This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The log symplectic geometry of Poisson slices

Peter Crooks  and  Markus Röser Department of Mathematics
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
[email protected] Fachbereich Mathematik
Universität Hamburg
Bundesstraße 55 (Geomatikum)
20146 Hamburg
Germany
[email protected]
Abstract.

Our paper develops a theory of Poisson slices and a uniform approach to their partial compactifications. The theory in question is loosely comparable to that of symplectic cross-sections in real symplectic geometry.

Key words and phrases:
Poisson slice, log symplectic variety, wonderful compactification
1991 Mathematics Subject Classification:
14L30 (primary); 53D20, 14A21 (secondary)

1. Introduction

1.1. Motivation and context

The Poisson slice construction yields a number of varieties relevant to geometric representation theory and symplectic geometry. One begins with a complex semisimple linear algebraic group with Lie algebra 𝔤\mathfrak{g}. Let us also consider a Hamiltonian GG-variety XX, i.e. a smooth Poisson variety with a Hamiltonian action of GG and moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g}. Each 𝔰𝔩2\mathfrak{sl}_{2}-triple τ=(ξ,h,η)𝔤3\tau=(\xi,h,\eta)\in\mathfrak{g}^{\oplus 3} determines a Slodowy slice

𝒮τ:=ξ+𝔤η𝔤,\mathcal{S}_{\tau}:=\xi+\mathfrak{g}_{\eta}\subseteq\mathfrak{g},

and the preimage

Xτ:=ν1(𝒮τ)X_{\tau}:=\nu^{-1}(\mathcal{S}_{\tau})

is a Poisson transversal in XX. The variety XτX_{\tau} is thereby Poisson, and we call it the Poisson slice determined by XX and τ\tau. To a certain extent, Poisson slices are complex Poisson-geometric counterparts of symplectic cross-sections [31, 38, 27, 28] in real symplectic geometry.

Noteworthy examples of Poisson slices include the product G×𝒮τG\times\mathcal{S}_{\tau}, a hyperkähler and Hamiltonian GG-variety studied by Bielawski [5, 6], Moore–Tachikawa [41], and several others [11, 14, 13, 1, 15]. A second example is a Coulomb branch [7] called the universal centralizer

𝒵𝔤τ:={(g,y)G×𝒮τ:Adg(y)=y},\mathcal{Z}_{\mathfrak{g}}^{\tau}:=\{(g,y)\in G\times\mathcal{S}_{\tau}:\mathrm{Ad}_{g}(y)=y\},

where τ\tau is a fixed principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. This hyperkähler variety has received considerable attention in the literature [4, 7, 12, 40, 51, 55, 56], and it features prominently in Bălibanu’s recent paper [2]. Bălibanu assumes GG to be of adjoint type. She harnesses the geometry of the wonderful compactification G¯\overline{G} and constructs a fibrewise compactification 𝒵𝔤τ¯𝒮τ\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}\longrightarrow\mathcal{S}_{\tau} of 𝒵𝔤τ𝒮τ\mathcal{Z}_{\mathfrak{g}}^{\tau}\longrightarrow\mathcal{S}_{\tau}, where the latter map is projection onto the 𝒮τ\mathcal{S}_{\tau}-factor. She subsequently endows 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} with a log symplectic structure.

The preceding discussion gives rise to the following rough questions.

  • Is there a coherent and systematic approach to the partial compactification of Poisson slices that is related to G¯\overline{G} and specializes to yield 𝒵𝔤τ¯𝒮τ\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}\longrightarrow\mathcal{S}_{\tau} as a fibrewise compactification of 𝒵𝔤τ𝒮τ\mathcal{Z}_{\mathfrak{g}}^{\tau}\longrightarrow\mathcal{S}_{\tau}?

  • If the previous question has an affirmative answer and XτX_{\tau} is symplectic, does the partial compactification of XτX_{\tau} carry a log symplectic structure?

Our inquiry stands to benefit from two observations. One first notes the universal or atomic nature of G×𝒮τG\times\mathcal{S}_{\tau} as a Poisson slice, i.e. the existence of a canonical Poisson variety isomorphism

Xτ(X×(G×𝒮τ))GX_{\tau}\cong(X\times(G\times\mathcal{S}_{\tau}))\sslash G

for each Hamiltonian GG-variety XX and 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau in 𝔤\mathfrak{g}. These atomic Poisson slices have counterparts in the theories of symplectic cross-sections [31], symplectic implosion [27], symplectic contraction [34], hyperkähler implosion [17, 16], and Kronheimer’s hyperkähler quotient with momentum [37]. A second observation is that G×𝒮τG\times\mathcal{S}_{\tau} sits inside of a larger log symplectic variety G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} as the unique open dense symplectic leaf; the construction of G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} assumes GG to be of adjoint type and exploits the geometry of G¯\overline{G}.

The preceding considerations motivate us to define

X¯τ:=(X×(G×𝒮τ¯))G\overline{X}_{\tau}:=(X\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G

and conjecture that X¯τ\overline{X}_{\tau} is the desired partial compactification of XτX_{\tau}. While this naive conjecture needs to be refined and made more precise, it inspires many of the results in our paper.

1.2. Summary of Results

Our paper develops a detailed theory of Poisson slices and addresses the questions posed above. The following is a summary of our results. We work exclusively over \mathbb{C} and take all Poisson varieties to be smooth. We use the Killing form to freely identify 𝔤\mathfrak{g}^{*} with 𝔤\mathfrak{g}, as well as the left trivialization and Killing form to freely identify TGT^{*}G with G×𝔤G\times\mathfrak{g}.

Suppose that XX is a Poisson Hamiltonian GG-variety with moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g}. Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g} and consider the Poisson transversal

Xτ:=ν1(𝒮τ)X.X_{\tau}:=\nu^{-1}(\mathcal{S}_{\tau})\subseteq X.

The following are some first properties of the Poisson slice XτX_{\tau}. Such properties are well-known in the case of a symplectic variety XX (see [5]).

Proposition 1.1.

Let XX be a Poisson variety endowed with a Hamiltonian GG-action and moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g}. Suppose that τ=(ξ,h,η)\tau=(\xi,h,\eta) is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. The following statements hold.

  • (i)

    The Poisson slice XτX_{\tau} is transverse to the GG-orbits in XX.

  • (ii)

    There are canonical Poisson variety isomorphisms

    (X×(G×𝒮τ))GXτXξUτ.(X\times(G\times\mathcal{S}_{\tau}))\sslash G\cong X_{\tau}\cong X\sslash_{\xi}U_{\tau}.

    The Hamiltonian GG-variety structure on G×𝒮τG\times\mathcal{S}_{\tau} and meaning of the unipotent subgroup UτGU_{\tau}\subseteq G are given in Subsection 3.2.

We also consider some special cases of the Poisson slice construction, including the following well-known result in the symplectic category.

Observation 1.2.

Let XX be a symplectic variety endowed with a Hamiltonian action of GG and a moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g}. Suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. The Poisson structure on XτX_{\tau} makes it a symplectic subvariety of XX.

Now suppose that the above-mentioned Poisson variety XX is log symplectic [25, 23, 50, 47], by which the following is meant: XX has a unique open dense symplectic leaf, and the degeneracy locus of the Poisson bivector is a reduced normal crossing divisor. We establish the following log symplectic counterpart of Observation 1.2.

Proposition 1.3.

Let XX be a log symplectic variety endowed with a Hamiltonian GG-action and moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g}. Suppose that τ\tau is any 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. Each irreducible component of XτX_{\tau} is then a Poisson subvariety of XτX_{\tau}. The resulting Poisson structure on each component makes the component a log symplectic subvariety of XX.

Now assume GG to be of adjoint type. One may consider the De Concini–Procesi wonderful compactification G¯\overline{G} of GG [18], along with the divisor D:=G¯GD:=\overline{G}\setminus G. The data (G¯,D)(\overline{G},D) determine a log cotangent bundle TG¯(log(D))T^{*}\overline{G}(\log(D)), which is known to have a canonical log symplectic structure. Its unique open dense symplectic leaf is TGT^{*}G, and the canonical Hamiltonian (G×GG\times G)-action on TGT^{*}G extends to such an action on TG¯(log(D))T^{*}\overline{G}(\log(D)). The moment maps

ρ=(ρL,ρR):TG𝔤𝔤andρ¯=(ρ¯L,ρ¯R):TG¯(log(D))𝔤𝔤\rho=(\rho_{L},\rho_{R}):T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g}\quad\text{and}\quad\overline{\rho}=(\overline{\rho}_{L},\overline{\rho}_{R}):T^{*}\overline{G}(\log(D))\longrightarrow\mathfrak{g}\oplus\mathfrak{g}

can be written in explicit terms. This leads to the following straightforward observations, whose proofs use Observation 1.2 and Proposition 1.3. To this end, recall that a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple is an 𝔰𝔩2\mathfrak{sl}_{2}-triple consisting of regular elements.

Observation 1.4.

Let τ=(ξ,h,η)\tau=(\xi,h,\eta) be a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, and consider the principal 𝔰𝔩2\mathfrak{sl}_{2}-triple (τ,τ):=((ξ,ξ),(h,h),(η,η))(\tau,\tau):=((\xi,\xi),(h,h),(\eta,\eta)) in 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g}. One then has

(TG)(τ,τ)=ρ1(𝒮τ×𝒮τ)=𝒵𝔤τ,and(TG¯(logD))(τ,τ)=ρ¯1(𝒮τ×𝒮τ)=𝒵𝔤τ¯.(T^{*}G)_{(\tau,\tau)}=\rho^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})=\mathcal{Z}_{\mathfrak{g}}^{\tau},\quad\text{and}\quad(T^{*}\overline{G}(\log D))_{(\tau,\tau)}=\overline{\rho}^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})=\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}.

The first Poisson slice is symplectic, while the second is log symplectic.

Observation 1.5.

Consider the Hamiltonian action of G={e}×GG×GG=\{e\}\times G\subseteq G\times G on TGT^{*}G. If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then

(TG)τ=ρR1(𝒮τ)=G×𝒮τ.(T^{*}G)_{\tau}=\rho_{R}^{-1}(\mathcal{S}_{\tau})=G\times\mathcal{S}_{\tau}.

This Poisson slice is symplectic.

In light of these observations, it is natural to consider the Poisson slice

G×𝒮τ¯:=ρ¯R1(𝒮τ)TG¯(logD).\overline{G\times\mathcal{S}_{\tau}}:=\overline{\rho}_{R}^{-1}(\mathcal{S}_{\tau})\subseteq T^{*}\overline{G}(\log D).

One has an inclusion G×𝒮τG×𝒮τ¯G\times\mathcal{S}_{\tau}\subseteq\overline{G\times\mathcal{S}_{\tau}}, while G×𝒮τG\times\mathcal{S}_{\tau} and G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} carry residual Hamiltonian actions of G=G×{e}G×GG=G\times\{e\}\subseteq G\times G. The respective moment maps are

ρτ:=ρL|G×𝒮τandρ¯τ:=ρ¯L|G×𝒮τ¯,\rho_{\tau}:=\rho_{L}\big{|}_{G\times\mathcal{S}_{\tau}}\quad\text{and}\quad\overline{\rho}_{\tau}:=\overline{\rho}_{L}\big{|}_{\overline{G\times\mathcal{S}_{\tau}}},

and they feature in the following result.

Theorem 1.6.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}.

  • (i)

    The Poisson slice G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} is irreducible and log symplectic.

  • (ii)

    The inclusion G×𝒮τG×𝒮τ¯G\times\mathcal{S}_{\tau}\longrightarrow\overline{G\times\mathcal{S}_{\tau}} is a GG-equivariant symplectomorphism onto the unique open dense symplectic leaf in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}.

  • (iii)

    The diagram

    G×𝒮τ{G\times\mathcal{S}_{\tau}}G×𝒮τ¯{\overline{G\times\mathcal{S}_{\tau}}}𝔤{\mathfrak{g}}ρτ\scriptstyle{\rho_{\tau}}ρ¯τ\scriptstyle{\overline{\rho}_{\tau}} (1.1)

    commutes.

  • (iv)

    If τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple, then (1.1) realizes ρ¯τ\overline{\rho}_{\tau} as a fibrewise compactification of ρτ\rho_{\tau}.

Our paper subsequently discusses the relation of (1.1) to Bălibanu’s fibrewise compactification

𝒵𝔤τ𝒵𝔤τ¯𝒮τ.\leavevmode\hbox to95.75pt{\vbox to51.01pt{\pgfpicture\makeatletter\hbox{\hskip 47.87396pt\lower-25.50551pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-47.87396pt}{-25.50551pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 8.7611pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.45555pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{Z}_{\mathfrak{g}}^{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 8.7611pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 32.30733pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.00182pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{S}_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.30736pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-30.15178pt}{11.44171pt}\pgfsys@lineto{33.66292pt}{11.44171pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.8629pt}{11.44171pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-30.15178pt}{3.92715pt}\pgfsys@lineto{-6.8582pt}{-15.6162pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.76608}{-0.64275}{0.64275}{0.76608}{-6.70502pt}{-15.74472pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.70456pt}{-8.32582pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{34.06288pt}{5.27222pt}\pgfsys@lineto{10.76303pt}{-15.25114pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.7504}{-0.66098}{0.66098}{-0.7504}{10.61296pt}{-15.38333pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{24.61566pt}{-7.47441pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (1.2)

We next study Hamiltonian reductions of the form

X¯τ:=(X×(G×𝒮τ¯))G,\overline{X}_{\tau}:=(X\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G,

where XX is a Hamiltonian GG-variety and τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. The special case τ=0\tau=0 features prominently in our analysis, and we write X¯\overline{X} for X¯τ\overline{X}_{\tau} if τ=0\tau=0. This amounts to setting

X¯:=(X×TG¯(logD))G,\overline{X}:=(X\times T^{*}\overline{G}(\log D))\sslash G,

with GG acting as G=G×{e}G×GG=G\times\{e\}\subseteq G\times G on TG¯(logD)T^{*}\overline{G}(\log D).

One has the preliminary issue of whether the quotients X¯τ\overline{X}_{\tau} and X¯\overline{X} exist. The following result provides some sufficient conditions.

Lemma 1.7.

Let XX be a Hamiltonian GG-variety.

  • (i)

    If XX is a principal GG-bundle, then X¯\overline{X} exists as a geometric quotient.

  • (ii)

    If X¯\overline{X} exists as a geometric quotient, then X¯τ\overline{X}_{\tau} exists as a geometric quotient for all 𝔰𝔩2\mathfrak{sl}_{2}-triples τ\tau in 𝔤\mathfrak{g}.

  • (iii)

    If X=TYX=T^{*}Y for an irreducible smooth principal GG-bundle YY, then X¯τ\overline{X}_{\tau} exists as a geometric quotient for all 𝔰𝔩2\mathfrak{sl}_{2}-triples τ\tau in 𝔤\mathfrak{g}.

The variety X¯τ\overline{X}_{\tau} enjoys certain Poisson-geometric features. A first step in this direction is to set

X¯τ:=(X×(G×𝒮τ¯))G,\overline{X}_{\tau}^{\circ}:=(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}\sslash G,

where (X×G×𝒮τ¯)(X\times\overline{G\times\mathcal{S}_{\tau}})^{\circ} is the open set of points in (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ} with trivial GG-stabilizers. The variety X¯τ\overline{X}_{\tau}^{\circ} exists as a geometric quotient if X¯\overline{X} exists as a geometric quotient, in which case one has inclusions

XτX¯τX¯τX_{\tau}\subseteq\overline{X}_{\tau}^{\circ}\subseteq\overline{X}_{\tau}
Theorem 1.8.

Let XX be a Hamiltonian GG-variety, and suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. Assume that X¯τ\overline{X}_{\tau} exists as a geometric quotient.

  • (i)

    The coordinate ring [X¯τ]\mathbb{C}[\overline{X}_{\tau}] carries a natural Poisson bracket for which restriction [X¯τ][Xτ]\mathbb{C}[\overline{X}_{\tau}]\longrightarrow\mathbb{C}[X_{\tau}] is a Poisson algebra morphism.

  • (ii)

    The variety X¯τ\overline{X}_{\tau}^{\circ} is smooth and Poisson, and it contains XτX_{\tau} as an open Poisson subvariety.

  • (iii)

    If XX is symplectic, then each irreducible component of X¯τ\overline{X}_{\tau}^{\circ} is log symplectic.

  • (iv)

    If XX is symplectic and XτX_{\tau} is irreducible, then XτX_{\tau} is the open dense symplectic leaf in a unique irreducible component of X¯τ\overline{X}_{\tau}^{\circ}.

Our final main result addresses the extent to which X¯τ\overline{X}_{\tau} partially compactifies XτX_{\tau}. We begin by assuming that both X¯τ\overline{X}_{\tau} and X/GX/G exist as geometric quotients. This allows us to construct canonical maps

πτ:XτX/Gandπ¯τ:X¯τX/G.\pi_{\tau}:X_{\tau}\longrightarrow X/G\quad\text{and}\quad\overline{\pi}_{\tau}:\overline{X}_{\tau}\longrightarrow X/G.

It is then straightforward to deduce that

Xτ{X_{\tau}}X¯τ{\overline{X}_{\tau}}X/G{X/G}πτ\scriptstyle{\pi_{\tau}}π¯τ\scriptstyle{\overline{\pi}_{\tau}} (1.3)

commutes, where the horizontal arrow is inclusion. This leads to the following theorem.

Theorem 1.9.

Let XX be a Hamiltonian GG-variety, and suppose that τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} and X/GX/G exist as geometric quotients, then (4.10) realizes π¯τ\overline{\pi}_{\tau} as a fibrewise compactification of πτ\pi_{\tau}.

In the case of a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau, we realize the fibrewise compactifications (1.1) and (1.2) as special instances of Theorem 1.9.

1.3. Organization

In Section 2, we introduce the concepts from Lie theory and Poisson geometry that form the foundation for our work. Section 3 details the theory of Poisson slices and provides complete proofs of Propositions 1.1 and 1.3. Section 4 subsequently considers the Poisson slice enlargements X¯τ\overline{X}_{\tau} mentioned above, and it contains the proofs of Theorems 1.6, 1.8 and 1.9. We conclude with Section 5, which is devoted to illustrative examples. A list of recurring notation appears after Section 5.

Acknowledgements

The first author gratefully acknowledges the Natural Sciences and Engineering Research Council of Canada for support [PDF–516638].

2. Preliminaries

This section provides some of the notation, conventions, and basic results used throughout our paper.

2.1. Fundamental conventions

We work exclusively over \mathbb{C} and understand all group actions as being left group actions. We also write 𝒪X\mathcal{O}_{X} for the structure sheaf of an algebraic variety XX, as well as [X]\mathbb{C}[X] for the coordinate ring 𝒪X(X)\mathcal{O}_{X}(X). The dimension of XX is understood to be the supremum of the dimensions of the irreducible components. We understand XX to be smooth if dim(TxX)=dim(X)\dim(T_{x}X)=\dim(X) for all xXx\in X. Note that this convention forces a smooth variety to be pure-dimensional.

2.2. Quotients of KK-varieties

Let KK be a linear algebraic group. We adopt the term KK-variety in reference to a variety XX endowed with an algebraic KK-action.

Definition 2.1.

Suppose that XX is a KK-variety. A variety morphism π:XY\pi:X\longrightarrow Y is called a categorical quotient of XX if the following conditions are satisfied:

  • (i)

    π\pi is KK-invariant;

  • (ii)

    if θ:XZ\theta:X\longrightarrow Z is a KK-invariant variety morphism, then there exists a unique morphism φ:YZ\varphi:Y\longrightarrow Z for which

    X{X}Y{Y}Z{Z}π\scriptstyle{\pi}θ\scriptstyle{\theta}φ\scriptstyle{\varphi}

    commutes.

Definition 2.2.

Suppose that XX is a KK-variety. A variety morphism π:XY\pi:X\longrightarrow Y is called a good quotient of XX if the following conditions are satisfied:

  • (i)

    π\pi is surjective, affine, and KK-invariant;

  • (ii)

    if UYU\subseteq Y is open, then the comorphism π:𝒪Y(U)𝒪X(π1(U))\pi^{*}:\mathcal{O}_{Y}(U)\longrightarrow\mathcal{O}_{X}(\pi^{-1}(U)) is an isomorphism onto 𝒪X(π1(U))K\mathcal{O}_{X}(\pi^{-1}(U))^{K};

  • (iii)

    if ZXZ\subseteq X is closed and KK-invariant, then π(Z)\pi(Z) is closed in YY;

  • (iv)

    if Z1,Z2XZ_{1},Z_{2}\subseteq X are closed, KK-invariant, and disjoint, then π(Z1)\pi(Z_{1}) and π(Z2)\pi(Z_{2}) are disjoint.

One calls π:XY\pi:X\longrightarrow Y a geometric quotient of XX if π\pi is a good quotient and π1(y)\pi^{-1}(y) is a KK-orbit for each yYy\in Y.

Let XX be a KK-variety admitting a geometric quotient π:XY\pi:X\longrightarrow Y, and write X/KX/K for the set of KK-orbits in XX. One then has a canonical bijection YX/KY\cong X/K, through which X/KX/K inherits a variety structure. Any two geometric quotients π:XY\pi:X\longrightarrow Y and π:XY\pi^{\prime}:X\longrightarrow Y^{\prime} induce the same variety structure on X/KX/K, and this structure makes the set-theoretic quotient map XX/KX\longrightarrow X/K a geometric quotient. With this in mind, we shall sometimes write “X/KX/K exists” or “the geometric quotient XX/KX\longrightarrow X/K exists” to mean that XX admits a geometric quotient.

Lemma 2.3.

Assume that KK is connected and reductive. Suppose that XX is an affine KK-variety, and let π:XY\pi:X\longrightarrow Y be a variety morphism. If π1(y)\pi^{-1}(y) is a KK-orbit for each yYy\in Y, then π\pi is a geometric quotient of XX.

Proof.

One knows that XX admits a good quotient θ:XZ\theta:X\longrightarrow Z (e.g. [52, Theorem 1.4.2.4]), and that this quotient is also categorical (e.g. [52, Lemma 1.4.1.1]). It follows that

X{X}Z{Z}Y{Y}θ\scriptstyle{\theta}π\scriptstyle{\pi}φ\scriptstyle{\varphi} (2.1)

commutes for some morphism φ:ZY\varphi:Z\longrightarrow Y. The surjectivity of π\pi then forces φ\varphi to be surjective.

We claim that φ\varphi is an isomorphism, i.e. that φ\varphi is also injective. To this end, let z1,z2Zz_{1},z_{2}\in Z be such that φ(z1)=φ(z2)\varphi(z_{1})=\varphi(z_{2}). Choose x1,x2Xx_{1},x_{2}\in X satisfying θ(x1)=z1\theta(x_{1})=z_{1} and θ(x2)=z2\theta(x_{2})=z_{2}. One then has π(x1)=π(x2)\pi(x_{1})=\pi(x_{2}), so that x1x_{1} and x2x_{2} belong to the same KK-orbit in XX. The KK-invariance of θ\theta now implies that θ(x1)=z1\theta(x_{1})=z_{1} and θ(x2)=z2\theta(x_{2})=z_{2} must coincide. We conclude that φ\varphi is injective, implying that φ\varphi is indeed an isomorphism. This combines with the commutativity of (2.1) to tell us that π\pi is a good quotient. Since π1(y)\pi^{-1}(y) is a KK-orbit for all yYy\in Y, one deduces that π\pi is a geometric quotient. ∎

Proposition 2.4.

