This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\articleinfo

Version of May 6, 2021 thanks: This work was supported by JSPS KAKENHI Grant Numbers JP25887038, JP15K17554, JP18K18720 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. \rcvdate \rvsdate

The Laplacian on some self-conformal fractals
and Weyl’s asymptotics for its eigenvalues:
A survey of the analytic aspects

Naotaka Kajino Department of Mathematics, Graduate School of Science, Kobe University
Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan [email protected]
Abstract.

This article surveys the analytic aspects of the author’s recent studies on the construction and analysis of a “geometrically canonical” Laplacian on circle packing fractals invariant with respect to certain Kleinian groups (i.e., discrete groups of Möbius transformations on the Riemann sphere ^={}\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}), including the classical Apollonian gasket and some round Sierpiński carpets. The main result on Weyl’s asymptotics for its eigenvalues is of the same form as that by Oh and Shah [Invent. Math. 187 (2012), 1–35, Theorem 1.4] on the asymptotic distribution of the circles in a very large class of such fractals.

Key words and phrases:
Apollonian gasket, Kleinian groups, round Sierpiński carpets, Dirichlet forms, Laplacian, Weyl’s eigenvalue asymptotics
2010 Mathematics Subject Classification:
Primary 28A80, 35P20, 53C23; Secondary 31C25, 37B10, 60J35

1. Introduction

This article, which is a considerable expansion of [12], concerns the author’s recent studies in [11, 14, 15, 16] on Weyl’s eigenvalue asymptotics for a “geometrically canonical” Laplacian defined by the author on circle packing fractals which are invariant with respect to certain Kleinian groups (i.e., discrete groups of Möbius transformations on ^:={}\widehat{\mathbb{C}}:=\mathbb{C}\cup\{\infty\}), including the classical Apollonian gasket (Figure 1) and some round Sierpiński carpets (Figure 5). Here we focus on sketching the construction of the Laplacian, the proof of its uniqueness and basic properties, and the analytic aspects of the proof of the eigenvalue asymptotics; the reader is referred to [13] for a survey of the ergodic-theoretic aspects of the proof of the eigenvalue asymptotics.

This article is organized as follows. First in §2 we introduce the Apollonian gasket K(𝒟)K(\mathscr{D}) and recall its basic geometric properties. In §3, after a brief summary of how the Laplacian on K(𝒟)K(\mathscr{D}) was discovered by Teplyaev in [34], we give its definition and sketch the proof of the result in [14] that it is the infinitesimal generator of the unique strongly local, regular symmetric Dirichlet form over K(𝒟)K(\mathscr{D}) with respect to which the inclusion map K(𝒟)K(\mathscr{D})\hookrightarrow\mathbb{C} is harmonic on the complement of the three outmost vertices. In §4, we state the principal result in [14] that the Laplacian on K(𝒟)K(\mathscr{D}) satisfies Weyl’s eigenvalue asymptotics of the same form as the asymptotic distribution of the circles in K(𝒟)K(\mathscr{D}) by Oh and Shah in [30, Corollary 1.8], and sketch the proof of certain estimates on the eigenvalues required to conclude Weyl’s asymptotics by applying the ergodic-theoretic result explained in [13]. Finally, in §5 we present a partial extension of these results to the case of round Sierpiński carpets which are invariant with respect to certain concrete Kleinian groups.

Notation.

We use the following notation throughout this article.

  • (0)

    The symbols \subset and \supset for set inclusion allow the case of the equality.

  • (1)

    :={nn>0}\mathbb{N}:=\{n\in\mathbb{Z}\mid n>0\}, i.e., 00\not\in\mathbb{N}.

  • (2)

    ^:={}\widehat{\mathbb{C}}:=\mathbb{C}\cup\{\infty\} denotes the Riemann sphere.

  • (3)

    i:=1i:=\sqrt{-1} denotes the imaginary unit. The real and imaginary parts of zz\in\mathbb{C} are denoted by Rez\mathop{\mathrm{Re}}\nolimits z and Imz\mathop{\mathrm{Im}}\nolimits z, respectively.

  • (4)

    The cardinality (number of elements) of a set AA is denoted by #A\#A.

  • (5)

    Let EE be a non-empty set. We define idE:EE\mathrm{id}_{E}:E\to E by idE(x):=x\mathrm{id}_{E}(x):=x. For xEx\in E, we define 𝟏x=𝟏xEE\mathbf{1}_{x}=\mathbf{1}_{x}^{E}\in\mathbb{R}^{E} by 𝟏x(y):=𝟏xE(y):={1if y=x,0if yx.\mathbf{1}_{x}(y):=\mathbf{1}_{x}^{E}(y):=\bigl{\{}\begin{smallmatrix}1&\textrm{if $y=x$,}\\ 0&\textrm{if $y\not=x$.}\end{smallmatrix} For u:E[,+]u:E\to[-\infty,+\infty] we set usup:=usup,E:=supxE|u(x)|\|u\|_{\sup}:=\|u\|_{\sup,E}:=\sup_{x\in E}|u(x)|.

  • (6)

    Let EE be a topological space. The Borel σ\sigma-field of EE is denoted by (E)\mathscr{B}(E). For AEA\subset E, its interior, closure and boundary in EE are denoted by intEA\mathop{\mathrm{int}}\nolimits_{E}A, A¯E\overline{A}^{E} and EA\partial_{E}A, respectively, and when E=E=\mathbb{C} they are simply denoted by intA\mathop{\mathrm{int}}\nolimits A, A¯\overline{A} and A\partial A, respectively. We set 𝒞(E):={uu:Eu is continuous}\mathcal{C}(E):=\{u\mid\textrm{$u:E\to\mathbb{R}$, $u$ is continuous}\}, suppE[u]:=u1({0})¯E\mathop{\mathrm{supp}}\nolimits_{E}[u]:=\overline{u^{-1}(\mathbb{R}\setminus\{0\})}^{E} for u𝒞(E)u\in\mathcal{C}(E), and 𝒞c(E):={u𝒞(E)suppE[u] is compact}\mathcal{C}_{\mathrm{c}}(E):=\{u\in\mathcal{C}(E)\mid\textrm{$\mathop{\mathrm{supp}}\nolimits_{E}[u]$ is compact}\}.

  • (7)

    Let nn\in\mathbb{N}. The Lebesgue measure on (n,(n))(\mathbb{R}^{n},\mathscr{B}(\mathbb{R}^{n})) is denoted by voln\mathop{\mathrm{vol}}\nolimits_{n}. The Euclidean inner product and norm on n\mathbb{R}^{n} are denoted by ,\langle\cdot,\cdot\rangle and |||\cdot|, respectively. For AnA\subset\mathbb{R}^{n} and f:Af:A\to\mathbb{C} we set 𝐋𝐢𝐩Af:=supx,yA,xy|f(x)f(y)||xy|\mathop{\mathbf{Lip}}\nolimits_{A}f:=\sup_{x,y\in A,\,x\not=y}\frac{|f(x)-f(y)|}{|x-y|} (sup:=0\sup\emptyset:=0). For a non-empty open subset UU of n\mathbb{R}^{n} and u:Uu:U\to\mathbb{R} with 𝐋𝐢𝐩Uu<+\mathop{\mathbf{Lip}}\nolimits_{U}u<+\infty, the first-order partial derivatives of uu, which exist voln\mathop{\mathrm{vol}}\nolimits_{n}-a.e. on UU, are denoted by 1u,,nu\partial_{1}u,\ldots,\partial_{n}u, and we set u:=(1u,,nu)\nabla u:=(\partial_{1}u,\ldots,\partial_{n}u).

2. The Apollonian gasket and its fractal geometry

In this section, we introduce the Apollonian gasket and state its geometric properties needed for our purpose. The same framework is presented also in [13, Section 2], but we repeat it here for the reader’s convenience. The following definition and proposition form the basis of the construction and further detailed studies of the Apollonian gasket.

Definition 2.1 (tangential disk triple).
  • (0)

    We set S:={1,2,3}S:=\{1,2,3\}.

  • (1)

    Let D1,D2,D3D_{1},D_{2},D_{3}\subset\mathbb{C} be either three open disks or two open disks and an open half-plane. The triple 𝒟:=(D1,D2,D3)\mathscr{D}:=(D_{1},D_{2},D_{3}) of such sets is called a tangential disk triple if and only if #(Dj¯Dk¯)=1\#(\overline{D_{j}}\cap\overline{D_{k}})=1 (i.e., DjD_{j} and DkD_{k} are externally tangent) for any j,kSj,k\in S with jkj\not=k. If 𝒟\mathscr{D} is such a triple consisting of three disks, then the open triangle in \mathbb{C} with vertices the centers of D1,D2,D3D_{1},D_{2},D_{3} is denoted by (𝒟)\triangle(\mathscr{D}).

  • (2)

    Let 𝒟=(D1,D2,D3)\mathscr{D}=(D_{1},D_{2},D_{3}) be a tangential disk triple. The open subset jSDj¯\mathbb{C}\setminus\bigcup_{j\in S}\overline{D_{j}} of \mathbb{C} is then easily seen to have a unique bounded connected component, which is denoted by T(𝒟)T(\mathscr{D}) and called the ideal triangle associated with 𝒟\mathscr{D}. We also set {qj(𝒟)}:=Dk¯Dl¯\{q_{j}(\mathscr{D})\}:=\overline{D_{k}}\cap\overline{D_{l}} for each (j,k,l){(1,2,3),(2,3,1),(3,1,2)}(j,k,l)\in\{(1,2,3),(2,3,1),(3,1,2)\} and V0(𝒟):={qj(𝒟)jS}V_{0}(\mathscr{D}):=\{q_{j}(\mathscr{D})\mid j\in S\}.

  • (3)

    A tangential disk triple 𝒟=(D1,D2,D3)\mathscr{D}=(D_{1},D_{2},D_{3}) is called positively oriented if and only if its associated ideal triangle T(𝒟)T(\mathscr{D}) is to the left of T(𝒟)\partial T(\mathscr{D}) when T(𝒟)\partial T(\mathscr{D}) is oriented so as to have {qj(𝒟)}j=13\{q_{j}(\mathscr{D})\}_{j=1}^{3} in this order.

Finally, we define

𝖳𝖣𝖳+\displaystyle\mathsf{TDT}^{+} :={𝒟𝒟 is a positively oriented tangential disk triple},\displaystyle:=\{\mathscr{D}\mid\textrm{$\mathscr{D}$ is a positively oriented tangential disk triple}\},
𝖳𝖣𝖳\displaystyle\mathsf{TDT}^{\oplus} :={𝒟𝒟=(D1,D2,D3)𝖳𝖣𝖳+D1,D2,D3 are disks}.\displaystyle:=\{\mathscr{D}\mid\textrm{$\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{+}$, $D_{1},D_{2},D_{3}$ are disks}\}.

The following proposition is classical and can be shown by some elementary (though lengthy) Euclidean-geometric arguments. We set rad(D):=r\mathop{\mathrm{rad}}\nolimits(D):=r and curv(D):=r1\mathop{\mathrm{curv}}\nolimits(D):=r^{-1} for each open disk DD\subset\mathbb{C} of radius r(0,+)r\in(0,+\infty) and curv(D):=0\mathop{\mathrm{curv}}\nolimits(D):=0 for each open half-plane DD\subset\mathbb{C}.

Proposition 2.2.

Let 𝒟=(D1,D2,D3)𝖳𝖣𝖳+\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{+}, set (α,β,γ):=(curv(D1),curv(D2),curv(D3))(\alpha,\beta,\gamma):=\bigl{(}\mathop{\mathrm{curv}}\nolimits(D_{1}),\mathop{\mathrm{curv}}\nolimits(D_{2}),\mathop{\mathrm{curv}}\nolimits(D_{3})\bigr{)} and set κ:=κ(𝒟):=βγ+γα+αβ\kappa:=\kappa(\mathscr{D}):=\sqrt{\beta\gamma+\gamma\alpha+\alpha\beta}.

  • (1)

    Let Dcir(𝒟)D_{\mathrm{cir}}(\mathscr{D})\subset\mathbb{C} denote the circumscribed disk of T(𝒟)T(\mathscr{D}), i.e., the unique open disk with {q1(𝒟),q2(𝒟),q3(𝒟)}Dcir(𝒟)\{q_{1}(\mathscr{D}),q_{2}(\mathscr{D}),q_{3}(\mathscr{D})\}\subset\partial D_{\mathrm{cir}}(\mathscr{D}). Then T(𝒟)¯{q1(𝒟),q2(𝒟),q3(𝒟)}Dcir(𝒟)\overline{T(\mathscr{D})}\setminus\{q_{1}(\mathscr{D}),q_{2}(\mathscr{D}),q_{3}(\mathscr{D})\}\subset D_{\mathrm{cir}}(\mathscr{D}), Dcir(𝒟)\partial D_{\mathrm{cir}}(\mathscr{D}) is orthogonal to Dj\partial D_{j} for any jSj\in S, and curv(Dcir(𝒟))=κ\mathop{\mathrm{curv}}\nolimits(D_{\mathrm{cir}}(\mathscr{D}))=\kappa.

  • (2)

    There exists a unique inscribed disk Din(𝒟)D_{\mathrm{in}}(\mathscr{D}) of T(𝒟)T(\mathscr{D}), i.e., a unique open disk Din(𝒟)D_{\mathrm{in}}(\mathscr{D})\subset\mathbb{C} such that Din(𝒟)T(𝒟)D_{\mathrm{in}}(\mathscr{D})\subset T(\mathscr{D}) and #(Din(𝒟)¯Dj¯)=1\#(\overline{D_{\mathrm{in}}(\mathscr{D})}\cap\overline{D_{j}})=1 for any jSj\in S. Moreover, curv(Din(𝒟))=α+β+γ+2κ\mathop{\mathrm{curv}}\nolimits(D_{\mathrm{in}}(\mathscr{D}))=\alpha+\beta+\gamma+2\kappa.

The following notation is standard in studying self-similar sets.

Definition 2.3.
  • (1)

    We set W0:={}W_{0}:=\{\emptyset\}, where \emptyset is an element called the empty word, Wm:=SmW_{m}:=S^{m} for mm\in\mathbb{N} and W:=m{0}WmW_{*}:=\bigcup_{m\in\mathbb{N}\cup\{0\}}W_{m}. For wWw\in W_{*}, the unique m{0}m\in\mathbb{N}\cup\{0\} satisfying wWmw\in W_{m} is denoted by |w||w| and called the length of ww.

