This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The intersection cohomology Hodge module of toric varieties

Hyunsuk Kim Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA [email protected]  and  Sridhar Venkatesh Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA [email protected]
Abstract.

We study the Hodge filtration of the intersection cohomology Hodge module for toric varieties. More precisely, we study the cohomology sheaves of the graded de Rham complex of the intersection cohomology Hodge module and give a precise formula relating it with the stalks of the intersection cohomology as a constructible complex. The main idea is to use the Ishida complex in order to compute the higher direct images of the sheaf of reflexive differentials.

2020 Mathematics Subject Classification:
14B05, 14C30, 14F10, 14M25, 14Q99, 32S35, 52B22
The first author was partially supported by NSF grant DMS-1952399.

1. Introduction

A toric variety is a normal complex algebraic variety XX with an open subset isomorphic to the algebraic torus ()n(\mathbb{C}^{*})^{n}, along with an extension of the natural action of the torus to an action on XX. Toric varieties provide an interesting interplay between algebraic geometry and convex geometry since they admit an alternate description in terms of convex geometric objects. As a consequence, algebro-geometric concepts on toric varieties correspond to much more elementary and tractable notions in convex geometry. One particular example where this relation is exploited is in studying intersection cohomology on toric varieties. There has been a long and fruitful study of the intersection cohomology complex and the intersection cohomology groups on toric varieties starting with the works of Stanley ([Stanley:Intersection-cohomology-toric-varieties]) and Fieseler ([Fieseler-ICprojtoric]), and more recently, the works of de Cataldo-Migliorini-Mustaţă ([dCMM-toricmaps]) and Saito ([saito2020intersection]).

However, the intersection cohomology complex has a richer structure as a (pure) Hodge module in the sense of Saito’s theory (see [saito1988modulesdeHodge], [saito1990mixedHodgemodules]). A (pure) Hodge module is a tuple (,F,K,α)(\mathcal{M},F_{\bullet},K,\alpha) satisfying certain conditions, where \mathcal{M} is a holonomic 𝒟\mathcal{D}-module, FF_{\bullet} is a good filtration on \mathcal{M} (called the Hodge filtration), KK is a perverse sheaf on XX defined over \mathbb{Q}, and α\alpha is an isomorphism between KK\otimes_{\mathbb{Q}}\mathbb{C} and the analytic de Rham complex of \mathcal{M}

α:DRXanK.\alpha\colon\operatorname{DR}^{\operatorname{an}}_{X}\mathcal{M}\xrightarrow{\simeq}K\otimes_{\mathbb{Q}}\mathbb{C}.

For more details, see Section 2.1. Moreover, the Hodge filtration FF_{\bullet} on \mathcal{M} induces a natural filtration on DRX()\operatorname{DR}_{X}(\mathcal{M}), and the graded pieces grkDRX\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M} lie inside the derived category of coherent sheaves on XX.

Given a variety XX, it follows from Saito’s theory that there exists a (pure) Hodge module ICXH\operatorname{IC}_{X}^{H}, whose underlying perverse sheaf is the intersection complex ICX\operatorname{IC}_{X}. The main goal of this paper is to study the graded de Rham complex grkDRXICXH\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H}, which can only be captured after enhancing ICX\operatorname{IC}_{X} to a Hodge module ICXH\operatorname{IC}_{X}^{H}. We now elaborate on how we study this object.

Observe that any cohomology sheaf of the graded de Rham complex l(grkDRXICXH)\mathcal{H}^{l}(\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H}) on an affine toric variety XX is an 𝒪X\mathcal{O}_{X}-module, with a natural grading by MM, where MM is the group of characters of the torus. We consider the generating function of dim(lgrkDRXICXH)u\dim_{\mathbb{C}}(\mathcal{H}^{l}\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H})_{u} for uMu\in M. In order to compute this, we consider the following five generating functions for an nn dimensional affine toric variety XX defined by a cone σ\sigma, a proper birational toric morphism π:YX\pi\colon Y\to X with YY simplicial, and μτ\mu\subset\tau two faces of σ\sigma. These generating functions encode the following corresponding data:

F~τ(q)\displaystyle\widetilde{F}_{\tau}(q) =qdτjhj(π1(xτ),)qj\displaystyle=q^{-d_{\tau}}\sum_{j}h^{j}(\pi^{-1}(x_{\tau}),\mathbb{Q})q^{j} (Cohomology of fibers)
H~μ,τ(q)\displaystyle\widetilde{H}_{\mu,\tau}(q) =qndτjhj(ICSμ)xτqj\displaystyle=q^{n-d_{\tau}}\sum_{j}h^{j}(\operatorname{IC}_{S_{\mu}})_{x_{\tau}}q^{j} (Intersection cohomology stalks)
Dτ(q)\displaystyle D_{\tau}(q) =jsτ,jqj\displaystyle=\sum_{j}s_{\tau,j}q^{j} (Decomposition theorem)
Ωτ(K,L)\displaystyle\Omega_{\tau}(K,L) =k,ldim(Rn+k+lπΩY[k])uKkLl,uτ\displaystyle=\sum_{k,l}\dim_{\mathbb{C}}\left(R^{n+k+l}\pi_{*}\Omega_{Y}^{[-k]}\right)_{u}K^{k}L^{l},\quad u\in\tau_{\circ}^{*} (Kähler differentials)
dRμ,τ(K,L)\displaystyle\operatorname{dR}_{\mu,\tau}(K,L) =k,ldim(lgrkDRICSμH)uKkLl,uτ\displaystyle=\sum_{k,l}\dim_{\mathbb{C}}\left(\mathcal{H}^{l}\operatorname{gr}_{k}\operatorname{DR}\operatorname{IC}^{H}_{S_{\mu}}\right)_{u}K^{k}L^{l},\quad u\in\tau_{\circ}^{*} (Graded de Rham complex).

For a detailed explanation of the notation, we refer to Section 2.2 for basic notation for toric varieties, Section 2.4 for F~τ,H~μ,τ\widetilde{F}_{\tau},\widetilde{H}_{\mu,\tau}, and DτD_{\tau}, Section 3 for Ωτ\Omega_{\tau}, and Section 4 for dRμ,τ\operatorname{dR}_{\mu,\tau}. The relation between F~τ\widetilde{F}_{\tau}, H~μ,τ\widetilde{H}_{\mu,\tau}, and DτD_{\tau} is purely topological and well understood. The two extra pieces of data Ωτ\Omega_{\tau} and dRμ,τ\operatorname{dR}_{\mu,\tau} are related to the Hodge filtration on the intersection cohomology Hodge module ICXH\operatorname{IC}_{X}^{H}. However, we show that dRμ,τ\operatorname{dR}_{\mu,\tau} is completely determined by the topological data of the toric variety by the following formula.

Theorem 1.1 (Main Theorem = Theorem 4.1).

With the above notation, we have

dRμ,τ(K,L)=H~μ,τ(K12L)Kdμdτ2(K1+L1)ndτ.\operatorname{dR}_{\mu,\tau}(K,L)=\widetilde{H}_{\mu,\tau}(K^{-\frac{1}{2}}L)K^{\frac{d_{\mu}-d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}}.

Moreover, H~μ,τ\widetilde{H}_{\mu,\tau} and hence dRμ,τ\operatorname{dR}_{\mu,\tau}, can be computed explicitly in an algorithmic way.

A rough sketch of the proof of the equality goes as follows. We know that F~τ\widetilde{F}_{\tau}, H~μ,τ\widetilde{H}_{\mu,\tau}, and DτD_{\tau} are related by the Decomposition theorem. Similarly, the decomposition theorem for Hodge modules gives a similar relation between the Ωτ\Omega_{\tau}, dRμ,τ\operatorname{dR}_{\mu,\tau}, and DτD_{\tau}. The main new ingredient is to compute Ωτ\Omega_{\tau} using the Ishida complex, which is presented in Section 3. Then we show that Ωτ\Omega_{\tau} can be expressed explicitly in terms of F~τ\widetilde{F}_{\tau} when π:YX\pi\colon Y\to X is given by a barycentric subdivision of the fan ΣX\Sigma_{X} (Proposition 3.4). Along the way, we also show that barycentric subdivisions are shellable in Proposition 2.16, which is an interesting combinatorial result in its own right. Finally, the rest of the proof follows using the two Decomposition theorems and induction.

For the explicit calculation of H~μ,τ\widetilde{H}_{\mu,\tau} (and hence dRμ,τ\operatorname{dR}_{\mu,\tau}), we again use the relation between F~τ\widetilde{F}_{\tau}, H~μ,τ\widetilde{H}_{\mu,\tau}, and DτD_{\tau} given by the Decomposition theorem. We have an explicit description of F~τ\widetilde{F}_{\tau} from [dCMM-toricmaps]. We then follow the strategy of [CFS-Effectivedecompositiontheorem] to prove that once we have F~τ\widetilde{F}_{\tau} explicitly, we can calculate both H~μ,τ\widetilde{H}_{\mu,\tau} and DτD_{\tau} (Remark 2.18). We demonstrate this strategy in the appendix by explicitly computing H~μ,τ\widetilde{H}_{\mu,\tau} in dimensions 4\leq 4.

2. Preliminaries

2.1. Hodge modules

We give a brief summary on Hodge modules and state some results relevant to our situation. We will mostly follow the notation in [saito1988modulesdeHodge] and [saito1990mixedHodgemodules]. In these papers, Saito defines two abelian categories HM(X,w)\operatorname{HM}(X,w) and MHM(X)\operatorname{MHM}(X) which are the categories of polarizable Hodge modules of weight ww, and the category of polarizable mixed Hodge modules. The objects in HM(X,w)\operatorname{HM}(X,w) are holonomic 𝒟\mathcal{D}-modules with a filtration FF_{\bullet} by coherent sheaves with some extra structure satisfying suitable conditions. The objects in MHM(X)\operatorname{MHM}(X) are also holonomic 𝒟\mathcal{D}-modules \mathcal{M} with a filtration FF_{\bullet} and an additional filtration WW_{\bullet} by holonomic 𝒟\mathcal{D}-modules satisfying some suitable conditions. The most important condition is that the graded piece grwW\operatorname{gr}_{w}^{W}\mathcal{M} should be an object in HM(X,w)\operatorname{HM}(X,w). For general terminology associated to 𝒟\mathcal{D}-modules, we refer to [HTT-Dmodulesbook].

The most important piece of data in our case is the filtration FF_{\bullet}, known as the Hodge filtration. For a mixed Hodge module \mathcal{M} on a smooth variety XX, we can consider the de Rham complex

DRX=[ΩX1ΩXdimX]\operatorname{DR}_{X}\mathcal{M}=[\mathcal{M}\to\Omega_{X}^{1}\otimes\mathcal{M}\to\ldots\to\Omega_{X}^{\dim X}\otimes\mathcal{M}]

which sits in cohomological degrees dimX,,0-\dim X,\ldots,0. Moreover, FF_{\bullet} induces a natural filtration on DRX()\operatorname{DR}_{X}(\mathcal{M}) and the graded pieces grkDRX\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M} are given by

grkDRX=[grkΩX1grk+1ΩXdimXgrk+dimX]\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M}=[\operatorname{gr}_{k}\mathcal{M}\to\Omega_{X}^{1}\otimes\operatorname{gr}_{k+1}\mathcal{M}\to\ldots\to\Omega_{X}^{\dim X}\otimes\operatorname{gr}_{k+\dim X}\mathcal{M}]

which also sits in cohomological degrees dimX,,0-\dim X,\ldots,0. The maps in this complex are 𝒪X\mathcal{O}_{X}-linear and we thus view grkDRX\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M} as an object in 𝒟cohb(X)\mathcal{D}^{b}_{\rm coh}(X), the derived category of coherent sheaves of XX. We mention that even if XX is singular, one can define the categories HM(X,w)\operatorname{HM}(X,w) and MHM(X)\operatorname{MHM}(X) by embedding into a smooth variety XYX\hookrightarrow Y and considering the objects in HM(Y,w)\operatorname{HM}(Y,w) and MHM(Y)\operatorname{MHM}(Y), respectively, which are supported on XX. The categories HM(X,w)\operatorname{HM}(X,w) and MHM(X)\operatorname{MHM}(X) do not depend on the choice of the embedding. If XX cannot be embedded in a smooth variety, we locally embed each open set and impose suitable compatibility conditions on the intersections. The de Rham complex and the graded pieces grkDRX\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M} are defined as above by locally embedding XX into a smooth variety. The graded pieces of the de Rham complex grkDRX\operatorname{gr}_{k}\operatorname{DR}_{X}\mathcal{M} also do not depend on the choice of the embedding as objects in 𝒟cohb(X)\mathcal{D}_{\operatorname{coh}}^{b}(X).

We say a pure Hodge module HM(X,w)\mathcal{M}\in\operatorname{HM}(X,w) has strict support ZZ if \mathcal{M} is supported on ZZ and has no nonzero subobjects or quotients supported on a strictly smaller subset of ZZ. The category HM(X,w)\operatorname{HM}(X,w) admits a decomposition by strict support, that means, for any HM(X,w)\mathcal{M}\in\operatorname{HM}(X,w), there is a decomposition

=ZXZ\mathcal{M}=\bigoplus_{Z\subset X}\mathcal{M}_{Z}

such that Z\mathcal{M}_{Z} has strict support ZZ, where the sum runs over all irreducible subvarieties of XX. Also, a pure Hodge module HM(X,w)\mathcal{M}\in\operatorname{HM}(X,w) with strict support ZZ is a variation of Hodge structures 𝒩\mathcal{N} on an open subset UZU\subset Z of weight wdimZw-\dim Z. Conversely, any variation of Hodge structures on an open subset of the smooth locus of ZZ can be uniquely extended to a pure Hodge module on XX with strict support ZZ. In this case, the underlying 𝒟\mathcal{D}-module is the intermediate extension of the 𝒟\mathcal{D}-module corresponding to the variation of Hodge structures. In this sense the intersection cohomology 𝒟\mathcal{D}-module on XX underlies a pure Hodge module of weight dimX\dim X since it is associated to the trivial variation of Hodge structures on the smooth locus of XX. We denote by ICXH\operatorname{IC}_{X}^{H} the intersection cohomology Hodge module of XX in order to distinguish this from the perverse sheaf ICX\operatorname{IC}_{X}.

