This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Immersed Weak Galerkin and Continuous Galerkin Finite Element Method for Elliptic Interface Problem

Lin Yang [email protected] Qilong Zhai [email protected] School of Mathematics, Jilin University, Changchun 130012, Jilin, P. R. China
Abstract

In this paper, we use the weak Galerkin finite element method to solve the elliptic interface problem on interface-independent meshes. In the interface element, we use the immersed finite element (IFE) functions satisfying the interface conditions precisely and they have optimal approximation capabilities. In the non-interface element, the continuous element is employed to approximate the exact solution. The optimal convergence orders of error are obtained in the H1H^{1} norm and L2L^{2} norm. A series of numerical experiments are provided to validate the efficiency of the proposed method.

keywords:
Immersed finite element; Weak Galerkin finite element method; Higher degree finite element; Interface problems; Cartensian mesh.

1 Introduction

In this paper, we assume that the domain Ω\Omega is bounded in 2\mathbb{R}^{2} with boundary Ω\partial\Omega and the domain is separated by an interface Γ\Gamma into two sub-domains Ω1\Omega_{1} and Ω2\Omega_{2}. We consider the following elliptic interface problem in domain Ω\Omega.

(Au)\displaystyle-\nabla\cdot(A\nabla u) =\displaystyle= f,inΩ1Ω2,\displaystyle f,\,\text{in}\,\Omega_{1}\cup\Omega_{2}, (1.1)
u\displaystyle u =\displaystyle= g,onΩ,\displaystyle g,\,\text{on}\,\partial\Omega, (1.2)

where fPHk1(Ω)={v:v1=v|Ω1Hk(Ω1),andv2=v|Ω2Hk(Ω2)}f\in PH^{k-1}(\Omega)=\{v:v_{1}=v|_{\Omega_{1}}\in H^{k}(\Omega_{1}),\,\text{and}\,v_{2}=v|_{\Omega_{2}}\in H^{k}(\Omega_{2})\} for the integer k1k\geqslant 1 and AA is a piece-wise constant function

A(X)={A1forXΩ1,A2forXΩ2.\displaystyle A(X)=\left\{\begin{array}[]{rcl}A_{1}&\text{for}&X\in\Omega_{1},\\ A_{2}&\text{for}&X\in\Omega_{2}.\end{array}\right.

Without loss of generality, we suppose A2A1>0A_{2}\geqslant A_{1}>0. The interface conditions on Γ\Gamma are as follows:

[u]Γ\displaystyle[u]_{\Gamma} :=u1u2=0,onΓ,\displaystyle:=u_{1}-u_{2}=0,\,\text{on}\,\Gamma, (1.4)
[Au𝐧]\displaystyle[A\nabla u\cdot{\bf n}] :=A1u1𝐧A2u2𝐧=0,onΓ,\displaystyle:=A_{1}\nabla u_{1}\cdot{\bf n}-A_{2}\nabla u_{2}\cdot{\bf n}=0,\,\text{on}\,\Gamma, (1.5)

where 𝐧{\bf n} is the unit outward normal vector on the interface Γ\Gamma pointing from Ω1\Omega_{1} into Ω2\Omega_{2}.

When k2k\geqslant 2, we need to imposed the Laplacian extended jump conditions:

[Aj2u𝐧j2]Γ=0,j=2,3,,k.\displaystyle\left[A\frac{\partial^{j-2}\triangle u}{\partial{\bf n}^{j-2}}\right]_{\Gamma}=0,\,j=2,3,\cdots,k. (1.6)

Refer to [1, Theorem 2.1], we get the regularity theorem for the problem (1.1)-(1.6).

2 The Numerical Scheme

In the section, the weak Galerkin finite element method and the finite element method are applied to the elliptic interface problem on unfitted meshes. First, we give the definitions of the approximation functions space and the weak differential operators. Then the numerical scheme are proposed.

Assume the partition 𝒯h\mathcal{T}_{h} satisfies the shape-regular conditions [4] and do not require the mesh to be aligned with the interface. Denote by 𝒯hn\mathcal{T}_{h}^{n} the set of the non-interface element. Denote by 𝒯hI\mathcal{T}_{h}^{I} the set of the interface element which intersect with interface. For T𝒯hT\in\mathcal{T}_{h}, define the diameter of TT as hTh_{T}. Set h=maxh𝒯hhTh=\max_{h\in\mathcal{T}_{h}}h_{T}. Denote by h\mathcal{E}_{h} the set of the all edges in 𝒯hI\mathcal{T}_{h}^{I}. The set of intersecting edges of interface elements and non-interface elements is denoted as hI\mathcal{E}_{h}^{I}. In the WG method, the discontinuous weak function vh={v0,vb}v_{h}=\{v_{0},v_{b}\} is used. The weak function is consistent of two parts: the interior function v0v_{0} and the boundary function vbv_{b}. Noted that vbv_{b} has one unique value on the boundary T\partial T. For the integer k1k\geqslant 1, we define the following approximation function spaces.

For T𝒯hnT\in\mathcal{T}_{h}^{n}, we define the following the finite element space:

Wn(T)=span{ϕi}i=1N,ϕi(Pj)=δij,where Pj is the vertex of T.\displaystyle W^{n}(T)={\rm{span}}\{\phi_{i}\}_{i=1}^{N},\phi_{i}(P_{j})=\delta_{ij},\text{where }P_{j}\text{ is the vertex of }T.

For T𝒯hIT\in\mathcal{T}_{h}^{I}, the definition of WG space is as follows:

WI(T)={vh={v0,vb}|v0𝒱k(T),vbPk1(e),eT},\displaystyle W^{I}(T)=\{v_{h}=\{v_{0},v_{b}\}|v_{0}\in\mathcal{V}_{k}(T),v_{b}\in P_{k-1}(e),e\in\partial T\},

where the space 𝒱k(T)\mathcal{V}_{k}(T) is the immersed interface function space satisfying the interface conditions (1.4) - (1.6), as details in [2].

The global weak Galerkin finite element spaces are as follows.

Vh\displaystyle V_{h} =\displaystyle= {vh|vhWn(T),T𝒯hn,vhWI(T),T𝒯hI,vb=Qb(vh|e),onehI},\displaystyle\{v_{h}|v_{h}\in W^{n}(T),T\in\mathcal{T}_{h}^{n},v_{h}\in W^{I}(T),T\in\mathcal{T}_{h}^{I},v_{b}=Q_{b}(v_{h}|_{e}),\,\text{on}\,e\in\mathcal{E}_{h}^{I}\},
Vh0\displaystyle V_{h}^{0} =\displaystyle= {vh|vhVh,vb|e=0,eΩ}.\displaystyle\{v_{h}|v_{h}\in V_{h},v_{b}|_{e}=0,e\in\partial\Omega\}.

Define Πhu\Pi_{h}u as the interpolate function of uu in Wn(T)W^{n}(T), T𝒯hnT\in\mathcal{T}_{h}^{n}. Denote by Q0Q_{0} the L2L^{2} projection from L2(T)L^{2}(T) into 𝒱k(T)\mathcal{V}_{k}(T) in T𝒯hIT\in\mathcal{T}_{h}^{I}. Define QbQ_{b} as the L2L^{2} projection from L2(e)L^{2}(e) into Pk1(e)P_{k-1}(e) on ehe\in\mathcal{E}_{h}. Set Qhu={Q0u,Qbu}Q_{h}u=\{Q_{0}u,Q_{b}u\} and Q~hu={Q0u,Qδu}\tilde{Q}_{h}u=\{Q_{0}u,Q_{\delta}u\} where

Qδu={QbuonehhI,Qb(Πhu)onehI.\displaystyle Q_{\delta}u=\left\{\begin{array}[]{rcl}Q_{b}u&\text{on}&e\in\mathcal{E}_{h}\setminus\mathcal{E}_{h}^{I},\\ Q_{b}(\Pi_{h}u)&\text{on}&e\in\mathcal{E}_{h}^{I}.\\ \end{array}\right.

.

Definition 2.1.

For T𝒯hIT\in\mathcal{T}_{h}^{I} and 𝐪𝒱k(T)\bm{q}\in\nabla\mathcal{V}_{k}(T), the weak gradient wv\nabla_{w}v satisfies

(wv,𝒒)T=(v0,𝒒)TQbv0vb,𝒒𝐧T,𝒒𝒱k(T).\displaystyle(\nabla_{w}v,\bm{q})_{T}=(\nabla v_{0},\bm{q})_{T}-\langle Q_{b}v_{0}-v_{b},\bm{q}\cdot{\bf n}\rangle_{\partial T},\,\forall\,\bm{q}\in\nabla\mathcal{V}_{k}(T). (2.2)

Based on the above definitions, the following numerical scheme is proposed.

Algorithm 1 The Numerical Scheme

Find uhVhu_{h}\in V_{h} and ub=Qbgu_{b}=Q_{b}g on Ω\partial\Omega to satisfy

an(uh,vh)+asI(uh,vh)=(f,vh),vhVh0,\displaystyle a^{n}(u_{h},v_{h})+a_{s}^{I}(u_{h},v_{h})=(f,v_{h}),\,\forall\,v_{h}\in V_{h}^{0}, (2.3)

where

an(uh,vh)\displaystyle a^{n}(u_{h},v_{h}) =\displaystyle= T𝒯hn(Auh,vh)T,\displaystyle\sum_{T\in\mathcal{T}_{h}^{n}}(A\nabla u_{h},\nabla v_{h})_{T},
asI(uh,vh)\displaystyle a_{s}^{I}(u_{h},v_{h}) =\displaystyle= T𝒯hI(Awuh,wvh)T+hT1Qbu0ub,Qbv0vbT,\displaystyle\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla_{w}u_{h},\nabla_{w}v_{h})_{T}+h_{T}^{-1}\langle Q_{b}u_{0}-u_{b},Q_{b}v_{0}-v_{b}\rangle_{\partial T},
(f,vh)\displaystyle(f,v_{h}) =\displaystyle= T𝒯hn(f,v)+T𝒯hI(f,v0).\displaystyle\sum_{T\in\mathcal{T}_{h}^{n}}(f,v)+\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0}).

3 Existence and Uniqueness

We define the following semi-norm:

vh1,h2=T𝒯hnvhT2+T𝒯hI(wvhT2+hT1Qbv0vbT2).\displaystyle\begin{split}\|v_{h}\|_{1,h}^{2}=\sum_{T\in\mathcal{T}_{h}^{n}}\|\nabla v_{h}\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}^{I}}\left(\|\nabla_{w}v_{h}\|_{T}^{2}+h_{T}^{-1}\|Q_{b}v_{0}-v_{b}\|_{\partial T}^{2}\right).\end{split} (3.1)
Lemma 3.1.