  • (2)

    Let w,vWw,v\in W_{*}, w=w1wmw=w_{1}\ldots w_{m}, v=v1vnv=v_{1}\ldots v_{n}. We define wvWwv\in W_{*} by wv:=w1wmv1vnwv:=w_{1}\ldots w_{m}v_{1}\ldots v_{n} (w:=ww\emptyset:=w, v:=v\emptyset v:=v). We also define w(1)w(k)w^{(1)}\ldots w^{(k)} for k3k\geq 3 and w(1),,w(k)Ww^{(1)},\ldots,w^{(k)}\in W_{*} inductively by w(1)w(k):=(w(1)w(k1))w(k)w^{(1)}\ldots w^{(k)}:=(w^{(1)}\ldots w^{(k-1)})w^{(k)}. For wWw\in W_{*} and n{0}n\in\mathbb{N}\cup\{0\} we set wn:=wwWn|w|w^{n}:=w\ldots w\in W_{n|w|}. We write wvw\leq v if and only if w=vτw=v\tau for some τW\tau\in W_{*}, and write wvw\not\asymp v if and only if neither wvw\leq v nor vwv\leq w holds.

Proposition 2.2-(2) enables us to define natural “contraction maps” Φw:𝖳𝖣𝖳+𝖳𝖣𝖳+\Phi_{w}:\mathsf{TDT}^{+}\to\mathsf{TDT}^{+} for each wWw\in W_{*}, which in turn is used to define the Apollonian gasket K(𝒟)K(\mathscr{D}) associated with 𝒟𝖳𝖣𝖳+\mathscr{D}\in\mathsf{TDT}^{+}, as follows.

Definition 2.4.

We define maps Φ1,Φ2,Φ3:𝖳𝖣𝖳+𝖳𝖣𝖳+\Phi_{1},\Phi_{2},\Phi_{3}:\mathsf{TDT}^{+}\to\mathsf{TDT}^{+} by

{Φ1(𝒟):=(Din(𝒟),D2,D3),Φ2(𝒟):=(D1,Din(𝒟),D3),𝒟=(D1,D2,D3)𝖳𝖣𝖳+.Φ3(𝒟):=(D1,D2,Din(𝒟)),\begin{cases}\Phi_{1}(\mathscr{D}):=(D_{\mathrm{in}}(\mathscr{D}),D_{2},D_{3}),\\ \Phi_{2}(\mathscr{D}):=(D_{1},D_{\mathrm{in}}(\mathscr{D}),D_{3}),\quad\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{+}.\\ \Phi_{3}(\mathscr{D}):=(D_{1},D_{2},D_{\mathrm{in}}(\mathscr{D})),\end{cases} (2.1)

We also set Φw:=ΦwmΦw1\Phi_{w}:=\Phi_{w_{m}}\circ\cdots\circ\Phi_{w_{1}} (Φ:=id𝖳𝖣𝖳+\Phi_{\emptyset}:=\mathrm{id}_{\mathsf{TDT}^{+}}) and 𝒟w:=Φw(𝒟)\mathscr{D}_{w}:=\Phi_{w}(\mathscr{D}) for w=w1wmWw=w_{1}\ldots w_{m}\in W_{*} and 𝒟𝖳𝖣𝖳+\mathscr{D}\in\mathsf{TDT}^{+}.

Refer to caption
Refer to caption
a Examples without a half-plane
Refer to caption
b Example with a half-plane
Figure 1. The Apollonian gaskets K(𝒟)K(\mathscr{D}) associated with 𝒟𝖳𝖣𝖳+\mathscr{D}\in\mathsf{TDT}^{+}
Definition 2.5 (Apollonian gasket).

Let 𝒟𝖳𝖣𝖳+\mathscr{D}\in\mathsf{TDT}^{+}. We define the Apollonian gasket K(𝒟)K(\mathscr{D}) associated with 𝒟\mathscr{D} (see Figure 1) by

K(𝒟):=T(𝒟)¯wWDin(𝒟w)=mwWmT(𝒟w)¯.K(\mathscr{D}):=\overline{T(\mathscr{D})}\setminus\bigcup\nolimits_{w\in W_{*}}D_{\mathrm{in}}(\mathscr{D}_{w})=\bigcap\nolimits_{m\in\mathbb{N}}\bigcup\nolimits_{w\in W_{m}}\overline{T(\mathscr{D}_{w})}. (2.2)

The curvatures of the disks involved in (2.2) admit the following simple expression.

Definition 2.6.

We define 4×44\times 4 real matrices M1,M2,M3M_{1},M_{2},M_{3} by

M1:=(1000110110112001),M2:=(1101010001110201),M3:=(1011011100100021)M_{1}:=\begin{pmatrix}1&0&0&0\\ 1&1&0&1\\ 1&0&1&1\\ 2&0&0&1\end{pmatrix},\mspace{10.0mu}M_{2}:=\begin{pmatrix}1&1&0&1\\ 0&1&0&0\\ 0&1&1&1\\ 0&2&0&1\end{pmatrix},\mspace{10.0mu}M_{3}:=\begin{pmatrix}1&0&1&1\\ 0&1&1&1\\ 0&0&1&0\\ 0&0&2&1\end{pmatrix} (2.3)

and set Mw:=Mw1MwmM_{w}:=M_{w_{1}}\cdots M_{w_{m}} for w=w1wmWw=w_{1}\ldots w_{m}\in W_{*} (M:=id4×4M_{\emptyset}:=\mathrm{id}_{4\times 4}). Note that then for any n{0}n\in\mathbb{N}\cup\{0\} we easily obtain

M1n=(1000n210nn201n2n001),M2n=(1n20n01000n21n02n01),M3n=(10n2n01n2n0010002n1).M_{1^{n}}=\begin{pmatrix}1&0&0&0\\ n^{2}&1&0&n\\ n^{2}&0&1&n\\ 2n&0&0&1\end{pmatrix},\mspace{10.0mu}M_{2^{n}}=\begin{pmatrix}1&n^{2}&0&n\\ 0&1&0&0\\ 0&n^{2}&1&n\\ 0&2n&0&1\end{pmatrix},\mspace{10.0mu}M_{3^{n}}=\begin{pmatrix}1&0&n^{2}&n\\ 0&1&n^{2}&n\\ 0&0&1&0\\ 0&0&2n&1\end{pmatrix}. (2.4)
Proposition 2.7.

Let 𝒟=(D1,D2,D3)𝖳𝖣𝖳+\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{+}, let α,β,γ,κ\alpha,\beta,\gamma,\kappa be as in Proposition 2.2, let wWw\in W_{*} and (Dw,1,Dw,2,Dw,3):=𝒟w(D_{w,1},D_{w,2},D_{w,3}):=\mathscr{D}_{w}. Then

(curv(Dw,1),curv(Dw,2),curv(Dw,3),κ(𝒟w))=(α,β,γ,κ)Mw.\bigl{(}\mathop{\mathrm{curv}}\nolimits(D_{w,1}),\mathop{\mathrm{curv}}\nolimits(D_{w,2}),\mathop{\mathrm{curv}}\nolimits(D_{w,3}),\kappa(\mathscr{D}_{w})\bigr{)}=(\alpha,\beta,\gamma,\kappa)M_{w}. (2.5)
Proof.

This follows by an induction in |w||w| using Proposition 2.2-(2) and Definition 2.4. ∎

We next collect basic facts regarding the Hausdorff dimension and measure of K(𝒟)K(\mathscr{D}). For each s(0,+)s\in(0,+\infty) let s:2[0,+]\mathscr{H}^{s}:2^{\mathbb{C}}\to[0,+\infty] denote the ss-dimensional Hausdorff (outer) measure on \mathbb{C} with respect to the Euclidean metric, and for each AA\subset\mathbb{C} let dimHA\dim_{\mathrm{H}}A denote its Hausdorff dimension; see, e.g., [25, Chapters 4–7] for details. As is well known, it easily follows from the definition of s\mathscr{H}^{s} that the image f(A)f(A) of AA\subset\mathbb{C} by f:Af:A\to\mathbb{C} with 𝐋𝐢𝐩Af<+\mathop{\mathbf{Lip}}\nolimits_{A}f<+\infty satisfies s(f(A))(𝐋𝐢𝐩Af)ss(A)\mathscr{H}^{s}(f(A))\leq(\mathop{\mathbf{Lip}}\nolimits_{A}f)^{s}\mathscr{H}^{s}(A) for any s(0,+)s\in(0,+\infty) and hence in particular dimHf(A)dimHA\dim_{\mathrm{H}}f(A)\leq\dim_{\mathrm{H}}A. On the basis of this observation, we easily get the following lemma.

Lemma 2.8.

Let 𝒟,𝒟𝖳𝖣𝖳+\mathscr{D},\mathscr{D}^{\prime}\in\mathsf{TDT}^{+}. Then there exists c(0,+)c\in(0,+\infty) such that s(K(𝒟))css(K(𝒟))\mathscr{H}^{s}(K(\mathscr{D}))\leq c^{s}\mathscr{H}^{s}(K(\mathscr{D}^{\prime})) for any s(0,+)s\in(0,+\infty). In particular, dimHK(𝒟)=dimHK(𝒟)\dim_{\mathrm{H}}K(\mathscr{D})=\dim_{\mathrm{H}}K(\mathscr{D}^{\prime}).

Proof.

Let f𝒟,𝒟f_{\mathscr{D}^{\prime},\mathscr{D}} denote the unique orientation-preserving Möbius transformation on ^\widehat{\mathbb{C}} such that f𝒟,𝒟(qj(𝒟))=qj(𝒟)f_{\mathscr{D}^{\prime},\mathscr{D}}(q_{j}(\mathscr{D}^{\prime}))=q_{j}(\mathscr{D}) for any jSj\in S. Then f𝒟,𝒟(K(𝒟))=K(𝒟)f_{\mathscr{D}^{\prime},\mathscr{D}}(K(\mathscr{D}^{\prime}))=K(\mathscr{D}), since a Möbius transformation on ^\widehat{\mathbb{C}} maps any open disk in ^\widehat{\mathbb{C}} onto another. Now the assertion follows from the observation in the last paragraph and 𝐋𝐢𝐩Dcir(𝒟)¯f𝒟,𝒟<+\mathop{\mathbf{Lip}}\nolimits_{\overline{D_{\mathrm{cir}}(\mathscr{D}^{\prime})}}f_{\mathscr{D}^{\prime},\mathscr{D}}<+\infty. ∎

Definition 2.9.

Noting Lemma 2.8, we define

d𝖠𝖦:=dimHK(𝒟),where 𝒟𝖳𝖣𝖳+ is arbitrary.d_{\mathsf{AG}}:=\dim_{\mathrm{H}}K(\mathscr{D}),\qquad\textrm{where $\mathscr{D}\in\mathsf{TDT}^{+}$ is arbitrary.} (2.6)
Theorem 2.10 (Boyd [2]; see also [7, 26, 27]).
1.300197<d𝖠𝖦<1.314534.1.300197<d_{\mathsf{AG}}<1.314534. (2.7)

Moreover, for the d𝖠𝖦d_{\mathsf{AG}}-dimensional Hausdorff measure d𝖠𝖦(K(𝒟))\mathscr{H}^{d_{\mathsf{AG}}}(K(\mathscr{D})) of K(𝒟)K(\mathscr{D}) we have the following theorem, which was proved first by Sullivan [33] through considerations on the isometric action of Möbius transformations on the three-dimensional hyperbolic space, and later by Mauldin and Urbański [26] through purely two-dimensional arguments.

Theorem 2.11 ([33, Theorem 2], [26, Theorem 2.6]).
0<d𝖠𝖦(K(𝒟))<+for any 𝒟𝖳𝖣𝖳+.0<\mathscr{H}^{d_{\mathsf{AG}}}(K(\mathscr{D}))<+\infty\qquad\textrm{for any $\mathscr{D}\in\mathsf{TDT}^{+}$.} (2.8)
Remark 2.12.

The self-conformality of K(𝒟)K(\mathscr{D}) is required most crucially in the proof of Theorem 2.11, and is heavily used further to obtain certain equicontinuity properties of {d𝖠𝖦(K(𝒟w))}wW\{\mathscr{H}^{d_{\mathsf{AG}}}(K(\mathscr{D}_{w}))\}_{w\in W_{*}} as a family of functions of (curv(D1),curv(D2),curv(D3))\bigl{(}\mathop{\mathrm{curv}}\nolimits(D_{1}),\mathop{\mathrm{curv}}\nolimits(D_{2}),\mathop{\mathrm{curv}}\nolimits(D_{3})\bigr{)}, where (D1,D2,D3):=𝒟(D_{1},D_{2},D_{3}):=\mathscr{D}. This equicontinuity is the key to verifying the ergodic-theoretic assumptions of Kesten’s renewal theorem [19, Theorem 2], which is then applied to conclude Theorem 4.4 below.

3. The canonical Dirichlet form on the Apollonian gasket

In this section, we introduce the canonical Dirichlet form on the Apollonian gasket K(𝒟)K(\mathscr{D}), whose infinitesimal generator is our Laplacian on K(𝒟)K(\mathscr{D}), and state its properties established by the author in [14]; see [6, 4] for the basics of the theory of regular symmetric Dirichlet forms.

Before giving its actual definition, we briefly summarize how it has been discovered. The initial idea for its construction was suggested by the theory of analysis on the harmonic Sierpiński gasket KK_{\mathcal{H}} (Figure 2, right) due to Kigami [20, 22]. This is a compact subset of \mathbb{C} defined as the image of a harmonic map Φ:K\Phi:K\to\mathbb{C} from the Sierpiński gasket KK (Figure 2, left) to \mathbb{C}. More precisely, let V0={q1,q2,q3}V_{0}=\{q_{1},q_{2},q_{3}\} be the set of the three outmost vertices of KK, let (,)(\mathcal{E},\mathcal{F}) be the (self-similar) standard Dirichlet form on KK (so that \mathcal{F} is known to be a dense subalgebra of (𝒞(K),sup)(\mathcal{C}(K),\|\cdot\|_{\sup})), and let h1K,h2Kh^{K}_{1},h^{K}_{2}\in\mathcal{F} be \mathcal{E}-harmonic on KV0K\setminus V_{0} and satisfy (hjK,hkK)=δjk\mathcal{E}(h^{K}_{j},h^{K}_{k})=\delta_{jk} for any j,k{1,2}j,k\in\{1,2\} (see [10, Sections 2 and 3] and the references therein for details). Then we can define a continuous map Φ:K\Phi:K\to\mathbb{C} by Φ(x):=(h1K(x),h2K(x))\Phi(x):=\bigl{(}h^{K}_{1}(x),h^{K}_{2}(x)\bigr{)}, and its image K:=Φ(K)K_{\mathcal{H}}:=\Phi(K) is called the harmonic Sierpiński gasket.