The derived category of mixed Hodge modules 𝒟bMHM(X)\mathcal{D}^{b}\operatorname{MHM}(X) has a six functor formalism and moreover, these functors are compatible with the functors at the level of perverse sheaves. The most important functor that we use is the pushforward π\pi_{*}, where π\pi is a proper morphism. We recall Saito’s decomposition theorem for Hodge modules. We say a complex 𝒟b(MHM(X))\mathcal{M}\in\mathcal{D}^{b}(\operatorname{MHM}(X)) is pure of weight ww if j\mathcal{H}^{j}\mathcal{M} is a pure Hodge module of weight w+jw+j for all jj. In this case, we always have the following

Proposition 2.1 ([saito1990mixedHodgemodules]*4.5.4).

If 𝒟b(MHM(X))\mathcal{M}\in\mathcal{D}^{b}(\operatorname{MHM}(X)) is pure of weight ww, then

jj()[j].\mathcal{M}\simeq\bigoplus_{j}\mathcal{H}^{j}(\mathcal{M})[-j].

Similarly, we say that 𝒟bMHM(X)\mathcal{M}\in\mathcal{D}^{b}\operatorname{MHM}(X) is of weight n\leq n (resp. n\geq n), if the following condition is satisfied:

GriWj=0fori>n+j(resp. i<n+j).\operatorname{Gr}_{i}^{W}\mathcal{H}^{j}\mathcal{M}=0\quad\text{for}\quad i>n+j\quad(\text{resp. }i<n+j).

By [saito1990mixedHodgemodules]*4.5.2, if \mathcal{M} is of weight n\leq n (resp. n\geq n), then f!f_{!}\mathcal{M} (resp. ff_{*}\mathcal{M}) is also of weight n\leq n (resp. n\geq n). Since f!=ff_{!}=f_{*} for proper morphisms, in this case ff_{*} takes pure complexes to pure complexes. Therefore, we have the following decomposition theorem.

Theorem 2.2 (Saito’s decomposition theorem).

Let π:YX\pi\colon Y\to X be a proper morphism and HM(Y,w)\mathcal{M}\in\operatorname{HM}(Y,w) be a polarizable pure Hodge module. Then we have a decomposition

πjjπ[j]\pi_{*}\mathcal{M}\simeq\bigoplus_{j\in\mathbb{Z}}\mathcal{H}^{j}\pi_{*}\mathcal{M}[-j]

and jπHM(X,w+j)\mathcal{H}^{j}\pi_{*}\mathcal{M}\in\operatorname{HM}(X,w+j) for all jj.

We also recall that taking the graded de Rham complex commutes with the pushforward by a proper morphism π:YX\pi\colon Y\to X [saito1988modulesdeHodge]*2.3.7:

(1) grkDRXπ𝐑π(grkDRY).\operatorname{gr}_{k}\operatorname{DR}_{X}\pi_{*}\mathcal{M}\simeq\mathbf{R}\pi_{*}(\operatorname{gr}_{k}\operatorname{DR}_{Y}\mathcal{M}).

We end this section by discussing the relation between the Du Bois complex and mixed Hodge modules. In [DuBois:complexe-de-deRham], Du Bois introduced a filtered complex Ω¯X\underline{\Omega}_{X}^{\bullet} which can be thought of as a replacement of the de Rham complex ΩX\Omega_{X}^{\bullet} when XX is singular. By taking the graded quotients, the pp-th Du Bois complex is defined as

Ω¯Xp:=grFpΩ¯X[p].\underline{\Omega}_{X}^{p}:=\operatorname{gr}_{F}^{p}\underline{\Omega}_{X}^{\bullet}[p].

We have a natural comparison map ΩXpΩ¯Xp\Omega_{X}^{p}\to\underline{\Omega}_{X}^{p} which is an isomorphism if XX is smooth. Note that Ω¯Xp\underline{\Omega}_{X}^{p} is an object in 𝒟cohb(X)\mathcal{D}^{b}_{\rm coh}(X).

In [Saito-MixedHodgecomplexes], Saito gives a description of the Du Bois complex using the trivial mixed Hodge module XH\mathbb{Q}_{X}^{H}. The category of mixed Hodge modules over a point can be identified with the category of mixed Hodge structures. Hence, we have the Hodge module ptH\mathbb{Q}_{\mathrm{pt}}^{H} with weight zero given by the following mixed Hodge structure (V,W,F)(V,W_{\bullet},F^{\bullet}):

V=,W1V=0,W0V=V,F0V=V,F1V=0.V=\mathbb{Q},\quad W_{-1}V=0,\quad W_{0}V=V,\quad F^{0}V_{\mathbb{C}}=V_{\mathbb{C}},\quad F^{1}V_{\mathbb{C}}=0.

For an arbitrary variety XX, XH\mathbb{Q}_{X}^{H} is defined as

XH:=(aX)ptH𝒟b(MHM(X)),\mathbb{Q}_{X}^{H}:=(a_{X})^{*}\mathbb{Q}_{\mathrm{pt}}^{H}\in\mathcal{D}^{b}(\operatorname{MHM}(X)),

where aX:X{pt}a_{X}\colon X\to\{\mathrm{pt}\} is the structure morphism. It is a consequence of [Saito-MixedHodgecomplexes]*Theorem 4.2 that the graded de Rham complex of this Hodge modules is related to the Du Bois complex in the following way:

grkFDRXXH[n]Ω¯Xk[n+k].\operatorname{gr}_{k}^{F}\operatorname{DR}_{X}\mathbb{Q}_{X}^{H}[n]\simeq\underline{\Omega}_{X}^{-k}[n+k].

One can also get this easily using [Mustata-Popa:localcohomologyHodge]*Proposition 5.5 and duality.

The two objects XH\mathbb{Q}_{X}^{H} and Ω¯Xp\underline{\Omega}_{X}^{p} have nice descriptions when the variety XX has quotient singularities. In general, we have a natural morphism XH[n]ICXH\mathbb{Q}_{X}^{H}[n]\to\operatorname{IC}_{X}^{H} in the derived category of mixed Hodge modules (see [saito1990mixedHodgemodules, 4.5.11]). If XX has quotient singularities, this is an isomorphism at the level of perverse sheaves by [borho-macpherson]*Section 1.4, which implies that XH[n]ICXH\mathbb{Q}_{X}^{H}[n]\to\operatorname{IC}_{X}^{H} is also an isomorphism of mixed Hodge modules. Moreover, Ω¯Xp\underline{\Omega}_{X}^{p} coincides with the reflexive Kähler differentials ΩX[p]:=(ΩXp)\Omega_{X}^{[p]}:=(\Omega_{X}^{p})^{\vee\vee} if XX has quotient singularities [DuBois:complexe-de-deRham]*Théorème 5.3. Wrapping all up, we have the following lemma:

Lemma 2.3.

If XX has quotient singularities, then

grkFDRXICXHΩX[k][n+k].\operatorname{gr}_{k}^{F}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H}\simeq\Omega_{X}^{[-k]}[n+k].

2.2. Toric varieties

Fix a free abelian group NN of rank nn and let M:=Hom(N,)M:=\operatorname{Hom}_{\mathbb{Z}}(N,\mathbb{Z}). Denote N:=NN_{\mathbb{R}}:=N\otimes\mathbb{R} and M:=MM_{\mathbb{R}}:=M\otimes\mathbb{R}. To a strongly convex rational polyhedral cone σN\sigma\subset N_{\mathbb{R}}, we associate an nn-dimensional affine toric variety XσX_{\sigma}. More generally, to a fan ΔN\Delta\subset N_{\mathbb{R}}, we associate an nn-dimensional toric variety XΔX_{\Delta} by gluing the affine toric varieties corresponding to the cones of Δ\Delta. For general notions regarding toric varieties, we refer to [Fulton-ToricVar] and [CoxLittleSchenck-ToricVar].

Notation and terminology. We collect some notation for convex cones that we will use. Here, σN\sigma\subset N_{\mathbb{R}} denotes a strongly convex rational polyhedral cone, and μ,τ\mu,\tau denote faces of σ\sigma.

  1. (1)

    τ:={uMu(v)0,vτ}\tau^{\vee}:=\{u\in M_{\mathbb{R}}\mid u(v)\geq 0,\forall v\in\tau\}

  2. (2)

    τ:={uMu(v)=0,vτ}\tau^{\perp}:=\{u\in M_{\mathbb{R}}\mid u(v)=0,\forall v\in\tau\}

  3. (3)

    τ:=τσ\tau^{*}:=\tau^{\perp}\cap\sigma^{\vee}

  4. (4)

    τ:=(τM)(τνν)\tau_{\circ}^{*}:=(\tau^{*}\cap M)\setminus\left(\bigcup_{\tau\subsetneq\nu}\nu^{*}\right).

  5. (5)

    τN\langle\tau\rangle\subset N_{\mathbb{R}} is the subspace spanned by τ\tau.

  6. (6)

    dτ:=dimτd_{\tau}:=\dim_{\mathbb{R}}\langle\tau\rangle.

  7. (7)

    We denote by τ¯μ\bar{\tau}_{\mu} the image of τ\tau under the projection NN/μN_{\mathbb{R}}\to N_{\mathbb{R}}/\langle\mu\rangle.

  8. (8)

    σ\sigma is full-dimensional if σ=N\langle\sigma\rangle=N_{\mathbb{R}}.

  9. (9)

    σ\sigma is simplicial if the 1-dimensional faces (i.e. rays) are linearly independent over \mathbb{R} in NN_{\mathbb{R}}.

We collect several facts on toric varieties that we will need.

Remark 2.4.
  1. (1)

    [CoxLittleSchenck-ToricVar]*Theorem 9.2.5 For a proper toric morphism π:YX\pi\colon Y\to X, we have Rpπ𝒪Y=0R^{p}\pi_{*}\mathcal{O}_{Y}=0 for all p>0p>0.

  2. (2)

    [Fulton-ToricVar]*Section 3.1 Let Xσ=Spec[σM]X_{\sigma}=\operatorname{Spec}\mathbb{C}[\sigma^{\vee}\cap M] be the affine toric variety corresponding to a strongly convex rational polyhedral cone σ\sigma. For an rr-dimensional face τσ\tau\subset\sigma, we get a torus invariant subvariety Sτ=Spec[στM]XσS_{\tau}=\operatorname{Spec}\mathbb{C}[\sigma^{\vee}\cap\tau^{\perp}\cap M]\subset X_{\sigma} of codimension rr. This is the affine toric variety corresponding to the cone σ¯τ\bar{\sigma}_{\tau}, where the lattice and the dual lattice are given by

    Nτ:=NNτ,Mτ:=Mτ.N_{\tau}:=\frac{N}{N\cap\langle\tau\rangle},\qquad M_{\tau}:=M\cap\tau^{\perp}.

    We denote by Oτ=Spec[Mτ]O_{\tau}=\operatorname{Spec}\mathbb{C}[M_{\tau}] the torus orbit corresponding to τ\tau. Also, Uτ=Spec[τM]U_{\tau}=\operatorname{Spec}\mathbb{C}[\tau^{\vee}\cap M] is an open subset of XσX_{\sigma} and we have the diagram of torus equivariant morphisms

    Uτ{U_{\tau}}Xσ{X_{\sigma}}Oτ{O_{\tau}}Sτ.{S_{\tau}.}

    After fixing a non-canonical splitting N=Nτ(Nτ)N=N_{\tau}\oplus(N\cap\langle\tau\rangle) and the corresponding splitting M=MτMM=M_{\tau}\oplus M^{\prime}, we can identify UτOτU_{\tau}\to O_{\tau} as the projection Uτ=Vτ×OτOτU_{\tau}=V_{\tau}\times O_{\tau}\to O_{\tau}, where VτV_{\tau} is the full-dimensional toric variety Spec[τM]\operatorname{Spec}\mathbb{C}[\tau^{\vee}\cap M^{\prime}].

    For two faces μτ\mu\subset\tau, we denote by Vμ,τV_{\mu,\tau} the full-dimensional affine toric variety corresponding to the cone τ¯μτ/μ\bar{\tau}_{\mu}\subset\langle\tau\rangle/\langle\mu\rangle. We have an analogous diagram

    Sμ{S_{\mu}}Uτ¯μVμ,τ×Oτ{U_{\bar{\tau}_{\mu}}\simeq V_{\mu,\tau}\times O_{\tau}}Sτ{S_{\tau}}Oτ.{O_{\tau}.}

    Note that

    ΣSμ\displaystyle\Sigma_{S_{\mu}} ={τ¯μ:τΣX,μτ},\displaystyle=\{\bar{\tau}_{\mu}\colon\tau\in\Sigma_{X},\mu\subset\tau\},
    ΣVτ\displaystyle\Sigma_{V_{\tau}} ={μΣX:μτ},\displaystyle=\{\mu\in\Sigma_{X}\colon\mu\subset\tau\},
    ΣVμ,τ\displaystyle\Sigma_{V_{\mu,\tau}} ={ν¯μ:νΣX,μντ}\displaystyle=\{\bar{\nu}_{\mu}\colon\nu\in\Sigma_{X},\mu\subset\nu\subset\tau\}

    as a fan in N/μNN/\langle\mu\rangle\cap N, τN\langle\tau\rangle\cap N, and τN/μN\langle\tau\rangle\cap N/\langle\mu\rangle\cap N, respectively.

