This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The magnetic moment of Zc(3900)Z_{c}(3900) as an axial-vector molecular state

Yong-Jiang Xu1111[email protected], Yong-Lu Liu1, and Ming-Qiu Huang1,2222corresponding author: [email protected] 1Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology , Changsha, 410073, Hunan, China 2Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, Hunan, China
Abstract

In this paper, we tentatively assign Zc(3900)Z_{c}(3900) to be an axialvector molecular state, and calculate its magnetic moment using the QCD sum rule method in external weak electromagnetic field. Starting with the two-point correlation function in external electromagnetic field and expanding it in power of the electromagnetic interaction Hamiltonian, we extract the mass and pole residue of Zc(3900)Z_{c}(3900) state from the leading term in the expansion and the magnetic moment from the linear response to the external electromagnetic field. The numerical values are mZc=3.97±0.12GeVm_{Z_{c}}=3.97\pm 0.12\mbox{GeV} in agreement with the experimental value mZcexp=3899.0±3.6±4.9MeVm^{exp}_{Z_{c}}=3899.0\pm 3.6\pm 4.9\mbox{MeV}, λZc=2.1±0.4×102GeV5\lambda_{Z_{c}}=2.1\pm 0.4\times 10^{-2}\mbox{GeV}^{5} and μZc=0.190.01+0.04μN\mu_{Z_{c}}=0.19^{+0.04}_{-0.01}\mu_{N}.

pacs:
11.25.Hf,  11.55.Hx,  12.38.Lg,  12.39.Mk.

I Introduction

Zc(3900)Z_{c}(3900), as a good candidate of exotic hadrons, was observed by BESIII collaboration in 2013 in the π±J/ψ\pi^{\pm}J/\psi invariant mass distribution of the process e+eπ+πJ/ψe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi at a center-of-mass energy of 4.260GeV4.260\mbox{GeV} bes1 . Then the Belle and CLEO collaborations confirmed the existence of Zc(3900)Z_{c}(3900) belle ; cleo . In 2017, the BESIII collaboration determined the JPJ^{P} quantum number of Zc(3900)Z_{c}(3900) to be JP=1+J^{P}=1^{+} with a statistical significance larger than 7σ7\sigma over other quantum numbers in a partial wave analysis of the process e+eπ+πJ/ψe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi bes2 . Inspired by these experimental progress, there have been plentiful theoretical studies on Zc(3900)Z_{c}(3900)’s properties through different approaches (see review article H.X.Chen and references therein for details). However, the underlying structure of Zc(3900)Z_{c}(3900) is not understood completely and more endeavors are necessary in order to arrive at a better understanding for the properties of Zc(3900)Z_{c}(3900).

The electromagnetic multipole moments of hadron encode the spatial distributions of charge and magnetization in the hadron and provide important information about the quark configurations of the hadron and the underlying dynamics. So it is interesting to study the electromagnetic multipole moments of hadron.

The studies on the properties of hadrons inevitably involve the nonperturbative effects of quantum chromodynamics (QCD). The QCD sum rule method SVZ is a nonperturbative analytic formalism firmly entrenched in QCD with minimal modeling and has been successfully applied in almost every aspect of strong interaction physics. In Ref.Balitsky ; Ioffe1 ; Ioffe2 , the QCD sum rule method was extended to calculate the magnetic moments of the nucleon and hyperon in the external field method. In this method, a statics electromagnetic field is introduced which couples to the quarks and polarizes the QCD vacuum and magnetic moments can be extracted from the linear response to this field. Later, a more systematic studies was made for the magnetic moments of the octet baryons octet1 ; octet2 ; octet3 ; octet4 , the decuplet baryons decuplet1 ; decuplet2 ; decuplet3 ; decuplet4 and the ρ\rho meson rho . In the case of the exotic X, Y, Z states, only the magnetic moment of Zc(3900)Z_{c}(3900) as an axialvector tetraquark state was calculated through this method wangzhigang .

In this article, we study the magnetic moment of Zc(3900)Z_{c}(3900) as an axialvector molecular state with quantum number JP=1+J^{P}=1^{+} by the QCD sum rule method. The mass and pole residue, two of the input parameters needed to determine the magnetic moment, are calculated firstly including contributions of operators up to dimension 10. Then the magnetic moment is extracted from the linear term in FμνF_{\mu\nu} (external electromagnetic filed) of the correlation function.

The rest of the paper is arranged as follows. In Sec.II, we derive the sum rules for the mass, pole residue and magnetic moment of Zc(3900)Z_{c}(3900) state. Sec.III is devoted to the numerical analysis and a short summary is given in Sec.IV. In the Appendix B, the spectral densities are shown.

II The derivation of the sum rules

The starting point of our calculation is the time-ordered correlation function in the QCD vacuum in the presence of a constant background electromagnetic field FμνF_{\mu\nu},

Πμν(p)=i𝑑x4eipx0T[Jμ(x)Jν(0)]0F=Πμν(0)(p)+Πμναβ(1)(p)Fαβ+,\Pi_{\mu\nu}(p)=i\int dx^{4}e^{ipx}\langle 0\mid\textsl{T}[J_{\mu}(x)J^{\dagger}_{\nu}(0)]\mid 0\rangle_{F}=\Pi^{(0)}_{\mu\nu}(p)+\Pi^{(1)}_{\mu\nu\alpha\beta}(p)F^{\alpha\beta}+\cdots, (1)

where

Jμ(x)=12{[u¯(x)iγ5c(x)][c¯(x)γμd(x)]+[u¯(x)γμc(x)][c¯(x)iγ5d(x)]}J_{\mu}(x)=\frac{1}{\sqrt{2}}\{[\bar{u}(x)i\gamma^{5}c(x)][\bar{c}(x)\gamma_{\mu}d(x)]+[\bar{u}(x)\gamma_{\mu}c(x)][\bar{c}(x)i\gamma^{5}d(x)]\} (2)

is the interpolating current of Zc(3900)Z_{c}(3900) as a molecular state with JP=1+J^{P}=1^{+} cuichunyu . The Πμν(0)(p)\Pi^{(0)}_{\mu\nu}(p) term is the correlation function without external electromagnetic field, and give rise to the mass and pole residue of Zc(3900)Z_{c}(3900). The magnetic moment will be extracted from the linear response term, Πμναβ(1)(p)Fαβ\Pi^{(1)}_{\mu\nu\alpha\beta}(p)F^{\alpha\beta}.