Assume that KK is connected and reductive. Suppose that XX is a KK-variety admitting a geometric quotient π:XY\pi:X\longrightarrow Y. If ZXZ\subseteq X is a KK-invariant locally closed subvariety, then π(Z)\pi(Z) is locally closed in YY and

π|Z:Zπ(Z)\pi\big{|}_{Z}:Z\longrightarrow\pi(Z)

is a geometric quotient of ZZ.

Proof.

We begin by showing π(Z)\pi(Z) to be locally closed in YY. To this end, note that the closure Z¯X\overline{Z}\subseteq X is KK-invariant. It follows that π(Z¯)\pi(\overline{Z}) is a closed subvariety of YY. An application of [54, Lemma 25.3.2] now forces

π|Z¯:Z¯π(Z¯)\pi\big{|}_{\overline{Z}}:\overline{Z}\longrightarrow\pi(\overline{Z})

to be an open map. Since ZZ is open in Z¯\overline{Z}, we conclude that π(Z)\pi(Z) is open in the closed subvariety π(Z¯)Y\pi(\overline{Z})\subseteq Y. This implies that π(Z)\pi(Z) is locally closed in YY.

Now observe that π|Z:Zπ(Z)\pi\big{|}_{Z}:Z\longrightarrow\pi(Z) is the base change of π\pi under the locally closed immersion π(Z)Y\pi(Z)\hookrightarrow Y. Since affine morphisms are stable under base change (e.g. [45, Exercise 4.E.9(2)]), it follows that π|Z\pi\big{|}_{Z} is affine. We may therefore cover π(Z)\pi(Z) with affine open subsets {Vα}α𝒜\{V_{\alpha}\}_{\alpha\in\mathcal{A}} in such a way that

{Uα:=(π|Z)1(Vα)}α𝒜\{U_{\alpha}:=(\pi\big{|}_{Z})^{-1}(V_{\alpha})\}_{\alpha\in\mathcal{A}}

is a cover of ZZ by affine open subsets. By virtue of [52, Exercise 1.4.1.2 ii)], we are reduced to verifying that each morphism

π|Uα:UαVα\pi\big{|}_{U_{\alpha}}:U_{\alpha}\longrightarrow V_{\alpha}

is a geometric quotient. This reduction combines with Lemma 2.3 to complete the proof. ∎

We will need the following algebro-geometric notion of a principal bundle appearing in [8, Definition 2.3.1].

Definition 2.5.

Suppose that XX is a KK-variety. A KK-invariant variety morphism π:XY\pi:X\longrightarrow Y is called a principal KK-bundle if the following conditions hold:

  • (i)

    π\pi is faithfully flat, i.e. flat and surjective;

  • (ii)

    the natural map

    σ:K×XX×YX,σ(k,x)=(x,kx)\sigma:K\times X\longrightarrow X\times_{Y}X,\quad\sigma(k,x)=(x,k\cdot x)

    is an isomorphism.

A principal KK-bundle is necessarily a geometric quotient (e.g. by [8, Proposition 2.3.3]). We understand “XX is a principal KK-bundle” as meaning that XX admits a geometric quotient π:XX/K\pi:X\longrightarrow X/K, and that π\pi is a principal KK-bundle.

Lemma 2.6.

Let XX be a smooth KK-variety with a free KK-action and a good quotient π:XY\pi\colon X\longrightarrow Y. The map π\pi is then a principal KK-bundle.

Proof.

Since the KK-action is free, all KK-orbits are closed in XX. It now follows from Definition 2.1(iv) that π\pi separates KK-orbits. Each fibre of π\pi is therefore a single KK-orbit. This combines with the smoothness of XX and the freeness of the KK-action to imply that π\pi is flat.

It remains only to prove that

σ:K×XX×YX,σ(k,x)=(x,kx)\sigma:K\times X\longrightarrow X\times_{Y}X,\quad\sigma(k,x)=(x,k\cdot x)

is an isomorphism. This follows immediately from the freeness of the KK-action and the fact that the fibres of π\pi are the KK-orbits in XX. ∎

2.3. Poisson varieties

Let XX be a smooth variety. Suppose that PP is a global section of Λ2(TX)\Lambda^{2}(TX), and consider the bracket operation defined by

{f1,f2}:=P(df1df2)𝒪X\{f_{1},f_{2}\}:=P(df_{1}\wedge df_{2})\in\mathcal{O}_{X}

for all f1,f2𝒪Xf_{1},f_{2}\in\mathcal{O}_{X}. One calls PP a Poisson bivector if this bracket renders 𝒪X\mathcal{O}_{X} a sheaf of Poisson algebras. We use the term Poisson variety in reference to a smooth variety XX equipped with a Poisson bivector PP. In this case, {,}\{\cdot,\cdot\} is called the Poisson bracket. Let us also recall that a variety morphism ϕ:X1X2\phi:X_{1}\longrightarrow X_{2} between Poisson varieties (X1,P1)(X_{1},P_{1}) and (X2,P2)(X_{2},P_{2}) is called a Poisson morphism if

dϕ(P1(ϕα))=P2(α)d\phi(P_{1}(\phi^{*}\alpha))=P_{2}(\alpha)

for all one-forms α\alpha defined on any open subset of X2X_{2}. Our convention is to have (X1×X2,P1(P2))(X_{1}\times X_{2},P_{1}\oplus(-P_{2})) be the Poisson variety product of (X1,P1)(X_{1},P_{1}) and (X2,P2)(X_{2},P_{2}).

Let (X,P)(X,P) be a Poisson variety. Contracting the bivector with cotangent vectors allows one to view PP as a bundle morphism

P:TXTX,P:T^{*}X\longrightarrow TX,

whose image is a holomorphic distribution on XX. One refers to the maximal integral submanifolds of this distribution as the symplectic leaves of XX. The symplectic form ωL\omega_{L} on a symplectic leaf LXL\subseteq X is constructed as follows. One defines the Hamiltonian vector field of a locally defined function f𝒪Xf\in\mathcal{O}_{X} by

Hf:=P(df).H_{f}:=-P(df). (2.2)

This gives rise to the tangent space description

TxL={(Hf)x:f𝒪X}T_{x}L=\{(H_{f})_{x}:f\in\mathcal{O}_{X}\}

for all xLx\in L, and one has

(ωL)x((Hf1)x,(Hf2)x)={f1,f2}(x)(\omega_{L})_{x}((H_{f_{1}})_{x},(H_{f_{2}})_{x})=\{f_{1},f_{2}\}(x)

for all xLx\in L and f1,f2𝒪Xf_{1},f_{2}\in\mathcal{O}_{X} defined near xx.

We conclude by discussing log symplectic varieties, which have received considerable attention in recent years (e.g. [2, 30, 23, 50, 29, 32, 10, 47, 25, 43, 42, 24, 26, 49]). To this end, one calls a Poisson variety (X,P)(X,P) log symplectic if the following conditions hold:

  • (i)

    (X,P)(X,P) has a unique open dense symplectic leaf X0XX_{0}\subseteq X;

  • (ii)

    the vanishing locus of PnP^{n} is a reduced normal crossing divisor DXD\subseteq X, where 2n=dim(X0)2n=\dim(X_{0}) and PnH0(X,Λ2n(TX))P^{n}\in H^{0}(X,\Lambda^{2n}(TX)) is the top exterior power of PP.

In this case, we call DD the divisor of (X,P)(X,P). One immediate observation is that D=XX0D=X\setminus X_{0}.

Remark 2.7.

Since symplectic leaves are connected, Condition (i) implies that log symplectic varieties are irreducible.

2.4. Hamiltonian reduction

We now review the salient aspects of Hamiltonian actions in the Poisson category. To this end, let KK be a linear algebraic group with Lie algebra 𝔨\mathfrak{k}. Let (X,P)(X,P) be a Poisson variety, and assume that XX is also a KK-variety. Each y𝔨y\in\mathfrak{k} then determines a fundamental vector field VyV_{y} on XX via

(Vy)x=ddt|t=0(exp(ty)x)TxX(V_{y})_{x}=\frac{d}{dt}\bigg{|}_{t=0}(\mathrm{exp}(ty)\cdot x)\in T_{x}X

for all xXx\in X. The KK-action on XX is called Hamiltonian if PP is KK-invariant and there exists a KK-equivariant morphism ν:X𝔨\nu:X\longrightarrow\mathfrak{k}^{*} satisfying the following condition:

Hνy=VyH_{\nu^{y}}=-V_{y} (2.3)

for all y𝔨y\in\mathfrak{k}, where νy[X]\nu^{y}\in\mathbb{C}[X] is defined by

νy(x)=ν(x)(y),xX.\nu^{y}(x)=\nu(x)(y),\quad x\in X. (2.4)

One then refers to ν\nu as a moment map and calls (X,P,ν)(X,P,\nu) a Hamiltonian KK-variety. The moment map ν\nu is known to be a Poisson morphism with respect to the Lie–Poisson structure on 𝔨\mathfrak{k}^{*} (e.g. [9, Proposition 7.1]).

We now briefly recall the process of Hamiltonian reduction for a Hamiltonian KK-variety (X,P,ν)(X,P,\nu). One begins by observing that ν1(0)\nu^{-1}(0) is a KK-invariant closed subvariety of XX. Let us assume XKX\sslash K exists, by which we mean that the geometric quotient

π:ν1(0)ν1(0)/K\pi:\nu^{-1}(0)\longrightarrow\nu^{-1}(0)/K (2.5)

exists. Write

XK:=ν1(0)/K,X\sslash K:=\nu^{-1}(0)/K,

and note that the comorphism π:[XK][ν1(0)]\pi^{*}:\mathbb{C}[X\sslash K]\longrightarrow\mathbb{C}[\nu^{-1}(0)] induces an algebra isomorphism

[XK][ν1(0)]K.\mathbb{C}[X\sslash K]\overset{\cong}{\longrightarrow}\mathbb{C}[\nu^{-1}(0)]^{K}. (2.6)

At the same time, the canonical surjection [X][ν1(0)]\mathbb{C}[X]\longrightarrow\mathbb{C}[\nu^{-1}(0)] restricts to a surjection

[X]K[ν1(0)]K\mathbb{C}[X]^{K}\longrightarrow\mathbb{C}[\nu^{-1}(0)]^{K} (2.7)

if KK is connected and reductive. One also knows that [X]K\mathbb{C}[X]^{K} is a Poisson subalgebra of [X]\mathbb{C}[X], and that the kernel of (2.7) is a Poisson ideal I[X]KI\subseteq\mathbb{C}[X]^{K}. It follows that [ν1(0)]K\mathbb{C}[\nu^{-1}(0)]^{K} inherits the structure of a Poisson algebra. One may therefore endow [XK]\mathbb{C}[X\sslash K] with the unique Poisson bracket for which (2.6) is an isomorphism of Poisson algebras. We refer to the data of the variety XKX\sslash K and the Poisson algebra [XK]\mathbb{C}[X\sslash K] as the Hamiltonian reduction of (X,P,ν)(X,P,\nu) if (2.5) exists and KK is connected and reductive.

The Hamiltonian reduction process will yield a richer geometric object in the presence of certain assumptions about the KK-action on XX. To this end, let KK be a linear algebraic group and suppose that (X,P,ν)(X,P,\nu) is a Hamiltonian KK-variety. Assume that the geometric quotient (2.5) exists, and that KK acts freely on ν1(0)\nu^{-1}(0). The closed subvariety ν1(0)X\nu^{-1}(0)\subseteq X is then smooth, and one deduces that XKX\sslash K is also smooth. One may also define a Poisson bivector PXKP_{X\sslash K} on XKX\sslash K as follows. Suppose that xν1(0)x\in\nu^{-1}(0) and let

dπx:Tπ(x)(XK)Tx(ν1(0))d\pi_{x}^{*}:T_{\pi(x)}^{*}(X\sslash K)\longrightarrow T_{x}^{*}(\nu^{-1}(0))

be the dual of the differential dπx:Tx(ν1(0))Tπ(x)(XK)d\pi_{x}:T_{x}(\nu^{-1}(0))\longrightarrow T_{\pi(x)}(X\sslash K). Set

Pπ(x)(α):=dπx(Px(α~))P_{\pi(x)}(\alpha):=d\pi_{x}(P_{x}(\tilde{\alpha}))

for all αTπ(x)(XK)\alpha\in T_{\pi(x)}^{*}(X\sslash K), where α~TxX\tilde{\alpha}\in T_{x}^{*}X is any element that annihilates Tx(Kx)T_{x}(Kx) and coincides with dπx(α)d\pi_{x}^{*}(\alpha) on Tx(ν1(0))T_{x}(\nu^{-1}(0)). The bivector PXKP_{X\sslash K} renders 𝒪XK\mathcal{O}_{X\sslash K} a sheaf of Poisson algebras, recovering the above-described Poisson bracket on [XK]\mathbb{C}[X\sslash K]. We call the Poisson variety (XζK,PXζK)(X\sslash_{\zeta}K,P_{X\sslash_{\zeta}K}) the Hamiltonian reduction of (X,P,ν)(X,P,\nu) at level ζ\zeta, provided that (2.5) exists and KK is known to act freely on ν1(ζ)\nu^{-1}(\zeta).

The preceding construction generalizes to allow for Hamiltonian reduction at an arbitrary level ζ𝔨\zeta\in\mathfrak{k}^{*}. To this end, let KζK_{\zeta} denote the KK-stabilizer of ζ\zeta with respect to the coadjoint action. One simply sets

XζK:=ν1(ζ)/KζX\sslash_{\zeta}K:=\nu^{-1}(\zeta)/K_{\zeta}

if the right-hand side exists as a geometric quotient. The definitions of the Poisson bracket on [XζK]\mathbb{C}[X\sslash_{\zeta}K] and Poisson bivector PXζKP_{X\sslash_{\zeta}K} are analogous to their counterparts above.

2.5. Lie-theoretic conventions

Let GG be a connected semisimple linear algebraic group with Lie algebra 𝔤\mathfrak{g}. Note that 𝔤\mathfrak{g} is a GG-module via the adjoint representation

Ad:GGL(𝔤),gAdg,\mathrm{Ad}:G\longrightarrow\operatorname{GL}(\mathfrak{g}),\quad g\longrightarrow\mathrm{Ad}_{g},

and a 𝔤\mathfrak{g}-module via the other adjoint representation

ad:𝔤𝔤𝔩(𝔤),yady=[y,].\mathrm{ad}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{g}),\quad y\longrightarrow\mathrm{ad}_{y}=[y,\cdot].

One obtains an induced action of GG on the coordinate ring [𝔤]=Sym(𝔤)\mathbb{C}[\mathfrak{g}]=\mathrm{Sym}(\mathfrak{g}^{*}), and we write [𝔤]G[𝔤]\mathbb{C}[\mathfrak{g}]^{G}\subseteq\mathbb{C}[\mathfrak{g}] for the subalgebra of all functions fixed by GG. The inclusion [𝔤]G[𝔤]\mathbb{C}[\mathfrak{g}]^{G}\subseteq\mathbb{C}[\mathfrak{g}] then determines a morphism of affine varieties

χ:𝔤Spec([𝔤]G),\chi:\mathfrak{g}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}),

often called the adjoint quotient.

Define the centralizer subalgebra

𝔤y:={z𝔤:[y,z]=0}𝔤\mathfrak{g}_{y}:=\{z\in\mathfrak{g}:[y,z]=0\}\subseteq\mathfrak{g}

for each y𝔤y\in\mathfrak{g}. An element y𝔤y\in\mathfrak{g} is called regular if the dimension of 𝔤y\mathfrak{g}_{y} coincides with the rank of 𝔤\mathfrak{g}. The set of all regular elements is a GG-invariant open dense subvariety of 𝔤\mathfrak{g} that we denote by 𝔤r\mathfrak{g}^{\text{r}}.

Recall that (ξ,h,η)𝔤3(\xi,h,\eta)\in\mathfrak{g}^{\oplus 3} is an 𝔰𝔩2\mathfrak{sl}_{2}-triple if the identities

[ξ,η]=h,[h,ξ]=2ξ,and[h,η]=2η[\xi,\eta]=h,\quad[h,\xi]=2\xi,\quad\text{and}\quad[h,\eta]=-2\eta

hold in 𝔤\mathfrak{g}, and that the associated Slodowy slice is defined by

𝒮τ:=ξ+𝔤η𝔤.\mathcal{S}_{\tau}:=\xi+\mathfrak{g}_{\eta}\subseteq\mathfrak{g}.

Now assume that τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple, i.e. an 𝔰𝔩2\mathfrak{sl}_{2}-triple for which ξ,h,η𝔤r\xi,h,\eta\in\mathfrak{g}^{\text{r}}. The slice 𝒮τ\mathcal{S}_{\tau} then lies in 𝔤r\mathfrak{g}^{\text{r}} and is a fundamental domain for the GG-action on 𝔤r\mathfrak{g}^{\text{r}} [35, Theorem 8]. This slice is also known to be a section of the adjoint quotient, meaning that the restriction

χ|𝒮τ:𝒮τSpec([𝔤]G)\chi\big{|}_{\mathcal{S}_{\tau}}:\mathcal{S}_{\tau}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G})

is a variety isomorphism [35, Theorem 7]. Let us write

yτ:=(χ|𝒮τ)1(χ(y))𝒮τy_{\tau}:=(\chi\big{|}_{\mathcal{S}_{\tau}})^{-1}(\chi(y))\in\mathcal{S}_{\tau}

for each y𝔤y\in\mathfrak{g}. In other words, yτy_{\tau} is the unique point at which 𝒮τ\mathcal{S}_{\tau} meets χ1(χ(y))\chi^{-1}(\chi(y)).

Let ,:𝔤𝔤\langle\cdot,\cdot\rangle:\mathfrak{g}\otimes_{\mathbb{C}}\mathfrak{g}\longrightarrow\mathbb{C} denote the Killing form on 𝔤\mathfrak{g}. This bilinear form is non-degenerate and GG-invariant, i.e. the map

𝔤𝔤,yy,\mathfrak{g}\longrightarrow\mathfrak{g}^{*},\quad y\longrightarrow\langle y,\cdot\rangle (2.8)

is a GG-module isomorphism. The canonical Poisson structure on 𝔤\mathfrak{g}^{*} thereby corresponds to a Poisson structure on 𝔤\mathfrak{g}, determined by the following condition:

{f1,f2}(y)=y,[(df1)y,(df2)y]\{f_{1},f_{2}\}(y)=\langle y,[(df_{1})_{y},(df_{2})_{y}]\rangle

for all f1,f2[𝔤]f_{1},f_{2}\in\mathbb{C}[\mathfrak{g}] and y𝔤y\in\mathfrak{g}, where the right-hand side uses (2.8) to regard (df1)y,(df2)y𝔤(df_{1})_{y},(df_{2})_{y}\in\mathfrak{g}^{*} as elements of 𝔤\mathfrak{g}. By means of (2.8), we shall make no further distinction between 𝔤\mathfrak{g} and 𝔤\mathfrak{g}^{*}. One also has the (G×GG\times G)-module isomorphism

𝔤𝔤(𝔤𝔤),(x1,x2)(x1,,x2,),\mathfrak{g}\oplus\mathfrak{g}\longrightarrow(\mathfrak{g}\oplus\mathfrak{g})^{*},\quad(x_{1},x_{2})\longrightarrow(\langle x_{1},\cdot\rangle,-\langle x_{2},\cdot\rangle),

through which we shall identify 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g} with (𝔤𝔤)(\mathfrak{g}\oplus\mathfrak{g})^{*}.

2.6. The wonderful compactification

In this subsection, we assume that GG is the adjoint group of 𝔤\mathfrak{g}. Let n=dim𝔤n=\dim\mathfrak{g} and write Gr(n,𝔤𝔤)\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}) for the Grassmannian of all nn-dimensional subspaces in 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g}. Note that G×GG\times G acts on Gr(n,𝔤𝔤)\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}) by

(g1,g2)γ:={(Adg1(y1),Adg2(y2)):(y1,y2)γ},(g_{1},g_{2})\cdot\gamma:=\{(\mathrm{Ad}_{g_{1}}(y_{1}),\mathrm{Ad}_{g_{2}}(y_{2})):(y_{1},y_{2})\in\gamma\},

and on GG itself by

(g1,g2)h:=g1hg21.(g_{1},g_{2})\cdot h:=g_{1}hg_{2}^{-1}.

Let 𝔤Δ𝔤𝔤\mathfrak{g}_{\Delta}\subseteq\mathfrak{g}\oplus\mathfrak{g} denote the diagonally embedded copy of 𝔤\mathfrak{g} in 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g}, and consider the (G×GG\times G)-equivariant locally closed immersion

φ:GGr(n,𝔤𝔤),g(g,e)𝔤Δ.\varphi:G\longrightarrow\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}),\quad g\longrightarrow(g,e)\cdot\mathfrak{g}_{\Delta}. (2.9)

We thereby view GG as a subvariety of Gr(n,𝔤𝔤)\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}) and write G¯\overline{G} for its closure in Gr(n,𝔤𝔤)\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}). The closed subvariety G¯\overline{G} is (G×GG\times G)-invariant, smooth, and called the wonderful compactification of GG [18]. The complement D:=G¯GD:=\overline{G}\setminus G is known to be a normal crossing divisor in G¯\overline{G}.

The pair (G,D)(G,D) determines a so-called log cotangent bundle TG¯(logD)G¯T^{*}\overline{G}(\log D)\longrightarrow\overline{G}. One may realize this vector bundle as the pullback of the tautological bundle 𝒯Gr(n,𝔤𝔤)\mathcal{T}\longrightarrow\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}) along the inclusion G¯Gr(n,𝔤𝔤)\overline{G}\hookrightarrow\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g}). This amounts to setting

TG¯(logD):={(γ,(y1,y2))G¯×(𝔤𝔤):(y1,y2)γ}T^{*}\overline{G}(\log D):=\{(\gamma,(y_{1},y_{2}))\in\overline{G}\times(\mathfrak{g}\oplus\mathfrak{g}):(y_{1},y_{2})\in\gamma\}

and defining the bundle projection to be

TG¯(logD)G¯,(γ,(y1,y2))γ.T^{*}\overline{G}(\log D)\longrightarrow\overline{G},\quad(\gamma,(y_{1},y_{2}))\longrightarrow\gamma.

The action of (G×GG\times G) on G¯\overline{G} then lifts to the following (G×GG\times G)-action on TG¯(logD)T^{*}\overline{G}(\log D):

(g1,g2)(γ,(y1,y2)):=((g1,g2)γ,(Adg1(y1),Adg2(y2))).(g_{1},g_{2})\cdot(\gamma,(y_{1},y_{2})):=((g_{1},g_{2})\cdot\gamma,(\mathrm{Ad}_{g_{1}}(y_{1}),\mathrm{Ad}_{g_{2}}(y_{2}))). (2.10)

2.7. Poisson geometry on TGT^{*}G and TG¯(logD)T^{*}\overline{G}(\log D)

Let all objects and notation be as set in 2.5. Note that the left trivialization and Killing form combine to yield a variety isomorphism

TGG×𝔤.T^{*}G\cong G\times\mathfrak{g}.

