This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The local well-posedness, blow-up and global solution of a new integrable system in Besov spaces

Pei Zheng1\mbox{Zheng}^{1} 111Email: [email protected], Zhaoyang Yin1,2\mbox{Yin}^{1,2}222E-mail: [email protected]
Department1{}^{1}\mbox{Department} of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
School2{}^{2}\mbox{School} of Science,
Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
Abstract

In this paper, we first establish the local well-posednesss for the Cauchy problem of a NN-peakon system in the sense of Hadamard in both critical Besov spaces and supercritical Besov spaces. Second, we gain a blow-up criterion. According to blow-up criterion wemreach a precise blow-up criterion. Under a sign condition, we reach the existence of global solution. Finally, based on the first-order difference method, we give a simulation example of the blow-up of the equation and the properties of the global solution.

 

1 Introduction

Korteweg-de Vries (KdV) equation which was introduced to describe the behavior of long waves on shallow water in the most famous model in soliton theory, because it is integrable and includes the phenomena of soliton interaction. But the KdV equation cannot model the occurrence of breaking waves. In 1993, Camassa and Holm obtain a nonlinear partial differential equation [2]

mt+umx+2uxm=0,m=uuxx+κm_{t}+um_{x}+2u_{x}m=0,m=u-u_{xx}+\kappa

which is named Camassa-Holm (CH) equation.

A particular feature of the CH equation is that when κ=0\kappa=0 it admits peaked soliton solutions which are also called peakons. It can be regarded as a shallow water wave equation.[2, 8, 18]. Its complete integrability was discussed in [2, 4, 9]. The CH equation also has a Hamilton structure[3, 12], and admits exact orbitally stable peaked solitons of the form ce|xct|ce^{|x-ct|} with c>0c>0. The local well-posedness of the Cauchy problem of CH equation in Besov spaces and Sobolev spaces was proved in [5, 6, 10, 22].

Since constructing peakon equation are interested in the fields of Physics and Mathematics. Based on an asymptotic integrability approach, Degasperis and Procesi discovered a new equation which has peakon solutions[20, 11]. Similarly, the Cauchy problem of the DP equation is locally well-posed in certain Sobolev and Besov spaces[24, 16, 25]. And Geng and Xue constructed a two component peakon with cubic nonlinearity[13], three components generalization of CH equation[14] and super CH equation with NN-peakon[15].

Geng and Xue constructed from the compatibility of a 2×22\times 2 matrix spectral problem, a new nonlinear evolution with NN-peakon is derived[23]

(1.1) {nt=4[n(vx+2β0v)]xn=4β02vvxxv|t=0=v0\left\{\begin{array}[]{l}n_{t}=4[n(v_{x}+2\beta_{0}v)]_{x}\\ n=4\beta_{0}^{2}v-v_{xx}\\ v|_{t=0}=v_{0}\end{array}\right.

It is shown in that system (1.1) admits exact solutions with NN-peakon, which takes the form

v(x,t)=i=1Nni(t)e2β0|xxi(t)|v(x,t)=\sum_{i=1}^{N}n_{i}(t)e^{-2\beta_{0}|x-x_{i}(t)|}

where nin_{i} and xix_{i} evolve according to a dynamical system.

After some transformations, (1.1) can be changed into a transport-like equation

(1.2) {vt(8β0v+2vx)vx=8β02v2+8β0P1(D)(2β02v2+vx2)+8β02P2(D)(4β02v2vx2)v|t=0=v0\left\{\begin{array}[]{l}v_{t}-(8\beta_{0}v+2v_{x})v_{x}=-8\beta_{0}^{2}v^{2}+8\beta_{0}P_{1}(D)(2\beta_{0}^{2}v^{2}+v_{x}^{2})+8\beta^{2}_{0}P_{2}(D)(4\beta_{0}^{2}v^{2}-v_{x}^{2})\\ v|_{t=0}=v_{0}\end{array}\right.

with P2(D)=(4β02x2)1P_{2}(D)=(4\beta_{0}^{2}-\partial_{x}^{2})^{-1}, P1(D)=xP2(D)P_{1}(D)=\partial_{x}P_{2}(D).

In this paper, firstly, applying Littlewood-Paley theory and transport theory, for the initial data in certain Besov spaces of high regularity or of critical regularity, complete the locally well-posedness in Besov space Bp,rsB^{s}_{p,r} with {s12,p>2,1r}\{s\geq\frac{1}{2},p>2,1\leq r\leq\infty\} or {s>1p,1p2,1r}\{s>\frac{1}{p},1\leq p\leq 2,1\leq r\leq\infty\} or {s=1p,1p2,r=1}\{s=\frac{1}{p},1\leq p\leq 2,r=1\}, we prove the local solution to equation (1.1) exists uniquely and depends continuously on the initial data. And we will talk about the blow-up criterion and the blow up condition of initial data. In the last part of the paper,according to the structure of equation, we can find a sign-preserved property, and by the virtue of the high-preserved we see that the H1H^{1}-norm of v is non-increasing, then we can finally give the condition of existence of the global solution.

2 Preliminaries

In this section, we will present some propositions about the Littlewood-Paley decomposition and the non homogeneous Besov spaces with their properties.

Proposition 2.1 (Littlewood-Paley decomposition).

[1, 17] There exists a couple of smooth function (χ,φ)(\chi,\varphi) valued in [0,1][0,1], such that κ\kappa is supported in the ball B{ξd:34|ξ|83}B\triangleq\left\{\xi\in\mathbb{R}^{d}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\right\}. Moreover

ξd,χ(ξ)+j0φ(2jξ)=1\forall\xi\in\mathbb{R}^{d},\chi(\xi)+\sum_{j\geq 0}\varphi(2^{-j}\xi)=1

and

suppφ(2j)suppφ(2j)=,if|jj|2supp\ \varphi(2^{-j}\cdot)\cap supp\ \varphi(2^{-j^{\prime}\cdot})=\emptyset,\ if\ |j-j^{\prime}|\geq 2
suppχ()suppφ(2j)=,ifj1supp\ \chi(\cdot)\cap supp\ \varphi(2^{-j^{\prime}\cdot})=\emptyset,\ if\ j\geq 1

Then for all u𝒮u\in\mathcal{S}^{\prime}, we can define the nonhomogeneous dyadic blocks as follows. Let

Δju0,ifj2,Δ1uχ(D)u=1(χu)\Delta_{j}u\triangleq 0,\ if\ j\leq-2,\ \Delta_{-1}u\triangleq\chi(D)u=\mathcal{F}^{-1}(\chi\mathcal{F}u)
Δjφ(2ju)=1(φ(2j)u),ifj0\Delta_{j}\triangleq\varphi(2^{-j}u)=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u),\ if\ j\geq 0

Hence,

u=jΔjuin𝒮(d)u=\sum_{j\in\mathbb{Z}}\Delta_{j}u\ in\ \mathcal{S}^{\prime}(\mathbb{R}^{d})

where the right-hand side is called the nonhomogeneous Littlewood-Paley decomposition of uu.

According to Young’s inequality, we get

ΔjuLp,SjuLpCuLp,1p\|\Delta_{j}u\|_{L^{p}},\|S_{j}u\|_{L^{p}}\leq C\|u\|_{L^{p}},\ \forall 1\leq p\leq\infty

The low frequency cut-off operator 𝒮j\mathcal{S}_{j} is defined by

Sjuj=1j1Δju=χ(2jD)u=1(χ(2jξ)u),jS_{j}u\triangleq\sum_{j^{\prime}=-1}^{j-1}\Delta_{j^{\prime}}u=\chi(2^{-j}D)u=\mathcal{F}^{-1}(\chi(2^{-j}\xi)\mathcal{F}u),\ \forall j\in\mathbb{N}

and the Littlewood-Paley decomposition is quasi-orthogonal in L2L^{2} in the following sense:

ΔjΔku0,if|jk|2\Delta_{j}\Delta_{k}u\equiv 0,\ if\ |j-k|\geq 2
Δj(Sk1uΔku)0,if|jk|5\Delta_{j}(S_{k-1}u\Delta_{k}u)\equiv 0,\ if\ |j-k|\geq 5
Definition 2.2 (Nonhomogeneous Besov space).

[1] Let ss\in\mathbb{R}, 1p,r1\leq p,\ r\leq\infty. The nonhomogeneous Besov space Bp,rs(d)B^{s}_{p,r}(\mathbb{R}^{d})(Bp,rsB^{s}_{p,r} for short) is defined by

Bp,rs(d){f𝒮:fBp,rs=(2jsΔjfLp)j1lr<}B^{s}_{p,r}(\mathbb{R}^{d})\triangleq\left\{f\in\mathcal{S}^{\prime}:\|f\|_{B^{s}_{p,r}}=\triangleq\|(2^{js}\|\Delta_{j}f\|_{L^{p}})_{j\geq-1}\|_{l^{r}}<\infty\right\}

If s=s=\infty, we have

Bp,rsBp,rs={f𝒮:supj12jsΔjfLp<}B^{\infty}_{p,r}\triangleq\cap_{s\in\mathbb{R}}B^{s}_{p,r}=\left\{f\in\mathcal{S}^{\prime}:\sup_{j\geq-1}2^{js}\|\Delta_{j}f\|_{L^{p}}<\infty\right\}

In the following lemma, we list some important properties of Besov spaces.

Lemma 2.3.

[1, 17] Let s, 1p,p1,p2,r,r1,r2s\in\mathbb{R},\ 1\leq p,p_{1},p_{2},r,r_{1},r_{2}\leq\infty. We have
(1) Bp,rsB^{s}_{p,r} is a Banach space, and is continuously embedded in 𝒮\mathcal{S}^{\prime}.
(2) If r<r<\infty, then limjSjuuBp,rs=0\lim\limits_{j\rightarrow\infty}\|S_{j}u-u\|_{B^{s}_{p,r}}=0. If p,r<p,r<\infty, C0C_{0}^{\infty} is dense in Bp,rsB^{s}_{p,r}.
(3) If p1p2p_{1}\leq p_{2} and r1r2r_{1}\leq r_{2}, then Bp1,r1sBp2,r2sd(1p11p2)B^{s}_{p_{1},r_{1}}\hookrightarrow B^{s-d(\frac{1}{p_{1}}-\frac{1}{p_{2}})}_{p_{2},r_{2}}. If s1<s2s_{1}<s_{2}, the embedding Bp,r2s2Bp,r1s1B^{s_{2}}_{p,r_{2}}\hookrightarrow B^{s_{1}}_{p,r_{1}} is locally compact.
(4) s>0\forall s>0, Bp,rsLB^{s}_{p,r}\cap L^{\infty} is an algebra. Moreover, Bp,rsLs>dpors=dp,r=1B^{s}_{p,r}\hookrightarrow L^{\infty}\Leftrightarrow s>\frac{d}{p}\ \text{or}\ s=\frac{d}{p},\ r=1 Bp,rs\Leftrightarrow B^{s}_{p,r} is an algebra.
(5) Complex interpolation: fBp,rs1Bp,rs2,θ[0,1]\forall f\in B^{s_{1}}_{p,r}\cap B^{s_{2}}_{p,r},\ \forall\theta\in[0,1]

(2.1) fBp,rθs1+(1θ)s2fBp,rs1θfBp,rs21θ\|f\|_{B^{\theta s_{1}+(1-\theta)s_{2}}_{p,r}}\leq\|f\|^{\theta}_{B^{s_{1}}_{p,r}}\|f\|^{1-\theta}_{B^{s_{2}}_{p,r}}

(6) Logarithm interppolation: s,ε>0\forall s\in\mathbb{R},\ \varepsilon>0, and 1p1\leq p\leq\infty, there exists a constant CC such that

(2.2) uBp,1sC1+εεuBp,s(1+loguBp,s+εuBp,s)\|u\|_{B^{s}_{p,1}}\leq C\frac{1+\varepsilon}{\varepsilon}\|u\|_{B^{s}_{p,\infty}}\left(1+\log\frac{\|u\|_{B^{s+\varepsilon}_{p,\infty}}}{\|u\|_{B^{s}_{p,\infty}}}\right)

(7) Fatou property: if (un)n(u_{n})_{n\in\mathbb{N}} is a bounded sequence in Bp,rsB^{s}_{p,r}, then an element uBp,rsu\in B^{s}_{p,r} and a subsequence (unk)k(u_{n_{k}})_{k\in\mathbb{N}} exists such that

limkunk=uin𝒮anduBp,rsClim infkunkBp,rs.\lim_{k\rightarrow\infty}u_{n_{k}}=u\ \text{in}\ \mathcal{S}^{\prime}\quad\text{and}\quad\|u\|_{B^{s}_{p,r}}\leq C\liminf_{k\rightarrow\infty}\|u_{n_{k}}\|_{B^{s}_{p,r}}.

(8) Let mm\in\mathbb{R} and ff be a SmS^{m}- multiplier, (i.e. ff is a smooth function and satisfies that αd\forall\alpha\in\mathbb{N}^{d}, C=C(α)\exists C=C(\alpha), such that |αf(ξ)|C(1+|ξ|)m|α|,ξd)|\partial^{\alpha}f(\xi)|\leq C(1+|\xi|)^{m-|\alpha|},\ \forall\xi\in\mathbb{R}^{d}). Then the operator f(D)=1(f)f(D)=\mathcal{F}^{-1}(f\mathcal{F}\cdot) is continuous from Bp,rsB^{s}_{p,r} to Bp,rsmB^{s-m}_{p,r}.

Proposition 2.4.

β00\forall\beta_{0}\neq 0, we have (4β02x2)1(4\beta_{0}^{2}-\partial_{x}^{2})^{-1} is a S2S^{-2}-multiplier, and x(4β02x2)1\partial_{x}(4\beta_{0}^{2}-\partial_{x}^{2})^{-1} is a S1S^{-1}-multiplier.