The external electromagnetic field can interact directly with the quarks inside the hadron and also polarize the QCD vacuum. As a consequence, the vacuum condensates involved in the operator product expansion of the correlation function in the external electromagnetic field FμνF_{\mu\nu} are,

  • dimension-2 operator,

    Fμν,F_{\mu\nu}, (3)
  • dimension-3 operator,

    0|q¯σμνq|0F,\langle 0|\bar{q}\sigma_{\mu\nu}q|0\rangle_{F}, (4)
  • dimension-5 operators,

    0|q¯q|0Fμν,0|q¯gsGμνq|0F,ϵμναβ0|q¯gsGαβq|0F,\langle 0|\bar{q}q|0\rangle F_{\mu\nu},\langle 0|\bar{q}g_{s}G_{\mu\nu}q|0\rangle_{F},\epsilon_{\mu\nu\alpha\beta}\langle 0|\bar{q}g_{s}G^{\alpha\beta}q|0\rangle_{F}, (5)
  • dimension-6 operators,

    0|q¯q|00|q¯σμνq|0F,0|gs2GG|0Fμν,,\langle 0|\bar{q}q|0\rangle\langle 0|\bar{q}\sigma_{\mu\nu}q|0\rangle_{F},\langle 0|g^{2}_{s}GG|0\rangle F_{\mu\nu},\cdots, (6)
  • dimension-7 operators,

    0|gs2GG|00|q¯σμνq|0F,0|gsq¯σGq|0Fμν,,\langle 0|g^{2}_{s}GG|0\rangle\langle 0|\bar{q}\sigma_{\mu\nu}q|0\rangle_{F},\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle F_{\mu\nu},\cdots, (7)
  • dimension-8 operators,

    0|q¯q|02Fμν,0|gsq¯σGq|00|q¯σμνq|0F,0|q¯q|00|q¯gsGμνq|0F,\displaystyle\langle 0|\bar{q}q|0\rangle^{2}F_{\mu\nu},\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle\langle 0|\bar{q}\sigma_{\mu\nu}q|0\rangle_{F},\langle 0|\bar{q}q|0\rangle\langle 0|\bar{q}g_{s}G_{\mu\nu}q|0\rangle_{F},
    ϵμναβ0|q¯q|00|q¯gsGαβq|0F,,\displaystyle\epsilon_{\mu\nu\alpha\beta}\langle 0|\bar{q}q|0\rangle\langle 0|\bar{q}g_{s}G^{\alpha\beta}q|0\rangle_{F},\cdots, (8)

The new vacuum condensates induced by the external electromagnetic field FμνF_{\mu\nu} can be described by introducing new parameters, χ\chi, κ\kappa and ξ\xi, called vacuum susceptibilities as follows,

0|q¯σμνq|0F=eeqχ0|q¯q|0Fμν,\displaystyle\langle 0|\bar{q}\sigma_{\mu\nu}q|0\rangle_{F}=ee_{q}\chi\langle 0|\bar{q}q|0\rangle F_{\mu\nu},
0|q¯gsGμνq|0F=eeqκ0|q¯q|0Fμν,\displaystyle\langle 0|\bar{q}g_{s}G_{\mu\nu}q|0\rangle_{F}=ee_{q}\kappa\langle 0|\bar{q}q|0\rangle F_{\mu\nu},
ϵμναβ0|q¯gsGαβq|0F=ieeqξ0|q¯q|0Fμν.\displaystyle\epsilon_{\mu\nu\alpha\beta}\langle 0|\bar{q}g_{s}G^{\alpha\beta}q|0\rangle_{F}=iee_{q}\xi\langle 0|\bar{q}q|0\rangle F_{\mu\nu}. (9)

In order to express the two-point correlation function (1) physically, we expand it in powers of the electromagnetic interaction Hamiltonian Hint=ied4yjαem(y)Aα(y)H_{int}=-ie\int d^{4}yj^{em}_{\alpha}(y)A^{\alpha}(y),

Πμν(p)=\displaystyle\Pi_{\mu\nu}(p)= i𝑑x4eipx0T[Jμ(x)Jν(0)]0\displaystyle i\int dx^{4}e^{ipx}\langle 0\mid\textsl{T}[J_{\mu}(x)J^{\dagger}_{\nu}(0)]\mid 0\rangle (10)
+i𝑑x4eipx0T{Jμ(x)[ied4yjαem(y)Aα(y)]Jν(0)}0+,\displaystyle+i\int dx^{4}e^{ipx}\langle 0\mid\textsl{T}\{J_{\mu}(x)[-ie\int d^{4}yj^{em}_{\alpha}(y)A^{\alpha}(y)]J^{\dagger}_{\nu}(0)\}\mid 0\rangle+\cdots,

where jαem(y)j^{em}_{\alpha}(y) is the electromagnetic current and Aα(y)A^{\alpha}(y) is the electromagnetic four-vector.

Inserting complete sets of relevant states with the same quantum numbers as the current operator Jμ(x)J_{\mu}(x) and carrying out involved integrations, one has

Πμνhad(p)=\displaystyle\Pi^{had}_{\mu\nu}(p)= λZc2mZc2p2(gμν+pμpνp2)\displaystyle\frac{\lambda^{2}_{Z_{c}}}{m^{2}_{Z_{c}}-p^{2}}(-g_{\mu\nu}+\frac{p_{\mu}p_{\nu}}{p^{2}}) (11)
iλZc2G2(0)(p2mZc2)2Fμν+iamZc2p2Fμν+,\displaystyle-i\frac{\lambda^{2}_{Z_{c}}G_{2}(0)}{(p^{2}-m^{2}_{Z_{c}})^{2}}F_{\mu\nu}+i\frac{a}{m^{2}_{Z_{c}}-p^{2}}F_{\mu\nu}+\cdots,

where we make use of the following matrix elements

0|Jμ(0)|Zc(p)=λZcϵμ(p)\langle 0|J_{\mu}(0)|Z_{c}(p)\rangle=\lambda_{Z_{c}}\epsilon_{\mu}(p) (12)

with λZc\lambda_{Z_{c}} and ϵμ(p)\epsilon_{\mu}(p) being the pole residue and polarization vector of Zc(3900)Z_{c}(3900), respectively,

Zc(p)|jαem(0)|Zc(p)=\displaystyle\langle Z_{c}(p)|j^{em}_{\alpha}(0)|Z_{c}(p^{\prime})\rangle= G1(Q2)ϵ(p)ϵ(p)(p+p)α+G2(Q2)[ϵα(p)ϵ(p)qϵα(p)ϵ(p)q]\displaystyle G_{1}(Q^{2})\epsilon^{*}(p)\cdot\epsilon(p^{\prime})(p+p^{\prime})_{\alpha}+G_{2}(Q^{2})[\epsilon_{\alpha}(p^{\prime})\epsilon^{*}(p)\cdot q-\epsilon^{*}_{\alpha}(p)\epsilon(p^{\prime})\cdot q] (13)
G3(Q2)2mZc2ϵ(p)qϵ(p)q(p+p)α\displaystyle-\frac{G_{3}(Q^{2})}{2m^{2}_{Z_{c}}}\epsilon^{*}(p)\cdot q\epsilon(p^{\prime})\cdot q(p+p^{\prime})_{\alpha}

with q=ppq=p^{\prime}-p and Q2=q2Q^{2}=-q^{2}. The Lorentz-invariant functions G1(Q2)G_{1}(Q^{2}), G2(Q2)G_{2}(Q^{2}) and G3(Q2)G_{3}(Q^{2}) are related to the charge, magnetic and quadrupole form-factors,