Refer to caption
Φ:=(h1Kh2K):KK\Phi:=\biggl{(}\begin{matrix}h^{K}_{1}\\ h^{K}_{2}\end{matrix}\biggr{)}:K\to K_{\mathcal{H}}\hookrightarrow\mathbb{C}hjKh^{K}_{j}: \mathcal{E}-harmonic on KV0K\setminus V_{0}(hjK,hkK)=δjk\mathcal{E}(h^{K}_{j},h^{K}_{k})=\delta_{jk}
Refer to caption
Figure 2. Sierpiński gasket KK and harmonic Sierpiński gasket KK_{\mathcal{H}}

In fact, Kigami has proved in [20, Theorem 3.6] that Φ:KK\Phi:K\to K_{\mathcal{H}} is injective and hence a homeomorphism, and further in [20, Theorem 4.1] that a one-dimensional, measure-theoretic “Riemannian structure” can be defined on KK through the embedding Φ\Phi and the \mathcal{E}-energy measure μ\mu111μ\mu was first introduced in [24] and is called the Kusuoka measure on KK. of Φ\Phi, which plays the role of the “Riemannian volume measure” and is given by

μ:=μh1K+μh2K=|Φ|2dvol;\mu:=\mu_{\langle h^{K}_{1}\rangle}+\mu_{\langle h^{K}_{2}\rangle}=\textrm{``}|\nabla\Phi|^{2}\,d\mathop{\mathrm{vol}}\nolimits\textrm{''}; (3.1)

here μu\mu_{\langle u\rangle} denotes the \mathcal{E}-energy measure of uu\in\mathcal{F} playing the role of “|u|2dvol|\nabla u|^{2}\,d\mathop{\mathrm{vol}}\nolimits” and defined as the unique Borel measure on KK such that

Kf𝑑μu=(fu,u)12(f,u2)for any f.\int_{K}f\,d\mu_{\langle u\rangle}=\mathcal{E}(fu,u)-\frac{1}{2}\mathcal{E}(f,u^{2})\qquad\textrm{for any $f\in\mathcal{F}$.} (3.2)

Kigami has also proved in [22, Theorem 6.3] that the heat kernel of (K,μ,,)(K,\mu,\mathcal{E},\mathcal{F}) satisfies the two-sided Gaussian estimate of the same form as for Riemannian manifolds, and further detailed studies of (K,μ,,)(K,\mu,\mathcal{E},\mathcal{F}) have been done in [9, 23, 10]; see [10] and the references therein for details.

As observed from Figures 1 and 2, the overall geometric structure of the Apollonian gasket K(𝒟)K(\mathscr{D}) resembles that of the harmonic Sierpiński gasket KK_{\mathcal{H}}, and then it is natural to expect that the above-mentioned framework of the measurable Riemannian structure on KK induced by the embedding Φ:KK\Phi:K\to K_{\mathcal{H}} can be adapted to the setting of K(𝒟)K(\mathscr{D}) for 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus} to construct a “geometrically canonical” Dirichlet form on K(𝒟)K(\mathscr{D}). Namely, it is expected that there exists a non-zero strongly local regular symmetric Dirichlet form (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) over K(𝒟)K(\mathscr{D}) with respect to which the coordinate functions Re()|K(𝒟),Im()|K(𝒟)\mathop{\mathrm{Re}}\nolimits(\cdot)|_{K(\mathscr{D})},\mathop{\mathrm{Im}}\nolimits(\cdot)|_{K(\mathscr{D})} are harmonic on K(𝒟)V0(𝒟)K(\mathscr{D})\setminus V_{0}(\mathscr{D}). The possibility of such a construction was first noted by Teplyaev in [34, Theorem 5.17], and in [14] the author has completed the construction of (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) and further proved its uniqueness and concrete identification, summarized as follows. We start with some definitions.

Definition 3.1.
  • (1)

    A subset CC of \mathbb{C} is called a circular arc if and only if C={z0+reiθθ[α,β]}C=\{z_{0}+re^{i\theta}\mid\theta\in[\alpha,\beta]\} for some z0z_{0}\in\mathbb{C}, r(0,+)r\in(0,+\infty) and α,β\alpha,\beta\in\mathbb{R} with α<β\alpha<\beta. In this case we set cent(C):=z0\mathop{\mathrm{cent}}\nolimits(C):=z_{0}, rad(C):=r\mathop{\mathrm{rad}}\nolimits(C):=r and DC:=int{(1t)cent(C)+tzzCt[0,1]}D_{C}:=\mathop{\mathrm{int}}\nolimits\{(1-t)\mathop{\mathrm{cent}}\nolimits(C)+tz\mid\textrm{$z\in C$, $t\in[0,1]$}\}.

  • (2)

    For a circular arc CC, the length measure on (C,(C))(C,\mathscr{B}(C)) is denoted by C1\mathscr{H}^{1}_{C}, the gradient vector along CC at xCx\in C of a function u:Cu:C\to\mathbb{R} is denoted by Cu(x)\nabla_{C}u(x) provided uu is differentiable at xx, and we set W1,2(C):={uCu is a.c. on C|Cu|L2(C,C1)}W^{1,2}(C):=\{u\in\mathbb{R}^{C}\mid\textrm{$u$ is a.c.\ on $C$, $|\nabla_{C}u|\in L^{2}(C,\mathscr{H}^{1}_{C})$}\}, where “a.c.” is an abbreviation of “absolutely continuous”.

  • (3)

    We define h1,h2:h_{1},h_{2}:\mathbb{C}\to\mathbb{R} by h1(z):=Rezh_{1}(z):=\mathop{\mathrm{Re}}\nolimits z and h2(z):=Imzh_{2}(z):=\mathop{\mathrm{Im}}\nolimits z.

Definition 3.2.

Let 𝒟=(D1,D2,D3)𝖳𝖣𝖳\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{\oplus}. We define

𝒜𝒟:={T(𝒟)¯DjjS}{Din(𝒟w)wW}\mathscr{A}_{\mathscr{D}}:=\{\overline{T(\mathscr{D})}\cap\partial D_{j}\mid j\in S\}\cup\{\partial D_{\mathrm{in}}(\mathscr{D}_{w})\mid w\in W_{*}\} (3.3)

and set K0(𝒟):=C𝒜𝒟CK^{0}(\mathscr{D}):=\bigcup_{C\in\mathscr{A}_{\mathscr{D}}}C, so that each C𝒜𝒟C\in\mathscr{A}_{\mathscr{D}} is a circular arc, C𝒜𝒟DC=(𝒟)K(𝒟)\bigcup_{C\in\mathscr{A}_{\mathscr{D}}}D_{C}=\triangle(\mathscr{D})\setminus K(\mathscr{D}), C,A𝒜𝒟,CA(CA)=wWV0(𝒟w)\bigcup_{C,A\in\mathscr{A}_{\mathscr{D}},\,C\not=A}(C\cap A)=\bigcup_{w\in W_{*}}V_{0}(\mathscr{D}_{w}), and an induction in |w||w| easily shows that for any wWw\in W_{*},

𝒜𝒟w={CK(𝒟w)C𝒜𝒟}{}.\mathscr{A}_{\mathscr{D}_{w}}=\{C\cap K(\mathscr{D}_{w})\mid C\in\mathscr{A}_{\mathscr{D}}\}\setminus\{\emptyset\}. (3.4)

The canonical Dirichlet form (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) on K(𝒟)K(\mathscr{D}) and the associated “Riemannian volume measure” similar to (3.1) turn out to be expressed explicitly in terms of the circle packing structure of K(𝒟)K(\mathscr{D}), as follows.

Definition 3.3 (cf. [14, Theorems 5.11 and 5.13]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}.

  • (1)

    We define a Borel measure μ𝒟\mu^{\mathscr{D}} on K(𝒟)K(\mathscr{D}) by

    μ𝒟:=C𝒜𝒟rad(C)C1(C),\mu^{\mathscr{D}}:=\sum\nolimits_{C\in\mathscr{A}_{\mathscr{D}}}\mathop{\mathrm{rad}}\nolimits(C)\mathscr{H}^{1}_{C}(\cdot\cap C), (3.5)

    so that for any wWw\in W_{*} we have μ𝒟(K(𝒟w))=2vol2((𝒟w))\mu^{\mathscr{D}}(K(\mathscr{D}_{w}))=2\mathop{\mathrm{vol}}\nolimits_{2}(\triangle(\mathscr{D}_{w})) by (3.4), C𝒜𝒟wDC=(𝒟w)K(𝒟w)\bigcup_{C\in\mathscr{A}_{\mathscr{D}_{w}}}D_{C}=\triangle(\mathscr{D}_{w})\setminus K(\mathscr{D}_{w}) and vol2(K(𝒟w))=0\mathop{\mathrm{vol}}\nolimits_{2}(K(\mathscr{D}_{w}))=0.

  • (2)

    For each uK0(𝒟)u\in\mathbb{R}^{K^{0}(\mathscr{D})} with u|Cu|_{C} a.c. on CC for any C𝒜𝒟C\in\mathscr{A}_{\mathscr{D}}, we define a μ𝒟\mu^{\mathscr{D}}-a.e. defined, 2\mathbb{R}^{2}-valued Borel measurable map 𝒟u\nabla_{\mathscr{D}}u by (𝒟u)|C:=C(u|C)(\nabla_{\mathscr{D}}u)|_{C}:=\nabla_{C}(u|_{C}) for each C𝒜𝒟C\in\mathscr{A}_{\mathscr{D}}, so that |𝒟u|2dμ𝒟=C𝒜𝒟|C(u|C)|2rad(C)dC1|\nabla_{\mathscr{D}}u|^{2}\,d\mu^{\mathscr{D}}=\sum_{C\in\mathscr{A}_{\mathscr{D}}}|\nabla_{C}(u|_{C})|^{2}\mathop{\mathrm{rad}}\nolimits(C)\,d\mathscr{H}^{1}_{C}. Then we further define

    𝒟:=W𝒟1,2:={uK0(𝒟)|u|CW1,2(C) for any C𝒜𝒟|𝒟u|L2(K(𝒟),μ𝒟)}\mathcal{F}_{\mathscr{D}}:=W^{1,2}_{\mathscr{D}}:=\biggl{\{}u\in\mathbb{R}^{K^{0}(\mathscr{D})}\biggm{|}\begin{minipage}{138.9pt} $u|_{C}\in W^{1,2}(C)$ for any $C\in\mathscr{A}_{\mathscr{D}}$, $|\nabla_{\mathscr{D}}u|\in L^{2}(K(\mathscr{D}),\mu^{\mathscr{D}})$ \end{minipage}\biggr{\}} (3.6)

    and set 𝒞𝒟:={u𝒞(K(𝒟))u|K0(𝒟)𝒟}\mathcal{C}_{\mathscr{D}}:=\{u\in\mathcal{C}(K(\mathscr{D}))\mid u|_{K^{0}(\mathscr{D})}\in\mathcal{F}_{\mathscr{D}}\} and 𝒞𝒟lip:={u𝒞(K(𝒟))𝐋𝐢𝐩K(𝒟)u<+}\mathcal{C}^{\mathrm{lip}}_{\mathscr{D}}:=\{u\in\mathcal{C}(K(\mathscr{D}))\mid\mathop{\mathbf{Lip}}\nolimits_{K(\mathscr{D})}u<+\infty\}, which are considered as linear subspaces of 𝒟\mathcal{F}_{\mathscr{D}} through the linear injection 𝒞(K(𝒟))uu|K0(𝒟)K0(𝒟)\mathcal{C}(K(\mathscr{D}))\ni u\mapsto u|_{K^{0}(\mathscr{D})}\in\mathbb{R}^{K^{0}(\mathscr{D})}. Noting that 𝒟u,𝒟vL1(K(𝒟),μ𝒟)\langle\nabla_{\mathscr{D}}u,\nabla_{\mathscr{D}}v\rangle\in L^{1}(K(\mathscr{D}),\mu^{\mathscr{D}}) for any u,v𝒟u,v\in\mathcal{F}_{\mathscr{D}}, we also define a bilinear form 𝒟:𝒟×𝒟\mathcal{E}^{\mathscr{D}}:\mathcal{F}_{\mathscr{D}}\times\mathcal{F}_{\mathscr{D}}\to\mathbb{R} on 𝒟\mathcal{F}_{\mathscr{D}} by

    𝒟(u,v):=K(𝒟)𝒟u,𝒟v𝑑μ𝒟=C𝒜𝒟CC(u|C),C(v|C)rad(C)dC1.\begin{split}\mathcal{E}^{\mathscr{D}}(u,v):=&\int_{K(\mathscr{D})}\langle\nabla_{\mathscr{D}}u,\nabla_{\mathscr{D}}v\rangle\,d\mu^{\mathscr{D}}\\ =&\sum\nolimits_{C\in\mathscr{A}_{\mathscr{D}}}\int_{C}\langle\nabla_{C}(u|_{C}),\nabla_{C}(v|_{C})\rangle\mathop{\mathrm{rad}}\nolimits(C)\,d\mathscr{H}^{1}_{C}.\end{split} (3.7)

    In particular, setting dμu𝒟:=|𝒟u|2dμ𝒟d\mu^{\mathscr{D}}_{\langle u\rangle}:=|\nabla_{\mathscr{D}}u|^{2}\,d\mu^{\mathscr{D}} for each u𝒟u\in\mathcal{F}_{\mathscr{D}}, we have μ𝒟=μh1|K(𝒟)𝒟+μh2|K(𝒟)𝒟\mu^{\mathscr{D}}=\mu^{\mathscr{D}}_{\langle h_{1}|_{K(\mathscr{D})}\rangle}+\mu^{\mathscr{D}}_{\langle h_{2}|_{K(\mathscr{D})}\rangle} as the counterpart of (3.1) for K(𝒟)K(\mathscr{D}).

Theorem 3.4 ([14, Theorem 5.18]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus} and set 𝒟,00:={u𝒟u|V0(𝒟)=0}\mathcal{F}_{\mathscr{D},0}^{0}:=\{u\in\mathcal{F}_{\mathscr{D}}\mid u|_{V_{0}(\mathscr{D})}=0\}. Then (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) is an irreducible, strongly local, regular symmetric Dirichlet form on L2(K(𝒟),μ𝒟)L^{2}(K(\mathscr{D}),\mu^{\mathscr{D}}) with a core 𝒞𝒟lip\mathcal{C}^{\mathrm{lip}}_{\mathscr{D}}, and

K(𝒟)u2𝑑μ𝒟40κ(𝒟)2𝒟(u,u)for any u𝒟,00.\int_{K(\mathscr{D})}u^{2}\,d\mu^{\mathscr{D}}\leq 40\kappa(\mathscr{D})^{-2}\mathcal{E}^{\mathscr{D}}(u,u)\qquad\textrm{for any $u\in\mathcal{F}_{\mathscr{D},0}^{0}$.} (3.8)

Moreover, the inclusion map 𝒟L2(K(𝒟),μ𝒟)\mathcal{F}_{\mathscr{D}}\hookrightarrow L^{2}(K(\mathscr{D}),\mu^{\mathscr{D}}) is a compact linear operator under the norm u𝒟:=(𝒟(u,u)+K(𝒟)u2𝑑μ𝒟)1/2\|u\|_{\mathcal{F}_{\mathscr{D}}}:=(\mathcal{E}^{\mathscr{D}}(u,u)+\int_{K(\mathscr{D})}u^{2}\,d\mu^{\mathscr{D}})^{1/2} on 𝒟\mathcal{F}_{\mathscr{D}}.