We shall thereby make no further distinction between TGT^{*}G and G×𝔤G\times\mathfrak{g}. The canonical symplectic form ω\omega on TGT^{*}G is then defined as follows on each tangent space T(g,x)(G×𝔤)=TgG𝔤T_{(g,x)}(G\times\mathfrak{g})=T_{g}G\oplus\mathfrak{g}:

ω(g,x)(((dLg)e(y1),z1),((dLg)e(y2),z2))=y1,z2y2,z1+x,[y1,y2]\omega_{(g,x)}\bigg{(}\big{(}(dL_{g})_{e}(y_{1}),z_{1}\big{)},\big{(}(dL_{g})_{e}(y_{2}),z_{2}\big{)}\bigg{)}=\langle y_{1},z_{2}\rangle-\langle y_{2},z_{1}\rangle+\langle x,[y_{1},y_{2}]\rangle

for all y1,y2,z1,z2𝔤y_{1},y_{2},z_{1},z_{2}\in\mathfrak{g}, where Lg:GGL_{g}:G\longrightarrow G denotes left translation by gg and (dLg)e:𝔤TgG(dL_{g})_{e}:\mathfrak{g}\longrightarrow T_{g}G is the differential of LgL_{g} at eGe\in G [39, Section 5, Equation (14L)].

Now consider the identifications

T(e,x)(G×𝔤)=𝔤𝔤andT(e,x)(G×𝔤)=(𝔤𝔤)=𝔤𝔤T_{(e,x)}(G\times\mathfrak{g})=\mathfrak{g}\oplus\mathfrak{g}\quad\text{and}\quad T_{(e,x)}^{*}(G\times\mathfrak{g})=(\mathfrak{g}\oplus\mathfrak{g})^{*}=\mathfrak{g}^{*}\oplus\mathfrak{g}^{*}

for each x𝔤x\in\mathfrak{g}. Write PωP_{\omega} for the Poisson bivector on TGT^{*}G determined by ω\omega, noting that (Pω)(e,x)(P_{\omega})_{(e,x)} is a vector space isomorphism

(Pω)(e,x):𝔤𝔤𝔤𝔤(P_{\omega})_{(e,x)}:\mathfrak{g}^{*}\oplus\mathfrak{g}^{*}\overset{\cong}{\longrightarrow}\mathfrak{g}\oplus\mathfrak{g}

for each x𝔤x\in\mathfrak{g}. To compute (Pω)(e,x)(P_{\omega})_{(e,x)}, let

κ:𝔤𝔤\kappa:\mathfrak{g}^{*}\overset{\cong}{\longrightarrow}\mathfrak{g}

denote the inverse of (2.8). This leads to the following lemma, which will be needed later.

Lemma 2.8.

If x𝔤x\in\mathfrak{g}, then

(Pω)(e,x)(α,β)=(κ(β),[x,κ(β)]κ(α))(P_{\omega})_{(e,x)}(\alpha,\beta)=(\kappa(\beta),[x,\kappa(\beta)]-\kappa(\alpha))

for all (α,β)𝔤𝔤(\alpha,\beta)\in\mathfrak{g}^{*}\oplus\mathfrak{g}^{*}.

Proof.

Write Pω(α,β)=(y,z)𝔤𝔤P_{\omega}(\alpha,\beta)=(y,z)\in\mathfrak{g}\oplus\mathfrak{g} and note that

α(v)+β(w)\displaystyle\alpha(v)+\beta(w) =ω(e,x)((Pω)(e,x)(α,β),(v,w))\displaystyle=\omega_{(e,x)}((P_{\omega})_{(e,x)}(\alpha,\beta),(v,w))
=ω(e,x)((y,z),(v,w))\displaystyle=\omega_{(e,x)}((y,z),(v,w))
=y,wz,v+x,[y,v]\displaystyle=\langle y,w\rangle-\langle z,v\rangle+\langle x,[y,v]\rangle
=y,w+[x,y]z,v.\displaystyle=\langle y,w\rangle+\langle[x,y]-z,v\rangle.

for all v,w𝔤v,w\in\mathfrak{g}. It follows that κ(α)=[x,y]z\kappa(\alpha)=[x,y]-z and κ(β)=y\kappa(\beta)=y, or equivalently

y=κ(β)andz=[x,κ(β)]κ(α).y=\kappa(\beta)\quad\text{and}\quad z=[x,\kappa(\beta)]-\kappa(\alpha).

Now assume that GG is the adjoint group of 𝔤\mathfrak{g}. The variety TG¯(logD)T^{*}\overline{G}(\log D) admits a distinguished log symplectic structure (e.g. [2]), some aspects of which we now describe. We begin by noting that

φ~:TGTG¯(logD),(g,x)((g,e)𝔤Δ,(Adg(x),x)).\tilde{\varphi}:T^{*}G\longrightarrow T^{*}\overline{G}(\log D),\quad(g,x)\longrightarrow((g,e)\cdot\mathfrak{g}_{\Delta},(\mathrm{Ad}_{g}(x),x)). (2.11)

is a symplectomorphism onto the unique open dense symplectic leaf in TG¯(logD)T^{*}\overline{G}(\log D). This yields the commutative diagram

TGTG¯(logD)GG¯φ~φ,\leavevmode\hbox to103.26pt{\vbox to50.21pt{\pgfpicture\makeatletter\hbox{\hskip 51.63126pt\lower-25.15398pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-51.63126pt}{-25.05414pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 13.25311pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.94757pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T^{*}G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 13.25311pt\hfil&\hfil\hskip 50.37813pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.07262pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T^{*}\overline{G}(\log D)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.37816pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 8.23679pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.93124pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.23679pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{G}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-24.92503pt}{12.09865pt}\pgfsys@lineto{-1.72502pt}{12.09865pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.52504pt}{12.09865pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.90283pt}{14.45142pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\tilde{\varphi}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-38.37814pt}{5.73894pt}\pgfsys@lineto{-38.37814pt}{-13.96115pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-38.37814pt}{-14.16113pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{25.2531pt}{3.23894pt}\pgfsys@lineto{25.2531pt}{-15.1167pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{25.2531pt}{-15.31668pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.94136pt}{-22.55414pt}\pgfsys@lineto{17.8476pt}{-22.55414pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.04758pt}{-22.55414pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.13649pt}{-18.84029pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\varphi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where φ:GG¯\varphi:G\longrightarrow\overline{G} is the map (2.9). One also observes φ~\tilde{\varphi} to be equivariant with respect to (2.10) and the following (G×GG\times G)-action on TGT^{*}G:

(g1,g2)(h,y):=(g1hg21,Adg(y)).(g_{1},g_{2})\cdot(h,y):=(g_{1}hg_{2}^{-1},\mathrm{Ad}_{g}(y)). (2.12)

The (G×GG\times G)-actions (2.10) and (2.12) are Hamiltonian with respective moment maps

ρ¯=(ρ¯L,ρ¯R):TG¯(logD)𝔤𝔤,(γ,(y1,y2))(y1,y2)\overline{\rho}=(\overline{\rho}_{L},\overline{\rho}_{R}):T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g},\quad(\gamma,(y_{1},y_{2}))\longrightarrow(y_{1},y_{2}) (2.13)

and

ρ=(ρL,ρR):TG𝔤𝔤,(g,y)(Adg(y),y).\rho=(\rho_{L},\rho_{R}):T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g},\quad(g,y)\longrightarrow(\mathrm{Ad}_{g}(y),y). (2.14)

Now suppose that (X,P,ν)(X,P,\nu) is a Hamiltonian GG-variety. Endow XX with the Hamiltonian (G×GG\times G)-variety structure for which

GR:={e}×GG_{R}:=\{e\}\times G

acts trivially and

GL:=G×{e}G_{L}:=G\times\{e\}

acts via the original Hamiltonian GG-action and the identification G=GLG=G_{L}. It follows that the product Poisson varieties X×TGX\times T^{*}G and X×TG¯(logD)X\times T^{*}\overline{G}(\log D) are Hamiltonian (G×GG\times G)-varieties with respective moment maps

μ=(μL,μR):X×TG𝔤𝔤,(x,(g,y))(ν(x)Adg(y),y)\mu=(\mu_{L},\mu_{R}):X\times T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g},\quad(x,(g,y))\longrightarrow(\nu(x)-\mathrm{Ad}_{g}(y),-y) (2.15)

and

μ¯=(μ¯L,μ¯R):X×TG¯(logD)𝔤𝔤,(x,(γ,(y1,y2)))(ν(x)y1,y2).\overline{\mu}=(\overline{\mu}_{L},\overline{\mu}_{R}):X\times T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g},\quad(x,(\gamma,(y_{1},y_{2})))\longrightarrow(\nu(x)-y_{1},-y_{2}). (2.16)

We also have a commutative diagram

X×TGX×TG¯(logD)𝔤𝔤iμμ¯,\leavevmode\hbox to263.13pt{\vbox to51.05pt{\pgfpicture\makeatletter\hbox{\hskip 131.56313pt\lower-25.52638pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-131.56313pt}{-25.52638pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 57.34476pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-53.03922pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times T^{*}G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 57.34476pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 61.02391pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-32.7184pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times T^{*}\overline{G}(\log D)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 37.02394pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 37.19443pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.88892pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{g}\oplus\mathfrak{g}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 13.19446pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.67361pt}{10.62642pt}\pgfsys@lineto{56.91528pt}{10.62642pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{57.11526pt}{10.62642pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.11502pt}{12.97919pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{i}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-50.89893pt}{2.32227pt}\pgfsys@lineto{6.54956pt}{-18.12585pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.9421}{-0.33533}{0.33533}{0.9421}{6.73796pt}{-18.1929pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.55688pt}{-13.3355pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mu}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{75.00217pt}{1.76671pt}\pgfsys@lineto{34.07954pt}{-16.788pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.91077}{-0.41293}{0.41293}{-0.91077}{33.8974pt}{-16.87056pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.71149pt}{-15.62375pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\overline{\mu}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}, (2.17)

where

i:X×TGX×TG¯(logD),(x,(g,y))(x,((g,e)𝔤Δ,(Adg(y),y))).i:X\times T^{*}G\longrightarrow X\times T^{*}\overline{G}(\log D),\quad(x,(g,y))\longrightarrow(x,((g,e)\cdot\mathfrak{g}_{\Delta},(\mathrm{Ad}_{g}(y),y))). (2.18)

is the (G×GG\times G)-equivariant open Poisson embedding given by the product of (2.11) with the identity map XXX\longrightarrow X.

The Hamiltonian (G×GG\times G)-variety X×TGX\times T^{*}G warrants some further discussion. One knows that the geometric quotient

μL1(0)(X×TG)GL\mu_{L}^{-1}(0)\longrightarrow(X\times T^{*}G)\sslash G_{L}

exists, and that the action of GRG_{R} on μL1(0)\mu_{L}^{-1}(0) descends to a Hamiltonian action of GG on (X×TG)GL(X\times T^{*}G)\sslash G_{L}. An associated moment map is obtained by descending

μR|μL1(0):μL1(0)𝔤-\mu_{R}\big{|}_{\mu_{L}^{-1}(0)}:\mu_{L}^{-1}(0)\longrightarrow\mathfrak{g}

to the quotient variety (X×TG)GL(X\times T^{*}G)\sslash G_{L}. It is then not difficult to verify that

ψ:X(X×TG)GL,x[x:(e,ν(x))],xX\psi:X\overset{\cong}{\longrightarrow}(X\times T^{*}G)\sslash G_{L},\quad x\longrightarrow[x:(e,\nu(x))],\quad x\in X (2.19)

is an isomorphism of Hamiltonian GG-varieties.

3. Poisson slices

This section develops the general theory of Poisson slices. Some emphasis is placed on properties of the Poisson slice G×𝒮τG\times\mathcal{S}_{\tau} and a larger log symplectic variety G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}.

3.1. Poisson transversals and Poisson slices

Let (X,P)(X,P) be a Poisson variety. Given xXx\in X and a subspace VTxXV\subseteq T_{x}X, we write VV^{\dagger} for the annihilator of VV in TxXT_{x}^{*}X. Our notation suppresses the dependence of VV^{\dagger} on TxXT_{x}X, as the ambient tangent space will always be clear from context. We will use an analogous notation for vector subbundles of TXTX.

Recall that a smooth locally closed subvariety YXY\subseteq X is called a Poisson transversal (or cosymplectic subvariety) if

TX|Y=TYP(TY).TX|_{Y}=TY\oplus P(TY^{\dagger}). (3.1)

This has the following straightforward implication for every symplectic leaf LXL\subseteq X: LL and YY have a transverse intersection in XX, and LYL\cap Y is a symplectic submanifold of LL.

The Poisson transversal YY inherits a Poisson bivector PYP_{Y} from (X,P)(X,P). To define it, note that the decomposition (3.1) gives rise to an inclusion TYTXT^{*}Y\subseteq T^{*}X. One can verify that

P(TY)TY,P(T^{*}Y)\subseteq TY,

and PYP_{Y} is then defined to be the restriction

PY:=P|TY:TYTY.P_{Y}:=P\big{|}_{T^{*}Y}:T^{*}Y\longrightarrow TY.

Note that YY need not be a Poisson subvariety of XX in the usual sense; restricting functions need not define a morphism 𝒪Xj𝒪Y\mathcal{O}_{X}\longrightarrow j_{*}\mathcal{O}_{Y} of sheaves of Poisson algebras, where j:YXj:Y\hookrightarrow X is the inclusion. This is particularly apparent if XX is symplectic; the Poisson transversals are the symplectic subvarieties, while the Poisson subvarieties are the open subvarieties.

We record the following well-known fact for future reference (cf. [21, Example 4]).

Proposition 3.1.

Let XX be a symplectic variety. If YXY\subseteq X is a Poisson transversal, then YY is a symplectic subvariety of XX. The resulting symplectic structure on YY coincides with the Poisson structure YY inherits as a transversal.

We need the following refinement in the case of log symplectic varieties.

Proposition 3.2.

Suppose that (X,P)(X,P) is a log symplectic variety with divisor ZZ. Let YXY\subseteq X be an irreducible Poisson transversal, and write PtrP_{\emph{tr}} for the resulting Poisson bivector on YY. The following statements hold.

  • (i)

    The Poisson variety (Y,Ptr)(Y,P_{\emph{tr}}) is log symplectic with divisor ZYZ\cap Y.

  • (ii)

    If one equips YZY\setminus Z and XZX\setminus Z with the symplectic structures inherited as symplectic leaves of (Y,Ptr)(Y,P_{\mathrm{tr}}) and (X,P)(X,P), respectively, then YZY\setminus Z is a symplectic subvariety of XZX\setminus Z.

Proof.

We begin by proving that YY is a log symplectic subvariety of XX in the sense of [25, Definition 7.16]. To this end, consider the unique open dense symplectic leaf X0:=XZXX_{0}:=X\setminus Z\subseteq X. Since YY is a Poisson transversal in XX, Proposition 3.1 forces Y0:=YX0Y_{0}:=Y\cap X_{0} to be a symplectic subvariety of X0X_{0}.

Now let Z1,,ZkZ_{1},\ldots,Z_{k} be the irreducible components of ZZ, and set

ZI:=iIZiZ_{I}:=\bigcap_{i\in I}Z_{i}

for each subset I{1,,k}I\subseteq\{1,\ldots,k\}. Each irreducible component of ZZ is a union of symplectic leaves in XX (cf. [48, Exercise 5.2]), implying that ZIZ_{I} is a union of symplectic leaves for each I{1,,k}I\subseteq\{1,\ldots,k\}. On the other hand, the Poisson transversal YY is necessarily transverse to the symplectic leaves in XX. These last two sentences imply that YY is transverse to ZIZ_{I} for all I{1,,k}I\subseteq\{1,\ldots,k\}.

The previous two paragraphs show YY to be a log symplectic subvariety of XX, and we let PlogP_{\text{log}} denote the resulting Poisson bivector on YY. It follows that Y0Y_{0} is the unique open dense symplectic leaf of (Y,Plog)(Y,P_{\text{log}}), and that its symplectic form is the pullback of the symplectic form on X0X_{0}. We also know that PtrP_{\text{tr}} is non-degenerate on Y0Y_{0}, and that it coincides with the pullback of the symplectic structure from X0X_{0} to Y0Y_{0} (see Proposition 3.1). One concludes that PlogP_{\text{log}} and PtrP_{\text{tr}} coincide on Y0Y_{0}. Since Y0Y_{0} is dense in YY, it follows that Plog=PtrP_{\text{log}}=P_{\text{tr}}. This establishes (i) and (ii). ∎

The following well-known result concerns the behaviour of Poisson transversals with respect to Poisson morphisms (cf. [21, Lemma 7]).

Proposition 3.3.

Let ϕ:X1X2\phi:X_{1}\longrightarrow X_{2} be a Poisson morphism between Poisson varieties X1X_{1} and X2X_{2}. If YX2Y\subseteq X_{2} is a Poisson transversal, then ϕ1(Y)\phi^{-1}(Y) is a Poisson transversal in X1X_{1}. The codimension of ϕ1(Y)\phi^{-1}(Y) in X1X_{1} is equal to the codimension of YY in X2X_{2}.

We now consider a concrete application of Proposition 3.3. To this end, recall the Lie-theoretic notation and setup established in 2.5.

Corollary 3.4.

Suppose that (X,P,ν)(X,P,\nu) is a Hamiltonian GG-variety. If τ=(ξ,h,η)\tau=(\xi,h,\eta) is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then ν1(𝒮τ)\nu^{-1}(\mathcal{S}_{\tau}) is a Poisson transversal in XX. This transversal has codimension dim𝔤dim(𝔤η)\dim\mathfrak{g}-\dim(\mathfrak{g}_{\eta}) in XX.

Proof.

The moment map ν:X𝔤\nu:X\longrightarrow\mathfrak{g} is necessarily a morphism of Poisson varieties (e.g. [9, Proposition 7.1]). At the same time, [22, Section 3.1] explains that 𝒮τ\mathcal{S}_{\tau} is a Poisson transversal in 𝔤\mathfrak{g}. The desired now result now follows immediately from Proposition 3.3. ∎

A consequence of Corollary 3.4 is that ν1(𝒮τ)\nu^{-1}(\mathcal{S}_{\tau}) inherits a Poisson bivector PτP_{\tau} from (X,P)(X,P). This gives rise to our notion of a Poisson slice.

Definition 3.5.

Suppose that (X,P,ν)(X,P,\nu) is a Hamiltonian GG-variety, and let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. We call Xτ:=(ν1(𝒮τ),Pτ)X_{\tau}:=(\nu^{-1}(\mathcal{S}_{\tau}),P_{\tau}) the Poisson slice of (X,P,ν)(X,P,\nu) with respect to τ\tau.

This next proposition explains why we call XτX_{\tau} a Poisson slice; it is a slice for the GG-action on XX in the following sense.

Proposition 3.6.

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety. If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then XτX_{\tau} is transverse to the GG-orbits in XX.

Proof.

Fix xν1(𝒮τ)x\in\nu^{-1}(\mathcal{S}_{\tau}) and set y:=ν(x)𝒮τy:=\nu(x)\in\mathcal{S}_{\tau}. Consider the differential dνx:TxX𝔤d\nu_{x}:T_{x}X\longrightarrow\mathfrak{g} and its dual dνx:𝔤TxXd\nu_{x}^{*}:\mathfrak{g}^{*}\longrightarrow T_{x}^{*}X, and let P𝔤P_{\mathfrak{g}} be the Poisson bivector on 𝔤\mathfrak{g}. Since ν\nu is a morphism of Poisson varieties, we have

(P𝔤)y=dνxPxdνx.(P_{\mathfrak{g}})_{y}=d\nu_{x}\circ P_{x}\circ d\nu_{x}^{*}.

We also know 𝒮τ𝔤\mathcal{S}_{\tau}\subseteq\mathfrak{g} to be a Poisson transversal (e.g. by Corollary 3.4), so that

𝔤=Ty𝒮τ(P𝔤)y((Ty𝒮τ))=Ty𝒮τdνx(Px(dνx((Ty𝒮τ)))).\mathfrak{g}=T_{y}\mathcal{S}_{\tau}\oplus(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})=T_{y}\mathcal{S}_{\tau}\oplus d\nu_{x}(P_{x}(d\nu_{x}^{*}((T_{y}\mathcal{S}_{\tau})^{\dagger}))).

One immediate conclusion is that ν\nu is transverse to 𝒮τ\mathcal{S}_{\tau}. We also conclude that

Tx(ν1(𝒮τ))=ker(pr2dνx:TxX(P𝔤)y((Ty𝒮τ))),T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))=\ker\bigg{(}\mathrm{pr}_{2}\circ d\nu_{x}:T_{x}X\longrightarrow(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})\bigg{)},

where

pr2:𝔤=Ty𝒮τ(P𝔤)y((Ty𝒮τ))(P𝔤)y((Ty𝒮τ))\mathrm{pr}_{2}:\mathfrak{g}=T_{y}\mathcal{S}_{\tau}\oplus(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})\longrightarrow(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})

is the natural projection. It follows that

Tx(ν1(𝒮τ))=image(dνxpr2:(P𝔤)y((Ty𝒮τ))TxX),T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))^{\dagger}=\mathrm{image}\bigg{(}d\nu_{x}^{*}\circ\mathrm{pr}_{2}^{*}:(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})^{*}\longrightarrow T_{x}^{*}X\bigg{)},

where

pr2:(P𝔤)y((Ty𝒮τ))𝔤\mathrm{pr}_{2}^{*}:(P_{\mathfrak{g}})_{y}((T_{y}\mathcal{S}_{\tau})^{\dagger})^{*}\longrightarrow\mathfrak{g}^{*}

is the dual of pr2\mathrm{pr}_{2}. This amounts to the statement that

Tx(ν1(𝒮τ))=dνx(𝔤η),T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))^{\dagger}=d\nu_{x}^{*}(\mathfrak{g}_{\eta}^{\dagger}),

while we know that the Killing form identifies 𝔤η𝔤\mathfrak{g}_{\eta}^{\dagger}\subseteq\mathfrak{g}^{*} with 𝔤η=[𝔤,η]𝔤\mathfrak{g}_{\eta}^{\perp}=[\mathfrak{g},\eta]\subseteq\mathfrak{g}. We conclude that

Tx(ν1(𝒮τ))=span{(dν[η,b])x:b𝔤},T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))^{\dagger}=\mathrm{span}\{(d\nu^{[\eta,b]})_{x}\colon b\in\mathfrak{g}\},

where ν[η,b]:X\nu^{[\eta,b]}:X\longrightarrow\mathbb{C} is defined by

ν[η,b](z)=ν(z),[η,b].\nu^{[\eta,b]}(z)=\langle\nu(z),[\eta,b]\rangle.