Next, we introduce the paradifferential calculus of Besov space and the main continuity properties of the paraproduct and the remainder.

Definition 2.5.

[1] The nonhomogeneous paraproduct of v by u is defined by

Tuv=jSj1uΔjvT_{u}v=\sum_{j}S_{j-1}u\Delta_{j}v

The nonhomogeneous remainder of u and v is defined by

R(u,v)=|kj|1ΔkuΔjvR(u,v)=\sum_{|k-j|\leq 1}\Delta_{k}u\Delta_{j}v
Lemma 2.6.

[1] (1) t<0,s,uBp,r1tL,vBp,r2s\forall t<0,s\in\mathbb{R},u\in B^{t}_{p,r_{1}}\cap L^{\infty},v\in B^{s}_{p,r_{2}} with 1r=1r1+1r2\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}, then

TuvBp,r2sCuLvBp,r2s\|T_{u}v\|_{B^{s}_{p,r_{2}}}\leq C\|u\|_{L^{\infty}}\|v\|_{B^{s}_{p,r_{2}}}

or

TuvBp,rs+tCuB,r1tvBp,r2s\|T_{u}v\|_{B^{s+t}_{p,r}}\leq C\|u\|_{B^{t}_{\infty,r_{1}}}\|v\|_{B^{s}_{p,r_{2}}}

(2) s1,s2,1p1,p2,r1,r2\forall s_{1},s_{2}\in\mathbb{R},1\leq p_{1},p_{2},r_{1},r_{2}\leq\infty, with 1p=1p1+1p21,1r=1r1+1r21\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}\leq 1,\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}\leq 1. Then (u,v)Bp1,r1s1×Bp2,r2s2\forall(u,v)\in B^{s_{1}}_{p_{1},r_{1}}\times B^{s_{2}}_{p_{2},r_{2}}, if s1+s2>0s_{1}+s_{2}>0

R(u,v)Bp,rs1+s2CuBp1,r1s1vBp2,r2s2\|R(u,v)\|_{B^{s_{1}+s_{2}}_{p,r}}\leq C\|u\|_{B^{s_{1}}_{p_{1},r_{1}}}\|v\|_{B^{s_{2}}_{p_{2},r_{2}}}

If r=1r=1 and s1+s2=0s_{1}+s_{2}=0,

R(u,v)Bp,0CuBp1,r1s1vBp2,r2s2\|R(u,v)\|_{B^{0}_{p,\infty}}\leq C\|u\|_{B^{s_{1}}_{p_{1},r_{1}}}\|v\|_{B^{s_{2}}_{p_{2},r_{2}}}

We then have the following product laws:

Lemma 2.7.

[1, 17] (1) For any s>0s>0 and any (p,r)(p,r) in [1,]2[1,\infty]^{2}, the space LBp,rsL^{\infty}\cap B^{s}_{p,r} is an algebra, and a constant CC exists such that

uvBp,rsC(uLvBp,rs+uBp,rsvL).\|uv\|_{B^{s}_{p,r}}\leq C(\|u\|_{L^{\infty}}\|v\|_{B^{s}_{p,r}}+\|u\|_{B^{s}_{p,r}}\|v\|_{L^{\infty}}).

(2) If 1p,r,s1s2,s2>dp(s2dpifr=1)1\leq p,r\leq\infty,\ s_{1}\leq s_{2},\ s_{2}>\frac{d}{p}(s_{2}\geq\frac{d}{p}\ \text{if}\ r=1) and s1+s2>max(0,2dpd)s_{1}+s_{2}>\max(0,\frac{2d}{p}-d), there exists CC such that

uvBp,rs1CuBp,rs1vBp,rs2.\|uv\|_{B^{s_{1}}_{p,r}}\leq C\|u\|_{B^{s_{1}}_{p,r}}\|v\|_{B^{s_{2}}_{p,r}}.

(3) If 1p21\leq p\leq 2, uBp,dpd(d)\forall u\in B^{\frac{d}{p}-d}_{p,\infty}(\mathbb{R}^{d}), vBp,1dp(d)\forall v\in B^{\frac{d}{p}}_{p,1}(\mathbb{R}^{d}), there exists CC such that

uvBp,dpdCuBp,dpdvBp,1dp.\|uv\|_{B^{\frac{d}{p}-d}_{p,\infty}}\leq C\|u\|_{B^{\frac{d}{p}-d}_{p,\infty}}\|v\|_{B^{\frac{d}{p}}_{p,1}}.
Proposition 2.8.

[1] Let s, 1p,r.s\in\mathbb{R},\ 1\leq p,r\leq\infty.

(2.3) {Bp,rs×Bp,rs,(u,ϕ)|jj|1Δju,Δjϕ,\left\{\begin{array}[]{ll}B^{s}_{p,r}\times B^{-s}_{p^{\prime},r^{\prime}}&\longrightarrow\mathbb{R},\\ (u,\phi)&\longmapsto\sum\limits_{|j-j^{\prime}|\leq 1}\langle\Delta_{j}u,\Delta_{j^{\prime}}\phi\rangle,\end{array}\right.

defines a continuous bilinear functional on Bp,rs×Bp,rsB^{s}_{p,r}\times B^{-s}_{p^{\prime},r^{\prime}}. Denoted by Qp,rsQ^{-s}_{p^{\prime},r^{\prime}} the set of functions ϕ\phi in 𝒮\mathcal{S}^{\prime} such that ϕBp,rs1\|\phi\|_{B^{-s}_{p^{\prime},r^{\prime}}}\leq 1. If uu is in 𝒮\mathcal{S}^{\prime}, then we have

uBp,rsCsupϕQp,rsu,ϕ.\|u\|_{B^{s}_{p,r}}\leq C\sup_{\phi\in Q^{-s}_{p^{\prime},r^{\prime}}}\langle u,\phi\rangle.

We now state the definition of Osgood modulus of continuity and Osgood lemma.

Definition 2.9.

[1] Let a(0,1]a\in(0,1]. Nondecreasing nonzero continuous function μ\mu is defined on [0,a][0,a] and μ:[0,a]+s.t.μ(0)=0\mu:[0,a]\rightarrow\mathbb{R}^{+}\ s.t.\ \mu(0)=0, then μ\mu is called a modulus of continuity. And if μ\mu is called an Osgood modulus of continuity if

0adrμ(r)=\int_{0}^{a}\frac{\rm{d}r}{\mu(r)}=\infty

The Osgood lemma are useful to prove the uniqueness of some ordinary differential equations and one can utilize a procedure to construct a large families of Osgood functions.

Lemma 2.10 (Osgood lemma).

[1] Let ρ\rho be a measurable function mapping [t0,T][t_{0},T] to [0,a][0,a], γ\gamma is a locally integrable function from [t0,T][t_{0},T] to +\mathbb{R}^{+}, and μ\mu is a nondecreasing function mapping [0,a][0,a] to +\mathbb{R}^{+}. Assume that, for some nonnegative real number cc, the function ρ\rho satisfies

ρ(t)c+t0tγ(t)μ(ρ(t))dtfora.e.t[t0,T]\rho(t)\leq c+\int_{t_{0}}^{t}\gamma(t^{\prime})\mu(\rho(t^{\prime})){\rm d}t^{\prime}\quad for\ a.e.\ t\in[t_{0},T]

\bullet If cc is positive

(ρ(t))+(c)t0tγ(t)dtwith(x)=xadrμ(r)fora.e.t[t0,T]-\mathcal{M}(\rho(t))+\mathcal{M}(c)\leq\int_{t_{0}}^{t}\gamma(t^{\prime}){\rm d}t^{\prime}\quad with\quad\mathcal{M}(x)=\int_{x}^{a}\frac{{\rm d}r}{\mu(r)}\quad for\ a.e.\ t\in[t_{0},T]

\bullet If c=0c=0 and μ\mu is an Osgood modulus of continuity, then ρ=0,a.e.t[t0,T]\rho=0,\ a.e.\ t\in[t_{0},T].

Next, we state some useful result in the transport equation theory, which are crucial to the proofs of our main thorems later. Let us consider the linear transport equation:

(2.4) {tf+vf=gf|t=0=f0\left\{\begin{array}[]{l}\partial_{t}f+v\cdot\nabla f=g\\ f|_{t=0}=f_{0}\end{array}\right.
Lemma 2.11 (A priori estimates in Besov spaces).

[1] Let s, 1p,rs\in\mathbb{R},\ 1\leq p,r\leq\infty. Assume that

sdmin(1p1,1p)s\geq-d\min(\frac{1}{p_{1}},\frac{1}{p^{\prime}})

There exists a constant CC such that for all solutions fL([0,T];Bp,rs)f\in L^{\infty}([0,T];B^{s}_{p,r}) of (2.4) in dd-dimensional space with initial data f0Bp,rsf_{0}\in B^{s}_{p,r}, and gL1([0,T];Bp,rs)g\in L^{1}([0,T];B^{s}_{p,r}), we have for a.e. t[0,T]t\in[0,T],

f(t)Bp,rsf0Bp,rs+0tg(t)Bp,rsdt+0tVp1(t)f(t)Bp,rsdt\|f(t)\|_{B^{s}_{p,r}}\leq\|f_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}\|g(t^{\prime})\|_{B^{s}_{p,r}}\rm{d}t^{\prime}+\int_{0}^{t}V_{p_{1}}^{{}^{\prime}}(t^{{}^{\prime}})\|f(t)\|_{B^{s}_{p,r}}{\rm d}t{{}^{\prime}}

or

f(t)Bp,rseCVp1(t)(f0Bp,rs+0teCVp1(t)g(t)Bp,rsdt)\|f(t)\|_{B^{s}_{p,r}}\leq e^{CV_{p_{1}}(t)}\Big{(}\|f_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}e^{-CV_{p_{1}}(t^{\prime})}\|g(t^{\prime})\|_{B^{s}_{p,r}}{\rm d}t^{\prime}\Big{)}

with

Vp1(t)={vBp1,dp1L,ifs<1+dp1vBp1,rs1,ifs>1+dp1or{s=1+dp1andr=1}V_{p_{1}}^{\prime}(t)=\left\{\begin{array}[]{ll}\|\nabla v\|_{B^{\frac{d}{p_{1}}}_{p_{1},\infty}\cap L^{\infty}},&\text{if}\ s<1+\frac{d}{p_{1}}\\ \|\nabla v\|_{B^{s-1}_{p_{1},r}},&\text{if}\ s>1+\frac{d}{p_{1}}\ {\rm or}\ \left\{s=1+\frac{d}{p_{1}}\ {\rm and}\ r=1\right\}\end{array}\right.

If f=v,f=v, for all s>0s>0

Vp1(t)=v(t)L.V_{p_{1}}^{{}^{\prime}}(t)=\|\nabla v(t)\|_{L^{\infty}}.
Lemma 2.12.

[21, 17] If

{sd2,p>2,1r}or{s>dp,1p2,1r}or{s=dp,1p2,r=1}\{s\geq\frac{d}{2},p>2,1\leq r\leq\infty\}\ or\ \{s>\frac{d}{p},1\leq p\leq 2,1\leq r\leq\infty\}\ or\ \{s=\frac{d}{p},1\leq p\leq 2,r=1\}

then for the solution fL([0,T];Bp,rs)f\in L^{\infty}([0,T];B^{s}_{p,r}) of (2.4) with vL1([0,T];Bp,rs+1)v\in L^{1}([0,T];B^{s+1}_{p,r}), then the initial data f0Bp,rs)f_{0}\in B^{s}_{p,r}) and gL1([0,T];Bp,rsg\in L^{1}([0,T];B^{s}_{p,r}, we then have

f(t)Bp,rseCV(t)(f0Bp,rs+0teCV(t)g(τ)Bp,rsdτ)\|f(t)\|_{B^{s}_{p,r}}\leq e^{CV(t)}(\|f_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}e^{-CV(t)}\|g(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau)

with V(t)=0tv(τ)Bp,rs+1dτV(t)=\int_{0}^{t}\|v(\tau)\|_{B^{s+1}_{p,r}}{\rm d}\tau and C=C(p,r,s)C=C(p,r,s).

Lemma 2.13.

[1] Let 1pp1, 1r,s>dmin(1p1,1p)1\leq p\leq p_{1}\leq\infty,\ 1\leq r\leq\infty,\ s>-d\min(\frac{1}{p_{1}},\frac{1}{p^{\prime}}). Let f0Bp,rsf_{0}\in B^{s}_{p,r}, gL1([0,T];Bp,rs)g\in L^{1}([0,T];B^{s}_{p,r}), and let vv be a time-dependent vector field such that vLρ([0,T];B,M)v\in L^{\rho}([0,T];B^{-M}_{\infty,\infty}) for some ρ>1\rho>1 and M>0M>0, and

vL1([0,T];Bp1,dp1),ifs<1+dp1,vL1([0,T];Bp,rs1),ifs>1+dp1or(s=1+dp1andr=1).\begin{array}[]{ll}\nabla v\in L^{1}([0,T];B^{\frac{d}{p_{1}}}_{p_{1},\infty}),&\ \text{if}\ s<1+\frac{d}{p_{1}},\\ \nabla v\in L^{1}([0,T];B^{s-1}_{p,r}),&\ \text{if}\ s>1+\frac{d}{p_{1}}\ {\rm or}\ (s=1+\frac{d}{p_{1}}\ {\rm and}\ r=1).\end{array}

Then the equation (2.4) has a unique solution ff in
\bullet the space C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}), if r<r<\infty;
\bullet the space (s<sC([0,T];Bp,s))Cw([0,T];Bp,s)\Big{(}\bigcap_{s^{\prime}<s}C([0,T];B^{s^{\prime}}_{p,\infty})\Big{)}\bigcap C_{w}([0,T];B^{s}_{p,\infty}), if r=r=\infty.

Lemma 2.14.

