This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The integral Chow rings of moduli of Weierstrass fibrations

Samir Canning University of California San Diego [email protected] Andrea Di Lorenzo Humboldt Universität zu Berlin, Germany [email protected]  and  Giovanni Inchiostro University of Washington [email protected]
Abstract.

We compute the Chow rings with integral coefficients of moduli stacks of minimal Weierstrass fibrations over the projective line. For each integer N1N\geq 1, there is a moduli stack 𝒲Nmin\mathcal{W}^{\mathrm{min}}_{N} parametrizing minimal Weierstrass fibrations with fundamental invariant NN. Following work of Miranda and Park–Schmitt, we give a quotient stack presentation for each 𝒲Nmin\mathcal{W}^{\mathrm{min}}_{N}. Using these presentations and equivariant intersection theory, we determine a complete set of generators and relations for each of the Chow rings. For the cases N=1N=1 (respectively, N=2N=2), parametrizing rational (respectively, K3) elliptic surfaces, we give a more explicit computation of the relations.

1. Introduction

The study of the Chow rings of moduli spaces has played a central role in algebraic geometry ever since Mumford’s introduction of an intersection product for the moduli space of curves g\mathcal{M}_{g} and its compactification by stable curves. Mumford’s intersection product requires the use of rational coefficients, but Totaro [Tot] and Edidin–Graham [EG] developed an intersection theory for quotient stacks that works with integral coefficients. Many moduli stacks of interest in algebraic geometry, including the moduli stacks of curves, are quotient stacks.

Chow rings with integral coefficients are often quite difficult to compute, but in turn they have a much richer structure than their rational counterparts: for instance, rational Chow rings of moduli of hyperelliptic curves are trivial, but the integral ones are not (see [Vis, EdFu, DL]).

Only a few examples have been computed in full for moduli stacks of curves g,n\mathcal{M}_{g,n} and ¯g,n\overline{\mathcal{M}}_{g,n} with gg and nn small (see [DLFV, Lar, DLV, DLPV, Inc]), and even less is known for moduli stacks parametrizing higher dimensional varieties.

In this paper, we study integral Chow rings of certain moduli stacks of surfaces that we denote 𝒲Nmin\mathcal{W}^{\min}_{N}, indexed by an integer N1N\geq 1. The stacks 𝒲Nmin\mathcal{W}^{\min}_{N} parametrize surfaces called minimal Weierstrass fibrations over 1\mathbb{P}^{1}. The arithmetic and geometry of moduli spaces of minimal Weierstrass fibrations over 1\mathbb{P}^{1} has already been the subject of investigation of several works (see for instance [Mir, HP, PS, CK]). Moreover, the stack 𝒲2min\mathcal{W}^{\min}_{2} is of particular interest, as it can be regarded as the moduli stack of elliptic K3 surfaces with a section (equivalently, K3 surfaces polarized by a hyperbolic lattice).

Minimal Weierstrass fibrations over 1\mathbb{P}^{1} are flat, proper morphisms p:X1p:X\rightarrow\mathbb{P}^{1} together with a section s:1Xs:\mathbb{P}^{1}\rightarrow X satisfying the following conditions:

  1. (1)

    XX is normal, irreducible, with at most ADE singularities;

  2. (2)

    every fiber of pp is isomorphic to an elliptic curve, a rational curve with a node, or a rational curve with a cusp;

  3. (3)

    the section does not intersect the singular point of any of the fibers.

These fibrations arise naturally from contracting the components of the fibers of a smooth elliptic surface over 1\mathbb{P}^{1} that do not meet the section. Associated to a minimal Weierstrass fibration is a fundamental invariant N=deg(R1p𝒪X)0N=\deg(R^{1}p_{*}\mathcal{O}_{X})^{\vee}\geq 0. For each N1N\geq 1, we consider moduli stacks 𝒲Nmin\mathcal{W}^{\min}_{N} parametrizing minimal Weierstrass fibrations with fundamental invariant NN.

Our main result is the following. For a more precise formulation, see Theorem 5.5.

Theorem 1.1.

Suppose that the ground field has characteristic 2,3\neq 2,3 and let N1N\geq 1 be an integer. Then

  1. (1)

    for NN odd, we have

    CH(𝒲Nmin)[c1,c2]/IN\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N})\simeq\mathbb{Z}[c_{1},c_{2}]/I_{N}

    where the generators are Chern classes of a certain rank two vector bundle N\mathcal{E}_{N} and the ideal of relations INI_{N} is generated by (N+22)\binom{N+2}{2} relations, of which one has degree 8N+18N+1 and the others have degree 9k+m9k+m for 1kN1\leq k\leq N and 0mk0\leq m\leq k. Explicit formulas for these relations are given in (5.3).

  2. (2)

    for NN even, we have

    CH(𝒲Nmin)[τ1,c2,c3]/(2c3,IN)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N})\simeq\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3},I_{N})

    where the generators are Chern classes of certain vector bundles N\mathcal{L}_{N} and N\mathcal{E}_{N} and the ideal of relations INI_{N} is generated by (N+22)\binom{N+2}{2} relations, of which one has degree 8N+18N+1 and the others have degree 9k+m9k+m for 1kN1\leq k\leq N and 0mk0\leq m\leq k. Explicit formulas for these relations are given in (5.3) and (16).

Perhaps the most interesting cases are when N=1N=1 and N=2N=2. Minimal Weierstrass fibrations with fundamental invariant 11 are rational. They arise from the elliptic fibrations obtained by blowing up the base points of a pencil of cubics in 2\mathbb{P}^{2}. Moduli spaces of rational elliptic fibrations are well studied, and in particular are closely related to several other interesting moduli problems [Vakil].

Minimal Weierstrass fibrations with fundamental invariant 22 come from elliptic K3 surfaces. The intersection theory with rational coefficients of moduli spaces of K3 surfaces has been the subject of much recent research and is expected to behave analogously to that of the moduli space of curves [CK, MOP, PY].

Specializing our Theorem 1.1 to N=1,2N=1,2, we obtain the following completely explicit result.

Theorem 1.2.

Suppose that the ground field has characteristic 2,3\neq 2,3. Then

  1. (1)

    the integral Chow ring of the moduli stack 𝒲1min\mathcal{W}^{\min}_{1} of rational elliptic surfaces with a section is

    [c1,c2]/(6c1c2r6,c13r6,c12c2r6)\mathbb{Z}[c_{1},c_{2}]/(6c_{1}c_{2}r_{6},c_{1}^{3}r_{6},c_{1}^{2}c_{2}r_{6})

    where the generators are Chern classes of a certain rank two vector bundle 1\mathcal{E}_{1} and

    r6=576(30c16+151c14c2+196c12c22+64c23);r_{6}=576(30c_{1}^{6}+151c_{1}^{4}c_{2}+196c_{1}^{2}c_{2}^{2}+64c_{2}^{3});
  2. (2)

    the integral Chow ring of the moduli stack 𝒲2min\mathcal{W}^{\min}_{2} of elliptic K3 surfaces with a section is

    [τ1,c2,c3]/(2c3,r9,r10,r18,r19)\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3},r_{9},r_{10},r_{18},r_{19})

    where the generators are Chern classes of certain vector bundles 2\mathcal{L}_{2} and 2\mathcal{E}_{2} and

    r9=\displaystyle r_{9}= 1152(691c24τ138005c23τ13+309568c22τ15497520c2τ17+124416τ19),\displaystyle 1152(691c_{2}^{4}\tau_{1}-38005c_{2}^{3}\tau_{1}^{3}+309568c_{2}^{2}\tau_{1}^{5}-497520c_{2}\tau_{1}^{7}+124416\tau_{1}^{9}),
    r10=\displaystyle r_{10}= 1152(30c256811c24τ12+133495c23τ14481528c22τ16+327600c2τ1820736τ110),\displaystyle 1152(30c_{2}^{5}-6811c_{2}^{4}\tau_{1}^{2}+133495c_{2}^{3}\tau_{1}^{4}-481528c_{2}^{2}\tau_{1}^{6}+327600c_{2}\tau_{1}^{8}-20736\tau_{1}^{10}),
    r18=\displaystyle r_{18}= 1152c25(108314154642930c24+1045672c23τ1289483c22τ14+35c2τ164τ18),\displaystyle 1152c_{2}^{5}(108314154642930c_{2}^{4}+1045672c_{2}^{3}\tau_{1}^{2}-89483c_{2}^{2}\tau_{1}^{4}+35c_{2}\tau_{1}^{6}-4\tau_{1}^{8}),
    r19=\displaystyle r_{19}= 2304c26τ1(118203201c23+180502c22τ127c2τ14+4τ16).\displaystyle 2304c_{2}^{6}\tau_{1}(118203201c_{2}^{3}+180502c_{2}^{2}\tau_{1}^{2}-7c_{2}\tau_{1}^{4}+4\tau_{1}^{6}).

When N2N\geq 2, the rational Chow rings CH(𝒲Nmin)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N})\otimes\mathbb{Q} have been computed by the first author and Kong [CK]: in particular, they proved that only r9r_{9} and r10r_{10} are needed in order to generate the ideal of relations with rational coefficients. This implies that there are many torsion classes in CH(𝒲2min)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{2}), so the theory with integral coefficients is genuinely different from that with rational coefficients and contains much more information.

Structure of the paper

In Section 2, we construct the moduli stacks 𝒲Nmin\mathcal{W}^{\min}_{N} as quotient stacks, following the work of Miranda [Mir] who constructed coarse spaces for 𝒲Nmin\mathcal{W}^{\min}_{N} and Park–Schmitt [PS], who constructed 𝒲Nmin\mathcal{W}^{\min}_{N} as quotients of a weighted projective stack by PGL2\operatorname{PGL}_{2}. Our approach is slightly different from that of Park–Schmitt, but we will show that the two approaches coincide.

In Section 3, we discuss the equivariant intersection theory of projective spaces, which is a key tool in the proof of Theorem 1.1. In particular, we obtain generators for CH(𝒲Nmin)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N}).

In Sections 4 and 5, we compute relations among the generators of the Chow ring that result from excising the locus of non-minimal Weierstrass fibrations, finishing the proof of Theorem 1.1.

Finally, in Section 6 we make explicit calculations of the relations in the cases N=1N=1 and N=2N=2, proving Theorem 1.2.

Acknowledgments

We are thankful to Jarod Alper, Elham Izadi, Bochao Kong, Hannah Larson, Johannes Schmitt, and Angelo Vistoli for helpful conversations. We especially thank the referee for the many comments and corrections improving the exposition. Part of this material is based upon work supported by the Swedish Research Council under grant no. 2016-06596 while the first and the second named authors were in residence at Institut Mittag-Leffler in Djursholm, Sweden during the fall of 2021. S.C. was partially supported by NSF–RTG grant DMS-1502651.

2. Moduli of minimal Weierstrass fibrations

In this Section, after recalling some basic definitions, we give in Theorem 2.9 a presentation as a quotient stack of 𝒲Nmin\mathcal{W}^{\min}_{N}, the moduli stack of minimal Weierstrass fibrations with fundamental invariant NN. We also introduce some vector bundles N\mathcal{L}_{N} and N\mathcal{E}_{N} (see 2.11 and 2.13) which will be relevant for our computations.

We adopt the following convention: given a locally free sheaf \mathcal{E} over a scheme XX, the associated vector bundle EE is given by Spec¯𝒪X(Sym¯())\underline{\operatorname{Spec}}_{\mathcal{O}_{X}}(\underline{\operatorname{Sym}}(\mathcal{E}^{\vee})) and the projectivization of this vector bundle (E)\mathbb{P}(E) is therefore Proj¯𝒪X(Sym¯())\underline{\operatorname{Proj}}_{\mathcal{O}_{X}}(\underline{\operatorname{Sym}}(\mathcal{E}^{\vee})). Observe that with this convention, given π:(E)X\pi:\mathbb{P}(E)\to X, we have π𝒪(E)(1)\pi_{*}\mathcal{O}_{\mathbb{P}(E)}(1)\simeq\mathcal{E}^{\vee}.

2.1. Basic notation

We collect here some basic notation that is used throughout the paper; in this section, we work over Spec()\operatorname{Spec}(\mathbb{Z}). Let GN:=Aut(1,𝒪(N))G_{N}:=\operatorname{Aut}(\mathbb{P}^{1},\mathcal{O}(N)) be the automorphism group of the pair (1,𝒪(N))(\mathbb{P}^{1},\mathcal{O}(N)). More precisely, an automorphism ϕ=(ϕ0,ϕ1)\phi=(\phi_{0},\phi_{1}) consists of a pair where ϕ0:11\phi_{0}:\mathbb{P}^{1}\overset{\sim}{\longrightarrow}\mathbb{P}^{1} is an automorphism of 1\mathbb{P}^{1} and ϕ1:𝒪(N)ϕ0𝒪(N)\phi_{1}:\mathcal{O}(N)\overset{\sim}{\longrightarrow}\phi_{0}^{*}\mathcal{O}(N) is an automorphism of line bundles.

We make the group GNG_{N} act linearly on the \mathbb{Z}-module VNN:=H0(1,𝒪(N))V^{N}_{N}:=\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(N)) as follows: given a global section σ:𝒪𝒪(N)\sigma:\mathcal{O}\to\mathcal{O}(N), we define ϕσ=(ϕ0,ϕ1)σ\phi\cdot\sigma=(\phi_{0},\phi_{1})\cdot\sigma to be the composition

𝒪canϕ0𝒪ϕ0σϕ0𝒪(N)ϕ11𝒪(N).\mathcal{O}\overset{{\rm can}}{\longrightarrow}\phi_{0}^{*}\mathcal{O}\overset{\phi_{0}^{*}\sigma}{\longrightarrow}\phi_{0}^{*}\mathcal{O}(N)\overset{\phi_{1}^{-1}}{\longrightarrow}\mathcal{O}(N).

Given any positive integer rr, we have a surjective homomorphism

pNrN:GNGNr,ϕ=(ϕ0,ϕ1)(ϕ0,ϕ1r).p_{Nr}^{N}:G_{N}\longrightarrow G_{Nr},\quad\phi=(\phi_{0},\phi_{1})\longmapsto(\phi_{0},\phi_{1}^{\otimes r}).

We can use this homomorphism to define an action of GNG_{N} on VNrNrV^{Nr}_{Nr} as

σ(ϕ0,ϕ1r)σ.\sigma\longmapsto(\phi_{0},\phi_{1}^{\otimes r})\cdot\sigma.

In what follows, we will denote this GNG_{N}-module as VNrNV_{Nr}^{N}. We will also use the notation VNr1,Nr2NV^{N}_{Nr_{1},Nr_{2}} to denote VNr1NVNr2NV^{N}_{Nr_{1}}\oplus V^{N}_{Nr_{2}}.

The GNG_{N}-modules that we just introduced can be made more explicit as follows. First, observe that G1GL2G_{1}\simeq\operatorname{GL}_{2}, and that there is a surjective morphism

G1GL2GN,(ϕ0,ϕ1)(ϕ0,ϕ1N)G_{1}\simeq\operatorname{GL}_{2}\longrightarrow G_{N},\quad(\phi_{0},\phi_{1})\longmapsto(\phi_{0},\phi_{1}^{\otimes N})

whose kernel consists of the subgroup of roots of unity 𝝁NGL2\bm{\mu}_{N}\subset\operatorname{GL}_{2}, embedded diagonally. The action of GNG_{N} on VNNV^{N}_{N}, after identifying GNG_{N} with GL2/𝝁N\operatorname{GL}_{2}/\bm{\mu}_{N}, can then be written as

[A]f((x,y)):=f(A1(x,y)).[A]\cdot f((x,y)):=f(A^{-1}(x,y)).

Moreover, by [AV04, Proposition 4.4] we have isomorphisms

GL2GL2/𝝁N,A[det(A)N12NA],\displaystyle\operatorname{GL}_{2}\overset{\simeq}{\longrightarrow}\operatorname{GL}_{2}/\bm{\mu}_{N},\quad A\longmapsto[\det(A)^{-\frac{N-1}{2N}}A], for N odd,\displaystyle\text{for }N\text{ odd},
𝔾m×PGL2GL2/𝝁N,(α,A)[α1Ndet(A)12A],\displaystyle\mathbb{G}_{m}\times\operatorname{PGL}_{2}\overset{\simeq}{\longrightarrow}\operatorname{GL}_{2}/\bm{\mu}_{N},\quad(\alpha,A)\longmapsto[\alpha^{\frac{1}{N}}\det(A)^{-\frac{1}{2}}A], for N even.\displaystyle\text{for }N\text{ even}.

We can use these isomorphisms to describe the GNG_{N}-modules VNrNV^{N}_{Nr} as GL2\operatorname{GL}_{2}-modules (resp. 𝔾m×PGL2\mathbb{G}_{m}\times\operatorname{PGL}_{2}) for NN odd (resp. for NN even). Denoting by EE the standard GL2\operatorname{GL}_{2}-module, and by LL the standard 𝔾m\mathbb{G}_{m}-module with trivial PGL2\operatorname{PGL}_{2}-action, we obtain:

VNrNdet(E)rN12SymN(E),\displaystyle V_{Nr}^{N}\simeq\det(E)^{r\frac{N-1}{2}}\otimes\operatorname{Sym}^{N}(E^{\vee}), for N odd,\displaystyle\text{for }N\text{ odd},
VNrNLrVNrNrLrH0(1,𝒪(Nr)),\displaystyle V_{Nr}^{N}\simeq L^{-r}\otimes V_{Nr}^{Nr}\simeq L^{-r}\otimes\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(Nr)), for N even,\displaystyle\text{for }N\text{ even},

where in the last line we are endowing H0(1,𝒪(Nr))\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(Nr)) with the trivial 𝔾m\mathbb{G}_{m}-action and the obvious PGL2\operatorname{PGL}_{2}-action.

2.2. Stacks of conics with sections

In this section, we keep working over Spec()\operatorname{Spec}(\mathbb{Z}). We start by introducing a stack, denoted Nmin\mathscr{F}^{\min}_{N}, which admits a natural presentation as a quotient stack (2.3). The reason for introducing this stack is that, once restricted to Spec([16])\operatorname{Spec}(\mathbb{Z}[\frac{1}{6}]), it will turn out to be isomorphic to 𝒲Nmin\mathcal{W}^{\min}_{N}, the moduli stack of minimal Weierstrass fibrations.

Definition 2.1.

We denote by Nmin\mathscr{F}^{\min}_{N} the following fibered category over 𝔖ch/\mathfrak{S}ch/\mathbb{Z}, the category of schemes over Spec()\operatorname{Spec}(\mathbb{Z}).

Objects: The objects over a scheme TT are tuples (f:𝒫T,,A,B)(f:\mathcal{P}\to T,\mathcal{L},A,B) consisting of a flat, proper morphism of finite presentation 𝒫T\mathcal{P}\to T with geometric fibers isomorphic to 1\mathbb{P}^{1}, a line bundle \mathcal{L} over 𝒫\mathcal{P} of degree NN along each fiber of ff, and two sections A,BA,B of H0(𝒫,4)\operatorname{H}^{0}(\mathcal{P},\mathcal{L}^{\otimes 4}) and H0(𝒫,6)\operatorname{H}^{0}(\mathcal{P},\mathcal{L}^{\otimes 6}) respectively. We require the sections AA and BB to satisfy the following two conditions:

  1. (1)

    for each geometric point ss of TT, the global section 4A3+27B24A^{3}+27B^{2} of 12\mathcal{L}^{\otimes 12} is not zero once restricted to 𝒫s\mathcal{P}_{s}, and

  2. (2)

    for each geometric point ss of TT, there is no point pp of 1𝒫s\mathbb{P}^{1}\simeq\mathcal{P}_{s} such that AsA_{s} (resp. BsB_{s}) vanishes in pp with order 4\geq 4 (resp. with order 6\geq 6).

Morphisms: A morphism (f:𝒫T,,A,B)(f:𝒫T,,A,B)(f:\mathcal{P}\to T,\mathcal{L},A,B)\to(f^{\prime}:\mathcal{P}^{\prime}\to T^{\prime},\mathcal{L}^{\prime},A^{\prime},B^{\prime}) consists of a morphism TTT\to T^{\prime}, together with two isomorphisms ϕ:𝒫𝒫×TT\phi:\mathcal{P}\to\mathcal{P}^{\prime}\times_{T^{\prime}}T and ψ:ϕ\psi:\mathcal{L}\to\phi^{*}\mathcal{L}^{\prime}, such that ψ\psi sends AA (resp. BB) to AA^{\prime} (resp. BB^{\prime}).

Definition 2.2.