GC(Q2)=G1(Q2)+23ηGQ(Q2),\displaystyle G_{C}(Q^{2})=G_{1}(Q^{2})+\frac{2}{3}\eta G_{Q}(Q^{2}),
GM(Q2)=G2(Q2),\displaystyle G_{M}(Q^{2})=-G_{2}(Q^{2}),
GQ(Q2)=G1(Q2)+G2(Q2)+(1+η)G3(Q2),\displaystyle G_{Q}(Q^{2})=G_{1}(Q^{2})+G_{2}(Q^{2})+(1+\eta)G_{3}(Q^{2}), (14)

respective, where η=Q24mZc2\eta=\frac{Q^{2}}{4m^{2}_{Z_{c}}}. At zero momentum transfer, these form-factors are proportional to the usual static quantities of the charge ee, magnetic moment μZc\mu_{Z_{c}} and quadrupole moment Q1Q_{1},

eGC(0)=e,\displaystyle eG_{C}(0)=e,
eGM(0)=2mZμZc,\displaystyle eG_{M}(0)=2m_{Z}\mu_{Z_{c}},
eGQ(0)=mZc2Q1.\displaystyle eG_{Q}(0)=m^{2}_{Z_{c}}Q_{1}. (15)

The constant aa parameterizes the contributions from the pole-continuum transitions.

On the other hand, Πμν(p)\Pi_{\mu\nu}(p) can be calculated theoretically via OPE method at the quark-gluon level. To this end, one can insert the interpolating current Jμ(x)J_{\mu}(x) (2) into the correlation function (1), contract the relevant quark fields via Wick’s theorem and obtain

ΠμνOPE(p)=i2d4xeipx\displaystyle\Pi^{OPE}_{\mu\nu}(p)=\frac{i}{2}\int d^{4}xe^{ipx} (Tr[(iγ5)Sca(u)(x)(iγ5)Sac(c)(x)]Tr[γμSbd(d)(x)γνSdb(c)(x)]\displaystyle(Tr[(i\gamma_{5})S^{(u)}_{ca}(-x)(i\gamma_{5})S^{(c)}_{ac}(x)]Tr[\gamma_{\mu}S^{(d)}_{bd}(x)\gamma_{\nu}S^{(c)}_{db}(-x)] (16)
+Tr[(iγ5)Sdb(c)(x)γμSbd(d)(x)]Tr[(iγ5)Sac(c)(x)γνSca(u)(x)]\displaystyle+Tr[(i\gamma_{5})S^{(c)}_{db}(-x)\gamma_{\mu}S^{(d)}_{bd}(x)]Tr[(i\gamma_{5})S^{(c)}_{ac}(x)\gamma_{\nu}S^{(u)}_{ca}(-x)]
+Tr[(iγ5)Sca(u)(x)γμSac(c)(x)]Tr[(iγ5)Sbd(d)(x)γνSdb(c)(x)]\displaystyle+Tr[(i\gamma_{5})S^{(u)}_{ca}(-x)\gamma_{\mu}S^{(c)}_{ac}(x)]Tr[(i\gamma_{5})S^{(d)}_{bd}(x)\gamma_{\nu}S^{(c)}_{db}(-x)]
+Tr[(iγ5)Sbd(d)(x)(iγ5)Sdb(c)(x)]Tr[γμSac(c)(x)γνSca(u)(x)]),\displaystyle+Tr[(i\gamma_{5})S^{(d)}_{bd}(x)(i\gamma_{5})S^{(c)}_{db}(-x)]Tr[\gamma_{\mu}S^{(c)}_{ac}(x)\gamma_{\nu}S^{(u)}_{ca}(-x)]),

where S(c)(x)=0|T[c(x)c¯(0)]|0S^{(c)}(x)=\langle 0|T[c(x)\bar{c}(0)]|0\rangle and S(q)(x)=0|T[q(x)q¯(0)]|0,q=u,dS^{(q)}(x)=\langle 0|T[q(x)\bar{q}(0)]|0\rangle,q=u,d are the full charm- and up (down)-quark propagators, whose expressions are given in the Appendix A, TrTr denotes the trace of the Dirac spinor indices, and aa, bb, cc and dd are color indices. Through dispersion relation, ΠμνOPE(p)\Pi^{OPE}_{\mu\nu}(p) can be written as

ΠμνOPE(p)=4mc2𝑑sρ(0)(s)sp2(gμν+pμpνp2)+4mc2𝑑sρ(1)(s)sp2(iFμν)+other Lorentz structures,\Pi^{OPE}_{\mu\nu}(p)=\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(0)}(s)}{s-p^{2}}(-g_{\mu\nu}+\frac{p_{\mu}p_{\nu}}{p^{2}})+\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(1)}(s)}{s-p^{2}}(iF_{\mu\nu})+\mbox{other Lorentz structures}, (17)

where ρi(s)=1πImΠiOPE(s),i=0,1\rho^{i}(s)=\frac{1}{\pi}\mbox{Im}\Pi^{OPE}_{i}(s),i=0,1 are the spectral densities. The spectral densities ρi(s)\rho^{i}(s) are given in the Appendix B.

Finally, matching the phenomenological side (11) and the QCD representation (17), we obtain

λZc2mZc2p2+=4mc2𝑑sρ(0)(s)sp2,\frac{\lambda^{2}_{Z_{c}}}{m^{2}_{Z_{c}}-p^{2}}+\cdots=\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(0)}(s)}{s-p^{2}}, (18)

for the Lorentz-structure (gμν+pμpνp2)(-g_{\mu\nu}+\frac{p_{\mu}p_{\nu}}{p^{2}}), and

λZc2GM(0)(mZc2p2)2+amZc2p2+=4mc2𝑑sρ(1)(s)sp2,\frac{\lambda^{2}_{Z_{c}}G_{M}(0)}{(m^{2}_{Z_{c}}-p^{2})^{2}}+\frac{a}{m^{2}_{Z_{c}}-p^{2}}+\cdots=\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(1)}(s)}{s-p^{2}}, (19)

for the Lorentz-structure iFμνiF_{\mu\nu}.