[19] Let 1p,1r,s>1+dp(ors=1+dp,r=1,1p<)1\leq p\leq\infty,1\leq r\leq\infty,s>1+\frac{d}{p}{\rm(}or\ s=1+\frac{d}{p},r=1,1\leq p<\infty{\rm)}. Denote ¯={}\bar{\mathbb{N}}=\mathbb{N}\cup\{\infty\}. Let {vn}n¯C([0,T];Bp,rs1)\{v^{n}\}_{n\in\bar{\mathbb{N}}}\subset C([0,T];B^{s-1}_{p,r}). Assume that vnv^{n} is the solution to

{tvn+anxvn=fvn|t=0=v0\left\{\begin{array}[]{l}\partial_{t}v^{n}+a^{n}\partial_{x}v^{n}=f\\ v^{n}|_{t=0}=v_{0}\par\end{array}\right.

with v0Bp,rs1,fL1([0,T];Bp,rs1)v_{0}\in B^{s-1}_{p,r},\ f\in L^{1}([0,T];B^{s-1}_{p,r}) and for some αL1([0,T])\alpha\in L^{1}([0,T])

supn¯anBp,rsα(t)\sup_{n\in\bar{\mathbb{N}}}\|a^{n}\|_{B^{s}_{p,r}}\leq\alpha(t)

If anaa^{n}\rightarrow a^{\infty} in L1([0,T];Bp,rs1)L^{1}([0,T];B^{s-1}_{p,r}) as nn tends to \infty, then vnvv^{n}\rightarrow v^{\infty} in C([0,T];Bp,rs1)C([0,T];B^{s-1}_{p,r}) as nn tends to \infty.

3 Local well-posedness

In this section, we will establish the local well-posedness for the Cauchy problem (1.1) or (1.2) in Besov spaces. We want to solve the Cauchy problem (1.2) directly by general Picard scheme and transport equation theory, but we will fail to do that due to the loss of regularity of the transport term. By Prop 2.4, we can overcome the difficulty by solving the Cauchy problem (1.1).

Firstly, we give a definition as follows

Definition 3.1.

Let T>0,sT>0,s\in\mathbb{R} and 1p,r1\leq p,r\leq\infty. Denote

Ep,rs(T){C([0,T];Bp,rs)C1([0,T];Bp,rs1)ifr<Cw([0,T];Bp,rs)C0,1([0,T];Bp,rs1)ifr=E^{s}_{p,r}(T)\triangleq\left\{\begin{array}[]{ll}C([0,T];B^{s}_{p,r})\cap C^{1}([0,T];B^{s-1}_{p,r})&if\ r<\infty\\ C_{w}([0,T];B^{s}_{p,r})\cap C^{0,1}([0,T];B^{s-1}_{p,r})&if\ r=\infty\end{array}\right.
Ep,rs(T){C([0,T);Bp,rs)C1([0,T);Bp,rs1)ifr<Cw([0,T);Bp,rs)C0,1([0,T);Bp,rs1)ifr=E^{s}_{p,r}(T_{-})\triangleq\left\{\begin{array}[]{ll}C([0,T);B^{s}_{p,r})\cap C^{1}([0,T);B^{s-1}_{p,r})&if\ r<\infty\\ C_{w}([0,T);B^{s}_{p,r})\cap C^{0,1}([0,T);B^{s-1}_{p,r})&if\ r=\infty\end{array}\right.
Theorem 3.2.

Let 1p,r,s1\leq p,r\leq\infty,s\in\mathbb{R} and (s,p,r)(s,p,r) satisfies the condition

(3.1) {s12,p>2,1r}or{s>1p,1p2,1r}or{s=1p,1p2,r=1}\{s\geq\frac{1}{2},p>2,1\leq r\leq\infty\}\ or\ \{s>\frac{1}{p},1\leq p\leq 2,1\leq r\leq\infty\}\ or\ \{s=\frac{1}{p},1\leq p\leq 2,r=1\}

Let n04β02v0v0xxn_{0}\triangleq 4\beta_{0}^{2}v_{0}-v_{0xx} with β00\beta_{0}\neq 0 be in Bp,rsB^{s}_{p,r}. Then (1.1) has a unique maximal solution nn in Ep,rs(T)E^{s}_{p,r}(T^{*}_{-}) and nn depends continuously on the initial data n0n_{0}.

Moreover, there exists a positive constant CC, depending only on s,p,r,β0s.ts,p,r,\beta_{0}\ s.t

TCn0Bp,rsT^{*}\geq\frac{C}{\|n_{0}\|_{B^{s}_{p,r}}}
Proof.

Now we prove Theorem 3.2 as the following steps.

Step 1: Constrcuting Approxiamte Solitions and Uniform Bounds.

Denoting v0=0v^{0}=0, we define a sequence (nk)k(n^{k})_{k\in\mathbb{N}} of smooth functions by solving the following linear transport equation:

(Tk){ntk+14(vxk+2β0vk)nxk+1=16β02vknk4(nk)2+8β0vxknkvk+1=(4β02x2)1nk+1vk+1|t=0=Sk+1v0(T_{k})\left\{\begin{array}[]{ll}n_{t}^{k+1}-4(v_{x}^{k}+2\beta_{0}v^{k})n_{x}^{k+1}=16\beta_{0}^{2}v^{k}n^{k}-4(n^{k})^{2}+8\beta_{0}v_{x}^{k}n^{k}\\ v^{k+1}=(4\beta_{0}^{2}-\partial_{x}^{2})^{-1}n^{k+1}\\ v^{k+1}|_{t=0}=S_{k+1}v_{0}\end{array}\right.

By induction, we assume that (nk)k,T>0(n^{k})_{k\in\mathbb{N}},\forall T>0. Since (4β02x2)1(4\beta_{0}^{2}-\partial_{x}^{2})^{-1} is an S2S^{-2}-multiplier and

vk+1=(4β02x2)1nk+1=14|β0|e|2β0|nk+1v^{k+1}=(4\beta_{0}^{2}-\partial_{x}^{2})^{-1}n^{k+1}=\frac{1}{4|\beta_{0}|}e^{-|2\beta_{0}\cdot|\ast n^{k+1}}

also noticing that Bp,rsB^{s}_{p,r} is an algebra when (s,p,r)(s,p,r) satisfies the condition (3.1) and the embedding Bp,rsBp,rs1Bp,rs2B^{s}_{p,r}\hookrightarrow B^{s-1}_{p,r}\hookrightarrow B^{s-2}_{p,r}, we obtain

16β02vknk4(nk)2+8β0vxknkBp,rsCnkBp,rs2\|16\beta_{0}^{2}v^{k}n^{k}-4(n^{k})^{2}+8\beta_{0}v_{x}^{k}n^{k}\|_{B^{s}_{p,r}}\leq C\|n^{k}\|^{2}_{B^{s}_{p,r}}

At the same time Sk+1n0Bp,rsCn0Bp,rs\|S_{k+1}n_{0}\|_{B^{s}_{p,r}}\leq C\|n_{0}\|_{B^{s}_{p,r}}, and denote that

0t4(vxk+2β0vk)x(τ)Bp,rsdτCNk(t)0tnk(τ)Bp,rsdτ\int_{0}^{t}\|4(v_{x}^{k}+2\beta_{0}v^{k})_{x}(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau\leq CN^{k}(t)\triangleq\int_{0}^{t}\|n^{k}(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau

Applying Thm2.11, we have

(3.2) nk+1(t)Bp,rseCNk(t)(n0Bp,rs+C0teCNk(τ)nk(τ)Bp,rs2dτ)\|n^{k+1}(t)\|_{B^{s}_{p,r}}\leq e^{CN^{k}(t)}(\|n_{0}\|_{B^{s}_{p,r}}+C\int_{0}^{t}e^{-CN^{k}(\tau)}\|n^{k}(\tau)\|_{B^{s}_{p,r}}^{2}{\rm d}\tau)

We may assume C1C\geq 1 and fix a T>0s.t.T>0\ s.t.

(3.3) 2C2n0Bp,rsT<12C^{2}\|n_{0}\|_{B^{s}_{p,r}}T<1

Suppose that t[0,T]\forall t\in[0,T], nkn^{k} satisfies

(3.4) nk(t)Bp,rsCn0Bp,rs12C2n0Bp,rst\|n^{k}(t)\|_{B^{s}_{p,r}}\leq\frac{C\|n_{0}\|_{B^{s}_{p,r}}}{1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}t}

Note that

eCNk(t2)CNk(t1)=eCt1t2vk(τ)Bp,rsdτet1t2C2n0Bp,rs12C2τn0Bp,rsdτ=(12C2n0Bp,rst112C2n0Bp,rst2)1/2e^{CN^{k}(t_{2})-CN^{k}(t1)}=e^{C\int_{t_{1}}^{t_{2}}\|v^{k}(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau}\leq e^{\int_{t_{1}}^{t_{2}}\frac{C^{2}\|n_{0}\|_{B^{s}_{p,r}}}{1-2C^{2}\tau\|n_{0}\|_{B^{s}_{p,r}}}{\rm d}\tau}=\left(\frac{1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}t_{1}}{1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}t_{2}}\right)^{1/2}

Plugging (3.4) into (3.2) yields

(3.5) nk+1(t)Bp,rs(12C2n0Bp,rst)1/2(Cn0Bp,rs+0tC(12C2n0Bp,rsτ)1/2C2n0Bp,rs(12C2n0Bp,rsτ)2dτ)Cn0Bp,rs12C2n0Bp,rst\begin{array}[]{ll}&\|n^{k+1}(t)\|_{B^{s}_{p,r}}\\ &\leq(1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}t)^{1/2}\left(C\|n_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}C(1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}\tau)^{1/2}\frac{C^{2}\|n_{0}\|_{B^{s}_{p,r}}}{(1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}\tau)^{2}}{\rm d}\tau\right)\\ &\leq\frac{C\|n_{0}\|_{B^{s}_{p,r}}}{1-2C^{2}\|n_{0}\|_{B^{s}_{p,r}}t}\end{array}

Therefore, (nk)k(n^{k})_{k\in\mathbb{N}} is uniformly bounded in C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}). According to the system (Tk)(T_{k}) and Lemma2.11 and Lemma2.12, we can deduce that {nk}k\{n^{k}\}_{k\in\mathbb{N}} is uniformly bounded in Ep,rs(T)E^{s}_{p,r}(T).

Step 2: Convergence and Regularity.

We will claim that {nk}k\{n^{k}\}_{k\in\mathbb{N}} is a Cauchy sequence in C([0,T];Bp,rs1)C([0,T];B^{s-1}_{p,r}), if {s12,p>2,1r}\{s\geq\frac{1}{2},p>2,1\leq r\leq\infty\} or {s>1p,1p2,1r}\{s>\frac{1}{p},1\leq p\leq 2,1\leq r\leq\infty\}; or of C([0,T];Bp,1p1)C([0,T];B^{\frac{1}{p}-1}_{p,\infty}) if {1p2,s=1p,r=1}\{1\leq p\leq 2,s=\frac{1}{p},r=1\}.

Indeed, for all k,pk,p\in\mathbb{R}, taking the difference between the system (Tk+p)(T_{k+p}) and Tk{T_{k}}, and denote wk,p=nk+pnkw^{k,p}=n^{k+p}-n^{k}, we have

(3.6) {(t4(vxk+p+2β0vk+p))xwk+1,p=4(vxk+pvxk)nxk+18β0(vk+pvk)nxk+14(nk+pnk)(nk+p+nk)16β02((vk+pvk)nk+p+vk(nk+pnk))+8β((vxk+pvxk)nxk+p+(nk+pnk)vxk)wk+1,p|t=0=Sk+p+1n0Sk+1n0\left\{\begin{array}[]{ll}(\partial_{t}-4(v_{x}^{k+p}+2\beta_{0}v^{k+p}))\partial_{x}w^{k+1,p}\\ =-4(v_{x}^{k+p}-v_{x}^{k})n_{x}^{k+1}-8\beta_{0}(v^{k+p}-v^{k})n_{x}^{k+1}-4(n^{k+p}-n^{k})(n^{k+p}+n^{k})\\ \ \ \ -16\beta_{0}^{2}\left((v^{k+p}-v^{k})n^{k+p}+v^{k}(n^{k+p}-n^{k})\right)+8\beta\left((v_{x}^{k+p}-v_{x}^{k})n_{x}^{k+p}+(n^{k+p}-n^{k})v_{x}^{k}\right)\\ w^{k+1,p}|_{t=0}=S_{k+p+1}n_{0}-S_{k+1}n_{0}\end{array}\right.