Equations (2.2) and (2.3) now imply that

Px(Tx(ν1(𝒮τ)))=span{Px((dν[η,b])x):b𝔤}=span{Vx[η,b]:b𝔤}Tx(Gx).P_{x}(T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))^{\dagger})=\mathrm{span}\{P_{x}((d\nu^{[\eta,b]})_{x})\colon b\in\mathfrak{g}\}=\mathrm{span}\{V^{[\eta,b]}_{x}\colon b\in\mathfrak{g}\}\subseteq T_{x}(Gx).

This combines with ν1(𝒮τ)\nu^{-1}(\mathcal{S}_{\tau}) being a Poisson transversal to yield

TxX=Tx(ν1(𝒮τ))Px(Tx(ν1(𝒮τ)))=Tx(ν1(𝒮τ))+Tx(Gx),T_{x}X=T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))\oplus P_{x}(T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))^{\dagger})=T_{x}(\nu^{-1}(\mathcal{S}_{\tau}))+T_{x}(Gx),

completing the proof. ∎

Let YY be an irreducible component of XτX_{\tau}. The bivector PτP_{\tau} then restricts to a Poisson bivector PY,τP_{Y,\tau} on YY. This leads to the following observation.

Corollary 3.7.

Suppose that (X,P,ν)(X,P,\nu) is a Hamiltonian GG-variety. Assume that (X,P)(X,P) is log symplectic with divisor ZZ, and let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. Let YY be an irreducible component of the Poisson slice XτX_{\tau}.

  • (i)

    The Poisson variety (Y,PY,τ)(Y,P_{Y,\tau}) is log symplectic with divisor YZY\cap Z.

  • (ii)

    If one equips YZY\setminus Z and XZX\setminus Z with the symplectic structures inherited as symplectic leaves of (Y,PY,τ)(Y,P_{Y,\tau}) and (X,P)(X,P), respectively, then YZY\setminus Z is a symplectic subvariety of XZX\setminus Z.

  • (iii)

    If (X,P)(X,P) is symplectic, then (Xτ,Pτ)(X_{\tau},P_{\tau}) is symplectic and the symplectic form on (X,P)(X,P) pulls back to the symplectic form on (Xτ,Pτ)(X_{\tau},P_{\tau}).

Proof.

This follows immediately from Proposition 3.1, Proposition 3.2, and Corollary 3.4. ∎

The following immediate consequence is used extensively in later sections.

Corollary 3.8.

If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then G×𝒮τG\times\mathcal{S}_{\tau} is a symplectic subvariety of TG=G×𝔤T^{*}G=G\times\mathfrak{g}.

Proof.

Apply Corollary 3.7(iii) to X=TGX=T^{*}G with the Hamiltonian action of GR={e}×GG×GG_{R}=\{e\}\times G\subseteq G\times G. ∎

3.2. Poisson slices via Hamiltonian reduction

Recall the Hamiltonian action of G×GG\times G on TG=G×𝔤T^{*}G=G\times\mathfrak{g} discussed in Subsection 2.7. The symplectic subvariety G×𝒮τG\times\mathcal{S}_{\tau} is invariant under GL=G×{e}G×GG_{L}=G\times\{e\}\subseteq G\times G, and

ρτ:=ρL|G×𝒮τ:G×𝒮τ𝔤,(g,x)Adg(x)\rho_{\tau}:=\rho_{L}\big{|}_{G\times\mathcal{S}_{\tau}}:G\times\mathcal{S}_{\tau}\longrightarrow\mathfrak{g},\quad(g,x)\longrightarrow\mathrm{Ad}_{g}(x) (3.2)

is a corresponding moment map. Now let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety, and consider the product Poisson variety X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}). The diagonal action of GG on X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}) is then Hamiltonian with moment map

μτ:X×(G×𝒮τ)𝔤,(x,(g,y))ν(x)Adg(y).\mu_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow\mathfrak{g},\quad(x,(g,y))\longrightarrow\nu(x)-\mathrm{Ad}_{g}(y).

These considerations allow us to realize Poisson slices via Hamiltonian reduction.

Proposition 3.9.

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety, and let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If we endow X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}) with the Poisson structure and Hamiltonian GG-action described above, then there is a Poisson variety isomorphism

ψτ:Xτ(X×(G×𝒮τ))G,x[x:(e,ν(x))].\psi_{\tau}:X_{\tau}\overset{\cong}{\longrightarrow}(X\times(G\times\mathcal{S}_{\tau}))\sslash G,\quad x\longrightarrow[x:(e,\nu(x))]. (3.3)
Proof.

We begin by noting that

μτ1(0)\displaystyle\mu_{\tau}^{-1}(0) ={(x,(g,y))X×(G×𝒮τ):ν(x)=Adg(y)}\displaystyle=\{(x,(g,y))\in X\times(G\times\mathcal{S}_{\tau})\colon\nu(x)=\mathrm{Ad}_{g}(y)\}
={(x,(g,y))X×(G×𝒮τ):ν(g1x)=y}.\displaystyle=\{(x,(g,y))\in X\times(G\times\mathcal{S}_{\tau})\colon\nu(g^{-1}\cdot x)=y\}.

It follows that the GG-invariant map

J:X×(G×𝒮τ)X,(x,(g,y))g1xJ:X\times(G\times\mathcal{S}_{\tau})\longrightarrow X,\quad(x,(g,y))\longrightarrow g^{-1}\cdot x

satisfies J(μτ1(0))ν1(𝒮τ)=XτJ(\mu_{\tau}^{-1}(0))\subseteq\nu^{-1}(\mathcal{S}_{\tau})=X_{\tau}, thereby inducing a map

π:=J|μτ1(0):μτ1(0)Xτ.\pi:=J\big{|}_{\mu_{\tau}^{-1}(0)}:\mu_{\tau}^{-1}(0)\longrightarrow X_{\tau}.

One then verifies that

π1(x)=G(x,e,ν(x))X×(G×𝒮τ)\pi^{-1}(x)=G\cdot(x,e,\nu(x))\subseteq X\times(G\times\mathcal{S}_{\tau})

for all xXτx\in X_{\tau}, where G(x,e,ν(x))G\cdot(x,e,\nu(x)) is the GG-orbit of (x,e,ν(x))(x,e,\nu(x)) in X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}). This forces π\pi to be the geometric quotient of μτ1(0)\mu_{\tau}^{-1}(0) by GG (e.g. by [54, Proposition 25.3.5]), i.e.

(X×(G×𝒮τ))G=Xτ.(X\times(G\times\mathcal{S}_{\tau}))\sslash G=X_{\tau}.

We now have two Poisson structures on XτX_{\tau}: the Poisson structure PredP_{\text{red}} from Hamiltonian reduction, and the structure PtrP_{\text{tr}} obtained from XτX_{\tau} being a Poisson slice in XX. It suffices to show that these Poisson structures coincide.

Fix xXτx\in X_{\tau} and αTxXτ\alpha\in T_{x}^{*}X_{\tau}. Since XτX_{\tau} is a Poisson transversal in XX, there is a unique extension of α\alpha to an element

α~(Px((TxXτ)))TxX.\tilde{\alpha}\in\bigg{(}P_{x}\big{(}(T_{x}X_{\tau})^{\dagger}\big{)}\bigg{)}^{\dagger}\subseteq T_{x}^{*}X.

The discussion of Poisson transversals in Subsection 3.1 then implies that

(Ptr)x(α)=Px(α~).(P_{\text{tr}})_{x}(\alpha)=P_{x}(\tilde{\alpha}). (3.4)

We also have

(Pred)x(α)=dπz((Pτ)z(α~)),(P_{\text{red}})_{x}(\alpha)=d\pi_{z}((P_{\tau})_{z}(\tilde{\alpha}^{\prime})), (3.5)

where z=(x,e,ν(x))z=(x,e,\nu(x)),

α~Tz(Gz)Tz(X×(G×𝒮τ))\tilde{\alpha}^{\prime}\in T_{z}(Gz)^{\dagger}\subseteq T_{z}^{*}(X\times(G\times\mathcal{S}_{\tau}))

is an extension of dπz(α)d\pi_{z}^{*}(\alpha), and

dπz:TxXτTz(μτ1(0))d\pi_{z}^{*}:T^{*}_{x}X_{\tau}\longrightarrow T_{z}^{*}(\mu_{\tau}^{-1}(0))

is the dual of

dπz:Tz(μτ1(0))TxXτ.d\pi_{z}:T_{z}(\mu_{\tau}^{-1}(0))\longrightarrow T_{x}X_{\tau}.

Since JJ is GG-invariant, we may take

α~:=dJz(α~).\tilde{\alpha}^{\prime}:=dJ_{z}^{*}(\tilde{\alpha}).

We also observe that

dJz(a,b,c)=a(Vb)xdJ_{z}(a,b,c)=a-(V^{b})_{x}

for all (a,b,c)Tz(X×(G×𝒮τ))=TxX𝔤𝔤η(a,b,c)\in T_{z}(X\times(G\times\mathcal{S}_{\tau}))=T_{x}X\oplus\mathfrak{g}\oplus\mathfrak{g}_{\eta}, where VbV^{b} is the fundamental vector field on XX associated to b𝔤b\in\mathfrak{g}. It follows that

(dJz(α~))(a,b,c)=α~(a)α~((Vb)x)=α~(a)α~(Px((dνb)x))=α~(a)+(dνb)x(Px(α~)),(dJ_{z}^{*}(\tilde{\alpha}))(a,b,c)=\tilde{\alpha}(a)-\tilde{\alpha}((V^{b})_{x})=\tilde{\alpha}(a)-\tilde{\alpha}(P_{x}((d\nu^{b})_{x}))=\tilde{\alpha}(a)+(d\nu^{b})_{x}(P_{x}(\tilde{\alpha})),

yielding

α~=(α~,dνx(Px(α~)),0)Tz(X×(G×𝒮τ))=TxX𝔤𝔤η=TxX𝔤𝔤ξ,\tilde{\alpha}^{\prime}=(\tilde{\alpha},d\nu_{x}(P_{x}(\tilde{\alpha})),0)\in T^{*}_{z}(X\times(G\times\mathcal{S}_{\tau}))=T_{x}^{*}X\oplus\mathfrak{g}^{*}\oplus\mathfrak{g}_{\eta}^{*}=T_{x}^{*}X\oplus\mathfrak{g}\oplus\mathfrak{g}_{\xi}, (3.6)

where we have made the identifications 𝔤η=(𝔤/[𝔤,ξ])=[𝔤,ξ]=𝔤ξ\mathfrak{g}_{\eta}^{*}=(\mathfrak{g}/[\mathfrak{g},\xi])^{*}=[\mathfrak{g},\xi]^{\perp}=\mathfrak{g}_{\xi}. Now set w=(e,ν(x))G×𝒮τw=(e,\nu(x))\in G\times\mathcal{S}_{\tau} and let QτQ_{\tau} be the Poisson bivector on G×𝒮τG\times\mathcal{S}_{\tau}. Lemma 2.8 then gives

(Qτ)w(dνx(Px(α~)),0)=(0,dνx(Px(α~))).(Q_{\tau})_{w}(d\nu_{x}(P_{x}(\tilde{\alpha})),0)=(0,-d\nu_{x}(P_{x}(\tilde{\alpha}))).

This combines with (3.4), (3.5), and (3.6) to yield

(Pred)x(α)\displaystyle(P_{\text{red}})_{x}(\alpha) =dπz(Px(α~),(Qτ)w(dνx(Px(α~)),0))\displaystyle=d\pi_{z}(P_{x}(\tilde{\alpha}),-(Q_{\tau})_{w}(d\nu_{x}(P_{x}(\tilde{\alpha})),0))
=dπz(Px(α~),0,dνx(Px(α~)))\displaystyle=d\pi_{z}(P_{x}(\tilde{\alpha}),0,d\nu_{x}(P_{x}(\tilde{\alpha})))
=Px(α~)\displaystyle=P_{x}(\tilde{\alpha})
=(Ptr)x(α),\displaystyle=(P_{\text{tr}})_{x}(\alpha),

as desired. ∎

Remark 3.10.

In the special case τ=0\tau=0, we have 𝒮τ=𝔤\mathcal{S}_{\tau}=\mathfrak{g} and G×𝒮τ=G×𝔤=TGG\times\mathcal{S}_{\tau}=G\times\mathfrak{g}=T^{*}G. Proposition 3.9 is then seen to recover the isomorphism (2.19).

Our next result is that Poisson slices can be realized via Hamiltonian reduction with respect to unipotent radicals of parabolic subgroups. To formulate this result, let τ=(ξ,h,η)\tau=(\xi,h,\eta) be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g} and write 𝔤λ𝔤\mathfrak{g}_{\lambda}\subseteq\mathfrak{g} for the eigenspace of adh\mathrm{ad}_{h} with eigenvalue λ\lambda\in\mathbb{Z}. The parabolic subalgebra

𝔭τ:=λ0𝔤λ\mathfrak{p}_{\tau}:=\bigoplus_{\lambda\leq 0}\mathfrak{g}_{\lambda}

then has

𝔲τ:=λ<0𝔤λ\mathfrak{u}_{\tau}:=\bigoplus_{\lambda<0}\mathfrak{g}_{\lambda}

as its nilradical. Now consider the identifications

𝔲τ𝔤/𝔲τ=𝔤/𝔭τ𝔲τ:=λ>0𝔤λ,\mathfrak{u}_{\tau}^{*}\cong\mathfrak{g}/\mathfrak{u}_{\tau}^{\perp}=\mathfrak{g}/\mathfrak{p}_{\tau}\cong\mathfrak{u}_{\tau}^{-}:=\bigoplus_{\lambda>0}\mathfrak{g}_{\lambda},

and thereby regard ξ𝔲τ\xi\in\mathfrak{u}_{\tau}^{-} as an element of 𝔲τ\mathfrak{u}_{\tau}^{*}. Write UτGU_{\tau}\subseteq G for the unipotent subgroup with Lie algebra 𝔲τ\mathfrak{u}_{\tau}, and let (Uτ)ξ(U_{\tau})_{\xi} be the UτU_{\tau}-stabilizer of ξ\xi under the coadjoint action.

Remark 3.11.

The Lie algebra of (Uτ)ξ(U_{\tau})_{\xi} is given by

(𝔲τ)ξ=λ2𝔤λ.(\mathfrak{u}_{\tau})_{\xi}=\bigoplus_{\lambda\leq-2}\mathfrak{g}_{\lambda}.

It follows that (Uτ)ξ=Uτ(U_{\tau})_{\xi}=U_{\tau} if and only if τ\tau is an even 𝔰𝔩2\mathfrak{sl}_{2}-triple, i.e. 𝔤1={0}\mathfrak{g}_{-1}=\{0\}. If τ\tau is a principal triple, then τ\tau is even and (Uτ)ξ=Uτ(U_{\tau})_{\xi}=U_{\tau} is a maximal unipotent subgroup of GG.

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety. The action of UτU_{\tau} is also Hamiltonian with moment map ντ:=pτμ\nu_{\tau}:=p_{\tau}\circ\mu, where

𝔤=𝔭τ𝔲τpτ𝔲τ=𝔲τ\mathfrak{g}=\mathfrak{p}_{\tau}\oplus\mathfrak{u}_{\tau}^{-}\overset{p_{\tau}}{\longrightarrow}\mathfrak{u}_{\tau}^{-}=\mathfrak{u}_{\tau}^{*}

is the projection. One has

ντ1(ξ)=ν1(ξ+𝔭τ),\nu_{\tau}^{-1}(\xi)=\nu^{-1}(\xi+\mathfrak{p}_{\tau}),

while the proof of [5, Lemma 3.2] shows the stabilizer (Uτ)ξ(U_{\tau})_{\xi} to act freely on ξ+𝔭τ\xi+\mathfrak{p}_{\tau}. It follows that (Uτ)ξ(U_{\tau})_{\xi} acts freely on ντ1(ξ)\nu_{\tau}^{-1}(\xi). This leads us to prove Proposition 3.13, i.e. that the geometric quotient

XξUτ=ντ1(ξ)/(Uτ)ξX\sslash_{\xi}U_{\tau}=\nu_{\tau}^{-1}(\xi)/(U_{\tau})_{\xi} (3.7)

exists and is Poisson-isomorphic to XτX_{\tau}.

Remark 3.12.

The type of Hamiltonian reduction performed in (3.7) is particularly well-studied in the case of a principal triple τ\tau. In this case, one sometimes calls the Poisson variety XξUτX\sslash_{\xi}U_{\tau} a Whittaker reduction (e.g. [3, 19]). The nomenclature reflects Kostant’s result [36, Theorem 1.2].

Proposition 3.13.

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety. If τ=(ξ,h,η)\tau=(\xi,h,\eta) is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then there is a canonical isomorphism

XξUτXτX\sslash_{\xi}U_{\tau}\cong X_{\tau}

of Poisson varieties.

Proof.

We begin by exhibiting XτX_{\tau} as the geometric quotient of ντ1(ξ)\nu_{\tau}^{-1}(\xi) by (Uτ)ξ(U_{\tau})_{\xi}. To this end, the proof of [5, Lemma 3.2] explains that

(Uτ)ξ×𝒮τξ+𝔭τ,(u,x)Adu(x)(U_{\tau})_{\xi}\times\mathcal{S}_{\tau}\longrightarrow\xi+\mathfrak{p}_{\tau},\quad(u,x)\longrightarrow\mathrm{Ad}_{u}(x)

defines a variety isomorphism. Composing the inverse of this isomorphism with the projection

(Uτ)ξ×𝒮τ(Uτ)ξ(U_{\tau})_{\xi}\times\mathcal{S}_{\tau}\longrightarrow(U_{\tau})_{\xi}

then yields a map

ϕ:ξ+𝔭τ(Uτ)ξ.\phi:\xi+\mathfrak{p}_{\tau}\longrightarrow(U_{\tau})_{\xi}.

Note that for yξ+𝔭τy\in\xi+\mathfrak{p}_{\tau}, ϕ(y)\phi(y) is the unique element of (Uτ)ξ(U_{\tau})_{\xi} satisfying

Adϕ(y)1(y)𝒮τ.\mathrm{Ad}_{\phi(y)^{-1}}(y)\in\mathcal{S}_{\tau}.

We may therefore define the map

ντ1(ξ)=ν1(ξ+𝔭τ)𝜃Xτ,x(ϕ(ν(x)))1x.\nu_{\tau}^{-1}(\xi)=\nu^{-1}(\xi+\mathfrak{p}_{\tau})\overset{\theta}{\longrightarrow}X_{\tau},\quad x\longrightarrow(\phi(\nu(x)))^{-1}\cdot x.

One has

θ1(x)=(Uτ)ξx\theta^{-1}(x)=(U_{\tau})_{\xi}\cdot x

for all xντ1(ξ)x\in\nu_{\tau}^{-1}(\xi), and we deduce that θ\theta is the geometric quotient of ντ1(ξ)\nu_{\tau}^{-1}(\xi) by (Uτ)ξ(U_{\tau})_{\xi} (e.g. by [54, Proposition 25.3.5]).

The previous paragraph establishes the following fact: Hamiltonian reductions of Hamiltonian GG-varieties by UτU_{\tau} at level ξ\xi always exist as geometric quotients. We implicitly use this observation in several places below.

To see that the Poisson structures on XτX_{\tau} and XξUτX\sslash_{\xi}U_{\tau} coincide, we argue as follows. One has a canonical isomorphism

TGξUτG×𝒮τT^{*}G\sslash_{\xi}U_{\tau}\cong G\times\mathcal{S}_{\tau} (3.8)

of symplectic varieties, where UτU_{\tau} acts on TGT^{*}G via (2.12) as the subgroup Uτ={e}×UτG×GU_{\tau}=\{e\}\times U_{\tau}\subseteq G\times G (see [5, Lemma 3.2]). Note also that TGξUτT^{*}G\sslash_{\xi}U_{\tau} and G×𝒮τG\times\mathcal{S}_{\tau} come with Hamiltonian actions of GG induced by the action of GL=G×{e}G_{L}=G\times\{e\} on TGG×𝔤T^{*}G\cong G\times\mathfrak{g}. One then readily verifies that (3.8) is an isomorphism of Hamiltonian GG-varieties.

Proposition 3.9 gives a canonical isomorphism of Poisson varieties

Xτ(X×(G×𝒮τ))G.X_{\tau}\cong(X\times(G\times\mathcal{S}_{\tau}))\sslash G.

The previous paragraph allows us to write this isomorphism as

Xτ(X×(TGξUτ))G=((X×TG)ξUτ)G,X_{\tau}\cong(X\times(T^{*}G\sslash_{\xi}U_{\tau}))\sslash G=((X\times T^{*}G)\sslash_{\xi}U_{\tau})\sslash G,

where UτU_{\tau} acts trivially on XX. Since the actions of GG and UτU_{\tau} on X×TGX\times T^{*}G commute with one another, it follows that

Xτ((X×TG)G)ξUτ.X_{\tau}\cong((X\times T^{*}G)\sslash G)\sslash_{\xi}U_{\tau}.

An application of Remark 3.10 then yields

XτXξUτ,X_{\tau}\cong X\sslash_{\xi}U_{\tau},

completing the proof. ∎

3.3. Poisson slices in the log cotangent bundle of G¯\overline{G}

Fix an 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau in 𝔤\mathfrak{g} and recall the notation in Subsection 2.7. In what follows, we study the Poisson slice

G×𝒮τ¯:=ρ¯R1(𝒮τ)TG¯(logD)\overline{G\times\mathcal{S}_{\tau}}:=\overline{\rho}_{R}^{-1}(\mathcal{S}_{\tau})\subseteq T^{*}\overline{G}(\log D)

and its properties. We begin by observing that

G×𝒮τ¯={(γ,(x,y))G¯×(𝔤𝔤):(x,y)γ and y𝒮τ}.\overline{G\times\mathcal{S}_{\tau}}=\{(\gamma,(x,y))\in\overline{G}\times(\mathfrak{g}\oplus\mathfrak{g})\colon(x,y)\in\gamma\text{ and }y\in\mathcal{S}_{\tau}\}. (3.9)

A few simplifications arise if τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple. To this end, recall the adjoint quotient

χ:𝔤Spec([𝔤]G)\chi:\mathfrak{g}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G})

and the associated concepts and notation discussed in Subsection 2.5. The image of ρ¯:TG¯(logD)𝔤𝔤\overline{\rho}:T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g} is known to be

image(ρ¯)={(x,y)𝔤𝔤:χ(x)=χ(y)}\mathrm{image}(\overline{\rho})=\{(x,y)\in\mathfrak{g}\oplus\mathfrak{g}\colon\chi(x)=\chi(y)\} (3.10)

(see [2, Proposition 3.4]). One consequence is that x,y𝔤x,y\in\mathfrak{g} lie in the same fibre of χ\chi whenever (x,y)γ(x,y)\in\gamma for some γG¯\gamma\in\overline{G}. Since 𝒮τ\mathcal{S}_{\tau} is a section of χ\chi, this fact combines with (3.9) to yield

G×𝒮τ¯={(γ,(x,xτ)):γG¯, x𝔤, and (x,xτ)γ}.\overline{G\times\mathcal{S}_{\tau}}=\{(\gamma,(x,x_{\tau})):\gamma\in\overline{G},\text{ }x\in\mathfrak{g},\text{ and }(x,x_{\tau})\in\gamma\}. (3.11)

We now develop some more manifestly geometric properties of G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}, beginning with the following result.