Theorem 3.5 ([14, Theorem 5.23]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}, let μ\mu^{\prime} be a finite Borel measure on K(𝒟)K(\mathscr{D}) with μ(U)>0\mu^{\prime}(U)>0 for any non-empty open subset UU of K(𝒟)K(\mathscr{D}), and let (,)(\mathcal{E}^{\prime},\mathcal{F}^{\prime}) be a strongly local, regular symmetric Dirichlet form on L2(K(𝒟),μ)L^{2}(K(\mathscr{D}),\mu^{\prime}) with (u,u)>0\mathcal{E}^{\prime}(u,u)>0 for some uu\in\mathcal{F}^{\prime}. Then the following two conditions are equivalent:

  • (1)

    Any h{h1|K(𝒟),h2|K(𝒟)}h\in\{h_{1}|_{K(\mathscr{D})},h_{2}|_{K(\mathscr{D})}\} is in \mathcal{F}^{\prime} and is \mathcal{E}^{\prime}-harmonic on K(𝒟)V0(𝒟)K(\mathscr{D})\setminus V_{0}(\mathscr{D}), i.e., (h,v)=0\mathcal{E}^{\prime}(h,v)=0 for any v𝒞(K(𝒟))v\in\mathcal{F}^{\prime}\cap\mathcal{C}(K(\mathscr{D})) with v|V0(𝒟)=0v|_{V_{0}(\mathscr{D})}=0.

  • (2)

    𝒞(K(𝒟))=𝒞𝒟\mathcal{F}^{\prime}\cap\mathcal{C}(K(\mathscr{D}))=\mathcal{C}_{\mathscr{D}} and |𝒞𝒟×𝒞𝒟=c𝒟|𝒞𝒟×𝒞𝒟\mathcal{E}^{\prime}|_{\mathcal{C}_{\mathscr{D}}\times\mathcal{C}_{\mathscr{D}}}=c\mathcal{E}^{\mathscr{D}}|_{\mathcal{C}_{\mathscr{D}}\times\mathcal{C}_{\mathscr{D}}} for some cc\in\mathbb{R}.

Remark 3.6.

In contrast to the case of K(𝒟)K(\mathscr{D}) described in Definition 3.3, Theorems 3.4 and 3.5, the standard Dirichlet form (,)(\mathcal{E},\mathcal{F}) on the Sierpiński gasket KK satisfies μu(K0)=0\mu_{\langle u\rangle}(K^{0})=0 for any uu\in\mathcal{F} by [10, Lemma 8.26] and [8, Lemma 5.7], where K0K^{0} denotes the union of the boundaries of the equilateral triangles constituting KK. In particular, (,)(\mathcal{E},\mathcal{F}) cannot be expressed as the sum of any weighted one-dimensional Dirichlet forms on Φ(K0)K\Phi(K^{0})\subset K_{\mathcal{H}} similar to (3.7). The author does not have a good explanation of the reason for this difference, and it would be very nice to give one. A naive guess could be that some sufficient smoothness of the relevant curves might be required for the validity of an expression like (3.7) of a non-zero strongly local regular symmetric Dirichlet form satisfying the analog of Theorem 3.5-(1); indeed, the curves constituting Φ(K0)\Phi(K^{0}) are 𝒞1\mathcal{C}^{1} but not 𝒞2\mathcal{C}^{2} by [22, Theorem 5.4-(2)], whereas the corresponding curves C𝒜𝒟C\in\mathscr{A}_{\mathscr{D}} in K(𝒟)K(\mathscr{D}) are circular arcs and therefore real analytic. While this guess itself might well be correct, it would be still unclear how smooth the relevant curves should need to be.

The rest of this section is devoted to a brief sketch of the proof of Theorems 3.4 and 3.5, which is rather long and occupies the whole of [14, Sections 4 and 5]. It starts with identifying what the trace 𝒟|Vm(𝒟)\mathcal{E}^{\mathscr{D}}|_{V_{m}(\mathscr{D})},

𝒟|Vm(𝒟)(u,u):=infv𝒟,v|Vm(𝒟)=u𝒟(v,v),uVm(𝒟),\mathcal{E}^{\mathscr{D}}|_{V_{m}(\mathscr{D})}(u,u):=\inf_{v\in\mathcal{F}_{\mathscr{D}},\,v|_{V_{m}(\mathscr{D})}=u}\mathcal{E}^{\mathscr{D}}(v,v),\quad u\in\mathbb{R}^{V_{m}(\mathscr{D})}, (3.9)

of (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) to Vm(𝒟):=wWmV0(𝒟w)V_{m}(\mathscr{D}):=\bigcup_{w\in W_{m}}V_{0}(\mathscr{D}_{w}) should be for any m{0}m\in\mathbb{N}\cup\{0\}. In view of the desired properties of (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) in Theorem 3.5, the forms {𝒟|Vm(𝒟)}m{0}\{\mathcal{E}^{\mathscr{D}}|_{V_{m}(\mathscr{D})}\}_{m\in\mathbb{N}\cup\{0\}} should have the properties in the following theorem.

Theorem 3.7 ([34, Theorem 5.17]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}. Then there exists {m𝒟}m{0}\{\mathcal{E}^{\mathscr{D}}_{m}\}_{m\in\mathbb{N}\cup\{0\}} such that the following hold for any m{0}m\in\mathbb{N}\cup\{0\}:

  • (1)

    m𝒟\mathcal{E}^{\mathscr{D}}_{m} is a symmetric Dirichlet form on 2(Vm(𝒟))\ell^{2}(V_{m}(\mathscr{D})). m𝒟(𝟏x,𝟏y)=0=m𝒟(𝟏x,𝟏)\mathcal{E}^{\mathscr{D}}_{m}(\mathbf{1}_{x},\mathbf{1}_{y})=0=\mathcal{E}^{\mathscr{D}}_{m}(\mathbf{1}_{x},\mathbf{1}) for any x,yVm(𝒟)x,y\in V_{m}(\mathscr{D}) with {τWmx,yV0(𝒟τ)}=\{\tau\in W_{m}\mid x,y\in V_{0}(\mathscr{D}_{\tau})\}=\emptyset.

  • (2)

    Both h1|Vm(𝒟)h_{1}|_{V_{m}(\mathscr{D})} and h2|Vm(𝒟)h_{2}|_{V_{m}(\mathscr{D})} are m𝒟\mathcal{E}^{\mathscr{D}}_{m}-harmonic on Vm(𝒟)V0(𝒟)V_{m}(\mathscr{D})\setminus V_{0}(\mathscr{D}).

  • (3)

    m𝒟(u,u)=minvVm+1(𝒟),v|Vm(𝒟)=um+1𝒟(v,v)\mathcal{E}^{\mathscr{D}}_{m}(u,u)=\min_{v\in\mathbb{R}^{V_{m+1}(\mathscr{D})},\,v|_{V_{m}(\mathscr{D})}=u}\mathcal{E}^{\mathscr{D}}_{m+1}(v,v) for any uVm(𝒟)u\in\mathbb{R}^{V_{m}(\mathscr{D})}.

  • (4)

    m𝒟(h1|Vm(𝒟),h1|Vm(𝒟))+m𝒟(h2|Vm(𝒟),h2|Vm(𝒟))=2vol2((𝒟))\mathcal{E}^{\mathscr{D}}_{m}(h_{1}|_{V_{m}(\mathscr{D})},h_{1}|_{V_{m}(\mathscr{D})})+\mathcal{E}^{\mathscr{D}}_{m}(h_{2}|_{V_{m}(\mathscr{D})},h_{2}|_{V_{m}(\mathscr{D})})=2\mathop{\mathrm{vol}}\nolimits_{2}(\triangle(\mathscr{D})).

Teplyaev’s proof of Theorem 3.7 in [34] is purely Euclidean-geometric and provides no further information on {m𝒟}m{0}\{\mathcal{E}^{\mathscr{D}}_{m}\}_{m\in\mathbb{N}\cup\{0\}}. The author has identified it as follows, by applying a refinement of [28, Corollary 4.2].

Theorem 3.8 ([14, Theorem 4.18]).

For each 𝒟=(D1,D2,D3)𝖳𝖣𝖳\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{\oplus}, a sequence {m𝒟}m{0}\{\mathcal{E}^{\mathscr{D}}_{m}\}_{m\in\mathbb{N}\cup\{0\}} as in Theorem 3.7 is unique, and

0𝒟(u,u)=jSκ(𝒟)2+curv(Dj)22κ(𝒟)curv(Dj)(u(qj+1(𝒟))u(qj+2(𝒟)))2\mathcal{E}^{\mathscr{D}}_{0}(u,u)=\sum_{j\in S}\frac{\kappa(\mathscr{D})^{2}+\mathop{\mathrm{curv}}\nolimits(D_{j})^{2}}{2\kappa(\mathscr{D})\mathop{\mathrm{curv}}\nolimits(D_{j})}\bigl{(}u(q_{j+1}(\mathscr{D}))-u(q_{j+2}(\mathscr{D}))\bigr{)}^{2} (3.10)

for any uV0(𝒟)u\in\mathbb{R}^{V_{0}(\mathscr{D})}, where qj+3(𝒟):=qj(𝒟)q_{j+3}(\mathscr{D}):=q_{j}(\mathscr{D}) for jSj\in S. Moreover, for any 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}, any m{0}m\in\mathbb{N}\cup\{0\} and any uVm(𝒟)u\in\mathbb{R}^{V_{m}(\mathscr{D})},

m𝒟(u,u)=wWm0𝒟w(u|V0(𝒟w),u|V0(𝒟w)).\mathcal{E}^{\mathscr{D}}_{m}(u,u)=\sum\nolimits_{w\in W_{m}}\mathcal{E}^{\mathscr{D}_{w}}_{0}(u|_{V_{0}(\mathscr{D}_{w})},u|_{V_{0}(\mathscr{D}_{w})}). (3.11)

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}. Theorem 3.7-(3) allows us to apply to {m𝒟}m{0}\{\mathcal{E}^{\mathscr{D}}_{m}\}_{m\in\mathbb{N}\cup\{0\}} the general theory from [21, Chapter 2] of constructing a Dirichlet form by taking the “inductive limit” of Dirichlet forms on finite sets. Namely, setting V(𝒟):=m{0}Vm(𝒟)V_{*}(\mathscr{D}):=\bigcup_{m\in\mathbb{N}\cup\{0\}}V_{m}(\mathscr{D}), we can define a linear subspace 𝒟\mathcal{F}^{\prime}_{\mathscr{D}} of V(𝒟)\mathbb{R}^{V_{*}(\mathscr{D})} and a bilinear form 𝒟:𝒟×𝒟\mathcal{E}^{\prime\mathscr{D}}:\mathcal{F}^{\prime}_{\mathscr{D}}\times\mathcal{F}^{\prime}_{\mathscr{D}}\to\mathbb{R} on 𝒟\mathcal{F}^{\prime}_{\mathscr{D}} by

𝒟:={uV(𝒟)|limmm𝒟(u|Vm(𝒟),u|Vm(𝒟))<+},\displaystyle\mathcal{F}^{\prime}_{\mathscr{D}}:=\bigl{\{}u\in\mathbb{R}^{V_{*}(\mathscr{D})}\bigm{|}\lim\nolimits_{m\to\infty}\mathcal{E}^{\mathscr{D}}_{m}(u|_{V_{m}(\mathscr{D})},u|_{V_{m}(\mathscr{D})})<+\infty\bigr{\}}, (3.12)
𝒟(u,v):=limmm𝒟(u|Vm(𝒟),v|Vm(𝒟)),u,v𝒟.\displaystyle\mathcal{E}^{\prime\mathscr{D}}(u,v):=\lim\nolimits_{m\to\infty}\mathcal{E}^{\mathscr{D}}_{m}(u|_{V_{m}(\mathscr{D})},v|_{V_{m}(\mathscr{D})})\in\mathbb{R},\quad u,v\in\mathcal{F}^{\prime}_{\mathscr{D}}. (3.13)

The next step of the proof of Theorems 3.4 and 3.5 is the following identification of (𝒟,𝒟)(\mathcal{E}^{\prime\mathscr{D}},\mathcal{F}^{\prime}_{\mathscr{D}}) as (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}), i.e., as given by (3.6) and (3.7).

Theorem 3.9 ([14, Theorem 5.13]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}. Then 𝒟={u|V(𝒟)u𝒟}\mathcal{F}^{\prime}_{\mathscr{D}}=\{u|_{V_{*}(\mathscr{D})}\mid u\in\mathcal{F}_{\mathscr{D}}\}, the mapping 𝒟uu|V(𝒟)𝒟\mathcal{F}_{\mathscr{D}}\ni u\mapsto u|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}} is a linear isomorphism, and 𝒟(u|V(𝒟),v|V(𝒟))=𝒟(u,v)\mathcal{E}^{\prime\mathscr{D}}(u|_{V_{*}(\mathscr{D})},v|_{V_{*}(\mathscr{D})})=\mathcal{E}^{\mathscr{D}}(u,v) for any u,v𝒟u,v\in\mathcal{F}_{\mathscr{D}}.

Sketch of the proof.

By Theorem 3.7-(2),(3) and (3.12) we have h1|V(𝒟),h2|V(𝒟)𝒟h_{1}|_{V_{*}(\mathscr{D})},h_{2}|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}}, which together with (3.12) implies that 𝒞𝒟:={u𝒞(K(𝒟))u|V(𝒟)𝒟}\mathcal{C}^{\prime}_{\mathscr{D}}:=\{u\in\mathcal{C}(K(\mathscr{D}))\mid u|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}}\} is a dense subalgebra of (𝒞(K(𝒟)),sup)(\mathcal{C}(K(\mathscr{D})),\|\mspace{-1.35mu}\cdot\mspace{-1.35mu}\|_{\sup}) with h1|K(𝒟),h2|K(𝒟)𝒞𝒟lip𝒞𝒟h_{1}|_{K(\mathscr{D})},h_{2}|_{K(\mathscr{D})}\in\mathcal{C}^{\mathrm{lip}}_{\mathscr{D}}\subset\mathcal{C}^{\prime}_{\mathscr{D}}. Hence at this stage we can already define the 𝒟\mathcal{E}^{\prime\mathscr{D}}-energy measure μu𝒟\mu^{\prime\mathscr{D}}_{\langle u\rangle} of u𝒞𝒟u\in\mathcal{C}^{\prime}_{\mathscr{D}} by (3.2) with K(𝒟),𝒟,𝒞𝒟K(\mathscr{D}),\mathcal{E}^{\prime\mathscr{D}},\mathcal{C}^{\prime}_{\mathscr{D}} in place of K,,K,\mathcal{E},\mathcal{F}, and the analog of (3.1) by μ𝒟:=μh1|K(𝒟)𝒟+μh2|K(𝒟)𝒟\mu^{\prime\mathscr{D}}:=\mu^{\prime\mathscr{D}}_{\langle h_{1}|_{K(\mathscr{D})}\rangle}+\mu^{\prime\mathscr{D}}_{\langle h_{2}|_{K(\mathscr{D})}\rangle}. Then it follows from Theorem 3.7-(4) and (3.11) that μ𝒟(K(𝒟w))=2vol2((𝒟w))=μ𝒟(K(𝒟w))\mu^{\prime\mathscr{D}}(K(\mathscr{D}_{w}))=2\mathop{\mathrm{vol}}\nolimits_{2}(\triangle(\mathscr{D}_{w}))=\mu^{\mathscr{D}}(K(\mathscr{D}_{w})) for any wWw\in W_{*}, whence μ𝒟=μ𝒟\mu^{\prime\mathscr{D}}=\mu^{\mathscr{D}}.