1,h\|\cdot\|_{1,h} is a norm in Vh0V_{h}^{0}.

Proof.

Let v1,h=0\|v\|_{1,h}=0 for some vVh0v\in V_{h}^{0}. By the definition of v1,h\|v\|_{1,h}, we have

v=0,T𝒯hn;wv=0,Qbv0=vb,eT,T𝒯hI.\displaystyle\nabla v=0,\,T\in\mathcal{T}_{h}^{n};\quad\nabla_{w}v=0,\quad Q_{b}v_{0}=v_{b},\,e\in\partial T,\,T\in\mathcal{T}_{h}^{I}.

Therefore, vv is a constant on T𝒯hnT\in\mathcal{T}_{h}^{n}. Since vv is zero on Ω\partial\Omega, vv is zero on T𝒯hnT\in\mathcal{T}_{h}^{n}.

For T𝒯hIT\in\mathcal{T}_{h}^{I} and w𝒱k(T)w\in\mathcal{V}_{k}(T), we obtain

0=(wv,w)T=(v0,w)TQbv0vb,w𝐧T=(v0,w)T.\displaystyle\begin{split}0=&(\nabla_{w}v,\nabla w)_{T}\\ =&(\nabla v_{0},\nabla w)_{T}-\langle Q_{b}v_{0}-v_{b},\nabla w\cdot{\bf n}\rangle_{\partial T}\\ =&(\nabla v_{0},\nabla w)_{T}.\end{split} (3.2)

In Eq.(3.2), taking w=v0w=v_{0} yields v0=0\nabla v_{0}=0 on T𝒯hIT\in\mathcal{T}_{h}^{I}. Therefore, v0v_{0} is a constant on T𝒯hIT\in\mathcal{T}_{h}^{I}.

Combining with Qbv0=vbQ_{b}v_{0}=v_{b} on ehe\in\mathcal{E}_{h}, we get vb=Qbv0=v0v_{b}=Q_{b}v_{0}=v_{0}. By vb=Qb(v|e)=0v_{b}=Q_{b}(v|_{e})=0 on ehIe\in\mathcal{E}_{h}^{I}, we have v0=vb=0v_{0}=v_{b}=0. Therefore v=0v=0 is obtained. The proof of the lemma is completed. ∎

According to the above lemma, it’s easy to obtain that the numerical scheme (2.3) has only one solution.

4 Some Inequalities

The trace inequality, the inverse inequality and the projection inequality are essential technique tools for the analysis. We prove these inequalities holds true for the interface element.

Lemma 4.1.

For T𝒯hIT\in\mathcal{T}_{h}^{I} and w𝒱k(T)w\in\mathcal{V}_{k}(T), we have

we2ChT2wT2.\displaystyle\|\nabla w\|_{e}^{2}\leqslant Ch_{T}^{-2}\|\nabla w\|_{T}^{2}. (4.1)
Proof.

Assume e=e1e2e=e_{1}\cup e_{2}, e1T1e_{1}\subset T_{1} and e2T2e_{2}\subset T_{2}. Then we have

we2Cwe12+we22ChT1wT12+ChT(w)T12+ChT1wT2+ChT1(w)T22.\displaystyle\begin{split}\|\nabla w\|_{e}^{2}\leqslant&C\|\nabla w\|_{e_{1}}^{2}+\|\nabla w\|_{e_{2}}^{2}\\ \leqslant&Ch_{T}^{-1}\|\nabla w\|_{T_{1}}^{2}+Ch_{T}\|\nabla(\nabla w)\|_{T_{1}}^{2}+Ch_{T}^{-1}\|\nabla w\|_{T_{2}}+Ch_{T}^{-1}\|\nabla(\nabla w)\|_{T_{2}}^{2}.\end{split} (4.2)

For (w)T12\|\nabla(\nabla w)\|_{T_{1}}^{2}, we have

(w)T12T1(Δw+22wxy)2𝑑T1T12(Δw)2𝑑T1+T14(2wxy)2𝑑T1.\displaystyle\begin{split}\|\nabla(\nabla w)\|_{T_{1}}^{2}\leqslant\int_{T_{1}}\left(\Delta w+2\frac{\partial^{2}w}{\partial x\partial y}\right)^{2}dT_{1}\leqslant\int_{T_{1}}2(\Delta w)^{2}dT_{1}+\int_{T_{1}}4(\frac{\partial^{2}w}{\partial x\partial y})^{2}dT_{1}.\end{split} (4.3)

Next we estimate the every term on the right side of the above inequality.

T1(Δw)2𝑑T1=T1^(Δw^(ξ,η))2|D^PΓ|𝑑T1^CT1^(w^ηη2+J02w^ξξ2+J12w^η2++J22w^ξ2)dT1^C(T1^w^ηη2+w^ξξ2dT1^+T1^w^η2+w^ξ2dT1^)C^(^w^)T1^2+C^w^T1^2ChT^2^w^T1^2.\displaystyle\begin{split}\int_{T_{1}}(\Delta w)^{2}dT_{1}=&\int_{\hat{T_{1}}}\left(\Delta\hat{w}(\xi,\eta)\right)^{2}|\hat{D}P_{\Gamma}|d\hat{T_{1}}\\ \leqslant&C\int_{\hat{T_{1}}}\left(\hat{w}_{\eta\eta}^{2}+J_{0}^{2}\hat{w}_{\xi\xi}^{2}+J_{1}^{2}\hat{w}_{\eta}^{2}++J_{2}^{2}\hat{w}_{\xi}^{2}\right)d\hat{T_{1}}\\ \leqslant&C\left(\int_{\hat{T_{1}}}\hat{w}_{\eta\eta}^{2}+\hat{w}_{\xi\xi}^{2}d\hat{T_{1}}+\int_{\hat{T_{1}}}\hat{w}_{\eta}^{2}+\hat{w}_{\xi}^{2}d\hat{T_{1}}\right)\\ \leqslant&C\|\hat{\nabla}(\hat{\nabla}\hat{w})\|_{\hat{T_{1}}}^{2}+C\|\hat{\nabla}\hat{w}\|_{\hat{T_{1}}}^{2}\\ \leqslant&Ch_{\hat{T}}^{-2}\|\hat{\nabla}\hat{w}\|_{\hat{T_{1}}}^{2}.\end{split} (4.4)

According to the chain rule, we have

2wxy=(2w^η2ηy+2w^ηξξy)ηx+w^η2ηxy+(2w^ηξηy+2w^ξ2ξy)ξx+w^ξ2ξxy=2w^η2(ηxηy)+2w^ηξ(ηxξy)+w^η2ηxy+2w^ηξ(ηyξx)+2w^ξ2(ξyξx)+w^ξ2ξxy.\displaystyle\begin{split}\frac{\partial^{2}w}{\partial x\partial y}=&\left(\frac{\partial^{2}\hat{w}}{\partial\eta^{2}}\frac{\partial\eta}{\partial y}+\frac{\partial^{2}\hat{w}}{\partial\eta\partial\xi}\frac{\partial\xi}{\partial y}\right)\frac{\partial\eta}{\partial x}+\frac{\partial\hat{w}}{\partial\eta}\frac{\partial^{2}\eta}{\partial x\partial y}\\ &+\left(\frac{\partial^{2}\hat{w}}{\partial\eta\partial\xi}\frac{\partial\eta}{\partial y}+\frac{\partial^{2}\hat{w}}{\partial\xi^{2}}\frac{\partial\xi}{\partial y}\right)\frac{\partial\xi}{\partial x}+\frac{\partial\hat{w}}{\partial\xi}\frac{\partial^{2}\xi}{\partial x\partial y}\\ =&\frac{\partial^{2}\hat{w}}{\partial\eta^{2}}\left(\frac{\partial\eta}{\partial x}\frac{\partial\eta}{\partial y}\right)+\frac{\partial^{2}\hat{w}}{\partial\eta\partial\xi}\left(\frac{\partial\eta}{\partial x}\frac{\partial\xi}{\partial y}\right)+\frac{\partial\hat{w}}{\partial\eta}\frac{\partial^{2}\eta}{\partial x\partial y}\\ &+\frac{\partial^{2}\hat{w}}{\partial\eta\partial\xi}\left(\frac{\partial\eta}{\partial y}\frac{\partial\xi}{\partial x}\right)+\frac{\partial^{2}\hat{w}}{\partial\xi^{2}}\left(\frac{\partial\xi}{\partial y}\frac{\partial\xi}{\partial x}\right)+\frac{\partial\hat{w}}{\partial\xi}\frac{\partial^{2}\xi}{\partial x\partial y}.\end{split}

We have

T1(2wxy)2𝑑T1T1^C1(2w^η2)2+C2(2w^ξ2)2+C3(2w^ηξ)2+C4(w^η)2+C5(w^ξ)2C^(^w^)T1^2+C^w^T1^2ChT^2^w^T1^2.\displaystyle\begin{split}&\int_{T_{1}}\left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2}dT_{1}\\ \leqslant&\int_{\hat{T_{1}}}C_{1}\left(\frac{\partial^{2}\hat{w}}{\partial\eta^{2}}\right)^{2}+C_{2}\left(\frac{\partial^{2}\hat{w}}{\partial\xi^{2}}\right)^{2}+C_{3}\left(\frac{\partial^{2}\hat{w}}{\partial\eta\partial\xi}\right)^{2}+C_{4}\left(\frac{\partial\hat{w}}{\partial\eta}\right)^{2}+C_{5}\left(\frac{\partial\hat{w}}{\partial\xi}\right)^{2}\\ \leqslant&C\|\hat{\nabla}(\hat{\nabla}\hat{w})\|_{\hat{T_{1}}}^{2}+C\|\hat{\nabla}\hat{w}\|_{\hat{T_{1}}}^{2}\\ \leqslant&Ch_{\hat{T}}^{-2}\|\hat{\nabla}\hat{w}\|_{\hat{T_{1}}}^{2}.\end{split} (4.5)

Thus we have

(w)T12ChT^2^w^T1^2ChT2T12(xξ2xη2)(wx)2+2(yξ2yη2)(wy)2|DRΓ|dT1ChT2wT12.\displaystyle\begin{split}\|\nabla(\nabla w)\|_{T_{1}}^{2}\leqslant&Ch_{\hat{T}}^{-2}\|\hat{\nabla}\hat{w}\|_{\hat{T_{1}}}^{2}\\ \leqslant&Ch_{T}^{-2}\int_{T_{1}}2(x_{\xi}^{2}x_{\eta}^{2})\left(\frac{\partial w}{\partial x}\right)^{2}+2(y_{\xi}^{2}y_{\eta}^{2})\left(\frac{\partial w}{\partial y}\right)^{2}|DR_{\Gamma}|dT_{1}\\ \leqslant&Ch_{T}^{-2}\|\nabla w\|_{T_{1}}^{2}.\end{split}

Similarly, we have

(w)T22ChT2wT22.\displaystyle\|\nabla(\nabla w)\|_{T_{2}}^{2}\leqslant Ch_{T}^{-2}\|\nabla w\|_{T_{2}}^{2}.