We define the GNG_{N}-invariant closed subscheme ΔN\Delta_{N} in V4N,6NNV^{N}_{4N,6N} as the union of ΔN1\Delta^{1}_{N} and ΔN2\Delta^{2}_{N}, where

  • the subscheme ΔN1\Delta_{N}^{1} is the locus of pairs (A,B)(A,B) such that 4A3+27B2=04A^{3}+27B^{2}=0, and

  • the subscheme ΔN2\Delta^{2}_{N} is the locus of pairs (A,B)(A,B) such that there exists a point p1p\in\mathbb{P}^{1} such that AA (resp. BB) vanishes in pp with order 4\geq 4 (resp. with order 6\geq 6).

The following Proposition gives a presentation of Nmin\mathscr{F}^{\min}_{N} as a quotient stack.

Proposition 2.3.

There is an isomorphism Nmin[(V4N,6NNΔN)/GN]\mathscr{F}^{\min}_{N}\cong[(V^{N}_{4N,6N}\smallsetminus\Delta_{N})/G_{N}].

Proof.

Our argument follows [AV04, Theorem 4.1]. It suffices to construct a map (V4N,6NNΔN)Nmin(V^{N}_{4N,6N}\smallsetminus\Delta_{N})\to\mathscr{F}^{\min}_{N} which is a GNG_{N}-torsor.

The data of a map TV4N,6NNT\to V^{N}_{4N,6N} is equivalent to a section of the projection π2:V4N,6NN×TT\pi_{2}:V^{N}_{4N,6N}\times T\to T. Let p:1×TTp:\mathbb{P}^{1}\times T\to T be the second projection. Since π2\pi_{2} is affine, a section of π2\pi_{2} induces a morphism

Sym𝒪T(p(𝒪1×T(4N)𝒪1×T(6N)))𝒪T.\operatorname{Sym}_{\mathcal{O}_{T}}^{\bullet}(p_{*}(\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)\oplus\mathcal{O}_{\mathbb{P}^{1}\times T}(6N))^{\vee})\to\mathcal{O}_{T}.

This is the same as a map p(𝒪1×T(4N)𝒪1×T(6N))𝒪Tp_{*}(\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)\oplus\mathcal{O}_{\mathbb{P}^{1}\times T}(6N))^{\vee}\to\mathcal{O}_{T} that in turn is equivalent to a map 𝒪Tp(𝒪1×T(4N)𝒪1×T(6N))\mathcal{O}_{T}\to p_{*}(\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)\oplus\mathcal{O}_{\mathbb{P}^{1}\times T}(6N)), namely a choice of a pair of sections AH0(T,p𝒪1×T(4N))A\in\operatorname{H}^{0}(T,p_{*}\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)) and BH0(T,p𝒪1×T(6N))B\in\operatorname{H}^{0}(T,p_{*}\mathcal{O}_{\mathbb{P}^{1}\times T}(6N)), equivalently a pair of sections of H0(1×T,𝒪1×T(4N))\operatorname{H}^{0}(\mathbb{P}^{1}\times T,\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)) and H0(1×T,𝒪1×T(6N))\operatorname{H}^{0}(\mathbb{P}^{1}\times T,\mathcal{O}_{\mathbb{P}^{1}\times T}(6N)).

In particular, the data of a morphism TV4N,6NNΔNT\to V^{N}_{4N,6N}\smallsetminus\Delta_{N} is equivalent to the data of two sections (A,B)(A,B) of H0(1×T,𝒪1×T(4N))\operatorname{H}^{0}(\mathbb{P}^{1}\times T,\mathcal{O}_{\mathbb{P}^{1}\times T}(4N)) and H0(1×T,𝒪1×T(6N))\operatorname{H}^{0}(\mathbb{P}^{1}\times T,\mathcal{O}_{\mathbb{P}^{1}\times T}(6N)) such that for each geometric point ss of TT, the restrictions of AA and BB over s1\mathbb{P}^{1}_{s} do not verify the two conditions given in 2.2.

There is a natural transformation Φ:(V4N,6NNΔN)Nmin\Phi:(V^{N}_{4N,6N}\smallsetminus\Delta_{N})\to\mathscr{F}^{\min}_{N}, that on objects is defined as follows. Given a map TV4N,6NNΔNT\to V^{N}_{4N,6N}\smallsetminus\Delta_{N}, which corresponds to two sections A,BA,B as above, we can associate the object of Nmin\mathscr{F}^{\min}_{N} given by (1×TT,𝒪1×T(N),A,B)(\mathbb{P}^{1}\times T\to T,\mathcal{O}_{\mathbb{P}^{1}\times T}(N),A,B).

Let σ:GN×(V4N,6NNΔN)(V4N,6NNΔN)\sigma:G_{N}\times(V^{N}_{4N,6N}\smallsetminus\Delta_{N})\to(V^{N}_{4N,6N}\smallsetminus\Delta_{N}) be the map that defines the action of GNG_{N} on V4N,6NNΔNV^{N}_{4N,6N}\smallsetminus\Delta_{N}, and denote pr2:GN×(V4N,6NNΔN)(V4N,6NNΔN){\rm pr}_{2}:G_{N}\times(V^{N}_{4N,6N}\smallsetminus\Delta_{N})\to(V^{N}_{4N,6N}\smallsetminus\Delta_{N}) the projection on the second factor.

We claim that Φ\Phi is a GNG_{N}-torsor. We need to show that:

  1. (1)

    The two arrows Φσ\Phi\circ\sigma and Φpr2\Phi\circ{\rm pr}_{2} are isomorphic,

  2. (2)

    For every scheme TT and every object (f:𝒫T,,A,B)(f:\mathcal{P}\to T,\mathcal{L},A,B) of Nmin(T)\mathscr{F}^{\min}_{N}(T), there is an étale cover TTT^{\prime}\to T such that the pull-back (f:𝒫T,,A,B)(f^{\prime}:\mathcal{P}^{\prime}\to T^{\prime},\mathcal{L}^{\prime},A^{\prime},B^{\prime}) is isomorphic to an object of (V4N,6NNΔN)(T)(V^{N}_{4N,6N}\smallsetminus\Delta_{N})(T) (i.e. it is in the essential image of Φ\Phi), and

  3. (3)

    If α:=(f:𝒫T,,A,B)\alpha:=(f^{\prime}:\mathcal{P}^{\prime}\to T^{\prime},\mathcal{L}^{\prime},A^{\prime},B^{\prime}) is in the essential image of Φ\Phi, the action of GNG_{N} on its essential fiber (i.e. the pairs (β,γ)(\beta,\gamma) consisting of an element β(V4N,6NNΔN)(T)\beta\in(V^{N}_{4N,6N}\smallsetminus\Delta_{N})(T) and an isomorphism Φ(β)α\Phi(\beta)\to\alpha) is simply transitive.

To check point (1), we construct explicitly the isomorphism: for every (ϕ,A,B)(\phi,A,B) in GN(T)×(V4N,6NnΔN)G_{N}(T)\times(V_{4N,6N}^{n}\smallsetminus\Delta_{N}) we define the 2-morphism

(Φpr2)((ϕ,A,B))=(T1T,𝒪(N),A,B)(T1T,𝒪(N),ϕA,ϕB)=(Φσ)((ϕ,A,B)).\displaystyle(\Phi\circ{\rm pr}_{2})((\phi,A,B))=(\mathbb{P}^{1}_{T}\to T,\mathcal{O}(N),A,B)\longmapsto(\mathbb{P}^{1}_{T}\to T,\mathcal{O}(N),\phi\cdot A,\phi\cdot B)=(\Phi\circ\sigma)((\phi,A,B)).

to be exactly (ϕ0,ϕ1)(\phi_{0},\phi_{1}), where ϕA\phi\cdot A (resp. ϕB\phi\cdot B) is the action introduced in Section 2.1. To check (2), observe that f:𝒫Tf:\mathcal{P}\to T is a Severi-Brauer scheme [GroBr, Corollaire 8.3], hence there is an étale cover TTT^{\prime}\to T and an isomorphism 𝒫×TT1×T\mathcal{P}\times_{T}T^{\prime}\cong\mathbb{P}^{1}\times T^{\prime} over TT^{\prime}. Then if we denote by \mathcal{L}^{\prime} the pull-back of \mathcal{L} to 1×T\mathbb{P}^{1}\times T^{\prime} we have two line bundles, \mathcal{L}^{\prime} and 𝒪1×T(N)\mathcal{O}_{\mathbb{P}^{1}\times T^{\prime}}(N) that are isomorphic along each fiber: in particular, for every point ss of TT we have H1(1×{s},(N)s)=0\operatorname{H}^{1}(\mathbb{P}^{1}\times\{s\},\mathcal{L}^{\prime}(-N)_{s})=0, hence [Har13, Theorem III.12.11] we obtain that 𝒢:=pr2(𝒪1×T(N))\mathcal{G}:={\rm pr}_{2*}(\mathcal{L}^{\prime}\otimes\mathcal{O}_{\mathbb{P}^{1}\times T^{\prime}}(-N)) is a line bundle, from which we immediately deduce that, up to replacing TT^{\prime} with a covering that trivializes 𝒢\mathcal{G}, we can assume that 𝒪1×T(N)\mathcal{L}^{\prime}\cong\mathcal{O}_{\mathbb{P}^{1}\times T^{\prime}}(N). This proves point (2).

To check point (3) it suffices to recall that the functor sending a scheme TT to Aut¯T(T1,𝒪T1(N))\underline{\operatorname{Aut}}_{T}(\mathbb{P}^{1}_{T},\mathcal{O}_{\mathbb{P}^{1}_{T}}(N)) is represented by GNG_{N} (see [AV04, Proof of Theorem 4.1]). Indeed, we need to check that:

  • The action of GNG_{N} is transitive on the fibers of (V4N,6NNΔN)Nmin(V^{N}_{4N,6N}\smallsetminus\Delta_{N})\to\mathscr{F}^{\min}_{N}, and

  • The action is simply transitive (this is analogous to the representability of [(V4N,6NNΔN)/GN]Nmin[(V^{N}_{4N,6N}\smallsetminus\Delta_{N})/G_{N}]\to\mathscr{F}^{\min}_{N}).

To check the first bullet point, we need to check that if two objects of Nmin(T)\mathscr{F}^{\min}_{N}(T) that belong to the image of Φ(T)\Phi(T) are isomorphic, then there is an element of GN(T)G_{N}(T) which sends the first one to the second one. To check the second bullet point, we need to check that such an element is unique. Both bullet points follow since Aut¯T(T1,𝒪T1(N))\underline{\operatorname{Aut}}_{T}(\mathbb{P}^{1}_{T},\mathcal{O}_{\mathbb{P}^{1}_{T}}(N)) is represented by GNG_{N}. ∎

2.3. Moduli of Weierstrass fibrations

In this section, we work over Spec([16])\operatorname{Spec}(\mathbb{Z}[\frac{1}{6}]). Let 𝒲Nmin\mathcal{W}_{N}^{\min} be the moduli stack of minimal Weierstrass fibrations, as defined in [PS]*Section 4.2. We will prove in 2.8 that 𝒲Nmin\mathcal{W}^{\min}_{N} is isomorphic to the stack Nmin\mathscr{F}^{\min}_{N} that we introduced before. We start by recalling the relevant definitions from loc. cit..

Definition 2.4.
  • A Weierstrass fibration over an algebraically closed field kk is a proper, flat morphism f:Xk1f:X\to\mathbb{P}^{1}_{k} with geometrically integral fibers from an integral scheme XX together with a section s:k1Xs:\mathbb{P}^{1}_{k}\to X such that every geometric fiber is either an elliptic curve, a rational curve with a node or a rational curve with a cusp, the generic fiber is smooth and the section s(k1)s(\mathbb{P}^{1}_{k}) does not contain any singular point of the fibers.

  • A Weierstrass fibration has degree NN if the line bundle (R1f𝒪X)(R^{1}f_{*}\mathcal{O}_{X})^{\vee} has degree NN.

  • A Weierstrass fibration is minimal if it is a Weierstrass model of a smooth elliptic surface over k1\mathbb{P}^{1}_{k} with a section (see [Miranda, Section 1] for more details).

Definition 2.5.

A family of minimal Weierstrass fibrations of degree NN over a scheme TT is the data of:

  1. (1)

    a flat, proper morphism of finite presentation 𝒫T\mathcal{P}\to T with geometric fibers isomorphic to 1\mathbb{P}^{1}, and

  2. (2)

    a flat, proper morphism of finite presentation f:𝒳𝒫f:\mathcal{X}\to\mathcal{P} with a section 𝒮𝒳\mathcal{S}\subseteq\mathcal{X}.

We require that for every geometric point pTp\in T, the fiber (𝒳p,𝒮p)𝒫p(\mathcal{X}_{p},\mathcal{S}_{p})\to\mathcal{P}_{p} is a minimal Weierstrass fibration of degree NN, and we refer the reader to [Miranda] for a more detailed exposition on Weierstrass fibrations.

Given two families ((𝒳,𝒮)𝒫T)((\mathcal{X},\mathcal{S})\to\mathcal{P}\to T) and ((𝒳,𝒮)𝒫T)((\mathcal{X}^{\prime},\mathcal{S}^{\prime})\to\mathcal{P}^{\prime}\to T^{\prime}), a morphism from the latter to the former consists of a morphism g:TTg:T^{\prime}\to T and isomorphisms 𝒳𝒳×TT\mathcal{X}^{\prime}\cong\mathcal{X}\times_{T}T^{\prime} and 𝒫𝒫×TT\mathcal{P}^{\prime}\cong\mathcal{P}\times_{T}T^{\prime} which preserve the section and make the obvious square commutative.

It is shown in [PS, Theorem 1.2] that there is an algebraic stack, which we denote by 𝒲Nmin\mathcal{W}^{\min}_{N}, that parametrizes families of minimal Weierstrass fibrations. Our goal is to prove that 𝒲NminNmin\mathcal{W}^{\min}_{N}\cong\mathscr{F}^{\min}_{N}. We need the following preparatory Lemma, which is proved in [Miranda]*pages 22-24.

Lemma 2.6.

Let ((𝒳,𝒮)𝑓𝒫T)((\mathcal{X},\mathcal{S})\xrightarrow{f}\mathcal{P}\to T) be a family of minimal Weierstrass fibrations over TT. Then:

  • R1f𝒪𝒳R^{1}f_{*}\mathcal{O}_{\mathcal{X}} is a line bundle, the dual of which will be denoted by \mathcal{L},

  • the inclusion 𝒪𝒳(S)𝒪𝒳\mathcal{O}_{\mathcal{X}}(-S)\subset\mathcal{O}_{\mathcal{X}} induces an isomorphism f𝒪𝒳(𝒮)f𝒪𝒳f_{*}\mathcal{O}_{\mathcal{X}}(\mathcal{S})\cong f_{*}\mathcal{O}_{\mathcal{X}}, and

  • for every n2n\geq 2 we have an exact sequence

    0f𝒪𝒳((n1)𝒮)f𝒪𝒳(n𝒮)f𝒪𝒮(n𝒮)0.0\to f_{*}\mathcal{O}_{\mathcal{X}}((n-1)\mathcal{S})\to f_{*}\mathcal{O}_{\mathcal{X}}(n\mathcal{S})\to f_{*}\mathcal{O}_{\mathcal{S}}(n\mathcal{S})\to 0.

    Moreover, the sequence above splits and we have f𝒪𝒳(n𝒮)=𝒪𝒫2nf_{*}\mathcal{O}_{\mathcal{X}}(n\mathcal{S})=\mathcal{O}_{\mathcal{P}}\oplus\mathcal{L}^{\otimes-2}\oplus...\oplus\mathcal{L}^{\otimes-n}.

The following is just a relative version of the arguments in [Miranda, II.5]. We report them below for convenience of the reader.

Consider ((𝒳,𝒮)ϕ𝒫T)((\mathcal{X},\mathcal{S})\xrightarrow{\phi}\mathcal{P}\to T) be a family of minimal Weierstrass fibrations over a scheme TT. First, we choose a covering of 𝒫\mathcal{P} which trivializes \mathcal{L}, and we choose a generator e1e_{1} for 1\mathcal{L}^{-1}. In particular, en:=e1ne_{n}:=e_{1}^{\otimes n} will be a generator for n\mathcal{L}^{-n}. From Lemma 2.6 this covering also trivializes ϕ𝒪𝒳(n𝒮)\phi_{*}\mathcal{O}_{\mathcal{X}}(n\mathcal{S}), and we choose an element ff of ϕ𝒪𝒳(2𝒮)\phi_{*}\mathcal{O}_{\mathcal{X}}(2\mathcal{S}) (resp. gg of ϕ𝒪𝒳(3𝒮)\phi_{*}\mathcal{O}_{\mathcal{X}}(3\mathcal{S})) that via the projection to ϕ𝒪𝒮(2𝒮)\phi_{*}\mathcal{O}_{\mathcal{S}}(2\mathcal{S}) (resp. ϕ𝒪𝒮(3𝒮)\phi_{*}\mathcal{O}_{\mathcal{S}}(3\mathcal{S})) of Lemma 2.6 maps to e2e_{2} (resp. e3e_{3}). Then g2g^{2} and f3f^{3} are sections of ϕ𝒪𝒳(6𝒮)\phi_{*}\mathcal{O}_{\mathcal{X}}(6\mathcal{S}), and g2=f3+hg^{2}=f^{3}+h where hh maps to 0 via the projection ϕ𝒪𝒳(6𝒮)ϕ𝒪𝒮(6𝒮)\phi_{*}\mathcal{O}_{\mathcal{X}}(6\mathcal{S})\to\phi_{*}\mathcal{O}_{\mathcal{S}}(6\mathcal{S}).

Proceeding as in [Miranda, II.5] (i.e. completing the square and the cube), locally in 𝒫\mathcal{P} there exists unique regular functions aa and bb such that we can (still locally) choose ff and gg with g2=f3+af+bg^{2}=f^{3}+af+b. If we pick another trivialization e1=λe1e^{\prime}_{1}=\lambda e_{1} for 1\mathcal{L}^{-1}, the regular functions aa and bb change into a=λ4aa^{\prime}=\lambda^{4}a and b=λ6bb^{\prime}=\lambda^{6}b: in particular, we have that ae4=ae4a^{\prime}\cdot e^{\prime}_{-4}=a\cdot e_{-4} (resp. be6=be6b^{\prime}\cdot e_{-6}^{\prime}=b\cdot e_{-6}), hence we obtain a well defined global section AA of 4\mathcal{L}^{\otimes 4} (resp. a global section BB of 6\mathcal{L}^{\otimes 6}).

For every point xx in TT, the smoothness of the generic fiber of 𝒳x𝒫x\mathcal{X}_{x}\to\mathcal{P}_{x} is equivalent to imposing that the global section 4Ax3+27Bx24A_{x}^{3}+27B_{x}^{2} is not zero. Moreover, from [Mir, Corollary 2.5], there is no point pp in a fiber of 𝒫T\mathcal{P}\to T where the order of vanishing of AA, at pp is greater than 4 and the order of vanishing of BB is greater than 6 (as ϕ\phi is a family of minimal Weierstrass fibrations). Note that here, for AA and BB we intend the restriction of the sections to the fiber of 𝒫T\mathcal{P}\to T containing pp.

Combining the previous paragraph with Lemma 2.6, we have

Corollary 2.7.

Consider ((𝒳,𝒮)ϕ𝒫T)((\mathcal{X},\mathcal{S})\xrightarrow{\phi}\mathcal{P}\to T) a family of minimal Weierstrass fibrations over TT. Then:

  1. (1)

    The sheaf =(R1ϕ𝒪𝒳)\mathcal{L}=(R^{1}\phi_{*}\mathcal{O}_{\mathcal{X}})^{\vee} is a line bundle,

  2. (2)

    from the data above we can canonically construct two sections A,BA,B of H0(𝒫,4)\operatorname{H}^{0}(\mathcal{P},\mathcal{L}^{\otimes 4}) and H0(𝒫,6)\operatorname{H}^{0}(\mathcal{P},\mathcal{L}^{\otimes 6}),

  3. (3)

    for every xTx\in T, the section 4Ax3+27Bx24A_{x}^{3}+27B_{x}^{2} is not zero on 𝒫x\mathcal{P}_{x}, and

  4. (4)

    for every xTx\in T, there is no point y𝒫xy\in\mathcal{P}_{x} such that the sections AxA_{x} and BxB_{x} of H0(𝒫x,|𝒫x4)\operatorname{H}^{0}(\mathcal{P}_{x},\mathcal{L}^{\otimes 4}_{|\mathcal{P}_{x}}) and H0(𝒫x,|𝒫x6)\operatorname{H}^{0}(\mathcal{P}_{x},\mathcal{L}^{\otimes 6}_{|\mathcal{P}_{x}}) vanish at yy with order 4\geq 4 and 6\geq 6, respectively.