Case1: s12,p>2,1rs\geq\frac{1}{2},p>2,1\leq r\leq\infty or s>1p,1p2,1rs>\frac{1}{p},1\leq p\leq 2,1\leq r\leq\infty

First, estimate the left-hand side of system (3.6) in Bp,rs1B^{s-1}_{p,r}. In fact, by Lemma2.6 and Lemma2.4, we can see

(vxk+pvxk)nxk+1Bp,rs1\displaystyle\|(v_{x}^{k+p}-v_{x}^{k})n_{x}^{k+1}\|_{B^{s-1}_{p,r}}\leq Cvxk+pvxkLnxk+1Bp,rs1+Cvxk+pvxkBp,rsnxk+1B,1\displaystyle C\|v_{x}^{k+p}-v_{x}^{k}\|_{L^{\infty}}\|n_{x}^{k+1}\|_{B^{s-1}_{p,r}}+C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{s}_{p,r}}\|n_{x}^{k+1}\|_{B^{-1}_{\infty,\infty}}
+Cvxk+pvxkBp,rsnxk+1Bp,r1p1Cnk+pnkBp,rs1nk+1Bp,rs\displaystyle+C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{s}_{p,r}}\|n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k+1}\|_{B^{s}_{p,r}}
(vk+pvk)nxk+1Bp,rs1\displaystyle\|(v^{k+p}-v^{k})n_{x}^{k+1}\|_{B^{s-1}_{p,r}}\leq Cvk+pvkLnxk+1Bp,rs1+Cvk+pvkBp,rsnxk+1B,1\displaystyle C\|v^{k+p}-v^{k}\|_{L^{\infty}}\|n_{x}^{k+1}\|_{B^{s-1}_{p,r}}+C\|v^{k+p}-v^{k}\|_{B^{s}_{p,r}}\|n_{x}^{k+1}\|_{B^{-1}_{\infty,\infty}}
+Cvk+pvkBp,rsnxk+1Bp,r1p1Cnk+pnkBp,rs1nk+1Bp,rs\displaystyle+C\|v^{k+p}-v^{k}\|_{B^{s}_{p,r}}\|n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k+1}\|_{B^{s}_{p,r}}
(nk+pnk)(nk+p+nk)Bp,rs1\displaystyle\|(n^{k+p}-n^{k})(n^{k+p}+n^{k})\|_{B^{s-1}_{p,r}}\leq Cnk+p+nkLnk+pnkBp,rs1+Cnk+p+nkBp,rsnk+pnkB,1\displaystyle C\|n^{k+p}+n^{k}\|_{L^{\infty}}\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}+C\|n^{k+p}+n^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+Cnk+p+nkBp,rsnk+pnkBp,r1p1\displaystyle+C\|n^{k+p}+n^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,r}}
\displaystyle\leq Cnk+pnkBp,rs1(nk+pBp,rs+nkBp,rs)\displaystyle C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}(\|n^{k+p}\|_{B^{s}_{p,r}}+\|n^{k}\|_{B^{s}_{p,r}})
(vk+pvk)nk+pBp,rs1\displaystyle\|(v^{k+p}-v^{k})n^{k+p}\|_{B^{s-1}_{p,r}}\leq Cvk+pvkLnk+pBp,rs1+Cvk+pvkBp,rsnk+pB,1\displaystyle C\|v^{k+p}-v^{k}\|_{L^{\infty}}\|n^{k+p}\|_{B^{s-1}_{p,r}}+C\|v^{k+p}-v^{k}\|_{B^{s}_{p,r}}\|n^{k+p}\|_{B^{-1}_{\infty,\infty}}
+Cvk+pvkBp,rsnk+pBp,r1p1Cnk+pnkBp,rs1nkBp,rs\displaystyle+C\|v^{k+p}-v^{k}\|_{B^{s}_{p,r}}\|n^{k+p}\|_{B^{\frac{1}{p}-1}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k}\|_{B^{s}_{p,r}}
vk(nk+pnk)Bp,rs1\displaystyle\|v^{k}(n^{k+p}-n^{k})\|_{B^{s-1}_{p,r}}\leq CvkLnk+pnkBp,rs1+CvkBp,rsnk+pnkB,1\displaystyle C\|v^{k}\|_{L^{\infty}}\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}+C\|v^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+CvkBp,rsnk+pnkBp,r1p1Cnk+pnkBp,rs1nkBp,rs\displaystyle+C\|v^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k}\|_{B^{s}_{p,r}}
(vxk+pvxk)nk+pBp,rs1\displaystyle\|(v_{x}^{k+p}-v_{x}^{k})n^{k+p}\|_{B^{s-1}_{p,r}}\leq Cvxk+pvxkBp,rsnk+pBp,rsCnk+pnkBp,rs1nk+pBp,rs\displaystyle C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{s}_{p,r}}\|n^{k+p}\|_{B^{s}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k+p}\|_{B^{s}_{p,r}}
(nk+pnk)vxkBp,rs1\displaystyle\|(n^{k+p}-n^{k})v_{x}^{k}\|_{B^{s-1}_{p,r}}\leq CvxkLnk+pnkBp,rs1+CvxkBp,rsnk+pnkB,1\displaystyle C\|v_{x}^{k}\|_{L^{\infty}}\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}+C\|v_{x}^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+CvxkBp,rsnk+pnkBp,r1p1Cnk+pnkBp,rs1nkBp,rs\displaystyle+C\|v_{x}^{k}\|_{B^{s}_{p,r}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,r}}\leq C\|n^{k+p}-n^{k}\|_{B^{s-1}_{p,r}}\|n^{k}\|_{B^{s}_{p,r}}

Also we can obtain

Sk+p+1n0Sk+1n0Bp,rs1C(l=kk+p2lr2lsrΔln0Lpr)1r0(k)\displaystyle\|S_{k+p+1}n_{0}-S_{k+1}n_{0}\|_{B^{s-1}_{p,r}}\leq C\left(\sum_{l=k}^{k+p}2^{-lr}2^{lsr}\|\Delta_{l}n_{0}\|_{L^{p}}^{r}\right)^{\frac{1}{r}}\longrightarrow 0(k\rightarrow\infty)

Now, recalling (3.4) and the uniform bound estimates of nkBp,rs\|n^{k}\|_{B^{s}_{p,r}}, and making use of Lemma2.11 or Lemma2.12 to the system (3.6), we have

wk+1,pBp,rs1CT(2k+0twk,p(τ)Bp,rs1dτ)\|w^{k+1,p}\|_{B^{s-1}_{p,r}}\leq C_{T}(2^{-k}+\int_{0}^{t}\|w^{k,p}(\tau)\|_{B^{s-1}_{p,r}}{\rm d}\tau)

where CT=C(s,p,r,T,β0,v0Bp,rs)C_{T}=C(s,p,r,T,\beta_{0},\|v_{0}\|_{B^{s}_{p,r}}) is a constant, then by induction as kk tends to \infty

wk+1,pBp,rs1\displaystyle\|w^{k+1,p}\|_{B^{s-1}_{p,r}} l=0pwk+l+1,1Bp,rs1l=0pCT(2(k+l)+0tCT(2(k+l1)+0t1wk+l,1Bp,rs1dt2)dt1)\displaystyle\leq\sum_{l=0}^{p}\|w^{k+l+1,1}\|_{B^{s-1}_{p,r}}\leq\sum_{l=0}^{p}C_{T}(2^{-(k+l)}+\int_{0}^{t}C_{T}(2^{-(k+l-1)}+\int_{0}^{t_{1}}\|w^{k+l,1}\|_{B^{s-1}_{p,r}}{\rm d}t_{2}){\rm d}t_{1})
l=0pCt(2(k+l)m=0k+l(2TCT)mm!+(CT)k+l+10t(tτ)k+l+1(k+l+1)!dτ)\displaystyle\leq\sum_{l=0}^{p}C_{t}(2^{-(k+l)}\sum_{m=0}^{k+l}\frac{(2TC_{T})^{m}}{m!}+(C_{T})^{k+l+1}\int_{0}^{t}\frac{(t-\tau)^{k+l+1}}{(k+l+1)!}{\rm d}\tau)
l=0p(CT2(k+l)e2TCT+CT(TCT)k+l+1(k+l+1)!)CT2k+1e2TCT+m=k+1k+p+1CT(TCT)mm!0\displaystyle\leq\sum_{l=0}^{p}\left(C_{T}2^{-(k+l)}e^{2TC_{T}}+C_{T}\frac{(TC_{T})^{k+l+1}}{(k+l+1)!}\right)\leq C_{T}2^{-k+1}e^{2TC_{T}}+\sum_{m=k+1}^{k+p+1}C_{T}\frac{(TC_{T})^{m}}{m!}\longrightarrow 0

which means (nk)kEp,rs(T)(n^{k})_{k\in\mathbb{N}}\subset E^{s}_{p,r}(T), and by Fatou’s property, we obtain that nL([0,T];Bp,rs)n\in L^{\infty}([0,T];B^{s}_{p,r}).

Now for any test function ϕC([0,T];𝒮)\phi\in C([0,T];\mathcal{S}) in the system (Tk)(T_{k}), applying Prop2.8, and taking the limits, it is not hard to check that nn is a solution to the system (1.1).

According to Lemma2.13, nC([0,T];Bp,rs)n\in C([0,T];B^{s}_{p,r}), and by system(1.1), we can get that ntC([0,T];Bp,rs1)n_{t}\in C([0,T];B^{s-1}_{p,r}), thus nEp,rs(T)n\in E^{s}_{p,r}(T).

Case2: s=1/p,1p2s=1/p,1\leq p\leq 2 and r=1r=1

Since the critical index s1=(11p)=min(1p,1p)s-1=-(1-\frac{1}{p})=-\min(\frac{1p}{,}\frac{1{p^{\prime}}}{)}, we can only apply Lemma2.11 in the stage space Bp,1p1B^{\frac{1}{p}-1}_{p,\infty}. And noticing that Bp,11pBp,11p1Bp,1p1B^{\frac{1}{p}}_{p,1}\hookrightarrow B^{\frac{1}{p}-1}_{p,1}\hookrightarrow B^{\frac{1}{p}-1}_{p,\infty}, and applying Lemma2.6 to the system (3.6)

(vxk+pvxk)nxk+1Bp,1p1\displaystyle\|(v_{x}^{k+p}-v_{x}^{k})n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq Cvxk+pvxkLnxk+1Bp,1p1+Cvxk+pvxkBp,1pnxk+1B,1\displaystyle C\|v_{x}^{k+p}-v_{x}^{k}\|_{L^{\infty}}\|n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}\|n_{x}^{k+1}\|_{B^{-1}_{\infty,\infty}}
+Cvxk+pvxkBp,11pnxk+1Bp,1pCnk+pnkBp,11p1nk+1Bp,11p\displaystyle+C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{\frac{1}{p}}_{p,1}}\|n_{x}^{k+1}\|_{B^{-\frac{1}{p}}_{p^{\prime},\infty}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k+1}\|_{B^{\frac{1}{p}}_{p,1}}
(vk+pvk)nxk+1Bp,1p1\displaystyle\|(v^{k+p}-v^{k})n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq Cvk+pvkLnxk+1Bp,1p1+Cvk+pvkBp,1pnxk+1B,1\displaystyle C\|v^{k+p}-v^{k}\|_{L^{\infty}}\|n_{x}^{k+1}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\|v^{k+p}-v^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}\|n_{x}^{k+1}\|_{B^{-1}_{\infty,\infty}}
+Cvk+pvkBp,11pnxk+1Bp,1pCnk+pnkBp,11p1nk+1Bp,11p\displaystyle+C\|v^{k+p}-v^{k}\|_{B^{\frac{1}{p}}_{p,1}}\|n_{x}^{k+1}\|_{B^{-\frac{1}{p}}_{p^{\prime},\infty}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k+1}\|_{B^{\frac{1}{p}}_{p,1}}
(nk+pnk)(nk+p+nk)Bp,1p1\displaystyle\|(n^{k+p}-n^{k})(n^{k+p}+n^{k})\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq Cnk+p+nkLnk+pnkBp,1p+Cnk+p+nkBp,1p1nk+pnkB,1\displaystyle C\|n^{k+p}+n^{k}\|_{L^{\infty}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}+C\|n^{k+p}+n^{k}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+Cnk+p+nkBp,1p+1nk+pnkBp,11p1\displaystyle+C\|n^{k+p}+n^{k}\|_{B^{-\frac{1}{p}+1}_{p^{\prime},\infty}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}
\displaystyle\leq Cnk+pnkBp,11p1(nk+pBp,11p+nkBp,11p)\displaystyle C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}(\|n^{k+p}\|_{B^{\frac{1}{p}}_{p,1}}+\|n^{k}\|_{B^{\frac{1}{p}}_{p,1}})
(vk+pvk)nk+pBp,1p1\displaystyle\|(v^{k+p}-v^{k})n^{k+p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq Cvk+pvkLnk+pBp,1p1+Cvk+pvkBp,1pnk+pB,1\displaystyle C\|v^{k+p}-v^{k}\|_{L^{\infty}}\|n^{k+p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\|v^{k+p}-v^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}\|n^{k+p}\|_{B^{-1}_{\infty,\infty}}
+Cvk+pvkBp,11pnk+pBp,1pCnk+pnkBp,11p1nkBp,11p\displaystyle+C\|v^{k+p}-v^{k}\|_{B^{\frac{1}{p}}_{p,1}}\|n^{k+p}\|_{B^{-\frac{1}{p}}_{p^{\prime},\infty}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k}\|_{B^{\frac{1}{p}}_{p,1}}
vk(nk+pnk)Bp,1p1\displaystyle\|v^{k}(n^{k+p}-n^{k})\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq CvkLnk+pnkBp,1p1+CvkBp,1pnk+pnkB,1\displaystyle C\|v^{k}\|_{L^{\infty}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\|v^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+CvkBp,1p+1nk+pnkBp,11p1Cnk+pnkBp,11p1nkBp,11p\displaystyle+C\|v^{k}\|_{B^{-\frac{1}{p}+1}_{p^{\prime},\infty}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k}\|_{B^{\frac{1}{p}}_{p,1}}
(vxk+pvxk)nk+pBp,1p1\displaystyle\|(v_{x}^{k+p}-v_{x}^{k})n^{k+p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq Cvxk+pvxkBp,11pnk+pBp,11pCnk+pnkBp,11p1nk+pBp,11p\displaystyle C\|v_{x}^{k+p}-v_{x}^{k}\|_{B^{\frac{1}{p}}_{p,1}}\|n^{k+p}\|_{B^{\frac{1}{p}}_{p,1}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k+p}\|_{B^{\frac{1}{p}}_{p,1}}
(nk+pnk)vxkBp,1p1\displaystyle\|(n^{k+p}-n^{k})v_{x}^{k}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq CvxkBp,11pnk+pnkBp,1p1+CvxkBp,1pnk+pnkB,1\displaystyle C\|v_{x}^{k}\|_{B^{\frac{1}{p}}_{p,1}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\|v_{x}^{k}\|_{B^{\frac{1}{p}}_{p,\infty}}\|n^{k+p}-n^{k}\|_{B^{-1}_{\infty,\infty}}
+CvxkBp,1pnk+pnkBp,11p1Cnk+pnkBp,11p1nkBp,11p\displaystyle+C\|v_{x}^{k}\|_{B^{\frac{1}{p^{\prime}}}_{p^{\prime},\infty}}\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\leq C\|n^{k+p}-n^{k}\|_{B^{\frac{1}{p}-1}_{p,1}}\|n^{k}\|_{B^{\frac{1}{p}}_{p,1}}