Therefore the proof of the lemma is completed. ∎

5 Error Equation

In this section, we present the error equation for the velocity function uu. We use uhu_{h} to represent the numerical solution obtained from the numerical scheme. Denote by PhuP_{h}u and IhuI_{h}u the projection operators satisfying

Phu={uT𝒯hn,QhuT𝒯hI.\displaystyle P_{h}u=\left\{\begin{array}[]{cc}u&T\in\mathcal{T}_{h}^{n},\\ Q_{h}u&T\in\mathcal{T}_{h}^{I}.\\ \end{array}\right.

and

Ihu={ΠhuT𝒯hn,Q~huT𝒯hI.\displaystyle I_{h}u=\left\{\begin{array}[]{cc}\Pi_{h}u&T\in\mathcal{T}_{h}^{n},\\ \tilde{Q}_{h}u&T\in\mathcal{T}_{h}^{I}.\\ \end{array}\right.

The error associated with uu is defined as follows:

eh=Phuuh,εh=Ihuuhe_{h}=P_{h}u-u_{h},\,\varepsilon_{h}=I_{h}u-u_{h}

Denote by 𝒬h\mathcal{Q}_{h} the L2L^{2} projection operator from [L2(T)]2[L^{2}(T)]^{2} into 𝒱k(T)\nabla\mathcal{V}_{k}(T) in T𝒯hIT\in\mathcal{T}_{h}^{I}.

Lemma 5.1.

For uH1(Ω)u\in H^{1}(\Omega) and T𝒯hIT\in\mathcal{T}_{h}^{I}, we have the following properties of the discrete weak gradient operator:

(wQhu,𝒒)T=(𝒬hu,𝒒)T+((Q0uu),𝒒)TQb(Q0u)Qbu,𝒒𝐧T,𝒒𝒱k(T).\displaystyle(\nabla_{w}Q_{h}u,\bm{q})_{T}=(\mathcal{Q}_{h}\nabla u,\bm{q})_{T}+(\nabla(Q_{0}u-u),\bm{q})_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,\bm{q}\cdot{\bf n}\rangle_{\partial T},\,\forall\bm{q}\in\nabla\mathcal{V}_{k}(T). (5.3)
Proof.

For T𝒯hIT\in\mathcal{T}_{h}^{I} and 𝒒Pk(T)\bm{q}\in\nabla P_{k}(T), by Eq.(2.2), we have

(w(Qhu),𝒒)T=((Q0u),𝒒)TQb(Q0u)Qbu,𝒒𝐧T=(u,𝒒)T+((Q0uu),𝒒)TQb(Q0u)Qbu,𝒒𝐧T=(𝒬hu,𝒒)T+((Q0uu),𝒒)TQb(Q0u)Qbu,𝒒𝐧T.\displaystyle\begin{split}(\nabla_{w}(Q_{h}u),\bm{q})_{T}=&(\nabla(Q_{0}u),\bm{q})_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,\bm{q}\cdot{\bf n}\rangle_{\partial T}\\ =&(\nabla u,\bm{q})_{T}+(\nabla(Q_{0}u-u),\bm{q})_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,\bm{q}\cdot{\bf n}\rangle_{\partial T}\\ =&(\mathcal{Q}_{h}\nabla u,\bm{q})_{T}+(\nabla(Q_{0}u-u),\bm{q})_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,\bm{q}\cdot{\bf n}\rangle_{\partial T}.\end{split}

The proof of the above lemma is completed. ∎

Lemma 5.2.

For uiH1(Ωi)u_{i}\in H^{1}(\Omega_{i}) with i=1,2i=1,2 satisfying Eqs.(1.1)-(1.6), then we have the following equation:

T𝒯hn(Au,v)+T𝒯hI(AwQhu,v)T=T𝒯hn(f,v)T+T𝒯hI(f,v0)Tϕu(v),vVh0,\displaystyle\sum_{T\in\mathcal{T}_{h}^{n}}(A\nabla u,\nabla v)+\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla_{w}Q_{h}u,v)_{T}=\sum_{T\in\mathcal{T}_{h}^{n}}(f,v)_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}-\phi_{u}(v),\,\forall v\in V_{h}^{0}, (5.4)

where

ϕu(v)\displaystyle\phi_{u}(v) =\displaystyle= 1(u,v)2(u,v)+3(u,v)4(u,v)+5(u,v),\displaystyle\ell_{1}(u,v)-\ell_{2}(u,v)+\ell_{3}(u,v)-\ell_{4}(u,v)+\ell_{5}(u,v),
1(u,v)\displaystyle\ell_{1}(u,v) =\displaystyle= T𝒯hQbv0vb,A𝒬hu𝐧Au𝐧T,\displaystyle\sum_{T\in\mathcal{T}_{h}}\langle Q_{b}v_{0}-v_{b},A\mathcal{Q}_{h}\nabla u\cdot{\bf n}-A\nabla u\cdot{\bf n}\rangle_{\partial T},
2(u,v)\displaystyle\ell_{2}(u,v) =\displaystyle= T𝒯hI((Q0u)u,Awv)T,\displaystyle\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u)-\nabla u,A\nabla_{w}v)_{T},
3(u,v)\displaystyle\ell_{3}(u,v) =\displaystyle= T𝒯hIQb(Q0u)Qbu,Awv𝐧T,\displaystyle\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T},
4(u,v)\displaystyle\ell_{4}(u,v) =\displaystyle= T𝒯hAu𝐧,v0Qbv0T,\displaystyle\sum_{T\in\mathcal{T}_{h}}\langle A\nabla u\cdot{\bf n},v_{0}-Q_{b}v_{0}\rangle_{\partial T},
5(u,v)\displaystyle\ell_{5}(u,v) =\displaystyle= ehIAu𝐧e,vQbve,\displaystyle\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v-Q_{b}v\rangle_{e},

and 𝐧e{\bf n}_{e} is unit normal vector on ee pointing from the interface element T𝒯hIT\in\mathcal{T}_{h}^{I} into the non-interface element T𝒯hnT\in\mathcal{T}_{h}^{n}.

Proof.

For T𝒯hnT\in\mathcal{T}_{h}^{n}, using integration by parts, we obtain

T𝒯hn(f,v)T=T𝒯hn((Au),v)T=T𝒯hn(Au,v)TT𝒯hnAu𝐧,vT=T𝒯hn(Au,v)T+ehIAu𝐧e,ve.\displaystyle\begin{split}&\sum_{T\in\mathcal{T}_{h}^{n}}(f,v)_{T}\\ =&\sum_{T\in\mathcal{T}_{h}^{n}}-(\nabla\cdot(A\nabla u),v)_{T}\\ =&\sum_{T\in\mathcal{T}_{h}^{n}}(A\nabla u,\nabla v)_{T}-\sum_{T\in\mathcal{T}_{h}^{n}}\langle A\nabla u\cdot{\bf n},v\rangle_{\partial T}\\ =&\sum_{T\in\mathcal{T}_{h}^{n}}(A\nabla u,\nabla v)_{T}+\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v\rangle_{e}.\end{split} (5.5)

Similarly, for T𝒯hIT\in\mathcal{T}_{h}^{I}, it follows from Eq.(5.3), Eq.(2.2) and the definition of the L2L^{2} projection operator 𝒬h\mathcal{Q}_{h} that

(AwQhu,wv)T=(A𝒬hu,wv)+((Q0uu),Awv)TQb(Q0u)Qbu,Awv𝐧T=(A𝒬hu,v0)TQbv0vb,A𝒬hu𝐧T+((Q0uu),Awv)TQb(Q0u)Qbu,Awv𝐧T=(Au,v0)TQbv0vb,A𝒬hu𝐧T+((Q0uu),Awv)TQb(Q0u)Qbu,Awv𝐧T.\displaystyle\begin{split}&(A\nabla_{w}Q_{h}u,\nabla_{w}v)_{T}\\ =&(A\mathcal{Q}_{h}\nabla u,\nabla_{w}v)+(\nabla(Q_{0}u-u),A\nabla_{w}v)_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T}\\ =&(A\mathcal{Q}_{h}\nabla u,\nabla v_{0})_{T}-\langle Q_{b}v_{0}-v_{b},A\mathcal{Q}_{h}\nabla u\cdot{\bf n}\rangle_{\partial T}\\ &+(\nabla(Q_{0}u-u),A\nabla_{w}v)_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T}\\ =&(A\nabla u,\nabla v_{0})_{T}-\langle Q_{b}v_{0}-v_{b},A\mathcal{Q}_{h}\nabla u\cdot{\bf n}\rangle_{\partial T}\\ &+(\nabla(Q_{0}u-u),A\nabla_{w}v)_{T}-\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T}.\end{split} (5.6)

Then on two sides of Eq.(1.1), integrating with v0v_{0} of v={v0,vb}Vh0v=\{v_{0},v_{b}\}\in V_{h}^{0} in T𝒯hIT\in\mathcal{T}_{h}^{I} yields

T𝒯hI((Au),v0)=T𝒯hI(f,v0)T.\displaystyle\sum_{T\in\mathcal{T}_{h}^{I}}(-\nabla\cdot(A\nabla u),v_{0})=\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}. (5.7)

Using integration by parts, we get

T𝒯hI(Au,v0)TT𝒯hIAu𝐧,v0T=T𝒯hI(f,v0)T.\displaystyle\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla u,\nabla v_{0})_{T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}\rangle_{\partial T}=\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}. (5.8)

We use the fact that T𝒯hIAu𝐧,vbT=ehIAu𝐧,vbe\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{b}\rangle_{\partial T}=\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{b}\rangle_{e} to get