Theorem 3.14.

If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} is irreducible.

Proof.

Consider the closed subvariety

Y:={(x,y)𝔤×𝒮τ:χ(x)=χτ(y)}𝔤𝔤,Y:=\{(x,y)\in\mathfrak{g}\times\mathcal{S}_{\tau}:\chi(x)=\chi_{\tau}(y)\}\subseteq\mathfrak{g}\oplus\mathfrak{g},

where χτ:𝒮τSpec([𝔤]G)\chi_{\tau}:\mathcal{S}_{\tau}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}) denotes the restriction of χ\chi to 𝒮τ\mathcal{S}_{\tau}. It follows from (3.9) and (3.10) that

G×𝒮τ¯Y,(γ,(x,y))(x,y)\overline{G\times\mathcal{S}_{\tau}}\longrightarrow Y,\quad(\gamma,(x,y))\longrightarrow(x,y) (3.12)

is the pullback of ρ¯:TG¯(logD)𝔤𝔤\overline{\rho}:T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g} along the inclusion Y𝔤𝔤Y\hookrightarrow\mathfrak{g}\oplus\mathfrak{g}, and that (3.12) is surjective. One also knows that ρ¯\overline{\rho} is proper, as it results from restricting the natural projection G¯×(𝔤𝔤)𝔤𝔤\overline{G}\times(\mathfrak{g}\oplus\mathfrak{g})\longrightarrow\mathfrak{g}\oplus\mathfrak{g} to TG¯(logD)G¯×(𝔤𝔤)T^{*}\overline{G}(\log D)\subseteq\overline{G}\times(\mathfrak{g}\oplus\mathfrak{g}). The surjection (3.12) is therefore proper, while the proof of [2, Proposition 3.11] shows (3.12) to have connected fibres. If YY were connected, then the previous sentence would force G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} to be connected as well. This would in turn force G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} to be irreducible, as Poisson slices are smooth.

In light of the previous paragraph, it suffices to prove that YY is irreducible. We begin by decomposing 𝔤\mathfrak{g} into its simple factors, i.e.

𝔤=𝔤1𝔤N\mathfrak{g}=\mathfrak{g}_{1}\oplus\cdots\oplus\mathfrak{g}_{N}

with each 𝔤i\mathfrak{g}_{i} a simple Lie algebra. Our 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau then amounts to having an 𝔰𝔩2\mathfrak{sl}_{2}-triple τi\tau_{i} in 𝔤i\mathfrak{g}_{i} for each i=1,,Ni=1,\ldots,N, yielding

𝒮τ=𝒮τ1××𝒮τN𝔤1𝔤N.\mathcal{S}_{\tau}=\mathcal{S}_{\tau_{1}}\times\dots\times\mathcal{S}_{\tau_{N}}\subseteq\mathfrak{g}_{1}\oplus\cdots\oplus\mathfrak{g}_{N}.

It also follows that χτ\chi_{\tau} decomposes as a product

χτ=(χ1)τ1××(χN)τN,\chi_{\tau}=(\chi_{1})_{\tau_{1}}\times\dots\times(\chi_{N})_{\tau_{N}},

where χi\chi_{i} is the adjoint quotient map on 𝔤i\mathfrak{g}_{i} and (χi)τi(\chi_{i})_{\tau_{i}} is its restriction to 𝒮τi\mathcal{S}_{\tau_{i}}. The results [53, Corollary 7.4.1] and [46, Theorem 5.4] then imply that each (χi)τi(\chi_{i})_{\tau_{i}} is faithfully flat with irreducible fibres of dimension dim(𝒮τi)rank(𝔤i)\dim(\mathcal{S}_{\tau_{i}})-\mathrm{rank}(\mathfrak{g}_{i}). These last two sentences imply that χτ\chi_{\tau} is faithfully flat with irreducible, equidimensional fibres, and the same argument forces χ\chi to be faithfully flat with irreducible, equidimensional fibres. Since fibred products of faithfully flat morphisms are faithfully flat, we conclude that

χ~:YSpec([𝔤]G),(x,y)χ(x)\tilde{\chi}\colon Y\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}),\quad(x,y)\mapsto\chi(x)

is faithfully flat. We also conclude that

χ~1(t)=χ1(t)×χτ1(t)\tilde{\chi}^{-1}(t)=\chi^{-1}(t)\times\chi_{\tau}^{-1}(t)

must be irreducible for all tSpec([𝔤]G)t\in\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}), and that its dimension must be independent of tt. In other words, χ~\tilde{\chi} is a faithfully flat morphism with irreducible, equidimensional fibres. This combines with the irreducibility of Spec([𝔤]G)\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}) and [33, Corollary 9.6] to imply that YY is pure-dimensional. We may now apply the result in [44] and deduce that YY is irreducible. This completes the proof. ∎

Corollary 3.15.

If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} is log symplectic.

Proof.

This is an immediate consequence of Corollary 3.7(i) and Theorem 3.14. ∎

Now observe that the Hamiltonian action of GL=G×{e}G×GG_{L}=G\times\{e\}\subseteq G\times G on TG¯(logD)T^{*}\overline{G}(\log D) restricts to a Hamiltonian action of GG on G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}. An associated moment map is given by

ρ¯τ:=ρ¯L|G×𝒮τ¯:G×𝒮τ¯𝔤,(γ,(x,y))x.\overline{\rho}_{\tau}:=\overline{\rho}_{L}\bigg{|}_{\overline{G\times\mathcal{S}_{\tau}}}:\overline{G\times\mathcal{S}_{\tau}}\longrightarrow\mathfrak{g},\quad(\gamma,(x,y))\mapsto x.

At the same time, recall the Hamiltonian GG-variety structure on G×𝒮τG\times\mathcal{S}_{\tau} and the moment map ρτ:G×𝒮τ𝔤\rho_{\tau}:G\times\mathcal{S}_{\tau}\longrightarrow\mathfrak{g} discussed in Subsection 3.2. Let us also recall the map φ~:TGTG¯(logD)\tilde{\varphi}:T^{*}G\longrightarrow T^{*}\overline{G}(\log D) from (2.11).

Proposition 3.16.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}.

  • (i)

    The map φ~:TGTG¯(logD)\tilde{\varphi}:T^{*}G\longrightarrow T^{*}\overline{G}(\log D) restricts to a GG-equivariant symplectomorphism from G×𝒮τG\times\mathcal{S}_{\tau} to the unique open dense symplectic leaf in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}.

  • (ii)

    The diagram

    G×𝒮τ{G\times\mathcal{S}_{\tau}}G×𝒮τ¯{\overline{G\times\mathcal{S}_{\tau}}}𝔤{\mathfrak{g}}φ~|G×𝒮τ\scriptstyle{\tilde{\varphi}\big{|}_{G\times\mathcal{S}_{\tau}}}ρτ\scriptstyle{\rho_{\tau}}ρ¯τ\scriptstyle{\overline{\rho}_{\tau}} (3.13)

    commutes.

Proof.

By Corollary 3.7, the open dense symplectic leaf in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} is obtained by intersecting G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} with the open dense symplectic leaf in TG¯(logD)T^{*}\overline{G}(\log D). The latter leaf is φ~(TG)\tilde{\varphi}(T^{*}G), as is explained in Subsection 2.7. It is also straightforward to establish that

φ~(G×𝒮τ)=G×𝒮τ¯φ~(TG).\tilde{\varphi}(G\times\mathcal{S}_{\tau})=\overline{G\times\mathcal{S}_{\tau}}\cap\tilde{\varphi}(T^{*}G).

These last two sentences show φ~(G×𝒮τ)\tilde{\varphi}(G\times\mathcal{S}_{\tau}) to be the unique open dense symplectic leaf in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}. We also know that φ~\tilde{\varphi} restricts to a symplectomorphism from G×𝒮τG\times\mathcal{S}_{\tau} to φ~(G×𝒮τ)\tilde{\varphi}(G\times\mathcal{S}_{\tau}), where the symplectic form on φ~(G×𝒮τ)\tilde{\varphi}(G\times\mathcal{S}_{\tau}) is the pullback of the symplectic form on the leaf in TG¯(logD)T^{*}\overline{G}(\log D) (see Corollary 3.8). It now follows from Corollary 3.7(ii) that

φ~|G×𝒮τ:G×𝒮τφ~(G×𝒮τ)\tilde{\varphi}\big{|}_{G\times\mathcal{S}_{\tau}}:G\times\mathcal{S}_{\tau}\longrightarrow\tilde{\varphi}(G\times\mathcal{S}_{\tau})

is a symplectomorphism with respect to this symplectic structure φ~(G×𝒮τ)\tilde{\varphi}(G\times\mathcal{S}_{\tau}) inherits as a leaf in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}. This symplectomorphism is GG-equivariant, as φ~:TGTG¯(logD)\tilde{\varphi}:T^{*}G\longrightarrow T^{*}\overline{G}(\log D) is (G×GG\times G)-equivariant. The proof of (i) is therefore complete, while a straightforward calculation yields (ii). ∎

Remark 3.17.

Let τ\tau be a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. The description (3.11) allows one to define a closed embedding

G×𝒮τ¯G¯×𝔤,(γ,(x,xτ))(γ,x).\overline{G\times\mathcal{S}_{\tau}}\longrightarrow\overline{G}\times\mathfrak{g},\quad(\gamma,(x,x_{\tau}))\longrightarrow(\gamma,x).

We thereby obtain a commutative diagram

G×𝒮τ¯{\overline{G\times\mathcal{S}_{\tau}}}G¯×𝔤{\overline{G}\times\mathfrak{g}}𝔤{\mathfrak{g}},ρ¯τ\scriptstyle{\overline{\rho}_{\tau}}

where G¯×𝔤𝔤\overline{G}\times\mathfrak{g}\longrightarrow\mathfrak{g} is projection to the second factor. One immediate consequence is that ρ¯τ\overline{\rho}_{\tau} has projective fibres, so that (3.13) realizes ρ¯τ\overline{\rho}_{\tau} as a fibrewise compactification of ρτ\rho_{\tau}. It also follows that

ρ¯τ1(x){γG¯:(x,xτ)γ},(γ,(x,xτ))γ\overline{\rho}_{\tau}^{-1}(x)\longrightarrow\{\gamma\in\overline{G}:(x,x_{\tau})\in\gamma\},\quad(\gamma,(x,x_{\tau}))\longrightarrow\gamma

is a variety isomorphism for each x𝔤x\in\mathfrak{g}.

3.4. Relation to the universal centralizer and its fibrewise compactification

Let τ\tau be a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. It is instructive to examine the relationship between G×𝒮τG\times\mathcal{S}_{\tau} and G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} in the context of Balibănu’s paper [2]. We begin by recalling that the universal centralizer of 𝔤\mathfrak{g} is the closed subvariety of TG=G×𝔤T^{*}G=G\times\mathfrak{g} defined by

𝒵𝔤τ:={(g,x)G×𝔤:x𝒮τ and gGx},\mathcal{Z}_{\mathfrak{g}}^{\tau}:=\{(g,x)\in G\times\mathfrak{g}:x\in\mathcal{S}_{\tau}\text{ and }g\in G_{x}\},

where GxG_{x} is the GG-stabilizer of x𝔤x\in\mathfrak{g}. At the same time, recall the Hamiltonian action of G×GG\times G on TGT^{*}G and moment map ρ:TG𝔤𝔤\rho:T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g} discussed in Subsection 2.7. Consider the product 𝒮τ×𝒮τ𝔤𝔤\mathcal{S}_{\tau}\times\mathcal{S}_{\tau}\subseteq\mathfrak{g}\oplus\mathfrak{g} and observe that

𝒵𝔤τ=ρ1(𝒮τ×𝒮τ).\mathcal{Z}_{\mathfrak{g}}^{\tau}=\rho^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau}).

Note also that 𝒮τ×𝒮τ\mathcal{S}_{\tau}\times\mathcal{S}_{\tau} is the Slodowy associated to the 𝔰𝔩2\mathfrak{sl}_{2}-triple ((ξ,ξ),(h,h),(η,η))((\xi,\xi),(h,h),(\eta,\eta)). It follows that 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} is a Poisson slice in TGT^{*}G. Corollary 3.7(iii) then forces this Poisson slice to be a symplectic subvariety of TGT^{*}G.

Remark 3.18.

Some papers realize the symplectic structure on 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} via a Whittaker reduction of TGT^{*}G (e.g. [2]). To this end, let UGU\subseteq G be the unipotent subgroup with Lie algebra 𝔲\mathfrak{u}. Proposition 3.13 then gives a canonical isomorphism

𝒵𝔤τ=ρ1(𝒮τ×𝒮τ)TG(ξ,ξ)U×U\mathcal{Z}_{\mathfrak{g}}^{\tau}=\rho^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})\cong T^{*}G\sslash_{(\xi,\xi)}U\times U

of symplectic varieties, where the symplectic structure on 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} is as defined in the previous paragraph.

One may replace ρ:TG𝔤𝔤\rho:T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g} with ρ¯:TG¯(logD)𝔤𝔤\overline{\rho}:T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g} and proceeed analogously. In the interest of being more precise, consider the Poisson slice

𝒵𝔤τ¯:=ρ¯1(𝒮τ×𝒮τ)={(γ,(x,x)):γG¯, x𝒮τ, and (x,x)γ}\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}:=\overline{\rho}^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})=\{(\gamma,(x,x)):\gamma\in\overline{G},\text{ }x\in\mathcal{S}_{\tau},\text{ and }(x,x)\in\gamma\}

in TG¯(logD)T^{*}\overline{G}(\log D).

Remark 3.19.

A counterpart of Remark 3.18 is that Proposition 3.13 gives a canonical isomorphism

𝒵𝔤τ¯=ρ¯1(𝒮τ×𝒮τ)TG¯(logD)(ξ,ξ)U×U\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}=\overline{\rho}^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})\cong T^{*}\overline{G}(\log D)\sslash_{(\xi,\xi)}U\times U

of Poisson varieties. This realization of 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} via Whittaker reduction is used to great effect in [2].

Now recall the embedding φ~:TGTG¯(logD)\tilde{\varphi}:T^{*}G\longrightarrow T^{*}\overline{G}(\log D) discussed in Subsection 2.7. Balibănu [2] shows 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} to be log symplectic (cf. Corollary 3.7), and that φ~\tilde{\varphi} restricts to a symplectomorphism from 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} to the unique open dense symplectic leaf in 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}. One also has a commutative diagram

𝒵𝔤τ𝒵𝔤τ¯𝒮τφ~|𝒵𝔤τqτq¯τ,\leavevmode\hbox to258.17pt{\vbox to53.47pt{\pgfpicture\makeatletter\hbox{\hskip 129.08499pt\lower-25.50551pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-129.08499pt}{-25.50551pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 89.97212pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-85.66658pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{Z}_{\mathfrak{g}}^{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 89.97212pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 32.30733pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.00182pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{S}_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.30736pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{51.05925pt}{11.44171pt}\pgfsys@lineto{114.87395pt}{11.44171pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{115.07393pt}{11.44171pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.6999pt}{16.8167pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\tilde{\varphi}\big{|}_{\mathcal{Z}_{\mathfrak{g}}^{\tau}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-8.40424pt}{2.78757pt}\pgfsys@lineto{74.27426pt}{-20.50476pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.96252}{-0.27116}{0.27116}{0.96252}{74.46674pt}{-20.55898pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.65009pt}{-14.27946pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{q_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{115.27391pt}{5.27222pt}\pgfsys@lineto{91.97406pt}{-15.25114pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.7504}{-0.66098}{0.66098}{-0.7504}{91.82399pt}{-15.38333pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{105.82669pt}{-13.15218pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\overline{q}_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}, (3.14)

where

qτ(g,x)=xandq¯τ(γ,(x,x))=x.q_{\tau}(g,x)=x\quad\text{and}\quad\overline{q}_{\tau}(\gamma,(x,x))=x.

This diagram is seen to be the pullback of (3.13) along the inclusion 𝒮τ𝔤\mathcal{S}_{\tau}\hookrightarrow\mathfrak{g}, and it thereby exhibits qτ¯\overline{q_{\tau}} as a fibrewise compactification of qτq_{\tau} (see Remark 3.17 and cf. [2, Section 3]). This amounts to (3.14) being the restriction of (3.13) to a morphism between the Poisson slices

𝒵𝔤τ=ρ1(𝒮τ×𝒮τ)=ρτ1(𝒮τ)and𝒵𝔤τ¯=ρ¯1(𝒮τ×𝒮τ)=ρ¯τ1(𝒮τ).\mathcal{Z}_{\mathfrak{g}}^{\tau}=\rho^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})=\rho_{\tau}^{-1}(\mathcal{S}_{\tau})\quad\text{and}\quad\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}=\overline{\rho}^{-1}(\mathcal{S}_{\tau}\times\mathcal{S}_{\tau})=\overline{\rho}_{\tau}^{-1}(\mathcal{S}_{\tau}).

This present section combines with Subsection 3.3 to yield the following informal comparisons between (𝒵𝔤τ,𝒵𝔤τ¯)(\mathcal{Z}_{\mathfrak{g}}^{\tau},\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}) and (G×𝒮τ,G×𝒮τ¯)(G\times\mathcal{S}_{\tau},\overline{G\times\mathcal{S}_{\tau}}):

  • qτ¯\overline{q_{\tau}} (resp. ρ¯τ\overline{\rho}_{\tau}) is a fibrewise compactification of πτ\pi_{\tau} (resp. qτq_{\tau});

  • (3.14) is obtained by pulling (3.13) back along the inclusion 𝒮τ𝔤\mathcal{S}_{\tau}\hookrightarrow\mathfrak{g};

  • 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} and G×𝒮τG\times\mathcal{S}_{\tau} are symplectic;

  • 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} and G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} are log symplectic;

  • φ~\tilde{\varphi} restricts to a symplectomorphism from 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} (resp. G×𝒮τG\times\mathcal{S}_{\tau}) to the unique open dense symplectic leaf in 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} (resp. G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}).

4. The geometries of X¯\overline{X} and X¯τ\overline{X}_{\tau}

This section is concerned with constructing partial compactifications of Poisson slices, an issue motivated in the introduction of our paper. Our approach is to replace a Poisson slice XτX_{\tau} with a slightly larger variety X¯τ\overline{X}_{\tau}, provided that the latter makes sense. If X¯τ\overline{X}_{\tau} is well-defined, we show it to enjoy certain Poisson-geometric features and discuss the extent to which it partially compactifies XτX_{\tau}.

4.1. Definitions and first properties

Fix a Hamiltonian GG-variety (X,P,ν)(X,P,\nu) and an 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau in 𝔤\mathfrak{g}. The product Hamiltonian GG-varieties X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}) and X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) then have respective moment maps

μτ:X×(G×𝒮τ)𝔤,(x,(g,y))ν(x)Adg(y)\mu_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow\mathfrak{g},\quad(x,(g,y))\longrightarrow\nu(x)-\mathrm{Ad}_{g}(y)

and

μ¯τ:X×(G×𝒮τ¯)𝔤,(x,(γ,(y1,y2)))ν(x)y1.\overline{\mu}_{\tau}:X\times(\overline{G\times\mathcal{S}_{\tau}})\longrightarrow\mathfrak{g},\quad(x,(\gamma,(y_{1},y_{2})))\longrightarrow\nu(x)-y_{1}.

Note also that taking the product of

φ~|G×𝒮τ:G×𝒮τG×𝒮τ¯\tilde{\varphi}\big{|}_{G\times\mathcal{S}_{\tau}}:G\times\mathcal{S}_{\tau}\longrightarrow\overline{G\times\mathcal{S}_{\tau}}

with the identity XXX\longrightarrow X produces a GG-equivariant open Poisson embedding

iτ:X×(G×𝒮τ)\displaystyle i_{\tau}:X\times(G\times\mathcal{S}_{\tau}) X×(G×𝒮τ¯)\displaystyle\longrightarrow X\times(\overline{G\times\mathcal{S}_{\tau}}) (4.1)
(x,(g,y))\displaystyle(x,(g,y)) (x,((g,e)𝔤Δ,(Adg(y),y))).\displaystyle\longrightarrow(x,((g,e)\cdot\mathfrak{g}_{\Delta},(\mathrm{Ad}_{g}(y),y))).

(see Proposition 3.16). One readily verifies that the diagram

X×(G×𝒮τ){X\times(G\times\mathcal{S}_{\tau})}X×(G×𝒮τ¯){X\times(\overline{G\times\mathcal{S}_{\tau}})}𝔤{\mathfrak{g}}iτ\scriptstyle{i_{\tau}}μτ\scriptstyle{\mu_{\tau}}μ¯τ\scriptstyle{\overline{\mu}_{\tau}} (4.2)

commutes.

Now recall the Hamiltonian (G×GG\times G)-variety X×TG¯(logD)X\times T^{*}\overline{G}(\log D) and moment map

μ¯=(μ¯L,μ¯R):X×TG¯(logD)𝔤𝔤\overline{\mu}=(\overline{\mu}_{L},\overline{\mu}_{R}):X\times T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g}

from Subsection 2.7. Let us write

X¯:=(X×TG¯(logD))GLandX¯τ:=(X×(G×𝒮¯))G,\overline{X}:=(X\times T^{*}\overline{G}(\log D))\sslash G_{L}\quad\text{and}\quad\overline{X}_{\tau}:=(X\times(\overline{G\times\mathcal{S}}))\sslash G,

and understand “X¯\overline{X} exists” (resp. “X¯τ\overline{X}_{\tau} exists”) to mean that (X×TG¯(logD))GL(X\times T^{*}\overline{G}(\log D))\sslash G_{L} (resp. (X×(G×𝒮¯))G(X\times(\overline{G\times\mathcal{S}}))\sslash G) exists as a geometric quotient.

Remark 4.1.

If τ=0\tau=0, then X×(G×𝒮τ¯)=X×TG¯(logD)X\times(\overline{G\times\mathcal{S}_{\tau}})=X\times T^{*}\overline{G}(\log D), μ¯τ=μ¯L\overline{\mu}_{\tau}=\overline{\mu}_{L}, and the GG-action on X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) is the GLG_{L}-action X×TG¯(logD)X\times T^{*}\overline{G}(\log D). One immediate consequence is that X¯=X¯0\overline{X}=\overline{X}_{0}.

Remark 4.2.

The action of GRG_{R} on X×TG¯(logD)X\times T^{*}\overline{G}(\log D) induces a residual GG-action on X¯\overline{X}, provided that X¯\overline{X} exists. This GG-action features prominently in what follows.