According to quark-hadron duality, the excited and continuum states’ spectral density can be approximated by the QCD spectral density above some effective threshold sZc0s^{0}_{Z_{c}}, whose vale will be determined in Sec.III,

λZc2mZc2p2+sZc0𝑑sρ(0)(s)sp2=4mc2𝑑sρ(0)(s)sp2,\displaystyle\frac{\lambda^{2}_{Z_{c}}}{m^{2}_{Z_{c}}-p^{2}}+\int^{\infty}_{s^{0}_{Z_{c}}}ds\frac{\rho^{(0)}(s)}{s-p^{2}}=\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(0)}(s)}{s-p^{2}},
λZc2GM(0)(mZc2p2)2+amZc2p2+sZc0𝑑sρ(1)(s)sp2=4mc2𝑑sρ(1)(s)sp2.\displaystyle\frac{\lambda^{2}_{Z_{c}}G_{M}(0)}{(m^{2}_{Z_{c}}-p^{2})^{2}}+\frac{a}{m^{2}_{Z_{c}}-p^{2}}+\int^{\infty}_{s^{0}_{Z_{c}}}ds\frac{\rho^{(1)}(s)}{s-p^{2}}=\int^{\infty}_{4m^{2}_{c}}ds\frac{\rho^{(1)}(s)}{s-p^{2}}. (20)

Subtracting the contributions of the excited and continuum states, one gets

λZc2mZc2p2=4mc2sZc0𝑑sρ(0)(s)sp2,\displaystyle\frac{\lambda^{2}_{Z_{c}}}{m^{2}_{Z_{c}}-p^{2}}=\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\frac{\rho^{(0)}(s)}{s-p^{2}},
λZc2GM(0)(mZc2p2)2+amZc2p2=4mc2sZc0𝑑sρ(1)(s)sp2.\displaystyle\frac{\lambda^{2}_{Z_{c}}G_{M}(0)}{(m^{2}_{Z_{c}}-p^{2})^{2}}+\frac{a}{m^{2}_{Z_{c}}-p^{2}}=\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\frac{\rho^{(1)}(s)}{s-p^{2}}. (21)

In order to improve the convergence of the OPE series and suppress the contributions from the excited and continuum states, it is necessary to make a Borel transform. As a result, we have

λZc2emZc2/MB2=4mc2sZc0𝑑sρ(0)(s)es/MB2,\displaystyle\lambda^{2}_{Z_{c}}e^{-m^{2}_{Z_{c}}/M^{2}_{B}}=\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(0)}(s)e^{-s/M^{2}_{B}},
λZc2(GM(0)MB2+A)emZc2/MB2=4mc2sZc0𝑑sρ(1)(s)es/MB2.\displaystyle\lambda^{2}_{Z_{c}}(\frac{G_{M}(0)}{M^{2}_{B}}+A)e^{-m^{2}_{Z_{c}}/M^{2}_{B}}=\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(1)}(s)e^{-s/M^{2}_{B}}. (22)

where MB2M^{2}_{B} is the Borel parameter and A=aλZc2A=\frac{a}{\lambda^{2}_{Z_{c}}}. Taking derivative of the first equation in (II) with respect to 1MB2-\frac{1}{M^{2}_{B}} and dividing it by the original expression, one has

mZc2=dd(1MB2)4mc2sZc0𝑑sρ(0)(s)esMB24mc2sZc0𝑑sρ(0)(s)esMB2,m^{2}_{Z_{c}}=\frac{\frac{d}{d(-\frac{1}{M^{2}_{B}})}\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(0)}(s)e^{-\frac{s}{M^{2}_{B}}}}{\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(0)}(s)e^{-\frac{s}{M^{2}_{B}}}}, (23)

In the next section, (II) and (23) will be analysed numerically to obtain the numerical values of the mass, the pole residue and the magnetic moment of the Zc(3900)Z_{c}(3900).

III Numerical analysis

The input parameters needed in numerical analysis are presented in Table 1. For the vacuum susceptibilities χ\chi, κ\kappa and ξ\xi, we take the values χ=(3.15±0.30)GeV2\chi=-(3.15\pm 0.30)\mbox{GeV}^{-2}, κ=0.2\kappa=-0.2 and ξ=0.4\xi=0.4 determined in the detailed QCD sum rules analysis of the photon light-cone distribution amplitudes P.Ball . Besides these parameters, we should determine the working intervals of the threshold parameter sZc0s^{0}_{Z_{c}} and the Borel mass MB2M^{2}_{B} in which the mass, the pole residue and the magnetic moment vary weakly. The continuum threshold is related to the square of the first exited states having the same quantum number as the interpolating field, while the Borel parameter is determined by demanding that both the contributions of the higher states and continuum are sufficiently suppressed and the contributions coming from higher dimensional operators are small.

Table 1: Some input parameters needed in the calculations.
Parameter Value
q¯q\langle\bar{q}q\rangle (0.24±0.01)3GeV3-(0.24\pm 0.01)^{3}\mbox{GeV}^{3}
gsq¯σGq\langle g_{s}\bar{q}\sigma Gq\rangle (0.8±0.1)q¯qGeV2(0.8\pm 0.1)\langle\bar{q}q\rangle\mbox{GeV}^{2}
gs2GG\langle g^{2}_{s}GG\rangle 0.88±0.25GeV40.88\pm 0.25\mbox{GeV}^{4}
mcm_{c} 1.2750.035+0.025GeV1.275^{+0.025}_{-0.035}\mbox{GeV}M.Tanabashi

We define two quantities, the ratio of the pole contribution to the total contribution (RP) and the ratio of the highest dimensional term in the OPE series to the total OPE series (RH), as followings,

RPi4mc2sZc0𝑑sρ(i)(s)esMB24mc2𝑑sρ(i)(s)esMB2,\displaystyle RP_{i}\equiv\frac{\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(i)}(s)e^{-\frac{s}{M^{2}_{B}}}}{\int^{\infty}_{4m^{2}_{c}}ds\rho^{(i)}(s)e^{-\frac{s}{M^{2}_{B}}}},
RHi4mc2sZc0𝑑sρi(d=n)(s)esMB24mc2sZc0𝑑sρ(i)(s)esMB2,\displaystyle RH_{i}\equiv\frac{\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(d=n)}_{i}(s)e^{-\frac{s}{M^{2}_{B}}}}{\int^{s^{0}_{Z_{c}}}_{4m^{2}_{c}}ds\rho^{(i)}(s)e^{-\frac{s}{M^{2}_{B}}}}, (24)

where i=0,1i=0,1 and n=10(8)n=10(8) as i=0(1)i=0(1), respectively.

In Fig.1(a), we compare the various terms in the OPE series as functions of MB2M^{2}_{B} with sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}. From it one can see that except the quark condensate q¯q\langle\bar{q}q\rangle, other vacuum condensates are much smaller than the perturbative term. So the OPE series are under control. Fig.1(b) shows RP0RP_{0} and RH0RH_{0} varying with MB2M^{2}_{B} at sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}. The figure shows that the requirement RP050%RP_{0}\geq 50\% (RP040%RP_{0}\geq 40\%) gives MB23.3GeV2M^{2}_{B}\leq 3.3\mbox{GeV}^{2} (MB23.7GeV2M^{2}_{B}\leq 3.7\mbox{GeV}^{2}) and RH0=5%RH_{0}=5\% at MB2=1.25GeV2M^{2}_{B}=1.25\mbox{GeV}^{2}.

Refer to caption
Refer to caption
Figure 1: (a) denotes the various condensates as functions of MB2M^{2}_{B} with sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}; (b) represents RP0RP_{0} and RH0RH_{0} varying with MB2M^{2}_{B} at sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}.