Corollary 2.7 gives a map 𝒲NminNmin\mathcal{W}^{\min}_{N}\to\mathscr{F}^{\min}_{N}. We show that this map is an isomorphism, by producing an inverse.

Given a family (f:𝒫T,,A,B)(f:\mathcal{P}\to T,\mathcal{L},A,B), let EE be the vector bundle associated to the the locally free sheaf 23𝒪𝒫\mathcal{L}^{-2}\oplus\mathcal{L}^{-3}\oplus\mathcal{O}_{\mathcal{P}}: then we can construct a family of Weierstrass fibrations by taking a closed subscheme of (E)\mathbb{P}(E) as follows.

First consider a covering 𝒰𝒫\mathcal{U}\to\mathcal{P} which trivializes \mathcal{L}, and let ss be the trivializing section of \mathcal{L}. We can therefore write the pullback of AA (respectively BB) as as4a\cdot s^{4} (respectively bs6b\cdot s^{6}). Then consider the closed subscheme of (E|𝒰)\mathbb{P}(E|_{\mathcal{U}}) given by those lines generated by (xs2,ys3,z)(x\cdot s^{2},y\cdot s^{3},z) with x,y,z𝒪𝒰x,y,z\in\mathcal{O}_{\mathcal{U}} such that (ys3)2z=(xs2)3+(as4)(xs2)z2+(bs6)z3(y\cdot s^{3})^{2}z=(x\cdot s^{2})^{3}+(a\cdot s^{4})(x\cdot s^{2})z^{2}+(b\cdot s^{6})z^{3} (recall that with our convention we have (E)=Proj¯𝒪𝒰(Sym¯(2|𝒰3|𝒰𝒪𝒰))\mathbb{P}(E)=\underline{\operatorname{Proj}}_{\mathcal{O}_{\mathcal{U}}}(\underline{\operatorname{Sym}}(\mathcal{L}^{2}|_{\mathcal{U}}\oplus\mathcal{L}^{3}|_{\mathcal{U}}\oplus\mathcal{O}_{\mathcal{U}}))).

One can check that these closed subschemes descend to a closed subscheme 𝒳(E)\mathcal{X}\subseteq\mathbb{P}(E). The map 𝒳𝒫\mathcal{X}\to\mathcal{P} has a section 𝒮𝒳\mathcal{S}\subseteq\mathcal{X}, that over 𝒰\mathcal{U} is given by z=xs2=0z=x\cdot s^{2}=0. To check that this is a family in 𝒲Nmin\mathcal{W}^{\min}_{N} we need to check that when T=Spec(k)T=\operatorname{Spec}(k) for an algebraically closed field kk, the resulting surface 𝒳\mathcal{X} with section 𝒮\mathcal{S} is a minimal Weierstrass fibration. The fact that it is a Weierstrass fibration follows from [Miranda, pg. 26], whereas minimality follows from [Mir, Corollary 2.5]. We have proven the following.

Proposition 2.8.

We have an isomorphism 𝒲NminNmin\mathcal{W}_{N}^{\min}\simeq\mathscr{F}^{\min}_{N}.

Combining the result above with 2.3, we obtain the main result of this Section.

Theorem 2.9.

The following isomorphism of stacks holds over Spec([16])\operatorname{Spec}(\mathbb{Z}[\frac{1}{6}]):

𝒲Nmin[(V4N,6NNΔN)/(GL2/𝝁N)].\mathcal{W}^{\min}_{N}\simeq[(V^{N}_{4N,6N}\smallsetminus\Delta_{N})/(\operatorname{GL}_{2}/\bm{\mu}_{N})].
Remark 2.10.

The presentation above specializes to the two following cases depending on the parity of NN, that is:

  • if NN is odd, then 𝒲Nmin[(V4N,6NNΔN)/GL2]\mathcal{W}^{\min}_{N}\simeq[(V^{N}_{4N,6N}\smallsetminus\Delta_{N})/\operatorname{GL}_{2}];

  • if NN is even, then 𝒲Nmin[(V4N,6NNΔN)/PGL2×𝔾m]\mathcal{W}^{\min}_{N}\simeq[(V^{N}_{4N,6N}\smallsetminus\Delta_{N})/\operatorname{PGL}_{2}\times\mathbb{G}_{m}].

The actions of these two groups are the ones explained in the Notation section.

2.4. Vector bundles on 𝒲Nmin\mathcal{W}^{\min}_{N} when NN is odd

Let us suppose NN odd. As oberved in 2.10, the stack 𝒲Nmin\mathcal{W}_{N}^{\min} has a presentation as a quotient by the action of GL2\operatorname{GL}_{2}. In particular, the GL2\operatorname{GL}_{2}-equivariant morphism V4N,6NNΔNSpec([16])V^{N}_{4N,6N}\smallsetminus\Delta_{N}\to\operatorname{Spec}(\mathbb{Z}[\frac{1}{6}]) induces a morphism of quotient stacks 𝒲NminGL2\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{GL}_{2}. This should correspond to a rank two vector bundle on 𝒲Nmin\mathcal{W}_{N}^{\min}.

Definition 2.11.

For NN odd, we define the rank two vector bundle N\mathcal{E}_{N} on 𝒲Nmin\mathcal{W}^{\min}_{N} as follows:

N((𝒳,𝒮)𝑓𝒫𝑝T):=p((R1f𝒪)ω𝒫/TN12).\mathcal{E}_{N}((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T):=p_{*}((R^{1}f_{*}\mathcal{O})^{\vee}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N-1}{2}}).
Proposition 2.12.

The map 𝒲NminGL2\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{GL}_{2} is given by

((𝒳,𝒮)𝑓𝒫𝑝T)N((𝒳,𝒮)𝑓𝒫𝑝T).((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T)\longmapsto\mathcal{E}_{N}((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T).
Proof.

First we claim that the isomorphism (GL2/𝝁N)(GL2)\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\simeq\mathcal{B}(\operatorname{GL}_{2}) sends a pair (𝒫𝑝T,)(\mathcal{P}\overset{p}{\to}T,\mathcal{L}) to p(ω𝒫/TN12)p_{*}(\mathcal{L}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N-1}{2}}). Indeed, consider first the homomorphism GL2GL2\operatorname{GL}_{2}\to\operatorname{GL}_{2} that sends AA to det(A)N12A\det(A)^{\frac{N-1}{2}}A; this descends to the isomorphism GL2/𝝁NGL2\operatorname{GL}_{2}/\bm{\mu}_{N}\to\operatorname{GL}_{2}.

The induced morphism GL2GL2\mathcal{B}\operatorname{GL}_{2}\to\mathcal{B}\operatorname{GL}_{2} sends a rank two vector bundle ETE\to T to det(E)N12E\det(E)^{\otimes\frac{N-1}{2}}\otimes E. On the other hand, the morphism GL2(GL2/𝝁N)\mathcal{B}\operatorname{GL}_{2}\to\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N}) sends EE to ((E),𝒪(E)(N))(\mathbb{P}(E^{\vee}),\mathcal{O}_{\mathbb{P}(E^{\vee})}(N)), from which we deduce that (GL2/𝝁N)GL2\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\to\mathcal{B}\operatorname{GL}_{2} sends ((E),=𝒪(E)(N))(\mathbb{P}(E^{\vee}),\mathcal{L}=\mathcal{O}_{\mathbb{P}(E^{\vee})}(N)) to det(E)N12E\det(E)^{\otimes\frac{N-1}{2}}\otimes E: with a straightforward computation involving the Euler short exact sequence on (E)\mathbb{P}(E^{\vee}), we see that the latter vector bundle is isomorphic to p(ω(E)/TN12)p_{*}(\mathcal{L}\otimes\omega_{\mathbb{P}(E^{\vee})/T}^{\otimes\frac{N-1}{2}}). The claimed description follows then by descent.

By construction, the map 𝒲minN(GL2/𝝁N)\mathcal{W}_{\min}^{N}\to\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N}) is as follows:

((𝒳,𝒮)𝑓𝒫𝑝T)(𝒫B,(R1f𝒪)).((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T)\longmapsto(\mathcal{P}\to B,(R^{1}f_{*}\mathcal{O})^{\vee}).

The composition 𝒲minN(GL2/𝝁N)GL2\mathcal{W}_{\min}^{N}\to\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\to\mathcal{B}\operatorname{GL}_{2} corresponds then to p((R1f𝒪)ω𝒫/TN12)p_{*}((R^{1}f_{*}\mathcal{O})^{\vee}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N-1}{2}}). ∎

2.5. Vector bundles on 𝒲Nmin\mathcal{W}^{\min}_{N} when NN is even

In this case, the presentation of the stack 𝒲Nmin\mathcal{W}_{N}^{\min} given in Theorem 2.9 can be recasted in terms of the group PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}. In particular, this shows that there is a map 𝒲NminPGL2×𝔾m\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{PGL}_{2}\times\mathcal{B}\mathbb{G}_{m}, which then must be induced by a Severi-Brauer stack on 𝒲Nmin\mathcal{W}_{N}^{\min} together with a line bundle.

Definition 2.13.

For NN even, we define the rank three vector bundle N\mathcal{E}_{N} and the line bundle N\mathcal{L}_{N} on 𝒲Nmin\mathcal{W}^{\min}_{N} as follows:

N((𝒳,𝒮)𝑓𝒫𝑝T):=p(ω𝒫/T),\displaystyle\mathcal{E}_{N}((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T):=p_{*}(\omega_{\mathcal{P}/T}^{\vee}),
N((𝒳,𝒮)𝑓𝒫𝑝T):=p((R1f𝒪𝒳)ω𝒫/TN2).\displaystyle\mathcal{L}_{N}((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T):=p_{*}((R^{1}f_{*}\mathcal{O}_{\mathcal{X}})^{\vee}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N}{2}}).

The vector bundle N\mathcal{E}_{N} actually plays no role here, but it will be relevant later on.

Proposition 2.14.

The map 𝒲NminPGL2×𝔾m\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{PGL}_{2}\times\mathcal{B}\mathbb{G}_{m} is given by

((𝒳,𝒮)𝑓𝒫𝑝T)(𝒫𝑝T,N((𝒳,𝒮)𝑓𝒫𝑝T))((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T)\longmapsto(\mathcal{P}\overset{p}{\to}T,\mathcal{L}_{N}((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T))
Proof.

The stack (GL2/𝝁N)\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N}) classifies pairs (𝒫𝑝T,)(\mathcal{P}\overset{p}{\to}T,\mathcal{L}) where 𝒫T\mathcal{P}\to T is a Severi-Brauer variety and \mathcal{L} is a line bundle on 𝒫\mathcal{P} whose restriction to the geometric fibers of 𝒫T\mathcal{P}\to T has degree NN. We claim that the isomorphism (GL2/𝝁N)(PGL2×𝔾m)\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\simeq\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}) sends a pair (𝒫𝑝T,)(\mathcal{P}\overset{p}{\to}T,\mathcal{L}) to the pairs (𝒫𝑝T,p(ω𝒫/TN2))(\mathcal{P}\overset{p}{\to}T,p_{*}(\mathcal{L}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N}{2}})).

Indeed, consider the homomorphism GL2PGL2×𝔾m\operatorname{GL}_{2}\to\operatorname{PGL}_{2}\times\mathbb{G}_{m} which sends A([A],det(A)N2)A\mapsto([A],\det(A)^{\frac{N}{2}}): this homomorphism descends to the isomorphism GL2/𝝁NPGL2×𝔾m\operatorname{GL}_{2}/\bm{\mu}_{N}\overset{\simeq}{\to}\operatorname{PGL}_{2}\times\mathbb{G}_{m}. The induced morphism GL2(PGL2×𝔾m)\mathcal{B}\operatorname{GL}_{2}\to\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}) then works as follows: a rank two vector bundle ETE\to T with associated cocycles {Aij}\{A_{ij}\} is sent to the torsor whose associated cocycles are {[Aij],det(Aij)N2}\{[A_{ij}],\det(A_{ij})^{\frac{N}{2}}\}, i.e. the object ((E)T,det(E)N2)(\mathbb{P}(E^{\vee})\to T,\det(E)^{\otimes\frac{N}{2}}).

Observe now that the morphism GL2(GL2/𝝁N)\mathcal{B}\operatorname{GL}_{2}\to\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N}) sends a rank two vector bundle ETE\to T to ((E)T,=𝒪(E)(N))(\mathbb{P}(E^{\vee})\to T,\mathcal{L}=\mathcal{O}_{\mathbb{P}(E^{\vee})}(N)); we deduce that (GL2/𝝁N)(PGL2×𝔾m)\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\to\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}) must send ((E)𝑝T,=𝒪(E)(N))(\mathbb{P}(E^{\vee})\overset{p}{\to}T,\mathcal{L}=\mathcal{O}_{\mathbb{P}(E^{\vee})}(N)) to ((E)T,det(E)N2)(\mathbb{P}(E^{\vee})\to T,\det(E)^{\otimes\frac{N}{2}}). A straightforward computation with the Euler sequence of (E)𝑝T\mathbb{P}(E^{\vee})\overset{p}{\to}T shows that det(E)N2p(ω(E)/TN2)\det(E)^{\otimes\frac{N}{2}}\simeq p_{*}(\mathcal{L}\otimes\omega_{\mathbb{P}(E^{\vee})/T}^{\otimes\frac{N}{2}}).

As every object (𝒫T,)(\mathcal{P}\to T,\mathcal{L}) is étale locally isomorphic to an object of the form ((E)T,𝒪(E)(N))(\mathbb{P}(E^{\vee})\to T,\mathcal{O}_{\mathbb{P}(E^{\vee})}(N)), we obtain by descent the claimed description of the isomorphism (GL2/𝝁N)(PGL2×𝔾m)\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\simeq\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}).

The map 𝒲NminPGL2×𝔾m\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{PGL}_{2}\times\mathcal{B}\mathbb{G}_{m} can be factored as

𝒲NminNmin(GL2/𝝁N)(PGL2×𝔾m),\mathcal{W}_{N}^{\min}\longrightarrow\mathscr{F}^{\min}_{N}\longrightarrow\mathcal{B}(\operatorname{GL}_{2}/\bm{\mu}_{N})\longrightarrow\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}),

where the composition of the first two maps sends an object ((𝒳,𝒮)𝑓𝒫𝑝T)((\mathcal{X},\mathcal{S})\overset{f}{\to}\mathcal{P}\overset{p}{\to}T) to the pair (𝒫𝑝T,(R1f𝒪𝒳))(\mathcal{P}\overset{p}{\to}T,(R^{1}f_{*}\mathcal{O}_{\mathcal{X}})^{\vee}), from which we deduce that the composition sends a family of minimal Weierstrass fibrations over TT to the pair

(𝒫𝑝T,p((R1f𝒪𝒳)ω𝒫/TN2)).(\mathcal{P}\overset{p}{\to}T,p_{*}((R^{1}f_{*}\mathcal{O}_{\mathcal{X}})^{\vee}\otimes\omega_{\mathcal{P}/T}^{\otimes\frac{N}{2}})).

3. Equivariant intersection theory on projective spaces

in this section, we work over a ground field of any characteristic. Set Vk:=H0(1,𝒪(k))V_{k}:=\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(k)). The projective space Vk\mathbb{P}V_{k} can be naturally identified with the Hilbert scheme of kk points on 1\mathbb{P}^{1}. In this section we consider two actions on Vk\mathbb{P}V_{k}, namely:

  • the PGL2\operatorname{PGL}_{2}-action inherited from the natural action of PGL2\operatorname{PGL}_{2} on 1\mathbb{P}^{1}, that is [A][f(x,y)]:=[f(A1(x,y))][A]\cdot[f(x,y)]:=[f(A^{-1}(x,y))];

  • the GL2\operatorname{GL}_{2}-action induced by the PGL2\operatorname{PGL}_{2}-action above via the homomorphism GL2PGL2\operatorname{GL}_{2}\to\operatorname{PGL}_{2}.

The aim of this Section is to collect some basic facts on the integral Chow ring of [Vk/G][\mathbb{P}V_{k}/G], where GG is either GL2\operatorname{GL}_{2} or PGL2\operatorname{PGL}_{2}. We will divide our analysis in two parts, depending on whether VkV_{k} is a GG-representation or not. The reason for this is that, given a projective linear action of a group GG over a projective space (V)\mathbb{P}(V), the resulting quotient stack [(V)/G][\mathbb{P}(V)/G] is a projective bundle over G\mathcal{B}G if and only if the action of GG lifts to a linear action on VV, i.e. if VV is a GG-representation.

3.1. First case

As VkV_{k} is a GL2\operatorname{GL}_{2}-representation, the stack [Vk/GL2][\mathbb{P}V_{k}/\operatorname{GL}_{2}] is a projective bundle over GL2\mathcal{B}\operatorname{GL}_{2}. Similarly, for kk even, the vector space VkV_{k} is a PGL2\operatorname{PGL}_{2}-representation, where the action is defined as

Af(x,y):=det(A)k2f(A1(x,y)).A\cdot f(x,y):=\det(A)^{\frac{k}{2}}f(A^{-1}(x,y)).

Equivalently, the representation above is obtained by taking the GL2/𝝁k\operatorname{GL}_{2}/\bm{\mu}_{k}-representation VkkV_{k}^{k} of Section Section 2.1 and endowing it with a PGL2\operatorname{PGL}_{2} action via the homomorphism PGL2GL2/𝝁k\operatorname{PGL}_{2}\to\operatorname{GL}_{2}/\bm{\mu}_{k} defined as [A][det(A)12A][A]\mapsto[\det(A)^{-\frac{1}{2}}A]. Therefore, for G=GL2G=\operatorname{GL}_{2} or G=PGL2G=\operatorname{PGL}_{2} and kk even, we have that π:[Vk/G]G\pi:[\mathbb{P}V_{k}/G]\to\mathcal{B}G is a projective bundle.

Let hh be the hyperplane class. From an equivariant point of view, we can regard hh as the class of the GG-equivariant line bundle 𝒪Vk(1)\mathcal{O}_{\mathbb{P}V_{k}}(1). The following Proposition is just the usual projective bundle formula.

Proposition 3.1.

Assume that either G=GL2G=\operatorname{GL}_{2} or G=PGL2G=\operatorname{PGL}_{2} and kk is even. Then:

  1. (1)

    The integral Chow ring of [Vk/G][\mathbb{P}V_{k}/G] is generated as CH(G)\operatorname{CH}^{*}(\mathcal{B}G)-module by hmh^{m} for mkm\leq k.

  2. (2)

    We have π(hm)=smkG(Vk)\pi_{*}(h^{m})=s_{m-k}^{G}(V_{k}), where the latter denotes the GG-equivariant Segre class of degree mkm-k of VkV_{k}.

3.2. Second case

For kk odd, the vector space VkV_{k} is not a PGL2\operatorname{PGL}_{2}-representation: indeed, any lift of the PGL2\operatorname{PGL}_{2}-action on (Vk)\mathbb{P}(V_{k}) to VkV_{k} should be of the form [A]f(x,y)=det(A)df(A1(x,y))[A]\cdot f(x,y)=\det(A)^{d}f(A^{-1}(x,y)), and there is no choice of dd which makes the formula above well defined; picking a different representative λA\lambda A for [A][A] makes the right hand side equal to λ2dkdet(A)df(A1(x,y))\lambda^{2d-k}\det(A)^{d}f(A^{-1}(x,y)). This implies that the quotient stack [Vk/PGL2][\mathbb{P}V_{k}/\operatorname{PGL}_{2}] is not a projective bundle over PGL2\mathcal{B}\operatorname{PGL}_{2}. We have to treat this second case differently.

Let ΣkVk×1\Sigma_{k}\subset\mathbb{P}V_{k}\times\mathbb{P}^{1} be the PGL2\operatorname{PGL}_{2}-invariant subscheme defined as

Σk={(f,x) such that f(x)=0}.\Sigma_{k}=\{(f,x)\text{ such that }f(x)=0\}.

The line bundle 𝒪(Σk)\mathcal{O}(\Sigma_{k}) is isomorphic to pr1𝒪Vk(1)pr2𝒪1(k){\rm pr}_{1}^{*}\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes{\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}^{1}}(k), hence the latter admits a PGL2\operatorname{PGL}_{2}-linearization. The canonical line bundle ω1𝒪1(2)\omega_{\mathbb{P}^{1}}\simeq\mathcal{O}_{\mathbb{P}^{1}}(-2) admits a PGL2\operatorname{PGL}_{2}-linearization as well. Then the isomorphism

𝒪Vk(1)V1pr1(pr1𝒪Vk(1)pr2𝒪1(k)pr2ω1k12),\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes V_{1}\simeq{\rm pr}_{1*}({\rm pr}_{1}^{*}\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes{\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}^{1}}(k)\otimes{\rm pr}_{2}^{*}\omega_{\mathbb{P}^{1}}^{\frac{k-1}{2}}),

gives a PGL2\operatorname{PGL}_{2}-linearization to the rank two vector bundle 𝒪Vk(1)V1\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes V_{1}.

