This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Ihara expression of a generalization
of the weighted zeta function on a finite digraph

Ayaka Ishikawa
Faculty of Engineering
Yokohama National University
Hodogaya, Yokohama, 240-8501, JAPAN
Abstract

We define a new weighted zeta function for a finite digraph and obtain its determinant expression called the Ihara expression. The graph zeta function is a generalization of the weighted graph zeta function introduced in previous research. That is, our result makes it possible to derive the Ihara expressions of the previous graph zeta functions for any finite digraphs.

1 Introduction

A graph zeta function is an analogue of the Selberg zeta function for a graph. Generally, it is defined as an exponential of a generating function or an Euler product, called the exponential expression and the Euler expression, respectively. A graph zeta function also has a determinant expression called the Hashimoto expression written by an edge matrix of a graph. If a graph zeta function satisfies some conditions, particularly the adjacency condition, then the graph zeta function always has the three expressions [7]. The Ihara expression is the determinant expression written by the weighted adjacency matrix and the weighted degree matrix. Although the conditions under which a graph zeta function has the Ihara expression are unknown, it has already been confirmed that the generalized weighted zeta function has the Ihara expression [2, 4]. Since most graph zeta functions in previous studies are special cases of the generalized weighted zeta function, the Ihara expression of the generalized weighted zeta function has been recognized as the general form in the Ihara expressions.

The Ihara expression helps derive the eigenvalues of quantum walk transition matrices. A quantum walk is the quantum version of a random walk studied in various fields: quantum algorithm, financial engineering, and laser isotope separation, for example (see, e.g., [6, 8, 9]). Some behavior of a walker, such as periodicity and localization, are derived using the eigenvalues of the transition matrix. In particular, the Sato zeta function [10] gives the characteristic polynomial of the transition matrix of the Grover walk [1]. Moreover, Konno and Sato obtained the spectrum of the Grover transition matrix by transforming the Sato zeta function as the Ihara expression [5]. The Grover walk has a generalized model called the Szegedy walk [11]. The graph zeta function that can give the eigenfunction of the Szegedy transition matrix was introduced by Ishikawa and Konno [3]. Although it is a generalization of the Sato zeta function, it is not a particular case of the generalized weighted zeta function. For a symmetric digraph corresponding to a graph, the Ihara expression is the same as that for the generalized weighted zeta function. However, for a general digraph, the Ihara expression differs from any previous graph zeta functions.

In this paper, we define a new graph zeta function. It is a generalization of the Sato zeta function and Ishikawa-Konno’s zeta function. We also derive the Ihara expression with a standard form regardless of whether the graph is symmetric. The Ihara expression is a general form of the Ihara expression of a graph zeta function.

The rest of the paper is organized as follows. Section 2 defines notations associated with graphs and our graph zeta function. The zeta function is introduced as an exponential expression, and we confirm that the exponential expression equals the Euler and the Hashimoto expressions. We show the Ihara expression in Section 3, which is the main theorem of our paper.

Throughout this paper, graphs (resp. digraphs) are finite, and multi-edge (resp. multi-arcs) and multi-loops are allowed. We use the following symbols. For positive integers mm and nn, let Mat(m,n;)\mbox{\rm Mat}(m,n;\mathbb{C}) be the set of m×nm\times n matrices over \mathbb{C}. An nn-square matrix with all one denotes by 𝟙n\mathbbm{1}_{n}. For a proposition PP, we define δP\delta_{P} as follows: δP=1\delta_{P}=1 if PP is true, δP=0\delta_{P}=0 if PP is false. Let δ¯uv\overline{\delta}_{uv} be a function such that δ¯uv=1\overline{\delta}_{uv}=1 if uvu\neq v, δ¯uv=0\overline{\delta}_{uv}=0 otherwise.