From Fig.2(a), we know that the sum rule for the mass mZcm_{Z_{c}} depends strongly on the Borel parameter MB2M^{2}_{B} as MB23GeV2M^{2}_{B}\leq 3\mbox{GeV}^{2}. Along with the criterions of pole dominance, this fact confines MB2M^{2}_{B} from 3GeV23\mbox{GeV}^{2} to 3.7GeV23.7\mbox{GeV}^{2}. In the analysis, we take RP040%RP_{0}\geq 40\% so that we can obtain a larger interval of the Borel parameter. Within the interval of MB2M^{2}_{B} determined above, the mass varies weakly with MB2M^{2}_{B} as depicted in Fig.2(b). Fig.2(b) also shows the weak dependence of the mass on the threshold parameter sZc0s^{0}_{Z_{c}} as 4.52GeV2sZc04.72GeV24.5^{2}\mbox{GeV}^{2}\leq s^{0}_{Z_{c}}\leq 4.7^{2}\mbox{GeV}^{2}. As a result, we can reliably read the value of the mass, mZc=3.97±0.12GeVm_{Z_{c}}=3.97\pm 0.12\mbox{GeV}, in agreement with the experimental value mZcexp=3899.0±3.6±4.9MeVm^{exp}_{Z_{c}}=3899.0\pm 3.6\pm 4.9\mbox{MeV}.

Refer to caption
Refer to caption
Figure 2: The dependence of the mass mZcm_{Z_{c}} on the Borel parameter MB2M^{2}_{B} with sZc0=4.5GeV\sqrt{s^{0}_{Z_{c}}}=4.5\mbox{GeV} (dot-dashed line), sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV} (real line) and sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV} (dashed line).

In Fig.3, we show the variation of the pole residue with the Borel parameter MB2M^{2}_{B} in the determined interval at three different values of sZc0s^{0}_{Z_{c}}. It is obvious that the pole residue depends weakly on MB2M^{2}_{B} and sZc0s^{0}_{Z_{c}} and λZc=2.1±0.4×102GeV5\lambda_{Z_{c}}=2.1\pm 0.4\times 10^{-2}\mbox{GeV}^{5}.

Refer to caption
Figure 3: The figure shows the dependence of the pole residue λZc\lambda_{Z_{c}} on the Borel parameter MB2M^{2}_{B} in the determined interval at three different values of sZc0s^{0}_{Z_{c}}.

The same procedure can be done for the sum rule of the magnetic moment. The results are shown in Fig.4, from which the value of GM(0)G_{M}(0) can be read as GM(0)=0.820.07+0.17G_{M}(0)=0.82^{+0.17}_{-0.07}. Finally, we obtain

μZc=GM(0)e2mZc=0.820.07+0.17e2mZc=0.190.01+0.04μN,\mu_{Z_{c}}=G_{M}(0)\frac{e}{2m_{Z_{c}}}=0.82^{+0.17}_{-0.07}\frac{e}{2m_{Z_{c}}}=0.19^{+0.04}_{-0.01}\mu_{N}, (25)

where μN\mu_{N} is the nucleon magneton.

Refer to caption
Refer to caption
Refer to caption
Figure 4: (a) shows the various condensates as functions of MB2M^{2}_{B} with sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}; (b) presents RP1RP_{1} and RH1RH_{1} varying with MB2M^{2}_{B} at sZc0=4.6GeV\sqrt{s^{0}_{Z_{c}}}=4.6\mbox{GeV}; (c) depicts the dependence of GMG_{M} on MB2M^{2}_{B} in the determined interval at three different values of sZc0s^{0}_{Z_{c}}.

In Ref.wangzhigang , the author gave μZc=0.470.22+0.27μN\mu_{Z_{c}}=0.47^{+0.27}_{-0.22}\mu_{N} assuming Zc(3900)Z_{c}(3900) as an axialvector tetraquark state by the same method used in this article. In Ref.U.Ozdem , μZc=0.67±0.32μN\mu_{Z_{c}}=0.67\pm 0.32\mu_{N} was predicted using light-cone sum rule under the axialvector tetraquark assumption. In Table 2, we summarize the values of the magnetic moment of Zc(3900)Z_{c}(3900) under different assumptions about the quark configuration and with different methods. It is obvious that the magnetic moment of Zc(3900)Z_{c}(3900) has different values if Zc(3900)Z_{c}(3900) has different quark configurations. The theoretical predictions can be confronted to the experimental data in the future and give important information about the inner structure of Zc(3900)Z_{c}(3900) state.

Table 2: The magnetic moment of Zc(3900)Z_{c}(3900)(μN\mu_{N} is the nucleon magneton).
Quark Configuration Method Value
Axialvector Tetraquark Light-Cone Sum Rule 0.67±0.32μN0.67\pm 0.32\mu_{N}U.Ozdem
Axialvector Tetraquark QCD Sum Rule 0.470.22+0.27μN0.47^{+0.27}_{-0.22}\mu_{N}wangzhigang
Axialvector Molecule QCD Sum Rule 0.190.01+0.04μN0.19^{+0.04}_{-0.01}\mu_{N}(this work)

IV Conclusion

In this paper, we tentatively assign Zc(3900)Z_{c}(3900) to be an axialvector molecular state, calculate its magnetic moment using the QCD sum rule method in the external weak electromagnetic field. Starting with the two-point correlation function in the external electromagnetic field and expanding it in power of the electromagnetic interaction Hamiltonian, we extract the mass and pole residue of Zc(3900)Z_{c}(3900) state from the leading term in the expansion and the magnetic moment from the linear response to the external electromagnetic field. The numerical values are mZc=3.97±0.12GeVm_{Z_{c}}=3.97\pm 0.12\mbox{GeV} in agreement with the experimental value mZcexp=3899.0±3.6±4.9MeVm^{exp}_{Z_{c}}=3899.0\pm 3.6\pm 4.9\mbox{MeV}, λZc=2.1±0.4×102GeV5\lambda_{Z_{c}}=2.1\pm 0.4\times 10^{-2}\mbox{GeV}^{5} and μZc=0.190.01+0.04μN\mu_{Z_{c}}=0.19^{+0.04}_{-0.01}\mu_{N} with μN\mu_{N} the nucleon magneton. The prediction can be confronted to the experimental data in the future and give important information about the inner structure of Zc(3900)Z_{c}(3900) state.

Acknowledgements.
This work was supported by the National Natural Science Foundation of China under Contract No.11675263.