Before going on, recall ([Phan]) that CH(PGL2)[c2,c3]/(2c3)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2})\simeq\mathbb{Z}[c_{2},c_{3}]/(2c_{3}), where cic_{i} is the ithi^{\rm th} Chern class of the vector bundle [V2/PGL2]PGL2[V_{2}/\operatorname{PGL}_{2}]\to\mathcal{B}\operatorname{PGL}_{2}. In what follows we will use the following standard convention for Chern classes: as the projection morphism π:[Vk/PGL2]PGL2\pi:[\mathbb{P}V_{k}/\operatorname{PGL}_{2}]\to\mathcal{B}\operatorname{PGL}_{2} gives to CH([Vk/PGL2])\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}]) the structure of a CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2})-module via the pullback homomorphism, we will use the notation cic_{i} for the classes πci\pi^{*}c_{i}. With this convention, the projection formula π(πcidη)=cidπη\pi_{*}(\pi^{*}c_{i}^{d}\cdot\eta)=c_{i}^{d}\cdot\pi_{*}\eta simply reads as π(cidη)=cidπη\pi_{*}(c_{i}^{d}\cdot\eta)=c_{i}^{d}\cdot\pi_{*}\eta.

Proposition 3.2.

For k0k\geq 0 odd, let γ1\gamma_{1}, γ2\gamma_{2} be the PGL2\operatorname{PGL}_{2}-equivariant Chern classes of 𝒪Vk(1)V1\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes V_{1}. Then we have

CH([Vk/PGL2])[γ1,γ2]/(i=0k12(γ2+(k2i)214c2)),\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}])\simeq\mathbb{Z}[\gamma_{1},\gamma_{2}]/(\prod_{i=0}^{\frac{k-1}{2}}\left(\gamma_{2}+\frac{(k-2i)^{2}-1}{4}c_{2}\right)),

where c2=γ12+4γ2c_{2}=-\gamma_{1}^{2}+4\gamma_{2}, and the generators of this ring as a module over CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2}) are γ1iγ2j\gamma_{1}^{i}\gamma_{2}^{j}, where i=0,1i=0,1 and j=0,1,,k12j=0,1,\dots,\frac{k-1}{2}.

Proof.

For kk odd, in [ST21, Proposition 3.7] it is proved that the Chow ring of CH([Vk/PGL2])\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}]) is isomorphic to

[u,v]S2/(i=0k((k+12i)u+(k+12+i)v)),\mathbb{Z}[u,v]^{S_{2}}/(\prod_{i=0}^{k}((\frac{k+1}{2}-i)u+(\frac{-k+1}{2}+i)v)),

where u,vu,v are the Chern roots of 𝒪Vk(1)V1\mathcal{O}_{\mathbb{P}V_{k}}(1)\otimes V_{1}, so that u+v=γ1u+v=\gamma_{1} and uv=γ2uv=\gamma_{2}.

Moreover, we know from [ST21] that the pullback homomorphism CH(PGL2)CH([Vk/PGL2])\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2})\to\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}]) sends c2(uv)2c_{2}\mapsto-(u-v)^{2} and c30c_{3}\mapsto 0. This implies that

γ12=(u+v)2=(uv)2+4uv=4uvc2=4γ2c2.\gamma_{1}^{2}=(u+v)^{2}=(u-v)^{2}+4uv=4uv-c_{2}=4\gamma_{2}-c_{2}.

In particular CH([Vk/PGL2])\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}]) is generated as a module by monomials of the form (u+v)i(uv)j(u+v)^{i}(uv)^{j}, where ii is either 0 or 11.

We can then rewrite the relation as follows:

i=0k12((k+12i)u+(k+12+i)v)((k+12+i)u+(k+12i)v))\displaystyle\prod_{i=0}^{\frac{k-1}{2}}\left(\left(\frac{k+1}{2}-i\right)u+\left(\frac{-k+1}{2}+i\right)v\right)\left(\left(\frac{-k+1}{2}+i\right)u+\left(\frac{k+1}{2}-i)v\right)\right)
=\displaystyle= i=0k12(uv+(k+12i)(k+12+i)(uv)2)\displaystyle\prod_{i=0}^{\frac{k-1}{2}}\left(uv+\left(\frac{k+1}{2}-i\right)\left(\frac{-k+1}{2}+i\right)(u-v)^{2}\right)
=\displaystyle= i=0k12(uv+(k2i)214c2).\displaystyle\prod_{i=0}^{\frac{k-1}{2}}\left(uv+\frac{(k-2i)^{2}-1}{4}c_{2}\right).

This shows that the monomials (u+v)i(uv)j(u+v)^{i}(uv)^{j} for i1i\leq 1 and jk12j\leq\frac{k-1}{2} actually generate CH([Vk/PGL2])\operatorname{CH}^{*}([\mathbb{P}V_{k}/\operatorname{PGL}_{2}]) as a module over CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2}), as claimed. ∎

Remark 3.3.

For k=1k=1, we can see that the Chow ring of [V1/PGL2][\mathbb{P}V_{1}/\operatorname{PGL}_{2}] is generated by the first Chern class of the normal bundle of the universal section which, coherently with the usual definition of psi classes, we denote ψ1\psi_{1}. In fact, on the universal conic p:𝒫[V1/PGL2]p:\mathcal{P}\to[\mathbb{P}V_{1}/\operatorname{PGL}_{2}] we have a short exact sequence

(1) 0𝒪𝒫𝒪(σ)σσ𝒪(σ)00\longrightarrow\mathcal{O}_{\mathcal{P}}\longrightarrow\mathcal{O}(\sigma)\longrightarrow\sigma_{*}\sigma^{*}\mathcal{O}(\sigma)\longrightarrow 0

where σ\sigma is the universal section. By pushing forward along pp, we get an exact sequence of locally free sheaves

0𝒪p𝒪(σ)σ𝒪(σ)00\longrightarrow\mathcal{O}\longrightarrow p_{*}\mathcal{O}(\sigma)\longrightarrow\sigma^{*}\mathcal{O}(\sigma)\longrightarrow 0

which shows that the rank two bundle in the middle is an extension of the normal bundle of the universal section by the trivial line bundle. This implies that γ1=ψ1\gamma_{1}=\psi_{1} and γ2=0\gamma_{2}=0.

Next we give an explicit description of the pushforward morphism along π:[Vk/PGL2]PGL2\pi:[\mathbb{P}V_{k}/\operatorname{PGL}_{2}]\to\mathcal{B}\operatorname{PGL}_{2}. For this, set

En,m(q):=(1)qa=0mb=0na+b=2q+12ma(ma)(nb).E_{n,m}(q):=(-1)^{q}\underset{a+b=2q+1}{\sum_{a=0}^{m}\sum_{b=0}^{n}}2^{m-a}\binom{m}{a}\binom{n}{b}.
Lemma 3.4.

We have

π(γ1mγ2n)=k10qn+mk2En,m(q)s2(nq)+mkPGL2(Vk1)2c2q.\pi_{*}(\gamma_{1}^{m}\gamma_{2}^{n})=k^{-1}\sum_{0\leq q\leq n+\frac{m-k}{2}}E_{n,m}(q)\cdot s^{\operatorname{PGL}_{2}}_{2(n-q)+m-k}(V_{k-1})\cdot 2c_{2}^{q}.

Observe that the sum above is actually a scalar multiple of c2c_{2}: this is because every monomial containing c3c_{3} that appears in a Segre class is killed by the multiplication by 22, hence the polynomial above lives in the ring [c2]\mathbb{Z}[c_{2}]. In this way the multiplication by the inverse of kk can be understood literally, i.e. as the division of the scalar coefficient by kk.

In particular, we are implying that such scalar coefficient is a multiple of kk, because the whole expression belongs to the integral Chow ring.

Proof.

Consider the commutative diagram of quotient stacks

(2) [V1×Vk1/PGL2]{\left[\mathbb{P}V_{1}\times\mathbb{P}V_{k-1}/\operatorname{PGL}_{2}\right]}[Vk/PGL2]{\left[\mathbb{P}V_{k}/\operatorname{PGL}_{2}\right]}[V1/PGL2]{\left[\mathbb{P}V_{1}/\operatorname{PGL}_{2}\right]}PGL2{\mathcal{B}\operatorname{PGL}_{2}}pr1\scriptstyle{{\rm pr}_{1}}ρ\scriptstyle{\rho}π\scriptstyle{\pi}π\scriptstyle{\pi^{\prime}}

where the top horizontal arrow is induced by the multiplication map. This map is finite of degree kk, hence ρρξ=kξ\rho_{*}\rho^{*}\xi=k\xi and

kπξ=πρρξ=πpr1(ρξ).k\cdot\pi_{*}\xi=\pi_{*}\rho_{*}\rho^{*}\xi=\pi^{\prime}_{*}{\rm pr}_{1*}(\rho^{*}\xi).

As kk is odd, multiplication by kk is an injective group endomorphism of CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2}). This argument shows that once we understand how the pullback homomorphism ρ\rho^{*} and the composition πpr1\pi^{\prime}_{*}{\rm pr}_{1*} works, we also have an explicit formula for π\pi_{*}.

We first have to compute the pullback of γ1\gamma_{1} and γ2\gamma_{2} to the Chow ring of [V1×Vk1/PGL2]\left[\mathbb{P}V_{1}\times\mathbb{P}V_{k-1}/\operatorname{PGL}_{2}\right]. For this, observe that ρ(V1𝒪Vk(1))=V1pr1𝒪V1(1)pr2𝒪Vk1(1)\rho^{*}(V_{1}\otimes\mathcal{O}_{\mathbb{P}V_{k}}(1))=V_{1}\otimes{\rm pr}_{1}^{*}\mathcal{O}_{\mathbb{P}V_{1}}(1)\otimes{\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}V_{k-1}}(1). Recall from 3.1 and 3.3 that h=c1PGL2(𝒪Vk1(1))h=c_{1}^{\operatorname{PGL}_{2}}(\mathcal{O}_{\mathbb{P}V_{k-1}}(1)) and ψ1=c1PGL2(V1𝒪V1(1))\psi_{1}=c_{1}^{\operatorname{PGL}_{2}}(V_{1}\otimes\mathcal{O}_{\mathbb{P}V_{1}}(1)). Applying the splitting principle and the additivity of the total Chern class, we deduce

ργ1=c1PGL2(V1pr1𝒪V1(1)pr2𝒪Vk1(1))=ψ1+2h\displaystyle\rho^{*}\gamma_{1}=c_{1}^{\operatorname{PGL}_{2}}(V_{1}\otimes{\rm pr}_{1}^{*}\mathcal{O}_{\mathbb{P}V_{1}}(1)\otimes{\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}V_{k-1}}(1))=\psi_{1}+2h
ργ2=c2PGL2(V1pr1𝒪V1(1)pr2𝒪Vk1(1))=h(h+ψ1).\displaystyle\rho^{*}\gamma_{2}=c_{2}^{\operatorname{PGL}_{2}}(V_{1}\otimes{\rm pr}_{1}^{*}\mathcal{O}_{\mathbb{P}V_{1}}(1)\otimes{\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}V_{k-1}}(1))=h(h+\psi_{1}).

This implies that

π(γ1mγ2n)\displaystyle\pi_{*}(\gamma_{1}^{m}\gamma_{2}^{n}) =k1πpr1((2h+ψ1)mhn(h+ψ1)n).\displaystyle=k^{-1}\pi^{\prime}_{*}{\rm pr}_{1*}((2h+\psi_{1})^{m}h^{n}(h+\psi_{1})^{n}).

The computation of pushforwards along pr1:[V1×Vk1/PGL2][V1/PGL2]{\rm pr}_{1}:[\mathbb{P}V_{1}\times\mathbb{P}V_{k-1}/\operatorname{PGL}_{2}]\to[\mathbb{P}V_{1}/\operatorname{PGL}_{2}] is easy because k1k-1 is even, hence this map is the projection from a projective bundle. We deduce

pr1(hiψ1j)=sik+1PGL2(Vk1)ψ1j.{\rm pr}_{1*}(h^{i}\psi_{1}^{j})=s^{\operatorname{PGL}_{2}}_{i-k+1}(V_{k-1})\psi_{1}^{j}.

Also the pushforward along π:[V1/PGL2]PGL2\pi^{\prime}:[\mathbb{P}V_{1}/\operatorname{PGL}_{2}]\to\mathcal{B}\operatorname{PGL}_{2} is not hard to determine: consider the cartesian diagram

V1\textstyle{\mathbb{P}V_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho^{\prime}}g\scriptstyle{g}Speck\textstyle{\operatorname{Spec}{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}[V1/PGL2]\textstyle{[\mathbb{P}V_{1}/\operatorname{PGL}_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{\prime}}PGL2.\textstyle{\mathcal{B}\operatorname{PGL}_{2}.}

The compatibility formula implies that for every element ξ\xi in the Chow ring of [V1/PGL2][\mathbb{P}V_{1}/\operatorname{PGL}_{2}] we have fπ(ξ)=ρg(ξ)f^{*}\pi^{\prime}_{*}(\xi)=\rho^{\prime}_{*}g^{*}(\xi). To compute g(ψ1)g^{*}(\psi_{1}), observe that g(V1𝒪V1(1))=𝒪V1(1)2g^{*}(V_{1}\otimes\mathcal{O}_{\mathbb{P}V_{1}}(1))=\mathcal{O}_{\mathbb{P}V_{1}}(1)^{\oplus 2}, hence g(ψ1)=2c1PGL2(𝒪V1(1))g^{*}(\psi_{1})=2c_{1}^{\operatorname{PGL}_{2}}(\mathcal{O}_{\mathbb{P}V_{1}}(1)); this implies fπ(ψ1)=ρg(ψ1)=2f^{*}\pi^{\prime}_{*}(\psi_{1})=\rho^{\prime}_{*}g^{*}(\psi_{1})=2. In degree zero the pullback f:CH0(PGL2)CH0(Speck)f^{*}:\operatorname{CH}^{0}(\mathcal{B}\operatorname{PGL}_{2})\to\operatorname{CH}^{0}(\operatorname{Spec}{k}) is an isomorphism, so we can conclude πψ1=2\pi^{\prime}_{*}\psi_{1}=2.

The relation ψ12=c2\psi_{1}^{2}=-c_{2} implies that π(ψ12j)=0\pi^{\prime}_{*}(\psi_{1}^{2j})=0 and π(ψ12j+1)=(1)j2c2j\pi^{\prime}_{*}(\psi_{1}^{2j+1})=(-1)^{j}2c_{2}^{j}. We deduce

πpr1(hiψ12j)=0,πpr1(hiψ12j+1)=(1)jsik+1PGL2(Vk1)2c2j.\displaystyle\pi^{\prime}_{*}{\rm pr}_{1*}(h^{i}\psi_{1}^{2j})=0,\quad\pi^{\prime}_{*}{\rm pr}_{1*}(h^{i}\psi_{1}^{2j+1})=(-1)^{j}s^{\operatorname{PGL}_{2}}_{i-k+1}(V_{k-1})2c_{2}^{j}.

Putting all together, we obtain the claimed formulas for the pushforward along π:[Vk/PGL2]PGL2\pi:[\mathbb{P}V_{k}/\operatorname{PGL}_{2}]\to\mathcal{B}\operatorname{PGL}_{2}. ∎

3.3. Chern classes of representations

Here we outline how to explicitly compute the Chern classes of the representations that appeared before. This also gives formulas for the Segre classes by formally inverting the total Chern class.

First, let us consider the case G=GL2G=\operatorname{GL}_{2}. The integral Chow ring of GL2\mathcal{B}\operatorname{GL}_{2} is isomorphic to [c1,c2]\mathbb{Z}[c_{1},c_{2}], where c1c_{1} and c2c_{2} are the Chern classes of the standard GL2\operatorname{GL}_{2}-representation EE. Therefore, if 1\ell_{1} and 2\ell_{2} are the Chern roots of EE^{\vee}, we have that c1=(1+2)c_{1}=-(\ell_{1}+\ell_{2}) and c2=12c_{2}=\ell_{1}\ell_{2}.

We have Vm=SymmEV_{m}=\operatorname{Sym}^{m}E^{\vee}, hence the Chern roots of this symmetric power are given by j1+(mj)2j\ell_{1}+(m-j)\ell_{2}, where 0jm0\leq j\leq m. From this we deduce that the total Chern class of VmV_{m} for mm even is equal to

cGL2(Vm)\displaystyle c^{\operatorname{GL}_{2}}(V_{m}) =j=0m(1+(j1+(mj)2)t)\displaystyle=\prod_{j=0}^{m}(1+(j\ell_{1}+(m-j)\ell_{2})t)
=(1+m2(1+2)t)j<m2(1+(j1+(mj)2)t)(1+((mj)1+j2)t)\displaystyle=(1+\frac{m}{2}(\ell_{1}+\ell_{2})t)\prod_{j<\frac{m}{2}}(1+(j\ell_{1}+(m-j)\ell_{2})t)(1+((m-j)\ell_{1}+j\ell_{2})t)
=(1m2c1t)j<m2(1mc1t+(j(mj)c12+(2jm)2c2)t2).\displaystyle=(1-\frac{m}{2}c_{1}t)\prod_{j<\frac{m}{2}}(1-mc_{1}t+(j(m-j)c_{1}^{2}+(2j-m)^{2}c_{2})t^{2}).

whether for mm odd the same argument gives us

cGL2(Vm)=jm2(1mc1t+(j(mj)c12+(2jm)2c2)t2).c^{\operatorname{GL}_{2}}(V_{m})=\prod_{j\leq\frac{m}{2}}(1-mc_{1}t+(j(m-j)c_{1}^{2}+(2j-m)^{2}c_{2})t^{2}).

Let p(t)d\langle p(t)\rangle_{d} denote the coefficient in front of tdt^{d} in p(t)p(t). Then we have proved the following:

Proposition 3.5.
cdGL2(Vm)={(1m2c1t)j<m2(1mc1t+(j(mj)c12+(2jm)2c2)t2)dif m is even,jm2(1mc1t+(j(mj)c12+(2jm)2c2)t2)dif m is odd.\displaystyle c_{d}^{\operatorname{GL}_{2}}(V_{m})=\left\{\begin{array}[]{ll}\left\langle(1-\frac{m}{2}c_{1}t)\prod_{j<\frac{m}{2}}(1-mc_{1}t+(j(m-j)c_{1}^{2}+(2j-m)^{2}c_{2})t^{2})\right\rangle_{d}&\text{if }m\text{ is even,}\\ \\ \left\langle\prod_{j\leq\frac{m}{2}}(1-mc_{1}t+(j(m-j)c_{1}^{2}+(2j-m)^{2}c_{2})t^{2})\right\rangle_{d}&\text{if }m\text{ is odd.}\end{array}\right.

Next, we consider the case G=PGL2G=\operatorname{PGL}_{2}. The vector space V2m=H0(1,𝒪(2m))V_{2m}=\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(2m)) is a PGL2\operatorname{PGL}_{2}-representation of rank 2m+12m+1, where the action is defined as Af(x,y):=det(A)mf(A1(x,y)A\cdot f(x,y):=\det(A)^{m}f(A^{-1}(x,y). In what follows we will need explicit formulas for the PGL2\operatorname{PGL}_{2}-equivariant Chern classes of V2mV_{2m}. These has been computed by Fulghesu and Viviani in [FV]*Section 6.

Recall ([Phan]) that CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2}) is isomorphic to [c2,c3]/(2c3)\mathbb{Z}[c_{2},c_{3}]/(2c_{3}), where ciPGL2(V2)=cic_{i}^{\operatorname{PGL}_{2}}(V_{2})=c_{i}, and

Proposition 3.6 ([FV]*Corollary 6.3).
cdPGL2(V2m)={tj=1m(t2+j2c2)+tm2+1j=1m2(m2j)(t3+c2t)(m2j)c3j2m+1dif m is even,tj=1m(t2+j2c2)+tm12j=1m+12(m+12j)(t3+c2t)(m+12j)c3j2m+1dif m is odd.c_{d}^{\operatorname{PGL}_{2}}(V_{2m})=\left\{\begin{array}[]{ll}\left\langle t\prod_{j=1}^{m}(t^{2}+j^{2}c_{2})+t^{\frac{m}{2}+1}\sum_{j=1}^{\frac{m}{2}}\binom{\frac{m}{2}}{j}(t^{3}+c_{2}t)^{(\frac{m}{2}-j)}c_{3}^{j}\right\rangle_{2m+1-d}&\text{if }m\text{ is even,}\\ \\ \left\langle t\prod_{j=1}^{m}(t^{2}+j^{2}c_{2})+t^{\frac{m-1}{2}}\sum_{j=1}^{\frac{m+1}{2}}\binom{\frac{m+1}{2}}{j}(t^{3}+c_{2}t)^{(\frac{m+1}{2}-j)}c_{3}^{j}\right\rangle_{2m+1-d}&\text{if }m\text{ is odd.}\end{array}\right.