2 Preliminary

A graph G=(V,E)G=(V,E) is a pair of vertex set VV and edge set EE. The edge set EE is a multiset of 22-multisubsets of VV. If both VV and EE are finite, then GG is called finite. We call an edge e={v,v}e=\{v,v\} a loop. The number deg(u):=#{{u,v}E|vV}\deg(u):=\#\{\{u,v\}\in E|v\in V\} is called the degree of uu. If there is at most one edge between every two vertices and there are no loops, then the graph is called simple. Let 𝒜\mathcal{A} be a multiset of ordered pairs of two vertices (possibly same). We call the pair Δ=(V,𝒜)\Delta=(V,\mathcal{A}) a digraph and an element of 𝒜\mathcal{A} an arc. For an arc a=(u,v)a=(u,v), uu and vv are called the tail and the head of aa denoted by 𝔱(a)\mathfrak{t}(a) and 𝔥(a)\mathfrak{h}(a), respectively. For two vertices u,vVu,v\in V, let 𝒜uv,𝒜u,𝒜v,𝒜(u,v)\mathcal{A}_{uv},\mathcal{A}_{u*},\mathcal{A}_{*v},\mathcal{A}(u,v) be the subsets of arc set such that 𝒜uv:={a𝒜|𝔱(a)=u,𝔥(a)=v}\mathcal{A}_{uv}:=\{a\in\mathcal{A}\ |\ \mathfrak{t}(a)=u,\mathfrak{h}(a)=v\}, 𝒜u:={a𝒜|𝔱(a)=u}\mathcal{A}_{u*}:=\{a\in\mathcal{A}|\mathfrak{t}(a)=u\}, 𝒜v:={a𝒜|𝔥(a)=v}\mathcal{A}_{*v}:=\{a\in\mathcal{A}\ |\ \mathfrak{h}(a)=v\} and 𝒜(u,v):=𝒜uv𝒜vu\mathcal{A}(u,v):=\mathcal{A}_{uv}\cup\mathcal{A}_{vu}. We fix a total order << on VV, and if one writes 𝒜(u,v)\mathcal{A}(u,v), then the condition u<vu<v is always assumed. For example, in Figure 2, we have 𝒜v1,v2={a21,a22}\mathcal{A}_{v_{1},v_{2}}=\{a_{21},a_{22}\} and 𝒜v1,v2={a23,a24}\mathcal{A}_{v_{1},v_{2}}=\{a_{23},a_{24}\}. Thus, 𝒜(v1,v2)={a21,a22,a23,a24}\mathcal{A}(v_{1},v_{2})=\{a_{21},a_{22},a_{23},a_{24}\} holds.

For a graph G=(V,E)G=(V,E), let 𝒜(G):={ae=(u,v),ae=(v,u)|e={v,u}E}\mathcal{A}(G):=\{a_{e}=(u,v),a_{e}^{\prime}=(v,u)|e=\{v,u\}\in E\}, and then the digraph Δ(G)=(V,𝒜(G))\Delta(G)=(V,\mathcal{A}(G)) is called the symmetric digraph of GG. For the arcs ae,ae𝒜(G)a_{e},a_{e}^{\prime}\in\mathcal{A}(G) corresponding to an edge eEe\in E, let ae¯\overline{a_{e}} (resp. ae¯\overline{a_{e}^{\prime}}) denote aea_{e}^{\prime} (resp. aea_{e}).

On a digraph Δ\Delta, for an arc aa, let a1a^{-1} denote the set of inverse arcs of aa. We define a1a^{-1} as a1:={a¯}a^{-1}:=\{\overline{a}\} if Δ\Delta is the symmetric digraph of a graph, otherwise a1:=𝒜𝔥(a)𝔱(a)a^{-1}:=\mathcal{A}_{\mathfrak{h}(a)\mathfrak{t}(a)}. Note that for a loop a𝒜vva\in\mathcal{A}_{vv} on a digraph Δ\Delta with ΔΔ(G)\Delta\neq\Delta(G), we have a1=𝒜vva^{-1}=\mathcal{A}_{vv}, and a1a^{-1} includes aa itself.