Also we can obtain the initial data of system (3.6) satisfies

Sk+p+1n0Sk+1n0Bp,1p1Cl=kk+p+12l(1/p1)Δln0LpC2kn0Bp,11p10(k)\displaystyle\|S_{k+p+1}n_{0}-S_{k+1}n_{0}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq C\sum_{l=k}^{k+p+1}2^{l(1/p-1)}\|\Delta_{l}n_{0}\|_{L^{p}}\leq C2^{-k}\|n_{0}\|_{B^{\frac{1}{p}-1}_{p,1}}\longrightarrow 0(k\rightarrow\infty)

Since Bp,11pBp,1pB^{\frac{1}{p}}_{p,1}\hookrightarrow B^{\frac{1}{p}}_{p,\infty} and Bp,11pLB^{\frac{1}{p}}_{p,1}\hookrightarrow L^{\infty}, we obtain the estimate of the flow

0t4x(vxk+p+2β0vk+p)Bp,1/pLdτC0tnk+pBp,11/pdτ\int_{0}^{t}\|4\partial_{x}(v_{x}^{k+p}+2\beta_{0}v^{k+p})\|_{B^{1/p}_{p,\infty}\cap L^{\infty}}{\rm d}\tau\leq C\int_{0}^{t}\|n^{k+p}\|_{B^{1/p}_{p,1}}{\rm d}\tau

According to the logarithm interpolation of Lemma2.3, and the uniform bound of {nk}k\{n^{k}\}_{k\in\mathbb{N}}, we obtain

wk+1,pBp,1p1CT(2k+0twk,pBp,1p1log(e+1wk,pBp,1p1)dτ)\|w^{k+1,p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\leq C_{T}\left(2^{-k}+\int_{0}^{t}\|w^{k,p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}\log\left(e+\frac{1}{\|w^{k,p}\|_{B^{\frac{1}{p}-1}_{p,\infty}}}\right){\rm d}\tau\right)

denote that wk(t)=supτ[0,t],p(nk+pnk)(τ)Bp,1p1w_{k}(t)=\sup_{\tau\in[0,t],p\in\mathbb{N}}\|(n^{k+p}-n^{k})(\tau)\|_{B^{\frac{1}{p}-1}_{p,\infty}}, then we have

wk+1(t)CT(2k+0twk(τ)log(e+1wk(τ))dτ)w_{k+1}(t)\leq C_{T}\left(2^{-k}+\int_{0}^{t}w_{k}(\tau)log\left(e+\frac{1}{w_{k}(\tau)}\right){\rm d}\tau\right)

Note that {wk}k\left\{w_{k}\right\}_{k\in\mathbb{N}}, thus it is obvious that μ(x)=CTxlog(e+1x)\mu(x)=C_{T}xlog(e+\frac{1}{x}) is an Osgood modulus of continuity. Applying Lesbesgue-Fatou’s lemma in real analysis, we conclude that, for t[0,T]\forall t\in[0,T]

lim supkwk(t)0tμ(lim supkwk(τ))dτ\limsup_{k\rightarrow\infty}w_{k}(t)\leq\int_{0}^{t}\mu(\limsup_{k\rightarrow\infty}w_{k}(\tau)){\rm d}\tau

Hence according to the Osgood lemma, we have

lim supkwk(t)=0,t[0,T]\limsup_{k\rightarrow\infty}w_{k}(t)=0,\ t\in[0,T]

which implies that nkk}k{n^{k}}_{k\in\}_{k\in\mathbb{N}}} is a Cauchy sequence in the space C([0,T];Bp,1/p1)C([0,T];B^{1/p-1}_{p,\infty}) and converges to the limit function nC([0,T];Bp,1/p)n\in C([0,T];B^{1/p}_{p,\infty}).Along the same line of Case1, similarly we deduce that nn is a solution to (1.1) and nEp,11p(T)n\in E^{\frac{1}{p}}_{p,1}(T).

Step 3: Uniqueness.

Suppose n1,n2n_{1},n_{2} are two solutions of (1.1) with initial data n10n_{10} and n20n_{20} respectively. Denoting wn1n2w\triangleq n_{1}-n_{2}, we have

(3.7) {(t4(v1x+2β0v1))xw=4(v1xv2x)n2x8β0(v1v2)n2x4(n1n2)(n1+n2)16β02((v1v2)n1+v2(n1n2))+8β((v1xv2x)n1+(n1n2)v1x)v1=(4β02x2)1n1,v2=(4β02x2)1n2w|t=0=n10n20\left\{\begin{array}[]{ll}(\partial_{t}-4(v_{1x}+2\beta_{0}v_{1}))\partial_{x}w\\ =-4(v_{1x}-v_{2x})n_{2x}-8\beta_{0}(v_{1}-v_{2})n_{2x}-4(n_{1}-n_{2})(n_{1}+n_{2})\\ \ \ \ -16\beta_{0}^{2}\left((v_{1}-v_{2})n_{1}+v_{2}(n_{1}-n_{2})\right)+8\beta\left((v_{1x}-v_{2x})n_{1}+(n_{1}-n_{2})v_{1x}\right)\\ v_{1}=(4\beta_{0}^{2}-\partial_{x}^{2})^{-1}n_{1},\ v_{2}=(4\beta_{0}^{2}-\partial_{x}^{2})^{-1}n_{2}\\ w|_{t=0}=n_{10}-n_{20}\end{array}\right.

If s1/2,p>2s\geq 1/2,p>2 or s>1/p,1p2s>1/p,1\leq p\leq 2, along the same computation in step 2, t[0,T]\forall t\in[0,T], we have inequality

eC0tn1Bp,rsdτw(t)Bp,rs1w0Bp,rs1+C0teC0tn10Bp,rsdτw(t)Bp,rs1(n1Bp,rs+n2Bp,rs)dte^{-C\int_{0}^{t}\|n_{1}\|_{B^{s}_{p,r}}{\rm d}\tau}\|w(t)\|_{B^{s-1}_{p,r}}\leq\|w_{0}\|_{B^{s-1}_{p,r}}+C\int_{0}^{t}e^{-C\int_{0}^{t^{\prime}}\|n10\|_{B^{s}_{p,r}}{\rm d}\tau}\|w(t^{\prime})\|_{B^{s-1}_{p,r}}(\|n_{1}\|_{B^{s}_{p,r}}+\|n_{2}\|_{B^{s}_{p,r}}){\rm d}t^{\prime}

By Gronwall’s inequality

(3.8) w(t)Bp,rs1w0Bp,rs1exp(C0tn1Bp,rs+n2Bp,rsdτ)\|w(t)\|_{B^{s-1}_{p,r}}\leq\|w_{0}\|_{B^{s-1}_{p,r}}\exp\left(C\int_{0}^{t}\|n_{1}\|_{B^{s}_{p,r}}+\|n_{2}\|_{B^{s}_{p,r}}{\rm d}\tau\right)

If s=1/p,1p2,r=1s=1/p,1\leq p\leq 2,r=1, similar to step 2, we have inequality

eC0tn1Bp,11/pdτw(t)Bp,1p1w0Bp,1p1+C0teC0tn1Bp,11pdτw(t)Bp,1p1(n1Bp,11p+n2Bp,11p)log(e+n1Bp,11p+n2Bp,11pw(t)Bp,1p1)dt\begin{aligned} &e^{-C\int_{0}^{t}\|n_{1}\|_{B^{1/p}_{p,1}}{\rm d}\tau}\|w(t)\|_{B^{\frac{1}{p}-1}_{p,\infty}}\\ &\leq\|w_{0}\|_{B^{\frac{1}{p}-1}_{p,\infty}}+C\int_{0}^{t}e^{-C\int_{0}^{t^{\prime}}\|n_{1}\|_{B^{\frac{1}{p}}_{p,1}}{\rm d}\tau}\|w(t^{\prime})\|_{B^{\frac{1}{p}-1}_{p,\infty}}(\|n_{1}\|_{B^{\frac{1}{p}}_{p,1}}+\|n_{2}\|_{B^{\frac{1}{p}}_{p,1}})\log\left(e+\frac{\|n_{1}\|_{B^{\frac{1}{p}}_{p,1}}+\|n_{2}\|_{B^{\frac{1}{p}}_{p,1}}}{\|w(t)\|_{B^{\frac{1}{p}-1}_{p,\infty}}}\right){\rm d}t^{\prime}\end{aligned} denote h(t)w(t)Bp,1/p1eC0tn1Bp,11/pdτ/(n1LT(Bp,11/p)+n2LT(Bp,11/p))h(t)\triangleq\|w(t)\|_{B^{1/p-1}_{p,\infty}}e^{-C\int_{0}^{t}\|n_{1}\|_{B^{1/p}_{p,1}}{\rm d}\tau}/\left(\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}\right) and |h(t)|1|h(t)|\leq 1, obviously, since

xlog(e+1x)x(2logx),x[0,1]x\log(e+\frac{1}{x})\leq x(2-\log x),\ \forall x\in[0,1]

then we have

h(t)h(0)+C0th(τ)(n1LT(Bp,11/p)+n2LT(Bp,11/p))2(2logh(τ))dτh(t)\leq h(0)+C\int_{0}^{t}h(\tau)(\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})})^{2}(2-\log h(\tau)){\rm d}\tau

Since μ(x)=x(2logx)\mu(x)=x(2-\log x) is an Osgood modulus of continuity on [0,1][0,1], then by Osgood lemma, we get inequality

h(0)h(t)drr(2logr)C0t(n1LT(Bp,11/p)+n2LT(Bp,11/p))2dτ\int_{h(0)}^{h(t)}\frac{{\rm d}r}{r(2-\log r)}\leq C\int_{0}^{t}(\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})})^{2}{\rm d}\tau

then by the definition of hh, we have

(3.9) n1n2LT(Bp,11/p1)\displaystyle\|n_{1}-n_{2}\|_{L^{\infty}_{T}(B^{1/p-1}_{p,1})}
e2(n1LT(Bp,11/p)+n2LT(Bp,11/p))exp(C0tn1LT(Bp,11/p)+n2LT(Bp,11/p)dτ)\displaystyle\leq\ e^{2}(\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})})\exp(C\int_{0}^{t}\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}{\rm d}\tau)
×(n10n20(Bp,1/p1))exp(C0tn1LT(Bp,11/p)+n2LT(Bp,11/p)dτ)\displaystyle\ \ \ \ \times(\|n_{10}-n_{20}\|_{(B^{1/p-1}_{p,\infty})})^{\exp(-C\int_{0}^{t}\|n_{1}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}+\|n_{2}\|_{L^{\infty}_{T}(B^{1/p}_{p,1})}{\rm d}\tau)}

Then the uniqueness of solution nn to the system (1.1) in the space Ep,rp(T)E^{p}_{p,r}(T) follows from (3.8) and (3.9).

Step 4: Continuous Dependence.

Now according to Lemma2.14, denote ¯={}\bar{\mathbb{N}}=\mathbb{N}\cup\{\infty\}. suppose nkC([0,T];Bp,rs)n^{k}\in C([0,T];B^{s}_{p,r}) is the solution to (1.1) with initial data n0kBp,rsn_{0}^{k}\in B^{s}_{p,r}, then we have a sequence of systems

{tnk4(vxk+2β0vk)xnk=fknk=4β02vkvxxknk|t=0=n0k\left\{\begin{array}[]{l}\partial_{t}n^{k}-4(v_{x}^{k}+2\beta_{0}v^{k})\partial_{x}n^{k}=f^{k}\\ n^{k}=4\beta_{0}^{2}v^{k}-v_{xx}^{k}\\ n^{k}|_{t=0}=n_{0}^{k}\end{array}\right.

with fk16β02vknk4(nk)2+8βvxknkf^{k}\triangleq 16\beta_{0}^{2}v^{k}n^{k}-4(n^{k})^{2}+8\beta v_{x}^{k}n^{k}.

Next we claim that if n0kn0n^{k}_{0}\rightarrow n^{\infty}_{0} in Bp,rsB^{s}_{p,r} when kk tends to \infty, then nknn^{k}\rightarrow n^{\infty} in C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}) with TT satisfying 2C2supk¯n0kBp,rsT<12C^{2}\sup_{k\in\bar{\mathbb{N}}}\|n_{0}^{k}\|_{B^{s}_{p,r}}T<1.

(1) r¡\infty. Decompose nkn^{k} into nk=yk+zkn^{k}=y^{k}+z^{k}, and satisfy

{tyk4(vxk+2β0vk)xyk=fyk|t=0=n0kand{tzk4(vxk+2β0vk)xzk=fkfzk|t=0=n0kn0\left\{\begin{array}[]{l}\partial_{t}y^{k}-4(v^{k}_{x}+2\beta_{0}v^{k})\partial_{x}y^{k}=f^{\infty}\\ y^{k}|_{t=0}=n^{k}_{0}\end{array}\right.\quad{\rm and}\quad\left\{\begin{array}[]{l}\partial_{t}z^{k}-4(v^{k}_{x}+2\beta_{0}v^{k})\partial_{x}z^{k}=f^{k}-f^{\infty}\\ z^{k}|_{t=0}=n^{k}_{0}-n^{\infty}_{0}\end{array}\right.

