we find that the modified field equations (84) - (87) maximize the entropy of the stationary states, instead a force-free fluid do not flow along the geodesic orbits for gμνg_{\mu\nu} so that another geometry g~μν\tilde{g}_{\mu\nu}, the kinematical geometry, should be introduced. The kinematical geometry g~μν\tilde{g}_{\mu\nu} and the originally introduced thermodynamical geometry gμνg_{\mu\nu} are related by the following conformal transformation

g~μν=e2ηgμν.\tilde{g}_{\mu\nu}=e^{2\eta}g_{\mu\nu}.

In the kinematical geometry, the modified field equations (84) - (87) transform into

δε~=Tδs~pδv~+μδn~\displaystyle\delta\tilde{\varepsilon}=T\delta\tilde{s}-p\delta\tilde{v}+\mu\delta\tilde{n} (274)
Ts~+μn~=ε~+pv~\displaystyle T\tilde{s}+\mu\tilde{n}=\tilde{\varepsilon}+p\tilde{v} (275)
𝒟g~μνELg~~=g~[ε~u~μu~ν+pv~(u~μu~ν+g~μν)]\,{}^{\rm EL}\!\mathcal{D}_{\tilde{g}^{\mu\nu}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}=\sqrt{-\tilde{g}}\Big{[}\tilde{\varepsilon}\tilde{u}_{\mu}\tilde{u}_{\nu}+p\tilde{v}(\tilde{u}_{\mu}\tilde{u}_{\nu}+\tilde{g}_{\mu\nu})\Big{]} (276)
𝒟AμELg~~=g~u~μqn~\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}=\sqrt{-\tilde{g}}\tilde{u}^{\mu}q\tilde{n} (277)
𝒟ηELg~~=2(d1)g~pv~\,{}^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}=2(d-1)\sqrt{-\tilde{g}}p\tilde{v} (278)
𝒟φELg~~=0,\,{}^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-\tilde{g}}\mathcal{\tilde{L}}=0, (279)

where v~=e(d1)η\tilde{v}=e^{-(d-1)\eta} is interpreted as the (thermodynamical) volume density measured by the kinematical volume element.

Concrete calculations show that the variation of the entropy in the Lovelock theory of gravity is expressed by a linear combination of the variations of the generalized Kodama energy and the size of the system. Further, demanding that uniform rescaling the volume density v~\tilde{v} with the thermodynamical geometry gμνg_{\mu\nu} fixed should not affect the dynamics of the fields in vacuum region, the appropriate form of Lagrangian density is determined and expressed in the thermodynamical frame as

=1κ2e(d2)η(R14FμνFμν+ωμημηDμφDμφ),\displaystyle\mathcal{L}=\frac{1}{\kappa^{2}}e^{(d-2)\eta}\bigg{(}R-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\omega\partial_{\mu}\eta\partial^{\mu}\eta-D_{\mu}\varphi D^{\mu}\varphi\bigg{)}, (280)

and in the kinematical frame as

~=1κ2{R~14e2ηFμνF~μν+[ω(d2)(d1)]μη~μηDμφD~μφ}.\displaystyle\mathcal{\tilde{L}}=\frac{1}{\kappa^{2}}\bigg{\{}\tilde{R}-\frac{1}{4}e^{2\eta}F_{\mu\nu}\tilde{F}^{\mu\nu}+\big{[}\omega-(d-2)(d-1)\big{]}\partial_{\mu}\eta\tilde{\partial}^{\mu}\eta-D_{\mu}\varphi\tilde{D}^{\mu}\varphi\bigg{\}}.

Including an anti-symmetric tensor BμνB_{\mu\nu} is straightforward. It is strange and interesting that these Lagrangians (280) and (7) for ω=(d2)2\omega=(d-2)^{2} are analogous to the low energy effective theories of bosonic string [14] for the critical dimension, namely d=26d=26, in the string frame and Einstein frame, respectively, and the field η\eta corresponds to the dilaton field Φ\Phi, even though there is no direct relationship between the two. In string theory, the dilaton action is obtained by requiring the quantum conformal anomaly of the Polyakov action on world sheet to vanish. This analogy implies that the maximum entropy principle in a spacetime be related to the quantum conformal symmetry of the Polyakov action of wold sheet embedded into the spacetime as the background geometry.

The field equations (274) - (279) are strange but have some desirable eatures. The existence of a source term proportional to Gibbs’s free energy density pv~p\tilde{v} in Eq. (278) leads some interesting properties for application to cosmology and black hole physics. First, in application to cosmology, since the source term of Eq. (278) can lead acceleration of expansion of universe, it may explain the data of cosmological observations without introducing dark energy, the cosmological constant, nor inhomogeneity of universe. Second, in application to black hole physics, the non zero source term in Eq. (278) leads an irremovable scalar hair around a black hole, so that the uniqueness theorem, or so-called no-hair theorem [15, 16, 17] prevents the black hole from being spherically symmetric and static, i.e., a black hole has no spherically symmetric and static state. This can be rephrased as follows: in the theories that respect the maximal entropy principle, a spherically symmetric and static black hole, for example a Schwarzchild black hole, has a kind of instability to thermal fluctuations.

Acknowledgements

The author would like to thank all who supported this research and gave me fruitful discussions.

Appendix A The homogeneity of the extensive quantities

Consider a (d1)(d-1)-dimensional region Ω\Omega whose length scale is sufficiently small than that of the field configuration. The thermodynamical volume of Ω\Omega, measured by gμνg_{\mu\nu}, is ΔV\Delta V. Since the entropy ΔS\Delta S, energy ΔE\Delta E, and particle number ΔN\Delta N are extensive quantities, they are represented by the products of their densities and ΔV\Delta V, namely, ΔS=sΔV\Delta S=s\Delta V, ΔE=εΔV\Delta E=\varepsilon\Delta V, and ΔN=nΔV\Delta N=n\Delta V. The entropy ΔS\Delta S is a function of ΔE\Delta E, ΔN\Delta N, and ΔV\Delta V, i.e.,

ΔS\displaystyle\Delta S =\displaystyle= ΔS(ΔE,ΔN,ΔV)\displaystyle\Delta S(\Delta E,\Delta N,\Delta V) (282)
=\displaystyle= s(ΔE/ΔV,ΔN/ΔV)ΔV.\displaystyle s(\Delta E/\Delta V,\Delta N/\Delta V)\,\Delta V. (283)

Thus, the function s(ε,n)s(\varepsilon,n) is represented by

s(ε,n)=1ΔVΔS(εΔV,nΔV,ΔV).\displaystyle s(\varepsilon,n)=\frac{1}{\Delta V}\Delta S(\varepsilon\Delta V,n\Delta V,\Delta V). (284)