Let ΦΔ\Phi_{\Delta} be the set {(u,v)V×V|uv,𝒜(u,v)}\{(u,v)\in V\times V\ |\ u\leq v,\mathcal{A}(u,v)\neq\emptyset\}. For an arc a𝒜uva\in\mathcal{A}_{uv}, let 𝒜[a]\mathcal{A}[a] denote the set of arcs that have inverse arcs in common with aa. That is, any two arcs a,a′′𝒜[a]a^{\prime},a^{\prime\prime}\in\mathcal{A}[a] satisfy a1=a′′1{a^{\prime}}^{-1}={a^{\prime\prime}}^{-1}. One can see that 𝒜[a]={a}\mathcal{A}[a]=\{a\} always holds for any arc aa if Δ=Δ(G)\Delta=\Delta(G). On the other hand, if ΔΔ(G)\Delta\neq\Delta(G), then 𝒜[a]=𝒜𝔱(a)𝔥(a)\mathcal{A}[a]=\mathcal{A}_{\mathfrak{t}(a)\mathfrak{h}(a)} holds. We assume that 𝒜uv\mathcal{A}_{uv}\neq\emptyset. Let BuvB_{uv} be the subset of 𝒜uv\mathcal{A}_{uv} satisfying a1a1=a^{-1}\cap{a^{\prime}}^{-1}=\emptyset for any a,aBuva,a^{\prime}\in B_{uv} and 𝒜uv=aBuv𝒜[a]\mathcal{A}_{uv}=\sqcup_{a\in B_{uv}}\mathcal{A}[a]. Then, 𝒜vu\mathcal{A}_{vu} is written by 𝒜vu=aBuva1\mathcal{A}_{vu}=\sqcup_{a\in B_{uv}}a^{-1}. For a𝒜a\in\mathcal{A}, let 𝒜(a)\mathcal{A}(a) denote the set 𝒜[a]a1\mathcal{A}[a]\cup a^{-1}. One can see that 𝒜(u,v)\mathcal{A}(u,v) is written by aBuv𝒜(a)\sqcup_{a\in B_{uv}}\mathcal{A}(a). For each (u,v)ΦΔ(u,v)\in\Phi_{\Delta}, let B(u,v):=BuvB(u,v):=B_{uv} if 𝒜uv\mathcal{A}_{uv}\neq\emptyset, B(u,v):=BvuB(u,v):=B_{vu} otherwise. Then, the following holds:

𝒜=(u,v)ΦΔ𝒜(u,v)=(u,v)ΦΔaB(u,v)𝒜(a).\mathcal{A}=\sqcup_{(u,v)\in\Phi_{\Delta}}\mathcal{A}(u,v)=\sqcup_{(u,v)\in\Phi_{\Delta}}\sqcup_{a\in B(u,v)}\mathcal{A}(a).
Refer to caption
Figure 1: Δ=(V,𝒜)\Delta=(V,\mathcal{A})
Refer to caption
Figure 2: G=(V,E)G=(V,E)

Let us explain the symbols with an example.

Example 2.1.

We consider the digraph Δ\Delta in Figure 2. Let assume a total order << on VV as v1<v2<v3v_{1}<v_{2}<v_{3}. We have ΦΔ={(v1,v1),(v1,v2),(v1,v3),(v2,v3)}\Phi_{\Delta}=\{(v_{1},v_{1}),(v_{1},v_{2}),(v_{1},v_{3}),(v_{2},v_{3})\}. If we regard Δ\Delta as a usual digraph, not a symmetric digraph of any graph, then a1=𝒜vua^{-1}=\mathcal{A}_{vu} holds for any arc auva\in_{uv}. We have

𝒜[a11]=𝒜[a12]=𝒜v1v1,𝒜[a21]=𝒜[a22]=𝒜v1v2,\mathcal{A}[a_{11}]=\mathcal{A}[a_{12}]=\mathcal{A}_{v_{1}v_{1}},\quad\mathcal{A}[a_{21}]=\mathcal{A}[a_{22}]=\mathcal{A}_{v_{1}v_{2}},

etc. It follows that

𝒜(a11)=𝒜(a12)=𝒜[a11]a111=𝒜(v1,v1),\displaystyle\mathcal{A}(a_{11})=\mathcal{A}(a_{12})=\mathcal{A}[a_{11}]\cup a_{11}^{-1}=\mathcal{A}(v_{1},v_{1}),
𝒜(a21)=𝒜(a22)=𝒜[a21]a211=𝒜v1v2𝒜v2v1=𝒜(v1,v2),\displaystyle\mathcal{A}(a_{21})=\mathcal{A}(a_{22})=\mathcal{A}[a_{21}]\cup a_{21}^{-1}=\mathcal{A}_{v_{1}v_{2}}\cup\mathcal{A}_{v_{2}v_{1}}=\mathcal{A}(v_{1},v_{2}),
𝒜(a31)=𝒜[a31]a311=𝒜v1v3𝒜v3v1=𝒜(v1,v3),\displaystyle\mathcal{A}(a_{31})=\mathcal{A}[a_{31}]\cup a_{31}^{-1}=\mathcal{A}_{v_{1}v_{3}}\cup\mathcal{A}_{v_{3}v_{1}}=\mathcal{A}(v_{1},v_{3}),
𝒜(a41)=𝒜[a41]a411=𝒜v2v3𝒜v3v2=𝒜(v2,v3).\displaystyle\mathcal{A}(a_{41})=\mathcal{A}[a_{41}]\cup a_{41}^{-1}=\mathcal{A}_{v_{2}v_{3}}\cup\mathcal{A}_{v_{3}v_{2}}=\mathcal{A}(v_{2},v_{3}).