  3. (3)

    We say that a toric variety XX is simplicial if all the cones σ\sigma in the fan are simplicial. If XX is simplicial, then XX has quotient singularities [CoxLittleSchenck-ToricVar, Theorem 11.4.8]. By Lemma 2.3, in this case we have a canonical isomorphism

    grkDRXICXHΩX[k][n+k].\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H}\simeq\Omega_{X}^{[-k]}[n+k].
  4. (4)

    [oda-ConvexBodies, Lemma 3.5] (see also [Ishida]) There is a natural resolution of the sheaf of reflexive differentials ΩY[p]:=(ΩYp)\Omega_{Y}^{[p]}:=(\Omega_{Y}^{p})^{\vee\vee} of a simplicial toric variety YY, called the Ishida complex, that we now recall. Let τΣY\tau\in\Sigma_{Y} be an rr-dimensional cone. Since YY is simplicial, τ\tau is generated by rr rays ρ1,,ρr\rho_{1},\ldots,\rho_{r}. We set

    Vτp:=(prτ)Mρ1Mρr,V_{\tau}^{p}:=\left(\bigwedge^{p-r}\tau^{\perp}\right)\otimes\frac{M_{\mathbb{C}}}{\rho_{1}^{\perp}}\otimes\ldots\otimes\frac{M_{\mathbb{C}}}{\rho_{r}^{\perp}},

    where M:=MM_{\mathbb{C}}:=M\otimes_{\mathbb{Z}}\mathbb{C}. For instance, V0p=pMV_{0}^{p}=\bigwedge^{p}M_{\mathbb{C}}. Then we have an exact complex

    (2) 0ΩY[p]V0p𝒪YτΣYdimτ=1Vτp𝒪SττΣYdimτ=2Vτp𝒪SττΣYdimτ=pVτp𝒪Sτ0.0\to\Omega_{Y}^{[p]}\to V_{0}^{p}\otimes\mathcal{O}_{Y}\to\bigoplus_{\begin{subarray}{c}\tau\in\Sigma_{Y}\\ \dim\tau=1\end{subarray}}V_{\tau}^{p}\otimes\mathcal{O}_{S_{\tau}}\to\bigoplus_{\begin{subarray}{c}\tau\in\Sigma_{Y}\\ \dim\tau=2\end{subarray}}V_{\tau}^{p}\otimes\mathcal{O}_{S_{\tau}}\to\ldots\to\bigoplus_{\begin{subarray}{c}\tau\in\Sigma_{Y}\\ \dim\tau=p\end{subarray}}V_{\tau}^{p}\otimes\mathcal{O}_{S_{\tau}}\to 0.

The relevant situation for us will be when π:YX\pi\colon Y\to X is obtained by a simplicial subdivision of the fan ΣX\Sigma_{X}. In this case, for aΣYa\in\Sigma_{Y}, we denote by π(a)\pi_{*}(a) the minimal cone of ΣX\Sigma_{X} containing aa. For τΣX\tau\in\Sigma_{X}, we let

dl(τ)=#{aΣY:dim(a)=l,π(a)=τ}.d_{l}(\tau)=\#\{a\in\Sigma_{Y}\colon\dim(a)=l,\pi_{*}(a)=\tau\}.

We point out that our notation for dl(τ)d_{l}(\tau) is slightly different from the one in [dCMM-toricmaps]. The following proposition describes how the fibers look like for arbitrary proper toric morphisms.

Proposition 2.5 ([dCMM-toricmaps]*Lemma 2.6, Proposition 2.7).

Let π:YX\pi\colon Y\to X be a proper toric morphism.

  1. (i)

    Then every irreducible component of the fiber π1(x)\pi^{-1}(x) is a toric variety. Moreover, this is smooth (resp. simplicial) if YY is smooth (resp. simplicial).

  2. (ii)

    For any xτOτx_{\tau}\in O_{\tau}, we have an isomorphism π1(Oτ)π1(xτ)×Oτ\pi^{-1}(O_{\tau})\simeq\pi^{-1}(x_{\tau})\times O_{\tau} such that the restriction of π\pi to π1(Oτ)\pi^{-1}(O_{\tau}) corresponds to the projection onto the second component. In particular, π1(xτ)π1(xτ)\pi^{-1}(x^{\prime}_{\tau})\simeq\pi^{-1}(x_{\tau}) for every xτOτx^{\prime}_{\tau}\in O_{\tau}.

The following proposition gives a combinatorial formula for the cohomology of the fibers.

Proposition 2.6 ([dCMM-toricmaps]*Theorem C).

Let π:YX\pi\colon Y\to X be the proper birational toric morphism obtained by a simplicial subdivision of ΣX\Sigma_{X}. For every τΣX\tau\in\Sigma_{X} and every xτ𝒪τx_{\tau}\in\mathcal{O}_{\tau}, we have the following formula

jdimHj(f1(xτ),)qj=ldl(τ)(q21)dτl.\sum_{j}\dim_{\mathbb{Q}}H^{j}(f^{-1}(x_{\tau}),\mathbb{Q})\cdot q^{j}=\sum_{l}d_{l}(\tau)\cdot(q^{2}-1)^{d_{\tau}-l}.
Remark 2.7.

At last, we describe the construction of what we call a barycentric resolution YY of an affine toric variety XX of dimension nn. Let XX be the affine toric variety corresponding to a cone σ\sigma. Since σ\sigma is strictly convex, there exists a linear functional lMl\in M_{\mathbb{Q}} such that l0l\geq 0 on σ\sigma and {l=0}σ={0}\{l=0\}\cap\sigma=\{0\}. Then consider the polytope P=σ{l=1}P=\sigma\cap\{l=1\}. Note that the cone generated by PP is σ\sigma. For each face μσ\mu\subset\sigma, choose ρμNP\rho_{\mu}\in N_{\mathbb{Q}}\cap P lying inside the relative interior of μ\mu. We construct the fan ΣY\Sigma_{Y} by describing its maximal cones. Each maximal cone in ΣY\Sigma_{Y} is of the form

τμ1,,μn=span0{ρμ1,,ρμn},\tau_{\mu_{1},\ldots,\mu_{n}}=\mathrm{span}_{\mathbb{R}_{\geq 0}}\{\rho_{\mu_{1}},\ldots,\rho_{\mu_{n}}\},

where each μi\mu_{i} is an ii-dimensional face of σ\sigma satisfying μ1μ2μn=σ\mu_{1}\subset\mu_{2}\subset\ldots\mu_{n}=\sigma. Note that ΣY\Sigma_{Y} is simplicial by construction. We have a proper birational toric morphism π:YX\pi\colon Y\to X corresponding to the map ΣYΣX\Sigma_{Y}\to\Sigma_{X} induced by the identity on NN. We call ΣY\Sigma_{Y} a barycentric subdivision of σ\sigma and the corresponding toric morphism π:YX\pi\colon Y\to X a barycentric resolution of XX. Observe that we also get a simplicial polytopal complex 𝒞Y\mathcal{C}_{Y} (see Definition 2.9), the cone over which is ΣY\Sigma_{Y}. Each maximal simplex of 𝒞Y\mathcal{C}_{Y} corresponds to a sequence of faces

P=F(n),F(n1),F(n2),,F(0)P=F^{(n)},F^{(n-1)},F^{(n-2)},\ldots,F^{(0)}

where F(i)F^{(i)} is a facet of F(i+1)F^{(i+1)} for 0in10\leq i\leq n-1. Observe that F(0)F^{(0)} is a vertex of PP. Given this sequence, the set of vertices of the corresponding simplex consists of

ρspan0F(n),ρspan0F(n1),,ρspan0F(1),ρspan0F(0).\rho_{\mathrm{span}_{\mathbb{R}_{\geq 0}}F^{(n)}},\rho_{\mathrm{span}_{\mathbb{R}_{\geq 0}}F^{(n-1)}},\ldots,\rho_{\mathrm{span}_{\mathbb{R}_{\geq 0}}F^{(1)}},\rho_{\mathrm{span}_{\mathbb{R}_{\geq 0}}F^{(0)}}.

Even though the toric variety YY constructed in this way depends on the choice of the generators in the relative interior, this will not affect the arguments throughout this article.

Remark 2.8.

Though it will not be important for what follows, we mention that every barycentric resolution π:YX\pi\colon Y\to X of an affine toric variety is a projective morphism.

2.3. Polytopes and Shellability

In this section we review the concept of shellability, as we will later use it to prove results about the pushforward of the Ishida complex. We follow [ziegler-polytopes, Chapter 8], where the reader can find additional details.

Definition 2.9.

[ziegler-polytopes] A polytopal complex is a finite, non-empty collection 𝒞\mathcal{C} of polytopes (called faces of 𝒞\mathcal{C}) in N\mathbb{R}^{N} that contains the faces of all its polytopes and such that the intersection of any two of its polytopes is a face of each of them. The inclusion-maximal faces of 𝒞\mathcal{C} are called the facets of 𝒞\mathcal{C}.

A polytopal complex 𝒞\mathcal{C} is pure if all its facets have the same dimension and is simplicial if all its faces are simplices.

Example 2.10.

If PP is a polytope, then the boundary complex 𝒞(P)\mathcal{C}(\partial P), which is defined to be the set of all proper faces of PP, is a pure polytopal complex of dimension dim(P)1\dim(P)-1.

Definition 2.11 ([ziegler-polytopes]*Definition 8.1).

Let 𝒞\mathcal{C} be a pure dd-dimensional polytopal complex. A shelling of 𝒞\mathcal{C} is a linear ordering F1,F2,,FsF_{1},F_{2},\dots,F_{s} of the facets of 𝒞\mathcal{C} such that either 𝒞\mathcal{C} is a set of points, or it satisfies the following condition:

  1. (1)

    The boundary complex 𝒞(F1)\mathcal{C}(\partial F_{1}) of the first facet F1F_{1} has a shelling.

  2. (2)

    For 1<js1<j\leq s,

    Fj(i=1j1Fi)=G1G2GrF_{j}\cap\left(\bigcup_{i=1}^{j-1}F_{i}\right)=G_{1}\cup G_{2}\cup\ldots\cup G_{r}

    for some shelling G1,G2,Gr,,GtG_{1},G_{2}\ldots,G_{r},\ldots,G_{t} of 𝒞(Fj)\mathcal{C}(\partial F_{j})

A pure polytopal complex is shellable if it has a shelling.

We will use the following theorem of Bruggesser and Mani:

Theorem 2.12 ([Bruggesser-Mani:Shellable]).

For a polytope PP, the polytopal complex 𝒞(P)\mathcal{C}(\partial P) is shellable.

Definition 2.13 (Type).

Let F1,,FrF_{1},\dots,F_{r} be a shelling of a simplicial polytopal complex. Define F1F_{1} to be of type 0. For j2j\geq 2, we have that Fj(i=1j1Fi)F_{j}\cap(\bigcup_{i=1}^{j-1}F_{i}) is a pure (d1)(d-1)-dimensional complex. Define FjF_{j} to be of type ll, where ll is the number of facets in the pure complex Fj(i=1j1Fi)F_{j}\cap(\bigcup_{i=1}^{j-1}F_{i}).

Notation 2.14.

Let FF be a simplex whose vertices are v1,,vnv_{1},\ldots,v_{n}. In this case, we sometimes use the notation

F=[v1,,vn]F=[v_{1},\ldots,v_{n}]

in order to denote FF.

Remark 2.15.

With notation as in Definition 2.13, let Fj=[v1,,vn]F_{j}=[v_{1},\ldots,v_{n}] be of type ll, and let Gk=[v1,,v^jk,,vn]G_{k}=[v_{1},\ldots,\hat{v}_{j_{k}},\ldots,v_{n}] for k=1,,lk=1,\dots,l be the facets in the pure complex Fj(i=1j1Fi)F_{j}\cap(\bigcup_{i=1}^{j-1}F_{i}), so that

Fj(i=1j1Fi)=k=1lGk.F_{j}\cap\left(\bigcup_{i=1}^{j-1}F_{i}\right)=\bigcup_{k=1}^{l}G_{k}.

Observe that we have:

{Faces of Fj containing [vj1,,vjl]}\displaystyle\left\{\text{Faces of $F_{j}$ containing $[v_{j_{1}},\ldots,v_{j_{l}}]$}\right\} ={Faces of Fj not contained in any Gk k=1,,l}\displaystyle=\left\{\text{Faces of $F_{j}$ not contained in any $G_{k}$ $\forall k=1,\dots,l$}\right\}
={Faces of Fj not contained in k=1lGk}\displaystyle=\left\{\text{Faces of $F_{j}$ not contained in $\bigcup_{k=1}^{l}G_{k}$}\right\}
={Faces of Fj not contained in Fj(i=1j1Fi)}.\displaystyle=\left\{\text{Faces of $F_{j}$ not contained in $F_{j}\cap\left(\bigcup_{i=1}^{j-1}F_{i}\right)$}\right\}.

We will be interested in the shellability of the pure simplicial polytopal complex 𝒞Y\mathcal{C}_{Y} as defined in Remark 2.7.

Proposition 2.16.

With notation as in Remark 2.7, the polytopal complex 𝒞Y\mathcal{C}_{Y} is shellable.

Proof.

We describe a shelling of 𝒞Y\mathcal{C}_{Y} by defining a lexicographic order on the set of maximal simplices of 𝒞Y\mathcal{C}_{Y}.

Let us recall the maximal simplices of the simplicial polytopal complex 𝒞Y\mathcal{C}_{Y}. Each maximal simplex corresponds to a sequence of faces

P=F(n),F(n1),F(n2),,F(0)P=F^{(n)},F^{(n-1)},F^{(n-2)},\ldots,F^{(0)}

where F(i)F^{(i)} is a facet of F(i+1)F^{(i+1)} for 0in10\leq i\leq n-1. Observe that F(0)F^{(0)} is a vertex of PP. From now on, for a maximal simplex Δ\Delta in 𝒞Y\mathcal{C}_{Y} corresponding to the chain of faces P=F(n),,F(0)P=F^{(n)},\ldots,F^{(0)}, we use the notation

Δ=(F(n)F(0))\Delta=(F^{(n)}\supset\ldots\supset F^{(0)})

to represent the chain of faces.

First, let F1,,FrF_{1},\dots,F_{r} be an ordering of the facets of the polytope PP such that it gives a shelling of 𝒞(P)\mathcal{C}(\partial P) (such an ordering exists by Theorem 2.12). This defines an ordering, call it F(n)\prec_{F^{(n)}}, on the set of facets of P=F(n)P=F^{(n)}, given by:

FaF(n)Fb for a<b.F_{a}\prec_{F^{(n)}}F_{b}\text{ for }a<b.

Similarly, given an n1n-1 dimensional face F(n1)F^{(n-1)} of PP, let us now define an order F(n),F(n1)\prec_{F^{(n)},F^{(n-1)}} on the set of facets of F(n1)F^{(n-1)}. Observe that

F(n1)(G(n1)F(n)F(n1)G(n1))=F1(n2)Fl(n2),F^{(n-1)}\cap\left(\bigcup_{G^{(n-1)}\prec_{F^{(n)}}F^{(n-1)}}G^{(n-1)}\right)=F^{(n-2)}_{1}\cup\dots\cup F^{(n-2)}_{l},

where F1(n2),,Fl(n2),,Fr(n2)F^{(n-2)}_{1},\ldots,F^{(n-2)}_{l},\ldots,F^{(n-2)}_{r} is a shelling of F(n1)\partial F^{(n-1)}. Define:

Fa(n2)F(n),F(n1)Fb(n2) for a<b.F^{(n-2)}_{a}\prec_{F^{(n)},F^{(n-1)}}F^{(n-2)}_{b}\text{ for $a<b$}.