The PGL2\operatorname{PGL}_{2}-equivariant Segre classes of V2mV_{2m} can then be computed by formally inverting the total Chern classes of the PGL2\operatorname{PGL}_{2}-representation.

4. Relations coming from [ΔN1/GN][\Delta^{1}_{N}/G_{N}]

In this Section, we compute relations in the Chow ring of 𝒲Nmin\mathcal{W}^{\min}_{N} obtained excising [ΔN1/GN][\Delta^{1}_{N}/G_{N}]. More precisely, we show that the ideal of relations obtained by excising this locus has a single generator (4.1) and we give a recipe for computing it (see 4.2 and 4.4). We work over a ground field of characteristic different from 22 or 33.

4.1. Excision of [ΔN1/GN][\Delta_{N}^{1}/G_{N}]

Consider the localization exact sequence

CHGN(ΔN1)CHGN(V4N,6NN)CHGN(V4N,6NNΔN1)0.\operatorname{CH}^{G_{N}}_{*}(\Delta^{1}_{N})\rightarrow\operatorname{CH}^{G_{N}}_{*}(V^{N}_{4N,6N})\rightarrow\operatorname{CH}^{G_{N}}_{*}(V^{N}_{4N,6N}\smallsetminus\Delta^{1}_{N})\rightarrow 0.

We want to find generators for the ideal given by the image of the first map on the left. To do so, we construct an equivariant envelope of ΔN1\Delta^{1}_{N}, in the sense of [EG, Page 603], i.e. a proper morphism ZΔN1Z\to\Delta^{1}_{N} whose induced pushforward homomorphism between Chow groups is surjective. Let

(3) ϕ:V2NNV4N,6NN\phi:V^{N}_{2N}\longrightarrow V^{N}_{4N,6N}

be the map defined by ϕ(P)=(3P2,2P3)\phi(P)=(-3P^{2},2P^{3}). Observe that the image of ϕ\phi lies in ΔN1\Delta_{N}^{1}.

Lemma 4.1.

The following hold true:

  1. (1)

    the map ϕ\phi defines a GNG_{N}-equivariant bijective birational morphism V2NNΔN1V^{N}_{2N}\to\Delta_{N}^{1} that is an isomorphism away from the origin;

  2. (2)

    the pushforward morphism CHGN(V2NN)CHGN(ΔN1)\operatorname{CH}^{*}_{G_{N}}(V^{N}_{2N})\to\operatorname{CH}^{*}_{G_{N}}(\Delta_{N}^{1}) is surjective;

  3. (3)

    the image of ϕ\phi_{*} is the ideal generated by [ΔN1]GN[\Delta_{N}^{1}]_{G_{N}}.

Proof.

Away from the origin, the map (A,B)3B/2A(A,B)\mapsto-3B/2A defines an equivariant inverse to V2NNΔN1V^{N}_{2N}\to\Delta_{N}^{1}, so ϕ\phi is bijective and is an isomorphism away from the origin. This also implies the surjectivity of the induced pushforward.

To prove the last point, observe that there is a well defined pullback morphism ϕ\phi^{*} because V4N,6NNV^{N}_{4N,6N} is smooth, and ϕ\phi^{*} is clearly surjective because both [V2NN/GN][V^{N}_{2N}/G_{N}] and [V4N,6NN/GN][V^{N}_{4N,6N}/{G_{N}}] are vector bundles over GN\mathcal{B}{G_{N}}. Therefore, for every cycle ζ\zeta in CHGN(V2NN)\operatorname{CH}^{*}_{G_{N}}(V^{N}_{2N}), we have ϕ(ζ)=ϕϕ(ζ)=ϕ(1)ζ\phi_{*}(\zeta)=\phi_{*}\phi^{*}(\zeta^{\prime})=\phi_{*}(1)\cdot\zeta^{\prime}. This proves the last point. ∎

4.2. The case GN=GL2{G_{N}}=\operatorname{GL}_{2}

When NN is odd, the group GN{G_{N}} is isomorphic to GL2\operatorname{GL}_{2}. To compute [ΔN1]GL2[\Delta_{N}^{1}]_{\operatorname{GL}_{2}} we can apply the localization formula ([EGloc, Theorem 2]). In general, this formula only gives an expression which is true up to cycles that are zero divisor. In our case we are lucky, as the equivariant Chow ring of V4N,6NNV^{N}_{4N,6N} is a polynomial ring in the two variables c1c_{1} and c2c_{2}, so the expression we obtain in the end holds true unconditionally.

Proposition 4.2.

For NN odd, the image of CHGN(ΔN1)CHGN(V4N,6NN)\operatorname{CH}_{*}^{G_{N}}(\Delta_{N}^{1})\to\operatorname{CH}_{*}^{G_{N}}(V^{N}_{4N,6N}) is generated as an ideal by

[ΔN1]GN=c10N+2GN(V4N,6NN)c2N+1GN(V2NN).[\Delta_{N}^{1}]_{G_{N}}=\frac{c_{10N+2}^{G_{N}}(V^{N}_{4N,6N})}{c_{2N+1}^{G_{N}}(V^{N}_{2N})}.
Proof.

Let TGL2T\subset\operatorname{GL}_{2} be the maximal subtorus of diagonal matrices. The point in VrNNV^{N}_{rN} fixed by the TT-action is the origin, whose tangent space is isomorphic to VrNNV^{N}_{rN} itself. Applying localization formula ([EGloc, Theorem 2]), we deduce that

ϕ(1)=ϕ([(0)]T)c2N+1T(TV2N,(0)N)=[(0)]Tc2N+1T(TV2N,(0)N)=c10N+2T(V4N,6NN)c2N+1T(V2NN).\displaystyle\phi_{*}(1)=\frac{\phi_{*}([(0)]_{T})}{c_{2N+1}^{T}(TV^{N}_{2N,(0)})}=\frac{[(0)]_{T}}{c_{2N+1}^{T}(TV^{N}_{2N,(0)})}=\frac{c_{10N+2}^{T}(V^{N}_{4N,6N})}{c_{2N+1}^{T}(V^{N}_{2N})}.

As the TT-equivariant Chern classes of a GL2\operatorname{GL}_{2}-equivariant vector bundle are equal to the GL2\operatorname{GL}_{2}-equivariant ones, we obtain an expression for [ΔN1]GN[\Delta_{N}^{1}]_{G_{N}}. By 4.1, this class generates the ideal im(ϕ)\operatorname{im}(\phi_{*}), and from the same Lemma we know that this ideal coincides with the image of CHGN8N1(ΔN1)CHGN(V4N,6NN)\operatorname{CH}^{*-8N-1}_{G_{N}}(\Delta_{N}^{1})\to\operatorname{CH}^{*}_{G_{N}}(V^{N}_{4N,6N}). ∎

4.3. The case GN=PGL2×𝔾m{G_{N}}=\operatorname{PGL}_{2}\times\mathbb{G}_{m}

For NN even, the group that we have to consider is PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}. Because of the fact that in CH((PGL2×𝔾m))\operatorname{CH}^{*}(\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m})) there are zero divisors, e.g. the integer 22, we cannot apply the localization formula directly. To overcome this obstacle, we will use a trick introduced in [DL].

Let f:XXf:X^{\prime}\to X be a PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-equivariant morphism between PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-equivariant schemes. Then by [DL, Theorem 2.11] there exist GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-schemes YY and YY^{\prime} with an equivariant morphism YYY^{\prime}\to Y and a commutative diagram

(4) [X/PGL2×𝔾m]{\left[X^{\prime}/\operatorname{PGL}_{2}\times\mathbb{G}_{m}\right]}[Y/GL3×𝔾m]{\left[Y^{\prime}/\operatorname{GL}_{3}\times\mathbb{G}_{m}\right]}[X/PGL2×𝔾m]{\left[X/\operatorname{PGL}_{2}\times\mathbb{G}_{m}\right]}[Y/GL3×𝔾m].{\left[Y/\operatorname{GL}_{3}\times\mathbb{G}_{m}\right].}\scriptstyle{\simeq}\scriptstyle{\simeq}

We refer to the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-scheme YY (resp. YY^{\prime}) as the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-counterpart of XX (resp. XX^{\prime}), as in [DL]*Definition 2.9. Recall that V2dNNV^{N}_{2dN} is the PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-representation H0(1,𝒪(2dN))L(2d)\operatorname{H}^{0}(\mathbb{P}^{1},\mathcal{O}(2dN))\otimes L^{\otimes(-2d)}, where LL is the standard rank one representation of 𝔾m\mathbb{G}_{m}: our aim is to describe explicitly the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-counterpart of V2dNNV^{N}_{2dN}.

The affine space 𝔸6\mathbb{A}^{6} is the parameter space of quadratic forms in three variables, and let DD be the discriminant divisor, i.e. the divisor that parametrizes quadratic forms of rank 2\leq 2. We regard 𝔸6\mathbb{A}^{6} as a GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-scheme, where 𝔾m\mathbb{G}_{m} acts trivially and GL3\operatorname{GL}_{3} acts as Aq(x,y,z)=det(A)q(A1(x,y,z))A\cdot q(x,y,z)=\det(A)q(A^{-1}(x,y,z)). Observe that DD is invariant with respect to this action.

Over 𝔸6{0}\mathbb{A}^{6}\smallsetminus\{0\} we have an injective morphism of GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-equivariant free sheaves

(5) H0(2,𝒪(dm2))L(2d)𝒪𝔸6{0}H0(2,𝒪(dm))L(2d)𝒪𝔸6{0},\operatorname{H}^{0}(\mathbb{P}^{2},\mathcal{O}(dm-2))\otimes L^{\otimes(-2d)}\otimes\mathcal{O}_{\mathbb{A}^{6}\smallsetminus\{0\}}\longrightarrow\operatorname{H}^{0}(\mathbb{P}^{2},\mathcal{O}(dm))\otimes L^{\otimes(-2d)}\otimes\mathcal{O}_{\mathbb{A}^{6}\smallsetminus\{0\}},

where the GL3\operatorname{GL}_{3}-action on these sheaves is inherited from the natural action of GL3\operatorname{GL}_{3} on 2\mathbb{P}^{2}, the latter regarded as the projectivization of the standard GL3\operatorname{GL}_{3}-representation.

The quotient of the map in (5) is denoted W2dmmW^{m}_{2dm} and by [DL]*Proposition 3.4 the restriction of W2dmmW^{m}_{2dm} to 𝔸6D\mathbb{A}^{6}\smallsetminus D is the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-counterpart of V2dmmV^{m}_{2dm}. Moreover, we adopt the notation W2dm,2emmW^{m}_{2dm,2em} for the direct sum of W2dmmW^{m}_{2dm} and W2emmW^{m}_{2em}. The KK-points in the total space of W2dmmW^{m}_{2dm} should be thought as pairs (q,[f])(q,[f]) where qq is a non-zero ternary quadratic form on KK, the polynomial ff is a homogeneous form in three variables of degree dmdm and [f]=[f][f]=[f^{\prime}] if and only if qq divides the difference fff-f^{\prime}.

In this way we can also describe the counterpart of the equivariant map ϕ:V2NNV4N,6NN\phi:V^{N}_{2N}\to V^{N}_{4N,6N} introduced in (3), which is the restriction to 𝔸6D\mathbb{A}^{6}\smallsetminus D of the morphism

ψ:W2NNW4N,6NN,(q,[f])(q,[3f2],[2f3]).\psi:W^{N}_{2N}\longrightarrow W^{N}_{4N,6N},\quad(q,[f])\longmapsto(q,[-3f^{2}],[2f^{3}]).

In particular, this shows that the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-equivariant fundamental class of ψ(W2NN)\psi(W^{N}_{2N}) is equal to the PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-fundamental class of ΔN1\Delta_{N}^{1}.

As in the case where NN is odd, we plan to use the localization formula to compute the image of CHGN(ΔN1)CHGN(V4N,6NN)\operatorname{CH}_{*}^{G_{N}}(\Delta_{N}^{1})\to\operatorname{CH}_{*}^{G_{N}}(V^{N}_{4N,6N}). To pass to integral coefficients however, it is convenient to work in an ambient space XX such that CH([X/GL3×𝔾m])\operatorname{CH}^{*}([X/\operatorname{GL}_{3}\times\mathbb{G}_{m}]) is a free CH(GL3×𝔾m)\operatorname{CH}^{*}(\mathcal{B}\operatorname{GL}_{3}\times\mathbb{G}_{m})-module. Therefore, for our purposes, we set X=5X=\mathbb{P}^{5} to be the projectivization of the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-scheme 𝔸6\mathbb{A}^{6}. From [DL]*Definition 3.1 we know that there exists a locally free sheaf W¯2dmm\overline{W}^{m}_{2dm} whose pullback along 𝔸6{0}5\mathbb{A}^{6}\smallsetminus\{0\}\to\mathbb{P}^{5} is isomorphic to W2dmmW^{m}_{2dm}. Points in the total space of W¯2dmm\overline{W}^{m}_{2dm} are pairs ([q],[f])([q],[f]), where [q]=[q][q]=[q^{\prime}] if and only if q=λqq=\lambda q^{\prime} for some invertible scalar λ\lambda. We also have an equivariant map ψ¯:W¯2NNW¯4N,6NN\overline{\psi}:\overline{W}^{N}_{2N}\rightarrow\overline{W}^{N}_{4N,6N}, whose pullback along 𝔸6{0}5\mathbb{A}^{6}\smallsetminus\{0\}\to\mathbb{P}^{5} is isomorphic to ψ\psi. Recall from [EdFuRat, 4.1] that

CHGL3×𝔾m(5)\displaystyle\operatorname{CH}_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}^{*}(\mathbb{P}^{5}) i=05CHGL3×𝔾m(Spec(k))hi\displaystyle\simeq\oplus_{i=0}^{5}\operatorname{CH}_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}^{*}(\operatorname{Spec}(k))\cdot h^{i}
[τ1,h,c1,c2,c3]/((h32c1h2+4c2h8c3)(h32c1h2+(c12+c2)h+c3c1c2))\displaystyle\simeq\mathbb{Z}[\tau_{1},h,c_{1},c_{2},c_{3}]/((h^{3}-2c_{1}h^{2}+4c_{2}h-8c_{3})(h^{3}-2c_{1}h^{2}+(c_{1}^{2}+c_{2})h+c_{3}-c_{1}c_{2}))

where h=c1GL3×𝔾m(𝒪(1))h=c_{1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\mathcal{O}(1)). Observe in particular that this Chow ring is free as CHGL3×𝔾m(Spec(k))\operatorname{CH}_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}^{*}(\operatorname{Spec}(k))-module.

Now we explain how to compute the Chern classes of W¯2dmm\overline{W}^{m}_{2dm}. For this, the basic ingredient is the short exact sequence

0𝒪5(1)Symm2EL(m)SymmEL(m)𝒪5W¯2mm00\to\mathcal{O}_{\mathbb{P}^{5}}(-1)\otimes\operatorname{Sym}^{m-2}E^{\vee}\otimes L^{\otimes(-m)}\to\operatorname{Sym}^{m}E^{\vee}\otimes L^{\otimes(-m)}\otimes\mathcal{O}_{\mathbb{P}^{5}}\to\overline{W}^{m}_{2m}\to 0

of locally free sheaves on 5\mathbb{P}^{5} (see [DL]*2.3), where EE is the standard GL3\operatorname{GL}_{3}-representation and LL is the standard 𝔾m\mathbb{G}_{m}-representation of weight one. This implies

(6) c2m+1GL3×𝔾m(W¯2mm)=\displaystyle c_{2m+1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{m}_{2m})= {cGL3×𝔾m(SymmEL(m))cGL3×𝔾m(Symm2EL(m)𝒪(1))}2m+1\displaystyle\left\{\frac{c^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\operatorname{Sym}^{m}E^{\vee}\otimes L^{\otimes(-m)})}{c^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\operatorname{Sym}^{m-2}E^{\vee}\otimes L^{\otimes(-m)}\otimes\mathcal{O}(-1))}\right\}_{2m+1}
={i+jm(1+x(i1+j2+(mij)3mτ1))i+jm2(1+x(i1+j2+(m2ij)3mτ1h))}2m+1\displaystyle=\left\{\frac{\prod_{i+j\leq m}(1+x(i\ell_{1}+j\ell_{2}+(m-i-j)\ell_{3}-m\tau_{1}))}{\prod_{i^{\prime}+j^{\prime}\leq m-2}(1+x(i^{\prime}\ell_{1}+j^{\prime}\ell_{2}+(m-2-i^{\prime}-j^{\prime})\ell_{3}-m\tau_{1}-h))}\right\}_{2m+1}

This expression in brackets should be interpreted as a formal series in xx, from which we are extracting the coefficient in front of x2m+1x^{2m+1}. Moreover, the symbols 1\ell_{1}, 2\ell_{2} and 3\ell_{3} stands for the Chern roots of EE^{\vee}, so that the elementary symmetric polynomial in 1\ell_{1}, 2\ell_{2} and 3\ell_{3} of degree dd is equal to (1)dcd(-1)^{d}c_{d}.

Remark 4.3.

Observe that c2m+1GL3×𝔾m(W¯2mm)c_{2m+1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{m}_{2m}) is not a zero divisor. Indeed, if it was a zero divisor, this would imply that there exists a non zero element ξ\xi in the equivariant Chow ring of 5\mathbb{P}^{5} such that

ξc2m+1GL3×𝔾m(W¯2mm)cm(m1)2GL3×𝔾m(𝒪5(1)Symm2EL(m))=ξc(m+1)(m+2)2GL3×𝔾m(SymmEL(m))=0,\xi\cdot c_{2m+1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{m}_{2m})\cdot c_{\frac{m(m-1)}{2}}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\mathcal{O}_{\mathbb{P}^{5}}(-1)\otimes\operatorname{Sym}^{m-2}E^{\vee}\otimes L^{\otimes(-m)})=\xi\cdot c_{\frac{(m+1)(m+2)}{2}}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\operatorname{Sym}^{m}E^{\vee}\otimes L^{\otimes(-m)})=0,

which would contradict the fact that CHGL3×𝔾m(5)\operatorname{CH}_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}^{*}(\mathbb{P}^{5}) is a free CHGL3×𝔾m(Spec(k))\operatorname{CH}_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}^{*}(\operatorname{Spec}(k))-module.

Proposition 4.4.

For NN even, the image of CHGN(ΔN1)CHGN(V4N,6NN)\operatorname{CH}_{*}^{G_{N}}(\Delta_{N}^{1})\to\operatorname{CH}_{*}^{G_{N}}(V^{N}_{4N,6N}) is generated as an ideal by

c10N+2GL3×𝔾m(W¯4N,6NN)c2N+1GL3×𝔾m(W¯2NN)|h=c1=0.\left.\frac{c_{10N+2}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{N}_{4N,6N})}{c_{2N+1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{N}_{2N})}\right|_{h=c_{1}=0}.

The expression above is a polynomial and after evaluation at h=c1=0h=c_{1}=0, it should be viewed as an element in [τ1,c2,c3]/(2c3)\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3}), the GN{G_{N}}-equivariant Chow ring of V4N,6NNV^{N}_{4N,6N}.

Proof.

The fact that [ΔN1]GN[\Delta_{N}^{1}]_{G_{N}} generates as an ideal the image of CHGN(ΔN1)CHGN(V4N,6NN)\operatorname{CH}_{*}^{G_{N}}(\Delta_{N}^{1})\to\operatorname{CH}_{*}^{G_{N}}(V^{N}_{4N,6N}) has already been proved in 4.1. Moreover, the previous discussion shows that [ΔN1]GN=[ψ(W2NN)]GL3×𝔾m[\Delta_{N}^{1}]_{G_{N}}=[\psi(W^{N}_{2N})]_{\operatorname{GL}_{3}\times\mathbb{G}_{m}}.