Appendix A The quark propagators

The full quark propagators are

Sijq(x)=\displaystyle S^{q}_{ij}(x)= ix2π2x4δijmq4π2x2δijq¯q12δij+iq¯q48mqxδijx2192gsq¯σGqδij\displaystyle\frac{i\not\!{x}}{2\pi^{2}x^{4}}\delta_{ij}-\frac{m_{q}}{4\pi^{2}x^{2}}\delta_{ij}-\frac{\langle\bar{q}q\rangle}{12}\delta_{ij}+i\frac{\langle\bar{q}q\rangle}{48}m_{q}\not\!{x}\delta_{ij}-\frac{x^{2}}{192}\langle g_{s}\bar{q}\sigma Gq\rangle\delta_{ij} (26)
+ix2x1152mqgsq¯σGqδijigstijaGμνa32π2x2(xσμν+σμνx)\displaystyle+i\frac{x^{2}\not\!{x}}{1152}m_{q}\langle g_{s}\bar{q}\sigma Gq\rangle\delta_{ij}-i\frac{g_{s}t^{a}_{ij}G^{a}_{\mu\nu}}{32\pi^{2}x^{2}}(\not\!{x}\sigma^{\mu\nu}+\sigma^{\mu\nu}\not\!{x})
+iδijeqFμν32π2x2(xσμν+σμνx)δijeqχq¯qσμνFμν24\displaystyle+i\frac{\delta_{ij}e_{q}F_{\mu\nu}}{32\pi^{2}x^{2}}(\not\!{x}\sigma^{\mu\nu}+\sigma^{\mu\nu}\not\!{x})-\frac{\delta_{ij}e_{q}\chi\langle\bar{q}q\rangle\sigma^{\mu\nu}F_{\mu\nu}}{24}
+δijeqq¯qFμν288(σμν2σαμxαxν)\displaystyle+\frac{\delta_{ij}e_{q}\langle\bar{q}q\rangle F_{\mu\nu}}{288}(\sigma^{\mu\nu}-2\sigma^{\alpha\mu}x_{\alpha}x^{\nu})
+δijeqq¯qFμν576[(κ+ξ)σμνx2(2κξ)σαμxαxν]+\displaystyle+\frac{\delta_{ij}e_{q}\langle\bar{q}q\rangle F_{\mu\nu}}{576}[(\kappa+\xi)\sigma^{\mu\nu}x^{2}-(2\kappa-\xi)\sigma^{\alpha\mu}x_{\alpha}x^{\nu}]+\cdots

for light quarks, and

SijQ(x)=id4k(2π)4eikx\displaystyle S^{Q}_{ij}(x)=i\int\frac{d^{4}k}{(2\pi)^{4}}e^{-ikx} [k+mQk2mQ2δijgstijaGμνa4σμν(k+mQ)+(k+mQ)σμν(k2mQ2)2\displaystyle[\frac{\not\!{k}+m_{Q}}{k^{2}-m^{2}_{Q}}\delta_{ij}-\frac{g_{s}t^{a}_{ij}G^{a}_{\mu\nu}}{4}\frac{\sigma^{\mu\nu}(\not\!{k}+m_{Q})+(\not\!{k}+m_{Q})\sigma^{\mu\nu}}{(k^{2}-m^{2}_{Q})^{2}} (27)
+gs2GG12δijmQk2+mQk(k2mQ2)4\displaystyle+\frac{\langle g^{2}_{s}GG\rangle}{12}\delta_{ij}m_{Q}\frac{k^{2}+m_{Q}\not\!{k}}{(k^{2}-m^{2}_{Q})^{4}}
+δijeQFμν4σμν(k+mQ)+(k+mQ)σμν(k2mQ2)2+]\displaystyle+\frac{\delta_{ij}e_{Q}F_{\mu\nu}}{4}\frac{\sigma^{\mu\nu}(\not\!{k}+m_{Q})+(\not\!{k}+m_{Q})\sigma^{\mu\nu}}{(k^{2}-m^{2}_{Q})^{2}}+\cdots]

for heavy quarks. In these expressions ta=λa2t^{a}=\frac{\lambda^{a}}{2} and λa\lambda^{a} are the Gell-Mann matrix, gsg_{s} is the strong interaction coupling constant, and i,ji,j are color indices, eQ(q)e_{Q(q)} is the charge of the heavy (light) quark and FμνF_{\mu\nu} is the external electromagnetic field.

Appendix B The spectral densities

On the QCD side, we carry out the OPE up to dimension-10 and dimension-8 for the spectral densities ρ(0)(s)\rho^{(0)}(s) and ρ(1)(s)\rho^{(1)}(s) respectively. The explicit expressions of the spectral densities are given below.

ρ(0)(s)=ρ0(d=0)+ρ0(d=3)(s)+ρ0(d=4)(s)+ρ0(d=5)(s)+ρ0(d=6)(s)+ρ0(d=7)(s)+ρ0(d=8)(s)+ρ0(d=10)(s),\rho^{(0)}(s)=\rho^{(d=0)}_{0}+\rho^{(d=3)}_{0}(s)+\rho^{(d=4)}_{0}(s)+\rho^{(d=5)}_{0}(s)+\rho^{(d=6)}_{0}(s)+\rho^{(d=7)}_{0}(s)+\rho^{(d=8)}_{0}(s)+\rho^{(d=10)}_{0}(s), (28)