Now that μ𝒟\mu^{\prime\mathscr{D}} has been identified as μ𝒟\mu^{\mathscr{D}} given by (3.5), it is natural to guess222This is how the author first came up with the expressions (3.6) and (3.7). that 𝒟{u|V(𝒟)u𝒟}\mathcal{F}^{\prime}_{\mathscr{D}}\subset\{u|_{V_{*}(\mathscr{D})}\mid u\in\mathcal{F}_{\mathscr{D}}\} and that 𝒟(u|V(𝒟),u|V(𝒟))=𝒟(u,u)\mathcal{E}^{\prime\mathscr{D}}(u|_{V_{*}(\mathscr{D})},u|_{V_{*}(\mathscr{D})})=\mathcal{E}^{\mathscr{D}}(u,u) for any u𝒟u\in\mathcal{F}_{\mathscr{D}} with u|V(𝒟)𝒟u|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}}. This guess is not difficult to verify, first for any piecewise linear u𝒟u\in\mathcal{F}_{\mathscr{D}} by direct calculations based on Theorem 3.7-(2), (3.10), (3.11) and (3.13), and then for any u𝒟u\in\mathcal{F}_{\mathscr{D}} with u|V(𝒟)𝒟u|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}} by using the canonical approximation of uu by piecewise linear functions; here u𝒟u\in\mathcal{F}_{\mathscr{D}} is called mm-piecewise linear, where m{0}m\in\mathbb{N}\cup\{0\}, if and only if u|K0(𝒟w)u|_{K^{0}(\mathscr{D}_{w})} is a linear combination of h1|K0(𝒟w),h2|K0(𝒟w),𝟏K0(𝒟w)h_{1}|_{K^{0}(\mathscr{D}_{w})},h_{2}|_{K^{0}(\mathscr{D}_{w})},\mathbf{1}_{K^{0}(\mathscr{D}_{w})} for any wWmw\in W_{m}, and piecewise linear if and only if uu is mm-piecewise linear for some m{0}m\in\mathbb{N}\cup\{0\}.

Finally, for any u𝒟u\in\mathcal{F}_{\mathscr{D}}, some direct calculations using (3.10), (3.7) and (3.4) show that 0𝒟w(u|V0(𝒟w),u|V0(𝒟w))7K(𝒟w)|𝒟u|2𝑑μ𝒟\mathcal{E}^{\mathscr{D}_{w}}_{0}(u|_{V_{0}(\mathscr{D}_{w})},u|_{V_{0}(\mathscr{D}_{w})})\leq 7\int_{K(\mathscr{D}_{w})}|\nabla_{\mathscr{D}}u|^{2}\,d\mu^{\mathscr{D}} for any wWw\in W_{*}, which together with (3.11) yields m𝒟(u|Vm(𝒟),u|Vm(𝒟))𝒟(u,u)\mathcal{E}^{\mathscr{D}}_{m}(u|_{V_{m}(\mathscr{D})},u|_{V_{m}(\mathscr{D})})\leq\mathcal{E}^{\mathscr{D}}(u,u) for any m{0}m\in\mathbb{N}\cup\{0\}, whence u|V(𝒟)𝒟u|_{V_{*}(\mathscr{D})}\in\mathcal{F}^{\prime}_{\mathscr{D}} by (3.12). ∎

The last main step of the proof of Theorem 3.4 is to prove (3.8), which is based mainly on (3.5), (3.7) and the following lemma.

Lemma 3.10 ([14, Lemma 5.19]).

Let CC\subset\mathbb{C} be a circular arc, let uCu\in\mathbb{R}^{C} satisfy 𝐋𝐢𝐩Cu<+\mathop{\mathbf{Lip}}\nolimits_{C}u<+\infty, and for aa\in\mathbb{R} define Cau:DC¯\mathcal{I}_{C}^{a}u:\overline{D_{C}}\to\mathbb{R} by

Cau((1t)cent(C)+tz):=(1t)a+tu(z),(t,z)[0,1]×C.\mathcal{I}_{C}^{a}u((1-t)\mathop{\mathrm{cent}}\nolimits(C)+tz):=(1-t)a+tu(z),\quad(t,z)\in[0,1]\times C. (3.14)

Then for any a[minCu,maxCu]a\in[\min_{C}u,\max_{C}u], 𝐋𝐢𝐩DC¯Cau5𝐋𝐢𝐩Cu\mathop{\mathbf{Lip}}\nolimits_{\overline{D_{C}}}\mathcal{I}_{C}^{a}u\leq\sqrt{5}\mathop{\mathbf{Lip}}\nolimits_{C}u and

221DC|Cau|2dvol2C|Cu|2rad(C)dC12DC|Cau|2dvol2.\frac{2}{21}\int_{D_{C}}\mspace{-3.0mu}|\nabla\mathcal{I}_{C}^{a}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}\leq\int_{C}\mspace{-2.0mu}|\nabla_{C}u|^{2}\mathop{\mathrm{rad}}\nolimits(C)\,d\mathscr{H}^{1}_{C}\leq 2\int_{D_{C}}\mspace{-3.0mu}|\nabla\mathcal{I}_{C}^{a}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}. (3.15)

Further, with u¯C:=C1(C)1Cu𝑑C1\overline{u}^{C}:=\mathscr{H}^{1}_{C}(C)^{-1}\int_{C}u\,d\mathscr{H}^{1}_{C}, for any a{0,u¯C}a\in\{0,\overline{u}^{C}\},

2DC|Cau|2dvol2Cu2rad(C)dC14DC|Cau|2dvol2.2\int_{D_{C}}|\mathcal{I}_{C}^{a}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}\leq\int_{C}u^{2}\mathop{\mathrm{rad}}\nolimits(C)\,d\mathscr{H}^{1}_{C}\leq 4\int_{D_{C}}|\mathcal{I}_{C}^{a}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}. (3.16)

Combining Lemma 3.10 with (3.5) and (3.7), we obtain the following.

Lemma 3.11 ([14, Lemma 5.21]).

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus} and u𝒞𝒟lipu\in\mathcal{C}^{\mathrm{lip}}_{\mathscr{D}}. Noting (𝒟)¯(K(𝒟)K0(𝒟))=C𝒜𝒟DC¯\overline{\triangle(\mathscr{D})}\setminus(K(\mathscr{D})\setminus K^{0}(\mathscr{D}))=\bigcup_{C\in\mathscr{A}_{\mathscr{D}}}\overline{D_{C}}, define 𝒟0u(𝒟)¯\mathcal{I}_{\mathscr{D}}^{0}u\in\mathbb{R}^{\overline{\triangle(\mathscr{D})}} by

𝒟0u|K(𝒟):=u,𝒟0u|DC¯:={C0(u|C)if CT(𝒟),Cu¯C(u|C)if CT(𝒟),C𝒜𝒟.\mathcal{I}_{\mathscr{D}}^{0}u|_{K(\mathscr{D})}:=u,\quad\mathcal{I}_{\mathscr{D}}^{0}u|_{\overline{D_{C}}}:=\begin{cases}\mathcal{I}_{C}^{0}(u|_{C})&\textrm{if $C\subset\partial T(\mathscr{D})$,}\\ \mathcal{I}_{C}^{\overline{u}^{C}}(u|_{C})&\textrm{if $C\not\subset\partial T(\mathscr{D})$,}\end{cases}\quad C\in\mathscr{A}_{\mathscr{D}}. (3.17)

If also u|V0(𝒟)=0u|_{V_{0}(\mathscr{D})}=0, then 𝒟0u|(𝒟)=0\mathcal{I}_{\mathscr{D}}^{0}u|_{\partial\triangle(\mathscr{D})}=0, 𝐋𝐢𝐩(𝒟)¯𝒟0u5𝐋𝐢𝐩K(𝒟)u\mathop{\mathbf{Lip}}\nolimits_{\overline{\triangle(\mathscr{D})}}\mathcal{I}_{\mathscr{D}}^{0}u\leq\sqrt{5}\mathop{\mathbf{Lip}}\nolimits_{K(\mathscr{D})}u,

221(𝒟)|𝒟0u|2dvol2𝒟(u,u)2(𝒟)|𝒟0u|2dvol2,\displaystyle\frac{2}{21}\int_{\triangle(\mathscr{D})}|\nabla\mathcal{I}_{\mathscr{D}}^{0}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}\leq\mathcal{E}^{\mathscr{D}}(u,u)\leq 2\int_{\triangle(\mathscr{D})}|\nabla\mathcal{I}_{\mathscr{D}}^{0}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}, (3.18)
2(𝒟)|𝒟0u|2dvol2K(𝒟)u2𝑑μ𝒟4(𝒟)|𝒟0u|2dvol2.\displaystyle 2\int_{\triangle(\mathscr{D})}|\mathcal{I}_{\mathscr{D}}^{0}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}\leq\int_{K(\mathscr{D})}u^{2}\,d\mu^{\mathscr{D}}\leq 4\int_{\triangle(\mathscr{D})}|\mathcal{I}_{\mathscr{D}}^{0}u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}. (3.19)
Sketch of the proof of Theorem 3.4.

Recall the following classical fact implied by [5, Lemma 6.2.1, Theorems 4.5.1, 4.5.3 and 6.1.6]: if QQ is an open rectangle in \mathbb{C} whose smaller side length is δ(0,+)\delta\in(0,+\infty), then

Qu2dvol2δ2π2Q|u|2dvol2\int_{Q}u^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2}\leq\frac{\delta^{2}}{\pi^{2}}\int_{Q}|\nabla u|^{2}\,d\mathop{\mathrm{vol}}\nolimits_{2} (3.20)

for any uQ¯u\in\mathbb{R}^{\overline{Q}} with 𝐋𝐢𝐩Q¯u<+\mathop{\mathbf{Lip}}\nolimits_{\overline{Q}}u<+\infty and u|Q=0u|_{\partial Q}=0. Since (𝒟)Q\triangle(\mathscr{D})\subset Q for some such QQ with δ=3κ(𝒟)1\delta=3\kappa(\mathscr{D})^{-1} and then each u(𝒟)¯u\in\mathbb{R}^{\overline{\triangle(\mathscr{D})}} with 𝐋𝐢𝐩(𝒟)¯u<+\mathop{\mathbf{Lip}}\nolimits_{\overline{\triangle(\mathscr{D})}}u<+\infty and u|(𝒟)=0u|_{\partial\triangle(\mathscr{D})}=0 can be extended to Q¯\overline{Q} by setting u|Q¯(𝒟):=0u|_{\overline{Q}\setminus\triangle(\mathscr{D})}:=0 so as to satisfy 𝐋𝐢𝐩Q¯u<+\mathop{\mathbf{Lip}}\nolimits_{\overline{Q}}u<+\infty and u|Q=0u|_{\partial Q}=0, we easily see from Lemma 3.11 and (3.20) that (3.8) holds for any u𝒟,00𝒞𝒟lipu\in\mathcal{F}_{\mathscr{D},0}^{0}\cap\mathcal{C}^{\mathrm{lip}}_{\mathscr{D}}.

Now, by utilizing the canonical approximation of each u𝒟u\in\mathcal{F}_{\mathscr{D}} by piecewise linear functions as in the sketch of the proof of Theorem 3.9 above, we can show that (3.8) extends to any u𝒟,00u\in\mathcal{F}_{\mathscr{D},0}^{0}, which implies 𝒟L2(K(𝒟),μ𝒟)\mathcal{F}_{\mathscr{D}}\subset L^{2}(K(\mathscr{D}),\mu^{\mathscr{D}}), and that the inclusion map 𝒟L2(K(𝒟),μ𝒟)\mathcal{F}_{\mathscr{D}}\hookrightarrow L^{2}(K(\mathscr{D}),\mu^{\mathscr{D}}) is the limit in operator norm of finite-rank linear operators and hence compact. The rest of the proof is straightforward. ∎

Sketch of the proof of Theorem 3.5.

The implication from (2) to (1) is immediate from Theorem 3.9 and Theorem 3.7-(2),(3). That from (1) to (2) can be shown by defining the trace |Vm(𝒟)\mathcal{E}|_{V_{m}(\mathscr{D})} of (,)(\mathcal{E},\mathcal{F}) to Vm(𝒟)V_{m}(\mathscr{D}) for m{0}m\in\mathbb{N}\cup\{0\} in essentially the same way as (3.9), proving that {|Vm(𝒟)}m{0}\{\mathcal{E}|_{V_{m}(\mathscr{D})}\}_{m\in\mathbb{N}\cup\{0\}} satisfies Theorem 3.7-(1),(2),(3) by the assumption of (1) and then applying Theorem 3.8 to conclude that {|Vm(𝒟)}m{0}={cm𝒟}m{0}\{\mathcal{E}|_{V_{m}(\mathscr{D})}\}_{m\in\mathbb{N}\cup\{0\}}=\{c\mathcal{E}^{\mathscr{D}}_{m}\}_{m\in\mathbb{N}\cup\{0\}} for some cc\in\mathbb{R}, which is easily seen to imply (2). ∎

4. Weyl’s eigenvalue asymptotics for the Apollonian gasket

The following proposition is an easy consequence of Theorem 3.4; see also [5, Exercise 4.2, Corollary 4.2.3, Theorems 4.5.1 and 4.5.3].

Proposition 4.1.