Since 𝒜vivj\mathcal{A}_{v_{i}v_{j}}\neq\emptyset for each (vi,vj)ΦΔ(v_{i},v_{j})\in\Phi_{\Delta}, B(vi,vj)=BvivjB(v_{i},v_{j})=B_{v_{i}v_{j}} holds. We assume that

Bv1v1={a11},Bv1v2={a21},Bv1v3={a31},Bv2v3={a41}.B_{v_{1}v_{1}}=\{a_{11}\},\quad B_{v_{1}v_{2}}=\{a_{21}\},\quad B_{v_{1}v_{3}}=\{a_{31}\},\quad B_{v_{2}v_{3}}=\{a_{41}\}.

The arc set 𝒜\mathcal{A} is partitioned as follows:

𝒜\displaystyle\mathcal{A} =𝒜(v1,v1)𝒜(v1,v2)𝒜(v1,v3)𝒜(v2,v3)\displaystyle=\mathcal{A}(v_{1},v_{1})\sqcup\mathcal{A}(v_{1},v_{2})\sqcup\mathcal{A}(v_{1},v_{3})\sqcup\mathcal{A}(v_{2},v_{3})
=𝒜(a11)𝒜(a21)𝒜(a31)𝒜(a41).\displaystyle=\mathcal{A}(a_{11})\sqcup\mathcal{A}(a_{21})\sqcup\mathcal{A}(a_{31})\sqcup\mathcal{A}(a_{41}).
Example 2.2.

On the other hand, we can regard Δ\Delta as a symmetric digraph of GG in Figure 2. In particular, we assign e2e_{2} to {a21,a23}\{a_{21},a_{23}\} and e3e_{3} to {a22,a24}\{a_{22},a_{24}\}. It follows that Bv1v2={a21,a22}B_{v_{1}v_{2}}=\{a_{21},a_{22}\} and the other BvivjB_{v_{i}v_{j}} are the same as above. Thus, the arc set 𝒜\mathcal{A} is given by

𝒜=𝒜(a11)𝒜(a21)𝒜(a22)𝒜(a31)𝒜(a41).\mathcal{A}=\mathcal{A}(a_{11})\sqcup\mathcal{A}(a_{21})\sqcup\mathcal{A}(a_{22})\sqcup\mathcal{A}(a_{31})\sqcup\mathcal{A}(a_{41}).

A sequence of arcs p=(ai)i=1kp=(a_{i})_{i=1}^{k} is a path if it satisfies 𝔥(ai)=𝔱(ai+1)\mathfrak{h}(a_{i})=\mathfrak{t}(a_{i+1}) for each i=1,2,,k1i=1,2,\ldots,k-1. The number kk, called the length of pp, is denote by |p||p|. If 𝔥(ak)=𝔱(a1)\mathfrak{h}(a_{k})=\mathfrak{t}(a_{1}), then the path pp is called closed. Let XkX_{k} denote the set of closed paths of length kk. For CXkC\in X_{k}, we denote by CnC^{n} the closed path that connects CC nn times. It is called the nn-th power of CC. If CC cannot be expressed as a power of a closed path shorter than CC, then it is called prime. For C=(ci)i=1k,C=(ci)i=1kXkC=(c_{i})_{i=1}^{k},C^{\prime}=(c_{i}^{\prime})_{i=1}^{k}\in X_{k}, if there exists an integer nn such that ci=ci+nc_{i}=c^{\prime}_{i+n} for any ii, where the indices are taken modulo kk, then we denote the relation by CCC\sim C^{\prime}. The relation is an equivalence relation. An equivalence class is called a cycle, and we denote by [C][C] the equivalence class of a closed path CC. Since any closed paths in [C][C] have the same length, we define the length of [C][C] to be the length of a closed path in [C][C]. We denote by |C||C| the length of [C][C]. A cycle is prime if a closed path in the cycle is prime. We denote the set of prime cycles by 𝒫\mathcal{P}.