From the definitions of TT and μ\mu, namely Eq. (9) and (10),

ΔSΔE=sε=1T\displaystyle\frac{\partial\Delta S}{\partial\Delta E}=\frac{\partial s}{\partial\varepsilon}=\frac{1}{T} (285)
ΔSΔN=sn=μT.\displaystyle\frac{\partial\Delta S}{\partial\Delta N}=\frac{\partial s}{\partial n}=-\frac{\mu}{T}. (286)

The equation (283) shows that the function ΔS(ΔE,ΔN,ΔV)\Delta S(\Delta E,\Delta N,\Delta V) is a homogeneous function of degree 11.

a,aΔS(ΔE,ΔN,ΔV)=ΔS(aΔE,aΔN,aΔV).\displaystyle\forall a\in\mathbb{R},\ \ \ \ \ \ a\Delta S(\Delta E,\Delta N,\Delta V)=\Delta S(a\Delta E,a\Delta N,a\Delta V). (287)

The entropy density s(ε,n)s(\varepsilon,n) is written by

s(ε,n)=ΔS(ε,n,1).\displaystyle s(\varepsilon,n)=\Delta S(\varepsilon,n,1). (288)

Conversely, it is necessary for constructing s(ε,n)s(\varepsilon,n) that the function ΔS(ΔE,ΔN,ΔV)\Delta S(\Delta E,\Delta N,\Delta V) is homogeneous of degree 11. Therefore, the homogeneity of ΔS(ΔE,ΔN,ΔV)\Delta S(\Delta E,\Delta N,\Delta V) is a necessary and sufficient condition of the extensiveness of ss, ε\varepsilon, and nn.

Differentiating Eq. (287) with respect to aa and substituting a=1a=1, one obtains following relation:

ΔS\displaystyle\Delta S =\displaystyle= ΔSΔEΔE+ΔSΔNΔN+ΔSΔVΔV\displaystyle\frac{\partial\Delta S}{\partial\Delta E}\Delta E+\frac{\partial\Delta S}{\partial\Delta N}\Delta N+\frac{\partial\Delta S}{\partial\Delta V}\Delta V (289)
=\displaystyle= 1TΔEμTΔN+ΔSΔVΔV.\displaystyle\frac{1}{T}\Delta E-\frac{\mu}{T}\Delta N+\frac{\partial\Delta S}{\partial\Delta V}\Delta V. (290)

Dividing by ΔV\Delta V and multiplying TT,

Ts+μn=ε+TΔSΔV.\displaystyle Ts+\mu n=\varepsilon+T\frac{\partial\Delta S}{\partial\Delta V}. (291)

Comparing Eq. (291) with the definition of pp, namely Eq. (11),

ΔSΔV=pT.\displaystyle\frac{\partial\Delta S}{\partial\Delta V}=\frac{p}{T}. (292)

From Eq. (290) and (292),

ΔS=1TΔEμTΔN+pTΔV.\displaystyle\Delta S=\frac{1}{T}\Delta E-\frac{\mu}{T}\Delta N+\frac{p}{T}\Delta V. (293)

This is the first law of thermodynamics. Therefore, the definition of pp, Eq. (11) is equivalent to the first law.

Appendix B Noether’s second theorem

In this section, Noether’s theorem [18] for arbitrarily high order derivative is presented.

B.1 Coordinate transformation

Consider the infinitesimal coordinate transformation

yμ=xμ+δ~xμ.\displaystyle y^{\mu}=x^{\mu}+\tilde{\delta}x^{\mu}. (294)

We use the symbol δ~\tilde{\delta} for the difference between the values of fields at the same wold point, and the symbol δ\delta for that of the values at the same two points whose values of the coordinates coincide, i.e.,

δ~f(x)\displaystyle\tilde{\delta}f(x) :=\displaystyle:= f(y)f(x)\displaystyle f^{\prime}(y)-f(x) (295)
=\displaystyle= δf(x)+(μf(x))δ~xμ\displaystyle\delta f(x)+\big{(}\partial_{\mu}f(x)\big{)}\tilde{\delta}x^{\mu} (296)

and

δf(x):=f(x)f(x).\displaystyle\delta f(x):=f^{\prime}(x)-f(x). (297)

The operator μ\partial_{\mu} commutes with δ\delta, whereas does not with δ~\tilde{\delta}:

μδfδμf\displaystyle\partial_{\mu}\delta f-\delta\partial_{\mu}f =\displaystyle= 0\displaystyle 0 (298)
μδ~fδ~μf\displaystyle\partial_{\mu}\tilde{\delta}f-\tilde{\delta}\partial_{\mu}f =\displaystyle= (νf)μδ~xν.\displaystyle(\partial_{\nu}f)\partial_{\mu}\tilde{\delta}x^{\nu}. (299)

The commutator of μ\partial_{\mu} and δ~\tilde{\delta} is

[μ,δ~]=(μδ~xν)ν.\displaystyle\big{[}\partial_{\mu},\tilde{\delta}\big{]}=(\partial_{\mu}\tilde{\delta}x^{\nu})\partial_{\nu}. (300)

The commutator of μ1μk\partial_{\mu_{1}}\cdots\partial_{\mu_{k}} and δ~\tilde{\delta} is calculated as

[μ1μk,δ~]f\displaystyle\big{[}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}},\tilde{\delta}\big{]}f =\displaystyle= l=1kμ1μl1[μl,δ~]μl+1μkf\displaystyle\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\big{[}\partial_{\mu_{l}},\tilde{\delta}\big{]}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}f (301)
=\displaystyle= l=1kμ1μl1[(μlδ~xν)νμl+1μkf].\displaystyle\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}f\Big{]}. (302)

The infinitesimal coordinate transformation of scalar φ\varphi, covariant vector AμA_{\mu}, contravariant vector uμu^{\mu}, 22-th order symmetric cotravariant tensor gμνg^{\mu\nu}, and 22-th order anti-symmetric covariant tensor BμνB_{\mu\nu} at the same world point are