Let 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}, let VV be a finite subset of V(𝒟)V_{*}(\mathscr{D}) and set 𝒟,V0:={u𝒟u|V=0}\mathcal{F}_{\mathscr{D},V}^{0}:=\{u\in\mathcal{F}_{\mathscr{D}}\mid u|_{V}=0\}. Then (𝒟|𝒟,V0×𝒟,V0,𝒟,V0)(\mathcal{E}^{\mathscr{D}}|_{\mathcal{F}_{\mathscr{D},V}^{0}\times\mathcal{F}_{\mathscr{D},V}^{0}},\mathcal{F}_{\mathscr{D},V}^{0}) is a strongly local, regular symmetric Dirichlet form on L2(K(𝒟)V,μ𝒟)L^{2}(K(\mathscr{D})\setminus V,\mu^{\mathscr{D}}), and there exists a unique non-decreasing sequence {λn𝒟,V}n[0,+)\{\lambda^{\mathscr{D},V}_{n}\}_{n\in\mathbb{N}}\subset[0,+\infty) such that 𝒟,Vφn𝒟,V=λn𝒟,Vφn𝒟,V-\mathcal{L}_{\mathscr{D},V}\varphi^{\mathscr{D},V}_{n}=\lambda^{\mathscr{D},V}_{n}\varphi^{\mathscr{D},V}_{n} for any nn\in\mathbb{N} for some complete orthonormal system {φn𝒟,V}n𝒟(𝒟,V)\{\varphi^{\mathscr{D},V}_{n}\}_{n\in\mathbb{N}}\subset\mathcal{D}(\mathcal{L}_{\mathscr{D},V}) of L2(K(𝒟)V,μ𝒟)L^{2}(K(\mathscr{D})\setminus V,\mu^{\mathscr{D}}); here 𝒟,V:𝒟(𝒟,V)L2(K(𝒟)V,μ𝒟)\mathcal{L}_{\mathscr{D},V}:\mathcal{D}(\mathcal{L}_{\mathscr{D},V})\to L^{2}(K(\mathscr{D})\setminus V,\mu^{\mathscr{D}}) denotes the Laplacian, i.e., the non-positive self-adjoint operator on L2(K(𝒟)V,μ𝒟)L^{2}(K(\mathscr{D})\setminus V,\mu^{\mathscr{D}}), associated with (𝒟|𝒟,V0×𝒟,V0,𝒟,V0)(\mathcal{E}^{\mathscr{D}}|_{\mathcal{F}_{\mathscr{D},V}^{0}\times\mathcal{F}_{\mathscr{D},V}^{0}},\mathcal{F}_{\mathscr{D},V}^{0}). Also, limnλn𝒟,V=+\lim_{n\to\infty}\lambda^{\mathscr{D},V}_{n}=+\infty, and for any nn\in\mathbb{N},

λn𝒟,V=min{maxuL{0}𝒟(u,u)K(𝒟)u2𝑑μ𝒟|L is a linear subspace of 𝒟,V0dimL=n}.\lambda^{\mathscr{D},V}_{n}=\min\biggl{\{}\max_{u\in L\setminus\{0\}}\frac{\mathcal{E}^{\mathscr{D}}(u,u)}{\int_{K(\mathscr{D})}u^{2}\,d\mu^{\mathscr{D}}}\biggm{|}\begin{minipage}{90.5pt} $L$ is a linear subspace of $\mathcal{F}_{\mathscr{D},V}^{0}$, $\dim L=n$ \end{minipage}\biggr{\}}. (4.1)

The proof of the following theorem is the principal aim of [14].

Theorem 4.2 ([14, Theorem 7.1]).

There exists c𝖠𝖦(0,+)c_{\mathsf{AG}}\in(0,+\infty) such that for any 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus} and any finite subset VV of V(𝒟)V_{*}(\mathscr{D}),

limλ+#{nλn𝒟,Vλ}λd𝖠𝖦/2=c𝖠𝖦d𝖠𝖦(K(𝒟)).\lim_{\lambda\to+\infty}\frac{\#\{n\in\mathbb{N}\mid\lambda^{\mathscr{D},V}_{n}\leq\lambda\}}{\lambda^{d_{\mathsf{AG}}/2}}=c_{\mathsf{AG}}\mathscr{H}^{d_{\mathsf{AG}}}(K(\mathscr{D})). (4.2)

The rest of this section outlines the analytic aspects of the proof of Theorem 4.2. It can be deduced from the following theorem applicable to more general counting functions, including the classical one given by #{wWcurv(Din(𝒟w))λ}\#\{w\in W_{*}\mid\mathop{\mathrm{curv}}\nolimits(D_{\mathrm{in}}(\mathscr{D}_{w}))\leq\lambda\}, whose asymptotic behavior analogous to (4.2) has been obtained first by Oh and Shah in [30, Corollary 1.8].

Definition 4.3.
  • (1)

    We define I:={jnkj,kSjkn}I:=\{j^{n}k\mid\textrm{$j,k\in S$, $j\not=k$, $n\in\mathbb{N}$}\}, so that IW{}I\subset W_{*}\setminus\{\emptyset\}, τυ\tau\not\asymp\upsilon for any τ,υI\tau,\upsilon\in I with τυ\tau\not=\upsilon and

    K(𝒟)V0(𝒟)=τIK(𝒟τ)for any 𝒟𝖳𝖣𝖳+.K(\mathscr{D})\setminus V_{0}(\mathscr{D})=\bigcup\nolimits_{\tau\in I}K(\mathscr{D}_{\tau})\qquad\textrm{for any $\mathscr{D}\in\mathsf{TDT}^{+}$.} (4.3)
  • (2)

    We define Γ[0,+)4\Gamma\subset[0,+\infty)^{4} by Γ:={(g,κ(g))g[0,+)3κ(g)>0}\Gamma:=\{(g,\kappa(g))\mid\textrm{$g\in[0,+\infty)^{3}$, $\kappa(g)>0$}\}, where κ(g):=βγ+γα+αβ\kappa(g):=\sqrt{\beta\gamma+\gamma\alpha+\alpha\beta} for g=(α,β,γ)[0,+)3g=(\alpha,\beta,\gamma)\in[0,+\infty)^{3}, and set Γ:=Γ(0,+)4\Gamma^{\circ}:=\Gamma\cap(0,+\infty)^{4}, which is an open subset of Γ\Gamma; recall Propositions 2.2 and 2.7 and note that gMwΓgM_{w}\in\Gamma for any gΓg\in\Gamma and any wWw\in W_{*}.

  • (3)

    Recalling Theorem 2.11, we set Γ(g):=d𝖠𝖦(K(𝒟))\mathscr{H}_{\Gamma}(g):=\mathscr{H}^{d_{\mathsf{AG}}}(K(\mathscr{D})) for each g=(α,β,γ,κ)Γg=(\alpha,\beta,\gamma,\kappa)\in\Gamma, where we take any 𝒟=(D1,D2,D3)𝖳𝖣𝖳+\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{+} with (curv(D1),curv(D2),curv(D3))=(α,β,γ)\bigl{(}\mathop{\mathrm{curv}}\nolimits(D_{1}),\mathop{\mathrm{curv}}\nolimits(D_{2}),\mathop{\mathrm{curv}}\nolimits(D_{3})\bigr{)}=(\alpha,\beta,\gamma), which is easily seen to exist. Note that Γ(g)=sd𝖠𝖦Γ(sg)\mathscr{H}_{\Gamma}(g)=s^{d_{\mathsf{AG}}}\mathscr{H}_{\Gamma}(sg) for any (g,s)Γ×(0,+)(g,s)\in\Gamma\times(0,+\infty).

Theorem 4.4 ([14]).

Let Γ\Gamma^{\prime} denote either of Γ\Gamma and Γ\Gamma^{\circ}, and for each nn\in\mathbb{N} let λn:Γ(0,+)\lambda_{n}:\Gamma^{\prime}\to(0,+\infty) be continuous and satisfy λn(sg)=sλn(g)\lambda_{n}(sg)=s\lambda_{n}(g) for any (g,s)Γ×(0,+)(g,s)\in\Gamma^{\prime}\times(0,+\infty). Suppose that λ1(g)=minnλn(g)\lambda_{1}(g)=\min_{n\in\mathbb{N}}\lambda_{n}(g) and limnλn(g)=+\lim_{n\to\infty}\lambda_{n}(g)=+\infty for any gΓg\in\Gamma^{\prime}, set 𝒩(g,λ):=#{nλn(g)λ}\mathscr{N}(g,\lambda):=\#\{n\in\mathbb{N}\mid\lambda_{n}(g)\leq\lambda\} for (g,λ)Γ×[0,+)(g,\lambda)\in\Gamma^{\prime}\times[0,+\infty), and suppose that there exist η[0,d𝖠𝖦)\eta\in[0,d_{\mathsf{AG}}) and c(0,+)c\in(0,+\infty) such that for any g=(α,β,γ,κ)Γg=(\alpha,\beta,\gamma,\kappa)\in\Gamma^{\prime} and any λ(0,+)\lambda\in(0,+\infty),

τI𝒩(gMτ,λ)𝒩(g,λ)τI𝒩(gMτ,λ)+c(min{β+γ,γ+α,α+β})ηλη+c.\begin{split}&\sum\nolimits_{\tau\in I}\mathscr{N}(gM_{\tau},\lambda)\leq\mathscr{N}(g,\lambda)\\ &\mspace{30.0mu}\leq\sum\nolimits_{\tau\in I}\mathscr{N}(gM_{\tau},\lambda)+c(\min\{\beta+\gamma,\gamma+\alpha,\alpha+\beta\})^{-\eta}\lambda^{\eta}+c.\end{split} (4.4)

Then there exists c0(0,+)c_{0}\in(0,+\infty) such that for any gΓg\in\Gamma^{\prime},

limλ+𝒩(g,λ)λd𝖠𝖦=c0Γ(g).\lim_{\lambda\to+\infty}\frac{\mathscr{N}(g,\lambda)}{\lambda^{d_{\mathsf{AG}}}}=c_{0}\mathscr{H}_{\Gamma}(g). (4.5)

Theorem 4.4 is proved by applying Kesten’s renewal theorem [19, Theorem 2] to the Markov chain on Γ~:={gΓΓ(g)=1}\widetilde{\Gamma}:=\{g\in\Gamma\mid\mathscr{H}_{\Gamma}(g)=1\}, the “space of Euclidean shapes of {K(𝒟)}𝒟𝖳𝖣𝖳+\{K(\mathscr{D})\}_{\mathscr{D}\in\mathsf{TDT}^{+}}, with transition function 𝒫(g,):=τIΓ(gMτ)δ[gMτ]Γ\mathscr{P}(g,\cdot):=\sum_{\tau\in I}\mathscr{H}_{\Gamma}(gM_{\tau})\delta_{[gM_{\tau}]_{\Gamma}}, where for each gΓg\in\Gamma we set [g]Γ:=Γ(g)1/d𝖠𝖦gΓ~[g]_{\Gamma}:=\mathscr{H}_{\Gamma}(g)^{1/d_{\mathsf{AG}}}g\in\widetilde{\Gamma} and δ[g]Γ\delta_{[g]_{\Gamma}} denotes the Borel probability measure on Γ~\widetilde{\Gamma} with δ[g]Γ({[g]Γ})=1\delta_{[g]_{\Gamma}}(\{[g]_{\Gamma}\})=1; a brief sketch of the proof of Theorem 4.4 can be found in [13], and the full details will appear in [14, Sections 3 and 7].

Sketch of the proof of Theorem 4.2 under Theorem 4.4.

We define 𝒩𝒟,V(λ):=#{nλn𝒟,Vλ}\mathscr{N}_{\mathscr{D},V}(\lambda):=\#\{n\in\mathbb{N}\mid\lambda^{\mathscr{D},V}_{n}\leq\lambda\}, 𝒩𝒟(λ):=𝒩𝒟,(λ)\mathscr{N}_{\mathscr{D}}(\lambda):=\mathscr{N}_{\mathscr{D},\emptyset}(\lambda) and 𝒩𝒟,0(λ):=𝒩𝒟,V0(𝒟)(λ)\mathscr{N}_{\mathscr{D},0}(\lambda):=\mathscr{N}_{\mathscr{D},V_{0}(\mathscr{D})}(\lambda) for 𝒟𝖳𝖣𝖳\mathscr{D}\in\mathsf{TDT}^{\oplus}, each finite subset VV of V(𝒟)V_{*}(\mathscr{D}) and λ[0,+)\lambda\in[0,+\infty). Then for any such 𝒟,V,λ\mathscr{D},V,\lambda, as noted in [21, Theorem 4.1.7 and Corollary 4.1.8], we easily see from dim𝒟/𝒟,V0=#V\dim\mathcal{F}_{\mathscr{D}}/\mathcal{F}_{\mathscr{D},V}^{0}=\#V and (4.1) that λn𝒟,λn𝒟,Vλn+#V𝒟,\lambda^{\mathscr{D},\emptyset}_{n}\leq\lambda^{\mathscr{D},V}_{n}\leq\lambda^{\mathscr{D},\emptyset}_{n+\#V} for any nn\in\mathbb{N} and thereby that

𝒩𝒟,V(λ)𝒩𝒟(λ)𝒩𝒟,V(λ)+#V,\mathscr{N}_{\mathscr{D},V}(\lambda)\leq\mathscr{N}_{\mathscr{D}}(\lambda)\leq\mathscr{N}_{\mathscr{D},V}(\lambda)+\#V, (4.6)

so that it suffices to prove (4.2) for V=V0(𝒟)V=V_{0}(\mathscr{D}), i.e., for 𝒩𝒟,0(λ)\mathscr{N}_{\mathscr{D},0}(\lambda).

To apply Theorem 4.4, for each nn\in\mathbb{N} and each g=(α,β,γ,κ)Γg=(\alpha,\beta,\gamma,\kappa)\in\Gamma^{\circ} we set λn(g):=(λn𝒟,V0(𝒟))1/2\lambda_{n}(g):=(\lambda^{\mathscr{D},V_{0}(\mathscr{D})}_{n})^{1/2}, where we take any 𝒟=(D1,D2,D3)𝖳𝖣𝖳\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{\oplus} with (curv(D1),curv(D2),curv(D3))=(α,β,γ)\bigl{(}\mathop{\mathrm{curv}}\nolimits(D_{1}),\mathop{\mathrm{curv}}\nolimits(D_{2}),\mathop{\mathrm{curv}}\nolimits(D_{3})\bigr{)}=(\alpha,\beta,\gamma), so that λn(g)λ1(g)>0\lambda_{n}(g)\geq\lambda_{1}(g)>0 by {u𝒟𝒟(u,u)=0}=𝟏\{u\in\mathcal{F}_{\mathscr{D}}\mid\mathcal{E}^{\mathscr{D}}(u,u)=0\}=\mathbb{R}\mathbf{1} and limnλn(g)=+\lim_{n\to\infty}\lambda_{n}(g)=+\infty by Proposition 4.1. We also easily see from Proposition 2.7, (3.5), (3.7) and (4.1) that for any nn\in\mathbb{N}, λn:Γ(0,+)\lambda_{n}:\Gamma^{\circ}\to(0,+\infty) is continuous and satisfies λn(sg)=sλn(g)\lambda_{n}(sg)=s\lambda_{n}(g) for any (g,s)Γ×(0,+)(g,s)\in\Gamma^{\circ}\times(0,+\infty).