In the same vein, given a chain F(n)F(i)F^{(n)}\supset\dots\supset F^{(i)}, we now inductively define an order F(n),,F(i)\prec_{F^{(n)},\dots,F^{(i)}} on the set of facets of F(i)F^{(i)}. Observe that, by induction, the chain F(n)F(i+1)F^{(n)}\supset\dots\supset F^{(i+1)} defines an order on the set of facets of F(i+1)F^{(i+1)} (by defining a shelling on F(i+1)F^{(i+1)}). We will use this information to get an order F(n),,F(i)\prec_{F^{(n)},\dots,F^{(i)}} on the set of facets of F(i)F^{(i)}. Observe:

F(i)(G(i)F(n),,F(i+1)F(i)G(i))=F1(i1)Fl(i1),F^{(i)}\cap\left(\bigcup_{G^{(i)}\prec_{F^{(n)},\dots,F^{(i+1)}}F^{(i)}}G^{(i)}\right)=F^{(i-1)}_{1}\cup\dots\cup F^{(i-1)}_{l},

where F1(i1),,Fl(i1),,Fr(i1)F^{(i-1)}_{1},\ldots,F^{(i-1)}_{l},\ldots,F^{(i-1)}_{r} is a shelling of F(i)\partial F^{(i)}. Define:

Fa(i)F(n),,F(i)Fb(i) for a<b.F^{(i)}_{a}\prec_{F^{(n)},\dots,F^{(i)}}F^{(i)}_{b}\text{ for $a<b$}.

We can now finally define the lexicographic order on the set of all simplices of 𝒞Y\mathcal{C}_{Y}: Given two simplices Δ=(F(n)F(0))\Delta=(F^{(n)}\supset\ldots\supset F^{(0)}) and Δ=(G(n)G(0))\Delta^{\prime}=(G^{(n)}\supset\ldots\supset G^{(0)}), let k=max{iF(i)G(i)}k=\max\{i\mid F^{(i)}\neq G^{(i)}\} (observe that k<nk<n as F(n)=G(n)F^{(n)}=G^{(n)}), then define ΔΔ\Delta\prec\Delta^{\prime} if

F(k)F(n),,F(k+1)G(k).F^{(k)}\prec_{F^{(n)},\dots,F^{(k+1)}}G^{(k)}.

Now, we finally prove that if we arrange the simplices in the lexicographical order, this is a shelling of 𝒞Y\mathcal{C}_{Y}. Consider a simplex

Δ=(F(n)F(0))\Delta=(F^{(n)}\supset\ldots\supset F^{(0)})

and write the vertices of Δ\Delta as v(n),v(n1),,v(0)v_{(n)},v_{(n-1)},\ldots,v_{(0)} where v(i)=ρspan0F(i)v_{(i)}=\rho_{\mathrm{span}_{\mathbb{R}_{\geq 0}}F^{(i)}}, with notation as in Remark 2.7. One observation is the following: if we have a chain of faces F(i+2)F(i+1)F(i)F^{(i+2)}\supset F^{(i+1)}\supset F^{(i)}, then there is a unique face F(i+1)F(i+1)F_{\ast}^{(i+1)}\neq F^{(i+1)} such that F(i+2)F(i+1)F(i)F^{(i+2)}\supset F_{*}^{(i+1)}\supset F^{(i)}. Denote F(0)F_{*}^{(0)} as the unique vertex of F(1)F^{(1)} which is not F(0)F^{(0)}.

We describe the simplices which share a facet with Δ\Delta. There are exactly nn of them:

Δi\displaystyle\Delta_{i} =(F(n)F(i+1)F(i)F(i1)F(0)),for 0in1.\displaystyle=(F^{(n)}\supset\ldots\supset F^{(i+1)}\supset F^{(i)}_{*}\supset F^{(i-1)}\supset\ldots\supset F^{(0)}),\qquad\text{for }0\leq i\leq n-1.

Let i1>>ili_{1}>\ldots>i_{l} be the integers such that ΔitΔ\Delta_{i_{t}}\prec\Delta exactly for these indices.

Note that the facets [v(n),,v(it)^,,v(0)][v_{(n)},\ldots,\widehat{v_{(i_{t})}},\ldots,v_{(0)}] are the facets of Δ\Delta which are contained in ΔΔΔ\bigcup_{\Delta^{\prime}\prec\Delta}\Delta^{\prime}. We claim that any face of Δ\Delta containing [v(i1),,v(it)][v_{(i_{1})},\ldots,v_{(i_{t})}] is not a face of Δ\Delta^{\prime} with ΔΔ\Delta^{\prime}\prec\Delta. Provided that, it is straightforward to see that

ΔΔΔΔ=t=1l[v(n),,v(it)^,,v(0)],\Delta\cap\bigcup_{\Delta^{\prime}\prec\Delta}\Delta^{\prime}=\bigcup_{t=1}^{l}[v_{(n)},\ldots,\widehat{v_{(i_{t})}},\ldots,v_{(0)}],

following Remark 2.15. This also shows that Δ\Delta is of type ll and that \prec is a shelling order.

We are left with proving that any face of Δ\Delta containing [v(i1),,v(it)][v_{(i_{1})},\ldots,v_{(i_{t})}] is not a face of Δ\Delta^{\prime} with ΔΔ\Delta^{\prime}\prec\Delta, that is, we want to prove that the set SS of simplices Δ=(G(n)G(0))\Delta^{\prime}=(G^{(n)}\supset\ldots\supset G^{(0)}) satisfying the following properties:

  1. (1)

    ΔΔ\Delta^{\prime}\prec\Delta

  2. (2)

    G(it)=F(it)G^{(i_{t})}=F^{(i_{t})} for t=1,,lt=1,\ldots,l

is empty.

Assume for the sake of contradiction that SS\neq\emptyset. For each Δ=(G(n)G(0))S\Delta^{\prime}=(G^{(n)}\supset\ldots\supset G^{(0)})\in S consider

iΔ=max{i:G(i)F(i)}.i_{\Delta^{\prime}}=\max\{i:G^{(i)}\neq F^{(i)}\}.

Pick Δ\Delta^{\prime} such that i=iΔi=i_{\Delta^{\prime}} is the minimum among these quantities. We note that ii cannot be one of the i1,,ili_{1},\ldots,i_{l} by the definition of SS.

First, we suppose that i>ili>i_{l}. We have G(i)F(n),,F(i+1)F(i)G^{(i)}\prec_{F^{(n)},\ldots,F^{(i+1)}}F^{(i)}. Also, we have F(il)=G(il)F^{(i_{l})}=G^{(i_{l})} which implies that F(i)G(i)F^{(i)}\cap G^{(i)} contains F(il)F^{(i_{l})}. This implies that there exists a facet G~(i)F(n),,F(i+1)F(i)\widetilde{G}^{(i)}\prec_{F^{(n)},\ldots,F^{(i+1)}}F^{(i)} of F(i+1)F^{(i+1)} such that G~(i1):=G~(i)F(i)\widetilde{G}^{(i-1)}:=\widetilde{G}^{(i)}\cap F^{(i)} is a (i1)(i-1)-dimensional face and F(il)F^{(i_{l})} is a face of G~(i1)\widetilde{G}^{(i-1)}. We replace Δ\Delta^{\prime} with

Δ′′=(G(n)F(i+1)G~(i)G~(i1)F(il)F(0)).\Delta^{\prime\prime}=(G^{(n)}\supset\ldots\supset F^{(i+1)}\supset\widetilde{G}^{(i)}\supset\widetilde{G}^{(i-1)}\supset\ldots\supset F^{(i_{l})}\supset\ldots\supset F^{(0)}).

Then we see that Δ′′S\Delta^{\prime\prime}\in S. If G~(i1)F(n),,F(i)F(i1)\widetilde{G}^{(i-1)}\prec_{F^{(n)},\ldots,F^{(i)}}F^{(i-1)}, then we replace Δ′′\Delta^{\prime\prime} with

Δ′′′=(F(n)F(i+1)F(i)G~(i1)F(il)F(0)).\Delta^{\prime\prime\prime}=(F^{(n)}\supset\ldots\supset F^{(i+1)}\supset F^{(i)}\supset\widetilde{G}^{(i-1)}\supset\ldots\supset F^{(i_{l})}\supset\ldots\supset F^{(0)}).

Then we see that Δ′′′S\Delta^{\prime\prime\prime}\in S and this violates the minimality of Δ\Delta^{\prime}. On the contrary, if G~(i1)F(n),,F(i)F(i1)\widetilde{G}^{(i-1)}\succeq_{F^{(n)},\ldots,F^{(i)}}F^{(i-1)}, this means that

F(i1)F(i)H(i)F(n),,F(i+1)F(i)H(i)F^{(i-1)}\subset F^{(i)}\cap\bigcup_{H^{(i)}\prec_{F^{(n)},\ldots,F^{(i+1)}}F^{(i)}}H^{(i)}

since G~(i1)=F(i)G~(i)\widetilde{G}^{(i-1)}=F^{(i)}\cap\widetilde{G}^{(i)} is contained on the right hand side. However, this implies that F(i)F(n),,F(i+1)F(i)F_{*}^{(i)}\prec_{F^{(n)},\ldots,F^{(i+1)}}F^{(i)}, which is a contradiction since i1,,ili_{1},\ldots,i_{l} are exactly those satisfying F(j)F(n),,F(j+1)F(j)F^{(j)}_{*}\prec_{F^{(n)},\ldots,F^{(j+1)}}F^{(j)} and ii is not one of them.

The second case is when i<ili<i_{l}. This implies that there exists G~(i)F(n),,F(i+1)F(i)\widetilde{G}^{(i)}\prec_{F^{(n)},\ldots,F^{(i+1)}}F^{(i)} such that G~(i)F(i)\widetilde{G}^{(i)}\cap F^{(i)} is a facet of F(i)F^{(i)}. Then we follow the same lines as above and get a contradiction on the minimality of ii. ∎

2.4. The Decomposition Theorem

In this subsection, we study the decomposition theorem for a proper birational toric morphism. We note that the singular cohomology of the fibers determine both the intersection cohomology stalks and the coefficients in the decomposition theorem, and we describe how to compute both of these explicitly (see Remark 2.18 below). We follow along the lines of [CFS-Effectivedecompositiontheorem], which discusses the decomposition theorem for Schubert varieties. However, the same argument works in the setting of toric varieties.

Let XX be the affine toric variety of dimension nn associated to a full-dimensional rational polyhedral cone σ\sigma and let ΣX\Sigma_{X} be the associated fan. Consider a toric variety YY obtained by a subdivision ΣY\Sigma_{Y} of ΣX\Sigma_{X}, and let π:YX\pi\colon Y\to X be the corresponding toric morphism. The decomposition theorem in this setting (see [dCMM-toricmaps, Theorem D]) tells us that

(3) 𝐑πICYτΣXjICSτsτ,j[j].\mathbf{R}\pi_{*}\operatorname{IC}_{Y}\simeq\bigoplus_{\tau\in\Sigma_{X}}\bigoplus_{j\in\mathbb{Z}}\operatorname{IC}_{S_{\tau}}^{\oplus s_{\tau,j}}[-j].

This is a more precise version of the decomposition theorem in [BBD-Faisceauxpervers], which is achieved by exploiting the action of the torus.

For μ,τΣX\mu,\tau\in\Sigma_{X}, we define

Fτ(q)\displaystyle F_{\tau}(q) =jhj(π1(xτ))qj\displaystyle=\sum_{j}h^{j}(\pi^{-1}(x_{\tau}))q^{j}
Hμ,τ(q)\displaystyle H_{\mu,\tau}(q) =jhj(ICSμ)xτqj\displaystyle=\sum_{j}h^{j}(\operatorname{IC}_{S_{\mu}})_{x_{\tau}}q^{j}
Dτ(q)\displaystyle D_{\tau}(q) =jsτ,jqj.\displaystyle=\sum_{j}s_{\tau,j}q^{j}.

where xτOτx_{\tau}\in O_{\tau} and

hj(π1(xτ)):=dimHj(π1(xτ),),andhj(ICSμ)xτ:=dimj(ICSμ)xτ.h^{j}(\pi^{-1}(x_{\tau})):=\dim_{\mathbb{Q}}H^{j}(\pi^{-1}(x_{\tau}),\mathbb{Q}),\qquad\text{and}\qquad h^{j}(\operatorname{IC}_{S_{\mu}})_{x_{\tau}}:=\dim_{\mathbb{Q}}\mathcal{H}^{j}(\operatorname{IC}_{S_{\mu}})_{x_{\tau}}.

Observe that FτF_{\tau} is independent of the choice of xτx_{\tau} by Proposition 2.5, and Hμ,τH_{\mu,\tau} is independent of the choice of xτx_{\tau} by Remark 2.18 below.

We fix the notation for F,HF,H, and DD from now on. If there is an ambiguity regarding the ambient toric variety, we will sometimes denote HH by HXH^{X}. We also point out that Hμ,τH_{\mu,\tau} is nonzero only for μτ\mu\subset\tau. If we additionally assume that YY is a simplicial toric variety, we have ICY=Y[n]\operatorname{IC}_{Y}=\mathbb{Q}_{Y}[n]. By taking the stalk of both sides of Equation 3 at a point xτOτx_{\tau}\in O_{\tau}, we get

(4) Fτ(q)qn=μτHμ,τ(q)Dμ(q).F_{\tau}(q)q^{-n}=\sum_{\mu\subset\tau}H_{\mu,\tau}(q)\cdot D_{\mu}(q).

Now we list some basic properties of these polynomials.

  1. (1)

    Dτ(q)=Dτ(q1)D_{\tau}(q)=D_{\tau}(q^{-1}) by Poincaré duality [dCM-Decomposition]*§1.6. (10).

  2. (2)

    qndτHμ,τ(q)q^{n-d_{\tau}}H_{\mu,\tau}(q) is strictly supported in negative degrees if μτ\mu\subsetneq\tau by [dCM-Decomposition]*§2.1.(12).

  3. (3)

    Hτ,τ(q)=qdτnH_{\tau,\tau}(q)=q^{d_{\tau}-n}.

  4. (4)

    D0(q)=q0D_{0}(q)=q^{0}.