δ~φ\displaystyle\tilde{\delta}\varphi =\displaystyle= 0\displaystyle 0 (303)
δ~Aμ\displaystyle\tilde{\delta}A_{\mu} =\displaystyle= Aρ(μδ~xρ)\displaystyle-A_{\rho}(\partial_{\mu}\tilde{\delta}x^{\rho}) (304)
δ~uμ\displaystyle\tilde{\delta}u^{\mu} =\displaystyle= uρ(ρδ~xμ)\displaystyle u^{\rho}(\partial_{\rho}\tilde{\delta}x^{\mu}) (305)
δ~gμν\displaystyle\tilde{\delta}g^{\mu\nu} =\displaystyle= gρν(ρδ~xμ)+gμρ(ρδ~xν)\displaystyle g^{\rho\nu}(\partial_{\rho}\tilde{\delta}x^{\mu})+g^{\mu\rho}(\partial_{\rho}\tilde{\delta}x^{\nu}) (306)
δ~Bμν\displaystyle\tilde{\delta}B_{\mu\nu} =\displaystyle= Bρν(μδ~xρ)Bμρ(νδ~xρ).\displaystyle-B_{\rho\nu}(\partial_{\mu}\tilde{\delta}x^{\rho})-B_{\mu\rho}(\partial_{\nu}\tilde{\delta}x^{\rho}). (307)

The transformation of their kk-th order derivatives are calculated by differentiating Eqs. (303) - (307) and using the comutator (302):

δ~μ1μkφ\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi (308)
=\displaystyle= l=1kμ1μl1[(μlδ~xν)νμl+1μkφ]\displaystyle-\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}\varphi\Big{]}
=\displaystyle= l=1k(νμ1l1l+1μkφ)μlδ~xν+\displaystyle-\sum_{l=1}^{k}\big{(}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}\varphi\big{)}\partial_{\mu_{l}}\tilde{\delta}x^{\nu}+\cdots (309)
=\displaystyle= l=1k(νμ1l1l+1μkφ)δμlμμδ~xν+,\displaystyle-\sum_{l=1}^{k}\big{(}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}\varphi\big{)}\delta^{\mu}_{\mu_{l}}\partial_{\mu}\tilde{\delta}x^{\nu}+\cdots, (310)
δ~μ1μkAα\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}A_{\alpha} (315)
=\displaystyle= j=0k(kj)(μj+1μkAγ)μ1μjαδ~xγ\displaystyle-\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}A_{\gamma})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\alpha}\tilde{\delta}x^{\gamma}
l=1kμ1μl1[(μlδ~xν)νμl+1μkAα]\displaystyle-\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}A_{\alpha}\Big{]}
=\displaystyle= [δαμ(μ1μkAν)+l=1k(νμ1l1l+1μkAα)δμlμ]μδ~xν\displaystyle-\Big{[}\delta^{\mu}_{\alpha}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}A_{\nu})+\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}A_{\alpha})\delta^{\mu}_{\mu_{l}}\Big{]}\partial_{\mu}\tilde{\delta}x^{\nu}
+,\displaystyle+\cdots,
δ~μ1μkuα\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}u^{\alpha} (320)
=\displaystyle= j=0k(kj)(μj+1μkuγ)μ1μjγδ~xα\displaystyle\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}u^{\gamma})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\gamma}\tilde{\delta}x^{\alpha}
l=1kμ1μl1[(μlδ~xν)νμl+1μkuα]\displaystyle-\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}u^{\alpha}\Big{]}
=\displaystyle= [δνα(μ1μkuμ)l=1k(νμ1l1l+1μkuα)δμlμ]μδ~xν\displaystyle\Big{[}\delta_{\nu}^{\alpha}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}u^{\mu})-\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}u^{\alpha})\delta^{\mu}_{\mu_{l}}\Big{]}\partial_{\mu}\tilde{\delta}x^{\nu}
+,\displaystyle+\cdots,
δ~μ1μkgαβ\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\alpha\beta} (328)
=\displaystyle= j=0k(kj)(μj+1μkgγβ)μ1μjγδ~xα\displaystyle\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}g^{\gamma\beta})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\gamma}\tilde{\delta}x^{\alpha}
+j=0k(kj)(μj+1μkgαγ)μ1μjγδ~xβ\displaystyle+\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}g^{\alpha\gamma})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\gamma}\tilde{\delta}x^{\beta}
l=1kμ1μl1[(μlδ~xν)νμl+1μkgαβ]\displaystyle-\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}g^{\alpha\beta}\Big{]}
=\displaystyle= [δνα(μ1μkgμβ)+δνβ(μ1μkgαμ)l=1k(νμ1l1l+1μkgαβ)δμlμ]μδ~xν\displaystyle\Big{[}\delta^{\alpha}_{\nu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\mu\beta})+\delta^{\beta}_{\nu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\alpha\mu})-\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}g^{\alpha\beta})\delta^{\mu}_{\mu_{l}}\Big{]}\partial_{\mu}\tilde{\delta}x^{\nu}
+.\displaystyle+\cdots.
δ~μ1μkBαβ\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\alpha\beta} (336)
=\displaystyle= j=0k(kj)(μj+1μkBγβ)μ1μjαδ~xγ\displaystyle-\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}B_{\gamma\beta})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\alpha}\tilde{\delta}x^{\gamma}
j=0k(kj)(μj+1μkBαγ)μ1μjβδ~xγ\displaystyle-\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}B_{\alpha\gamma})\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\partial_{\beta}\tilde{\delta}x^{\gamma}
l=1kμ1μl1[(μlδ~xν)νμl+1μkBαβ]\displaystyle-\sum_{l=1}^{k}\partial_{\mu_{1}}\cdots\partial_{\mu_{l-1}}\Big{[}(\partial_{\mu_{l}}\tilde{\delta}x^{\nu})\partial_{\nu}\partial_{\mu_{l+1}}\cdots\partial_{\mu_{k}}B_{\alpha\beta}\Big{]}
=\displaystyle= [δαμ(μ1μkBνβ)+δβμ(μ1μkBαν)+l=1k(νμ1l1l+1μkBαβ)δμlμ]μδ~xν\displaystyle-\Big{[}\delta^{\mu}_{\alpha}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\nu\beta})+\delta^{\mu}_{\beta}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\alpha\nu})+\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}B_{\alpha\beta})\delta^{\mu}_{\mu_{l}}\Big{]}\partial_{\mu}\tilde{\delta}x^{\nu}
+,\displaystyle+\cdots,

where the last line of each equation is the term which is proportional to the least derivative, namely the first derivative, of δ~xν\tilde{\delta}x^{\nu}.