It remains to verify that {λn}n\{\lambda_{n}\}_{n\in\mathbb{N}} satisfies (4.4). To this end, let 𝒟=(D1,D2,D3)𝖳𝖣𝖳\mathscr{D}=(D_{1},D_{2},D_{3})\in\mathsf{TDT}^{\oplus}, (α,β,γ,κ)=:g(\alpha,\beta,\gamma,\kappa)=:g be as in Proposition 2.2 and λ(0,+)\lambda\in(0,+\infty). Then since #{nλn(gMw)λ1/2}=𝒩𝒟w,0(λ)\#\{n\in\mathbb{N}\mid\lambda_{n}(gM_{w})\leq\lambda^{1/2}\}=\mathscr{N}_{\mathscr{D}_{w},0}(\lambda) for any wWw\in W_{*} by Proposition 2.7, (4.4) for {λn}n\{\lambda_{n}\}_{n\in\mathbb{N}} can be rephrased as

τI𝒩𝒟τ,0(λ)𝒩𝒟,0(λ)τI𝒩𝒟τ,0(λ)+c(min{β+γ,γ+α,α+β})ηλη/2+c,\begin{split}&\sum\nolimits_{\tau\in I}\mathscr{N}_{\mathscr{D}_{\tau},0}(\lambda)\leq\mathscr{N}_{\mathscr{D},0}(\lambda)\\ &\mspace{27.0mu}\leq\sum\nolimits_{\tau\in I}\mathscr{N}_{\mathscr{D}_{\tau},0}(\lambda)+c(\min\{\beta+\gamma,\gamma+\alpha,\alpha+\beta\})^{-\eta}\lambda^{\eta/2}+c,\end{split} (4.7)

which can be shown with η=1<d𝖠𝖦\eta=1<d_{\mathsf{AG}} (recall Theorem 2.10) as follows. Set cg:=min{β+γ,γ+α,α+β}c_{g}:=\min\{\beta+\gamma,\gamma+\alpha,\alpha+\beta\} and nλ:=min{ncg2n240λ}n_{\lambda}:=\min\{n\in\mathbb{N}\mid c_{g}^{2}n^{2}\geq 40\lambda\}. Then for any nn\in\mathbb{N} with nnλn\geq n_{\lambda}, any jSj\in S and any τI{jnλ}\tau\in I\cup\{j^{n_{\lambda}}\} with τjnλ\tau\leq j^{n_{\lambda}}, from (3.8), (4.1) and (2.4) we obtain

𝒩𝒟τ,0(λ)=0byλ1𝒟τ,V0(𝒟τ)κ(𝒟τ)240κ(𝒟jnλ)240>cg2nλ240λ.\mspace{-3.0mu}\mathscr{N}_{\mathscr{D}_{\tau},0}(\lambda)=0\mspace{8.0mu}\textrm{by}\mspace{8.0mu}\lambda^{\mathscr{D}_{\tau},V_{0}(\mathscr{D}_{\tau})}_{1}\geq\frac{\kappa(\mathscr{D}_{\tau})^{2}}{40}\geq\frac{\kappa(\mathscr{D}_{j^{n_{\lambda}}})^{2}}{40}>\frac{c_{g}^{2}n_{\lambda}^{2}}{40}\geq\lambda.\mspace{-5.0mu} (4.8)

On the other hand, setting Iλ:={τI|τ|nλ}{jnλjS}I_{\lambda}:=\{\tau\in I\mid|\tau|\leq n_{\lambda}\}\cup\{j^{n_{\lambda}}\mid j\in S\} and Vλ:=τIλV0(𝒟τ)V_{\lambda}:=\bigcup_{\tau\in I_{\lambda}}V_{0}(\mathscr{D}_{\tau}), we have K(𝒟)Vλ=τIλ(K(𝒟τ)V0(𝒟τ))K(\mathscr{D})\setminus V_{\lambda}=\bigcup_{\tau\in I_{\lambda}}(K(\mathscr{D}_{\tau})\setminus V_{0}(\mathscr{D}_{\tau})) with the union disjoint, which together with (4.1) and (4.8) easily implies that

𝒩𝒟,Vλ(λ)=τIλ𝒩𝒟τ,0(λ)=τI𝒩𝒟τ,0(λ).\mathscr{N}_{\mathscr{D},V_{\lambda}}(\lambda)=\sum\nolimits_{\tau\in I_{\lambda}}\mathscr{N}_{\mathscr{D}_{\tau},0}(\lambda)=\sum\nolimits_{\tau\in I}\mathscr{N}_{\mathscr{D}_{\tau},0}(\lambda). (4.9)

Now (4.7) follows from (4.9), #Vλ=9nλ3\#V_{\lambda}=9n_{\lambda}-3 and the fact that 𝒩𝒟,Vλ(λ)𝒩𝒟,0(λ)𝒩𝒟,Vλ(λ)+#Vλ3\mathscr{N}_{\mathscr{D},V_{\lambda}}(\lambda)\leq\mathscr{N}_{\mathscr{D},0}(\lambda)\leq\mathscr{N}_{\mathscr{D},V_{\lambda}}(\lambda)+\#V_{\lambda}-3 by the same proof as (4.6). Theorem 4.4 is thus applicable to {λn}n\{\lambda_{n}\}_{n\in\mathbb{N}} and yields (4.5), which means (4.2). ∎

5. Kleinian groups with limit sets round Sierpiński carpets

In this last section, we illustrate the possibility of extending the results in §3 and §4 to other circle packing fractals, by presenting the results of the author’s recent study in [16] obtained as the initial step toward developing a rich theory of construction and analysis of “geometrically canonical” Laplacians on more general self-conformal fractals.

Let Möb(^)\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}}) denote the group of (orientation preserving or reversing) Möbius transformations on ^\widehat{\mathbb{C}}. A discrete subgroup GG of Möb(^)\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}}) is called a Kleinian group333Kleinian groups are usually assumed to consist only of orientation preserving elements, but here we allow them to contain orientation reversing ones., and the smallest closed subset G\partial_{\infty}G of ^\widehat{\mathbb{C}} invariant with respect to the action of GG is called the limit set of GG. It is known in the theory of Kleinian groups (see, e.g., [3, 17, 18, 36]) that the limit sets of certain classes of Kleinian groups are circle packing fractals, and typical examples of such circle packing fractals are provided in the book [29] together with a number of beautiful pictures of them.

Refer to caption
Figure 3. Limit set of 743\frac{7}{43} double cusp group
Refer to caption
Figure 4. Sierpiński carpet

Since the expressions (3.5) of μ𝒟\mu^{\mathscr{D}} and (3.7) of the unique canonical Dirichlet form (𝒟,𝒟)(\mathcal{E}^{\mathscr{D}},\mathcal{F}_{\mathscr{D}}) on K(𝒟)K(\mathscr{D}) makes sense on a general circle packing fractal, (a candidate of) a “geometrically canonical” Laplacian on it can be defined by (3.5) and (3.7), and it is natural to expect Weyl’s eigenvalue asymptotics to hold when the fractal has some nice self-conformal structure. The author has recently verified this expectation in [15, 16] for the circle packing fractals arising as the limit sets of two specific classes of Kleinian groups, one of which studied in [15] is the double cusp groups on the boundary of Maskit’s embedding of the Teichmüller space of the once-punctured torus treated in detail in [18, 29, 36]. In this case, the limit sets (Figure 4) can be shown to admit a self-conformal cellular decomposition similar to (4.3) which is finitely ramified in the sense that any cell intersects the others only on boundedly many points, and this property makes the proof of Weyl’s asymptotics largely analogous to that of Theorem 4.2; a brief presentation of the precise statements of the results can be found in [11], and the full details will be given in [15].

On the other hand, each Kleinian group in the other class, which has been studied in [16], has as its limit set a round Sierpiński carpet (Figure 5), i.e., a subset of ^\widehat{\mathbb{C}} homeomorphic to the standard Sierpiński carpet (Figure 4) whose complement in ^\widehat{\mathbb{C}} consists of disjoint open disks in ^\widehat{\mathbb{C}}. In particular, this limit set is infinitely ramified, i.e., is not finitely ramified regardless of the choice of a cellular decomposition, which prevents the method of the above proof of (4.7) from applying to it and thereby makes the proof of Weyl’s asymptotics for this case considerably more difficult.

Refer to caption
a q=8q=8
Refer to caption
b q=9q=9
Refer to caption
c q=12q=12
Figure 5. The limit sets Gq\partial_{\infty}G_{q} of the Kleinian groups GqG_{q}

The rest of this section is devoted to a brief summary of the results in [16] for the latter class of Kleinian groups, which are defined as follows. Let qq\in\mathbb{N} satisfy q>6q>6. It is a well-known fact from hyperbolic geometry (see, e.g., [31, Theorem 3.5.6]) that by π2+π3+πq<π\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{q}<\pi there exists a geodesic triangle with inner angles π2,π3,πq\frac{\pi}{2},\frac{\pi}{3},\frac{\pi}{q}, unique up to hyperbolic isometry, in the Poincaré disk model 𝔻:={z|z|<1}\mathbb{D}:=\{z\in\mathbb{C}\mid|z|<1\} of the hyperbolic plane; here we make the following specific choice of such one. The following construction is a slight modification of that given in [3].

Definition 5.1.
  • (1)

    Set 1:=\ell_{1}:=\mathbb{R}, 3:={teiπ/qt}\ell_{3}:=\{te^{i\pi/q}\mid t\in\mathbb{R}\} and choose tq,sq(0,+)t_{q},s_{q}\in(0,+\infty) so that 2:={z|ztqeiπ/q|=sq}\ell_{2}:=\{z\in\mathbb{C}\mid|z-t_{q}e^{i\pi/q}|=s_{q}\} is orthogonal to 𝔻\partial\mathbb{D} and intersects 1\ell_{1} with angle π3\frac{\pi}{3}; there is a unique such choice of tq,sqt_{q},s_{q} by virtue of π2+π3+πq<π\frac{\pi}{2}+\frac{\pi}{3}+\frac{\pi}{q}<\pi. The closed geodesic triangle in 𝔻\mathbb{D} formed by 1,2,3\ell_{1},\ell_{2},\ell_{3} is denoted by q\triangle_{q}, and the subgroup of Möb(^)\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}}) generated by {Invk}k=13\{\mathop{\mathrm{Inv}}\nolimits_{\ell_{k}}\}_{k=1}^{3} is denoted by Γq\Gamma_{q}, where Inv\mathop{\mathrm{Inv}}\nolimits_{\ell} denotes the inversion (reflection) in a circle or a straight line \ell\subset\mathbb{C}.

  • (2)

    Choose rq(0,1)r_{q}\in(0,1) so that 4:={z|z|=rq}\ell_{4}:=\{z\in\mathbb{C}\mid|z|=r_{q}\} intersects 2\ell_{2} with angle π3\frac{\pi}{3}; it is easy to see that there is a unique such choice of rqr_{q}. The subgroup of Möb(^)\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}}) generated by {Invk}k=14\{\mathop{\mathrm{Inv}}\nolimits_{\ell_{k}}\}_{k=1}^{4} is denoted by GqG_{q}.

Refer to caption
a Inversion circles {k}k\{\ell_{k}\}_{k}
Refer to caption
b Tessellation by Γ8\Gamma_{8}
Refer to caption
c Construction of G8\partial_{\infty}G_{8}
Figure 6. Illustration of Definition 5.1 and Proposition 5.2: Γ8,G8\Gamma_{8},\partial_{\infty}G_{8}
Proposition 5.2.
  • (1)

    𝔻=τΓqτ(q)\mathbb{D}=\bigcup_{\tau\in\Gamma_{q}}\tau(\triangle_{q}) and τ(intq)υ(q)=\tau(\mathop{\mathrm{int}}\nolimits\triangle_{q})\cap\upsilon(\triangle_{q})=\emptyset for any τ,υΓq\tau,\upsilon\in\Gamma_{q} with τυ\tau\not=\upsilon.

  • (2)

    GqG_{q} is a Kleinian group, Gq=τGqτ(𝔻)¯=^τGqτ(^𝔻¯)\partial_{\infty}G_{q}=\overline{\bigcup_{\tau\in G_{q}}\tau(\partial\mathbb{D})}=\widehat{\mathbb{C}}\setminus\bigcup_{\tau\in G_{q}}\tau(\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}}), D1D2=D_{1}\cap D_{2}=\emptyset for any D1,D2{τ(^𝔻)|τGq}D_{1},D_{2}\in\bigl{\{}\tau(\widehat{\mathbb{C}}\setminus\mathbb{D})\bigm{|}\tau\in G_{q}\bigr{\}} with D1D2D_{1}\not=D_{2}, and intGq=\mathop{\mathrm{int}}\nolimits\partial_{\infty}G_{q}=\emptyset. In particular, Gq\partial_{\infty}G_{q} is a round Sierpiński carpet.

Proof.

(1) is immediate from Poincaré’s polygon theorem (see, e.g., [31, Theorem 7.1.3]), which applies to q\triangle_{q} since any of its inner angles is a submultiple of π\pi, i.e., of the form π/n\pi/n for some n{+}n\in\mathbb{N}\cup\{+\infty\}.

For (2), recall (see, e.g., [31, Sections 4.4–4.6]) that Möb(^)\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}}) is canonically isomorphic to the group of isometries of the upper half-space model 3:=×(0,+)\mathbb{H}^{3}:=\mathbb{C}\times(0,+\infty) of the three-dimensional hyperbolic space, where the inversion Inv\mathop{\mathrm{Inv}}\nolimits_{\ell} in a circle or a straight line \ell\subset\mathbb{C} corresponds to the inversion in the sphere or the plane ~\widetilde{\ell} intersecting \mathbb{C} orthogonally on \ell. Then since the closed polyhedron q3\triangle_{q}^{3} in 3\mathbb{H}^{3} formed by {k~}k=14\{\widetilde{\ell_{k}}\}_{k=1}^{4}, defined as the part of {reiθ(r,θ)[0,+)×[0,πq]}×(0,+)\{re^{i\theta}\mid(r,\theta)\in[0,+\infty)\times[0,\frac{\pi}{q}]\}\times(0,+\infty) above 2~\widetilde{\ell_{2}} and 4~\widetilde{\ell_{4}}, has only submultiples of π\pi as the dihedral angles between its faces, by Poincaré’s polyhedron theorem (see, e.g., [31, Theorem 13.5.2]) applied to q3\triangle_{q}^{3} we have 3=τGqτ(q3)\mathbb{H}^{3}=\bigcup_{\tau\in G_{q}}\tau(\triangle_{q}^{3}) and τ(int3q3)υ(q3)=\tau(\mathop{\mathrm{int}}\nolimits_{\mathbb{H}^{3}}\triangle_{q}^{3})\cap\upsilon(\triangle_{q}^{3})=\emptyset for any τ,υGq\tau,\upsilon\in G_{q} with τυ\tau\not=\upsilon. Now we can obtain the first three assertions from this fact, intGq=\mathop{\mathrm{int}}\nolimits\partial_{\infty}G_{q}=\emptyset from [31, Theorem 12.2.7], and the last one from the topological characterization of the Sierpiński carpet in [35]. ∎

Even though in Definition 5.1 we have specifically chosen the unit disk 𝔻\mathbb{D} and the geodesic triangle q\triangle_{q}, a particular choice of a disk DD in \mathbb{C} and a geodesic triangle in DD should not matter for the desired Laplacian eigenvalue asymptotics. We should note also that the expressions (3.5) and (3.7) do not make perfect sense for the family {τ(𝔻)τGq}\{\tau(\partial\mathbb{D})\mid\tau\in G_{q}\} of circles constituting Gq\partial_{\infty}G_{q}, since 𝔻\partial\mathbb{D} should be treated together with the part ^𝔻¯\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}} of ^Gq\widehat{\mathbb{C}}\setminus\partial_{\infty}G_{q} enclosed by 𝔻\partial\mathbb{D} and thereby considered to be of infinite area and radius, which is incompatible with (3.5) and (3.7). To take care of these issues, we introduce the following definition.