with

ρ0(d=0)(s)=34096π6aminamax𝑑abmin1a𝑑b1a3b3(1ab)(1+a+b)(mc2(a+b)abs)4,\rho^{(d=0)}_{0}(s)=\frac{3}{4096\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{3}b^{3}}(1-a-b)(1+a+b)(m^{2}_{c}(a+b)-abs)^{4}, (29)
ρ0(d=3)(s)=3mc0|q¯q|0256π4aminamax𝑑abmin1a𝑑b1a2b2(a+b)(1+a+b)(mc2(a+b)abs)2,\rho^{(d=3)}_{0}(s)=-\frac{3m_{c}\langle 0|\bar{q}q|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{2}b^{2}}(a+b)(1+a+b)(m^{2}_{c}(a+b)-abs)^{2}, (30)
ρ0(d=4)(s)=\displaystyle\rho^{(d=4)}_{0}(s)= mc20|gs2GG|04096π6aminamax𝑑abmin1a𝑑b1a3b3(a3+b3)(1ab)(1+a+b)(mc2(a+b)abs)\displaystyle\frac{m^{2}_{c}\langle 0|g^{2}_{s}GG|0\rangle}{4096\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{3}b^{3}}(a^{3}+b^{3})(1-a-b)(1+a+b)(m^{2}_{c}(a+b)-abs) (31)
+0|gs2GG|04096π6aminamax𝑑abmin1a𝑑b1a2b2(a+b)(2a+2b1)(mc2(a+b)abs)2,\displaystyle+\frac{\langle 0|g^{2}_{s}GG|0\rangle}{4096\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{2}b^{2}}(a+b)(2a+2b-1)(m^{2}_{c}(a+b)-abs)^{2},
ρ0(d=5)(s)=\displaystyle\rho^{(d=5)}_{0}(s)= 3mc0|gsq¯σGq|0256π4aminamax𝑑abmin1a𝑑b1a2b2(a2+b2)(a+b)(mc2(a+b)abs)\displaystyle\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{2}b^{2}}(a^{2}+b^{2})(a+b)(m^{2}_{c}(a+b)-abs) (32)
+3mc0|gsq¯σGq|0512π4aminamax𝑑abmin1a𝑑b1ab(a+b)(mc2(a+b)abs)\displaystyle+\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle}{512\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{ab}(a+b)(m^{2}_{c}(a+b)-abs)
3mc0|gsq¯σGq|0256π4aminamax𝑑a1a(1a)(mc2a(1a)s),\displaystyle-\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\frac{1}{a(1-a)}(m^{2}_{c}-a(1-a)s),
ρ0(d=6)(s)=mc20|q¯q0|216π2s(s4mc2)s,\rho^{(d=6)}_{0}(s)=\frac{m^{2}_{c}\langle 0|\bar{q}q0|\rangle^{2}}{16\pi^{2}}\frac{\sqrt{s(s-4m^{2}_{c})}}{s}, (33)
ρ0(d=7)(s)=\displaystyle\rho^{(d=7)}_{0}(s)= mc0|q¯q0|0|gs2GG|0512π4aminamax𝑑abmin1a𝑑b1a2b(1+a+b)\displaystyle-\frac{m_{c}\langle 0|\bar{q}q0|\rangle\langle 0|g^{2}_{s}GG|0\rangle}{512\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{2}}b(1+a+b) (34)
mc0|q¯q|00|gs2GG|01536π4aminamax𝑑a(1+a+bmin)as+mc2mc2,\displaystyle-\frac{m_{c}\langle 0|\bar{q}q|0\rangle\langle 0|g^{2}_{s}GG|0\rangle}{1536\pi^{4}}\int^{a_{max}}_{a_{min}}da(1+a+b_{min})\frac{as+m^{2}_{c}}{m^{2}_{c}},
ρ0(d=8)(s)=0|q¯q|00|gsq¯σGq|032π2mc2s(s4mc2)(2mc2MB2+2mc2s1),\rho^{(d=8)}_{0}(s)=\frac{\langle 0|\bar{q}q|0\rangle\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle}{32\pi^{2}}\frac{m^{2}_{c}}{\sqrt{s(s-4m^{2}_{c})}}(2\frac{m^{2}_{c}}{M^{2}_{B}}+2\frac{m^{2}_{c}}{s}-1), (35)
ρ0(d=10)(s)=\displaystyle\rho^{(d=10)}_{0}(s)= 0|q¯q|020|gs2GG|0576π21s(s4mc2)(s(s3mc2)MB43s2mc2MB2)\displaystyle\frac{\langle 0|\bar{q}q|0\rangle^{2}\langle 0|g^{2}_{s}GG|0\rangle}{576\pi^{2}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}(\frac{s(s-3m^{2}_{c})}{M^{4}_{B}}-3\frac{s-2m^{2}_{c}}{M^{2}_{B}}) (36)
+0|gsq¯σGq|02128π2mc2sMB4s(s4mc2)(1mc2MB2).\displaystyle+\frac{\langle 0|g_{s}\bar{q}\sigma\cdot Gq|0\rangle^{2}}{128\pi^{2}}\frac{m^{2}_{c}s}{M^{4}_{B}\sqrt{s(s-4m^{2}_{c})}}(1-\frac{m^{2}_{c}}{M^{2}_{B}}).
ρ(1)(s)=ρ1(d=2)+ρ1(d=3)(s)+ρ1(d=5)(s)+ρ1(d=6)(s)+ρ1(d=7)(s)+ρ1(d=8)(s),\rho^{(1)}(s)=\rho^{(d=2)}_{1}+\rho^{(d=3)}_{1}(s)+\rho^{(d=5)}_{1}(s)+\rho^{(d=6)}_{1}(s)+\rho^{(d=7)}_{1}(s)+\rho^{(d=8)}_{1}(s), (37)