The infinitesimal transformation of dnx{\mathrm{d}}^{n}x is

dny=(1+μδ~xμ)dnx.\displaystyle{\mathrm{d}}^{n}y=\big{(}1+\partial_{\mu}\tilde{\delta}x^{\mu}\big{)}{\mathrm{d}}^{n}x. (337)

Consider an arbitrary scalar function \mathcal{F}. The infinitesimal transformation of the integral of g\sqrt{-g}\mathcal{F} over \mathcal{M} is arranged as

dnyg(y)dnxg(x)\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}y\sqrt{-g^{\prime}}\mathcal{F}^{\prime}(y)-\int_{\mathcal{M}}{\mathrm{d}}^{n}x\sqrt{-g}\mathcal{F}(x) (338)
=\displaystyle= dnx[δ~(g)+g(μδ~xμ)]\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\Big{[}\tilde{\delta}\big{(}\sqrt{-g}\mathcal{F}\big{)}+\sqrt{-g}\mathcal{F}\big{(}\partial_{\mu}\tilde{\delta}x^{\mu}\big{)}\Big{]} (339)
=\displaystyle= dnx[(g)fδ~f+(g)(μ1f)δ~μ1f++gμδ~xμ]\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\frac{\partial(\sqrt{-g}\mathcal{F})}{\partial f}\tilde{\delta}f+\frac{\partial(\sqrt{-g}\mathcal{F})}{\partial(\partial_{\mu_{1}}f)}\tilde{\delta}\partial_{\mu_{1}}f+\cdots+\sqrt{-g}\mathcal{F}\partial_{\mu}\tilde{\delta}x^{\mu}\bigg{]} (340)
=\displaystyle= dnx[(g)fδf+(g)(μ1f)δμ1f++μ(gδ~xμ)]\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\frac{\partial(\sqrt{-g}\mathcal{F})}{\partial f}\delta f+\frac{\partial(\sqrt{-g}\mathcal{F})}{\partial(\partial_{\mu_{1}}f)}\delta\partial_{\mu_{1}}f+\cdots+\partial_{\mu}\big{(}\sqrt{-g}\mathcal{F}\tilde{\delta}x^{\mu}\big{)}\bigg{]}
=\displaystyle= dnx[EL𝒟fgδf\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\cdot\delta f
+μ(k=0𝒟μμ1μkfELgδμ1μkf+gδ~xμ)]\displaystyle+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\delta\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f+\sqrt{-g}\mathcal{F}\tilde{\delta}x^{\mu}\bigg{)}\bigg{]}
=\displaystyle= dnx[EL𝒟fgδf\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\cdot\delta f
+μ(k=0𝒟μμ1μkfELgδ~μ1μkfgTνμ[g]δ~xν)]\displaystyle+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\tilde{\delta}x^{\nu}\bigg{)}\bigg{]}
=\displaystyle= dnx[EL𝒟fgδ~f(μf)EL𝒟fgδ~xμ\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}f-(\partial_{\mu}f)\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}x^{\mu}
+μ(k=0𝒟μμ1μkfELgδ~μ1μkfgTνμ[g]δ~xν)],\displaystyle+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\tilde{\delta}x^{\nu}\bigg{)}\bigg{]},

where Tνμ[g]T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}] is defined by

gTνμ[g]\displaystyle\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}] :=\displaystyle:= k=0𝒟μμ1μkfELgνμ1μkfgδνμ.\displaystyle\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f-\sqrt{-g}\mathcal{F}\delta^{\mu}_{\nu}.

When \mathcal{F} is the Lagrangian of a system, Tνμ[g]T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{L}] is called the canonical energy-momentum affine tensor.

B.2 Identities derived from the coordinate transformation invariance

Because the integral of a scalar density g\sqrt{-g}\mathcal{F} is invariant under any coordinate transformations, the integral (B.1) vanishes for arbitrary δ~xμ\tilde{\delta}x^{\mu}. When f={gαβ,Bαβ,Aα,uα,φ}f=\{g^{\alpha\beta},B_{\alpha\beta},A_{\alpha},u^{\alpha},\varphi\}, substituting555We use the symmetries gμν=gνμg^{\mu\nu}=g^{\nu\mu}, Bμν=BνμB_{\mu\nu}=-B_{\nu\mu}, and 𝒟gμνELg=EL𝒟gνμg\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{F}=\,^{\rm EL}\!\mathcal{D}_{g^{\nu\mu}}\sqrt{-g}\mathcal{F} 𝒟BμνELg=EL𝒟Bνμg.\,{}^{\rm EL}\!\mathcal{D}_{B_{\mu\nu}}\sqrt{-g}\mathcal{F}=-\,^{\rm EL}\!\mathcal{D}_{B_{\nu\mu}}\sqrt{-g}\mathcal{F}. Eqs. (303) - (307) into Eq. (B.1),

0\displaystyle 0 =\displaystyle= dnx{[ν(2gνβ𝒟gμβELg2BμβEL𝒟BνβgAμEL𝒟Aνg\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{\{}-\Big{[}\partial_{\nu}\Big{(}2g^{\nu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\beta}}\sqrt{-g}\mathcal{F}-2B_{\mu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\nu\beta}}\sqrt{-g}\mathcal{F}-A_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}
+uν𝒟uμELg)+(μf)EL𝒟fg]δ~xμ\displaystyle+u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\mu}}\sqrt{-g}\mathcal{F}\Big{)}+(\partial_{\mu}f)\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\Big{]}\tilde{\delta}x^{\mu}
+μ[(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle+\partial_{\mu}\bigg{[}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])δ~xν\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\tilde{\delta}x^{\nu}
+k=0𝒟μμ1μkfELgδ~μ1μkf]}\displaystyle+\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}\bigg{\}}
=\displaystyle= dnx[ν(2gνβ𝒟gμβELg2BμβEL𝒟BνβgAμEL𝒟Aνg\displaystyle-\int_{\mathcal{M}}{\mathrm{d}}^{n}x\Big{[}\partial_{\nu}\Big{(}2g^{\nu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\beta}}\sqrt{-g}\mathcal{F}-2B_{\mu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\nu\beta}}\sqrt{-g}\mathcal{F}-A_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}
+uν𝒟uμELg)+(μf)EL𝒟fg]δ~xμ\displaystyle+u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\mu}}\sqrt{-g}\mathcal{F}\Big{)}+(\partial_{\mu}f)\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\Big{]}\tilde{\delta}x^{\mu}
+(dn1x)μ[(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle+\oint_{\partial\mathcal{M}}({\mathrm{d}}^{n-1}x)_{\mu}\bigg{[}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])δ~xν+k=0𝒟μμ1μkfELgδ~μ1μkf].\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\tilde{\delta}x^{\nu}+\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}.