2.1 A new graph zeta function

Let Δ=(V,𝒜)\Delta=(V,\mathcal{A}) be a digraph. For any maps τ1,τ2,υ1,υ2:𝒜\tau_{1},\tau_{2},\upsilon_{1},\upsilon_{2}:\mathcal{A}\to\mathbb{C}, let τ\tau and υ\upsilon be maps 𝒜×𝒜\mathcal{A}\times\mathcal{A}\to\mathbb{C} defined by τ(a,a):=τ1(a)τ2(a)\tau(a,a^{\prime}):=\tau_{1}(a)\tau_{2}(a^{\prime}) and υ(a,a)=υ1(a)υ2(a)\upsilon(a,a^{\prime})=\upsilon_{1}(a)\upsilon_{2}(a^{\prime}). We define a map θ:𝒜×𝒜\theta:\mathcal{A}\times\mathcal{A}\to\mathbb{C} as

θ(a,a):=τ(a,a)δ𝔥(a)𝔱(a)υ(a,a)δaa1,\displaystyle\theta(a,a^{\prime}):=\tau(a,a^{\prime})\delta_{\mathfrak{h}(a)\mathfrak{t}(a^{\prime})}-\upsilon(a,a^{\prime})\delta_{a^{\prime}\in a^{-1}}, (1)

where δ𝔥(a)𝔱(a)\delta_{\mathfrak{h}(a)\mathfrak{t}(a^{\prime})} is the Kronecker delta. For a closed path C=(ci)i=1kXkC=(c_{i})_{i=1}^{k}\in X_{k}, let circθ(C){\rm circ}_{\theta}(C) denote the circular product θ(c1,c2)θ(c2,c3)θ(ck,c1).\theta(c_{1},c_{2})\theta(c_{2},c_{3})\ldots\theta(c_{k},c_{1}). Note that circθ(C)=circθ(C){\rm circ}_{\theta}(C)={\rm circ}_{\theta}(C^{\prime}) holds if CCC\sim C^{\prime}. Let Nk(circθ):=CXkcircθ(C)N_{k}({\rm circ}_{\theta}):=\sum_{C\in X_{k}}{\rm circ}_{\theta}(C).

Definition 2.3.

A graph zeta function for Δ\Delta is the following formal power series:

ZΔ(t;θ):=exp(k1Nk(circθ)ktk).\displaystyle Z_{\Delta}(t;\theta):=\exp\left(\sum_{k\geq 1}\frac{N_{k}({\rm circ}_{\theta})}{k}t^{k}\right). (2)

The map θ\theta is called the weight of ZΔ(t;θ)Z_{\Delta}(t;\theta), and the formal power series expression is called the exponential expression [7]. Let

EΔ(t;θ):=[C]𝒫11circθ(C)t|C|,HΔ(t;θ):=1det(ItMθ),\displaystyle E_{\Delta}(t;\theta):=\prod_{[C]\in\mathcal{P}}\frac{1}{1-{\rm circ}_{\theta}(C)t^{|C|}},\qquad H_{\Delta}(t;\theta):=\frac{1}{\det(I-tM_{\theta})},

where Mθ=(θ(a,a))a,a𝒜M_{\theta}=(\theta(a,a^{\prime}))_{a,a^{\prime}\in\mathcal{A}}. The expressions EΔ(t;θ)E_{\Delta}(t;\theta) and HΔ(t;θ)H_{\Delta}(t;\theta) are called the Euler expression and the Hashimoto expression, respectively (cf. [7]).

Proposition 2.4.

If θ:𝒜×𝒜\theta:\mathcal{A}\times\mathcal{A}\to\mathbb{C} satisfies the condition

θ(a,a)0𝔥(a)=𝔱(a),\theta(a,a^{\prime})\neq 0\Rightarrow\mathfrak{h}(a)=\mathfrak{t}(a^{\prime}),

then ZΔ(t;θ)=EΔ(t;θ)=HΔ(t;θ)Z_{\Delta}(t;\theta)=E_{\Delta}(t;\theta)=H_{\Delta}(t;\theta).

Proof.