T𝒯hIAu𝐧,v0T=T𝒯hIAu𝐧,v0Qbv0T+T𝒯hIAu𝐧,Qbv0vbT+ehIAu𝐧e,vbe.\displaystyle\begin{split}&\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}\rangle_{\partial T}\\ =&\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}-Q_{b}v_{0}\rangle_{\partial T}+\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},Q_{b}v_{0}-v_{b}\rangle_{\partial T}+\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v_{b}\rangle_{e}.\end{split} (5.9)

Substituting Eq.(5.9) into Eq.(5.8) yields

T𝒯hI(Au,v0)T=T𝒯hI(f,v0)T+T𝒯hIAu𝐧,v0Qbv0T+T𝒯hIAu𝐧,Qbv0vbT+ehIAu𝐧e,vbe.\displaystyle\begin{split}&\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla u,\nabla v_{0})_{T}\\ =&\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}-Q_{b}v_{0}\rangle_{\partial T}+\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},Q_{b}v_{0}-v_{b}\rangle_{\partial T}\\ &+\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v_{b}\rangle_{e}.\end{split} (5.10)

Combining Eqs.(5.5)-(LABEL:proof_ee_10), we use the fact that vb=Qbvv_{b}=Q_{b}v on ehIe\in\mathcal{E}_{h}^{I} to get

T𝒯hn(Au,v)T+T𝒯hI(AwQhu,wv)T=T𝒯hn(f,v)T+T𝒯hI(f,v0)TT𝒯hIQbv0vb,A𝒬hu𝐧Au𝐧T+T𝒯hI((Q0u)u,Awv)TT𝒯hIQb(Q0u)Qbu,Awv𝐧T+T𝒯hIAu𝐧,v0Qbv0TehIAu𝐧e,vQbvT.\displaystyle\begin{split}&\sum_{T\in\mathcal{T}_{h}^{n}}(A\nabla u,\nabla v)_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla_{w}Q_{h}u,\nabla_{w}v)_{T}\\ =&\sum_{T\in\mathcal{T}_{h}^{n}}(f,v)_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}v_{0}-v_{b},A\mathcal{Q}_{h}\nabla u\cdot{\bf n}-A\nabla u\cdot{\bf n}\rangle_{\partial T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u)-\nabla u,A\nabla_{w}v)_{T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}-Q_{b}v_{0}\rangle_{\partial T}-\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v-Q_{b}v\rangle_{\partial T}.\end{split} (5.11)

The proof of the above lemma is completed. ∎

Theorem 5.1.

For uiH1(Ωi)u_{i}\in H^{1}(\Omega_{i}) with i=1,2i=1,2 satisfying Eqs.(1.1)-(1.6), then the error ehe_{h} satisfies the following equation:

an(eh,v)+asI(eh,v)=s(Qhu,v)ϕu(v),vVh0.\displaystyle a^{n}(e_{h},v)+a_{s}^{I}(e_{h},v)=s(Q_{h}u,v)-\phi_{u}(v),\,\forall v\in V_{h}^{0}. (5.12)
Proof.

For vVh0v\in V_{h}^{0}, adding s(Qhu,v)s(Q_{h}u,v) to both sides of Eq.(5.4) yields

an(u,v)+asI(Qhu,v)=T𝒯hn(f,v)T+T𝒯hI(f,v0)T+s(Qhu,v)ϕu(v),\displaystyle a^{n}(u,v)+a_{s}^{I}(Q_{h}u,v)=\sum_{T\in\mathcal{T}_{h}^{n}}(f,v)_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}(f,v_{0})_{T}+s(Q_{h}u,v)-\phi_{u}(v), (5.13)

Then subtracting the numerical scheme (2.3) from the above equation leads to

an(eh,v)+asI(eh,v)=s(Qhu,v)ϕu(v).\displaystyle a^{n}(e_{h},v)+a_{s}^{I}(e_{h},v)=s(Q_{h}u,v)-\phi_{u}(v). (5.14)

The proof of the above theorem is completed. ∎

6 Error Estimate in H1H^{1} norm

Lemma 6.1.

[3] For any v={v0,vb}Vhv=\{v_{0},v_{b}\}\in V_{h} and T𝒯hIT\in\mathcal{T}_{h}^{I}, we have

v0Cv1,h.\displaystyle\|\nabla v_{0}\|\leqslant C\|v\|_{1,h}. (6.1)
Lemma 6.2.

For uiHk+1(Ωi)u_{i}\in H^{k+1}(\Omega_{i}), we have the following estimates:

|1(u,v)|\displaystyle|\ell_{1}(u,v)| \displaystyle\leqslant Chkuk+1v1,h,\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}, (6.2)
|2(u,v)|\displaystyle|\ell_{2}(u,v)| \displaystyle\leqslant Chkuk+1v1,h,\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}, (6.3)
|3(u,v)|\displaystyle|\ell_{3}(u,v)| \displaystyle\leqslant Chkuk+1v1,h,\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}, (6.4)
|4(u,v)|\displaystyle|\ell_{4}(u,v)| \displaystyle\leqslant Chkuk+1v1,h,\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}, (6.5)
|5(u,v)|\displaystyle|\ell_{5}(u,v)| \displaystyle\leqslant Chkuk+1v1,h,\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}, (6.6)
|s(Qhu,v)|\displaystyle|s(Q_{h}u,v)| \displaystyle\leqslant Chkuk+1v1,h.\displaystyle Ch^{k}\|u\|_{k+1}\|v\|_{1,h}. (6.7)
Proof.

For the estimate (6.2), according to the Cauchy-Schwarz inequality, the trace inequality and the projection inequality, we get

|1(u,v)|=|T𝒯hIQbv0vb,A𝒬hu𝐧Au𝐧T|C(T𝒯hIhT1Qbv0vbT)12(T𝒯hIhT𝒬huuT)12Cv1,h(T𝒯hI𝒬huuT2+hT2(𝒬huu)T2)12Chkuk+1v1,h\displaystyle\begin{split}|\ell_{1}(u,v)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}v_{0}-v_{b},A\mathcal{Q}_{h}\nabla u\cdot{\bf n}-A\nabla u\cdot{\bf n}\rangle_{\partial T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{b}v_{0}-v_{b}\|_{\partial T}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}\|\mathcal{Q}_{h}\nabla u-\nabla u\|_{\partial T}\right)^{\frac{1}{2}}\\ \leqslant&C\|v\|_{1,h}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\mathcal{Q}_{h}\nabla u-\nabla u\|_{T}^{2}+h_{T}^{2}\|\nabla(\mathcal{Q}_{h}\nabla u-\nabla u)\|_{T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}\end{split}

Similarly, for 2(u,v)\ell_{2}(u,v), we obtain

|2(u,v)|=|T𝒯hI((Q0u)u,Awv)T|C(T𝒯hI(Q0uu)T)12(T𝒯hIAwvT)12Chkuk+1v1,h.\displaystyle\begin{split}|\ell_{2}(u,v)|=&|\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u)-\nabla u,A\nabla_{w}v)_{T}|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla(Q_{0}u-u)\|_{T}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla_{w}v\|_{T}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}.\end{split}

For 3(u,v)\ell_{3}(u,v), using the Cauchy-Schwarz inequality, the definition of the L2L^{2} projection operator QbQ_{b}, the trace inequality, the inverse inequality and the projection inequality leads to

|3(u,v)|=|T𝒯hIQb(Q0u)Qbu,Awv𝐧T|C(T𝒯hIQ0uuT2)12(T𝒯hIAwvT2)C(T𝒯hIhT1Q0uuT2+hT(Q0uu)T2)12(T𝒯hIhT1AwvT2)12Chkuk+1v1,h.\displaystyle\begin{split}|\ell_{3}(u,v)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}v\cdot{\bf n}\rangle_{\partial T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla_{w}v\|_{\partial T}^{2}\right)\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{0}u-u\|_{T}^{2}+h_{T}\|\nabla(Q_{0}u-u)\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|A\nabla_{w}v\|_{T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}.\end{split}

For 4(u,v)\ell_{4}(u,v), by the fact that T𝒯hIQb(Au𝐧),v0Qbv0T=0\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(A\nabla u\cdot{\bf n}),v_{0}-Q_{b}v_{0}\rangle_{\partial T}=0, the Cauchy-Schwarz inequality, the projection inequality and the inequality (6.1), we have

|4(u,v)|=|T𝒯hIAu𝐧,v0Qbv0T|=|T𝒯hIAu𝐧Qb(Au𝐧),v0Qbv0T|(T𝒯hIAu𝐧Qb(Au𝐧)T2)12(T𝒯hIv0Qbv0T2)12Chkuk+1v0Chkuk+1v1,h.\displaystyle\begin{split}|\ell_{4}(u,v)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n},v_{0}-Q_{b}v_{0}\rangle_{\partial T}\right|\\ =&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla u\cdot{\bf n}-Q_{b}(A\nabla u\cdot{\bf n}),v_{0}-Q_{b}v_{0}\rangle_{\partial T}\right|\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla u\cdot{\bf n}-Q_{b}(A\nabla u\cdot{\bf n})\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|v_{0}-Q_{b}v_{0}\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|\nabla v_{0}\|\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}.\end{split}

For 5(u,v)\ell_{5}(u,v), it follows from the fact that ehIQb(Au𝐧e),vQbve=0\sum_{e\in\mathcal{E}_{h}^{I}}\langle Q_{b}(A\nabla u\cdot{\bf n}_{e}),v-Q_{b}v\rangle_{e}=0 that

|5(u,v)|=ehIAu𝐧e,vQbve=ehIAu𝐧eQb(Au𝐧e),vQbve(ehIAu𝐧eQb(Au𝐧e)e2)12(ehIvQbve2)12Chkuk+1v1,h.\displaystyle\begin{split}|\ell_{5}(u,v)|=&\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},v-Q_{b}v\rangle_{e}\\ =&\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e}-Q_{b}(A\nabla u\cdot{\bf n}_{e}),v-Q_{b}v\rangle_{e}\\ \leqslant&\left(\sum_{e\in\mathcal{E}_{h}^{I}}\|A\nabla u\cdot{\bf n}_{e}-Q_{b}(A\nabla u\cdot{\bf n}_{e})\|_{e}^{2}\right)^{\frac{1}{2}}\left(\sum_{e\in\mathcal{E}_{h}^{I}}\|v-Q_{b}v\|_{e}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}.\end{split}

For s(Qhu,v)s(Q_{h}u,v), according to the definition of the L2L^{2} projection operator QbQ_{b}, the trace inequality, and the projection inequality, we get

|s(Qhu,v)|=|T𝒯hQb(Q0u)Qbu,Qbv0vbT|C(T𝒯hQ0uuT2)12(T𝒯hQbv0vbT2)12Chkuk+1v1,h.\displaystyle\begin{split}|s(Q_{h}u,v)|=&\left|\sum_{T\in\mathcal{T}_{h}}\langle Q_{b}(Q_{0}u)-Q_{b}u,Q_{b}v_{0}-v_{b}\rangle_{\partial T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}\|Q_{b}v_{0}-v_{b}\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|v\|_{1,h}.\end{split}

The proof of the lemma is completed. ∎

Theorem 6.1.