Denote m=supk¯n0kBp,rsm=\sup_{k\in\bar{\mathbb{N}}}\|n_{0}^{k}\|_{B^{s}_{p,r}}, and letting M=Cm12C2mTM=\frac{Cm}{1-2C^{2}mT}, according to the proof of the existence, we get that

nk(t)Bp,rsMt[0,T]\|n^{k}(t)\|_{B^{s}_{p,r}}\leq M\quad\forall t\in[0,T]

Hence, (f)kk}k(f^{)}k_{k\in\}_{k\in\mathbb{N}}} is uniformly bounded in C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}) and

vxk+2β0vkBp,rs+1CvkBp,rs+2CnkBp,rsCM\|v^{k}_{x}+2\beta_{0}v^{k}\|_{B^{s+1}_{p,r}}\leq C\|v^{k}\|_{B^{s+2}_{p,r}}\leq C\|n^{k}\|_{B^{s}_{p,r}}\leq CM

also it is obvious that

(vkv)x+2β0(vkv)Bp,rs+1CnknBp,rs\|(v^{k}-v^{\infty})_{x}+2\beta_{0}(v^{k}-v^{\infty})\|_{B^{s+1}_{p,r}}\leq C\|n^{k}-n^{\infty}\|_{B^{s}_{p,r}}

similar to the proof of the uniqueness, since n0kn0n_{0}^{k}\rightarrow n_{0}^{\infty} in Bp,rsB^{s}_{p,r}, then we have nknn^{k}\rightarrow n^{\infty} in L1([0,T];Bp,rs1)vxk+2β0vkvx+2β0vL^{1}([0,T];B^{s-1}_{p,r})\Rightarrow v^{k}_{x}+2\beta_{0}v^{k}\rightarrow v^{\infty}_{x}+2\beta_{0}v^{\infty} in L1([0,T];Bp,rs)L^{1}([0,T];B^{s}_{p,r}). Then by Lemma2.14

ykny^{k}\rightarrow n^{\infty} in C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}) as kk\rightarrow\infty

To control zkz^{k}, we need to estimate fkff^{k}-f^{\infty}, by Lemma2.6, we have

fkfBp,rsC(nkBp,rs+nBp,rs)nknBp,rs\|f^{k}-f^{\infty}\|_{B^{s}_{p,r}}\leq C(\|n^{k}\|_{B^{s}_{p,r}}+\|n^{\infty}\|_{B^{s}_{p,r}})\|n^{k}-n^{\infty}\|_{B^{s}_{p,r}}

then according to Lemma2.11

zkBp,rsCeCMT(n0kn0Bp,rs+0t(nkn)(τ)Bp,rsdτ)\|z^{k}\|_{B^{s}_{p,r}}\leq Ce^{CMT}(\|n^{k}_{0}-n^{\infty}_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}\|(n^{k}-n^{\infty})(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau)

Therefore, we have ε>0\forall\varepsilon>0, N1\exists N_{1} large enough, when k>N1k>N_{1}, yknBp,rs<ε\|y^{k}-n^{\infty}\|_{B^{s}_{p,r}}<\varepsilon, then

nknBp,rszkBp,rs+yknBp,rsε+CeCMT(n0kn0Bp,rs+0t(nkn)(τ)Bp,rsdτ)\|n^{k}-n^{\infty}\|_{B^{s}_{p,r}}\leq\|z^{k}\|_{B^{s}_{p,r}}+\|y^{k}-n^{\infty}\|_{B^{s}_{p,r}}\leq\varepsilon+Ce^{CMT}(\|n^{k}_{0}-n^{\infty}_{0}\|_{B^{s}_{p,r}}+\int_{0}^{t}\|(n^{k}-n^{\infty})(\tau)\|_{B^{s}_{p,r}}{\rm d}\tau)

by Gronwall’s inequality, t[0,T]\forall t\in[0,T]

nknBp,rsC(ε+n0kn0Bp,rs)\|n^{k}-n^{\infty}\|_{B^{s}_{p,r}}\leq C(\varepsilon+\|n_{0}^{k}-n_{0}^{\infty}\|_{B^{s}_{p,r}})

Hence we gain the continuity of the system (1.1) in C([0,T];Bp,rs)C([0,T];B^{s}_{p,r}) with respect to the initial data in Bp,rsB^{s}_{p,r}.

(2) r=r=\infty. Similar to Step2, we have nknL([0,T];Bp,s1)0(k)\|n^{k}-n^{\infty}\|_{L^{\infty}([0,T];B^{s-1}_{p,\infty})}\rightarrow 0(k\rightarrow\infty). Then ϕBp,1s\forall\phi\in B^{-s}_{p^{\prime},1}, we have

nkn=Sj(nkn),ϕ+(IdSj)(nkn),ϕ=nkn,Sjϕ+nkn,(IdSj)ϕ\langle n^{k}-n^{\infty}\rangle=\langle S_{j}(n^{k}-n^{\infty}),\phi\rangle+\langle(Id-S_{j})(n^{k}-n^{\infty}),\phi\rangle=\langle n^{k}-n^{\infty},S_{j}\phi\rangle+\langle n^{k}-n^{\infty},(Id-S_{j})\phi\rangle

and

|nkn,(IdSj)ϕ|CMϕSjϕBp,1sand|nkn,Sjϕ|nknBp,s1SjϕBp,11s|\langle n^{k}-n^{\infty},(Id-S_{j})\phi\rangle|\leq CM\|\phi-S_{j}\phi\|_{B^{-s}_{p^{\prime},1}}\quad{\rm and}\quad|\langle n^{k}-n^{\infty},S_{j}\phi\rangle|\leq\|n^{k}-n^{\infty}\|_{B^{s-1}_{p,\infty}}\|S_{j}\phi\|_{B^{1-s}_{p^{\prime},1}}

by Lemma2.3, we can conclude that nkn,ϕ0\langle n^{k}-n^{\infty},\phi\rangle\rightarrow 0 as k0k\rightarrow 0 for r=r=\infty. Thus we gain the continuity of the system (1.1) in Cw([0,T];Bp,s)C_{w}([0,T];B^{s}_{p,\infty}) with respect to the initial data in Bp,sB^{s}_{p,\infty}.

4 Blow-up criterion

We can use the method introduced by Zhang and Yin[blowupcriterion] to obtain a blow-up criterion as follows.

Theorem 4.1.

Let n0Bp,rsn_{0}\in B^{s}_{p,r} with 1p,r1\leq p,r\leq\infty, and (s,p,r)(s,p,r) satisfy condition (3.1) and let T>0T>0 be the maximal existence time of the corresponding solution nn to (1.1). If T<T<\infty, then we have

0Tn(t)Ldt\int_{0}^{T}\|n(t)\|_{L^{\infty}}{\rm d}t
Proof.

For simplicity, consider the case 1<p<1<p<\infty. For all σ\sigma satisfies 0<σs0<\sigma\leq s, according to the product laws, since vLCnL\|v\|_{L^{\infty}}\leq C\|n\|_{L^{\infty}} and vBp,rσCnBp,rσ\|v\|_{B^{\sigma}_{p,r}}\leq C\|n\|_{B^{\sigma}_{p,r}}, we have

(4.1) 16β02vn4n2+8β0vxnBp,rσCnLnBp,rσ\|16\beta_{0}^{2}vn-4n^{2}+8\beta_{0}v_{x}n\|_{B^{\sigma}_{p,r}}\leq C\|n\|_{L^{\infty}}\|n\|_{B^{\sigma}_{p,r}}

(1) σ(0,1)\sigma\in(0,1).

Applying Lemma2.11 with p1=p_{1}=\infty, then

n(t)Bp,rσn0Bp,rσ+C0tn(τ)Bp,rσn(τ)Ldτ+0tCVp1n(τ)Bp,rσdτ\|n(t)\|_{B^{\sigma}_{p,r}}\leq\|n_{0}\|_{B^{\sigma}_{p,r}}+C\int_{0}^{t}\|n(\tau)\|_{B^{\sigma}_{p,r}}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau+\int_{0}^{t}CV_{p_{1}}^{\prime}\|n(\tau)\|_{B^{\sigma}_{p,r}}{\rm d}\tau

with

Vp1(t)=4(vx+2β0v)xB,0LCnLV_{p_{1}}^{\prime}(t)=\|4(v_{x}+2\beta_{0}v)_{x}\|_{B^{0}_{\infty,\infty}\cap L^{\infty}}\leq C\|n\|_{L^{\infty}}

by Gronwall’s inequality

n(t)Bp,rσn0Bp,rσexp(C0tn(τ)Ldτ)\|n(t)\|_{B^{\sigma}_{p,r}}\leq\|n_{0}\|_{B^{\sigma}_{p,r}}\exp(C\int_{0}^{t}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau)

which implies

(4.2) 0Tn(τ)Ldτ<nLT(Bp,rσ)<\int_{0}^{T}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau<\infty\Longrightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma}_{p,r})}<\infty

(2) σ=1\sigma=1

Applying Lemma2.11 with p=p1p=p_{1}, and

Vp1=4(vx+2β0vx)Bp,1/pLC(vL+vBp,1/p+2)C(nL+nBp,r1/p)V^{\prime}_{p_{1}}=\|4(v_{x}+2\beta_{0}v_{x})\|_{B^{1/p}_{p,\infty}\cap L^{\infty}}\leq C(\|v\|_{L^{\infty}}+\|v\|_{B^{1/p+2}_{p,\infty}})\leq C(\|n\|_{L^{\infty}}+\|n\|_{B^{1/p}_{p,r}})

then we have

n(t)Bp,r1n0Bp,r1+C0tn(τ)Bp,r1n(τ)Ldτ+C0t(n(τ)L+n(τ)Bp,r1/p)m(τ)Bp,r1dτ\|n(t)\|_{B^{1}_{p,r}}\leq\|n_{0}\|_{B^{1}_{p,r}}+C\int_{0}^{t}\|n(\tau)\|_{B^{1}_{p,r}}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau+C\int_{0}^{t}(\|n(\tau)\|_{L^{\infty}}+\|n(\tau)\|_{B^{1/p}_{p,r}})\|m(\tau)\|_{B^{1}_{p,r}}{\rm d}\tau

by Gronwall’s inequality

(4.3) n(t)Bp,r1Cn0Bp,r1exp(C0tn(τ)L+n(τ)Bp,r1/pdτ)\|n(t)\|_{B^{1}_{p,r}}\leq C\|n_{0}\|_{B^{1}_{p,r}}\exp(C\int_{0}^{t}\|n(\tau)\|_{L^{\infty}}+\|n(\tau)\|_{B^{1/p}_{p,r}}{\rm d}\tau)

which implies

(4.4) nLT(Bp,r1/p)<and0Tn(τ)Ldτ<nLT(Bp,rσ)<\|n\|_{L^{\infty}_{T}(B^{1/p}_{p,r})}<\infty\ \ {\rm and}\ \ \int_{0}^{T}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau<\infty\Longrightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma}_{p,r})}<\infty

(3) σ>1\sigma>1

According to (4.1) and Lemma2.11 with p1=p_{1}=\infty, and

Vp1(t)=4(vx+2β0vx)B,rσ1CvB,rσ+1CnBp,rσ1+1/pV^{\prime}_{p_{1}}(t)=\|4(v_{x}+2\beta_{0}v_{x})\|_{B^{\sigma-1}_{\infty,r}}\leq C\|v\|_{B^{\sigma+1}_{\infty,r}}\leq C\|n\|_{B^{\sigma-1+1/p}_{p,r}}

then we have

n(t)Bp,rσn0Bp,rσ+C0tn(τ)Bp,rσn(τ)Ldτ+C0tn(τ)Bp,rσ1+1/pn(τ)Bp,rσdτ\|n(t)\|_{B^{\sigma}_{p,r}}\leq\|n_{0}\|_{B^{\sigma}_{p,r}}+C\int_{0}^{t}\|n(\tau)\|_{B^{\sigma}_{p,r}}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau+C\int_{0}^{t}\|n(\tau)\|_{B^{\sigma-1+1/p}_{p,r}}\|n(\tau)\|_{B^{\sigma}_{p,r}}{\rm d}\tau

by Gronwall’s inequality

n(t)Bp,rσn0Bp,rσexp(C0tn(τ)L+n(τ)Bp,rσ1+1/pdτ)\|n(t)\|_{B^{\sigma}_{p,r}}\leq\|n_{0}\|_{B^{\sigma}_{p,r}}\exp(C\int_{0}^{t}\|n(\tau)\|_{L^{\infty}}+\|n(\tau)\|_{B^{\sigma-1+1/p}_{p,r}}{\rm d}\tau)

which implies

nLT(Bp,rσ1+1/p)<and0Tn(τ)Ldτ<nLT(Bp,rσ)<\|n\|_{L^{\infty}_{T}(B^{\sigma-1+1/p}_{p,r})}<\infty\ \ {\rm and}\ \ \int_{0}^{T}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau<\infty\Longrightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma}_{p,r})}<\infty

If σ1+1p>1\sigma-1+\frac{1}{p}>1, we can repeat the above process. Indeed, since

4(vx+2β0v)xB,rσ1+1/p1CvB,rσ+1/pCnBp,rσ2+2/p\|4(v_{x}+2\beta_{0}v)_{x}\|_{B^{\sigma-1+1/p-1}_{\infty,r}}\leq C\|v\|_{B^{\sigma+1/p}_{\infty,r}}\leq C\|n\|_{B^{\sigma-2+2/p}_{p,r}}

we similar have

nLT(Bp,rσ2+1/p)<and0Tn(τ)Ldτ<nLT(Bp,rσ1+1/p)<\|n\|_{L^{\infty}_{T}(B^{\sigma-2+1/p}_{p,r})}<\infty\ \ {\rm and}\ \ \int_{0}^{T}\|n(\tau)\|_{L^{\infty}}{\rm d}\tau<\infty\Longrightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma-1+1/p}_{p,r})}<\infty

By induction, we can choose k+k\in\mathbb{N}^{+} such that 0<σk(1/frac1p)10<\sigma-k(1-/frac1p)\leq 1, and Bp,r1Bp,rσk(11p)B^{1}_{p,r}\hookrightarrow B^{\sigma-k(1-\frac{1}{p})}_{p,r}, gives that

nLT(Bp,r1)and0TnL<nLT(Bp,rσ(k1)(11p))<nLT(Bp,rσ)<\|n\|_{L^{\infty}_{T}(B^{1}_{p,r})}\leq\infty\ \ {\rm and}\ \ \int_{0}^{T}\|n\|_{L^{\infty}}<\infty\Rightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma-(k-1)(1-\frac{1}{p})}_{p,r})}<\infty\Rightarrow\cdots\Rightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma}_{p,r})}<\infty

Therefore we can conclude that

nLT(Bp,r1)<and0TnL<nLT(Bp,rσ)<\|n\|_{L^{\infty}_{T}(B^{1}_{p,r})}<\infty\ \ {\rm and}\ \ \int_{0}^{T}\|n\|_{L^{\infty}}<\infty\Rightarrow\|n\|_{L^{\infty}_{T}(B^{\sigma}_{p,r})}<\infty

Return to LT(Bp,rs)L^{\infty}_{T}(B^{s}_{p,r}) and suppose 0TnLdτ<\int_{0}^{T}\|n\|_{L^{\infty}}{\rm d}\tau<\infty, we have:

Case1: s¡1 By (1), we have nLT(Bp,rs)<\|n\|_{L^{\infty}_{T}(B^{s}_{p,r})}<\infty.