Let TGL3×𝔾mT\subset\operatorname{GL}_{3}\times\mathbb{G}_{m} be the maximal subtorus of pairs formed by diagonal matrices and an invertible scalar. The fixed points for the action of TT on W¯2dmm\overline{W}^{m}_{2dm} are of the form ([q],[0])([q],[0]) where qq is a monomial. Observe that the tangent space of W¯2dmm\overline{W}^{m}_{2dm} at pp is isomorphic to the direct sum T[q]5W¯2dm,[q]mT\mathbb{P}^{5}_{[q]}\oplus\overline{W}^{m}_{2dm,[q]}. Moreover, the fundamental class of ([q],[0])([q],[0]) in the equivariant Chow ring of W¯2dmm\overline{W}^{m}_{2dm} is equal to the product [[q]]Tc2dm+1T(W¯2dm,[q]m)[[q]]_{T}\cdot c_{2dm+1}^{T}(\overline{W}^{m}_{2dm,[q]}). The localization formula ([EGloc]*Theorem 2) then gives us the equality

ψ¯(1)\displaystyle\overline{\psi}_{*}(1) =ψ¯(q=xixj,ij[([q],[0])]Tc2N+6T(TW¯2N+1,[q]N))\displaystyle=\overline{\psi}_{*}\left(\sum_{q=x_{i}x_{j},i\leq j}\frac{[([q],[0])]_{T}}{c_{2N+6}^{T}(T\overline{W}^{N}_{2N+1,[q]})}\right)
=q=xixj,ijψ¯([([q],[0])]T)c5T(T[q]5)c2N+1(W¯2N,[q]N)\displaystyle=\sum_{q=x_{i}x_{j},i\leq j}\frac{\overline{\psi}_{*}([([q],[0])]_{T})}{c_{5}^{T}(T\mathbb{P}^{5}_{[q]})c_{2N+1}(\overline{W}^{N}_{2N,[q]})}
(7) =q=xixj,ij[[q]]Tc10N+2T(W¯4N,6N,[q]N)c5T(T[q]5)c2N+1(W¯2N,[q]N)=c10N+2T(W¯4N,6NN)c2N+1T(W¯2NN),\displaystyle=\sum_{q=x_{i}x_{j},i\leq j}\frac{[[q]]_{T}\cdot c_{10N+2}^{T}(\overline{W}^{N}_{4N,6N,[q]})}{c_{5}^{T}(T\mathbb{P}^{5}_{[q]})c_{2N+1}(\overline{W}^{N}_{2N,[q]})}=\frac{c_{10N+2}^{T}(\overline{W}^{N}_{4N,6N})}{c_{2N+1}^{T}(\overline{W}^{N}_{2N})},

where in the last equality we applied again the localization formula to obtain an expression in the equivariant Chow ring of W¯4N,6NN\overline{W}^{N}_{4N,6N}. Observe that a priori the localization formulas would only give an equality in the ring CHT(5)(CHT(Spec(k))+)1\operatorname{CH}_{T}^{*}(\mathbb{P}^{5})\otimes(\operatorname{CH}_{T}^{*}(\operatorname{Spec}(k))^{+})^{-1} obtained by inverting the positive degree elements in CHT(Spec(k))\operatorname{CH}_{T}^{*}(\operatorname{Spec}(k)); nevertheless, as CHT(5)\operatorname{CH}_{T}^{*}(\mathbb{P}^{5}) is a free CHT(Spec(k))\operatorname{CH}^{*}_{T}(\operatorname{Spec}(k))-module, the natural homomorphism CHT(5)CHT(5)(CHT(Spec(k))+)1\operatorname{CH}_{T}^{*}(\mathbb{P}^{5})\to\operatorname{CH}_{T}^{*}(\mathbb{P}^{5})\otimes(\operatorname{CH}_{T}^{*}(\operatorname{Spec}(k))^{+})^{-1} is injective: this proves that (1) the last term is not just a rational function but a polynomial, and that (2) it coincides with ψ¯(1)\overline{\psi}_{*}(1). Observe moreover that as c2N+1T(W¯2NN)c_{2N+1}^{T}(\overline{W}^{N}_{2N}) is not a zero divisor (4.3), the expression

c10N+2T(W¯4N,6NN)c2N+1T(W¯2NN)\frac{c_{10N+2}^{T}(\overline{W}^{N}_{4N,6N})}{c_{2N+1}^{T}(\overline{W}^{N}_{2N})}

is well defined, in the sense that it coincides with the unique element ξ\xi such that ξc2N+1T(W¯2NN)=c10N+2T(W¯4N,6NN)\xi\cdot c_{2N+1}^{T}(\overline{W}^{N}_{2N})=c_{10N+2}^{T}(\overline{W}^{N}_{4N,6N}).

The TT-equivariant top Chern classes of W¯2dmm\overline{W}^{m}_{2dm} are equal to the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-ones. Observe also that the last term in (4.3) can be regarded as a polynomial in hh, the hyperplane class of 5\mathbb{P}^{5}, so that the element

(8) c10N+2GL3×𝔾m(W¯4N,6NN)c2N+1GL3×𝔾m(W¯2NN)|h=c1\left.\frac{c_{10N+2}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{N}_{4N,6N})}{c_{2N+1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{N}_{2N})}\right|_{h=c_{1}}

is well defined, and it coincides with the pullback of ψ¯(1)\overline{\psi}_{*}(1) along the 𝔾m\mathbb{G}_{m}-torsor 𝔸6{0}5\mathbb{A}^{6}\smallsetminus\{0\}\to\mathbb{P}^{5}, which in turn is equal to ψ(1)\psi_{*}(1). If we further restrict this cycle to 𝔸6D\mathbb{A}^{6}\smallsetminus D (observe that this operation sends c1c_{1} to zero), we get an explicit expression for the GL3×𝔾m\operatorname{GL}_{3}\times\mathbb{G}_{m}-fundamental class of ψ(W2NN)\psi(W^{N}_{2N}), which we already observed to be equal to the PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-equivariant fundamental class of ΔN1\Delta^{1}_{N}. ∎

5. Relations coming from [ΔN2/GN][\Delta^{2}_{N}/G_{N}]

In this Section we compute the relations in the Chow ring of 𝒲Nmin\mathcal{W}^{\min}_{N} coming from the excision of [ΔN2/GN][\Delta_{N}^{2}/G_{N}]. We first define an equivariant stratification for ΔN2\Delta_{N}^{2}, which we leverage to compute the generators of the ideal of the relations. The final result is summarized in 5.4.

In the last part of the Section, we prove the first main result of the paper (Theorem 5.5). In this section we work over a ground field of any characteristic, with the only exception of Theorem 5.5.

5.1. An equivariant stratification of ΔN2\Delta^{2}_{N}

First, we recall the definition of equivariant stratification in general.

Definition 5.1.

Let XX be a GG-scheme. An equivariant stratification of XX is a finite family {Zτ}τJ\{Z_{\tau}\}_{\tau\in J} of locally closed, pairwise disjoint, and equivariant subschemes of XX such that τJZτ=X\bigcup_{\tau\in J}Z_{\tau}=X and

Zτ¯Zτ=Zτ.\overline{Z_{\tau}}\smallsetminus Z_{\tau}=\bigcup Z_{\tau^{\prime}}.

We can endow Vk\mathbb{P}V_{k} with a GNG_{N} action as follows:

  • for NN odd, we can regard VkV_{k} as a GL2\operatorname{GL}_{2}-representation with the action defined at the beginning of Section 3; we can then use the isomorphism GNGL2G_{N}\to\operatorname{GL}_{2} in order to give to VkV_{k} the structure of a GNG_{N}-representation. This of course induces an action of GNG_{N} on Vk\mathbb{P}V_{k}. Observe that for k=rNk=rN, the two GNG_{N}-representations VkV_{k} and VkNV^{N}_{k} are not the same (which also motivates the difference in the notation).

  • For NN even, we can regard Vk\mathbb{P}V_{k} as a PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-scheme using the PGL2\operatorname{PGL}_{2}-action defined at the beginning of Section 3, and letting 𝔾m\mathbb{G}_{m} act trivially. Therefore, we can endow Vk\mathbb{P}V_{k} with the structure of a GNG_{N}-scheme via the isomorphism GNPGL2×𝔾mG_{N}\to\operatorname{PGL}_{2}\times\mathbb{G}_{m}. If kk is even, we can also endow VkV_{k} with a GNG_{N}-action, exactly in the same way.

Let Σk(m+1)\Sigma_{k}^{(m+1)} denote the (m+1)(m+1)-thickening of the subscheme ΣkVk×1\Sigma_{k}\subset\mathbb{P}V_{k}\times\mathbb{P}^{1} defined in Section 3.2, i.e. the subscheme defined by the ideal sheaf Σkm+1𝒪Vk(m1)𝒪1((m+1)k)\mathcal{I}_{\Sigma_{k}}^{m+1}\simeq\mathcal{O}_{\mathbb{P}V_{k}}(-m-1)\boxtimes\mathcal{O}_{\mathbb{P}^{1}}(-(m+1)k). We then have a short exact sequence of GNG_{N}-equivariant sheaves

0𝒪Vk(m1)𝒪1((m+1)k)𝒪Vk×1i𝒪Σk(m+1)0.0\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-m-1)\boxtimes\mathcal{O}_{\mathbb{P}^{1}}(-(m+1)k)\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}\times\mathbb{P}^{1}}\longrightarrow i_{*}\mathcal{O}_{\Sigma_{k}^{(m+1)}}\longrightarrow 0.

We can twist the sequence above by pr2𝒪1(2d){\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}^{1}}(2d) and push everything down on Vk\mathbb{P}V_{k}; if we further assume that H1(1,𝒪1(2d(m+1)k)=0\operatorname{H}^{1}(\mathbb{P}^{1},\mathcal{O}_{\mathbb{P}^{1}}(2d-(m+1)k)=0, by cohomology and base chage we obtain the following short exact sequence of GNG_{N}-equivariant locally free sheaves on Vk\mathbb{P}V_{k}:

(9) 0𝒪Vk(m1)V2d(m+1)kV2d𝒪Vk𝒫km(𝒪1(2d))00\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-m-1)\otimes V_{2d-(m+1)k}\longrightarrow V_{2d}\otimes\mathcal{O}_{\mathbb{P}V_{k}}\longrightarrow\mathcal{P}^{m}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2d))\longrightarrow 0

where we define 𝒫km(𝒪1(2d))\mathcal{P}^{m}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2d)) as the locally free sheaf pr1(pr2𝒪1(2d)|Σk(m+1)){\rm pr}_{1*}({\rm pr}_{2}^{*}\mathcal{O}_{\mathbb{P}^{1}}(2d)|_{\Sigma_{k}^{(m+1)}}). This bundle coincides with the bundle of principal parts considered in [CK].

In particular, if we specialize this short exact sequence to the cases (d,m)=(2N,3)(d,m)=(2N,3), (3N,5)(3N,5), we get short exact sequences

0𝒪Vk(4)V4(Nk)V4N𝒪Vk𝒫k3(𝒪1(4N))0\displaystyle 0\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-4)\otimes V_{4(N-k)}\longrightarrow V_{4N}\otimes\mathcal{O}_{\mathbb{P}V_{k}}\longrightarrow\mathcal{P}^{3}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(4N))\longrightarrow 0
0𝒪Vk(6)V6(Nk)V6N𝒪Vk𝒫k5(𝒪1(6N))0\displaystyle 0\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-6)\otimes V_{6(N-k)}\longrightarrow V_{6N}\otimes\mathcal{O}_{\mathbb{P}V_{k}}\longrightarrow\mathcal{P}^{5}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(6N))\longrightarrow 0

Define 𝕃\mathbb{L} as follows:

  • for NN odd, it is defined as det(E)N12\det(E)^{\otimes\frac{N-1}{2}}, where EE is the standard representation of GL2\operatorname{GL}_{2};

  • for NN even, it is defined as L(1)L^{\otimes(-1)}, the rank one representation of 𝔾m\mathbb{G}_{m} of weight 1-1.

There is an action of GL2/𝝁N\operatorname{GL}_{2}/\bm{\mu}_{N} on Vk\mathbb{P}V_{k}: for NN odd, we have GL2/𝝁NGL2\operatorname{GL}_{2}/\bm{\mu}_{N}\simeq\operatorname{GL}_{2}, and for NN even we have GL2/𝝁NPGL2×𝔾m\operatorname{GL}_{2}/\bm{\mu}_{N}\simeq\operatorname{PGL}_{2}\times\mathbb{G}_{m}; the action of these two groups on Vk\mathbb{P}V_{k} coincide with the ones mentioned at the beginning of Section 3.

We have then short exact sequences of GL2/𝝁N\operatorname{GL}_{2}/\bm{\mu}_{N}-equivariant locally free sheaves

0𝒪Vk(4)V4(Nk)𝕃4V4N𝕃4𝒪Vk𝒫k3(𝒪1(4N))𝕃40\displaystyle 0\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-4)\otimes V_{4(N-k)}\otimes\mathbb{L}^{\otimes 4}\longrightarrow V_{4N}\otimes\mathbb{L}^{\otimes 4}\otimes\mathcal{O}_{\mathbb{P}V_{k}}\longrightarrow\mathcal{P}^{3}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(4N))\otimes\mathbb{L}^{\otimes 4}\longrightarrow 0
0𝒪Vk(6)V6(Nk)𝕃6V6N𝕃6𝒪Vk𝒫k5(𝒪1(6N))𝕃60\displaystyle 0\longrightarrow\mathcal{O}_{\mathbb{P}V_{k}}(-6)\otimes V_{6(N-k)}\otimes\mathbb{L}^{\otimes 6}\longrightarrow V_{6N}\otimes\mathbb{L}^{\otimes 6}\otimes\mathcal{O}_{\mathbb{P}V_{k}}\longrightarrow\mathcal{P}^{5}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(6N))\otimes\mathbb{L}^{\otimes 6}\longrightarrow 0

Let ZkZ_{k} denote the total space of the locally free sheaf

(𝒪Vk(4)V4(Nk)𝕃4)(𝒪Vk(6)V6(Nk)𝕃6).\left(\mathcal{O}_{\mathbb{P}V_{k}}(-4)\otimes V_{4(N-k)}\otimes\mathbb{L}^{\otimes 4}\right)\oplus\left(\mathcal{O}_{\mathbb{P}V_{k}}(-6)\otimes V_{6(N-k)}\otimes\mathbb{L}^{\otimes 6}\right).

Then ZkZ_{k} is a GNG_{N}-equivariant vector subbundle of V4N,6NN×VkV^{N}_{4N,6N}\times\mathbb{P}V_{k} and we have an equivariant morphism

pk:ZkV4N,6NNp_{k}:Z_{k}\longrightarrow V^{N}_{4N,6N}

whose image corresponds to the invariant subscheme of pair of forms (A,B)(A,B) such that there exists a form HH of degree kk with AA vanishing with order 4\geq 4 along H=0{H=0} and BB vanishing with order 6\geq 6 along H=0{H=0}.

Moreover, this morphism is one-to-one on the locally closed subscheme of pairs (A,B)(A,B) which satisfy the previous condition together with the further restraint that there exists no form HH^{\prime} of degree k+1k+1 such that AA (resp. BB) vanish with order 44 (resp. 66) along H=0{H^{\prime}=0}.

Lemma 5.2.

The image of the pushforward CH9([ΔN2/GN])CH([V4N,6NN/GN])\operatorname{CH}^{*-9}([\Delta^{2}_{N}/G_{N}])\longrightarrow\operatorname{CH}^{*}([V_{4N,6N}^{N}/G_{N}]) is equal to the sum of the images of the equivariant pushforwards pkp_{k*}, for k=1,,Nk=1,\ldots,N.

Proof.

Set ΔN,k2:=im(pk)\Delta^{2}_{N,k}:=\operatorname{im}(p_{k}), so that we have an equivariant stratification of ΔN2\Delta^{2}_{N} given by

ΔN2=ΔN,12ΔN,22ΔN,N12ΔN,N2.\Delta_{N}^{2}=\Delta_{N,1}^{2}\supset\Delta_{N,2}^{2}\supset\dots\supset\Delta^{2}_{N,N-1}\supset\Delta^{2}_{N,N}.

Observe that the induced maps Zkpk1(ΔN,k+12)(ΔN,k2ΔN,k+12)Z_{k}\smallsetminus p_{k}^{-1}(\Delta^{2}_{N,{k+1}})\longrightarrow(\Delta^{2}_{N,k}\smallsetminus\Delta^{2}_{N,k+1}) are equivariant Chow envelopes of the strata. We can then apply [DLFV]*Lemma 3.3 and conclude the proof. ∎

We have reduced the problem of computing the relations coming from ΔN2\Delta^{2}_{N} to determining the images of several pushforwards. The generators of the Chow groups of [Zk/GN][Z_{k}/G_{N}] are easier to compute, and so are their pushforwards. Indeed, consider the diagram

[V4N,6NN×Vk/GN]{\left[V^{N}_{4N,6N}\times\mathbb{P}V_{k}/G_{N}\right]}[V4N,6NN/GN]{\left[V^{N}_{4N,6N}/G_{N}\right]}[Vk/GN].{\left[\mathbb{P}V_{k}/G_{N}\right].}pr1\scriptstyle{{\rm pr}_{1}}pr2\scriptstyle{{\rm pr}_{2}}

Then we have the following.

Lemma 5.3.

The image of pkp_{k*} is generated as an ideal by all the cycles of the form pr1([Zk]GNpr2η){\rm pr}_{1*}([Z_{k}]_{G_{N}}\cdot{\rm pr}_{2}^{*}\eta), where η\eta ranges among all the generator of CH([Vk/GN])\operatorname{CH}^{*}([\mathbb{P}V_{k}/G_{N}]) as CH(GN)\operatorname{CH}^{*}(\mathcal{B}G_{N})-module.

Proof.

Write pkp_{k} as the composition of the closed embedding i:ZkV4N,6NN×Vki:Z_{k}\hookrightarrow V^{N}_{4N,6N}\times\mathbb{P}V_{k} followed by the projection pr1:V4N,6NN×VkV4N,6NN{\rm pr}_{1}:V^{N}_{4N,6N}\times\mathbb{P}V_{k}\to V^{N}_{4N,6N}. Observe that the Chow ring of [Zk/G][Z_{k}/G] is generated as a module over CH(G)\operatorname{CH}^{*}(\mathcal{B}G) by the pullback of generators of CH(Vk)\operatorname{CH}^{*}(\mathbb{P}V_{k}), i.e. by elements of the form ipr2ηi^{*}{\rm pr}_{2}^{*}\eta. We deduce that the image of pkp_{k*} is generated as an ideal by

pk(ipr2η)=pr1i(ipr2η)=pr1([Zk]Gpr2η),\displaystyle p_{k*}(i^{*}{\rm pr}_{2}^{*}\eta)={\rm pr}_{1*}i_{*}(i^{*}{\rm pr}_{2}^{*}\eta)={\rm pr}_{1*}([Z_{k}]_{G}\cdot{\rm pr}_{2}^{*}\eta),

as claimed. ∎

5.2. Computation of the fundamental class of ZkZ_{k}

.

The subvariety ZkV4N,6NN×VkZ_{k}\subset V_{4N,6N}^{N}\times\mathbb{P}V_{k} has codimension 10k10k and its equivariant fundamental class is equal to the equivariant top Chern class of the vector bundle

(𝒫k3(𝒪1(4N))𝕃4)(𝒫k5(𝒪1(6N))𝕃6),\left(\mathcal{P}^{3}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(4N))\otimes\mathbb{L}^{\otimes 4}\right)\oplus\left(\mathcal{P}^{5}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(6N))\otimes\mathbb{L}^{\otimes 6}\right),

which is equal to the product of the top Chern classes of the two factors. We write

c2dkGN(𝒫k2d1(𝒪1(2dN))𝕃2d)=i=02dkciGN(𝒫k2d1(𝒪1(2dN)))(2dζ1)2dki,c_{2dk}^{G_{N}}(\mathcal{P}^{2d-1}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2dN))\otimes\mathbb{L}^{\otimes 2d})=\sum_{i=0}^{2dk}c_{i}^{G_{N}}(\mathcal{P}^{2d-1}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2dN)))(2d\zeta_{1})^{2dk-i},

where we set ζ1=τ1\zeta_{1}=-\tau_{1} when NN is even and ζ1=(N1)c1/2\zeta_{1}=(N-1)c_{1}/2 when NN is odd. In this way, we have reduced our computation of the fundamental class of ZkZ_{k} to determining the GNG_{N}-equivariant Chern classes of 𝒫k2d1(𝒪1(2dN))\mathcal{P}^{2d-1}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2dN)). For this we use (9), which tells us that

ciGN(𝒫k2d1(𝒪1(2dN)))=j=0icjGN(V2dN)sijGN(V2d(Nk)𝒪Vk(2d)).c_{i}^{G_{N}}(\mathcal{P}^{2d-1}_{k}(\mathcal{O}_{\mathbb{P}^{1}}(2dN)))=\sum_{j=0}^{i}c_{j}^{G_{N}}(V_{2dN})s_{i-j}^{G_{N}}(V_{2d(N-k)}\otimes\mathcal{O}_{\mathbb{P}V_{k}}(-2d)).