For convenience, we put

F~τ(q)=qdτFτ(q)andH~μ,τ(q)=qndτHμ,τ(q).\widetilde{F}_{\tau}(q)=q^{-d_{\tau}}F_{\tau}(q)\quad\text{and}\quad\widetilde{H}_{\mu,\tau}(q)=q^{n-d_{\tau}}H_{\mu,\tau}(q).
Lemma 2.17.

For every pair of faces μ,τ\mu,\tau of σ\sigma with μτ\mu\subset\tau, we have the equality

H~μ,τX(q)=H~0,τ¯Sμ(q)=H~0,τ¯Vμ,τ(q)\widetilde{H}_{\mu,\tau}^{X}(q)=\widetilde{H}_{0,\bar{\tau}}^{S_{\mu}}(q)=\widetilde{H}_{0,\bar{\tau}}^{V_{\mu,\tau}}(q)

where τ¯\bar{\tau} in the second term is considered as a face τ¯N/μ\bar{\tau}\subset N_{\mathbb{R}}/\langle\mu\rangle of the cone σ¯N/μ\bar{\sigma}\subset N_{\mathbb{R}}/\langle\mu\rangle and the τ¯\bar{\tau} in the third term is considered as the cone τ¯τ/μ\bar{\tau}\subset\langle\tau\rangle/\langle\mu\rangle.

Proof.

The first equality is straightforward. For the second equality, we use the description of Uτ¯SμU_{\bar{\tau}}\subset S_{\mu}. Note that Uτ¯Vμ,τ×OτU_{\bar{\tau}}\simeq V_{\mu,\tau}\times O_{\tau}. Since dimOτ=ndτ\dim O_{\tau}=n-d_{\tau}, we get

hj(ICSμ)xτ=hj+dimOτ(ICVμ,τ)xτ¯h^{j}(\operatorname{IC}_{S_{\mu}})_{x_{\tau}}=h^{j+\dim O_{\tau}}(\operatorname{IC}_{V_{\mu,\tau}})_{x_{\bar{\tau}}}

due to the shift of cohomological degrees in the intersection complex. This proves the second equality. ∎

Remark 2.18.

We describe how to explicitly compute H~μ,τ\widetilde{H}_{\mu,\tau} and DτD_{\tau} in terms of the combinatorial data of the map π\pi. Proposition 2.6 tells us how to compute FτF_{\tau} explicitly in terms of the combinatorial data of π\pi. By induction on the dimension of τ\tau, we can assume that we have computed DμD_{\mu} for all μτ\mu\subsetneq\tau, since D0(q)=q0D_{0}(q)=q^{0}. Moreover, we can also assume that we have computed H~μ,τ\widetilde{H}_{\mu,\tau} for 0μτ0\subsetneq\mu\subseteq\tau using Lemma 2.17 and by induction on the dimension of τ\tau. We proceed to compute H~0,τ\widetilde{H}_{0,\tau} and DτD_{\tau}. By Equation (4) and using D0(q)=q0D_{0}(q)=q^{0} and Hτ,τ(q)=qdτnH_{\tau,\tau}(q)=q^{d_{\tau}-n}, we get

Fτ(q)qn=H0,τ(q)+qdτnDτ(q)+0μτHμ,τ(q)Dμ(q).F_{\tau}(q)q^{-n}=H_{0,\tau}(q)+q^{d_{\tau}-n}D_{\tau}(q)+\sum_{0\subsetneq\mu\subsetneq\tau}H_{\mu,\tau}(q)D_{\mu}(q).

After multiplying by qndτq^{n-d_{\tau}}, we get

(5) F~τ(q)0μτH~μ,τ(q)Dμ(q)=H~0,τ(q)+Dτ(q).\widetilde{F}_{\tau}(q)-\sum_{0\subsetneq\mu\subsetneq\tau}\widetilde{H}_{\mu,\tau}(q)D_{\mu}(q)=\widetilde{H}_{0,\tau}(q)+D_{\tau}(q).

Note that Dτ(q)D_{\tau}(q) and H~0,τ(q)\widetilde{H}_{0,\tau}(q) can be completely determined provided that the left-hand side of Equation (5) is known since H~0,τ(q)\widetilde{H}_{0,\tau}(q) is supported in strictly negative degrees and Dτ(q)=Dτ(q1)D_{\tau}(q)=D_{\tau}(q^{-1}). Hence, we can compute Dτ(q)D_{\tau}(q) and H~0,τ(q)\widetilde{H}_{0,\tau}(q) inductively. Additionally, we observe from the computation above that H~μ,τ\widetilde{H}_{\mu,\tau} does not depend on the choice of xτx_{\tau}.

In the appendix, we use this idea to explicitly compute H~μ,τ\widetilde{H}_{\mu,\tau} in dimensions 4\leq 4.

We finally upgrade the decomposition in (3) at the level of Hodge modules by accounting for the Tate twists. Since ICYH\operatorname{IC}_{Y}^{H} is a pure Hodge module of weight nn, the direct image j(πICYH)\mathcal{H}^{j}(\pi_{*}\operatorname{IC}_{Y}^{H}) is a pure Hodge module of weight n+jn+j. Hence, the appropriate formula for Hodge modules is

πICYHjμσ(ICSμH(dμ+j2))sμ,j[j]\pi_{*}\operatorname{IC}_{Y}^{H}\simeq\bigoplus_{j}\bigoplus_{\mu\subset\sigma}\left(\operatorname{IC}_{S_{\mu}}^{H}(-\frac{d_{\mu}+j}{2})\right)^{\oplus s_{\mu,j}}[-j]

since ICSμH\operatorname{IC}_{S_{\mu}}^{H} is pure of weight ndμn-d_{\mu}. One can notice that sμ,js_{\mu,j} is automatically zero if dμ+jd_{\mu}+j is odd due to weight reasons, although this can already be seen at the level of constructible sheaves in [dCMM-toricmaps]*Theorem D.

3. Higher direct images of Kähler differentials for toric morphisms

Let π:YX\pi\colon Y\to X be a barycentric resolution of an affine toric variety XX as in Remark 2.7. The main goal of this section is to describe a systematic way to compute the higher direct images of the sheaves of reflexive differentials.

The Ishida complex (2) provides a resolution of ΩY[p]\Omega^{[p]}_{Y}. The terms appearing in the Ishida complex are structure sheaves of various torus invariant subvarieties. Combining this fact with Remark 2.4 (1), we see that the higher direct images of ΩY[p]\Omega_{Y}^{[p]} can be computed by calculating the cohomology of the pushforward of the Ishida complex along π\pi. The pushforward of the Ishida complex is given by:

(6) 0ΩX[p]V0p𝒪XνΣYdimν=1Vνp𝒪Sπ(ν)νΣYdimν=2Vνp𝒪Sπ(ν)νΣYdimν=pVνp𝒪Sπ(ν)0.0\to\Omega_{X}^{[p]}\to V_{0}^{p}\otimes\mathcal{O}_{X}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=1\end{subarray}}V_{\nu}^{p}\otimes\mathcal{O}_{S_{\pi_{*}(\nu)}}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=2\end{subarray}}V_{\nu}^{p}\otimes\mathcal{O}_{S_{\pi_{*}(\nu)}}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=p\end{subarray}}V_{\nu}^{p}\otimes\mathcal{O}_{S_{\pi_{*}(\nu)}}\to 0.

We first describe the morphisms in the complex. Let μ,νΣY\mu,\nu\in\Sigma_{Y} such that dimμ=l\dim\mu=l and dimν=l+1\dim\nu=l+1. Then we see that SπνSπμS_{\pi_{*}\nu}\subset S_{\pi_{*}\mu} if and only if μν\mu\subset\nu. Let ρ1,,ρl\rho_{1},\ldots,\rho_{l} be the rays of μ\mu. If μν\mu\subset\nu, there is a unique ray ρl+1\rho_{l+1} such that ν\nu is the span of ρ1,,ρl,ρl+1\rho_{1},\ldots,\rho_{l},\rho_{l+1}. Recall from Remark 2.4 (4) that

Vμp=(plμ)Mρ1Mρl.V_{\mu}^{p}=\left(\bigwedge^{p-l}\mu^{\perp}\right)\otimes\frac{M_{\mathbb{C}}}{\rho_{1}^{\perp}}\otimes\ldots\otimes\frac{M_{\mathbb{C}}}{\rho_{l}^{\perp}}.

Note that μ/ν\mu^{\perp}/\nu^{\perp} can be naturally identified with M/ρl+1M_{\mathbb{C}}/\rho_{l+1}^{\perp}. From the short exact sequence 0νμμ/ν00\to\nu^{\perp}\to\mu^{\perp}\to\mu^{\perp}/\nu^{\perp}\to 0, we get a surjection

plμpl1νμνpl1νMρl+1.\bigwedge^{p-l}\mu^{\perp}\to\bigwedge^{p-l-1}\nu^{\perp}\otimes\frac{\mu^{\perp}}{\nu^{\perp}}\simeq\bigwedge^{p-l-1}\nu^{\perp}\otimes\frac{M_{\mathbb{C}}}{\rho_{l+1}^{\perp}}.

The map between Vμp𝒪SπμVνp𝒪SπνV_{\mu}^{p}\otimes\mathcal{O}_{S_{\pi_{*}\mu}}\to V_{\nu}^{p}\otimes\mathcal{O}_{S_{\pi_{*}\nu}} in (6) is given by the map above (up to a well-defined sign after choosing the order of the rays) tensored with Mρ1Mρl\frac{M_{\mathbb{C}}}{\rho_{1}^{\perp}}\otimes\ldots\otimes\frac{M_{\mathbb{C}}}{\rho_{l}^{\perp}} and the restriction map 𝒪Sπμ𝒪Sπν\mathcal{O}_{S_{\pi_{*}\mu}}\to\mathcal{O}_{S_{\pi_{*}\nu}} if μν\mu\subset\nu. Otherwise, the map is zero.

Using the action of the torus, the complex in (6) decomposes into various eigenspaces, hence it carries a natural MM-grading. For example, for uMu\in M viewed as a character of the torus, the degree uu-part of ΩX[p]\Omega_{X}^{[p]} can be described as

(ΩX[p])u={αΩX[p]:gα=u(g)α for all gSpec[M]}\left(\Omega_{X}^{[p]}\right)_{u}=\{\alpha\in\Omega_{X}^{[p]}:g^{*}\alpha=u(g)\cdot\alpha\text{ for all }g\in\operatorname{Spec}\mathbb{C}[M]\}\\

after identifying ΩX[p]\Omega_{X}^{[p]} with its space of global sections. First, let us consider this complex in degree 0M0\in M. Since every 𝒪Sπ(ν)\mathcal{O}_{S_{\pi_{*}(\nu)}} contains χ0\chi^{0}, the pushforward of the Ishida complex in degree 0 is

(7) 0V0pνΣYdimν=1VνpνΣYdimν=2VνpνΣYdimν=pVνp0,0\to V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=1\end{subarray}}V_{\nu}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=2\end{subarray}}V_{\nu}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \dim\nu=p\end{subarray}}V_{\nu}^{p}\to 0,

with V0pV^{p}_{0} in cohomological degree 0.

Let us write this in terms of the polytopal complex 𝒞Y\mathcal{C}_{Y} instead of ΣY\Sigma_{Y}. For γ𝒞Y\gamma\in\mathcal{C}_{Y}, we denote by VγpV_{\gamma}^{p} the vector space Vspan0γpV_{\mathrm{span}_{\mathbb{R}_{\geq 0}}\gamma}^{p} where span0γ\mathrm{span}_{\mathbb{R}_{\geq 0}}\gamma is the cone in ΣY\Sigma_{Y} corresponding to γ\gamma. We point out that there is a difference of dimension by 1 between the dimension as a cone and the dimension as a simplex, hence (7) becomes

(8) 0V0pγ𝒞Ydimγ=0Vγpγ𝒞Ydimγ=1Vγpγ𝒞Ydimγ=p1Vγp0.0\to V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=0\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=1\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=p-1\end{subarray}}V_{\gamma}^{p}\to 0.

We choose the lexicographic shelling of 𝒞Y\mathcal{C}_{Y} as described in Proposition 2.16. Let Δ1,,Δm\Delta_{1},\dots,\Delta_{m} denote the shelling.

Remark 3.1.

Let us describe the complex associated to a simplex of type ll for lpl\leq p. Let Δk\Delta_{k} be a simplex of type ll with lpl\leq p. Let α=[v(i1),,v(il)]\alpha=[v_{(i_{1})},\ldots,v_{(i_{l})}] denote the face of Δk\Delta_{k} that is not a face of one of Δ1,,Δk1\Delta_{1},\ldots,\Delta_{k-1}. We associate a Koszul-type complex to α\alpha:

(9) 0VαpγΔkdimγ=lαγVγpγΔkdimγ=l+1αγVγpγΔkdimγ=p1αγVγp00\to V_{\alpha}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\\ \dim\gamma=l\\ \alpha\subset\gamma\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\\ \dim\gamma=l+1\\ \alpha\subset\gamma\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\\ \dim\gamma=p-1\\ \alpha\subset\gamma\end{subarray}}V_{\gamma}^{p}\to 0

with VαpV^{p}_{\alpha} in cohomological degree ll. We note that the morphisms in the complex come from the push-forward of the Ishida complex in Equation 6. When l=pl=p, this is a complex concentrated in a single degree, namely Vαp[p]V^{p}_{\alpha}[-p]. For l<pl<p, this is exactly [toric-SVV]*Equation (3) tensored by Vv(i1)Vv(il)\frac{V}{v_{(i_{1})}^{\perp}}\otimes\ldots\otimes\frac{V}{v_{(i_{l})}^{\perp}}, and is hence exact. In either case, observe that the complex is exact in all cohomological degrees other than pp.

Proposition 3.2.

The complex (8) is exact in all cohomological degrees other than pp.

Proof.