It is reasonable to seek conditions under which X¯\overline{X} and X¯τ\overline{X}_{\tau} exist. We defer this matter to Section 5, which is largely devoted to examples. In the interim, we assume that X¯τ\overline{X}_{\tau} exists. Let us also recall the map i:X×TGX×TG¯(logD)i:X\times T^{*}G\longrightarrow X\times T^{*}\overline{G}(\log D) from (2.18). This map restricts to a GG-equivariant open embedding

i|μτ1(0):μτ1(0)μ¯τ1(0),i\big{|}_{\mu_{\tau}^{-1}(0)}:\mu_{\tau}^{-1}(0)\hookrightarrow\overline{\mu}_{\tau}^{-1}(0), (4.3)

which in turn descends to a morphism

jτ:(X×(G×𝒮τ))GX¯τ.j_{\tau}:(X\times(G\times\mathcal{S}_{\tau}))\sslash G\longrightarrow\overline{X}_{\tau}. (4.4)

Let us consider the composition

kτ:=jτψτ:XτX¯τ,k_{\tau}:=j_{\tau}\circ\psi_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau}, (4.5)

where ψτ:Xτ(X×(G×𝒮τ))G\psi_{\tau}:X_{\tau}\longrightarrow(X\times(G\times\mathcal{S}_{\tau}))\sslash G is the Poisson variety isomorphism from (3.3). It is straightforward to verify that

kτ(x)=[x:(𝔤Δ,(ν(x),ν(x)))]k_{\tau}(x)=[x:(\mathfrak{g}_{\Delta},(\nu(x),\nu(x)))] (4.6)

for all xXτx\in X_{\tau}

Proposition 4.3.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} exists, then kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} is an open embedding.

Proof.

Since ψτ\psi_{\tau} is a variety isomorphism, it suffices to prove that jτj_{\tau} is an open embedding. We achieve this by first considering the commutative square

μτ1(0)μ¯τ1(0)(X×(G×𝒮τ))GX¯τi|μτ1(0)jτ.\leavevmode\hbox to145.08pt{\vbox to54.42pt{\pgfpicture\makeatletter\hbox{\hskip 72.5396pt\lower-26.41928pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-72.5396pt}{-26.31944pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 14.93121pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.62567pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mu_{\tau}^{-1}(0)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 14.93121pt\hfil&\hfil\hskip 38.41846pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.11295pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{\mu}_{\tau}^{-1}(0)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.41849pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 46.12112pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.81558pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(X\times(G\times\mathcal{S}_{\tau}))\sslash G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 46.12112pt\hfil&\hfil\hskip 32.02954pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.72403pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{X}_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.02957pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.28726pt}{11.50003pt}\pgfsys@lineto{43.10266pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.30264pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.77512pt}{16.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{i\big{|}_{\mu_{\tau}^{-1}(0)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.41847pt}{2.64032pt}\pgfsys@lineto{-26.41847pt}{-14.55977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-26.41847pt}{-14.75975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{58.12111pt}{2.64032pt}\pgfsys@lineto{58.12111pt}{-16.382pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{58.12111pt}{-16.58199pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.90265pt}{-23.81944pt}\pgfsys@lineto{49.49158pt}{-23.81944pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.69156pt}{-23.81944pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.38112pt}{-20.10559pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{j_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (4.7)

The vertical morphisms are open maps by virtue of being geometric quotients [54, Lemma 25.3.2], and we have explained that the upper horizontal map is open. It follows that jτj_{\tau} is also an open map. Together with the observation that jτj_{\tau} is injective, this implies that jτj_{\tau} is an open embedding. Our proof is complete. ∎

The inclusion XτXX_{\tau}\longrightarrow X composes with the quotient map XX/GX\longrightarrow X/G to yield

πτ:XτX/G,\pi_{\tau}:X_{\tau}\longrightarrow X/G, (4.8)

provided that X/GX/G exists. We may also consider the morphism

π¯τ:X¯τX/G,[x:(γ,(y1,y2))][x]\overline{\pi}_{\tau}:\overline{X}_{\tau}\longrightarrow X/G,\quad[x:(\gamma,(y_{1},y_{2}))]\longrightarrow[x] (4.9)

if both X¯τ\overline{X}_{\tau} and X/GX/G exist. The following is then an immediate consequence of (4.6).

Proposition 4.4.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} and X/GX/G exist, then the diagram

Xτ{X_{\tau}}X¯τ{\overline{X}_{\tau}}X/G{X/G}kτ\scriptstyle{k_{\tau}}πτ\scriptstyle{\pi_{\tau}}π¯τ\scriptstyle{\overline{\pi}_{\tau}} (4.10)

commutes.

This diagram is particularly noteworthy if τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple.

Theorem 4.5.

Let τ\tau be a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} and X/GX/G exist, then the diagram (4.10) realizes π¯τ\overline{\pi}_{\tau} as a fibrewise compactification of πτ\pi_{\tau}.

Proof.

Our objective is to prove that π¯τ\overline{\pi}_{\tau} has projective fibres. Let us begin by fixing a point xXx\in X. We then have

π¯τ1([x])={[x:(γ,(ν(x),y))]:γG¯, y𝒮τ, and (ν(x),y)γ}.\overline{\pi}_{\tau}^{-1}([x])=\{[x:(\gamma,(\nu(x),y))]:\gamma\in\overline{G},\text{ }y\in\mathcal{S}_{\tau},\text{ and }(\nu(x),y)\in\gamma\}. (4.11)

On the other hand, it is known that y1,y2𝔤y_{1},y_{2}\in\mathfrak{g} belong to the same fibre of the adjoint quotient χ:𝔤Spec([𝔤]G)\chi:\mathfrak{g}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}) whenever (y1,y2)γ(y_{1},y_{2})\in\gamma for some γG¯\gamma\in\overline{G} (see Subsection 3.3). The discussion and notation in Subsection 2.5 associated with principal 𝔰𝔩2\mathfrak{sl}_{2}-triples then imply the following: if y1𝔤y_{1}\in\mathfrak{g} and y2𝒮τy_{2}\in\mathcal{S}_{\tau} are such that (y1,y2)γ(y_{1},y_{2})\in\gamma for some γG¯\gamma\in\overline{G}, then y2=(y1)τy_{2}=(y_{1})_{\tau}. We may therefore present (4.11) as the statement

π¯τ1([x])={[x:(γ,(ν(x),ν(x)τ))]:γG¯ and (ν(x),ν(x)τ)γ}.\overline{\pi}_{\tau}^{-1}([x])=\{[x:(\gamma,(\nu(x),\nu(x)_{\tau}))]:\gamma\in\overline{G}\text{ and }(\nu(x),\nu(x)_{\tau})\in\gamma\}.

In other words, π¯τ1([x])\overline{\pi}_{\tau}^{-1}([x]) is the image of the closed subvariety

{γG¯:(ν(x),ν(x)τ)γ}G¯\{\gamma\in\overline{G}:(\nu(x),\nu(x)_{\tau})\in\gamma\}\subseteq\overline{G}

under the morphism

G¯X¯τ,γ[x:(γ,(ν(x),ν(x)τ))].\overline{G}\longrightarrow\overline{X}_{\tau},\quad\gamma\longrightarrow[x:(\gamma,(\nu(x),\nu(x)_{\tau}))].

This subvariety is projective by virtue of being closed in G¯\overline{G}, and we conclude that π¯τ1([x])\overline{\pi}_{\tau}^{-1}([x]) is projective. This completes the proof. ∎

Let us also examine the case τ=0\tau=0 in some detail. To this end, assume that X¯0=X¯\overline{X}_{0}=\overline{X} exists and consider the geometric quotient map

π¯L:μ¯L1(0)X¯.\overline{\pi}_{L}:\overline{\mu}_{L}^{-1}(0)\longrightarrow\overline{X}.

The GRG_{R}-action on μ¯L1(0)\overline{\mu}_{L}^{-1}(0) then descends under π¯L\overline{\pi}_{L} to a GG-action X¯\overline{X}. On the other hand, note that the restriction of

μ¯R:X×TG¯(logD)𝔤,(x,(γ,(y1,y2)))y2-\overline{\mu}_{R}:X\times T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g},\quad(x,(\gamma,(y_{1},y_{2})))\longrightarrow y_{2}

to μ¯L1(0)\overline{\mu}_{L}^{-1}(0) is GRG_{R}-equivariant and GLG_{L}-invariant. This restriction therefore descends under π¯L\overline{\pi}_{L} to the GG-equivariant morphism

ν¯:X¯𝔤,[x:(γ,(ν(x),y))]y.\overline{\nu}:\overline{X}\longrightarrow\mathfrak{g},\quad[x:(\gamma,(\nu(x),y))]\longrightarrow y. (4.12)

Let us write k:XX¯k:X\longrightarrow\overline{X}, π:XX/G\pi:X\longrightarrow X/G, and π¯:X¯X/G\overline{\pi}:\overline{X}\longrightarrow X/G for (4.5), (4.8), and (4.9), respectively, in the case τ=0\tau=0.

Proposition 4.6.

If X¯\overline{X} exists, then k:XX¯k:X\longrightarrow\overline{X} is a GG-equivariant open embedding and

X{X}X¯{\overline{X}}𝔤{\mathfrak{g}}k\scriptstyle{k}ν\scriptstyle{\nu}ν¯\scriptstyle{\overline{\nu}} (4.13)

commutes. If X/GX/G also exists, then

X{X}X¯{\overline{X}}X/G{X/G}k\scriptstyle{k}π\scriptstyle{\pi}π¯\scriptstyle{\overline{\pi}} (4.14)

commutes.

Proof.

The commutativity of (4.13) follows immediately from (4.12) and (4.6), while Proposition 4.4 forces (4.14) to commute. Proposition 4.3 implies that kk is an open embedding. Our equivariance claim follows from (4.6), the above-given definition of the GG-action on X¯\overline{X}, and a direct calculation. This completes the proof. ∎

4.2. The Poisson geometries of X¯\overline{X} and X¯τ\overline{X}_{\tau}

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety and suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. In what follows, we show that the Poisson slice XτX_{\tau} endows X¯τ\overline{X}_{\tau} with certain Poisson-geometric qualities. The most basic such feature is as follows.

Proposition 4.7.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} exists, then [X¯τ]\mathbb{C}[\overline{X}_{\tau}] carries a natural Poisson bracket for which kτ:[X¯τ][Xτ]k_{\tau}^{*}:\mathbb{C}[\overline{X}_{\tau}]\longrightarrow\mathbb{C}[X_{\tau}] is a Poisson algebra morphism.

Proof.

The definition

X¯τ:=(X×(G×𝒮τ¯))G\overline{X}_{\tau}:=(X\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G

combines with the discussion in Subsection 2.4 to yield a Poisson bracket on [X¯τ]\mathbb{C}[\overline{X}_{\tau}], as well as the following facts:

  • (i)

    [X×(G×𝒮τ¯)]G\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]^{G} is a Poisson subalgebra of [X×(G×𝒮τ¯)]\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})];

  • (ii)

    [μ¯τ1(0)]G\mathbb{C}[\overline{\mu}_{\tau}^{-1}(0)]^{G} has a unique Poisson bracket for which restriction

    β:[X×(G×𝒮τ¯)]G[μ¯τ1(0)]G\beta:\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]^{G}\longrightarrow\mathbb{C}[\overline{\mu}_{\tau}^{-1}(0)]^{G}

    is a Poisson algebra morphism;

  • (iii)

    the geometric quotient map μ¯τ1(0)X¯τ\overline{\mu}_{\tau}^{-1}(0)\longrightarrow\overline{X}_{\tau} induces a Poisson algebra isomorphism

    δ:[X¯τ][μ¯τ1(0)]G.\delta:\mathbb{C}[\overline{X}_{\tau}]\overset{\cong}{\longrightarrow}\mathbb{C}[\overline{\mu}_{\tau}^{-1}(0)]^{G}.

We have a row of Poisson algebra morphisms

[X×(G×𝒮τ¯)]𝛼[X×(G×𝒮τ¯)]G𝛽[μ¯τ1(0)]G𝛿[X¯τ],\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]\overset{\alpha}{\longleftarrow}\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]^{G}\overset{\beta}{\longrightarrow}\mathbb{C}[\overline{\mu}_{\tau}^{-1}(0)]^{G}\overset{\delta}{\longleftarrow}\mathbb{C}[\overline{X}_{\tau}],

where α\alpha is the inclusion. An analogous procedure yields a second row

[X×(G×𝒮τ)]α[X×(G×𝒮τ)]Gβ[μτ1(0)]Gδ[Xτ]\mathbb{C}[X\times(G\times\mathcal{S}_{\tau})]\overset{\alpha^{\prime}}{\longleftarrow}\mathbb{C}[X\times(G\times\mathcal{S}_{\tau})]^{G}\overset{\beta^{\prime}}{\longrightarrow}\mathbb{C}[\mu_{\tau}^{-1}(0)]^{G}\overset{\delta^{\prime}}{\longleftarrow}\mathbb{C}[X_{\tau}]

of Poisson algebra morphisms. Now recall the GG-equivariant open Poisson embedding

iτ:X×(G×𝒮τ)X×(G×𝒮τ¯)i_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow X\times(\overline{G\times\mathcal{S}_{\tau}})

from (4.1), as well as the commutative diagram (4.2). It follows that iτi_{\tau} induces the first three vertical arrows in the commutative diagram

[X×(G×𝒮τ¯)][X×(G×𝒮τ¯)]G[μ¯τ1(0)]G[X¯τ][X×(G×𝒮τ)][X×(G×𝒮τ)]G[μτ1(0)]G[Xτ]α′′αβ′′βδ′′kτδαβδ.\leavevmode\hbox to309pt{\vbox to56.57pt{\pgfpicture\makeatletter\hbox{\hskip 154.50058pt\lower-28.33261pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-154.50058pt}{-28.23277pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 27.72913pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.42358pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 27.72913pt\hfil&\hfil\hskip 53.93059pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.62508pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[X\times(\overline{G\times\mathcal{S}_{\tau}})]^{G}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 29.93062pt\hfil&\hfil\hskip 47.00885pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.70334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[\overline{\mu}_{\tau}^{-1}(0)]^{G}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 23.00888pt\hfil&\hfil\hskip 38.41844pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.11293pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[\overline{X}_{\tau}]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.41847pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 38.16217pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-33.85663pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[X\times(G\times\mathcal{S}_{\tau})]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 38.16217pt\hfil&\hfil\hskip 64.36363pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.05812pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[X\times(G\times\mathcal{S}_{\tau})]^{G}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 40.36366pt\hfil&\hfil\hskip 47.52158pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.21606pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[\mu_{\tau}^{-1}(0)]^{G}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.5216pt\hfil&\hfil\hskip 40.45316pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.14764pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}[X_{\tau}]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.45319pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-116.33841pt}{2.64032pt}\pgfsys@lineto{-116.33841pt}{-16.4731pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-116.33841pt}{-16.67308pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-113.98564pt}{-9.17886pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha^{\prime\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-43.94322pt}{11.50003pt}\pgfsys@lineto{-88.00932pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-88.2093pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-68.4152pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-13.8126pt}{2.64032pt}\pgfsys@lineto{-13.8126pt}{-14.55977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-13.8126pt}{-14.75975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.45984pt}{-8.46526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\beta^{\prime\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.31801pt}{11.50003pt}\pgfsys@lineto{50.46379pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{50.66377pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.61119pt}{15.2139pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\beta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{74.07263pt}{2.64032pt}\pgfsys@lineto{74.07263pt}{-14.55977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{74.07263pt}{-14.75975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.4254pt}{-9.1458pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\delta^{\prime\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{138.0474pt}{2.64032pt}\pgfsys@lineto{138.0474pt}{-16.4731pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{138.0474pt}{-16.67308pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.40016pt}{-9.58163pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{k_{\tau}^{*}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{123.42892pt}{11.50003pt}\pgfsys@lineto{97.68147pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{97.48149pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{108.79968pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\delta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-54.37627pt}{-25.73277pt}\pgfsys@lineto{-77.57628pt}{-25.73277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-77.77626pt}{-25.73277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-68.9652pt}{-23.38pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{26.75105pt}{-25.73277pt}\pgfsys@lineto{49.95107pt}{-25.73277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{50.15105pt}{-25.73277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.02136pt}{-22.0189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\beta^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{121.39421pt}{-25.73277pt}\pgfsys@lineto{98.1942pt}{-25.73277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{97.99422pt}{-25.73277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{107.48868pt}{-23.38pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\delta^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Observe that α′′\alpha^{\prime\prime} is a Poisson algebra morphism, as follows from iτi_{\tau} being a Poisson morphism. One deduces that β′′\beta^{\prime\prime} must also be a Poisson algebra morphism. This combines with the commutativity of the middle square and the fact that β\beta^{\prime} and β′′\beta^{\prime\prime} are surjective Poisson algebra morphisms to imply that δ′′\delta^{\prime\prime} is a Poisson algebra morphism. Since δ\delta and δ\delta^{\prime} are Poisson algebra isomorphisms, this forces kτk_{\tau}^{*} to be a Poisson algebra morphism. ∎

Some more manifestly geometric features of X¯τ\overline{X}_{\tau} may be developed as follows. Write (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ} for the GG-invariant open subvariety of points in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) whose GG-stabilizers are trivial.

The GG-action on (X×G×𝒮τ¯)(X\times\overline{G\times\mathcal{S}_{\tau}})^{\circ} is Hamiltonian with respect to the Poisson structure that (X×G×𝒮τ¯)(X\times\overline{G\times\mathcal{S}_{\tau}})^{\circ} inherits from (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}})), and

μ¯τ:=μ¯τ|(X×(G×𝒮τ¯)):(X×(G×𝒮τ¯))𝔤\overline{\mu}_{\tau}^{\circ}:=\overline{\mu}_{\tau}\bigg{|}_{(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}}:(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}\longrightarrow\mathfrak{g} (4.15)

is a moment map.

Now assume that X¯τ\overline{X}_{\tau} exists and consider the geometric quotient map

θ¯τ:μ¯τ1(0)X¯τ.\overline{\theta}_{\tau}:\overline{\mu}_{\tau}^{-1}(0)\longrightarrow\overline{X}_{\tau}.

The variety (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0) is GG-invariant and open in μτ1(0)\mu_{\tau}^{-1}(0), and we set

Xτ:=θ¯τ((μ¯τ)1(0))X¯τ.X_{\tau}^{\circ}:=\overline{\theta}_{\tau}((\overline{\mu}_{\tau}^{\circ})^{-1}(0))\subseteq\overline{X}_{\tau}.

We also let

θ¯τ:(μ¯τ)1(0)X¯τ\overline{\theta}_{\tau}^{\circ}:(\overline{\mu}_{\tau}^{\circ})^{-1}(0)\longrightarrow\overline{X}_{\tau}^{\circ}

denote the restriction of θ¯τ\overline{\theta}_{\tau} to (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0).

Lemma 4.8.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} exists, then X¯τ\overline{X}_{\tau}^{\circ} is an open subvariety of X¯τ\overline{X}_{\tau} and θ¯τ:(μ¯τ)1(0)X¯τ\overline{\theta}^{\circ}_{\tau}:(\overline{\mu}_{\tau}^{\circ})^{-1}(0)\longrightarrow\overline{X}_{\tau}^{\circ} is the geometric quotient of (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0) by GG.

Proof.

The geometric quotient map θ¯τ:μ¯τ1(0)X¯τ\overline{\theta}_{\tau}:\overline{\mu}_{\tau}^{-1}(0)\longrightarrow\overline{X}_{\tau} is open [54, Lemma 25.3.2]. It follows that X¯τ=θ¯τ((μ¯τ)1(0))\overline{X}_{\tau}^{\circ}=\overline{\theta}_{\tau}((\overline{\mu}_{\tau}^{\circ})^{-1}(0)) is an open subvariety of X¯τ\overline{X}_{\tau}. The rest of this lemma is an immediate consequence of Proposition 2.4. ∎

Proposition 4.9.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. If X¯τ\overline{X}_{\tau} exists, then X¯τ\overline{X}_{\tau}^{\circ} is smooth and Poisson.

Proof.

Recall that (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ} is a Hamiltonian GG-variety with moment map (4.15). Lemma 4.8 then implies that X¯τ\overline{X}_{\tau}^{\circ} is the Hamiltonian reduction of (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ} at level zero. The proposition now follows from generalities about Hamiltonian reductions by free actions, the relevant parts of which are discussed in Subsection 2.4. ∎

Now recall the open embedding kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} defined in (4.5).

Proposition 4.10.

Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, and assume that X¯τ\overline{X}_{\tau} exists. The image of kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} then lies in X¯τ\overline{X}_{\tau}^{\circ}, and kτk_{\tau} defines an open embedding of Poisson varieties XτX¯τX_{\tau}\longrightarrow\overline{X}_{\tau}^{\circ}.

Proof.

Recall that kτ=jτψτk_{\tau}=j_{\tau}\circ\psi_{\tau}, and that ψτ\psi_{\tau} is a Poisson variety isomorphism. It therefore suffices to prove the following:

  • (i)

    the image of jτ:(X×(G×𝒮τ))GX¯τj_{\tau}:(X\times(G\times\mathcal{S}_{\tau}))\sslash G\longrightarrow\overline{X}_{\tau} lies in X¯τ\overline{X}_{\tau}^{\circ};

  • (ii)

    jτj_{\tau} defines an open embedding of Poisson varieties (X×(G×𝒮τ))GX¯τ(X\times(G\times\mathcal{S}_{\tau}))\sslash G\longrightarrow\overline{X}_{\tau}^{\circ}.