Consider a coordinate transformation such that δ~xμ=ν1δ~xμ=ν1ν2δ~xμ==0\tilde{\delta}x^{\mu}=\partial_{\nu_{1}}\tilde{\delta}x^{\mu}=\partial_{\nu_{1}}\partial_{\nu_{2}}\tilde{\delta}x^{\mu}=\cdots=0 on \partial\mathcal{M}, in other words, the third and fourth lines of (LABEL:deltaIntegral2b) vanish. Then, the square bracket in the first and second lines of (LABEL:deltaIntegral2b) should be identically 0, i.e.,

ν(2gνβ𝒟gμβELg2BμβEL𝒟BνβgAμEL𝒟Aνg+uν𝒟uμELg)\displaystyle\partial_{\nu}\Big{(}2g^{\nu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\beta}}\sqrt{-g}\mathcal{F}-2B_{\mu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\nu\beta}}\sqrt{-g}\mathcal{F}-A_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}+u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\mu}}\sqrt{-g}\mathcal{F}\Big{)}
+(μf)EL𝒟fg0.\displaystyle+(\partial_{\mu}f)\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\equiv 0.
(348)

Introducing the symbols EμνE_{\mu\nu}, E¯μν\bar{E}_{\mu\nu}, and FμνF_{\mu\nu} by

Eμν[g]\displaystyle E_{\mu\nu}[\sqrt{-g}\mathcal{F}] :=\displaystyle:= 1gEL𝒟gμνg\displaystyle\frac{1}{\sqrt{-g}}\,^{\rm EL}\!\mathcal{D}_{g^{\mu\nu}}\sqrt{-g}\mathcal{F} (349)
E¯μν[g]\displaystyle\bar{E}_{\mu\nu}[\sqrt{-g}\mathcal{F}] :=\displaystyle:= 1gEL𝒟¯gμνg\displaystyle\frac{1}{\sqrt{-g}}\,^{\rm EL}\!\bar{\mathcal{D}}_{g^{\mu\nu}}\sqrt{-g}\mathcal{F} (350)
=\displaystyle= Eμν[g]12guμuνuρ𝒟uρELg\displaystyle E_{\mu\nu}[\sqrt{-g}\mathcal{F}]-\frac{1}{2\sqrt{-g}}u_{\mu}u_{\nu}u^{\rho}\,{}^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{F} (351)
Fμν\displaystyle F_{\mu\nu} :=\displaystyle:= μAννAμ\displaystyle\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu} (352)
Hμνρ\displaystyle H_{\mu\nu\rho} :=\displaystyle:= ρBμν+νBρμ+μBνρ,\displaystyle\partial_{\rho}B_{\mu\nu}+\partial_{\nu}B_{\rho\mu}+\partial_{\mu}B_{\nu\rho}, (353)

and Using the relation for the covariant derivative of a symmetric tensor SμνS_{\mu\nu}

gνSμν=ν(gSμν)+g2(μgρσ)Sρσ,\displaystyle\sqrt{-g}\nabla_{\nu}S^{\nu}_{\mu}=\partial_{\nu}\Big{(}\sqrt{-g}S^{\nu}_{\mu}\Big{)}+\frac{\sqrt{-g}}{2}\big{(}\partial_{\mu}g^{\rho\sigma}\big{)}S_{\rho\sigma}, (354)

it is found that the identity (348) is equivalent to

2gνE¯μν[g]\displaystyle 2\sqrt{-g}\nabla_{\nu}\bar{E}^{\nu}_{\mu}[\sqrt{-g}\mathcal{F}]
\displaystyle\equiv 2Bμρν(EL𝒟νρg)HμνρEL𝒟νρg+Aμν(EL𝒟Aνg)FμνEL𝒟Aνg\displaystyle 2B_{\mu\rho}\partial_{\nu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{\nu\rho}\sqrt{-g}\mathcal{F}\Big{)}-H_{\mu\nu\rho}\,^{\rm EL}\!\mathcal{D}_{\nu\rho}\sqrt{-g}\mathcal{F}+A_{\mu}\partial_{\nu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}\Big{)}-F_{\mu\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}
ν[uν(uμuρ+δμρ)EL𝒟uρg][μuρ12(μgαβ)uαuβuρ]EL𝒟uρg\displaystyle-\partial_{\nu}\Big{[}u^{\nu}\big{(}u_{\mu}u^{\rho}+\delta^{\rho}_{\mu}\big{)}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{F}\Big{]}-\bigg{[}\partial_{\mu}u^{\rho}-\frac{1}{2}\big{(}\partial_{\mu}g_{\alpha\beta}\big{)}u^{\alpha}u^{\beta}u^{\rho}\bigg{]}\,^{\rm EL}\!\mathcal{D}_{u^{\rho}}\sqrt{-g}\mathcal{F}
(μφ)EL𝒟φg(μη)EL𝒟ηg,\displaystyle-(\partial_{\mu}\varphi)\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{F}-(\partial_{\mu}\eta)\,^{\rm EL}\!\mathcal{D}_{\eta}\sqrt{-g}\mathcal{F},

Substituting the identity (348) into Eq. (B.2),

0\displaystyle 0 =\displaystyle= dnxμ[(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\,\partial_{\mu}\bigg{[}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F} (357)
+uμ𝒟uνELggTνμ[g])δ~xν+k=0𝒟μμ1μkfELgδ~μ1μkf]\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\tilde{\delta}x^{\nu}+\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{]}
=\displaystyle= dnx[μ(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\,\bigg{[}\partial_{\mu}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])δ~xν\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\tilde{\delta}x^{\nu}
+(2gμβ𝒟gνβELg2BνβEL𝒟μβgAνEL𝒟Aμg\displaystyle+\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{\mu\beta}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])μδ~xν\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\partial_{\mu}\tilde{\delta}x^{\nu}
+μ(k=0𝒟μμ1μkfELgδ~μ1μkf)].\displaystyle+\partial_{\mu}\Big{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\Big{)}\bigg{]}.