with

ρ1(d=2)(s)=31024π6aminamax𝑑abmin1a𝑑b1a2b2(a+b)(mc2(a+b)abs)3,\rho^{(d=2)}_{1}(s)=-\frac{3}{1024\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{a^{2}b^{2}}(a+b)(m^{2}_{c}(a+b)-abs)^{3}, (38)
ρ1(d=3)(s)=3mcχ0|q¯q|0256π4aminamax𝑑abmin1a𝑑b1ab2(mc2(a+b)abs)2,\rho^{(d=3)}_{1}(s)=\frac{3m_{c}\chi\langle 0|\bar{q}q|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{ab^{2}}(m^{2}_{c}(a+b)-abs)^{2}, (39)
ρ1(d=5)(s)=\displaystyle\rho^{(d=5)}_{1}(s)= mc0|q¯q0|32π4aminamax𝑑abmin1a𝑑b1b(mc2(a+b)abs)\displaystyle-\frac{m_{c}\langle 0|\bar{q}q0|\rangle}{32\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{b}(m^{2}_{c}(a+b)-abs) (40)
mc(2κξ)0|q¯q|0512π4aminamax𝑑abmin1a𝑑b1b(mc2(a+b)abs)\displaystyle-\frac{m_{c}(2\kappa-\xi)\langle 0|\bar{q}q|0\rangle}{512\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{b}(m^{2}_{c}(a+b)-abs)
+3mc(2κ+ξ)0|q¯q|0256π4aminamax𝑑abmin1a𝑑b1b2(mc2(a+b)abs)\displaystyle+\frac{3m_{c}(2\kappa+\xi)\langle 0|\bar{q}q|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{b^{2}}(m^{2}_{c}(a+b)-abs)
+mc0|q¯q|064π4aminamax𝑑a1a(mc2a(1a)s)\displaystyle+\frac{m_{c}\langle 0|\bar{q}q|0\rangle}{64\pi^{4}}\int^{a_{max}}_{a_{min}}da\frac{1}{a}(m^{2}_{c}-a(1-a)s)
mc(κ+ξ)0|q¯q|0256π4aminamax𝑑a1a(mc2a(1a)s)\displaystyle-\frac{m_{c}(\kappa+\xi)\langle 0|\bar{q}q|0\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\frac{1}{a}(m^{2}_{c}-a(1-a)s)
ρ1(d=6)(s)=\displaystyle\rho^{(d=6)}_{1}(s)= mc20|gs2GG|02048π6aminamax𝑑abmin1a𝑑b1b2a(a+b)\displaystyle-\frac{m^{2}_{c}\langle 0|g^{2}_{s}GG|0\rangle}{2048\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{b^{2}}a(a+b) (41)
+30|gs2GG|04096π6aminamax𝑑abmin1a𝑑b1b(mc2(a+b)abs)\displaystyle+\frac{3\langle 0|g^{2}_{s}GG|0\rangle}{4096\pi^{6}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{1}{b}(m^{2}_{c}(a+b)-abs)
30|gs2GG|04096π6aminamax𝑑a1a(mc2a(1a)s)\displaystyle-\frac{3\langle 0|g^{2}_{s}GG|0\rangle}{4096\pi^{6}}\int^{a_{max}}_{a_{min}}da\frac{1}{a}(m^{2}_{c}-a(1-a)s)
mc2χ0|q¯q|0232π2s(s4mc2)s,\displaystyle-\frac{m^{2}_{c}\chi\langle 0|\bar{q}q|0\rangle^{2}}{32\pi^{2}}\frac{\sqrt{s(s-4m^{2}_{c})}}{s},
ρ1(d=7)(s)=\displaystyle\rho^{(d=7)}_{1}(s)= mcχ0|q¯q|00|gs2GG|01024π4aminamax𝑑abmin1a𝑑bab2\displaystyle\frac{m_{c}\chi\langle 0|\bar{q}q|0\rangle\langle 0|g^{2}_{s}GG|0\rangle}{1024\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{a}{b^{2}} (42)
+χ0|q¯q|00|gs2GG|03072π4aminamax𝑑aas+3mc2mc\displaystyle+\frac{\chi\langle 0|\bar{q}q|0\rangle\langle 0|g^{2}_{s}GG|0\rangle}{3072\pi^{4}}\int^{a_{max}}_{a_{min}}da\frac{as+3m^{2}_{c}}{m_{c}}
+3mc0|gsq¯σGq0|256π4aminamax𝑑abmin1a𝑑bab\displaystyle+\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq0|\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\int^{1-a}_{b_{min}}db\frac{a}{b}
3mc0|gsq¯σGq0|256π4aminamax𝑑a1aa\displaystyle-\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq0|\rangle}{256\pi^{4}}\int^{a_{max}}_{a_{min}}da\frac{1-a}{a}
3mc30|gsq¯σGq0|512π41s(s4mc2)\displaystyle-\frac{3m^{3}_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq0|\rangle}{512\pi^{4}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}
+3mc0|gsq¯σGq0|1024π4s(s4mc2)s,\displaystyle+\frac{3m_{c}\langle 0|g_{s}\bar{q}\sigma\cdot Gq0|\rangle}{1024\pi^{4}}\frac{\sqrt{s(s-4m^{2}_{c})}}{s},
ρ1(d=8)(s)=\displaystyle\rho^{(d=8)}_{1}(s)= mc2χ0|q¯q|00|gsq¯σGq0|64π21s(s4mc2)(mc2MB2+mc2s1)\displaystyle-\frac{m^{2}_{c}\chi\langle 0|\bar{q}q|0\rangle\langle 0|g_{s}\bar{q}\sigma\cdot Gq0|\rangle}{64\pi^{2}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}(\frac{m^{2}_{c}}{M^{2}_{B}}+\frac{m^{2}_{c}}{s}-1) (43)
+mc40|q¯q|0248π21s(s4mc2)(1MB2+2s)\displaystyle+\frac{m^{4}_{c}\langle 0|\bar{q}q|0\rangle^{2}}{48\pi^{2}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}(\frac{1}{M^{2}_{B}}+\frac{2}{s})
+mc4(2κξ)0|q¯q|02192π21ss(s4mc2)\displaystyle+\frac{m^{4}_{c}(2\kappa-\xi)\langle 0|\bar{q}q|0\rangle^{2}}{192\pi^{2}}\frac{1}{s\sqrt{s(s-4m^{2}_{c})}}
+mc4(κ+ξ)0|q¯q|0296π21s(s4mc2)(1MB2+1s)\displaystyle+\frac{m^{4}_{c}(\kappa+\xi)\langle 0|\bar{q}q|0\rangle^{2}}{96\pi^{2}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}(\frac{1}{M^{2}_{B}}+\frac{1}{s})
mc2(2κ+ξ)0|q¯q|0264π21s(s4mc2).\displaystyle-\frac{m^{2}_{c}(2\kappa+\xi)\langle 0|\bar{q}q|0\rangle^{2}}{64\pi^{2}}\frac{1}{\sqrt{s(s-4m^{2}_{c})}}.

In the above equations, amax=1+14mc2s2a_{max}=\frac{1+\sqrt{1-\frac{4m^{2}_{c}}{s}}}{2}, amin=114mc2s2a_{min}=\frac{1-\sqrt{1-\frac{4m^{2}_{c}}{s}}}{2} and bmin=amc2asmc2b_{min}=\frac{am^{2}_{c}}{as-m^{2}_{c}}.

References

  • (1) M. Ablikim et al, Phys. Rev. Lett. 110 (2013) 252001.
  • (2) Z. Q. Liu et al, Phys. Rev. Lett. 110 (2013) 252002.
  • (3) T. Xiao, S. Dobbs, A. Tomaradze and K. K. Seth, Phys. Lett. B727 (2013) 366.
  • (4) M. Ablikim et al, Phys. Rev. Lett. 119 (2017) 072001.
  • (5) Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Prog. Part. Nucl. Phys. 107 (2019) 237; H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Rept. Prog. Phys. 80 (2017) no. 7, 076201; H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639 (2016) 1.
  • (6) M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147 (1979) 385; Nucl. Phys. B147 (1979) 448.
  • (7) I. I. Balitsky and A. V. Yung, Phys. Lett. B129 (1983) 328.
  • (8) B. L. Ioffe and A. V. Smilga, Nucl. Phys. B232 (1984) 109.
  • (9) B. L. Ioffe and A. V. Smilga, Phys. Lett. B133 (1983) 436.
  • (10) C. B. Chiu, J. Pasupathy and S. L. Wilson, Phys. Rev. D33 (1986) 1961.
  • (11) J. Pasupathy, J. P. Singh, S. L. Wilson and C. B. Chiu, Phys. Rev. D36 (1986) 1442.
  • (12) S. L. Wilson, J. Pasupathy and C. B. Chiu, Phys. Rev. D36 (1987) 1451.
  • (13) S. Zhu, W. Hwang and Z. Yang, Phys. Rev. D57 (1998) 1527.
  • (14) F. X. Lee, Phys. Rev. D57 (1998) 1801.
  • (15) F. X. Lee, Phys. Lett. B419 (1998) 14.
  • (16) J. Dey, M. Dey and A. Iqubal, Phys. Lett. B477 (2000) 125.
  • (17) M. Sinha, A. Iqubal, M. Dey and J. Dey, Phys. Lett. B610 (2005) 283.
  • (18) A. Samsonov, Phys. Atom. Nucl. 68 (2005) 114.
  • (19) Z. G. Wang, Eur. Phys. J. C78 (2018)4 297.
  • (20) C. Y. Cui, X. H. Liao, Y. L. Liu and M. Q. Huang, J. Phys. G41 (2014) 075003.
  • (21) M. Tanabashi et al[Particle Data Group], Phys. Rev. D98 (2018) 030001.
  • (22) P. Ball, V. M. Braun and N. Kivel, Nucl. Phys. B649 (2003) 263.
  • (23) U. Ozdem and K. Azizi, Phys. Rev. D96 (2017) 074030.