Define ξ1\xi_{1} as c1GN(𝒪Vk(1))c_{1}^{G_{N}}(\mathcal{O}_{\mathbb{P}V_{k}}(1)) for NN odd or NN even and kk even, and as 12c1GN(𝒪Vk(2))γ1/2\frac{1}{2}c_{1}^{G_{N}}(\mathcal{O}_{\mathbb{P}V_{k}}(2))\gamma_{1}/2 for NN even and kk odd. Observe that 𝒪Vk(2)\mathcal{O}_{\mathbb{P}V_{k}}(2) is indeed an equivariant GNPGL2×𝔾mG_{N}\simeq\operatorname{PGL}_{2}\times\mathbb{G}_{m}-line bundle: this follows from the fact that the square map VkV2k\mathbb{P}V_{k}\hookrightarrow\mathbb{P}V_{2k} is PGL2\operatorname{PGL}_{2}-equivariant, and the restriction of the PGL2\operatorname{PGL}_{2}-equivariant line bundle 𝒪V2k(1)\mathcal{O}_{\mathbb{P}V_{2k}}(1) (which is equivariant because V2k\mathbb{P}V_{2k} is the projectivization of the PGL2\operatorname{PGL}_{2}-representation V2kV_{2k}) along this map coincides with 𝒪Vk(2)\mathcal{O}_{\mathbb{P}V_{k}}(2).

Applying the formula for the Segre classes of tensor products, we obtain

sijGN(V2d(Nk)𝒪Vk(2d))\displaystyle s_{i-j}^{{G_{N}}}(V_{2d(N-k)}\otimes\mathcal{O}_{\mathbb{P}V_{k}}(-2d)) ==0ij(1)ijl(2d(Nk)+ij2d(Nk)+)sGN(V2d(Nk))(2dξ1)ij\displaystyle=\sum_{\ell=0}^{i-j}(-1)^{i-j-l}\binom{2d(N-k)+i-j}{2d(N-k)+\ell}s_{\ell}^{{G_{N}}}(V_{2d(N-k)})(-2d\xi_{1})^{i-j-\ell}
==0ij(2d(Nk)+ij2d(Nk)+)sGN(V2d(Nk))(2dξ1)ij\displaystyle=\sum_{\ell=0}^{i-j}\binom{2d(N-k)+i-j}{2d(N-k)+\ell}s_{\ell}^{{G_{N}}}(V_{2d(N-k)})(2d\xi_{1})^{i-j-\ell}

Putting everything together, we get the following expression for the GN{G_{N}}-equivariant fundamental class of ZkZ_{k}:

(10) d=23(2d(Nk)+idjd2d(Nk)+d)(2d)2dkjddcjGN(V2dN)sdGN(V2d(Nk))ξ1idjddζ12dkid\displaystyle\prod_{d=2}^{3}\sum\binom{2d(N-k)+i_{d}-j_{d}}{2d(N-k)+\ell_{d}}(2d)^{2dk-j_{d}-\ell_{d}}c_{j}^{{G_{N}}}(V_{2dN})s_{\ell_{d}}^{G_{N}}(V_{2d(N-k)})\xi_{1}^{i_{d}-j_{d}-\ell_{d}}\zeta_{1}^{2dk-i_{d}}

where the sum index runs over all the triples (id,jd,d)(i_{d},j_{d},\ell_{d}) such that jd+did2dkj_{d}+\ell_{d}\leq i_{d}\leq 2dk, for d=2,3d=2,3.

5.3. Relations from ΔN2\Delta^{2}_{N}

We are going to compute generators as an ideal for the image of

(11) CH9([ΔN2/GN])CH([V4N,6NN/GN]).\operatorname{CH}^{*-9}([\Delta^{2}_{N}/G_{N}])\longrightarrow\operatorname{CH}^{*}([V^{N}_{4N,6N}/{G_{N}}]).

Consider again the diagram

(12) [V4N,6NN×Vk/GN]{\left[V^{N}_{4N,6N}\times\mathbb{P}V_{k}/{G_{N}}\right]}[V4N,6NN/GN]{\left[V^{N}_{4N,6N}/{G_{N}}\right]}[Vk/GN]{\left[\mathbb{P}V_{k}/{G_{N}}\right]}GN.{\mathcal{B}{G_{N}}.}pr1\scriptstyle{{\rm pr}_{1}}pr2\scriptstyle{{\rm pr}_{2}}π\scriptstyle{\pi}

From 5.3 we know that the image of (11) is generated by the cycles pr1([Zk]GNpr2η){\rm pr}_{1*}([Z_{k}]_{G_{N}}\cdot{\rm pr}_{2}^{*}\eta), where η\eta ranges among all the generators of CH([Vk/GN])\operatorname{CH}^{*}(\left[\mathbb{P}V_{k}/{G_{N}}\right]) as CH(GN)\operatorname{CH}^{*}(\mathcal{B}{G_{N}})-module.

Let us rewrite the formula for [Zk]GN[Z_{k}]_{G_{N}} contained in (10) as

Ck(i,j,)ξ1ij\sum C_{k}(i,j,\ell)\xi_{1}^{i-j-\ell}

where j+i10kj+\ell\leq i\leq 10k, and the coefficients are

Ck(i,j,)=ζ110ki(d=23(2d(Nk)+idjd2d(Nk)+d)(2d)2dkjddcjdGN(V2dN)sdGN(V2d(Nk))).\displaystyle C_{k}(i,j,\ell)=\zeta_{1}^{10k-i}\cdot\left(\sum\prod_{d=2}^{3}\binom{2d(N-k)+i_{d}-j_{d}}{2d(N-k)+\ell_{d}}(2d)^{2dk-j_{d}-\ell_{d}}c_{j_{d}}^{{G_{N}}}(V_{2dN})s_{\ell_{d}}^{{G_{N}}}(V_{2d(N-k)})\right).

The sum above is taken over all the triples (id,jd,d)(i_{d},j_{d},\ell_{d}), d=2,3d=2,3, such that

jd+did2dk,d=23(id,jd,d)=(i,j,).j_{d}+\ell_{d}\leq i_{d}\leq 2dk,\quad\sum_{d=2}^{3}(i_{d},j_{d},\ell_{d})=(i,j,\ell).

Pullbacks along the vertical arrows of the diagram (12) induce isomorphism of Chow rings. Thus, after identifying the Chow rings on the top of the diagram with the respective ones on the bottom, we have

(13) pr1([Zk]GNpr2η)=Ck(i,j,)π(ξ1ijη){\rm pr}_{1*}([Z_{k}]_{G_{N}}\cdot{\rm pr}_{2}^{*}\eta)=\sum C_{k}(i,j,\ell)\pi_{*}(\xi_{1}^{i-j-\ell}\cdot\eta)

Note that, in the equality above, we are allowed to apply the projection formula because the coefficients Ck(i,j,)C_{k}(i,j,\ell) are cycles pulled back from GN\mathcal{B}{G_{N}}.

For GNGL2{G_{N}}\simeq\operatorname{GL}_{2} we know from 3.1 that the Chow ring of [Vk/GL2][\mathbb{P}V_{k}/\operatorname{GL}_{2}] is generated by powers of the hyperplane class hh and we have ζ1=(N1)c1/2\zeta_{1}=(N-1)c_{1}/2 and ξ1=h\xi_{1}=h. Therefore, applying 3.1 we get the following explicit expression for (13) when η=hm\eta=h^{m}:

fk,m:=\displaystyle f_{k,m}:= ((N1)c1/2)10kisij(km)GL2(Vk)\displaystyle\sum\left((N-1)c_{1}/2\right)^{10k-i}s^{\operatorname{GL}_{2}}_{i-j-\ell-(k-m)}(V_{k})
(14) (d=23(2d(Nk)+idjd2d(Nk)+d)(2d)2dkjddcjdGL2(V2dN)sdGL2(V2d(Nk))),\displaystyle\cdot\left(\sum\prod_{d=2}^{3}\binom{2d(N-k)+i_{d}-j_{d}}{2d(N-k)+\ell_{d}}(2d)^{2dk-j_{d}-\ell_{d}}c_{j_{d}}^{\operatorname{GL}_{2}}(V_{2dN})s_{\ell_{d}}^{\operatorname{GL}_{2}}(V_{2d(N-k)})\right),

where (i,j,):=(i2,j2,2)+(i3,j3,3)(i,j,\ell):=(i_{2},j_{2},\ell_{2})+(i_{3},j_{3},\ell_{3}) and the sum is taken over all the pairs of triples of positive numbers {(id,jd,d)}d=2,3\{(i_{d},j_{d},\ell_{d})\}_{d=2,3} such that jd+did2dkj_{d}+\ell_{d}\leq i_{d}\leq 2dk.

For GNPGL2×𝔾m{G_{N}}\simeq\operatorname{PGL}_{2}\times\mathbb{G}_{m} and kk even, we have a similar picture: the only difference is that ζ1=τ1\zeta_{1}=-\tau_{1}, hence an explicit expression for (13) when η=hm\eta=h^{m^{\prime}} is given by

gk,m:=\displaystyle g_{k,m^{\prime}}:= (τ1)10kisij(km)PGL2(Vk)\displaystyle\sum(-\tau_{1})^{10k-i}s^{\operatorname{PGL}_{2}}_{i-j-\ell-(k-m^{\prime})}(V_{k})
(15) (d=23(2d(Nk)+idjd2d(Nk)+d)(2d)2dkjddcjdPGL2(V2dN)sdPGL2(V2d(Nk))).\displaystyle\cdot\left(\sum\prod_{d=2}^{3}\binom{2d(N-k)+i_{d}-j_{d}}{2d(N-k)+\ell_{d}}(2d)^{2dk-j_{d}-\ell_{d}}c_{j_{d}}^{\operatorname{PGL}_{2}}(V_{2dN})s_{\ell_{d}}^{\operatorname{PGL}_{2}}(V_{2d(N-k)})\right).

where again (i,j,):=(i2,j2,2)+(i3,j3,3)(i,j,\ell):=(i_{2},j_{2},\ell_{2})+(i_{3},j_{3},\ell_{3}) and the sum is taken over all the pairs of triples of positive numbers {(id,jd,d)}d=2,3\{(i_{d},j_{d},\ell_{d})\}_{d=2,3} such that jd+did2dkj_{d}+\ell_{d}\leq i_{d}\leq 2dk.

Finally, for GNPGL2×𝔾mG_{N}\simeq\operatorname{PGL}_{2}\times\mathbb{G}_{m} and kk odd, we know from 3.2 that the Chow ring of the stack [Vk/PGL2×𝔾m][\mathbb{P}V_{k}/\operatorname{PGL}_{2}\times\mathbb{G}_{m}] is generated as a module over CH((PGL2×𝔾m))\operatorname{CH}^{*}(\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m})) by monomials of the form γ1mγ2n\gamma_{1}^{m}\gamma_{2}^{n}, where m{0,1}m\in\{0,1\} and nk12n\leq\frac{k-1}{2}. Moreover, for kk odd we have ξ1=γ12\xi_{1}=\frac{\gamma_{1}}{2}, hence

pr1([Zk]GNγ1mγ2n)=2(ij)Ck(i,j,)π(γ1m+ijγ2n){\rm pr}_{1*}([Z_{k}]_{G_{N}}\cdot\gamma_{1}^{m}\gamma_{2}^{n})=\sum 2^{-(i-j-\ell)}C_{k}(i,j,\ell)\pi_{*}(\gamma_{1}^{m+i-j-\ell}\gamma_{2}^{n})

Write m=2n+mm^{\prime}=2n+m, where mm is either 0 or 11. Applying 3.4, we get the following explicit expression for the pushforwards:

(16) gk,m:=\displaystyle g_{k,m^{\prime}}:= k12(ij)(τ110ki)\displaystyle\sum k^{-1}2^{-(i-j-\ell)}(-\tau_{1}^{10k-i})
(d=23(2d(Nk)+idjd2d(Nk)+d)(2d)2dkjddcjdPGL2(V2dN)sdPGL2(V2d(Nk)))\displaystyle\cdot\left(\sum\prod_{d=2}^{3}\binom{2d(N-k)+i_{d}-j_{d}}{2d(N-k)+\ell_{d}}(2d)^{2dk-j_{d}-\ell_{d}}c_{j_{d}}^{\operatorname{PGL}_{2}}(V_{2dN})s_{\ell_{d}}^{\operatorname{PGL}_{2}}(V_{2d(N-k)})\right)
(qn+m+ijk2En,m+ij(q)s2(nq)+m+ijkPGL2(Vk1)2c2q)\displaystyle\cdot\left(\sum_{q\leq n+\frac{m+i-j-\ell-k}{2}}E_{n,m+i-j-\ell}(q)\cdot s^{\operatorname{PGL}_{2}}_{2(n-q)+m+i-j-\ell-k}(V_{k-1})2c_{2}^{q}\right)

where, as before, we set (i,j,):=(i2,j2,2)+(i3,j3,3)(i,j,\ell):=(i_{2},j_{2},\ell_{2})+(i_{3},j_{3},\ell_{3}) and the sum is taken over all the pairs of triples of positive numbers {(id,jd,d)}d=2,3\{(i_{d},j_{d},\ell_{d})\}_{d=2,3} such that jd+did2dkj_{d}+\ell_{d}\leq i_{d}\leq 2dk. The quantity En,m(q)E_{n,m}(q) is the one defined just before 3.4.

Putting all together, we deduce the following.

Proposition 5.4.

The image of the pushforward CH9([ΔN2/GN])CH([V4N,6NN/GN])\operatorname{CH}^{*-9}([\Delta_{N}^{2}/{G_{N}}])\to\operatorname{CH}^{*}([V^{N}_{4N,6N}/{G_{N}}]) is generated by:

  1. (1)

    when NN is odd, by the cycles fk,mf_{k,m} described in (5.3) for 1kN1\leq k\leq N and 0mk0\leq m\leq k;

  2. (2)

    when NN is even, by the cycles gk,mg_{k,m^{\prime}} described in (5.3) and (16) for 1kN1\leq k\leq N and 0mk0\leq m^{\prime}\leq k.

5.4. Proof of the main result

We have all the ingredients necessary to prove our main result. Indeed, we know from 2.3 that the stack 𝒲Nmin\mathcal{W}^{\min}_{N} is isomorphic to [V4N,6NN(ΔN1ΔN2)/GN][V_{4N,6N}^{N}\smallsetminus(\Delta_{N}^{1}\cup\Delta_{N}^{2})/{G_{N}}], hence we have a localization exact sequence

CH([(ΔN1ΔN2)/GN])CH([V4N,6NN/GN])CH(𝒲Nmin)0.\operatorname{CH}([(\Delta_{N}^{1}\cup\Delta_{N}^{2})/{G_{N}}])\longrightarrow\operatorname{CH}([V^{N}_{4N,6N}/{G_{N}}])\longrightarrow\operatorname{CH}(\mathcal{W}^{\min}_{N})\longrightarrow 0.

The image of the map on the left is equal to the sum of the images of the maps CH([ΔNi/GN])CH([V4N,6NN/GN])\operatorname{CH}_{*}([\Delta_{N}^{i}/{G_{N}}])\to\operatorname{CH}_{*}([V^{N}_{4N,6N}/{G_{N}}]) for i=1,2i=1,2, which have been computed in 4.1 and 5.4.

The integral Chow ring of [V4N,6NN/GN][V^{N}_{4N,6N}/{G_{N}}] is isomorphic to the one of GN\mathcal{B}{G_{N}}, where the isomorphism is induced by the pullback morphism along the map [V4N,6NN/GN]GN[V^{N}_{4N,6N}/{G_{N}}]\to\mathcal{B}{G_{N}}. When NN is odd, we have GNGL2{G_{N}}\simeq\operatorname{GL}_{2} and CH(GL2)[c1,c2]\operatorname{CH}^{*}(\mathcal{B}\operatorname{GL}_{2})\simeq\mathbb{Z}[c_{1},c_{2}], with c1c_{1} and c2c_{2} the Chern classes of the universal rank two vector bundle.

Therefore, the generators c1c_{1} and c2c_{2} of CH(𝒲Nmin)\operatorname{CH}^{*}(\mathcal{W}_{N}^{\min}) are by construction the Chern classes of the pullback of the universal rank two vector bundle on GL2\mathcal{B}\operatorname{GL}_{2}. The map 𝒲NminGL2\mathcal{W}_{N}^{\min}\to\mathcal{B}\operatorname{GL}_{2} is induced by the rank two vector bundle N\mathcal{E}_{N} of 2.13 (see 2.12), hence the pullback of the universal vector bundle is equal to N\mathcal{E}_{N}.

Similarly, for NN even we have GNPGL2×𝔾m{G_{N}}\simeq\operatorname{PGL}_{2}\times\mathbb{G}_{m} and the integral Chow ring of the associated classifying stack is isomorphic to [τ1,c2,c3]/(2c3)\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3}).

The generator τ1\tau_{1} is the first Chern class of the pullback of the universal line bundle on 𝔾m\mathcal{B}\mathbb{G}_{m}, which by 2.14 is equal to N\mathcal{L}_{N}. The other two generators c2c_{2} and c3c_{3} are by definition the pullback of the generators of CH(PGL2)\operatorname{CH}^{*}(\mathcal{B}\operatorname{PGL}_{2}), which are the Chern classes of the rank three vector bundle (𝒫𝑝B)p(ω𝒫/B)(\mathcal{P}\overset{p}{\to}B)\longmapsto p_{*}(\omega_{\mathcal{P}/B}^{\vee}). The pullback of the latter is by definition the rank three vector bundle N\mathcal{E}_{N} of 2.13.

Putting all together, we obtain our first main result.

Theorem 5.5.

Suppose that the ground field has characteristic 2,3\neq 2,3. Then

  1. (1)

    for NN odd we have

    CH(𝒲Nmin)[c1,c2]/IN\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N})\simeq\mathbb{Z}[c_{1},c_{2}]/I_{N}

    where the ideal of relations INI_{N} is generated by the polynomials fk,mf_{k,m} described in (5.3) for 1kN1\leq k\leq N and 0mk0\leq m\leq k, together with the fundamental class [ΔN1]GL2[\Delta_{N}^{1}]_{\operatorname{GL}_{2}}. The degree of fk,mf_{k,m} is 9k+m9k+m and the degree of [ΔN1]GL2[\Delta_{N}^{1}]_{\operatorname{GL}_{2}} is 8N+18N+1. The generators c1c_{1} and c2c_{2} are the Chern classes of the rank two vector bundle N\mathcal{E}_{N} introduced in 2.11.

  2. (2)

    for NN even, we have

    CH(𝒲Nmin)[τ1,c2,c3]/(2c3,IN)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{N})\simeq\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3},I_{N})

    where the ideal of relations INI_{N} is generated by the polynomials gk,mg_{k,m^{\prime}} described in (5.3) and (16) for 1kN1\leq k\leq N and 0mk0\leq m^{\prime}\leq k, together with the fundamental class [ΔN1]PGL2×𝔾m[\Delta_{N}^{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}}. The degree of gk,mg_{k,m^{\prime}} is 9k+m9k+m^{\prime} and the degree of [ΔN1]PGL2×𝔾m[\Delta_{N}^{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}} is 8N+18N+1. The generator τ1\tau_{1} is the first Chern class of the line bundle N\mathcal{L}_{N} introduced in 2.13, and the generators c2c_{2} and c3c_{3} are the Chern classes of the rank three vector bundle N\mathcal{E}_{N} introduced in 2.13.

Note the relations appearing in the Theorem above can be made fully explicit: one can apply 4.2 and 4.4 for computing the fundamental class of ΔN1\Delta_{N}^{1}, and 3.5 and 3.6 to obtain explicit expressions for the Chern and Segre classes of the representations appearing in fk,mf_{k,m} and gk,mg_{k,m^{\prime}}. Plugging these formulas into the relations, one get the desired description. This is exactly what we will do in the next Section for N=1,2N=1,2.

6. Integral Chow rings of stacks of rational elliptic surfaces and elliptic K3 surfaces

In this Section we compute the integral Chow ring of 𝒲1min\mathcal{W}_{1}^{\min}, the moduli stack of rational elliptic surfaces, and of 𝒲2min\mathcal{W}_{2}^{\min}, the moduli stack of elliptic K3 surfaces. The two main results are Theorem 6.1 and Theorem 6.2.

6.1. The case N=1N=1

A Weierstrass fibration X1X\to\mathbb{P}^{1} with fundamental invariant N=1N=1 is a rational surface, obtained by blowing up 2\mathbb{P}^{2} along the base locus of a pencil of cubics. Equivalently, we can think of XX as the blow-up of a Del Pezzo surface of degree 11 along the anticanonical divisor.