Consider coordinate transformation such that ν1δ~xμ=ν1ν2δ~xμ==0\partial_{\nu_{1}}\tilde{\delta}x^{\mu}=\partial_{\nu_{1}}\partial_{\nu_{2}}\tilde{\delta}x^{\mu}=\cdots=0 on \mathcal{M}. Then, since δ~μ1μkf,k=0, 1, 2,\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f,\ \ \ k=0,\ 1,\ 2,\ \cdots do not contain δ~xν\tilde{\delta}x^{\nu}, the second and third line of (357) vanish. Therefore, the coefficient of δ~xν\tilde{\delta}x^{\nu} is identically 0, i.e.,

ν(2gνβ𝒟gμβELg2BμβEL𝒟νβgAμEL𝒟Aνg\displaystyle\partial_{\nu}\Big{(}2g^{\nu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\mu\beta}}\sqrt{-g}\mathcal{F}-2B_{\mu\beta}\,^{\rm EL}\!\mathcal{D}_{\nu\beta}\sqrt{-g}\mathcal{F}-A_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\nu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])0.\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\nu}[\sqrt{-g}\mathcal{F}]\Big{)}\equiv 0. (358)

Substituting identity (358) into Eq. (357),

0\displaystyle 0 =\displaystyle= dnx[(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\,\bigg{[}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F} (360)
+uμ𝒟uνELggTνμ[g])μδ~xν\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\partial_{\mu}\tilde{\delta}x^{\nu}
+μ(k=0𝒟μμ1μkfELgδ~μ1μkf)]\displaystyle+\partial_{\mu}\Big{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\Big{)}\bigg{]}
=\displaystyle= dnx[(2gμβ𝒟gνβELg2BνβEL𝒟BμβgAνEL𝒟Aμg\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\,\bigg{[}\Big{(}2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\nu\beta}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}
+uμ𝒟uνELggTνμ[g])μδ~xν\displaystyle+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}\partial_{\mu}\tilde{\delta}x^{\nu}
+ρ(Ωνρμ[g]μδ~xν+Ξνρμ1μ2[g]μ1μ2δ~xν+)].\displaystyle+\partial_{\rho}\Big{(}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}]\partial_{\mu}\tilde{\delta}x^{\nu}+\Xi^{\rho\mu_{1}\mu_{2}}_{\ \ \ \ \ \ \ \nu}[\sqrt{-g}\mathcal{F}]\partial_{\mu_{1}}\partial_{\mu_{2}}\tilde{\delta}x^{\nu}+\cdots\Big{)}\bigg{]}.

From Eqs. (308) - (336), the coefficients, Ωνρμ\Omega^{\rho\mu}_{\ \ \ \nu}, Ξνρμ1μ2\Xi^{\rho\mu_{1}\mu_{2}}_{\ \ \ \ \ \ \ \nu}, \cdots, can be calculated. For example, Ωνρμ\Omega^{\rho\mu}_{\ \ \ \nu} is written explicitly:

Ωνρμ[g]\displaystyle\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}] (361)
=\displaystyle= k=0{[δνα(μ1μkgμβ)+δνβ(μ1μkgαμ)\displaystyle\sum_{k=0}^{\infty}\Bigg{\{}\Big{[}\delta^{\alpha}_{\nu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\mu\beta})+\delta^{\beta}_{\nu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\alpha\mu})
l=1k(νμ1l1l+1μkgαβ)δμlμ]EL𝒟ρμ1μkgαβg\displaystyle\ \ \ \ \ \ \ \ \ \ -\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}g^{\alpha\beta})\delta^{\mu}_{\mu_{l}}\Big{]}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}g^{\alpha\beta}}\sqrt{-g}\mathcal{F}
+[δαμ(μ1μkBνβ)δβμ(μ1μkBαν)\displaystyle+\Big{[}-\delta_{\alpha}^{\mu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\nu\beta})-\delta_{\beta}^{\mu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\alpha\nu})
l=1k(νμ1l1l+1μkBαβ)δμlμ]EL𝒟ρμ1μkBαβg\displaystyle\ \ \ \ \ \ \ \ \ \ -\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}B_{\alpha\beta})\delta^{\mu}_{\mu_{l}}\Big{]}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}B_{\alpha\beta}}\sqrt{-g}\mathcal{F}
+[δαμ(μ1μkAν)l=1k(νμ1l1l+1μkAα)δμlμ]EL𝒟ρμ1μkAαg\displaystyle+\Big{[}-\delta^{\mu}_{\alpha}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}A_{\nu})-\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}A_{\alpha})\delta^{\mu}_{\mu_{l}}\Big{]}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}A_{\alpha}}\sqrt{-g}\mathcal{F}
+[δνα(μ1μkuμ)l=1k(νμ1l1l+1μkuα)δμlμ]EL𝒟ρμ1μkuαg\displaystyle+\Big{[}\delta^{\alpha}_{\nu}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}u^{\mu})-\sum_{l=1}^{k}(\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}u^{\alpha})\delta^{\mu}_{\mu_{l}}\Big{]}\,^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}u^{\alpha}}\sqrt{-g}\mathcal{F}
l=1k(νμ1l1l+1μkφ)δμlμ𝒟ρμ1μkφELg}.\displaystyle-\sum_{l=1}^{k}\big{(}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{l-1}\partial_{l+1}\cdots\partial_{\mu_{k}}\varphi\big{)}\delta^{\mu}_{\mu_{l}}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\rho}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}\Bigg{\}}.

The invariance of Eq. (360) under coordinate transformations such that μ1μ2δ~xν=μ1μ2μ3δ~xν==0\partial_{\mu_{1}}\partial_{\mu_{2}}\tilde{\delta}x^{\nu}=\partial_{\mu_{1}}\partial_{\mu_{2}}\partial_{\mu_{3}}\tilde{\delta}x^{\nu}=\cdots=0 and μ1μ2μ3δ~xν=μ1μ2μ3μ4δ~xν==0\partial_{\mu_{1}}\partial_{\mu_{2}}\partial_{\mu_{3}}\tilde{\delta}x^{\nu}=\partial_{\mu_{1}}\partial_{\mu_{2}}\partial_{\mu_{3}}\partial_{\mu_{4}}\tilde{\delta}x^{\nu}=\cdots=0 requires the following equations to hold, respectively:

2gμβ𝒟gβνELg2BνβEL𝒟BμβgAνEL𝒟Aμg+uμ𝒟uνELg\displaystyle 2g^{\mu\beta}\,{}^{\rm EL}\!\mathcal{D}_{g^{\beta\nu}}\sqrt{-g}\mathcal{F}-2B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-A_{\nu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}+u^{\mu}\,{}^{\rm EL}\!\mathcal{D}_{u^{\nu}}\sqrt{-g}\mathcal{F}
gTνμ[g]+ρΩνρμ[g]0\displaystyle-\sqrt{-g}T^{\mu}_{\ \ \nu}[\sqrt{-g}\mathcal{F}]+\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}]\equiv 0
(362)
12(Ωνμ1μ2[g]+Ωνμ2μ1[g])+ρΞνρμ1μ2[g]0.\displaystyle\frac{1}{2}\Big{(}\Omega^{\mu_{1}\mu_{2}}_{\ \ \ \ \ \ \nu}[\sqrt{-g}\mathcal{F}]+\Omega^{\mu_{2}\mu_{1}}_{\ \ \ \ \ \ \nu}[\sqrt{-g}\mathcal{F}]\Big{)}+\partial_{\rho}\Xi^{\rho\mu_{1}\mu_{2}}_{\ \ \ \ \ \ \ \nu}[\sqrt{-g}\mathcal{F}]\equiv 0. (363)

Combining identities (358) and (362), the quantity μρΩνρμ[g]\partial_{\mu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}] identically vanishes:

μρΩνρμ[g]0.\displaystyle\partial_{\mu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}]\equiv 0. (364)

Therefore, the quantity ρΩνρμ[g]\partial_{\rho}\Omega^{\rho\mu}_{\nu}[\sqrt{-g}\mathcal{F}] can be regarded as an energy-momentum peudotensor666The quantity ρΩνρμ[g]\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}] does not transform as a tensor by coordinate transformations. including the gravitational field.