Case2: s=1 By (1), we have nLT(Bp,r1/p)<\|n\|_{L^{\infty}_{T}(B^{1/p}_{p,r})}<\infty and by (2) we get that nLT(Bp,r1)<\|n\|_{L^{\infty}_{T}(B^{1}_{p,r})}<\infty.

Case3: s¿1 By (1), we have nLT(Bp,r1/p)<\|n\|_{L^{\infty}_{T}(B^{1/p}_{p,r})}<\infty and by (2) we get that nLT(Bp,r1)<\|n\|_{L^{\infty}_{T}(B^{1}_{p,r})}<\infty, lastly by the induction in (3), we can deduce that nLT(Bp,r1)<\|n\|_{L^{\infty}_{T}(B^{1}_{p,r})}<\infty.

Therefore 0TnLdτ<nL(Bp,rs)<\int_{0}^{T}\|n\|_{L^{\infty}}{\rm d}\tau<\infty\Rightarrow\|n\|_{L^{\infty}(B^{s}_{p,r})}<\infty. Then by what we proved in Thm3.2, T0\exists T_{0} small enough such that for some suitable ε>0\varepsilon>0, 2C2n(Tε)Bp,rsT0<12C^{2}\|n(T-\varepsilon)\|_{B^{s}_{p,r}}T_{0}<1, then follow then same line of Step1 in the proof of Thm3.2, we can extend the solution nn on [0,T)×[0,T)\times\mathbb{R} to n~\tilde{n} on [0,Tε+T0)×[0,T-\varepsilon+T_{0})\times\mathbb{R} and by the uniqueness nn~n\equiv\tilde{n} for any t[0,T]t\in[0,T].

Corollary 4.2.

Let n0Bp,rsn_{0}\in B^{s}_{p,r} with (s,p,r)(s,p,r) satisfying (3.1), T>0T>0 be the maximal existence time of the corresponding solution nEp,rs(T)n\in E^{s}_{p,r}(T_{-}) to system (1.1). Then nn blows up in finite time if and only if

lim suptTnL=\limsup_{t\uparrow T}\|n\|_{L^{\infty}}=\infty

5 Blow-up

As we have the blow-up criterion, consider the following initial value problem

(5.1) {ψt(t,x)=4(vx+2β0v)(t,ψ(t,x)),t[0,T]ψ(0,x)=x\left\{\begin{array}[]{l}\psi_{t}(t,x)=-4(v_{x}+2\beta_{0}v)(t,\psi(t,x)),\ t\in[0,T]\\ \psi(0,x)=x\end{array}\right.

then the system (1.1) in Lagrangian coordinates can be written as

(5.2) {tn(t,ψ(t,x))=(16β02vn4n2+8β0vxn)(t,ψ(t,x))n(0,ψ(0,x))=n0(x)\left\{\begin{array}[]{l}\partial_{t}n(t,\psi(t,x))=(16\beta_{0}^{2}vn-4n^{2}+8\beta_{0}v_{x}n)(t,\psi(t,x))\\ n(0,\psi(0,x))=n_{0}(x)\end{array}\right.
Theorem 5.1.

Let n0Bp,rsn_{0}\in B^{s}_{p,r} with (s,p,r)(s,p,r) satisfying (3.1). There exists time T1=132max(β02,β02)v0W1,T_{1}=\frac{1}{32\max(\beta_{0}^{2},\beta_{0}^{-2})\|v_{0}\|_{W^{1,\infty}}}, if x0\exists\ x_{0}\in\mathbb{R} such that

(5.3) n0(x0)<b2+2b1exp(22bT1)wtihb=(16β02v0L)2+(8β0v0xL)2n_{0}(x_{0})<-\sqrt{\frac{b}{2}}+\frac{\sqrt{2b}}{1-\exp(2\sqrt{2b}T_{1})}\quad{\rm wtih}\quad b=(16\beta_{0}^{2}\|v_{0}\|_{L^{\infty}})^{2}+(8\beta_{0}\|v_{0x}\|_{L^{\infty}})^{2}

then nn will blow up within T1T_{1}.

More precisely, nn will blow up at time T2=122blog(2n0(x0)b2n0(x0)+b)T_{2}=\frac{1}{2\sqrt{2b}}\log(\frac{\sqrt{2}n_{0}(x_{0})-\sqrt{b}}{\sqrt{2}n_{0}(x_{0})+\sqrt{b}}).

Proof.

Since vv is the solution of system (1.2), and vxv_{x} satisfies

{t(vx)(4vx+8β0v)x(vx)=8β0(vx)216β02vvx+8β0xP1(D)(2β02v2+vx2)+8β02P1(D)(4β02v2vx2)vx|t=0=v0x\left\{\begin{array}[]{l}\partial_{t}(v_{x})-(4v_{x}+8\beta_{0}v)\partial_{x}(v_{x})=8\beta_{0}(v_{x})^{2}-16\beta_{0}^{2}vv_{x}+8\beta_{0}\partial_{x}P_{1}(D)(2\beta_{0}^{2}v^{2}+v_{x}^{2})+8\beta_{0}^{2}P_{1}(D)(4\beta_{0}^{2}v^{2}-v_{x}^{2})\\ v_{x}|_{t=0}=v_{0x}\end{array}\right.

then we have estimates

(5.4) vW1,v0W1,+8max(β02,β02)0tv(τ)W1,2dτ\|v\|_{W^{1,\infty}}\leq\|v_{0}\|_{W^{1,\infty}}+8\max(\beta_{0}^{2},\beta_{0}^{-2})\int_{0}^{t}\|v(\tau)\|_{W^{1,\infty}}^{2}{\rm d}\tau

Assume that v(t)W1,2v0W1,\|v(t)\|_{W^{1,\infty}}\leq 2\|v_{0}\|_{W^{1,\infty}} is satisfied for all t[0,T1]t\in[0,T_{1}], then by inequality (5.4), we have

v(t)W1,v0W1,+32max(β02,β02)tv0W1,622v0W1,\|v(t)\|_{W^{1,\infty}}\leq\|v_{0}\|_{W^{1,\infty}}+32\max(\beta_{0}^{2},\beta_{0}^{-2})t\|v_{0}\|_{W^{1,\infty}}62\leq 2\|v_{0}\|_{W^{1,\infty}}

Thus we have v(t)W1,2v0W1,\|v(t)\|_{W^{1,\infty}}\leq 2\|v_{0}\|_{W^{1,\infty}} for all t[0,T1]t\in[0,T_{1}].

Consider the system (5.2) for all t[0,T1]t\in[0,T_{1}], then it is obvious that for all (t,x0)[0,T1]×(t,x_{0})\in[0,T_{1}]\times\mathbb{R}

|16β02vn|32β02v0L|n|(16β02v0L)2+n2|16\beta_{0}^{2}v\cdot n|\leq 32\beta_{0}^{2}\|v_{0}\|_{L^{\infty}}|n|\leq(16\beta_{0}^{2}\|v_{0}\|_{L^{\infty}})^{2}+n^{2}

and

|8β0vxn|16|β0|v0xL|n|(8β0v0xL)2+n2|8\beta_{0}v_{x}\cdot n|\leq 16|\beta_{0}|\|v_{0x}\|_{L^{\infty}}|n|\leq(8\beta_{0}\|v_{0x}\|_{L^{\infty}})^{2}+n^{2}

denote b=(16β02v0L)2+(8β0v0xL)2b=(16\beta_{0}^{2}\|v_{0}\|_{L^{\infty}})^{2}+(8\beta_{0}\|v_{0x}\|_{L^{\infty}})^{2}, then according to (5.2), we have

tn(t,ψ(t,x0))2n2+b\partial_{t}n(t,\psi(t,x_{0}))\leq-2n^{2}+b

Consider the ordinary differential equation

f(t)=2f2+b,f(0)=n0(x0)f^{\prime}(t)=-2f^{2}+b,f(0)=n_{0}(x_{0})

then we have

n(t,ψ(t,x0))0tf(τ)dτ+n0(x0)=b21+Ce22bt1Ce22btwithC=2n0(x0)b2n0(x0)+bn(t,\psi(t,x_{0}))\leq\int_{0}^{t}f^{\prime}(\tau){\rm d}\tau+n_{0}(x_{0})=\sqrt{\frac{b}{2}}\cdot\frac{1+Ce^{-2\sqrt{2b}t}}{1-Ce^{-2\sqrt{2b}t}}\quad{\rm with}\quad C=\frac{\sqrt{2}n_{0}(x_{0})-\sqrt{b}}{\sqrt{2}n_{0}(x_{0})+\sqrt{b}}

It is obvious that 1Ce22bt1-Ce^{-2\sqrt{2b}t} is an increasing function, and by (5.3)

1C<0and1Ce22bT1>0and1Ce22bT2=01-C<0\quad{\rm and}\quad 1-Ce^{-2\sqrt{2b}T_{1}}>0\quad{\rm and}\quad 1-Ce^{-2\sqrt{2b}T_{2}}=0

then we can easily get that n(T2,ψ(T2,x0))=n(T_{2},\psi(T_{2},x_{0}))=-\infty and T2<T1T_{2}<T_{1}.

Therefore nn will blow up at time T2=122blog(2n0(x0)b2n0(x0)+b)T_{2}=\frac{1}{2\sqrt{2b}}\log(\frac{\sqrt{2}n_{0}(x_{0})-\sqrt{b}}{\sqrt{2}n_{0}(x_{0})+\sqrt{b}}). ∎

6 Existence of global solution

Similarly, we consider the initial value problem (5.1), applying classical results in the theory of ODEs, one can obtain the following results of ψ\psi.

Lemma 6.1.

[7] Let vx+2β0vC([0,T];Hs())C1([0,T];Hs1())v_{x}+2\beta_{0}v\in C([0,T];H^{s}(\mathbb{R}))\cap C^{1}([0,T];H^{s-1}(\mathbb{R})), s2s\geq 2. Then the problem (5.1) has a unique solution ψC1([0,T]×)\psi\in C^{1}([0,T]\times\mathbb{R}). Moreover, the map ψ(t,)\psi(t,\cdot) is an increasing diffeomorphism of \mathbb{R} with ψx(0,x)=1\psi_{x}(0,x)=1 and

ψx(t,x)=exp(0t4(vx+2β0v)x)(τ,ψ(τ,x)dτ)>0,(t,x)[0,T)×\psi_{x}(t,x)=\exp(\int_{0}^{t}-4(v_{x}+2\beta_{0}v)_{x})(\tau,\psi(\tau,x){\rm d}\tau)>0,\ \ \forall(t,x)\in[0,T)\times\mathbb{R}

We then have the following sign-preserved result.

Lemma 6.2.

Let n0Hs(),s>12n_{0}\in H^{s}(\mathbb{R}),\ s>\frac{1}{2} and n0(x0)0,xn_{0}(x_{0})\geq 0,\ \forall x\in\mathbb{R}. Assume Tn0T_{n_{0}} is the maximal existence time of the solution n(t,x)n(t,x) to (1.1), then

n(t,x)0,(t,x)[0,Tn0)×n(t,x)\geq 0,\ \forall(t,x)\in[0,T_{n_{0}})\times\mathbb{R}
Proof.

From (1.1) we see that x\forall x\in\mathbb{R}

ddt(n(t,ψ(t,x))ψx(t,x))\displaystyle\frac{\rm d}{{\rm d}t}(n(t,\psi(t,x))\cdot\psi_{x}(t,x)) =nt(t,ψ(t,x))ψx+nx(t,ψ(t,x))ψtψx+n(t,ψ(t,x))ψtx\displaystyle=n_{t}(t,\psi(t,x))\cdot\psi_{x}+n_{x}(t,\psi(t,x))\cdot\psi_{t}\psi_{x}+n(t,\psi(t,x))\cdot\psi_{tx}
=ψx(nt4(n(vx+2β0v))x)=0\displaystyle=\psi_{x}\cdot(n_{t}-4(n(v_{x}+2\beta_{0}v))_{x})=0

solving the ODE, we have

n(t,ψ(t,x))ψx(t,x)=n0(x)ψx(0,x)n(t,\psi(t,x))\cdot\psi_{x}(t,x)=n_{0}(x)\cdot\psi_{x}(0,x)

Noticing n00n_{0}\geq 0 andψx>0\psi_{x}>0, we get n(t,ψ(t,x))0n(t,\psi(t,x))\geq 0. Since ψ(t,x)\psi(t,x) is a diffeomorphism on \mathbb{R}, we completes the proof. ∎

Lemma 6.3.