Assuming uiHk+1(Ωi)u_{i}\in H^{k+1}(\Omega_{i}) with i=1,2i=1,2 are the exact solutions of the Eqs.(1.1)-(1.6) and uhVhu_{h}\in V_{h} are numerical solution obtained from the numerical scheme (2.3), then we have

eh1,hChkuk+1.\displaystyle\|e_{h}\|_{1,h}\leqslant Ch^{k}\|u\|_{k+1}. (6.8)
Proof.

Choosing v=εhVh0v=\varepsilon_{h}\in V_{h}^{0} in Eq.(5.12) leads to

an(eh,εh)+asI(eh,εh)=s(Qhu,εh)ϕu(εh),\displaystyle a^{n}(e_{h},\varepsilon_{h})+a_{s}^{I}(e_{h},\varepsilon_{h})=s(Q_{h}u,\varepsilon_{h})-\phi_{u}(\varepsilon_{h}),

Thus we have

an(eh,eh)+asI(eh,eh)=s(Qhu,εh)+ϕu(εh)an(eh,IhuPhu)asI(eh,IhuPhu),\displaystyle a^{n}(e_{h},e_{h})+a_{s}^{I}(e_{h},e_{h})=s(Q_{h}u,\varepsilon_{h})+\phi_{u}(\varepsilon_{h})-a^{n}(e_{h},I_{h}u-P_{h}u)-a_{s}^{I}(e_{h},I_{h}u-P_{h}u),

For an(eh,IhuPhu)a^{n}(e_{h},I_{h}u-P_{h}u), we have

|an(eh,IhuPhu)|=|T𝒯hn(eh,(Πhuu))T|C(T𝒯hnehT2)12(T𝒯hn(Πhuu)T2)12Chkuk+1eh1,h.\displaystyle\begin{split}|a^{n}(e_{h},I_{h}u-P_{h}u)|=&|\sum_{T\in\mathcal{T}_{h}^{n}}(\nabla e_{h},\nabla(\Pi_{h}u-u))_{T}|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{n}}\|\nabla e_{h}\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{n}}\|\nabla(\Pi_{h}u-u)\|_{T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|e_{h}\|_{1,h}.\end{split} (6.9)

For asI(eh,QhuQ~hu)a_{s}^{I}(e_{h},Q_{h}u-\tilde{Q}_{h}u), we get

|asI(eh,QhuQ~hu)|=|T𝒯hI(weh,w(QhuQ~hu))T+hT1Qbe0eb,Qb(Πhu)QbuThI|T𝒯hIeh1,hw(QhuQ~hu)T+T𝒯hIhT1Qbe0ebThIQb(Πhu)QbuThICeh1,h(T𝒯hIw(QhuQ~hu)T2+hT1ΠhuuThI2)12Ceh1,h(T𝒯hIw(QhuQ~hu)T2+hkuk+12)12\displaystyle\begin{split}&\left|a_{s}^{I}(e_{h},Q_{h}u-\tilde{Q}_{h}u)\right|\\ =&\left|\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla_{w}e_{h},\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u))_{T}+h_{T}^{-1}\langle Q_{b}e_{0}-e_{b},Q_{b}(\Pi_{h}u)-Q_{b}u\rangle_{\partial T\cap\mathcal{E}_{h}^{I}}\right|\\ \leqslant&\sum_{T\in\mathcal{T}_{h}^{I}}\|e_{h}\|_{1,h}\|\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u)\|_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{b}e_{0}-e_{b}\|_{\partial T\cap\mathcal{E}_{h}^{I}}\|Q_{b}(\Pi_{h}u)-Q_{b}u\|_{\partial T\cap\mathcal{E}_{h}^{I}}\\ \leqslant&C\|e_{h}\|_{1,h}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u)\|_{T}^{2}+h_{T}^{-1}\|\Pi_{h}u-u\|^{2}_{\partial T\cap\mathcal{E}_{h}^{I}}\right)^{\frac{1}{2}}\\ \leqslant&C\|e_{h}\|_{1,h}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u)\|_{T}^{2}+h^{k}\|u\|_{k+1}^{2}\right)^{\frac{1}{2}}\end{split}

For w(QhuQ~hu)T\|\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u)\|_{T} and 𝐪𝒱k(T)\mathbf{q}\in\nabla\mathcal{V}_{k}(T), we have

(w(QhuQ~hu),𝐪)T=QbuQb(Πhu),𝐪𝐧ThICQbuQb(Πhu)ThI𝐪ThIChT12𝐪TuΠhuThIChkuk+1𝐪T.\displaystyle\begin{split}&(\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u),\mathbf{q})_{T}\\ =&\langle Q_{b}u-Q_{b}(\Pi_{h}u),\mathbf{q}\cdot{\bf n}\rangle_{\partial T\cap\mathcal{E}_{h}^{I}}\\ \leqslant&C\|Q_{b}u-Q_{b}(\Pi_{h}u)\|_{\partial T\cap\mathcal{E}_{h}^{I}}\|\mathbf{q}\|_{\partial T\cap\mathcal{E}_{h}^{I}}\\ \leqslant&Ch_{T}^{-\frac{1}{2}}\|\mathbf{q}\|_{T}\|u-\Pi_{h}u\|_{\partial T\cap\mathcal{E}_{h}^{I}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|\mathbf{q}\|_{T}.\end{split}

Taking 𝐪=w(QhuQ~hu)\mathbf{q}=\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u) in the above estimate, we get

w(QhuQ~hu)Chkuk+1.\displaystyle\|\nabla_{w}(Q_{h}u-\tilde{Q}_{h}u)\|\leqslant Ch^{k}\|u\|_{k+1}.

Thus we obtain

|asI(eh,QhuQ~hu)|Chkuk+1eh1,h.\displaystyle\left|a_{s}^{I}(e_{h},Q_{h}u-\tilde{Q}_{h}u)\right|\leqslant Ch^{k}\|u\|_{k+1}\|e_{h}\|_{1,h}. (6.10)

According to the estimates (6.2)-(6.7) and (6.9)-(6.10), we get

eh1,h2Chkuk+1eh1,h+Chkuk+1εh1,hChkuk+1eh1,h+Ch2kuk+12Ch2kuk+12+12eh1,h2.\displaystyle\begin{split}\|e_{h}\|_{1,h}^{2}\leqslant&Ch^{k}\|u\|_{k+1}\|e_{h}\|_{1,h}+Ch^{k}\|u\|_{k+1}\|\varepsilon_{h}\|_{1,h}\\ \leqslant&Ch^{k}\|u\|_{k+1}\|e_{h}\|_{1,h}+Ch^{2k}\|u\|_{k+1}^{2}\\ \leqslant&Ch^{2k}\|u\|_{k+1}^{2}+\frac{1}{2}\|e_{h}\|_{1,h}^{2}.\end{split}

Thus we have

eh1,hChkuk+1.\|e_{h}\|_{1,h}\leqslant Ch^{k}\|u\|_{k+1}.

The proof of the estimate (6.8) is completed. ∎

7 Error Estimate in L2L^{2} norm

In this section, we use the dual argument to give the error estimate in L2L^{2} norm. We consider the following problem: seeking φ\varphi satisfying

(Aφ)\displaystyle-\nabla\cdot(A\nabla\varphi) =\displaystyle= e0,inΩ,\displaystyle e_{0},\,\text{in}\,\Omega, (7.1)
φ\displaystyle\varphi =\displaystyle= 0,onΩ,\displaystyle 0,\,\text{on}\,\partial\Omega, (7.2)
φ1φ2\displaystyle\varphi_{1}-\varphi_{2} =\displaystyle= 0,onΓ,\displaystyle 0,\,\text{on}\,\Gamma, (7.3)
A1φ1𝐧A2φ2𝐧\displaystyle A_{1}\nabla\varphi_{1}\cdot{\bf n}-A_{2}\nabla\varphi_{2}\cdot{\bf n} =\displaystyle= 0,onΓ,\displaystyle 0,\,\text{on}\,\Gamma, (7.4)

where e0={uuhT𝒯hnQ0uu0T𝒯hIe_{0}=\left\{\begin{array}[]{cc}u-u_{h}&T\in\mathcal{T}_{h}^{n}\\ Q_{0}u-u_{0}&T\in\mathcal{T}_{h}^{I}\end{array}\right..

Assume the solution φ\varphi satisfies H2H^{2}-regularity, i.e

φ2Ce0.\displaystyle\|\varphi\|_{2}\leqslant C\|e_{0}\|. (7.5)
Theorem 7.1.

Based on the assumption in Theorem 6.1, we have the following error estimate in the L2L^{2} norm:

e0Chk+1uk+1.\displaystyle\|e_{0}\|\leqslant Ch^{k+1}\|u\|_{k+1}. (7.6)
Proof.