The stack 𝒲1min\mathcal{W}^{\min}_{1} is not Deligne-Mumford because of the presence of objects with infinite dimensional automorphism group [PS, Remark 4.5].

Theorem 6.1.

Suppose that the ground field kk has characteristic 2,3\neq 2,3 and set r6=576(30c16+151c14c2+196c12c22+64c23)r_{6}=576(30c_{1}^{6}+151c_{1}^{4}c_{2}+196c_{1}^{2}c_{2}^{2}+64c_{2}^{3}). Then we have

CH(𝒲1min)[c1,c2]/(6c1c2r6,c13r6,c12c2r6),\operatorname{CH}^{*}(\mathcal{W}^{\min}_{1})\simeq\mathbb{Z}[c_{1},c_{2}]/(6c_{1}c_{2}r_{6},c_{1}^{3}r_{6},c_{1}^{2}c_{2}r_{6}),

where c1c_{1} and c2c_{2} are the Chern classes of the rank two vector bundle 1\mathcal{E}_{1} introduced in 2.11.

Proof.

This is a straightforward application of Theorem 5.5. To compute explicitly the Chern classes of the representations involved, one can use 3.5. The Segre classes are then obtained by formally inverting the total Chern classes. Then one can plug in these expressions into the formulas given in (5.3) and into the formula given in 4.2. After performing these computations with Mathematica, we obtain:

[Δ11]GL2\displaystyle[\Delta_{1}^{1}]_{\operatorname{GL}_{2}} =3456c1c2(30c16+151c14c2+196c12c22+64c23);\displaystyle=-3456c_{1}c_{2}(30c_{1}^{6}+151c_{1}^{4}c_{2}+196c_{1}^{2}c_{2}^{2}+64c_{2}^{3});
f1,0\displaystyle f_{1,0} =576c13(30c16+151c14c2+196c12c22+64c23);\displaystyle=-576c_{1}^{3}(30c_{1}^{6}+151c_{1}^{4}c_{2}+196c_{1}^{2}c_{2}^{2}+64c_{2}^{3});
f1,1\displaystyle f_{1,1} =576c12c2(30c16+151c14c2+196c12c22+64c23).\displaystyle=-576c_{1}^{2}c_{2}(30c_{1}^{6}+151c_{1}^{4}c_{2}+196c_{1}^{2}c_{2}^{2}+64c_{2}^{3}).

This concludes the proof. ∎

6.2. The case N=2N=2

The stack 𝒲2min\mathcal{W}_{2}^{\min} can be regarded as the stack of lattice-polarized elliptic K3 surfaces, as explained in the Introduction of [CK]. The coarse space of this moduli stack is particularly interesting and it has been the subject of much work (see for instance [MOP, PY]). Here we determine its integral Chow ring.

Theorem 6.2.

Suppose that the ground field has characteristic 2,3\neq 2,3. Then we have

CH(𝒲2min)[τ1,c2,c3]/(2c3,r9,r10,r18,r19)\operatorname{CH}^{*}(\mathcal{W}^{\min}_{2})\simeq\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2c_{3},r_{9},r_{10},r_{18},r_{19})

where

r9=\displaystyle r_{9}= 1152(691c24τ138005c23τ13+309568c22τ15497520c2τ17+124416τ19),\displaystyle 1152(691c_{2}^{4}\tau_{1}-38005c_{2}^{3}\tau_{1}^{3}+309568c_{2}^{2}\tau_{1}^{5}-497520c_{2}\tau_{1}^{7}+124416\tau_{1}^{9}),
r10=\displaystyle r_{10}= 1152(30c256811c24τ12+133495c23τ14481528c22τ16+327600c2τ1820736τ110),\displaystyle 1152(30c_{2}^{5}-6811c_{2}^{4}\tau_{1}^{2}+133495c_{2}^{3}\tau_{1}^{4}-481528c_{2}^{2}\tau_{1}^{6}+327600c_{2}\tau_{1}^{8}-20736\tau_{1}^{10}),
r18=\displaystyle r_{18}= 1152c25(108314154642930c24+1045672c23τ1289483c22τ14+35c2τ164τ18),\displaystyle 1152c_{2}^{5}(108314154642930c_{2}^{4}+1045672c_{2}^{3}\tau_{1}^{2}-89483c_{2}^{2}\tau_{1}^{4}+35c_{2}\tau_{1}^{6}-4\tau_{1}^{8}),
r19=\displaystyle r_{19}= 2304c26τ1(118203201c23+180502c22τ127c2τ14+4τ16).\displaystyle 2304c_{2}^{6}\tau_{1}(118203201c_{2}^{3}+180502c_{2}^{2}\tau_{1}^{2}-7c_{2}\tau_{1}^{4}+4\tau_{1}^{6}).

The generator τ1\tau_{1} is the first Chern class of the line bundle 2\mathcal{L}_{2} (see 2.13), the other generators c2c_{2} and c3c_{3} are Chern classes of the rank three vector bundle 2\mathcal{E}_{2} (see 2.13), whose first Chern class vanishes.

We will prove this Theorem by applying Theorem 5.5 and by explicitly computing the relations in terms of the generators τ1\tau_{1}, c2c_{2} and c3c_{3}.

Lemma 6.3.
[Δ21]PGL2×𝔾m=\displaystyle[\Delta_{2}^{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}}= 995328τ1(9c22+160c2τ12+256τ14)(100c26+5369c25τ12\displaystyle-995328\tau_{1}(9c_{2}^{2}+160c_{2}\tau_{1}^{2}+256\tau_{1}^{4})(100c_{2}^{6}+5369c_{2}^{5}\tau_{1}^{2}
+74074c24τ14+400257c23τ16+972972c22τ18+1061424c2τ110+419904τ112)\displaystyle+74074c_{2}^{4}\tau_{1}^{4}+400257c_{2}^{3}\tau_{1}^{6}+972972c_{2}^{2}\tau_{1}^{8}+1061424c_{2}\tau_{1}^{10}+419904\tau_{1}^{12})
Proof.

Instead of applying directly the formula of 4.4, we first compute [Δ21]G[\Delta_{2}^{1}]_{G} modulo c3c_{3}, and then we conclude the computation modulo 22. This trick is inspired by [FV].

The homomorphism of algebraic groups SL2×𝔾mPGL2×𝔾m\operatorname{SL}_{2}\times\mathbb{G}_{m}\to\operatorname{PGL}_{2}\times\mathbb{G}_{m} given on the first factor by quotienting by μ2\mu_{2} and the second factor by the identity induces a morphism of stacks

(SL2×𝔾m)(PGL2×𝔾m).\mathcal{B}(\operatorname{SL}_{2}\times\mathbb{G}_{m})\to\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}).

By taking the pullback along this map we get a homomorphism of rings

CH((PGL2×𝔾m))[c2,c3,τ1]/(2c3)CH((SL2×𝔾m))[c2,τ1],\operatorname{CH}^{*}(\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m}))\simeq\mathbb{Z}[c_{2},c_{3},\tau_{1}]/(2c_{3})\to\operatorname{CH}^{*}(\mathcal{B}(\operatorname{SL}_{2}\times\mathbb{G}_{m}))\simeq\mathbb{Z}[c_{2},\tau_{1}],

that sends τ1\tau_{1} to τ1\tau_{1}, the class c2c_{2} to 4c24c_{2} and c3c_{3} is sent to zero (see [FV, Proof of Lemma 5.1]). The pullback of [Δ21]G2[\Delta_{2}^{1}]_{G_{2}} along this map is equal to [Δ21]SL2×𝔾m[\Delta_{2}^{1}]_{\operatorname{SL}_{2}\times\mathbb{G}_{m}}, hence if we compute this last class and we substitute c2c_{2} with c2/4c_{2}/4 we get an expression of [Δ21]G2[\Delta_{2}^{1}]_{G_{2}} that holds up to multiples of c3c_{3}.

The same argument of 4.2 shows that

[Δ21]SL2×𝔾m=c22SL2×𝔾m(V8,122)c5SL2×𝔾m(V42)=c9SL2×𝔾m(V82)c13SL2×𝔾m(V122)c5SL2×𝔾m(V42).[\Delta_{2}^{1}]_{\operatorname{SL}_{2}\times\mathbb{G}_{m}}=\frac{c_{22}^{\operatorname{SL}_{2}\times\mathbb{G}_{m}}(V^{2}_{8,12})}{c_{5}^{\operatorname{SL}_{2}\times\mathbb{G}_{m}}(V^{2}_{4})}=\frac{c_{9}^{\operatorname{SL}_{2}\times\mathbb{G}_{m}}(V^{2}_{8})c_{13}^{\operatorname{SL}_{2}\times\mathbb{G}_{m}}(V^{2}_{12})}{c_{5}^{\operatorname{SL}_{2}\times\mathbb{G}_{m}}(V^{2}_{4})}.

The representation V2m2V^{2}_{2m} is equal to Sym2mEL(m)\operatorname{Sym}^{2m}E^{\vee}\otimes L^{\otimes(-m)}, where EE is the standard SL2\operatorname{SL}_{2}-representation and LL is the standard 𝔾m\mathbb{G}_{m}-representation (of weight one). If 1\ell_{1} and 2\ell_{2} denote the Chern roots of EE^{\vee} and τ1\tau_{1} is the first Chern class of LL, we see that the Chern roots of V2m2V^{2}_{2m} are of the form i1+(2mi)2mτ1i\ell_{1}+(2m-i)\ell_{2}-m\tau_{1}, for i=0,,2mi=0,\ldots,2m. As the product of the Chern roots is equal to the top Chern class, after some computations and after plugging in the relations 1+2=0\ell_{1}+\ell_{2}=0 and 12=c2\ell_{1}\ell_{2}=c_{2}, we get

(17) [Δ21]SL2×𝔾m=\displaystyle[\Delta_{2}^{1}]_{\operatorname{SL}_{2}\times\mathbb{G}_{m}}= 1019215872(9c22+40c2τ12+16τ14)(6400c26τ1+85904c25τ13\displaystyle-1019215872(9c_{2}^{2}+40c_{2}\tau_{1}^{2}+16\tau_{1}^{4})(6400c_{2}^{6}\tau_{1}+85904c_{2}^{5}\tau_{1}^{3}
+296296c24τ15+400257c23τ17+243243c22τ19+66339c2τ111+6561τ113).\displaystyle+296296c_{2}^{4}\tau_{1}^{5}+400257c_{2}^{3}\tau_{1}^{7}+243243c_{2}^{2}\tau_{1}^{9}+66339c_{2}\tau_{1}^{11}+6561\tau_{1}^{13}).

We replace c2c_{2} with 14c2\frac{1}{4}c_{2}, thus obtaining

995328τ1(9c22+160c2τ12\displaystyle-995328\tau_{1}(9c_{2}^{2}+160c_{2}\tau_{1}^{2} +256τ14)(100c26+5369c25τ12\displaystyle+256\tau_{1}^{4})(100c_{2}^{6}+5369c_{2}^{5}\tau_{1}^{2}
(18) +74074c24τ14+400257c23τ16+972972c22τ18+1061424c2τ110+419904τ112).\displaystyle+74074c_{2}^{4}\tau_{1}^{4}+400257c_{2}^{3}\tau_{1}^{6}+972972c_{2}^{2}\tau_{1}^{8}+1061424c_{2}\tau_{1}^{10}+419904\tau_{1}^{12}).

We deduce that [Δ21]G2[\Delta_{2}^{1}]_{G_{2}} must be equal to the expression in (6.2)(\ref{eq:partial}) plus an element of the form c3ηc_{3}\eta, where η\eta belongs to [τ1,c2,c3]/(2)\mathbb{Z}[\tau_{1},c_{2},c_{3}]/(2). In particular, the class of Δ21\Delta_{2}^{1} modulo 22 is equal to c3ηc_{3}\eta. For computing the class of Δ21\Delta_{2}^{1} modulo 22, we first find an element ξ\xi such that

(19) ξc5GL3×𝔾m(W¯42)=c22GL3×𝔾m(W¯8,122).\xi\cdot c_{5}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{2}_{4})=c_{22}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{2}_{8,12}).

This task is accomplished by direct computations of the top Chern classes using (6), and then reduction modulo 22: we find a polynomial ξ\xi^{\prime} such that ξ=hξ\xi=h\xi^{\prime} satisfies the condition (19), where h=c1GL3×𝔾m(𝒪(1))h=c_{1}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\mathcal{O}(1)). We are still not done, because by [EdFuRat, page 8] the ring CH([5/GL3×𝔾m])/2\operatorname{CH}^{*}([\mathbb{P}^{5}/\operatorname{GL}_{3}\times\mathbb{G}_{m}])\otimes\mathbb{Z}/2 is isomorphic to

[τ1,c1,c2,c3,h]/(2,h3(c1c2+c3+c12h+c2h+h3)),\mathbb{Z}[\tau_{1},c_{1},c_{2},c_{3},h]/(2,h^{3}(c_{1}c_{2}+c_{3}+c_{1}^{2}h+c_{2}h+h^{3})),

hence the reduction modulo 22 of

(20) c22GL3×𝔾m(W¯8,122)c5GL3×𝔾m(W¯42)\frac{c_{22}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{2}_{8,12})}{c_{5}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{2}_{4})}

is equal to ξ\xi only up to annihilators of c5GL3×𝔾m(W¯42)c_{5}^{\operatorname{GL}_{3}\times\mathbb{G}_{m}}(\overline{W}^{2}_{4}). This top Chern class is equal modulo 22 to h2(c1c2+c3+c12h+c2h+h3)h^{2}(c_{1}c_{2}+c_{3}+c_{1}^{2}h+c_{2}h+h^{3}), so if ξ′′\xi^{\prime\prime} is an annihilator of this element, it must be a multiple of hh (this can also be checked directly using the tautological exact sequence on 5\mathbb{P}^{5}). This shows that the reduction modulo 22 of (20) is divisible by hh. As the reduction modulo 22 of [Δ21]G2[\Delta_{2}^{1}]_{G_{2}} is equal to (20) evaluated at h=0h=0 (see 4.4), we deduce that this reduction is zero, hence [Δ21]G2[\Delta_{2}^{1}]_{G_{2}} is equal to the expression in (6.2). ∎

According to Theorem 5.5, we need to compute five other relations. The first two are obtained as follows: let Z1V8,122×V1Z_{1}\subset V^{2}_{8,12}\times\mathbb{P}V_{1} be the subscheme of triples (A,B,p)(A,B,p) where pp is a point of 1\mathbb{P}^{1} and the form AA (resp. the form BB) vanishes in pp with order 4\geq 4 (resp. 6\geq 6). Let γ1\gamma_{1} be the generator of the PGL2×𝔾m\operatorname{PGL}_{2}\times\mathbb{G}_{m}-equivariant Chow ring of V1\mathbb{P}V_{1} as a module over CH((PGL2×𝔾m))\operatorname{CH}^{*}(\mathcal{B}(\operatorname{PGL}_{2}\times\mathbb{G}_{m})). Then the first two relations are given by

g1,0:=pr1[Z1]PGL2×𝔾m,g1,1:=pr1([Z1]PGL2×𝔾mpr2γ1),g_{1,0}:={\rm pr}_{1*}[Z_{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}},\quad g_{1,1}:={\rm pr}_{1*}([Z_{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}}\cdot{\rm pr}_{2}^{*}\gamma_{1}),

where pr1{\rm pr}_{1} (resp. pr2{\rm pr}_{2}) is the projection on the first (resp. second) factor.

Formulas for these two relations are given by (16) with N=2N=2, k=1k=1, m{0,1}m\in\{0,1\} and n=0n=0. To make these expressions completely explicit we have to plug in the formulas for Chern classes and Segre classes of V4V_{4}, V6V_{6}, V8V_{8} and V12V_{12}, which can be extracted from 3.6. After some computations with Mathematica, we get

(21) g1,0\displaystyle g_{1,0} =1152(691c24τ138005c23τ13+309568c22τ15497520c2τ17+124416τ19)\displaystyle=-1152(691c_{2}^{4}\tau_{1}-38005c_{2}^{3}\tau_{1}^{3}+309568c_{2}^{2}\tau_{1}^{5}-497520c_{2}\tau_{1}^{7}+124416\tau_{1}^{9})
(22) g1,1\displaystyle g_{1,1} =1152(30c256811c24τ12+133495c23τ14481528c22τ16+327600c2τ1820736τ110)\displaystyle=-1152(30c_{2}^{5}-6811c_{2}^{4}\tau_{1}^{2}+133495c_{2}^{3}\tau_{1}^{4}-481528c_{2}^{2}\tau_{1}^{6}+327600c_{2}\tau_{1}^{8}-20736\tau_{1}^{10})

Let us recall how the other three relations are obtained: let Z2V8,124×V2Z_{2}\subset V^{4}_{8,12}\times\mathbb{P}V_{2} be the subscheme of triples (p1+p2,A,B)(p_{1}+p_{2},A,B) such that p1+p2p_{1}+p_{2} is a dimension zero subscheme of 1\mathbb{P}^{1} of length two and AA (resp. BB) vanishes along p1+p2p_{1}+p_{2} with order 4\geq 4 (resp. 66). If hh denotes the hyperplane section of V2\mathbb{P}V_{2} and pri{\rm pr}_{i} the projection on the ithi^{\rm th}-factor, then the cycles

g2,0:=pr1[Z2]PGL2×𝔾m,g2,1:=pr1([Z2]PGL2×𝔾mpr2h),g2,2:=pr1([Z2]PGL2×𝔾mpr2h2)g_{2,0}:={\rm pr}_{1*}[Z_{2}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}},\quad g_{2,1}:={\rm pr}_{1*}([Z_{2}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}}\cdot{\rm pr}_{2}^{*}h),\quad g_{2,2}:={\rm pr}_{1*}([Z_{2}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}}\cdot{\rm pr}_{2}^{*}h^{2})

are the three relations we are looking for.

Formulas for these relations are given in 5.4: they correspond to the cases N=2N=2, k=2k=2 and 0m20\leq m\leq 2. Observe that in this case the representation V2d(Nk)V_{2d(N-k)} is trivial, hence the only non-zero Segre class is the one of degree zero, which is equal to one. This means that in the summation we can impose d=0\ell_{d}=0 for d=2,3d=2,3.

To make the formulas completely explicit, we only need to plug in the values of the Chern classes of V8V_{8} and V12V_{12} and of the Segre classes of V2V_{2}, which are computed as before using 3.6. After some computations with Mathematica, we get

g2,0=\displaystyle g_{2,0}= 11943936(38562300c29109363770c28τ12+134699250c27τ14303690446c26τ16+312766535c25τ18\displaystyle-11943936(38562300c_{2}^{9}-109363770c_{2}^{8}\tau_{1}^{2}+134699250c_{2}^{7}\tau_{1}^{4}-303690446c_{2}^{6}\tau_{1}^{6}+312766535c_{2}^{5}\tau_{1}^{8}
259047756c24τ110+192326864c23τ112128471616c22τ114+87091200c2τ11611943936τ118),\displaystyle-259047756c_{2}^{4}\tau_{1}^{1}0+192326864c_{2}^{3}\tau_{1}^{12}-128471616c_{2}^{2}\tau_{1}^{14}+87091200c_{2}\tau_{1}^{16}-11943936\tau_{1}^{18}),
g2,1=\displaystyle g_{2,1}= 23887872c2τ1(37514745c2864489645c27τ12+97095345c26τ14170891502c25τ16+142583080c24τ18\displaystyle 23887872c_{2}\tau_{1}(37514745c_{2}^{8}-64489645c_{2}^{7}\tau_{1}^{2}+97095345c_{2}^{6}\tau_{1}^{4}-170891502c_{2}^{5}\tau_{1}^{6}+142583080c_{2}^{4}\tau_{1}^{8}
114176800c23τ110+78779520c22τ11254743040c2τ114+23887872τ116),\displaystyle-114176800c_{2}^{3}\tau_{1}^{10}+78779520c_{2}^{2}\tau_{1}^{12}-54743040c_{2}\tau_{1}^{14}+23887872\tau_{1}^{16}),
g2,2=\displaystyle g_{2,2}= c2g2,0.\displaystyle-c_{2}\cdot g_{2,0}.

These five relations, together with the fundamental class [Δ21]PGL2×𝔾m[\Delta_{2}^{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}} computed in 6.3, are all we need to compute the integral Chow ring of 𝒲2min\mathcal{W}^{\min}_{2}.

A quick computation with Mathematica shows that [Δ21]PGL2×𝔾m[\Delta_{2}^{1}]_{\operatorname{PGL}_{2}\times\mathbb{G}_{m}} belongs to the ideal generated by (21) and (22). After further simplifying it via Mathematica, we obtain the presentation given in Theorem 6.2.

References