Let Δ1,,Δm\Delta_{1},\ldots,\Delta_{m} be a shelling of 𝒞Y\mathcal{C}_{Y}. We compute the cohomology of the complex (8)

A:=0V0pγ𝒞Ydimγ=0Vγpγ𝒞Ydimγ=1Vγpγ𝒞Ydimγ=p1Vγp0,A^{\bullet}:=0\to V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=0\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=1\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\\ \dim\gamma=p-1\end{subarray}}V_{\gamma}^{p}\to 0,

with V0pV_{0}^{p} in cohomological degree 0, by putting a filtration on AA^{\bullet} from the shelling and computing the associated spectral sequence. We define FiAF^{i}A^{\bullet} by

FiA:=00γ𝒞Yk=1iΔkdimγ=0Vγpγ𝒞Yk=1iΔkdimγ=1Vγpγ𝒞Yk=1iΔkdimγ=p1Vγp0F^{i}A^{\bullet}:=0\to 0\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\setminus\bigcup_{k=1}^{i}\Delta_{k}\\ \dim\gamma=0\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\setminus\bigcup_{k=1}^{i}\Delta_{k}\\ \dim\gamma=1\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\mathcal{C}_{Y}\setminus\bigcup_{k=1}^{i}\Delta_{k}\\ \dim\gamma=p-1\end{subarray}}V_{\gamma}^{p}\to 0

for i>0i>0, and F0A=AF^{0}A^{\bullet}=A^{\bullet}. First we observe that FiAF^{i}A^{\bullet} are indeed subcomplexes of AA^{\bullet}. For this, it is enough to show that if γ𝒞Yk=1iΔk\gamma\in\mathcal{C}_{Y}\setminus\bigcup_{k=1}^{i}\Delta_{k} with dimγ=l\dim\gamma=l, and if γk=1iΔk\gamma^{\prime}\in\bigcup_{k=1}^{i}\Delta_{k} with dimγ=l+1\dim\gamma^{\prime}=l+1, then the morphism VγpVγpV_{\gamma}^{p}\to V_{\gamma^{\prime}}^{p} in AA^{\bullet} is zero. But this is true because γ\gamma cannot be a face of γ\gamma^{\prime} in this situation, and hence FiAF^{i}A^{\bullet} is indeed a subcomplex of AA^{\bullet}. We describe the graded pieces of this filtration. First, notice that

grF0A\displaystyle\operatorname{gr}_{F}^{0}A^{\bullet} =0V0pγΔ1dimγ=0VγpγΔ1dimγ=1VγpγΔ1dimγ=p1Vγp0.\displaystyle=0\to V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{1}\\ \dim\gamma=0\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{1}\\ \dim\gamma=1\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{1}\\ \dim\gamma=p-1\end{subarray}}V_{\gamma}^{p}\to 0.

For i>0i>0, let α=[v(i1),,v(il)]\alpha=[v_{(i_{1})},\ldots,v_{(i_{l})}] be the face of Δi\Delta_{i} that is not a face of any of Δ1,,Δi1\Delta_{1},\ldots,\Delta_{i-1}. Notice that

grFiA=0VαpγΔki=1k1Δidimγ=lVγpγΔki=1k1Δidimγ=l+1VγpγΔki=1k1Δidimγ=p1Vγp0,\operatorname{gr}_{F}^{i}A^{\bullet}=0\to V_{\alpha}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\setminus\bigcup_{i=1}^{k-1}\Delta_{i}\\ \dim\gamma=l\end{subarray}}V_{\gamma}^{p}\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\setminus\bigcup_{i=1}^{k-1}\Delta_{i}\\ \dim\gamma=l+1\end{subarray}}V_{\gamma}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\gamma\in\Delta_{k}\setminus\bigcup_{i=1}^{k-1}\Delta_{i}\\ \dim\gamma=p-1\end{subarray}}V_{\gamma}^{p}\to 0,

where VαpV_{\alpha}^{p} sits in cohomological degree ll. Observe that this is exactly the complex described in Remark 3.1. Consider the spectral sequence

E1i,j=Hi+jgrFiAHi+jA.E_{1}^{i,j}=H^{i+j}\operatorname{gr}_{F}^{i}A^{\bullet}\implies H^{i+j}A^{\bullet}.

We point out that Hi+jgrFiA=0H^{i+j}\operatorname{gr}_{F}^{i}A^{\bullet}=0 unless i+j=pi+j=p by Remark 3.1. Therefore, the spectral sequence degenerates at E1E_{1}, and the only non-trivial cohomology of AA^{\bullet} is in cohomological degree pp. ∎

Remark 3.3.

Observe that Proposition 3.2 is actually a statement about a complex of vector spaces associated to the barycentric subdivision of the cone σ\sigma. In particular, this statement also holds for any face τ\tau of σ\sigma and its barycentric subdivision as well.

Finally, let us see what happens in a degree uτu\in\tau_{\circ}^{*}. Observe that the terms 𝒪Sπ(ν)\mathcal{O}_{S_{\pi_{*}(\nu)}} that are non-zero in degree uu are precisely those for which ντ\nu\subset\tau. Therefore the pushforward of the Ishida complex in degree uu is

(10) 0V0pνΣYντ,dimν=1VνpνΣYντ,dimν=2VνpνΣYντ,dimν=pVνp0.0\to V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=1\end{subarray}}V_{\nu}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=2\end{subarray}}V_{\nu}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=p\end{subarray}}V_{\nu}^{p}\to 0.

Let W=τW=\tau^{\perp} and let V¯=V/τ\overline{V}=V/\tau^{\perp} (note that dimW=ndτ\dim W=n-d_{\tau} and dimV¯=dτ\dim\overline{V}=d_{\tau}). Fix a non-canonical splitting V=WV¯V=W\oplus\overline{V}. Observe that we have a non-canonical isomorphism

lVi=0dτ(liWiV¯),\bigwedge^{l}V\simeq\bigoplus_{i=0}^{d_{\tau}}\left(\bigwedge^{l-i}W\otimes\bigwedge^{i}\overline{V}\right),

with the convention that jW=0\displaystyle\bigwedge^{j}W=0 for j>ndτj>n-d_{\tau}.

More generally, given ντ\nu\subset\tau, observe that W=τνW=\tau^{\perp}\subset\nu^{\perp}. Define V¯ν:=ν/τ\overline{V}_{\nu}:=\nu^{\perp}/\tau^{\perp}. The non-canonical splitting of VV we fixed earlier induces a splitting ν=WV¯ν\nu^{\perp}=W\oplus\overline{V}_{\nu}. We can now write the pushforward of the Ishida complex in degree uu as a direct sum

0\displaystyle 0\to V0pνΣYντ,dimν=1VνpνΣYντ,dimν=2VνpνΣYντ,dimν=pVνp0\displaystyle V_{0}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=1\end{subarray}}V_{\nu}^{p}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=2\end{subarray}}V_{\nu}^{p}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=p\end{subarray}}V_{\nu}^{p}\to 0
i=0dτ(piW(iV¯νΣYντ,dimν=1V¯νiνΣYντ,dimν=2V¯νiνΣYντ,dimν=iV¯νi))\displaystyle\simeq\bigoplus_{i=0}^{d_{\tau}}\left(\bigwedge^{p-i}W\otimes\left(\bigwedge^{i}\overline{V}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=1\end{subarray}}\overline{V}_{\nu}^{i}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=2\end{subarray}}\overline{V}_{\nu}^{i}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=i\end{subarray}}\overline{V}_{\nu}^{i}\right)\right)

Now, observe that the complex

iV¯νΣYντ,dimν=1V¯νiνΣYντ,dimν=2V¯νiνΣYντ,dimν=iV¯νi\bigwedge^{i}\overline{V}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=1\end{subarray}}\overline{V}_{\nu}^{i}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=2\end{subarray}}\overline{V}_{\nu}^{i}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=i\end{subarray}}\overline{V}_{\nu}^{i}

is the complex of vector spaces associated to the barycentric subdivision of the cone τ\tau. Therefore by Remark 3.3, it follows that this complex is exact at all cohomological degrees other than ii.

Now, we define the generating function for the pushforward of the sheaves of reflexive differentials. For τΣX\tau\in\Sigma_{X}, we define

Ωτ(K,L)=k,ldim(Rn+k+lπΩY[k])uKkLl,\Omega_{\tau}(K,L)=\sum_{k,l}\dim_{\mathbb{C}}(R^{n+k+l}\pi_{*}\Omega_{Y}^{[-k]})_{u}K^{k}L^{l},

where uτu\in\tau_{\circ}^{*}. This is independent of the choice of uτu\in\tau_{\circ}^{*}, as shown by the following combinatorial formula for Ωτ(K,L)\Omega_{\tau}(K,L).

Proposition 3.4.

If π:YX\pi\colon Y\to X is a barycentric resolution of XX, then

Ωτ(K,L)=Ln(1+K1L)ndτμτμΣX(j=0dτdj(μ)(1K1L2)dτj(K1L2)j).\Omega_{\tau}(K,L)=L^{-n}(1+K^{-1}L)^{n-d_{\tau}}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}\left(\sum_{j=0}^{d_{\tau}}d_{j}(\mu)(1-K^{-1}L^{2})^{d_{\tau}-j}(K^{-1}L^{2})^{j}\right).

Moreover, Ωτ\Omega_{\tau} is related to FτF_{\tau} by the following formula:

Ωτ(K,L)=Ln(1+K1L)ndτFτ(LK12).\Omega_{\tau}(K,L)=L^{-n}(1+K^{-1}L)^{n-d_{\tau}}F_{\tau}(LK^{-\frac{1}{2}}).
Proof.

We compute the dimension of (RiπΩY[p])u(R^{i}\pi_{*}\Omega_{Y}^{[p]})_{u}. Let W=τW=\tau^{\perp} and V¯=V/τ\overline{V}=V/\tau^{\perp}. Note that by Proposition 3.2, the cohomology of the complex

piW(iV¯νΣYντ,dimν=1V¯νiνΣYντ,dimν=2V¯νiνΣYντ,dimν=iV¯νi)\bigwedge^{p-i}W\otimes\left(\bigwedge^{i}\overline{V}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=1\end{subarray}}\overline{V}_{\nu}^{i}\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=2\end{subarray}}\overline{V}_{\nu}^{i}\to\ldots\to\bigoplus_{\begin{subarray}{c}\nu\in\Sigma_{Y}\\ \nu\subset\tau,\dim\nu=i\end{subarray}}\overline{V}_{\nu}^{i}\right)

is concentrated in degree ii and is equal to (RiπΩY[p])u(R^{i}\pi_{*}\Omega_{Y}^{[p]})_{u}. Furthermore, the number of summands of the jj-th term is equal to μτ,μΣXdj(μ)\sum_{\mu\subset\tau,\mu\in\Sigma_{X}}d_{j}(\mu) and the dimension of each summand of the jj-th term is equal to (dτjij){d_{\tau}-j\choose i-j}. Hence we have

dim(RiπΩY[p])u\displaystyle\dim_{\mathbb{C}}(R^{i}\pi_{*}\Omega_{Y}^{[p]})_{u}
=(ndτpi)((1)i(dτi)μτμΣXd0(μ)+(1)i1(dτ1i1)μτμΣXd1(μ)++(dτi0)μτμΣXdi(μ))\displaystyle={n-d_{\tau}\choose p-i}\cdot\left((-1)^{i}{d_{\tau}\choose i}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}d_{0}(\mu)+(-1)^{i-1}{d_{\tau}-1\choose i-1}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}d_{1}(\mu)+\cdots+{d_{\tau}-i\choose 0}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}d_{i}(\mu)\right)
=(ndτpi)j=0iμτμΣX(1)ij(dτjij)dj(μ).\displaystyle={n-d_{\tau}\choose p-i}\sum_{j=0}^{i}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}(-1)^{i-j}{d_{\tau}-j\choose i-j}d_{j}(\mu).

Therefore, we have

Ωτ(K,L)\displaystyle\Omega_{\tau}(K,L) =k,ldim(Rn+k+lπΩY[k])uKkLl\displaystyle=\sum_{k,l}\dim_{\mathbb{C}}(R^{n+k+l}\pi_{*}\Omega_{Y}^{[-k]})_{u}K^{k}L^{l}
=k,l,jμτ(ndτn2kl)(1)n+k+lj(dτjn+k+lj)dj(μ)KkLl\displaystyle=\sum_{k,l,j}\sum_{\mu\subset\tau}{n-d_{\tau}\choose-n-2k-l}(-1)^{n+k+l-j}{d_{\tau}-j\choose n+k+l-j}d_{j}(\mu)K^{k}L^{l}
=c,j,μτ(ndτnc)dj(μ)k(1)n+cjk(dτjn+cjk)KkLc2k\displaystyle=\sum_{c,j,\mu\subset\tau}{n-d_{\tau}\choose-n-c}d_{j}(\mu)\sum_{k}(-1)^{n+c-j-k}{d_{\tau}-j\choose n+c-j-k}K^{k}L^{c-2k}
(where we set c=2k+l)\displaystyle\qquad(\text{where we set }c=2k+l)
=c,j,μτ(ndτnc)dj(μ)(k(1)k(dτjk)(K1L2)k)Kn+cjL2nc+2j\displaystyle=\sum_{c,j,\mu\subset\tau}{n-d_{\tau}\choose-n-c}d_{j}(\mu)\left(\sum_{k^{\prime}}(-1)^{k^{\prime}}{d_{\tau}-j\choose k^{\prime}}(K^{-1}L^{2})^{k^{\prime}}\right)K^{n+c-j}L^{-2n-c+2j}
(where we set k=n+cjk)\displaystyle\qquad(\text{where we set }k^{\prime}=n+c-j-k)
=c,j,μτ(ndτnc)dj(μ)(1K1L2)dτjKn+cjL2nc+2j\displaystyle=\sum_{c,j,\mu\subset\tau}{n-d_{\tau}\choose-n-c}d_{j}(\mu)(1-K^{-1}L^{2})^{d_{\tau}-j}K^{n+c-j}L^{-2n-c+2j}
=Lnμτjdj(μ)(1K1L2)dτj(K1L2)jc(ndτc)(K1L)c\displaystyle=L^{-n}\sum_{\mu\subset\tau}\sum_{j}d_{j}(\mu)(1-K^{-1}L^{2})^{d_{\tau}-j}(K^{-1}L^{2})^{j}\sum_{c^{\prime}}{n-d_{\tau}\choose c^{\prime}}(K^{-1}L)^{c^{\prime}}
(where we set c=nc)\displaystyle\qquad(\text{where we set }c^{\prime}=-n-c)
=Ln(1+K1L)ndτμτμΣXjdj(μ)(1K1L2)dτj(K1L2)j.\displaystyle=L^{-n}(1+K^{-1}L)^{n-d_{\tau}}\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}\sum_{j}d_{j}(\mu)(1-K^{-1}L^{2})^{d_{\tau}-j}(K^{-1}L^{2})^{j}.

This concludes the proof of the first part of the proposition. Now, we prove the second statement. By construction of the barycentric subdivision, we have

dj(τ)=μτdj1(τ).d_{j}(\tau)=\sum_{\mu\subsetneq\tau}d_{j-1}(\tau).