Let n0Hs(),s>12n_{0}\in H^{s}(\mathbb{R}),\ s>\frac{1}{2} and n0(x)0,xn_{0}(x)\geq 0,\ \forall x\in\mathbb{R}. Assume Tn0>0T_{n_{0}}>0 is the maximal existence time of the solution n(t,x)n(t,x) to (1.1) with initial data n0n_{0}. Then

v(t,x)0and|vx(t,x)|2|β0|v(t,x)2|β0|vH1,(t,x)[0,Tn0)×v(t,x)\geq 0\quad{\rm and}\quad|v_{x}(t,x)|\leq 2|\beta_{0}|v(t,x)\leq\sqrt{2}|\beta_{0}|\|v\|_{H^{1}},\ \forall(t,x)\in[0,T_{n_{0}})\times\mathbb{R}
Proof.

Since we have

v(t,x)=14|β0|e|2β0|n(t,x)0v(t,x)=\frac{1}{4|\beta_{0}|}e^{-|2\beta_{0}\cdot|}\ast n(t,x)\geq 0

and

|vx(t,x)|=|12(sgn()e|2β0|n)(t,x)|2|β0|v(t,x)|v_{x}(t,x)|=|\frac{1}{2}(-sgn(\cdot)e^{-|2\beta_{0}\cdot|}\ast n)(t,x)|\leq 2|\beta_{0}|v(t,x)

On the other hand, for almost x\forall x\in\mathbb{R}, we have

2v2(t,x)\displaystyle 2v^{2}(t,x) =xddy(v2(t,y))dyxddy(v2(t,y))dy=x2vvy(t,y)dyx2vvy(t,y)dy\displaystyle=\int_{-\infty}^{x}\frac{{\rm d}}{{\rm d}y}(v^{2}(t,y)){\rm d}y-\int^{\infty}_{x}\frac{{\rm d}}{{\rm d}y}(v^{2}(t,y)){\rm d}y=\int_{-\infty}^{x}2v\cdot v_{y}(t,y){\rm d}y-\int^{\infty}_{x}2v\cdot v_{y}(t,y){\rm d}y
x+xv2+vy2dyv2+vy2dy=v(t,)H12\displaystyle\leq\int_{-\infty}^{x}+\int^{\infty}_{x}v^{2}+v_{y}^{2}{\rm d}y\leq\int_{-\infty}^{\infty}v^{2}+v_{y}^{2}{\rm d}y=\|v(t,\cdot)\|_{H^{1}}^{2}

Lemma 6.4.

Let n0Hs(),s>12n_{0}\in H^{s}(\mathbb{R}),\ s>\frac{1}{2} and n0(x)0,xn_{0}(x)\geq 0,\ \forall x\in\mathbb{R}. Define an equivalent norm Hβ01H_{\beta_{0}}^{1} of H1H^{1}-norm:

vHβ01((4β02+|ξ|2)|v^(ξ)|2dξ)1/2\|v\|_{H_{\beta_{0}}^{1}}\triangleq(\int_{\mathbb{R}}(4\beta_{0}^{2}+|\xi|^{2})|\hat{v}(\xi)|^{2}{\rm d}\xi)^{1/2}

Then the Hβ01H^{1}_{\beta_{0}}-norm of vv in [0,Tn0)[0,T_{n_{0}}) is non-increasing, namely, if 0t1t2<Tn00\leq t_{1}\leq t_{2}<T_{n_{0}}

v(t2)Hβ01v(t1)Hβ01v0Hβ01\|v(t_{2})\|_{H^{1}_{\beta_{0}}}\leq\|v(t_{1})\|_{H^{1}_{\beta_{0}}}\leq\|v_{0}\|_{H^{1}_{\beta_{0}}}
Proof.

Since n00n_{0}\geq 0, according to Lemma6.3, it follows that v0v\geq 0 and |vx(t,x)|2|β0|v(t,x)|v_{x}(t,x)|\leq 2|\beta_{0}|v(t,x). Hence for any t[0,Tn0)t\in[0,T_{n_{0}}), we have

ddt4β02v2+vx2dx\displaystyle\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{R}}4\beta_{0}^{2}v^{2}+v_{x}^{2}{\rm d}x =24β02vvt+vxvxtdx=2v(4β02vtvxxt)dx\displaystyle=2\int_{\mathbb{R}}4\beta_{0}^{2}v\cdot v_{t}+v_{x}\cdot v_{xt}{\rm d}x=2\int_{\mathbb{R}}v(4\beta_{0}^{2}v_{t}-v_{xxt}){\rm d}x
=8v[n(vx+2β0v)]xdx=8vx(4β02vvxx)(vx+2β0v)dx\displaystyle=8\int_{\mathbb{R}}v[n(v_{x}+2\beta_{0}v)]_{x}{\rm d}x=-8\int_{\mathbb{R}}v_{x}(4\beta_{0}^{2}v-v_{xx})(v_{x}+2\beta_{0}v){\rm d}x
=84β02vvx2+8β03v2vxvx2vxx2β0vvxvxxdx\displaystyle=-8\int_{\mathbb{R}}4\beta_{0}^{2}v\cdot v_{x}^{2}+8\beta_{0}^{3}v^{2}\cdot v_{x}-v_{x}^{2}v_{xx}-2\beta_{0}v\cdot v_{x}\cdot v_{xx}{\rm d}x
=8vx2(4β02v+β0vx)dx=8vx2(|β0|+β02sgn())e|2β0|ndx0\displaystyle=-8\int_{\mathbb{R}}v_{x}^{2}(4\beta_{0}^{2}v+\beta_{0}v_{x}){\rm d}x=-8\int_{\mathbb{R}}v_{x}^{2}(|\beta_{0}|+\frac{\beta_{0}}{2}sgn(\cdot))e^{-|2\beta_{0}\cdot|\ast n{\rm d}x}\leq 0

Integrating the above inequality on [0,t1][0,t_{1}] and [t1,t2][t_{1},t_{2}] we have

v(t2)Hβ01v(t1)Hβ01v0Hβ01\|v(t_{2})\|_{H^{1}_{\beta_{0}}}\leq\|v(t_{1})\|_{H^{1}_{\beta_{0}}}\leq\|v_{0}\|_{H^{1}_{\beta_{0}}}

Theorem 6.5.

Let n0B2,2sn_{0}\in B^{s}_{2,2} with s>1/2s>1/2 and n00n_{0}\geq 0, the system of (1.1) has a unique global solution, i.e. T>0,nE2,2s(T)\forall T>0,\ n\in E^{s}_{2,2}(T).

Proof.

Let ψ(t,x)\psi(t,x) satisfies the flow equation (5.1). Then by Lemma6.3 and Sobolev embedding

ddt(n(t,ψ(t,x)))(16β02vn4n2+8β0vxn)(t,ψ(t,x))32β02vn(t,ψ(t,x))Cv0H1n(t,ψ(t,x))\frac{{\rm d}}{{\rm d}t}(n(t,\psi(t,x)))\leq(16\beta_{0}^{2}vn-4n^{2}+8\beta_{0}v_{x}n)(t,\psi(t,x))\leq 32\beta_{0}^{2}v\cdot n(t,\psi(t,x))\leq C\|v_{0}\|_{H^{1}}\cdot n(t,\psi(t,x))

by Gronwall’s inequality we have

n(t,ψ(t,x))n0(x)exp(Cv0H1)n(t,\psi(t,x))\leq n_{0}(x)\exp(C\|v_{0}\|_{H^{1}})

thus T>0\forall T>0, we have

0Tn(t,)Ldt0Tn0Lexp(Cv0H1)dt\int_{0}^{T}\|n(t,\cdot)\|_{L^{\infty}}{\rm d}t\leq\int_{0}^{T}\|n_{0}\|_{L^{\infty}}\exp(C\|v_{0}\|_{H^{1}}){\rm d}t

Therefore by well-posedness and blow-up criterion of the system (1.1), we prove that

nE2,2s(T),T>0n\in E^{s}_{2,2}(T),\ \ \forall T>0

7 Simulation

According to our blow up condition, we can construct an exact example of the system (1.1).

Let β0=1\beta_{0}=1 and denote

f(x)={exp(11x2)|x|10|x|>1f(x)=\left\{\begin{array}[]{l}\exp(-\frac{1}{1-x^{2}})\quad|x|\leq 1\\ 0\quad\quad\quad\quad\quad\ \ \ \ |x|>1\end{array}\right.

taking n0(x)=20ef(20x)n_{0}(x)=-20e\cdot f(20x), it is obviously that n0L=20\|n_{0}\|_{L^{\infty}}=20. Since n0L1e2\|n_{0}\|_{L^{1}}\leq\frac{e}{2}, by Young’s inequality we can get the rough estimate of v0v_{0} and v0xv_{0x}

v0Le8,v0xLe4\|v_{0}\|_{L^{\infty}}\leq\frac{e}{8},\ \|v_{0x}\|_{L^{\infty}}\leq\frac{e}{4}

then we can denote T1=112eT_{1}=\frac{1}{12e} and b=8e2b=8e^{2}.

It is obvious that

b2+2b1exp(22bT1)2e4e1exp(3/4)16n0(0)=20-\sqrt{\frac{b}{2}}+\frac{\sqrt{2b}}{1-\exp(2\sqrt{2b}T_{1})}\geq-2e-\frac{4e}{1-\exp(3/4)}\geq-16\geq n_{0}(0)=-20

then we have n0n_{0} will blow up within T10.0307T_{1}\approx 0.0307.

The solution of system (1.1) with the initial data n0n_{0} can be roughly expressed as Figure 1:

Refer to caption
Figure 1: blow up

It is consistent with the approximate numerical calculation of blow up condition we have given.

And for n0(x)=f(x)n_{0}(x)=f(x), it is easy to check that n0B2,2sn_{0}\in B^{s}_{2,2} for all s>1/2s>1/2 and n0(x)0n_{0}(x)\geq 0, the solution of system (1.1) with the initial data n0n_{0} can be roughly expressed as Figure 2:

Refer to caption
Figure 2: global solution

It is consistent with the existence of the global solution. And the above figure of the solution v(t,x)v(t,x) is similar to the exact single peakon of the form[23]

v(t,x)=a1e2β0|x+8β0a1ta2|v(t,x)=a_{1}e^{-2\beta_{0}|x+8\beta_{0}a_{1}t-a_{2}|}
Refer to caption
Figure 3: single peakon solution with a1=a2=1,β0=1a_{1}=a_{2}=1,\beta_{0}=1

References

  • [1] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
  • [2] R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11):1661–1664, 1993.
  • [3] A. Constantin. The Hamiltonian structure of the Camassa-Holm equation. Exposition. Math., 15(1):53–85, 1997.
  • [4] A. Constantin. On the scattering problem for the Camassa-Holm equation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457(2008):953–970, 2001.
  • [5] A. Constantin and J. Escher. Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(2):303–328, 1998.
  • [6] A. Constantin and J. Escher. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51(5):475–504, 1998.
  • [7] A. Constantin and R. I. Ivanov. On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A, 372(48):7129–7132, 2008.
  • [8] A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal., 192(1):165–186, 2009.
  • [9] A. Constantin and H. P. McKean. A shallow water equation on the circle. Comm. Pure Appl. Math., 52(8):949–982, 1999.
  • [10] R. Danchin. A few remarks on the Camassa-Holm equation. Differential Integral Equations, 14(8):953–988, 2001.
  • [11] A. Degasperis, D. D. Holm, and A. N. W. Hone. A new integrable equation with peakon solutions. (2), 2002.
  • [12] B. Fuchssteiner and A. S. Fokas. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4(1):47–66, 1981/82.
  • [13] X. Geng and B. Xue. An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity, 22(8):1847–1856, 2009.
  • [14] X. Geng and B. Xue. A three-component generalization of Camassa-Holm equation with NN-peakon solutions. Adv. Math., 226(1):827–839, 2011.
  • [15] X. Geng, B. Xue, and L. Wu. A super Camassa-Holm equation with NN-peakon solutions. Stud. Appl. Math., 130(1):1–16, 2013.
  • [16] G. Gui and Y. Liu. On the Cauchy problem for the Degasperis-Procesi equation. Quart. Appl. Math., 69(3):445–464, 2011.
  • [17] H. He and Z. Yin. On a generalized Camassa-Holm equation with the flow generated by velocity and its gradient. Appl. Anal., 96(4):679–701, 2017.
  • [18] D. Ionescu-Kruse. Variational derivation of two-component Camassa-Holm shallow water system. Appl. Anal., 92(6):1241–1253, 2013.
  • [19] J. Li and Z. Yin. Well-posedness and global existence for a generalized Degasperis-Procesi equation. Nonlinear Anal. Real World Appl., 28:72–90, 2016.
  • [20] H. Lundmark and J. Szmigielski. Multi-peakon solutions of the degasperis-procesi equation. Inverse Problems, 19(6), 2005.
  • [21] W. Luo and Z. Yin. Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Anal., 122:1–22, 2015.
  • [22] G. Rodríguez-Blanco. On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal., 46(3):309–327, 2001.
  • [23] B. Xue, H. Du, and X. Geng. New integrable peakon equation and its dynamic system. Appl. Math. Lett., 146:Paper No. 108795, 7, 2023.
  • [24] K. Yan and Z. Yin. On the Cauchy problem for a two-component Degasperis-Procesi system. J. Differential Equations, 252(3):2131–2159, 2012.
  • [25] Z. Yin. Global existence for a new periodic integrable equation. J. Math. Anal. Appl., 283(1):129–139, 2003.