On two sides of Eq.(7.1), integrating with e0e_{0} yields

e02=((Aφ),e0)=T𝒯h(Aφ,e0)TT𝒯hnAφ𝐧,e0TT𝒯hIAφ𝐧,e0T=T𝒯h(Aφ,e0)TehIAφ𝐧,e0eT𝒯hIAφ𝐧,e0Qbe0TT𝒯hIAφ𝐧,Qbe0ebTT𝒯hIAφ𝐧,ebT=T𝒯h(Aφ,e0)TT𝒯hIAφ𝐧,e0Qbe0TT𝒯hIAφ𝐧,Qbe0ebT+ehIAφ𝐧e,e0ebe.\displaystyle\begin{split}\|e_{0}\|^{2}=&(-\nabla\cdot(A\nabla\varphi),e_{0})\\ =&\sum_{T\in\mathcal{T}_{h}}(A\nabla\varphi,\nabla e_{0})_{T}-\sum_{T\in\mathcal{T}_{h}^{n}}\langle A\nabla\varphi\cdot{\bf n},e_{0}\rangle_{\partial T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{0}\rangle_{\partial T}\\ =&\sum_{T\in\mathcal{T}_{h}}(A\nabla\varphi,\nabla e_{0})_{T}-\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{0}\rangle_{e}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{0}-Q_{b}e_{0}\rangle_{\partial T}\\ &-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},Q_{b}e_{0}-e_{b}\rangle_{\partial T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{b}\rangle_{\partial T}\\ =&\sum_{T\in\mathcal{T}_{h}}(A\nabla\varphi,\nabla e_{0})_{T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{0}-Q_{b}e_{0}\rangle_{\partial T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},Q_{b}e_{0}-e_{b}\rangle_{\partial T}\\ &+\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n}_{e},e_{0}-e_{b}\rangle_{e}.\end{split} (7.7)

For T𝒯hIT\in\mathcal{T}_{h}^{I}, it’s similar to Eq.(5.6) to get

(AwQhφ,weh)T=(Aφ,e0)TQbe0eb,A𝒬hφ𝐧T+((Q0φφ),Aweh)TQb(Q0φ)Qbφ,Aweh𝐧T.\displaystyle\begin{split}&(A\nabla_{w}Q_{h}\varphi,\nabla_{w}e_{h})_{T}\\ =&(A\nabla\varphi,\nabla e_{0})_{T}-\langle Q_{b}e_{0}-e_{b},A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}\rangle_{\partial T}\\ &+(\nabla(Q_{0}\varphi-\varphi),A\nabla_{w}e_{h})_{T}-\langle Q_{b}(Q_{0}\varphi)-Q_{b}\varphi,A\nabla_{w}e_{h}\cdot{\bf n}\rangle_{\partial T}.\end{split} (7.8)

Substitute Eq.(7.8) into Eq.(7.7) leads to

e02=T𝒯hn((Aφ,e0)T+T𝒯hI(AwQhφ,weh)T+T𝒯hIQbe0eb,A𝒬hφ𝐧Aφ𝐧TT𝒯hI((Q0φφ),Aweh)T+T𝒯hIQb(Q0φ)Qbφ,Aweh𝐧TT𝒯hIAφ𝐧,e0Qbe0T+ehIAφ𝐧e,e0ebT=an(φ,e0)+asI(Qhφ,eh)+ϕφ(eh)s(Qhφ,eh).\displaystyle\begin{split}\|e_{0}\|^{2}=&\sum_{T\in\mathcal{T}_{h}^{n}}((A\nabla\varphi,\nabla e_{0})_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}(A\nabla_{w}Q_{h}\varphi,\nabla_{w}e_{h})_{T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}e_{0}-e_{b},A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}-A\nabla\varphi\cdot{\bf n}\rangle_{\partial T}-\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}\varphi-\varphi),A\nabla_{w}e_{h})_{T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{b}\varphi,A\nabla_{w}e_{h}\cdot{\bf n}\rangle_{\partial T}-\sum_{T\in\mathcal{T}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n},e_{0}-Q_{b}e_{0}\rangle_{\partial T}\\ &+\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla\varphi\cdot{\bf n}_{e},e_{0}-e_{b}\rangle_{\partial T}\\ =&a^{n}(\varphi,e_{0})+a_{s}^{I}(Q_{h}\varphi,e_{h})+\phi_{\varphi}(e_{h})-s(Q_{h}\varphi,e_{h}).\end{split} (7.9)

Choosing v=Ihφv=I_{h}\varphi in Eq.(5.12) yields

an(eh,Πhφ)+asI(eh,Q~hφ)=s(Qhu,Q~hφ)ϕu(Ihφ).\displaystyle a^{n}(e_{h},\Pi_{h}\varphi)+a_{s}^{I}(e_{h},\tilde{Q}_{h}\varphi)=s(Q_{h}u,\tilde{Q}_{h}\varphi)-\phi_{u}(I_{h}\varphi). (7.10)

Thus we have

an(eh,φ)+asI(eh,Qhφ)=s(Qhu,Q~hφ)ϕu(Ihφ)an(Πhφφ,eh)+asI(eh,QhφQ~hφ).\displaystyle\begin{split}&a^{n}(e_{h},\varphi)+a_{s}^{I}(e_{h},Q_{h}\varphi)\\ =&s(Q_{h}u,\tilde{Q}_{h}\varphi)-\phi_{u}(I_{h}\varphi)-a^{n}(\Pi_{h}\varphi-\varphi,e_{h})+a_{s}^{I}(e_{h},Q_{h}\varphi-\tilde{Q}_{h}\varphi).\end{split} (7.11)

Substitute Eq.(7.11) into Eq.(7.9) leads to

e02=ϕφ(eh)s(Qhφ,eh)+s(Qhu,Q~hφ)ϕu(Ihφ)an(Πhφφ,eh)+asI(eh,QhφQ~hφ).\displaystyle\begin{split}\begin{split}&\|e_{0}\|^{2}\\ =&\phi_{\varphi}(e_{h})-s(Q_{h}\varphi,e_{h})+s(Q_{h}u,\tilde{Q}_{h}\varphi)-\phi_{u}(I_{h}\varphi)-a^{n}(\Pi_{h}\varphi-\varphi,e_{h})+a_{s}^{I}(e_{h},Q_{h}\varphi-\tilde{Q}_{h}\varphi).\end{split}\end{split} (7.12)

By Lemma 6.2 and the estimates (6.9)-(6.10), we have

|ϕφ(eh)s(Qhφ,eh)an(Πhφφ,eh)+asI(eh,QhφQ~hφ)|Chφ2eh1,h.\displaystyle|\phi_{\varphi}(e_{h})-s(Q_{h}\varphi,e_{h})-a^{n}(\Pi_{h}\varphi-\varphi,e_{h})+a_{s}^{I}(e_{h},Q_{h}\varphi-\tilde{Q}_{h}\varphi)|\leqslant Ch\|\varphi\|_{2}\|e_{h}\|_{1,h}. (7.13)

Each of the remaining terms is handled as follows.

(1) For s(Qhu,Q~hφ)s(Q_{h}u,\tilde{Q}_{h}\varphi), according to the Cauchy-Schwarz inequality, the definition of the L2L^{2} projection operator QbQ_{b}, the trace inequality, and the projection inequality, we get

|s(Qhu,Q~hφ)||T𝒯hIhT1Qb(Q0u)Qbu,Qb(Q0φ)QbφT(ThI)|+|T𝒯hIhT1Qb(Q0u)Qbu,Qb(Q0φ)Qb(Πhφ)ThI|C(T𝒯hIhT1Q0uuT2)12(T𝒯hIhT1Q0φφT2)12+C(T𝒯hIhT1Q0uuT2)12(T𝒯hIhT1Q0φφThI2+hT1ΠhφφThI2)12Chk+1uk+1φ2.\displaystyle\begin{split}|s(Q_{h}u,\tilde{Q}_{h}\varphi)|\leqslant&\left|\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\langle Q_{b}(Q_{0}u)-Q_{b}u,Q_{b}(Q_{0}\varphi)-Q_{b}\varphi\rangle_{\partial T\setminus(\partial T\cap\mathcal{E}_{h}^{I})}\right|\\ &+\left|\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\langle Q_{b}(Q_{0}u)-Q_{b}u,Q_{b}(Q_{0}\varphi)-Q_{b}(\Pi_{h}\varphi)\rangle_{\partial T\cap\mathcal{E}_{h}^{I}}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{0}\varphi-\varphi\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ &+C\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}h_{T}^{-1}\|Q_{0}\varphi-\varphi\|_{\partial T\cap\mathcal{E}_{h}^{I}}^{2}+h_{T}^{-1}\|\Pi_{h}\varphi-\varphi\|_{\partial T\cap\mathcal{E}_{h}^{I}}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.14)

(2) Similarly, for 1(u,Q~hφ)\ell_{1}(u,\tilde{Q}_{h}\varphi), we get the following estimate

|1(u,Q~hφ)||T𝒯hIQb(Q0φ)Qbφ,A𝒬hu𝐧Au𝐧T(ThI)|+|T𝒯hIQb(Q0φ)Qb(Πhφ),A𝒬hu𝐧Au𝐧ThI|(T𝒯hQ0φφT2+ΠhφφThI2)12(T𝒯hA𝒬huAuT2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{1}(u,\tilde{Q}_{h}\varphi)|\leqslant&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{b}\varphi,A\mathcal{Q}_{h}\nabla u\cdot{\bf n}-A\nabla u\cdot{\bf n}\rangle_{\partial T\setminus(\partial T\cap\mathcal{E}_{h}^{I})}\right|\\ &+\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{b}(\Pi_{h}\varphi),A\mathcal{Q}_{h}\nabla u\cdot{\bf n}-A\nabla u\cdot{\bf n}\rangle_{\partial T\cap\mathcal{E}_{h}^{I}}\right|\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}}\|Q_{0}\varphi-\varphi\|_{\partial T}^{2}+\|\Pi_{h}\varphi-\varphi\|_{\partial T\cap\mathcal{E}_{h}^{I}}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}\|A\mathcal{Q}_{h}\nabla u-A\nabla u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.15)

(3) For 4(u,Q~hφ)\ell_{4}(u,\tilde{Q}_{h}\varphi), using the fact that T𝒯hIQb(Q0φ)Q0φ,Qb(Au𝐧)T=0\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{0}\varphi,Q_{b}(A\nabla u\cdot{\bf n})\rangle_{\partial T}=0 leads to

|4(u,Q~hφ)|=|T𝒯hIQb(Q0φ)Q0φ,Au𝐧T|=|T𝒯hIQb(Q0φ)Q0φ,Au𝐧Qb(Au𝐧)T|C(T𝒯hIQ0φφT2)12(T𝒯hIAu𝐧Qb(Au𝐧)T2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{4}(u,\tilde{Q}_{h}\varphi)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{0}\varphi,A\nabla u\cdot{\bf n}\rangle_{\partial T}\right|\\ =&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}\varphi)-Q_{0}\varphi,A\nabla u\cdot{\bf n}-Q_{b}(A\nabla u\cdot{\bf n})\rangle_{\partial T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}\varphi-\varphi\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla u\cdot{\bf n}-Q_{b}(A\nabla u\cdot{\bf n})\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.16)

(4) For 2(u,Q~hφ)\ell_{2}(u,\tilde{Q}_{h}\varphi) and 3(u,Q~hφ)\ell_{3}(u,\tilde{Q}_{h}\varphi), we have