MNoerther:=ρΩ 0ρ0[g]\displaystyle M_{\rm Noerther}:=-\partial_{\rho}\Omega^{\rho 0}_{\ \ \ 0}[\sqrt{-g}\mathcal{F}] (365)
(PNoether)a:=ρΩaρ0[g]\displaystyle(P_{\rm Noether})_{a}:=-\partial_{\rho}\Omega^{\rho 0}_{\ \ \ a}[\sqrt{-g}\mathcal{F}] (366)

are conserved charges, which can be interpreted as energy and momentum of the fields including the gravity, respectively.

Let us deform the identity (362) into the form used in section 4.1. Contracting Eq. (362) with uμuνu_{\mu}u^{\nu},

2uβuν𝒟gβνELg+uνEL𝒟uνg\displaystyle 2u^{\beta}u^{\nu}\,{}^{\rm EL}\!\mathcal{D}_{g^{\beta\nu}}\sqrt{-g}\mathcal{F}+u_{\nu}\,^{\rm EL}\!\mathcal{D}_{u_{\nu}}\sqrt{-g}\mathcal{F}
2uμuνBνβEL𝒟BμβguνAνuμEL𝒟Aμgg\displaystyle-2u_{\mu}u^{\nu}B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-u^{\nu}A_{\nu}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}\mathcal{F}
\displaystyle\equiv uμuνρΩνρμ[g]+k=0uμEL𝒟μμ1μkfguννμ1μkf.\displaystyle-u_{\mu}u^{\nu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}]+\sum_{k=0}^{\infty}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot u^{\nu}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f.

Using the relation (63), the first two terms of Eq. (B.2) are combined and yield 𝒟¯gρνEL\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\nu}}, i.e.,

2uρuν𝒟¯gρνELg2uμuνBνβEL𝒟BμβguνAνuμEL𝒟Aμgg\displaystyle 2u^{\rho}u^{\nu}\,{}^{\rm EL}\!\bar{\mathcal{D}}_{g^{\rho\nu}}\sqrt{-g}\mathcal{F}-2u_{\mu}u^{\nu}B_{\nu\beta}\,^{\rm EL}\!\mathcal{D}_{B_{\mu\beta}}\sqrt{-g}\mathcal{F}-u^{\nu}A_{\nu}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}-\sqrt{-g}\mathcal{F}
\displaystyle\equiv uμuνρΩνρμ[g]+k=0uμEL𝒟μμ1μkfguννμ1μkf.\displaystyle-u_{\mu}u^{\nu}\partial_{\rho}\Omega^{\rho\mu}_{\ \ \ \nu}[\sqrt{-g}\mathcal{F}]+\sum_{k=0}^{\infty}u_{\mu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot u^{\nu}\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f.

B.3 Identities from the U(1)U(1) gauge transformation

Next, consider the transformation,

φ(x)\displaystyle\varphi^{\prime}(x) =\displaystyle= eieΛφ(x)\displaystyle e^{ie\Lambda}\varphi(x) (369)
Aμ(x)\displaystyle A_{\mu}^{\prime}(x) =\displaystyle= Aμ(x)+μΛ(x),\displaystyle A_{\mu}(x)+\partial_{\mu}\Lambda(x), (370)

where Λ(x)\Lambda(x) is an arbitrary function, and ee is the electric charge. This is called U(1)U(1) gauge transformation. In this subsection, let us derive the identities that any U(1)U(1) gauge symmetric function \mathcal{L} satisfies.

The infinitesimal transformation of U(1)U(1) gauge transformation is

δ~x=0\displaystyle\tilde{\delta}x=0 (371)
δ~φ=ieφδΛ\displaystyle\tilde{\delta}\varphi=ie\varphi\delta\Lambda (372)
δ~Aμ=μδΛ\displaystyle\tilde{\delta}A_{\mu}=\partial_{\mu}\delta\Lambda (373)
δ~Bμν=0\displaystyle\tilde{\delta}B_{\mu\nu}=0 (374)
δ~gμν=0.\displaystyle\tilde{\delta}g^{\mu\nu}=0. (375)

Note that since the gauge transformation does not contain the coordinate transformation, the variations δ~\tilde{\delta} and δ\delta are equivalent:

δ~=δ.\tilde{\delta}=\delta.

The variations of the derivatives of φ\varphi and AμA_{\mu} are

δ~μ1μkφ\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi =\displaystyle= iej=0k(kj)(μj+1μkφ)μ1μjδΛ\displaystyle ie\sum_{j=0}^{k}\bigg{(}\begin{array}[]{c}k\\ j\end{array}\bigg{)}(\partial_{\mu_{j+1}}\cdots\partial_{\mu_{k}}\varphi)\partial_{\mu_{1}}\cdots\partial_{\mu_{j}}\delta\Lambda (378)
δ~μ1μkAμ\displaystyle\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}A_{\mu} =\displaystyle= μ1μkμδΛ.\displaystyle\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\partial_{\mu}\delta\Lambda. (379)

Substituting Eqs. (378), (379), and δ~xμ=0\tilde{\delta}x^{\mu}=0 into Eq. (B.1),

0\displaystyle 0 =\displaystyle= dnx[EL𝒟fgδ~f+μ(k=0𝒟μμ1μkfELgδ~μ1μkf)]\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\,^{\rm EL}\!\mathcal{D}_{f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}f+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}\bigg{]}
(382)
=\displaystyle= dnx[EL𝒟AμgμδΛ+ieφEL𝒟φgδΛ\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\cdot\partial_{\mu}\delta\Lambda+ie\varphi\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{F}\cdot\delta\Lambda
+μ(k=0𝒟μμ1μkfELgδ~μ1μkf)]\displaystyle+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}\bigg{]}
=\displaystyle= dnx{[μ(EL𝒟Aμg)+ieφEL𝒟φg]δΛ\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{\{}\bigg{[}-\partial_{\mu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\Big{)}+ie\varphi\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{F}\bigg{]}\cdot\delta\Lambda
+μ(EL𝒟AμgδΛ+k=0𝒟μμ1μkfELgδ~μ1μkf)}.\displaystyle+\partial_{\mu}\bigg{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\cdot\delta\Lambda+\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}\bigg{\}}.