If t2=K1L2t^{2}=K^{-1}L^{2}, then we get

μτjdj(μ)(1t2)dτj(t2)j\displaystyle\sum_{\mu\subset\tau}\sum_{j}d_{j}(\mu)(1-t^{2})^{d_{\tau}-j}(t^{2})^{j}
=j(dj(τ)+dj+1(τ))(1t2)dτj(t2)j\displaystyle=\sum_{j}(d_{j}(\tau)+d_{j+1}(\tau))(1-t^{2})^{d_{\tau}-j}(t^{2})^{j}
=jdj(τ)((1t2)dτj(t2)j+(1t2)dτj+1(t2)j1)\displaystyle=\sum_{j}d_{j}(\tau)\left((1-t^{2})^{d_{\tau}-j}(t^{2})^{j}+(1-t^{2})^{d_{\tau}-j+1}(t^{2})^{j-1}\right)
=jdj(τ)(t2)j1(1t2)dτj.\displaystyle=\sum_{j}d_{j}(\tau)(t^{2})^{j-1}(1-t^{2})^{d_{\tau}-j}.

Observe that the fiber π1(xτ)\pi^{-1}(x_{\tau}) is an irreducible simplicial toric variety of dimension dτ1d_{\tau}-1. First, we show that π1(Oτ)\pi^{-1}(O_{\tau}) is irreducible. Let ρτ\rho_{\tau} denote the unique ray in ΣY\Sigma_{Y} contained in the relative interior of τ\tau, then we have

π1(Oτ)=πμ=τμΣYOμρτμμΣYOμ=Oρτ¯.\pi^{-1}(O_{\tau})=\displaystyle\bigsqcup_{\begin{subarray}{c}\pi_{*}\mu=\tau\\ \mu\in\Sigma_{Y}\end{subarray}}O_{\mu}\subset\bigsqcup_{\begin{subarray}{c}\rho_{\tau}\subset\mu\\ \mu\in\Sigma_{Y}\end{subarray}}O_{\mu}=\overline{O_{\rho_{\tau}}}.

Since Oρτ¯\overline{O_{\rho_{\tau}}} is irreducible, and since π1(Oτ)Oρτ¯\pi^{-1}(O_{\tau})\subset\overline{O_{\rho_{\tau}}} is an open subset (it is the inverse image of the open set OτO_{\tau} under the natural map Oρτ¯Oτ¯)\overline{O_{\rho_{\tau}}}\to\overline{O_{\tau}}), we have that π1(Oτ)\pi^{-1}(O_{\tau}) is irreducible. By Proposition 2.5, we have π1(Oτ)π1(xτ)×Oτ\pi^{-1}(O_{\tau})\simeq\pi^{-1}(x_{\tau})\times O_{\tau}. Hence π1(xτ)\pi^{-1}(x_{\tau}) is irreducible and hence, irreducible simplicial by Proposition 2.5.

Now by Proposition 2.6, we have:

Fτ(q)=jdj(τ)(q21)dτj.F_{\tau}(q)=\sum_{j}d_{j}(\tau)(q^{2}-1)^{d_{\tau}-j}.

Since a proper simplicial toric variety satisfies Poincaré duality, we know that Fτ(q)=Fτ(q1)q2(dτ1)F_{\tau}(q)=F_{\tau}(q^{-1})q^{2(d_{\tau}-1)}, and therefore

jdj(τ)(q21)dτjq2(dτ1)=jdj(τ)(1q2)dτj(q2)j1.\sum_{j}d_{j}(\tau)(q^{-2}-1)^{d_{\tau}-j}q^{2(d_{\tau}-1)}=\sum_{j}d_{j}(\tau)(1-q^{2})^{d_{\tau}-j}(q^{2})^{j-1}.

Hence, we get

μτμΣXjdj(μ)(1K1L2)dτj(K1L2)j=jdj(τ)(K1L21)dτj.\sum_{\begin{subarray}{c}\mu\subset\tau\\ \mu\in\Sigma_{X}\end{subarray}}\sum_{j}d_{j}(\mu)(1-K^{-1}L^{2})^{d_{\tau}-j}(K^{-1}L^{2})^{j}=\sum_{j}d_{j}(\tau)(K^{-1}L^{2}-1)^{d_{\tau}-j}.

Therefore,

Ωτ(K,L)=Ln(1+K1L)ndτjdj(τ)(K1L21)dτj.\Omega_{\tau}(K,L)=L^{-n}(1+K^{-1}L)^{n-d_{\tau}}\sum_{j}d_{j}(\tau)(K^{-1}L^{2}-1)^{d_{\tau}-j}.

Remark 3.5.

Even though Proposition 3.4 is stated for barycentric resolutions, this method provides a general framework of computing the higher direct images of reflexive Kähler differentials. More precisely, if we have a proper toric morphism π:YX\pi:Y\to X from a simplicial toric variety YY, the computation of RiπΩY[p]R^{i}\pi_{*}\Omega_{Y}^{[p]} essentially boils down to a linear algebra computation of finite dimensional vector spaces. Moreover, if π:YX\pi:Y\to X is a birational toric morphism such that the polytopal complex associated to YY has every face shellable, then the first assertion of Proposition 3.4 holds in that setting as well. It would be interesting to investigate what happens for the non-shellable subdivisions.

4. Graded de Rham complex of the Intersection Cohomology Hodge module

In this section, we define the generating function associated to the graded de Rham complex of the intersection cohomology Hodge module and prove the main result of the paper.

For μ,τΣX\mu,\tau\in\Sigma_{X} such that μτ\mu\subset\tau, we define dRμ,τ\operatorname{dR}_{\mu,\tau} as

dRμ,τ(K,L)=k,ldiml(grkDRXICSμH)uKkLl\operatorname{dR}_{\mu,\tau}(K,L)=\sum_{k,l}\dim_{\mathbb{C}}\mathcal{H}^{l}(\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{S_{\mu}}^{H})_{u}K^{k}L^{l}

for uτu\in\tau_{\circ}^{*}. This definition is independent of the choice of uτu\in\tau_{\circ}^{*}, as the next result shows.

Theorem 4.1.

Let XX be the affine toric variety associated to a full dimensional cone σ\sigma of dimension nn and let ΣX\Sigma_{X} be the associated fan. Then dRμ,τ\operatorname{dR}_{\mu,\tau} is related to H~μ,τ\widetilde{H}_{\mu,\tau} in the following way:

dRμ,τ(K,L)=H~μ,τ(K12L)Kdμdτ2(K1+L1)ndτ.\operatorname{dR}_{\mu,\tau}(K,L)=\widetilde{H}_{\mu,\tau}(K^{-\frac{1}{2}}L)K^{\frac{d_{\mu}-d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}}.

In particular, dRμ,τ\operatorname{dR}_{\mu,\tau} depends only on the graded poset structure of ΣX\Sigma_{X}. Moreover, dRμ,τ\operatorname{dR}_{\mu,\tau} can be explicitly computed in terms of the combinatorics of ΣX\Sigma_{X}.

Before giving the proof, we state a lemma relating the graded de Rham complex of the intersection cohomology and the pushforward of Kähler differentials.

Lemma 4.2.

Let π:YX\pi\colon Y\to X be a birational toric morphism given by a simplicial subdivision of the fan ΣX\Sigma_{X}. Then for each τΣX\tau\in\Sigma_{X}, we have

Ωτ(K,L)=0μτdRμ,τ(K,L)Dμ(L1K12)Kdμ2.\Omega_{\tau}(K,L)=\sum_{0\subset\mu\subset\tau}\operatorname{dR}_{\mu,\tau}(K,L)\cdot D_{\mu}(L^{-1}K^{\frac{1}{2}})K^{-\frac{d_{\mu}}{2}}.
Proof.

This is a simple consequence of the decomposition theorem:

πICYH=μσj(ICSμH(dμ+j2))sμ,j[j].\pi_{*}\operatorname{IC}_{Y}^{H}=\bigoplus_{\mu\subset\sigma}\bigoplus_{j}\left(\operatorname{IC}_{S_{\mu}}^{H}(-\frac{d_{\mu}+j}{2})\right)^{\oplus s_{\mu,j}}[-j].

Note from Remark 2.4. (3) that

grkDRYICYH=grkDRYYH[n]=ΩY[k][n+k].\operatorname{gr}_{k}\operatorname{DR}_{Y}\operatorname{IC}_{Y}^{H}=\operatorname{gr}_{k}\operatorname{DR}_{Y}\mathbb{Q}_{Y}^{H}[n]=\Omega_{Y}^{[-k]}[n+k].

By taking lgrkDR\mathcal{H}^{l}\operatorname{gr}_{k}\operatorname{DR} and using 𝐑fgrDRgrDRf\mathbf{R}f_{*}\circ\operatorname{gr}\operatorname{DR}\simeq\operatorname{gr}\operatorname{DR}\circ f_{*} (Equation 1), we get

Rn+k+lπ(ΩY[k])lgrkDRXICXH0μσjljgrk+dμ+j2DRX(ICSμH)sμ,j.R^{n+k+l}\pi_{*}(\Omega_{Y}^{[-k]})\simeq\mathcal{H}^{l}\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H}\oplus\bigoplus_{0\neq\mu\subset\sigma}\bigoplus_{j}\mathcal{H}^{l-j}\operatorname{gr}_{k+\frac{d_{\mu}+j}{2}}\operatorname{DR}_{X}(\operatorname{IC}_{S_{\mu}}^{H})^{\oplus s_{\mu,j}}.

By Proposition 3.4 and induction on dimension, we see that the dimension of the degree uu piece of lgrkDRXICXH\mathcal{H}^{l}\operatorname{gr}_{k}\operatorname{DR}_{X}\operatorname{IC}_{X}^{H} does not depend on the choice of uτu\in\tau_{\circ}^{*}. By taking the degree uu piece for uτu\in\tau_{\circ}^{*}, we get

Ωτ(K,L)=dR0,τ(K,L)+0μτdRμ,τ(K,L)Dμ(LK12)Kdμ2.\Omega_{\tau}(K,L)=\operatorname{dR}_{0,\tau}(K,L)+\sum_{0\neq\mu\subset\tau}\operatorname{dR}_{\mu,\tau}(K,L)D_{\mu}(LK^{-\frac{1}{2}})K^{-\frac{d_{\mu}}{2}}.

The assertion of the lemma follows because we have Dμ(q)=Dμ(q1)D_{\mu}(q)=D_{\mu}(q^{-1}) by Poincaré duality. ∎

Now, we give the proof of Theorem 4.1.

Proof of Theorem 4.1.

We prove this by induction on the dimension of XX. If XX is of dimension zero, then there is nothing to prove. For μ0\mu\neq 0, we have the equality

dRμ,τX=dR0,τ¯μSμ\operatorname{dR}_{\mu,\tau}^{X}=\operatorname{dR}_{0,\bar{\tau}_{\mu}}^{S_{\mu}}

by definition and the description of the fan of SμS_{\mu}. Note that we also have

dτdμ=dτ¯μd0,dimXdτ=dimSμdτ¯μ.d_{\tau}-d_{\mu}=d_{\bar{\tau}_{\mu}}-d_{0},\qquad\dim X-d_{\tau}=\dim S_{\mu}-d_{\bar{\tau}_{\mu}}.

Hence, the equality follows by Lemma 2.17 and the induction hypothesis. Therefore, it is enough to show the equality when μ=0\mu=0. Consider the proper toric morphism π:YX\pi\colon Y\to X induced by the barycentric subdivision of ΣX\Sigma_{X}. By Lemma 4.2 and the inductive hypothesis, we have

Ωτ(K,L)\displaystyle\Omega_{\tau}(K,L) =dR0,τ(K,L)+0μτdRμ,τ(K,L)Dμ(L1K12)Kdμ2\displaystyle=\operatorname{dR}_{0,\tau}(K,L)+\sum_{0\neq\mu\subset\tau}\operatorname{dR}_{\mu,\tau}(K,L)\cdot D_{\mu}(L^{-1}K^{\frac{1}{2}})K^{-\frac{d_{\mu}}{2}}
=dR0,τ(K,L)+Kdτ2(K1+L1)ndτ0μτH~μ,τ(LK12)Dμ(L1K12).\displaystyle=\operatorname{dR}_{0,\tau}(K,L)+K^{-\frac{d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}}\sum_{0\neq\mu\subset\tau}\widetilde{H}_{\mu,\tau}(LK^{-\frac{1}{2}})D_{\mu}(L^{-1}K^{\frac{1}{2}}).

By Proposition 3.4, we have

Ωτ(K,L)\displaystyle\Omega_{\tau}(K,L) =Ln(1+K1L)ndτFτ(LK12)\displaystyle=L^{-n}(1+K^{-1}L)^{n-d_{\tau}}F_{\tau}(LK^{-\frac{1}{2}})
=(K1+L1)ndτKdτ2F~τ(LK12).\displaystyle=(K^{-1}+L^{-1})^{n-d_{\tau}}K^{-\frac{d_{\tau}}{2}}\widetilde{F}_{\tau}(LK^{-\frac{1}{2}}).

Equation 5 in Section 2.4 gives

F~τ(LK12)=H~0,τ(LK12)+0μτH~μ,τ(LK12)Dμ(LK12).\widetilde{F}_{\tau}(LK^{-\frac{1}{2}})=\widetilde{H}_{0,\tau}(LK^{-\frac{1}{2}})+\sum_{0\neq\mu\subset\tau}\widetilde{H}_{\mu,\tau}(LK^{-\frac{1}{2}})D_{\mu}(LK^{-\frac{1}{2}}).

By multiplying Kdτ2(K1+L1)ndτK^{-\frac{d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}} on both sides, we get

dR0,τ(K,L)=H~0,τ(LK12)Kdτ2(K1+L1)ndτ.\operatorname{dR}_{0,\tau}(K,L)=\widetilde{H}_{0,\tau}(LK^{-\frac{1}{2}})K^{-\frac{d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}}.

Finally, observe that Remark 2.18 applied to the barycentric subdivision π\pi tells us that H~μ,τ\widetilde{H}_{\mu,\tau} can be explicitly computed in terms of the combinatorics of ΣX\Sigma_{X}. Therefore, dRμ,τ\operatorname{dR}_{\mu,\tau} can be explicitly computed in terms of the combinatorics of ΣX\Sigma_{X} as well. ∎

Remark 4.3.