2(u,Q~hφ)=T𝒯hI((Q0uu),AwQ~hφ)T=T𝒯hI((Q0uu),AwQ~hφA𝒬hφ)T+T𝒯hI((Q0uu),A𝒬hφAφ)T+T𝒯hI((Q0uu),Aφ)T=21(u,φ)+22(u,φ)+23(u,φ).\displaystyle\begin{split}\ell_{2}(u,\tilde{Q}_{h}\varphi)=&\sum_{T\in\mathcal{T}_{h}^{I}}\left(\nabla(Q_{0}u-u),A\nabla_{w}\tilde{Q}_{h}\varphi\right)_{T}\\ =&\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u-u),A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi)_{T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u-u),A\mathcal{Q}_{h}\nabla\varphi-A\nabla\varphi)_{T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u-u),A\nabla\varphi)_{T}\\ =&\ell_{21}(u,\varphi)+\ell_{22}(u,\varphi)+\ell_{23}(u,\varphi).\end{split} (7.17)

and

3(u,Q~hφ)=T𝒯hIQb(Q0u)Qbu,AwQ~hφ𝐧T=T𝒯hIQb(Q0u)Qbu,AwQ~hφ𝐧A𝒬hφ𝐧T+T𝒯hIQb(Q0u)Qbu,A𝒬hφ𝐧Aφ𝐧T+T𝒯hIQb(Q0u)Qbu,Aφ𝐧AQb(φ𝐧)T+T𝒯hIQb(Q0u)Qbu,AQb(φ𝐧)T=31(u,φ)+32(u,φ)+33(u,φ)+34(u,φ).\displaystyle\begin{split}\ell_{3}(u,\tilde{Q}_{h}\varphi)=&\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}\tilde{Q}_{h}\varphi\cdot{\bf n}\rangle_{\partial T}\\ =&\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}\tilde{Q}_{h}\varphi\cdot{\bf n}-A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}\rangle_{\partial T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}-A\nabla\varphi\cdot{\bf n}\rangle_{\partial T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\rangle_{\partial T}\\ &+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,AQ_{b}(\nabla\varphi\cdot{\bf n})\rangle_{\partial T}\\ =&\ell_{31}(u,\varphi)+\ell_{32}(u,\varphi)+\ell_{33}(u,\varphi)+\ell_{34}(u,\varphi).\end{split} (7.18)

Denote by θ(u,φ)=23(u,φ)34(u,φ)\theta(u,\varphi)=\ell_{23}(u,\varphi)-\ell_{34}(u,\varphi), then we have

θ(u,φ)=T𝒯hI(Q0uu,(Aφ))T+T𝒯hIQ0uu,Aφ𝐧AQb(φ𝐧)T.\displaystyle\begin{split}\theta(u,\varphi)=&\sum_{T\in\mathcal{T}_{h}^{I}}-(Q_{0}u-u,\nabla\cdot(A\nabla\varphi))_{T}+\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{0}u-u,A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\rangle_{\partial T}.\end{split} (7.19)

Therefore we get

2(u,Q~hφ)3(u,Q~hφ)=21(u,φ)+22(u,φ)31(u,φ)32(u,φ)33(u,φ)+θ(21(u,φ)).\displaystyle\begin{split}&\ell_{2}(u,\tilde{Q}_{h}\varphi)-\ell_{3}(u,\tilde{Q}_{h}\varphi)\\ =&\ell_{21}(u,\varphi)+\ell_{22}(u,\varphi)-\ell_{31}(u,\varphi)-\ell_{32}(u,\varphi)-\ell_{33}(u,\varphi)+\theta(\ell_{21}(u,\varphi)).\end{split} (7.20)

Now we estimate each term on the right side of the above equation.

For 21(u,φ)\ell_{21}(u,\varphi), we have

|21(u,φ)|=|T𝒯hI((Q0uu),AwQ~hφA𝒬hφ)T|C(T𝒯hI(Q0uu)T2)12(T𝒯hIAwQ~hφA𝒬hφT2)12Chkuk+1(T𝒯hIAwQ~hφA𝒬hφT2)12,\displaystyle\begin{split}|\ell_{21}(u,\varphi)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u-u),A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi)_{T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla(Q_{0}u-u)\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi\|_{T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k}\|u\|_{k+1}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi\|_{T}^{2}\right)^{\frac{1}{2}},\end{split} (7.21)

where for any 𝒒𝒱k(T)\bm{q}\in\nabla\mathcal{V}_{k}(T), T𝒯hIT\in\mathcal{T}_{h}^{I}, and ThI=\partial T\cap\mathcal{E}_{h}^{I}=\emptyset, it follows from Eq.(5.3) that

|(AwQ~hφA𝒬hφ,𝒒)T|=|((Q0φφ),A𝒒)TQb(Q0φ)Qbφ,A𝒒𝐧T|C(Q0φφ)T𝒒T+Q0φφT𝒒TChφ2𝒒T.\displaystyle\begin{split}&|(A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi,\bm{q})_{T}|\\ =&|(\nabla(Q_{0}\varphi-\varphi),A\bm{q})_{T}-\langle Q_{b}(Q_{0}\varphi)-Q_{b}\varphi,A\bm{q}\cdot{\bf n}\rangle_{\partial T}|\\ \leqslant&C\|\nabla(Q_{0}\varphi-\varphi)\|_{T}\|\bm{q}\|_{T}+\|Q_{0}\varphi-\varphi\|_{\partial T}\|\bm{q}\|_{\partial T}\\ \leqslant&Ch\|\varphi\|_{2}\|\bm{q}\|_{T}.\end{split} (7.22)

Similarly, for T𝒯hIT\in\mathcal{T}_{h}^{I} and ThI\partial T\cap\mathcal{E}_{h}^{I}\neq\emptyset, we have

|(AwQ~hφA𝒬hφ,𝒒)T|=|((Q0φφ),A𝒒)TQb(Q0φ)Qbφ,A𝒒𝐧T(ThI)Qb(Q0φ)Qb(Πhφ),A𝒒𝐧ThI|C(Q0φφ)T𝒒T+CQ0φφT𝒒T+CΠhφφThI𝒒ThIChφ2𝒒T.\displaystyle\begin{split}&\left|(A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi,\bm{q})_{T}\right|\\ =&|(\nabla(Q_{0}\varphi-\varphi),A\bm{q})_{T}-\langle Q_{b}(Q_{0}\varphi)-Q_{b}\varphi,A\bm{q}\cdot{\bf n}\rangle_{\partial T\setminus(\partial T\cap\mathcal{E}_{h}^{I})}\\ &-\langle Q_{b}(Q_{0}\varphi)-Q_{b}(\Pi_{h}\varphi),A\bm{q}\cdot{\bf n}\rangle_{\partial T\cap\mathcal{E}_{h}^{I}}|\\ \leqslant&C\|\nabla(Q_{0}\varphi-\varphi)\|_{T}\|\bm{q}\|_{T}+C\|Q_{0}\varphi-\varphi\|_{\partial T}\|\bm{q}\|_{\partial T}+C\|\Pi_{h}\varphi-\varphi\|_{\partial T\cap\mathcal{E}_{h}^{I}}\|\bm{q}\|_{\partial T\cap\mathcal{E}_{h}^{I}}\\ \leqslant&Ch\|\varphi\|_{2}\|\bm{q}\|_{T}.\end{split} (7.23)

Taking 𝒒=wQ~hφ𝒬hφ\bm{q}=\nabla_{w}\tilde{Q}_{h}\varphi-\mathcal{Q}_{h}\nabla\varphi in Eq.(7.22) leads to

wQ~hφ𝒬hφTChφ2.\displaystyle\|\nabla_{w}\tilde{Q}_{h}\varphi-\mathcal{Q}_{h}\nabla\varphi\|_{T}\leqslant Ch\|\varphi\|_{2}. (7.24)

Substitute Eq.(7.22) and Eq.(7.24) into Eq.(7.21) yields

|21(u,φ)|Chk+1uk+1φ2.\displaystyle|\ell_{21}(u,\varphi)|\leqslant Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}. (7.25)

For 22(u,φ)\ell_{22}(u,\varphi), by the Cauchy-Schwarz inequality and the projection inequality, we have

|22(u,φ)|=|T𝒯hI((Q0uu),A𝒬hφAφ)T|(T𝒯hI(Q0uu)T2)12(T𝒯hIA𝒬hφAφT2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{22}(u,\varphi)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}(\nabla(Q_{0}u-u),A\mathcal{Q}_{h}\nabla\varphi-A\nabla\varphi)_{T}\right|\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla(Q_{0}u-u)\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\mathcal{Q}_{h}\nabla\varphi-A\nabla\varphi\|_{T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.26)

For 31(u,φ)\ell_{31}(u,\varphi), using the Cauchy-Schwarz inequality, the trace inequality, the inverse inequality and the projection inequality leads to

|31(u,φ)|=|T𝒯hIQb(Q0u)Qbu,AwQ~hφ𝐧A𝒬hφ𝐧T|(T𝒯hIQ0uuT2)12(T𝒯hIAwQ~hφA𝒬hφT2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{31}(u,\varphi)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla_{w}\tilde{Q}_{h}\varphi\cdot{\bf n}-A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}\rangle_{\partial T}\right|\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla_{w}\tilde{Q}_{h}\varphi-A\mathcal{Q}_{h}\nabla\varphi\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.27)

Similarly, we get

|32(u,φ)|=|T𝒯hIQb(Q0u)Qbu,A𝒬hφ𝐧Aφ𝐧T|C(T𝒯hIQ0uuT2)12(T𝒯hIA𝒬hφAφT2)12Chk+1uk+1φ2,\displaystyle\begin{split}|\ell_{32}(u,\varphi)|=&\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\mathcal{Q}_{h}\nabla\varphi\cdot{\bf n}-A\nabla\varphi\cdot{\bf n}\rangle_{\partial T}\right|\\ \leqslant&C\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\mathcal{Q}_{h}\nabla\varphi-A\nabla\varphi\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2},\end{split} (7.28)

and

|33(u,φ)|=T𝒯hIQb(Q0u)Qbu,Aφ𝐧AQb(φ𝐧)T(T𝒯hIQ0uuT2)12(T𝒯hIAφ𝐧AQb(φ𝐧)T2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{33}(u,\varphi)|=&\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{b}(Q_{0}u)-Q_{b}u,A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\rangle_{\partial T}\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.29)