Since GG acts freely on X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}), the image of (4.1) lies in (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}. We may therefore interpret (4.1) as a GG-equivariant open Poisson embedding

iτ:X×(G×𝒮τ)(X×(G×𝒮τ¯))i_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}

and (4.2) as a commutative diagram

X×(G×𝒮τ)(X×(G×𝒮τ¯))𝔤iτμτμ¯τ.\leavevmode\hbox to178.42pt{\vbox to50.13pt{\pgfpicture\makeatletter\hbox{\hskip 89.20792pt\lower-25.06665pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-89.20792pt}{-25.06665pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 31.77327pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.46773pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times(G\times\mathcal{S}_{\tau})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 31.77327pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 50.6291pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.3236pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.62914pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{g}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-25.46138pt}{9.55836pt}\pgfsys@lineto{35.34969pt}{9.55836pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.54967pt}{9.55836pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.06404pt}{12.77225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{i_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-40.17772pt}{0.69865pt}\pgfsys@lineto{-2.21721pt}{-18.78867pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.88962}{-0.4567}{0.4567}{0.88962}{-2.0393pt}{-18.87999pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.33876pt}{-14.50298pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mu_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{46.742pt}{0.69865pt}\pgfsys@lineto{12.49875pt}{-18.45326pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.87277}{-0.48813}{0.48813}{-0.87277}{12.32422pt}{-18.55086pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.79861pt}{-17.89433pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\overline{\mu}_{\tau}^{\circ}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Such considerations allow one to regard (4.3) and (4.4) as maps

iτ|μτ1(0):μτ1(0)(μ¯τ)1(0)i_{\tau}\big{|}_{\mu_{\tau}^{-1}(0)}:\mu_{\tau}^{-1}(0)\hookrightarrow(\overline{\mu}_{\tau}^{\circ})^{-1}(0) (4.16)

and

jτ:(X×(G×𝒮τ))GX¯τ,j_{\tau}:(X\times(G\times\mathcal{S}_{\tau}))\sslash G\longrightarrow\overline{X}_{\tau}^{\circ}, (4.17)

respectively. This verifies (i) and yields the commutative square

μτ1(0)(μ¯τ)1(0)(X×(G×𝒮τ))GX¯τiτ|μτ1(0)jτ.\leavevmode\hbox to157.52pt{\vbox to54.54pt{\pgfpicture\makeatletter\hbox{\hskip 78.76183pt\lower-27.3215pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-78.76183pt}{-27.22166pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 14.93121pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.62567pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mu_{\tau}^{-1}(0)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 14.93121pt\hfil&\hfil\hskip 44.64069pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.33517pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\overline{\mu}_{\tau}^{\circ})^{-1}(0)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.64072pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 46.12112pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.81558pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(X\times(G\times\mathcal{S}_{\tau}))\sslash G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 46.12112pt\hfil&\hfil\hskip 32.02954pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.72403pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\overline{X}_{\tau}^{\circ}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.02957pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-17.50949pt}{10.59781pt}\pgfsys@lineto{36.88043pt}{10.59781pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.08041pt}{10.59781pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.67859pt}{15.95058pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{i_{\tau}\big{|}_{\mu_{\tau}^{-1}(0)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-32.6407pt}{1.7381pt}\pgfsys@lineto{-32.6407pt}{-15.46199pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-32.6407pt}{-15.66197pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{58.12111pt}{1.7381pt}\pgfsys@lineto{58.12111pt}{-16.03978pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{58.12111pt}{-16.23976pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{13.68042pt}{-24.72166pt}\pgfsys@lineto{49.49158pt}{-24.72166pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.69156pt}{-24.72166pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.27pt}{-21.00781pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{j_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (4.18)

By combining this square with the description of the Poisson structure on a Hamiltonian reduction, we deduce that (4.17) is a Poisson morphism. This morphism is also an open embedding, as follows easily from Proposition 4.3. Our proof is therefore complete. ∎

Let us write X¯\overline{X}^{\circ} for X¯τ\overline{X}_{\tau}^{\circ} if τ=0\tau=0. This variety turns out to enjoy some Poisson geometric features beyond those of a general X¯τ\overline{X}_{\tau}^{\circ}. To develop these features, assume that X¯\overline{X} exists and let

π¯L:μ¯L1(0)X¯\overline{\pi}_{L}:\overline{\mu}_{L}^{-1}(0)\longrightarrow\overline{X}

be the geometric quotient map. Write (X×TG¯(logD))(X\times T^{*}\overline{G}(\log D))^{\circ} for the (G×GG\times G)-invariant open subvariety of points in X×TG¯(logD)X\times T^{*}\overline{G}(\log D) whose GLG_{L}-stabilizers are trivial. The (G×GG\times G)-action on (X×TG¯(logD))(X\times T^{*}\overline{G}(\log D))^{\circ} is Hamiltonian with respect to the Poisson structure that (X×TG¯(logD))(X\times T^{*}\overline{G}(\log D))^{\circ} inherits from X×TG¯(logD)X\times T^{*}\overline{G}(\log D), and

(μ¯L,μ¯R):=(μ¯L|(X×TG¯(logD)),μ¯R|(X×TG¯(logD))):(X×TG¯(logD))𝔤𝔤(\overline{\mu}_{L}^{\circ},\overline{\mu}_{R}^{\circ}):=(\overline{\mu}_{L}\bigg{|}_{(X\times T^{*}\overline{G}(\log D))^{\circ}},\overline{\mu}_{R}\bigg{|}_{(X\times T^{*}\overline{G}(\log D))^{\circ}}):(X\times T^{*}\overline{G}(\log D))^{\circ}\longrightarrow\mathfrak{g}\oplus\mathfrak{g} (4.19)

is a moment map.

Now consider the (G×GG\times G)-invariant open subvariety of (μ¯L)1(0)(\overline{\mu}_{L}^{\circ})^{-1}(0) of μ¯L1(0)\overline{\mu}_{L}^{-1}(0), and observe that

X¯:=π¯L((μ¯L)1(0)).\overline{X}^{\circ}:=\overline{\pi}_{L}((\overline{\mu}_{L}^{\circ})^{-1}(0)).

Let

π¯L:(μ¯L)1(0)X¯\overline{\pi}^{\circ}_{L}:(\overline{\mu}_{L}^{\circ})^{-1}(0)\longrightarrow\overline{X}^{\circ}

denote the restriction of π¯L\overline{\pi}_{L} to (μ¯L)1(0)(\overline{\mu}_{L}^{\circ})^{-1}(0). At the same time, recall the definition of the GG-action on X¯\overline{X}.

Lemma 4.11.

Assume that X¯\overline{X} exists. The subset X¯\overline{X}^{\circ} is then a GG-invariant open subvariety of X¯\overline{X}, and π¯L:(μ¯L)1(0)X¯\overline{\pi}^{\circ}_{L}:(\overline{\mu}_{L}^{\circ})^{-1}(0)\longrightarrow\overline{X}^{\circ} is the geometric quotient of (μ¯L)1(0)(\overline{\mu}_{L}^{\circ})^{-1}(0) by GLG_{L}.

Proof.

Observe that π¯L\overline{\pi}_{L} is equivariant with respect to the action of GRG_{R} on μ¯L1(0)\overline{\mu}_{L}^{-1}(0) and the above-discussed GG-action on X¯\overline{X}. Since (μ¯L)1(0)(\overline{\mu}_{L}^{\circ})^{-1}(0) is GRG_{R}-invariant in μ¯L1(0)\overline{\mu}_{L}^{-1}(0), this implies that X¯=π¯L((μ¯L)1(0))\overline{X}^{\circ}=\overline{\pi}_{L}((\overline{\mu}_{L}^{\circ})^{-1}(0)) is GG-invariant in X¯\overline{X}. The rest of this lemma is an immediate consequence of Lemma 4.8. ∎

The GG-action that X¯\overline{X}^{\circ} inherits from X¯\overline{X} is compatible with the Poisson variety structure referenced in Proposition 4.9. To formulate this more precisely, recall the map ν:X¯𝔤\nu:\overline{X}\longrightarrow\mathfrak{g} in (4.12) and set

ν¯:=ν¯|X¯:X¯𝔤.\overline{\nu}^{\circ}:=\overline{\nu}\big{|}_{\overline{X}^{\circ}}:\overline{X}^{\circ}\longrightarrow\mathfrak{g}.
Proposition 4.12.

If X¯\overline{X} exists, then the action of GG on X¯\overline{X}^{\circ} is Hamiltonian with moment map ν¯:X¯𝔤\overline{\nu}^{\circ}:\overline{X}^{\circ}\longrightarrow\mathfrak{g}.

Proof.

Recall that (X×TG¯(logD))(X\times T^{*}\overline{G}(\log D))^{\circ} is a Hamiltonian (G×GG\times G)-variety with moment map (4.19). One deduces that X¯=(μ¯L)1(0)/GL\overline{X}^{\circ}=(\overline{\mu}_{L}^{\circ})^{-1}(0)/G_{L} is a Hamiltonian GG-variety, and that the corresponding moment map is obtained by letting

μ¯R|(μ¯L)1(0):(μ¯L)1(0)𝔤-\overline{\mu}_{R}^{\circ}\bigg{|}_{(\overline{\mu}_{L}^{\circ})^{-1}(0)}:(\overline{\mu}_{L}^{\circ})^{-1}(0)\longrightarrow\mathfrak{g}

descend to X¯\overline{X}^{\circ}. It remains only to observe that this descended moment map and the GG-action on X¯\overline{X}^{\circ} are restrictions of ν¯:X¯𝔤\overline{\nu}:\overline{X}\longrightarrow\mathfrak{g} and the GG-action on X¯\overline{X}, respectively. ∎

Proposition 4.13.

Assume that X¯\overline{X} exists. The image of k:XX¯k:X\longrightarrow\overline{X} then lies in X¯\overline{X}^{\circ}, and kk defines an open embedding of Hamiltonian GG-varieties XX¯X\longrightarrow\overline{X}^{\circ}.

Proof.

This is a direct consequence of Propositions 4.6 and Proposition 4.10. ∎

4.3. The log symplectic geometries of X¯\overline{X} and X¯τ\overline{X}_{\tau}

We now examine the Poisson geometries of X¯\overline{X} and X¯τ\overline{X}_{\tau} in the special case of a symplectic Hamiltonian GG-variety (X,P,ν)(X,P,\nu). These Poisson geometries essentially become log symplectic geometries, as is consistent with the following result. Recall the map iτ:X×(G×𝒮τ)X×(G×𝒮τ¯)i_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow X\times(\overline{G\times\mathcal{S}_{\tau}}) defined in (4.1).

Lemma 4.14.

Let (X,P,ν)(X,P,\nu) be an irreducible symplectic Hamiltonian GG-variety. If τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, then the following statements then hold:

  • (i)

    X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) is log symplectic;

  • (ii)

    iτi_{\tau} is a GG-equivariant symplectomorphism onto the unique open dense symplectic leaf in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}).

Proof.

Proposition 3.16 tells us that

φ~|G×𝒮τ:G×𝒮τG×𝒮τ¯\tilde{\varphi}\big{|}_{G\times\mathcal{S}_{\tau}}:G\times\mathcal{S}_{\tau}\longrightarrow\overline{G\times\mathcal{S}_{\tau}}

is a GG-equivariant symplectomorphism onto the open dense symplectic leaf in the log symplectic variety G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}. We also recall that iτi_{\tau} is the product of φ~|G×𝒮τ\tilde{\varphi}\big{|}_{G\times\mathcal{S}_{\tau}} with the identity XXX\longrightarrow X. These last two sentences imply that iτi_{\tau} is a GG-equivariant symplectomorphism onto the complement of the degeneracy locus in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}). Since X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau}) and X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) are irreducible, this implies that the image of iτi_{\tau} is the unique open dense symplectic leaf in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}).

Now consider the closed subvariety

Dτ:=(X×(G×𝒮τ¯))iτ(X×(G×𝒮τ))D_{\tau}:=(X\times(\overline{G\times\mathcal{S}_{\tau}}))\setminus i_{\tau}(X\times(G\times\mathcal{S}_{\tau})) (4.20)

of X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) It remains only to prove the following things:

  • (a)

    DτD_{\tau} is a normal crossing divisor;

  • (b)

    the top exterior power of the Poisson bivector on X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) has a reduced vanishing locus;

  • (c)

    the vanishing locus in (b) coincides with DτD_{\tau}.

To this end, we note that

Dτ=X×(G×𝒮τ¯φ~(G×𝒮τ)).D_{\tau}=X\times(\overline{G\times\mathcal{S}_{\tau}}\setminus\tilde{\varphi}(G\times\mathcal{S}_{\tau})).

We also observe that G×𝒮τ¯φ~(G×𝒮τ)\overline{G\times\mathcal{S}_{\tau}}\setminus\tilde{\varphi}(G\times\mathcal{S}_{\tau}) is a normal crossing divisor in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}, as φ~(G×𝒮τ)\tilde{\varphi}(G\times\mathcal{S}_{\tau}) is the unique open dense symplectic leaf in the log symplectic variety G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} (see Proposition 3.16). The previous two sentences then force DτD_{\tau} to be a normal crossing divisor in G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}, i.e. (a) holds. The assertion (b) follows immediately from XX being symplectic and G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} being log symplectic. The assertion (c) follows from our description of the degeneracy locus in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}), as provided in the first paragraph of the proof. Our proof is therefore complete. ∎

Now recall the open embedding kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} in (4.5), as well as the fact that kτ(Xτ)X¯τk_{\tau}(X_{\tau})\subseteq\overline{X}_{\tau}^{\circ} (see Proposition 4.10). If XτX_{\tau} is irreducible, then kτ(Xτ)k_{\tau}(X_{\tau}) lies in a unique irreducible component (X¯τ)irr(\overline{X}_{\tau}^{\circ})_{\text{irr}} of the Poisson variety X¯τ\overline{X}_{\tau}^{\circ}. The log symplectic nature of X¯τ\overline{X}_{\tau} is then captured by the following result, which relies heavily on the notation of Subsection 4.2.

Theorem 4.15.

Let (X,P,ν)(X,P,\nu) be an irreducible symplectic Hamiltonian GG-variety. Suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}, and that XτX_{\tau} is irreducible. If X¯τ\overline{X}_{\tau} exists, then the following statements hold.

  • (i)

    The Poisson variety (X¯τ)irr(\overline{X}_{\tau}^{\circ})_{\emph{irr}} is log symplectic.

  • (ii)

    The morphism kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} is a symplectomorphism onto the unique open dense symplectic leaf in (X¯τ)irr(\overline{X}_{\tau}^{\circ})_{\emph{irr}}.

Proof.

Since GG acts freely on (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}, the variety (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0) is smooth. The irreducible components of (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0) are therefore pairwise disjoint, while the connectedness of GG forces these components to be GG-invariant. It follows that the irreducible components of X¯τ\overline{X}_{\tau}^{\circ} are precisely the images of the irreducible components of (μ¯τ)1(0)(\overline{\mu}_{\tau}^{\circ})^{-1}(0) under the quotient map

θ¯τ:(μ¯L)1(0)X¯τ.\overline{\theta}_{\tau}^{\circ}:(\overline{\mu}_{L}^{\circ})^{-1}(0)\longrightarrow\overline{X}_{\tau}^{\circ}.

This implies that (X¯τ)irr=θ¯τ(Y)(\overline{X}_{\tau}^{\circ})_{\text{irr}}=\overline{\theta}_{\tau}^{\circ}(Y) for some unique irreducible component Y(μ¯τ)1(0)Y\subseteq(\overline{\mu}_{\tau}^{\circ})^{-1}(0).

Now note that the image of (4.3) lies in a unique irreducible component ZZ of the smooth variety (μ¯L)1(0)(\overline{\mu}_{L}^{\circ})^{-1}(0), as XτX_{\tau} and μτ1(0)\mu_{\tau}^{-1}(0) are irreducible. We also note that θ¯τ(Z)\overline{\theta}_{\tau}^{\circ}(Z) contains the image of kτk_{\tau}, as follows from the commutativity of (4.7). We conclude that θ¯τ(Z)=(X¯τ)irr\overline{\theta}_{\tau}^{\circ}(Z)=(\overline{X}^{\circ}_{\tau})_{\text{irr}}, and the previous paragraph then implies that Z=YZ=Y.

In light of the above, (4.3) may be interpreted as an open embedding

i|μτ1(0):μτ1(0)Y.i\big{|}_{\mu_{\tau}^{-1}(0)}:\mu_{\tau}^{-1}(0)\longrightarrow Y. (4.21)

The irreducibility of YY forces the complement of the image to have positive codimension in YY. This complement is easily checked to be YDτY\cap D_{\tau}, where DτX×(G×𝒮τ¯)D_{\tau}\subseteq X\times(\overline{G\times\mathcal{S}_{\tau}}) is defined in (4.20). We also observe that YDτY\cap D_{\tau} has codimension at most one in YY, as DτD_{\tau} is a divisor in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}). These last three sentences imply that YDτY\cap D_{\tau} is a divisor in YY. By [2, Proposition 3.6], the Poisson structure on θ¯τ(Y)=(X¯τ)irr\overline{\theta}_{\tau}^{\circ}(Y)=(\overline{X}_{\tau}^{\circ})_{\text{irr}} is log symplectic with divisor θ¯τ(YDτ)\overline{\theta}_{\tau}^{\circ}(Y\cap D_{\tau}). This completes the proof of (i).

Now consider the commutative diagram

μτ1(0)YXτ(X¯τ)irri|μτ1(0)kτ,\leavevmode\hbox to83.64pt{\vbox to54.42pt{\pgfpicture\makeatletter\hbox{\hskip 41.82079pt\lower-26.41928pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.82079pt}{-26.31944pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 14.93121pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.62567pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mu_{\tau}^{-1}(0)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 14.93121pt\hfil&\hfil\hskip 32.3194pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.01389pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Y}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.31943pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 10.06429pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.75874pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 10.06429pt\hfil&\hfil\hskip 38.88956pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.58405pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\overline{X}_{\tau}^{\circ})_{\text{irr}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.88959pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.75836pt}{11.50003pt}\pgfsys@lineto{18.01181pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.21179pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.00586pt}{16.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{i\big{|}_{\mu_{\tau}^{-1}(0)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.88957pt}{2.64032pt}\pgfsys@lineto{-26.88957pt}{-15.22646pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-26.88957pt}{-15.42644pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{26.9312pt}{5.14032pt}\pgfsys@lineto{26.9312pt}{-14.55977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{26.9312pt}{-14.75975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.62529pt}{-23.81944pt}\pgfsys@lineto{11.44165pt}{-23.81944pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.64163pt}{-23.81944pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.19844pt}{-20.60556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{k_{\tau}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where the right vertical map is the restriction of θ¯τ\overline{\theta}_{\tau}^{\circ}. Since YDτY\cap D_{\tau} is the complement of the image of (4.21), we deduce that the image of kτk_{\tau} has a complement of θ¯τ(YDτ)\overline{\theta}_{\tau}^{\circ}(Y\cap D_{\tau}). This amounts to the image of kτk_{\tau} being the unique open dense symplectic leaf in X¯irr\overline{X}^{\circ}_{\text{irr}}. Proposition 4.10 then implies that kτk_{\tau} is a symplectomorphism onto this leaf. This establishes (ii), completing the proof. ∎

It is worth examining this result in the case τ=0\tau=0. To this end, recall the open embedding k:XX¯k:X\longrightarrow\overline{X}^{\circ} from Subsection 4.1 and the fact that k(X)X¯k(X)\subseteq\overline{X}^{\circ} (see Proposition 4.13). If XX is irreducible, then k(X)k(X) lies in a unique irreducible component X¯irr\overline{X}^{\circ}_{\text{irr}} of X¯\overline{X}^{\circ}. On the other hand, recall the GG-actions on X¯\overline{X} and X¯\overline{X}^{\circ} discussed in Subsection 4.2. Let us also recall the map ν¯:X¯𝔤\overline{\nu}:\overline{X}\longrightarrow\mathfrak{g} from (4.12).

Corollary 4.16.

Let (X,P,ν)(X,P,\nu) be an irreducible symplectic Hamiltonian GG-variety. If X¯\overline{X} exists, then the following statements hold.

  • (i)

    The Poisson variety X¯irr\overline{X}^{\circ}_{\emph{irr}} is log symplectic.

  • (ii)

    The GG-action on X¯\overline{X} restricts to a Hamiltonian GG-action on X¯irr\overline{X}^{\circ}_{\emph{irr}} with moment map

    ν¯|X¯irr:X¯irr𝔤.\overline{\nu}\bigg{|}_{\overline{X}^{\circ}_{\emph{irr}}}:\overline{X}^{\circ}_{\emph{irr}}\longrightarrow\mathfrak{g}.
  • (iii)

    The morphism k:XX¯k:X\longrightarrow\overline{X} is a GG-equivariant symplectomorphism onto the unique open dense symplectic leaf in X¯irr\overline{X}^{\circ}_{\emph{irr}}.

  • (iv)

    The symplectomorphism in (iii)\mathrm{(iii)} is a embedding of Hamiltonian GG-varieties.

Proof.

Note that μτ=μL\mu_{\tau}=\mu_{L} if τ=0\tau=0, where μL:X×TG𝔤\mu_{L}:X\times T^{*}G\longrightarrow\mathfrak{g} is the moment map for the Hamiltonian action of GL=G×{e}G×GG_{L}=G\times\{e\}\subseteq G\times G on TGT^{*}G. We also observe that the map

X×GμL1(0),(x,g)(x,(g,Adg1(ν(x)))),(x,g)X×GX\times G\longrightarrow\mu_{L}^{-1}(0),\quad(x,g)\longrightarrow(x,(g,\mathrm{Ad}_{g^{-1}}(\nu(x)))),\quad(x,g)\in X\times G

is a variety isomorphism. It follows that μτ1(0)\mu_{\tau}^{-1}(0) is irreducible if τ=0\tau=0. Theorem 4.15 now implies that X¯irr\overline{X}^{\circ}_{\text{irr}} is log symplectic, and that k:XX¯k:X\longrightarrow\overline{X} is a symplectomorphism onto the unique open dense symplectic leaf in X¯irr\overline{X}^{\circ}_{\text{irr}}. One also knows that kk defines an embedding of Hamiltonian GG-varieties XX¯X\longrightarrow\overline{X}^{\circ} (see Proposition 4.13), and that the GG-action on X¯\overline{X}^{\circ} must preserve the component X¯irr\overline{X}^{\circ}_{\text{irr}}. These last two sentences serve to verify (i)–(iv). ∎

5. Examples

We now illustrate some of our results in the context of concrete and familiar examples.

5.1. The existence of X¯τ\overline{X}_{\tau} and X¯\overline{X}

Our first step is to find sufficient conditions for the existence of X¯τ\overline{X}_{\tau} and X¯\overline{X}. To this end, let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety. Consider the product (G×GG\times G)-variety X×G¯X\times\overline{G}, where the (G×GG\times G)-action on XX is the one described in Subsection 2.7. Let τ\tau be an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g} and consider the following conditions:

  • (I)

    XX is a principal GG-bundle;

  • (II)

    (X×G¯)/GL(X\times\overline{G})/G_{L} exists;

  • (III)

    X¯\overline{X} exists;

  • (IV)

    X¯τ\overline{X}_{\tau} exists.

Lemma 5.1.

Let (X,P,ν)(X,P,\nu) be a Hamiltonian GG-variety, and suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. We then have the chain of implications (I)(II)(III)(IV)\mathrm{(I)}\Longrightarrow\mathrm{(II)}\Longrightarrow\mathrm{(III)}\Longrightarrow\mathrm{(IV)}.

Proof.

Assume that (I) holds. To verify (II), we consider Proposition 3.3.2 and Corollary 3.3.3 from [8]. These results reduce us to proving that G¯\overline{G} is GLG_{L}-quasi-projective, i.e. that there exist a finite-dimensional GLG_{L}-module VV and a GLG_{L}-equivariant locally closed immersion G¯(V)\overline{G}\longrightarrow\mathbb{P}(V). We first observe that the Plücker embedding

Gr(n,𝔤𝔤)(Λn(𝔤𝔤))\mathrm{Gr}(n,\mathfrak{g}\oplus\mathfrak{g})\longrightarrow\mathbb{P}(\Lambda^{n}(\mathfrak{g}\oplus\mathfrak{g}))

is (G×GG\times G)-equivariant. Its restriction to G¯\overline{G} is therefore a (G×GG\times G)-equivariant closed immersion

G¯(Λn(𝔤𝔤)).\overline{G}\longrightarrow\mathbb{P}(\Lambda^{n}(\mathfrak{g}\oplus\mathfrak{g})).

It follows that G¯\overline{G} is indeed GLG_{L}-quasi-projective, verifying (II).

Now assume that (II) is true, and note that

μ¯L1(0)={(x,(γ,(y1,y2)))X×(G¯×(𝔤𝔤)):y1=ν(x) and (ν(x),y2)γ}.\overline{\mu}_{L}^{-1}(0)=\bigg{\{}(x,(\gamma,(y_{1},y_{2})))\in X\times(\overline{G}\times(\mathfrak{g}\oplus\mathfrak{g})):y_{1}=\nu(x)\text{ and }(\nu(x),y_{2})\in\gamma\bigg{\}}.