Definition 5.3.

We define 𝒢:={gMöb(^)|g1()^𝔻¯}\mathcal{G}:=\bigl{\{}g\in\mathop{\mbox{M\"{o}b}}\nolimits(\widehat{\mathbb{C}})\bigm{|}g^{-1}(\infty)\in\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}}\bigr{\}}, and for each g𝒢g\in\mathcal{G} we set 𝒟g:={gτ(^𝔻¯)|τGq}{g(^𝔻¯)}\mathscr{D}_{g}:=\bigl{\{}g\tau(\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}})\bigm{|}\tau\in G_{q}\bigr{\}}\setminus\bigl{\{}g(\widehat{\mathbb{C}}\setminus\overline{\mathbb{D}})\bigr{\}} and Kg:=g(𝔻Gq)=g(𝔻)D𝒟gDK_{g}:=g(\mathbb{D}\cap\partial_{\infty}G_{q})=g(\mathbb{D})\setminus\bigcup_{D\in\mathscr{D}_{g}}D, so that 𝒟g\mathscr{D}_{g} is a family of open disks in \mathbb{C} and D1¯g(𝔻)D2¯\overline{D_{1}}\subset g(\mathbb{D})\setminus\overline{D_{2}} for any D1,D2𝒟gD_{1},D_{2}\in\mathscr{D}_{g} with D1D2D_{1}\not=D_{2}.

Definition 5.4 ([16]).

Let g𝒢g\in\mathcal{G}. We define a linear subspace 𝒞g\mathcal{C}_{g} of 𝒞c(Kg)\mathcal{C}_{\mathrm{c}}(K_{g}) by 𝒞g:={u𝒞c(Kg)𝐋𝐢𝐩Kgu<+}\mathcal{C}_{g}:=\{u\in\mathcal{C}_{\mathrm{c}}(K_{g})\mid\mathop{\mathbf{Lip}}\nolimits_{K_{g}}u<+\infty\}, and also define a finite Borel measure μg\mu^{g} on KgK_{g} and a bilinear form g:𝒞g×𝒞g\mathcal{E}^{g}:\mathcal{C}_{g}\times\mathcal{C}_{g}\to\mathbb{R} on 𝒞g\mathcal{C}_{g} by

μg:=D𝒟grad(D)D1(D),\displaystyle\mu^{g}:=\sum\nolimits_{D\in\mathscr{D}_{g}}\mathop{\mathrm{rad}}\nolimits(D)\mathscr{H}^{1}_{\partial D}(\cdot\cap\partial D), (5.1)
g(u,v):=D𝒟gDD(u|D),D(v|D)rad(D)dD1.\displaystyle\mathcal{E}^{g}(u,v):=\sum\nolimits_{D\in\mathscr{D}_{g}}\int_{\partial D}\langle\nabla_{\partial D}(u|_{\partial D}),\nabla_{\partial D}(v|_{\partial D})\rangle\mathop{\mathrm{rad}}\nolimits(D)\,d\mathscr{H}^{1}_{\partial D}. (5.2)
Proposition 5.5 ([16]).

Let g𝒢g\in\mathcal{G}. Then (g,𝒞g)(\mathcal{E}^{g},\mathcal{C}_{g}) is closable in L2(Kg,μg)L^{2}(K_{g},\mu^{g}) and its smallest closed extension (g,g)(\mathcal{E}^{g},\mathcal{F}_{g}) in L2(Kg,μg)L^{2}(K_{g},\mu^{g}) is a strongly local, regular symmetric Dirichlet form on L2(Kg,μg)L^{2}(K_{g},\mu^{g}). Further, the inclusion map gL2(Kg,μg)\mathcal{F}_{g}\hookrightarrow L^{2}(K_{g},\mu^{g}) is a compact linear operator under the norm ug:=(g(u,u)+Kgu2𝑑μg)1/2\|u\|_{\mathcal{F}_{g}}:=(\mathcal{E}^{g}(u,u)+\int_{K_{g}}u^{2}\,d\mu^{g})^{1/2} on g\mathcal{F}_{g}.

Proposition 5.6 ([16]).

Let g𝒢g\in\mathcal{G}. Then any h{h1|Kg,h2|Kg}h\in\{h_{1}|_{K_{g}},h_{2}|_{K_{g}}\} is g\mathcal{E}^{g}-harmonic on KgK_{g}, i.e., g(h,v)=0\mathcal{E}^{g}(h,v)=0 for any v𝒞gv\in\mathcal{C}_{g}, with g(h,v)\mathcal{E}^{g}(h,v) still defined by (5.2).

Proof.

This follows easily by explicit calculations using the Gauss–Green theorem and the fact that D\partial D is a circle for any D𝒟gD\in\mathscr{D}_{g}. ∎

The following is the main result of [16]. Note that for any g𝒢g\in\mathcal{G} and any non-empty open subset UU of KgK_{g}, dq:=dimHGq=dimHKg(1,2)d_{q}:=\dim_{\mathrm{H}}\partial_{\infty}G_{q}=\dim_{\mathrm{H}}K_{g}\in(1,2) and dq(U)(0,+)\mathscr{H}^{d_{q}}(U)\in(0,+\infty) by [32, Theorem 7] and 𝐋𝐢𝐩𝔻¯g<+\mathop{\mathbf{Lip}}\nolimits_{\overline{\mathbb{D}}}g<+\infty, and Proposition 5.5 implies the analog of Proposition 4.1 for (g,U,g,U0)(\mathcal{E}^{g,U},\mathcal{F}_{g,U}^{0}) on L2(U,μg|U)L^{2}(U,\mu^{g}|_{U}), where μg|U:=μg|(U)\mu^{g}|_{U}\mspace{-1.15mu}:=\mspace{-1.15mu}\mu^{g}|_{\mathscr{B}(U)}, g,U0:={u𝒞gsuppKg[u]U}¯g\mathcal{F}_{g,U}^{0}\mspace{-1.15mu}:=\mspace{-1.15mu}\overline{\{u\in\mathcal{C}_{g}\mid\mathop{\mathrm{supp}}\nolimits_{K_{g}}[u]\subset U\}}^{\mathcal{F}_{g}} and g,U:=g|g,U0×g,U0\mathcal{E}^{g,U}:=\mathcal{E}^{g}|_{\mathcal{F}_{g,U}^{0}\times\mathcal{F}_{g,U}^{0}}.

Theorem 5.7 ([16]).

There exists cq(0,+)c_{q}\in(0,+\infty) such that for any g𝒢g\in\mathcal{G} and any non-empty open subset UU of KgK_{g} with dq(KgU)=0\mathscr{H}^{d_{q}}(\partial_{K_{g}}U)=0 and U¯g(𝔻)\overline{U}\subset g(\mathbb{D}), the eigenvalues {λng,U}n\{\lambda^{g,U}_{n}\}_{n\in\mathbb{N}} (repeated according to multiplicity) of the Laplacian on L2(U,μg|U)L^{2}(U,\mu^{g}|_{U}) associated with (g,U,g,U0)(\mathcal{E}^{g,U},\mathcal{F}_{g,U}^{0}) satisfy

limλ+#{nλng,Uλ}λdq/2=cqdq(U).\lim_{\lambda\to+\infty}\frac{\#\{n\in\mathbb{N}\mid\lambda^{g,U}_{n}\leq\lambda\}}{\lambda^{d_{q}/2}}=c_{q}\mathscr{H}^{d_{q}}(U). (5.3)

The ergodic-theoretic aspects of the proof of Theorem 5.7 are largely analogous to those of the proof of Theorem 4.2, and in particular the roles played by the self-conformality of KgK_{g} are similar to those described in Remark 2.12. The most difficult part of the proof of Theorem 5.7 is that of an analog of (4.7), which is achieved by heavy use of heat kernel estimates in combination with the property of {τ(𝔻)τGq}\{\tau(\partial\mathbb{D})\mid\tau\in G_{q}\} that they are uniformly relatively separated in the following sense (see [1]):

inf(x,y)C1×C2|xy|εqmin{rad(C1),rad(C2)}\inf_{(x,y)\in C_{1}\times C_{2}}|x-y|\geq\varepsilon_{q}\min\{\mathop{\mathrm{rad}}\nolimits(C_{1}),\mathop{\mathrm{rad}}\nolimits(C_{2})\} (5.4)

for any C1,C2{τ(𝔻)τGq}C_{1},C_{2}\in\{\tau(\partial\mathbb{D})\mid\tau\in G_{q}\} with C1C2C_{1}\not=C_{2} for some εq(0,+)\varepsilon_{q}\in(0,+\infty). The full details of the proof of Theorem 5.7 will appear in [16].

References

  • [1] M. Bonk, Uniformization of Sierpiński carpets in the plane, Invent. Math. 186 (2011), 559–665.
  • [2] D. W. Boyd, The residual set dimension of the Apollonian packing, Mathematika 20 (1973), 170–174.
  • [3] S. Bullett and G. Mantica, Group theory of hyperbolic circle packings, Nonlinearity 5 (1992), 1085–1109.
  • [4] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, London Math. Soc. Monogr., vol. 35, Princeton Univ. Press, Princeton, NJ, 2012.
  • [5] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., vol. 42, Cambridge Univ. Press, Cambridge, 1995.
  • [6] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd ed., de Gruyter Stud. Math., vol. 19, Walter de Gruyter, Berlin, 2011.
  • [7] K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc. 42 (1967), 281–291.
  • [8] M. Hino, Energy measures and indices of Dirichlet forms, with applications to derivatives on some fractals, Proc. London Math. Soc. 100 (2010), 269–302.
  • [9] N. Kajino, Heat kernel asymptotics for the measurable Riemannian structure on the Sierpinski gasket, Potential Anal. 36 (2012), 67–115.
  • [10] N. Kajino, Analysis and geometry of the measurable Riemannian structure on the Sierpiński gasket, Contemp. Math., vol. 600, 2013, pp. 91–133.
  • [11] N. Kajino, Weyl’s eigenvalue asymptotics for the Laplacian on circle packing limit sets of certain Kleinian groups, in: Heat Kernels, Stochastic Processes and Functional Inequalities, Oberwolfach Report 55/2016. Available in: https://www.mfo.de/occasion/1648
  • [12] N. Kajino, The Laplacian on some round Sierpiński carpets and Weyl’s asymptotics for its eigenvalues (in Japanese), RIMS Kôkyûroku 2116 (2019), 47–56.
  • [13] N. Kajino, The Laplacian on some self-conformal fractals and Weyl’s asymptotics for its eigenvalues: A survey of the ergodic-theoretic aspects, RIMS Kôkyûroku 2176 (2021), in press. arXiv:2001.11354
  • [14] N. Kajino, The Laplacian on the Apollonian gasket and Weyl’s asymptotics for its eigenvalues, 2021, in preparation.
  • [15] N. Kajino, Weyl’s eigenvalue asymptotics for the Laplacian on circle packing limit sets of certain Kleinian groups, 2021, in preparation.
  • [16] N. Kajino, The Laplacian on some round Sierpiński carpets and Weyl’s asymptotics for its eigenvalues, 2021, in preparation.
  • [17] L. Keen, B. Maskit and C. Series, Geometric finiteness and uniqueness for Kleinian groups with circle packing limit sets, J. Reine Angew. Math. 436 (1993), 209–219.
  • [18] L. Keen and C. Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), 719–749.
  • [19] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2 (1974), 355–386.
  • [20] J. Kigami, Harmonic metric and Dirichlet form on the Sierpinski gasket, in: K. D. Elworthy and N. Ikeda (eds.), Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990), Pitman Research Notes in Math., vol. 283, Longman Sci. Tech., Harlow, 1993, pp. 201–218.
  • [21] J. Kigami, Analysis on Fractals, Cambridge Tracts in Math., vol. 143, Cambridge Univ. Press, Cambridge, 2001.
  • [22] J. Kigami, Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate, Math. Ann. 340 (2008), 781–804.
  • [23] P. Koskela and Y. Zhou, Geometry and analysis of Dirichlet forms, Adv. Math. 231 (2012), 2755–2801.
  • [24] S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989), 659–680.
  • [25] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Math., vol. 44, Cambridge Univ. Press, Cambridge, 1995.
  • [26] R. D. Mauldin and M. Urbański, Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing, Adv. Math. 136 (1998), 26–38.
  • [27] C. T. McMullen, Hausdorff dimension and conformal dynamics, III: computation of dimension, Amer. J. Math. 120 (1998), 691–721.
  • [28] R. Meyers, R. Strichartz and A. Teplyaev, Dirichlet forms on the Sierpiński gasket, Pacific J. Math. 217 (2004), 149–174.
  • [29] D. Mumford, C. Series and D. Wright, Indra’s Pears: The Vision of Felix Klein, Cambridge University Press, Cambridge, 2002.
  • [30] H. Oh and N. Shah, The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math. 187 (2012), 1–35.
  • [31] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, 3rd ed., Grad. Texts in Math., vol. 149, Springer, Cham, 2019.
  • [32] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202.
  • [33] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259–277.
  • [34] A. Teplyaev, Energy and Laplacian on the Sierpiński gasket, in: M. L. Lapidus and M. van Frankenhuijsen (eds.), Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Proc. Sympos. Pure Math., vol. 72, Part 1, Amer. Math. Soc., Providence, RI, 2004, pp. 131–154.
  • [35] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320–324.
  • [36] D. Wright, Searching for the cusp, in: Y. Minsky, M. Sakuma and C. Series (eds.), Spaces of Kleinian Groups, London Math. Soc. Lecture Note Ser., vol. 329, Cambridge University Press, Cambridge, 2005, pp. 301–336.