Since the gauge function Λ\Lambda is arbitrary, this integral is invariant under the gauge transformation such that the variation of the gauge function δΛ\delta\Lambda is 0 on \partial\mathcal{M}. Therefore, the square bracket in Eq. (382) should be identically 0, i.e.,

μ(EL𝒟Aμg)ieφEL𝒟φg0.\displaystyle\partial_{\mu}\Big{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\Big{)}-ie\varphi\,^{\rm EL}\!\mathcal{D}_{\varphi}\sqrt{-g}\mathcal{F}\equiv 0. (383)

Substituting the identity (383) into Eq. (382),

0\displaystyle 0 =\displaystyle= dnxμ(EL𝒟AμgδΛ+k=0𝒟μμ1μkfELgδ~μ1μkf)\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\partial_{\mu}\bigg{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\cdot\delta\Lambda+\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}
(386)
=\displaystyle= dnx[(μEL𝒟Aμg)δΛ+EL𝒟AμgμδΛ\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{[}\Big{(}\partial_{\mu}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\Big{)}\cdot\delta\Lambda+\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}\cdot\partial_{\mu}\delta\Lambda
+μ(k=0𝒟μμ1μkfELgδ~μ1μkf)]\displaystyle+\partial_{\mu}\bigg{(}\sum_{k=0}^{\infty}\,{}^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f}\sqrt{-g}\mathcal{F}\cdot\tilde{\delta}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}f\bigg{)}\bigg{]}
=\displaystyle= dnx{μ(EL𝒟Aμg+iek=0(μ1μkφ)EL𝒟μμ1μkφg)δΛ\displaystyle\int_{\mathcal{M}}{\mathrm{d}}^{n}x\bigg{\{}\partial_{\mu}\bigg{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}+ie\sum_{k=0}^{\infty}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}\bigg{)}\cdot\delta\Lambda
+[EL𝒟Aμg+νEL𝒟νAμg+iek=0(μ1μkφ)EL𝒟νμ1μkφg\displaystyle+\bigg{[}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}+\partial_{\nu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}A_{\mu}}\sqrt{-g}\mathcal{F}+ie\sum_{k=0}^{\infty}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}
+ieν(k=0k(μ2μkφ)EL𝒟νμμ2μkφg)]μδΛ\displaystyle+ie\partial_{\nu}\bigg{(}\sum_{k=0}^{\infty}k(\partial_{\mu_{2}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}\partial_{\mu}\partial_{\mu_{2}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}\bigg{)}\bigg{]}\cdot\partial_{\mu}\delta\Lambda
+}.\displaystyle+\cdots\bigg{\}}.

The integral (386) is 0 no matter what the variation of the gauge function δΛ\delta\Lambda, the derivatives μΛ\partial_{\mu}\Lambda, μ1μ2δΛ\partial_{\mu_{1}}\partial_{\mu_{2}}\delta\Lambda, \cdots, and the domain of the integration \mathcal{M}. Therefore, the coefficients of δΛ\delta\Lambda, μδΛ\partial_{\mu}\delta\Lambda, μ1μ2δΛ\partial_{\mu_{1}}\partial_{\mu_{2}}\delta\Lambda, \cdots should be identically 0. For example, the first two are

μ(EL𝒟Aμg+iek=0(μ1μkφ)EL𝒟μμ1μkφg)0\displaystyle\partial_{\mu}\bigg{(}\,^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}+ie\sum_{k=0}^{\infty}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\mu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}\bigg{)}\equiv 0 (387)

and

𝒟AμELg+νEL𝒟νAμg+iek=0(μ1μkφ)EL𝒟νμ1μkφg\,{}^{\rm EL}\!\mathcal{D}_{A_{\mu}}\sqrt{-g}\mathcal{F}+\partial_{\nu}\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}A_{\mu}}\sqrt{-g}\mathcal{F}+ie\sum_{k=0}^{\infty}(\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}\partial_{\mu_{1}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}
+ieν(k=0k(μ2μkφ)EL𝒟νμμ2μkφg)0.\displaystyle+ie\partial_{\nu}\bigg{(}\sum_{k=0}^{\infty}k(\partial_{\mu_{2}}\cdots\partial_{\mu_{k}}\varphi)\,^{\rm EL}\!\mathcal{D}_{\partial_{\nu}\partial_{\mu}\partial_{\mu_{2}}\cdots\partial_{\mu_{k}}\varphi}\sqrt{-g}\mathcal{F}\bigg{)}\equiv 0. (388)

References

  • [1] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (W. H. Freeman, New York, 1973).
  • [2] W.J. Cocke, Ann. Inst. Henri Poincare 2 (1965) 283.
  • [3] R.M.W. R. D. Sorkin and Z.J. Zhang, Gen. Rel. Grav. 13 (1981) 1127.
  • [4] S. Gao, Phys. Rev. D 84 (2011) 104023.
  • [5] X. Fang and S. Gao, Phys. Rev. D 90 (2014) 044013.
  • [6] J.X. L.-M. Cao and Z. Zeng, Phys. Rev. D 87 (2013) 064005.
  • [7] J.J. X. Fang, M. Guo, JHEP 08 (2016) 163.
  • [8] S.G. F. Fang, Phys.Rev.D 92 (2015) 024044.
  • [9] X.F. J. Jiang and S. Gao, [arXiv:2106.14425[gr-qc]] (2021).
  • [10] H. Kodama, Prog. Theor. Phys. 63 (1980) 1217.
  • [11] G. Abreu and M. Visser, Phys.Rev.D 82 (2010) 044027.
  • [12] D. Lovelock, J.Math.Phys. 12 (1971) 498.
  • [13] S.W. H. Maeda and S. Ray, Class.Quant.Grav. 28 (2011) 165005.
  • [14] J. Polchinski, STRING THEORY (Cambridge University Press, 1998).
  • [15] W. Israel, Phys. Rev. 164 (1967) 1776.
  • [16] B. Carter, Phys. Rev. Lett. 26 (1971) 331.
  • [17] D.C. Robinson, Phys. Rev. Lett. 34 (1975) 905.
  • [18] E. Noether, Gott.Nachr. (1918) 235, [arXiv:physics/0503066 [physics.hist-ph]].