We end the section by relating Theorem 4.1 to a recent KK-theoretic result of Maxim and Schürmann. Roughly speaking, the graded de Rham complex gives a homomorphism from K0𝕋(MHM(X))K_{0}^{\mathbb{T}}(\operatorname{MHM}(X)) to K0𝕋(X)[y±1]K_{0}^{\mathbb{T}}(X)[y^{\pm 1}], and one can consider the image of ICXH[n]\operatorname{IC}_{X}^{H}[-n] by this map. [maxim2024weighted]*Corollary 5.3 says that the image can be written as the sum

τΣXχy(ICXH[n]|xτ)(1+y)ndτ(kτ)[ωSτ]𝕋.\sum_{\tau\in\Sigma_{X}}\chi_{y}(\operatorname{IC}_{X}^{H}[-n]|_{x_{\tau}})\cdot(1+y)^{n-d_{\tau}}\cdot(k_{\tau})_{*}[\omega_{S_{\tau}}]_{\mathbb{T}}.

Theorem 4.1 applied to dR0,τ\operatorname{dR}_{0,\tau} gives:

dR0,τ(K,L)\displaystyle\operatorname{dR}_{0,\tau}(K,L) =H~0,τ(LK12)Kdτ2(K1+L1)ndτ\displaystyle=\widetilde{H}_{0,\tau}(LK^{-\frac{1}{2}})K^{-\frac{d_{\tau}}{2}}(K^{-1}+L^{-1})^{n-d_{\tau}}
=H~0,τ(LK12)(LK12)dτLdτ(K1+L1)ndτ.\displaystyle=\widetilde{H}_{0,\tau}(LK^{-\frac{1}{2}})(LK^{-\frac{1}{2}})^{d_{\tau}}L^{-d_{\tau}}(K^{-1}+L^{-1})^{n-d_{\tau}}.

Since we are taking the image in K0𝕋(X)[y±1]K_{0}^{\mathbb{T}}(X)[y^{\pm 1}], we specialize to L=1L=-1 and set q=LK12q=LK^{-\frac{1}{2}} and q2=K1=yq^{2}=K^{-1}=-y to get

dR0,τ((y)1,1)\displaystyle\operatorname{dR}_{0,\tau}((-y)^{-1},-1) =H~0,τ(q)qdτ(1+y)ndτ(1)n.\displaystyle=\widetilde{H}_{0,\tau}(q)q^{d_{\tau}}(1+y)^{n-d_{\tau}}(-1)^{n}.

We observe that χy(ICXH[n]|xτ)=H~0,τ(q)qdτ\chi_{y}(\operatorname{IC}_{X}^{H}[-n]|_{x_{\tau}})=\widetilde{H}_{0,\tau}(q)q^{d_{\tau}} to get

dR0,τ((y)1,1)\displaystyle\operatorname{dR}_{0,\tau}((-y)^{-1},-1) =χy(ICXH[n]|xτ)(1+y)ndτ(1)n.\displaystyle=\chi_{y}(\operatorname{IC}_{X}^{H}[-n]|_{x_{\tau}})(1+y)^{n-d_{\tau}}(-1)^{n}.

The (1)n(-1)^{n} comes from the fact that dR0,τ\operatorname{dR}_{0,\tau} is defined for ICXH\operatorname{IC}^{H}_{X} while [maxim2024weighted] work with ICXH[n]\operatorname{IC}^{H}_{X}[-n].

Appendix A Explicit Formulas

In the appendix, we demonstrate that the polynomials H~μ,τ(q)\widetilde{H}_{\mu,\tau}(q) and dRμ,τ(K,L)\operatorname{dR}_{\mu,\tau}(K,L) can be calculated rather explicitly by computing them for full dimensional affine toric varieties up to dimension 4.

A.1. Dimension 0, 1, and 2

Note that up to dimension 2, every toric variety is simplicial. Hence the intersection cohomology Hodge module agrees with the trivial one. For dimension zero, a zero dimensional toric variety is just a point. Hence

H~0,0=q0,anddR0,0=K0L0.\widetilde{H}_{0,0}=q^{0},\qquad\text{and}\qquad\operatorname{dR}_{0,0}=K^{0}L^{0}.

For dimension 1, we denote the nonzero ray by σ\sigma. It is easy to check that

H~0,σ=q1,H~0,0=H~σ,σ=q0.\widetilde{H}_{0,\sigma}=q^{-1},\quad\widetilde{H}_{0,0}=\widetilde{H}_{\sigma,\sigma}=q^{0}.

Hence, we get

dR0,σ=L1,dR0,0=(K1+L1),dRσ,σ=K0L0.\operatorname{dR}_{0,\sigma}=L^{-1},\quad\operatorname{dR}_{0,0}=(K^{-1}+L^{-1}),\quad\operatorname{dR}_{\sigma,\sigma}=K^{0}L^{0}.

For dimension 2, let τ1,τ2\tau_{1},\tau_{2} be the two extremal rays of the two dimensional cone σ\sigma. Then, it is clear that

H~0,σ=q2,H~0,τ1=H~0,τ2=q1,H~0,0=q0.\widetilde{H}_{0,\sigma}=q^{-2},\quad\widetilde{H}_{0,\tau_{1}}=\widetilde{H}_{0,\tau_{2}}=q^{-1},\quad\widetilde{H}_{0,0}=q^{0}.

The case when the first index is non-zero is redundant since it comes from a lower dimensional toric variety. Therefore,

dR0,σ=L2,dR0,τ1=dR0,τ2=L1(K1+L1),dR0,0=(K1+L1)2.\operatorname{dR}_{0,\sigma}=L^{-2},\quad\operatorname{dR}_{0,\tau_{1}}=\operatorname{dR}_{0,\tau_{2}}=L^{-1}(K^{-1}+L^{-1}),\quad\operatorname{dR}_{0,0}=(K^{-1}+L^{-1})^{2}.

A.2. Dimension 3

Let XX be a 3-dimensional affine toric variety corresponding to a cone σ\sigma and suppose there are vv extremal rays μ1,,μv\mu_{1},\ldots,\mu_{v}. Note that the number of two dimensional faces is also vv. Let τ1,,τv\tau_{1},\ldots,\tau_{v} be the two dimensional faces. Adding a ray ρ\rho in the interior of the cone gives a proper birational toric morphism π:YX\pi\colon Y\to X where YY is simplicial. Note that π\pi is an isomorphism outside of the torus fixed point xσx_{\sigma}. Hence, the decomposition theorem tells us

D0(q)=q0,Dμi(q)=Dτi(q)=0.D_{0}(q)=q^{0},\quad D_{\mu_{i}}(q)=D_{\tau_{i}}(q)=0.

It remains to calculate Dσ(q)D_{\sigma}(q). Using (5) and Proposition 2.6, we get

q3((q21)2+v(q21)+v)=H~0,σ(q)+Dσ(q).q^{-3}\big{(}(q^{2}-1)^{2}+v(q^{2}-1)+v\big{)}=\widetilde{H}_{0,\sigma}(q)+D_{\sigma}(q).

Then we can conclude that we have

Dσ(q)=q1+q1,andH~0,σ(q)=q3+(v3)q1.D_{\sigma}(q)=q^{1}+q^{-1},\quad\text{and}\quad\widetilde{H}_{0,\sigma}(q)=q^{-3}+(v-3)q^{-1}.

Note that all the other information for H~\widetilde{H} comes from lower-dimensional toric varieties because of Lemma 2.17. Therefore,

dR0,σ\displaystyle\operatorname{dR}_{0,\sigma} =L3+(v3)K1L1\displaystyle=L^{-3}+(v-3)K^{-1}L^{-1}
dR0,τi\displaystyle\operatorname{dR}_{0,\tau_{i}} =(K1+L1)L2\displaystyle=(K^{-1}+L^{-1})L^{-2}
dR0,μi\displaystyle\operatorname{dR}_{0,\mu_{i}} =(K1+L1)2L1\displaystyle=(K^{-1}+L^{-1})^{2}L^{-1}
dR0,0\displaystyle\operatorname{dR}_{0,0} =(K1+L1)3.\displaystyle=(K^{-1}+L^{-1})^{3}.

A.3. Dimension 4.

Let XX be a 4-dimensional affine toric variety corresponding to a cone σ\sigma. We denote the 1-dimensional faces by μ1,,μv\mu_{1},\ldots,\mu_{v}, the 2-dimensional faces by ν1,,νe\nu_{1},\ldots,\nu_{e}, and the 3-dimensional faces by τ1,,τf\tau_{1},\ldots,\tau_{f}. For each τk\tau_{k}, we let nkn_{k} the number of 1-dimensional faces contained in τk\tau_{k}. We add rays ρ\rho_{\circ} and ρ1,,ρf\rho_{1},\ldots,\rho_{f} in the interior of σ\sigma and the interior of τk\tau_{k}’s. This gives a proper birational toric morphism π:YX\pi\colon Y\to X where YY is simplicial. The morphism π\pi is an isomorphism outside a dimension 1 subset of XX and this implies

D0(q)=q0,Dμi=Dνj=0.D_{0}(q)=q^{0},\quad D_{\mu_{i}}=D_{\nu_{j}}=0.

Hence, it remains to calculate DτkD_{\tau_{k}}’s and Dσ(q)D_{\sigma}(q). By considering the fiber π1(xτk)\pi^{-1}(x_{\tau_{k}}), we can see that

Dτk(q)=q+q1,H~0,τk(q)=q3+(nk3)q1.D_{\tau_{k}}(q)=q+q^{-1},\quad\widetilde{H}_{0,\tau_{k}}(q)=q^{-3}+(n_{k}-3)q^{-1}.

This is exactly the same computation as in the previous section. Now, we compute the cohomology of the fiber π1(xσ)\pi^{-1}(x_{\sigma}). Notice that d1(σ)=1d_{1}(\sigma)=1 coming from ρ\rho_{\circ}. Also,

d2(σ)=kd1(τk)+jd1(νj)+id1(μi)=f+v=e+2d_{2}(\sigma)=\sum_{k}d_{1}(\tau_{k})+\sum_{j}d_{1}(\nu_{j})+\sum_{i}d_{1}(\mu_{i})=f+v=e+2

since d1(τk)=1d_{1}(\tau_{k})=1 coming from ρi\rho_{i} and d1(μi)=1d_{1}(\mu_{i})=1 coming from μi\mu_{i} itself. The last equality follows from Euler’s identity ve+f=2v-e+f=2. Also,

d3(σ)=kd2(τk)+jd2(νj)=k(νjτkd1(νj)+μiτkd1(μi))+jd2(νj)=knk+e.d_{3}(\sigma)=\sum_{k}d_{2}(\tau_{k})+\sum_{j}d_{2}(\nu_{j})=\sum_{k}\left(\sum_{\nu_{j}\subset\tau_{k}}d_{1}(\nu_{j})+\sum_{\mu_{i}\subset\tau_{k}}d_{1}(\mu_{i})\right)+\sum_{j}d_{2}(\nu_{j})=\sum_{k}n_{k}+e.

We notice that nkn_{k} equals the number of 2-dimensional faces of τk\tau_{k}, and for each 2-dimensional face μj\mu_{j}, there are exactly two 3-dimensional faces containing μj\mu_{j}. Therefore

knk=2e.\sum_{k}n_{k}=2e.

Similarly,

d4(σ)=kd3(τk)=kνjτkd2(νj)=knk=2e.d_{4}(\sigma)=\sum_{k}d_{3}(\tau_{k})=\sum_{k}\sum_{\nu_{j}\subset\tau_{k}}d_{2}(\nu_{j})=\sum_{k}n_{k}=2e.

Using (4) and Proposition 2.6, we get

H~0,σ(q)+Dσ(q)\displaystyle\widetilde{H}_{0,\sigma}(q)+D_{\sigma}(q)
=q4((q21)3+(e+2)(q21)2+3e(q21)+2e)kH~τk,σ(q)Dτk(q)\displaystyle=q^{-4}((q^{2}-1)^{3}+(e+2)(q^{2}-1)^{2}+3e(q^{2}-1)+2e)-\sum_{k}\widetilde{H}_{\tau_{k},\sigma}(q)D_{\tau_{k}}(q)
=q4(q6+(e1)q4+(e1)q2+1)f(q+q1)q1\displaystyle=q^{-4}(q^{6}+(e-1)q^{4}+(e-1)q^{2}+1)-f\cdot(q+q^{-1})q^{-1}
=q2+(e1f)q0+(e1f)q2+q4\displaystyle=q^{2}+(e-1-f)q^{0}+(e-1-f)q^{-2}+q^{-4}
=q2+(v3)q0+(v3)q2+q4.\displaystyle=q^{2}+(v-3)q^{0}+(v-3)q^{-2}+q^{-4}.

Therefore, Dσ(q)=q2+(v3)q0+q2D_{\sigma}(q)=q^{2}+(v-3)q^{0}+q^{-2} and

H~0,σ(q)=q4+(v4)q2.\widetilde{H}_{0,\sigma}(q)=q^{-4}+(v-4)q^{-2}.

Therefore,

dR0,σ\displaystyle\operatorname{dR}_{0,\sigma} =L4+(v4)K1L2\displaystyle=L^{-4}+(v-4)K^{-1}L^{-2}
dR0,τk\displaystyle\operatorname{dR}_{0,\tau_{k}} =(K1+L1)(L3+(nk3)K1L1)\displaystyle=(K^{-1}+L^{-1})\cdot(L^{-3}+(n_{k}-3)K^{-1}L^{-1})
dR0,νj\displaystyle\operatorname{dR}_{0,\nu_{j}} =(K1+L1)2L2\displaystyle=(K^{-1}+L^{-1})^{2}\cdot L^{-2}
dR0,μi\displaystyle\operatorname{dR}_{0,\mu_{i}} =(K1+L1)3L1\displaystyle=(K^{-1}+L^{-1})^{3}\cdot L^{-1}
dR0,0\displaystyle\operatorname{dR}_{0,0} =(K1+L1)4.\displaystyle=(K^{-1}+L^{-1})^{4}.

Acknowledgements. We would like to thank Mircea Mustaţă for numerous helpful discussions, and Claudiu Raicu for pointing out the reference [CFS-Effectivedecompositiontheorem] which helped us compute the polynomial H~μ,τ\widetilde{H}_{\mu,\tau} explicitly, and Jörg Schürmann for kindly explaining the relation between [maxim2024weighted] and Theorem 4.1.

References