One readily deduces that

μ¯L1(0)X×G¯×𝔤,(x,(γ,(y1,y2)))(x,γ,y2)\overline{\mu}_{L}^{-1}(0)\longrightarrow X\times\overline{G}\times\mathfrak{g},\quad(x,(\gamma,(y_{1},y_{2})))\longrightarrow(x,\gamma,y_{2})

is a GLG_{L}-equivariant closed immersion, where X×G¯×𝔤X\times\overline{G}\times\mathfrak{g} is regarded as the product of the GLG_{L}-variety X×G¯X\times\overline{G} and the GLG_{L}-variety 𝔤\mathfrak{g} with trivial action. We also know that X×G¯×𝔤X\times\overline{G}\times\mathfrak{g} has a geometric quotient by GLG_{L}, as (II) is assumed to be true. These last two sentences combine with Proposition 2.4 and imply that μ¯L1(0)\overline{\mu}_{L}^{-1}(0) has a geometric quotient by GLG_{L}, i.e. (III) is true.

Now assume that (III) holds, and consider the geometric quotient map

π¯L:μ¯L1(0)X¯.\overline{\pi}_{L}:\overline{\mu}_{L}^{-1}(0)\longrightarrow\overline{X}.

Let us also observe that the GG-action on X×(G×𝒮¯)X\times(\overline{G\times\mathcal{S}}) comes from restricting the GLG_{L}-action on X×TG¯(logD)X\times T^{*}\overline{G}(\log D). Proposition 2.4 then implies that π¯L\overline{\pi}_{L} restricts to a geometric quotient

(X×(G×𝒮¯))μ¯L1(0)π¯L((X×(G×𝒮¯))μ¯L1(0))(X\times(\overline{G\times\mathcal{S}}))\cap\overline{\mu}_{L}^{-1}(0)\longrightarrow\overline{\pi}_{L}((X\times(\overline{G\times\mathcal{S}}))\cap\overline{\mu}_{L}^{-1}(0))

of (X×(G×𝒮¯))μ¯L1(0)(X\times(\overline{G\times\mathcal{S}}))\cap\overline{\mu}_{L}^{-1}(0) by GG. On the other hand, (X×(G×𝒮¯))μ¯L1(0)(X\times(\overline{G\times\mathcal{S}}))\cap\overline{\mu}_{L}^{-1}(0) is precisely the fibre of μ¯τ:X×(G×𝒮¯)𝔤\overline{\mu}_{\tau}:X\times(\overline{G\times\mathcal{S}})\longrightarrow\mathfrak{g} over 0. These last two sentences imply that μ¯τ1(0)\overline{\mu}_{\tau}^{-1}(0) has a geometric quotient by GG, i.e. (IV) holds. ∎

This lemma turns out to yield a large class of Hamiltonian GG-varieties XX such that X¯τ\overline{X}_{\tau} exists for all 𝔰𝔩2\mathfrak{sl}_{2}-triples τ\tau. To obtain this class, let YY be a smooth GG-variety. The GG-action on YY has a canonical lift to a Hamiltonian GG-action on TYT^{*}Y, and there is a canonical moment map. This leads to the following result.

Corollary 5.2.

Let YY be an irreducible smooth principal GG-bundle and set X=TYX=T^{*}Y. Suppose that τ\tau is an 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}. The following statements hold.

  • (i)

    The variety X¯τ\overline{X}_{\tau} exists and is a smooth Poisson variety.

  • (ii)

    If X¯τ\overline{X}_{\tau} is irreducible, then it is log symplectic and kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} is a symplectomorphism onto the unique open dense symplectic leaf in X¯τ\overline{X}_{\tau}.

Proof.

We begin by establishing that X¯τ\overline{X}_{\tau} exists. By Lemmas 2.6 and 5.1, it suffices to show that GG-action on XX admits a good quotient. Since GG acts freely on YY, this is implied by [20, Theorem 2.3] and the remark that follows it.

Now observe that the GG-action on X=TYX=T^{*}Y is also free, implying that X¯τ=X¯τ\overline{X}_{\tau}=\overline{X}_{\tau}^{\circ}. Proposition 4.9 then tells us that X¯τ\overline{X}_{\tau} is smooth and Poisson. This completes the proof of (i). The assertion (ii) follows immediately from Theorem 4.15. ∎

5.2. The main examples

We now discuss some of the examples that motivate and best exhibit the results in this paper. Our first two examples satisfy the hypotheses of Corollary 5.2, while the third example has a different nature.

Example 5.3.

Suppose that Y=GY=G is endowed with the GG-action defined by

gh:=hg1,g,hG.g\cdot h:=hg^{-1},\quad g,h\in G.

The induced Hamiltonian GG-action on X=TY=TGX=T^{*}Y=T^{*}G then satisfies

XτG×𝒮τandX¯τ=(TG×(G×𝒮τ¯))GG×𝒮τ¯X_{\tau}\cong G\times\mathcal{S}_{\tau}\quad\text{and}\quad\overline{X}_{\tau}=(T^{*}G\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G\cong\overline{G\times\mathcal{S}_{\tau}}

for any 𝔰𝔩2\mathfrak{sl}_{2}-triple τ\tau in 𝔤\mathfrak{g}. The fibrewise compactification in Theorem 4.5 becomes the one mentioned in Remark 3.17.

Example 5.4.

A mild generalization of the previous example can be obtained as follows. Suppose that GG is a closed subgroup of a connected linear algebraic group Y=HY=H with Lie algebra 𝔥\mathfrak{h}. Note that GG then acts on YY via by the formula

gh:=hg1,gG, hH.g\cdot h:=hg^{-1},\quad g\in G,\text{ }h\in H.

The cotangent bundle X=TY=THX=T^{*}Y=T^{*}H is thereby a Hamiltonian GG-variety, and the left trivialization gives an identification XH×𝔥X\cong H\times\mathfrak{h}^{*}. The moment map is given by

H×𝔥𝔤,(h,α)α|𝔤.H\times\mathfrak{h}^{*}\to\mathfrak{g}^{*},\qquad(h,\alpha)\mapsto-\alpha|_{\mathfrak{g}}.

One finds that XτH×((𝒮τ)×𝔤)X_{\tau}\cong H\times((\mathcal{S}_{\tau})\times\mathfrak{g}^{\dagger}) under appropriate identifications, where 𝔤\mathfrak{g}^{\dagger} denotes the annihilator of 𝔤\mathfrak{g} in 𝔥\mathfrak{h}^{*}. By Corollary 5.2, X¯τ\overline{X}_{\tau} exists for all 𝔰𝔩2\mathfrak{sl}_{2}-triples τ\tau in 𝔤\mathfrak{g}.

Example 5.5.

Let τ\tau be a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g} and recall the notation used in Subsection 3.3. Consider the Hamiltonian GG-varieties X=G×𝒮τX=G\times\mathcal{S}_{\tau} and G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}, as well as the moment maps

ρτ:G×𝒮τ𝔤andρ¯τ:G×𝒮τ¯𝔤.\rho_{\tau}:G\times\mathcal{S}_{\tau}\longrightarrow\mathfrak{g}\quad\text{and}\quad\overline{\rho}_{\tau}:\overline{G\times\mathcal{S}_{\tau}}\longrightarrow\mathfrak{g}.

The discussion of 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} and 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} in Subsection 3.4 combines with Proposition 3.9 to imply that

Xτ=ρτ1(𝒮τ)=𝒵𝔤τandX¯τ=((G×𝒮τ)×(G×𝒮τ¯))Gρ¯τ1(𝒮τ)=𝒵𝔤τ¯.X_{\tau}=\rho_{\tau}^{-1}(\mathcal{S}_{\tau})=\mathcal{Z}_{\mathfrak{g}}^{\tau}\quad\text{and}\quad\overline{X}_{\tau}=((G\times\mathcal{S}_{\tau})\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G\cong\overline{\rho}_{\tau}^{-1}(\mathcal{S}_{\tau})=\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}}.

The fibrewise compactification in Theorem 4.5 becomes Bălibanu’s fibrewise compactification (3.14).

Notation

  • 𝒪Y\mathcal{O}_{Y} — structure sheaf of an algebraic variety YY

  • [Y]\mathbb{C}[Y] — coordinate ring of an algebraic variety YY

  • GG — complex semisimple linear algebraic group

  • GLG_{L} — the subgroup G×{e}G×GG\times\{e\}\subseteq G\times G

  • GRG_{R} — the subgroup {e}×GG×G\{e\}\times G\subseteq G\times G

  • 𝔤\mathfrak{g} — Lie algebra of GG

  • Ad:GGL(𝔤)\mathrm{Ad}:G\longrightarrow\operatorname{GL}(\mathfrak{g}) — adjoint representation

  • 𝔤Δ\mathfrak{g}_{\Delta} — diagonal in 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g}

  • nn — dimension of 𝔤\mathfrak{g}

  • ,\langle\cdot,\cdot\rangle — Killing form on 𝔤\mathfrak{g}

  • τ\tau𝔰𝔩2\mathfrak{sl}_{2}-triple in 𝔤\mathfrak{g}

  • 𝒮τ\mathcal{S}_{\tau} — Slodowy slice associated to τ\tau.

  • χ:𝔤Spec([𝔤]G)\chi:\mathfrak{g}\longrightarrow\mathrm{Spec}(\mathbb{C}[\mathfrak{g}]^{G}) — adjoint quotient

  • yτy_{\tau} — unique point at which 𝒮τ\mathcal{S}_{\tau} meets χ1(χ(y))\chi^{-1}(\chi(y)), if τ\tau is a principal 𝔰𝔩2\mathfrak{sl}_{2}-triple

  • ρ=(ρL,ρR):TG𝔤𝔤\rho=(\rho_{L},\rho_{R}):T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g} — moment map for the (G×GG\times G)-action on TGT^{*}G

  • ρτ:G×𝒮τ𝔤\rho_{\tau}:G\times\mathcal{S}_{\tau}\longrightarrow\mathfrak{g} — moment map for the GG-action on G×𝒮τG\times\mathcal{S}_{\tau}

  • XX — Hamiltonian GG-variety

  • ν:X𝔤\nu:X\longrightarrow\mathfrak{g} — moment map for the GG-action on XX

  • XτX_{\tau} — the Poisson slice ν1(𝒮τ)\nu^{-1}(\mathcal{S}_{\tau})

  • X/GX/G — geometric quotient of XX by GG

  • μ=(μL,μR):X×TG𝔤𝔤\mu=(\mu_{L},\mu_{R}):X\times T^{*}G\longrightarrow\mathfrak{g}\oplus\mathfrak{g} — moment map for the (G×GG\times G)-action on X×TGX\times T^{*}G

  • μτ:X×(G×𝒮τ)𝔤\mu_{\tau}:X\times(G\times\mathcal{S}_{\tau})\longrightarrow\mathfrak{g} moment map for the GG-action on X×(G×𝒮τ)X\times(G\times\mathcal{S}_{\tau})

  • ψτ:Xτ(X×(G×𝒮τ))G\psi_{\tau}:X_{\tau}\longrightarrow(X\times(G\times\mathcal{S}_{\tau}))\sslash G — canonical Poisson variety isomorphism

  • G¯\overline{G} — De Concini–Procesi wonderful compactification of GG

  • DD — the divisor G¯G\overline{G}\setminus G

  • TG¯(log(D))T^{*}\overline{G}(\log(D)) — log cotangent bundle of (G¯,D)(\overline{G},D)

  • ρ¯=(ρ¯L,ρ¯R):TG¯(log(D))𝔤𝔤\overline{\rho}=(\overline{\rho}_{L},\overline{\rho}_{R}):T^{*}\overline{G}(\log(D))\longrightarrow\mathfrak{g}\oplus\mathfrak{g} — moment map for the (G×GG\times G)-action on TG¯(log(D))T^{*}\overline{G}(\log(D))

  • G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}} — the Poisson slice ρ¯R1(𝒮τ)\overline{\rho}_{R}^{-1}(\mathcal{S}_{\tau})

  • 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau} — universal centralizer of 𝔤\mathfrak{g}

  • 𝒵𝔤τ¯\overline{\mathcal{Z}_{\mathfrak{g}}^{\tau}} — Bălibanu’s partial compactification of 𝒵𝔤τ\mathcal{Z}_{\mathfrak{g}}^{\tau}

  • ρ¯τ:G×𝒮τ¯𝔤\overline{\rho}_{\tau}:\overline{G\times\mathcal{S}_{\tau}}\longrightarrow\mathfrak{g} — moment map for the GG-action on G×𝒮τ¯\overline{G\times\mathcal{S}_{\tau}}

  • μ¯=(μ¯L,μ¯R):X×TG¯(logD)𝔤𝔤\overline{\mu}=(\overline{\mu}_{L},\overline{\mu}_{R}):X\times T^{*}\overline{G}(\log D)\longrightarrow\mathfrak{g}\oplus\mathfrak{g} — moment map for the (G×GG\times G)-action on X×TG¯(logD)X\times T^{*}\overline{G}(\log D)

  • μ¯τ:X×(G×𝒮τ¯)𝔤\overline{\mu}_{\tau}:X\times(\overline{G\times\mathcal{S}_{\tau}})\longrightarrow\mathfrak{g} — moment map for the GG-action on X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}})

  • X¯\overline{X} — the Hamiltonian reduction (X×TG¯(logD))GL(X\times T^{*}\overline{G}(\log D))\sslash G_{L}

  • k:XX¯k:X\longrightarrow\overline{X} — canonical GG-equivariant open embedding

  • ν¯:X¯𝔤\overline{\nu}:\overline{X}\longrightarrow\mathfrak{g} — equivariant extension of ν\nu to X¯\overline{X}

  • X¯τ\overline{X}_{\tau} — the Hamiltonian reduction (X×(G×𝒮τ¯))G(X\times(\overline{G\times\mathcal{S}_{\tau}}))\sslash G

  • kτ:XτX¯τk_{\tau}:X_{\tau}\longrightarrow\overline{X}_{\tau} — canonical open embedding

  • (X×(G×𝒮τ¯))(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ} — set of points in X×(G×𝒮τ¯)X\times(\overline{G\times\mathcal{S}_{\tau}}) with trivial GG-stabilizers

  • X¯τ\overline{X}_{\tau}^{\circ} — the Hamiltonian reduction (X×(G×𝒮τ¯))G(X\times(\overline{G\times\mathcal{S}_{\tau}}))^{\circ}\sslash G

References

  • [1] Abe, H., and Crooks, P. Hessenberg varieties, Slodowy slices, and integrable systems. Math. Z. 291, 3–4 (2019), 1093–1132.
  • [2] Bălibanu, A. The partial compactification of the universal centralizer. arXiv:1710.06327 (2019), 21pp.
  • [3] Bezrukavnikov, R., and Finkelberg, M. Equivariant Satake category and Kostant–Whittaker reduction. Mosc. Math. J. 8, 1 (2008), 39–72, 183.
  • [4] Bezrukavnikov, R., Finkelberg, M., and Mirković, I. Equivariant homology and KK-theory of affine Grassmannians and Toda lattices. Compos. Math. 141, 3 (2005), 746–768.
  • [5] Bielawski, R. Hyperkähler structures and group actions. J. London Math. Soc. (2) 55, 2 (1997), 400–414.
  • [6] Bielawski, R. Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points. Complex Manifolds 4, 1 (2017), 16–36.
  • [7] Braverman, A., Finkelberg, M., and Nakajima, H. Towards a mathematical definition of Coulomb branches of 3-dimensional N=4N=4 gauge theories, II. Adv. Theor. Math. Phys. 22, 5 (2018), 1071–1147.
  • [8] Brion, M. Linearization of algebraic group actions. In Handbook of group actions. Vol. IV, vol. 41 of Adv. Lect. Math. (ALM). Int. Press, Somerville, MA, 2018, pp. 291–340.
  • [9] Cannas da Silva, A., and Weinstein, A. Geometric models for noncommutative algebras, vol. 10 of Berkeley Mathematics Lecture Notes. American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999.
  • [10] Cavalcanti, G. R., and Klaasse, R. L. Fibrations and log-symplectic structures. J. Symplectic Geom. 17, 3 (2019), 603–638.
  • [11] Crooks, P. An equivariant description of certain holomorphic symplectic varieties. Bull. Aust. Math. Soc. 97, 2 (2018), 207–214.
  • [12] Crooks, P. Kostant-Toda lattices and the universal centralizer. J. Geom. Phys. 150 (2020), 103595, 16pp.
  • [13] Crooks, P., and Rayan, S. Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices. Math. Res. Lett. 26, 9 (2019), 9–33.
  • [14] Crooks, P., and Röser, M. Hessenberg varieties and Poisson slices. arXiv:2005.00874 (2020), 37pp.
  • [15] Crooks, P., and van Pruijssen, M. An application of spherical geometry to hyperkähler slices. To appear in Canad. J. Math. (2020), doi:10.4153/s0008414x20000127, 30pp.
  • [16] Dancer, A., Kirwan, F., and Röser, M. Hyperkähler implosion and Nahm’s equations. Comm. Math. Phys. 342, 1 (2016), 251–301.
  • [17] Dancer, A., Kirwan, F., and Swann, A. Implosion for hyperkähler manifolds. Compos. Math. 149, 9 (2013), 1592–1630.
  • [18] De Concini, C., and Procesi, C. Complete symmetric varieties. In Invariant theory (Montecatini, 1982), vol. 996 of Lecture Notes in Math. Springer, Berlin, 1983, pp. 1–44.
  • [19] Dimofte, T., and Garner, N. Coulomb branches of star-shaped quivers. J. High Energy Phys., 2 (2019), 004, front matter+87.
  • [20] Drezet, J.-M., and Narasimhan, M. S. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97, 1 (1989), 53–94.
  • [21] Frejlich, P., and Mărcuţ, I. The normal form theorem around Poisson transversals. Pacific J. Math. 287, 2 (2017), 371–391.
  • [22] Gan, W. L., and Ginzburg, V. Quantization of Slodowy slices. Int. Math. Res. Not., 5 (2002), 243–255.
  • [23] Goto, R. Rozansky-Witten invariants of log symplectic manifolds. In Integrable systems, topology, and physics (Tokyo, 2000), vol. 309 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, pp. 69–84.
  • [24] Gualtieri, M., and Li, S. Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. IMRN, 11 (2014), 3022–3074.
  • [25] Gualtieri, M., Li, S., Pelayo, Á., and Ratiu, T. S. The tropical momentum map: a classification of toric log symplectic manifolds. Math. Ann. 367, 3-4 (2017), 1217–1258.
  • [26] Gualtieri, M., and Pym, B. Poisson modules and degeneracy loci. Proc. Lond. Math. Soc. (3) 107, 3 (2013), 627–654.
  • [27] Guillemin, V., Jeffrey, L., and Sjamaar, R. Symplectic implosion. Transform. Groups 7, 2 (2002), 155–184.
  • [28] Guillemin, V., Lerman, E., and Sternberg, S. Symplectic fibrations and multiplicity diagrams. Cambridge University Press, Cambridge, 1996.
  • [29] Guillemin, V., Miranda, E., and Pires, A. R. Symplectic and Poisson geometry on bb-manifolds. Adv. Math. 264 (2014), 864–896.
  • [30] Guillemin, V., Miranda, E., and Weitsman, J. Desingularizing bmb^{m}-symplectic structures. Int. Math. Res. Not. IMRN, 10 (2019), 2981–2998.
  • [31] Guillemin, V., and Sternberg, S. Symplectic techniques in physics, second ed. Cambridge University Press, Cambridge, 1990.
  • [32] Guillemin, V. W., Miranda, E., and Weitsman, J. On geometric quantization of bb-symplectic manifolds. Adv. Math. 331 (2018), 941–951.
  • [33] Hartshorne, R. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
  • [34] Hilgert, J., Manon, C., and Martens, J. Contraction of Hamiltonian KK-spaces. Int. Math. Res. Not. IMRN, 20 (2017), 6255–6309.
  • [35] Kostant, B. Lie group representations on polynomial rings. Amer. J. Math. 85 (1963), 327–404.
  • [36] Kostant, B. On Whittaker vectors and representation theory. Invent. Math. 48, 2 (1978), 101–184.
  • [37] Kronheimer, P. B. A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group. J. London Math. Soc. (2) 42, 2 (1990), 193–208.
  • [38] Lerman, E., Meinrenken, E., Tolman, S., and Woodward, C. Nonabelian convexity by symplectic cuts. Topology 37, 2 (1998), 245–259.
  • [39] Marsden, J. E., Ratiu, T., and Raugel, G. Symplectic connections and the linearisation of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 117, 3-4 (1991), 329–380.
  • [40] Mayrand, M. Stratified hyperkähler spaces and Nahm’s equations. PhD thesis, University of Oxford (2019), 162pp.
  • [41] Moore, G. W., and Tachikawa, Y. On 2d TQFTs whose values are holomorphic symplectic varieties. In String-Math 2011, vol. 85 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 2012, pp. 191–207.
  • [42] Mărcuţ, I., and Osorno Torres, B. Deformations of log-symplectic structures. J. Lond. Math. Soc. (2) 90, 1 (2014), 197–212.
  • [43] Mărcuţ, I., and Osorno Torres, B. On cohomological obstructions for the existence of log-symplectic structures. J. Symplectic Geom. 12, 4 (2014), 863–866.
  • [44] Mustaţǎ, M. An irreducibility criterion. http://wwwpersonal.umich.edu/mmustata/note1_09.pdfhttp://www-personal.umich.edu/~{}mmustata/note1\_09.pdf. (2009).
  • [45] Patil, D. P., and Storch, U. Introduction to algebraic geometry and commutative algebra, vol. 1 of IISc Lecture Notes Series. IISc Press, Bangalore; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
  • [46] Premet, A. Special transverse slices and their enveloping algebras. Adv. Math. 170, 1 (2002), 1–55. With an appendix by Serge Skryabin.
  • [47] Pym, B. Elliptic singularities on log symplectic manifolds and Feigin-Odesskii Poisson brackets. Compos. Math. 153, 4 (2017), 717–744.
  • [48] Pym, B. Constructions and classifications of projective Poisson varieties. Lett. Math. Phys. 108, 3 (2018), 573–632.
  • [49] Pym, B., and Schedler, T. Holonomic Poisson manifolds and deformations of elliptic algebras. In Geometry and physics. Vol. II. Oxford Univ. Press, Oxford, 2018, pp. 681–703.
  • [50] Radko, O. A classification of topologically stable Poisson structures on a compact oriented surface. J. Symplectic Geom. 1, 3 (2002), 523–542.
  • [51] Riche, S. Kostant section, universal centralizer, and a modular derived Satake equivalence. Math. Z. 286, 1-2 (2017), 223–261.
  • [52] Schmitt, A. H. W. Geometric invariant theory and decorated principal bundles. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
  • [53] Slodowy, P. Simple singularities and simple algebraic groups, vol. 815 of Lecture Notes in Mathematics. Springer, Berlin, 1980.
  • [54] Tauvel, P., and Yu, R. W. T. Lie algebras and algebraic groups. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.
  • [55] Teleman, C. Gauge theory and mirror symmetry. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II (2014), Kyung Moon Sa, Seoul, pp. 1309–1332.
  • [56] Teleman, C. The role of Coulomb branches in 2D gauge theory. arXiv:1801.10124 (2019), 18pp.