For θ(u,φ)\theta(u,\varphi), we obtain

|θ(u,φ)||T𝒯hI(Q0uu,(Aφ))T|+|T𝒯hIQ0uu,Aφ𝐧AQb(φ𝐧)T|(T𝒯hIQ0uuT2)12(T𝒯hI(Aφ)T2)12+(T𝒯hIQ0uuT2)12(T𝒯hIAφ𝐧AQb(φ𝐧)T2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\theta(u,\varphi)|\leqslant&\left|\sum_{T\in\mathcal{T}_{h}^{I}}-(Q_{0}u-u,\nabla\cdot(A\nabla\varphi))_{T}\right|+\left|\sum_{T\in\mathcal{T}_{h}^{I}}\langle Q_{0}u-u,A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\rangle_{\partial T}\right|\\ \leqslant&\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|\nabla\cdot(A\nabla\varphi)\|_{T}^{2}\right)^{\frac{1}{2}}\\ &+\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|Q_{0}u-u\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}^{I}}\|A\nabla\varphi\cdot{\bf n}-AQ_{b}(\nabla\varphi\cdot{\bf n})\|_{\partial T}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.30)

(5)For 5(u,Q~hφ)\ell_{5}(u,\tilde{Q}_{h}\varphi), we get

|5(u,Q~hφ)|=ehIAu𝐧e,ΠhφQb(Πhφ)e=ehIAu𝐧eQb(Au𝐧e),ΠhφQb(Πhφ)e(ehIAu𝐧eQb(Au𝐧e)e2)12(ehIΠhφφe2+φQbφe2+QbφQb(Πhφ)e2)12Chk+1uk+1φ2.\displaystyle\begin{split}|\ell_{5}(u,\tilde{Q}_{h}\varphi)|=&\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e},\Pi_{h}\varphi-Q_{b}(\Pi_{h}\varphi)\rangle_{e}\\ =&\sum_{e\in\mathcal{E}_{h}^{I}}\langle A\nabla u\cdot{\bf n}_{e}-Q_{b}(A\nabla u\cdot{\bf n}_{e}),\Pi_{h}\varphi-Q_{b}(\Pi_{h}\varphi)\rangle_{e}\\ \leqslant&\left(\sum_{e\in\mathcal{E}_{h}^{I}}\|A\nabla u\cdot{\bf n}_{e}-Q_{b}(A\nabla u\cdot{\bf n}_{e})\|_{e}^{2}\right)^{\frac{1}{2}}\\ &\left(\sum_{e\in\mathcal{E}_{h}^{I}}\|\Pi_{h}\varphi-\varphi\|_{e}^{2}+\|\varphi-Q_{b}\varphi\|_{e}^{2}+\|Q_{b}\varphi-Q_{b}(\Pi_{h}\varphi)\|_{e}^{2}\right)^{\frac{1}{2}}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}.\end{split} (7.31)

Using Eqs.(7.14)-(7.31) yields

e02Chφ2eh1,h+Chk+1uk+1φ2Chk+1uk+1e0.\displaystyle\begin{split}\|e_{0}\|^{2}\leqslant&Ch\|\varphi\|_{2}\|e_{h}\|_{1,h}+Ch^{k+1}\|u\|_{k+1}\|\varphi\|_{2}\\ \leqslant&Ch^{k+1}\|u\|_{k+1}\|e_{0}\|.\end{split} (7.32)

The proof of the theorem is completed. ∎

8 The Numerical Experiments

In this section, we give the numerical experiment to demonstrate that the proposed immersed numerical scheme is efficient to solve the elliptic interface problem on unfitted meshes.

Example 8.1.

Consider the interface problem in the square domain [1,1]×[1,1][-1,1]\times[-1,1]. The interface is as follows:

x2+y2=13.x^{2}+y^{2}=\frac{1}{3}.

The exact solution is

u=(1A1cos(π(x2+y2)),(x,y)Ω1,1A2cos(π(x2+y2))+12(1A11A2),(x,y)Ω2,).u=\left(\begin{array}[]{cc}\frac{1}{A_{1}}\cos(\pi(x^{2}+y^{2})),&(x,y)\in\Omega_{1},\\ \frac{1}{A_{2}}\cos(\pi(x^{2}+y^{2}))+\frac{1}{2}(\frac{1}{A1}-\frac{1}{A2}),&(x,y)\in\Omega_{2},\end{array}\right).
Refer to caption
Refer to caption
Refer to caption
Figure 1: Three different level of meshes: left: the first level, middle: the second level, right: the third level

We implement this example on triangular meshes (see Figure 1). We use the P1P_{1} to P2P_{2} WG elements and the finite elements to solve the elliptic interface problems. The numerical results are shown in Tables 1 - 4. From these tables, it become evident that the convergence orders of the velocity function are O(hk)O(h^{k}) and O(hk+1)O(h^{k+1}) in the energy norm and L2L^{2} norm, respectively. Hence, the results of the above numerical results show that it is effective to use the proposed numerical scheme to solve the elliptic interface problems on unfitted meshes.

Table 1: Numerical results on triangular meshes with (A1,A2)=(1,1)(A_{1},A_{2})=(1,1)
n |Qh𝐮𝐮h|{|||}Q_{h}{\bf u}-{\bf u}_{h}{|||} order Q0𝐮𝐮0\|Q_{0}{\bf u}-{\bf u}_{0}\| order uuh\|u-u_{h}\|_{\infty} order
k=1k=1
1 2.2370E+00 1.2148E-01 2.1283E-01
2 1.1168E+00 1.0021 3.0795E-02 1.9799 6.8040E-02 1.6452
3 5.5127E-01 1.0186 7.6231E-03 2.0142 1.8944E-02 1.8446
4 2.7364E-01 1.0105 1.8950E-03 2.0081 4.8964E-03 1.9519
5 1.3631E-01 1.0054 4.7205E-04 2.0052 1.2392E-03 1.9823
k=2k=2
1 3.0460E-01 7.6529E-03 2.4590E-02
2 7.6341E-02 1.9964 9.3282E-04 3.0363 4.1435E-03 2.5691
3 1.9045E-02 2.0031 1.1557E-04 3.0128 5.6694E-04 2.8696
4 4.7491E-03 2.0036 1.4385E-05 3.0061 7.2963E-05 2.9580
5 1.1857E-03 2.0020 1.7953E-06 3.0023 9.2153E-06 2.9851
Table 2: Numerical results on triangular meshes with (A1,A2)=(1,10)(A_{1},A_{2})=(1,10)
n |Qh𝐮𝐮h|{|||}Q_{h}{\bf u}-{\bf u}_{h}{|||} order Q0𝐮𝐮0\|Q_{0}{\bf u}-{\bf u}_{0}\| order uuh\|u-u_{h}\|_{\infty} order
k=1k=1
1 4.4477E-01 0.0000 2.2992E-02 0.0000 1.0227E-01 0.0000
2 2.1656E-01 1.0383 5.5631E-03 2.0472 3.3270E-02 1.6200
3 1.0895E-01 0.9911 1.3331E-03 2.0612 8.0039E-03 2.0555
4 5.3592E-02 1.0236 3.2047E-04 2.0565 2.3125E-03 1.7912
5 2.6520E-02 1.0149 7.8282E-05 2.0334 6.4345E-04 1.8456
k=2k=2
1 4.1278E-02 9.8355E-04 2.6897E-03
2 1.0145E-02 2.0247 1.2011E-04 3.0336 4.3858E-04 2.6165
3 2.5260E-03 2.0058 1.4944E-05 3.0067 7.1094E-05 2.6250
4 6.2971E-04 2.0041 1.8625E-06 3.0042 8.5184E-06 3.0611
5 1.5712E-04 2.0028 2.3247E-07 3.0021 9.2153E-07 3.2085
Table 3: Numerical results on triangular meshes with (A1,A2)=(1,100)(A_{1},A_{2})=(1,100)
n |Qh𝐮𝐮h|{|||}Q_{h}{\bf u}-{\bf u}_{h}{|||} order Q0𝐮𝐮0\|Q_{0}{\bf u}-{\bf u}_{0}\| order uuh\|u-u_{h}\|_{\infty} order
k=1k=1
1 3.7402E-01 1.7639E-02 1.2115E-01
2 1.8228E-01 1.0369 4.2320E-03 2.0594 4.3600E-02 1.4744
3 9.3339E-02 0.9656 1.0190E-03 2.0541 1.2268E-02 1.8295
4 4.6063E-02 1.0189 2.4419E-04 2.0611 3.0937E-03 1.9875
5 2.2799E-02 1.0146 5.9424E-05 2.0389 7.2310E-04 2.0970
k=2k=2
1 2.7535E-02 5.9485E-04 2.5620E-03
2 6.7377E-03 2.0309 7.6048E-05 2.9675 3.3375E-04 2.9404
3 1.6767E-03 2.0066 9.5658E-06 2.9910 7.1478E-05 2.2232
4 4.1809E-04 2.0038 1.1965E-06 2.9990 8.5962E-06 3.0557
5 1.0426E-04 2.0036 1.4944E-07 3.0012 9.0610E-07 3.2459
Table 4: Numerical results on triangular meshes with (A1,A2)=(1,1000)(A_{1},A_{2})=(1,1000)
n |Qh𝐮𝐮h|{|||}Q_{h}{\bf u}-{\bf u}_{h}{|||} order Q0𝐮𝐮0\|Q_{0}{\bf u}-{\bf u}_{0}\| order uuh\|u-u_{h}\|_{\infty} order
k=1k=1
1 3.6990E-01 1.6765E-02 1.1861E-01
2 1.7904E-01 1.0468 3.9831E-03 2.0735 3.2937E-02 1.8484
3 9.1880E-02 0.9625 9.6856E-04 2.0400 1.1087E-02 1.5708
4 4.5623E-02 1.0100 2.3645E-04 2.0343 2.9154E-03 1.9271
5 2.2699E-02 1.0071 5.8357E-05 2.0185 6.9691E-04 2.0647
k=2k=2
1 2.7281E-02 5.8729E-04 2.0661E-03
2 6.6883E-03 2.0282 7.5315E-05 2.9631 3.3401E-04 2.6289
3 1.6656E-03 2.0056 9.4895E-06 2.9885 7.0919E-05 2.2356
4 4.1538E-04 2.0035 1.1876E-06 2.9982 8.5933E-06 3.0449
5 1.0359E-04 2.0036 1.4836E-07 3.0010 8.9880E-07 3.2571

References

  • [1] S. Adjerid, I. Babuška, R. Guo, and T. Lin, An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions, Comput. Methods Appl. Mech. Engrg., 404 (2023), pp. Paper No. 115770, 37.
  • [2] S. Adjerid, T. Lin, and H. Meghaichi, A high order geometry conforming immersed finite element for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 420 (2024), pp. Paper No. 116703, 21.
  • [3] L. Mu, J. Wang, and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), pp. 45–58.
  • [4] J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), pp. 155–174.