See [7]. ∎

The above condition for θ\theta is called the adjacency condition [7]. If θ(a,a)0\theta(a,a^{\prime})\neq 0 for a,a𝒜a,a^{\prime}\in\mathcal{A}, then δ𝔥(a)𝔱(a)=1\delta_{\mathfrak{h}(a)\mathfrak{t}(a^{\prime})}=1 holds. Thus, the weight θ\theta satisfies the adjacency condition, and we can see ZΔ(t;θ)=EΔ(t;θ)=HΔ(t;θ)Z_{\Delta}(t;\theta)=E_{\Delta}(t;\theta)=H_{\Delta}(t;\theta).

Remark 1.

We assume that τ1(a)=υ1(a)=1\tau_{1}(a)=\upsilon_{1}(a)=1 for any a𝒜a\in\mathcal{A}, then ZΔ(t;θ)Z_{\Delta}(t;\theta) is the generalized weighted zeta function [7].

3 Main theorem

3.1 Auxiliary results

Before describing the main theorem, we will show some lemmas.

Lemma 3.1.

Let MMat(k,k;)M\in\mbox{\rm Mat}(k,k;\mathbb{C}) whose the (i,j)(i,j)-entry is m1(i)m2(j)m_{1}(i)m_{2}(j) and μ:=tr(M)\mu:=\mbox{\rm tr}(M). For a variable tt, (I+tM)1(I+tM)^{-1} is written by

(I+tM)1=It(1μ2t2)1M+t2(1μ2t2)1M2,\displaystyle(I+tM)^{-1}=I-t(1-\mu^{2}t^{2})^{-1}M+t^{2}(1-\mu^{2}t^{2})^{-1}M^{2},

and det(I+tM)=1+μt\det(I+tM)=1+\mu t holds.

Proof.

For a matrix MM, we denote by MijM_{ij} the (i,j)(i,j)-entry of MM. The (i,j)(i,j)-entry of M2M^{2} is

(M2)i,j=s=1km1(i)m2(s)m1(s)m2(j)=μm1(i)m2(j),(M^{2})_{i,j}=\sum_{s=1}^{k}m_{1}(i)m_{2}(s)m_{1}(s)m_{2}(j)=\mu m_{1}(i)m_{2}(j),

and we get M2=μMM^{2}=\mu M. Thus, Mn=μn1MM^{n}=\mu^{n-1}M holds, and a power series expansion of (I+tM)1(I+tM)^{-1} is as follows:

(I+tM)1\displaystyle(I+tM)^{-1} =I+n1(tM)n\displaystyle=I+\sum_{n\geq 1}(-tM)^{n}
=I+n0(tM)2n+1+n1(tM)2n\displaystyle=I+\sum_{n\geq 0}(-tM)^{2n+1}+\sum_{n\geq 1}(-tM)^{2n}
=Itn0(μt)2nM+t2n1(μt)2(n1)M2\displaystyle=I-t\sum_{n\geq 0}(\mu t)^{2n}M+t^{2}\sum_{n\geq 1}(-\mu t)^{2(n-1)}M^{2}
=It(1μ2t2)1M+t2(1μ2t2)1M2.\displaystyle=I-t(1-\mu^{2}t^{2})^{-1}M+t^{2}(1-\mu^{2}t^{2})^{-1}M^{2}.

Let D1D_{1} and D2D_{2} be k×kk{\times}k diagonal matrices with (D1)ii=m1(i)(D_{1})_{ii}=m_{1}(i) and (D2)ii=m2(i)(D_{2})_{ii}=m_{2}(i), respectively. Since one can see that M=D1𝟙kD2M=D_{1}\mathbbm{1}_{k}D_{2} holds, the determinant det(I+tM)\det(I+tM) is given by

det(I+tM)\displaystyle\det(I+tM) =det(I+tD1𝟙kD2)=det(I+tD2D1𝟙k)\displaystyle=\det(I+tD_{1}\mathbbm{1}_{k}D_{2})=\det(I+tD_{2}D_{1}\mathbbm{1}_{k})
=|1+m1(1)m2(1)tm1(1)m2(1)tm1(1)m2(1)tm1(2)m2(2)t1+m1(2)m2(2)tm1(2)m2(2)tm1(3)m2(3)tm1(3)m2(3)t1+m1(3)m2(3)t|\displaystyle=\begin{vmatrix}1+m_{1}(1)m_{2}(1)t&m_{1}(1)m_{2}(1)t&m_{1}(1)m_{2}(1)t&\ldots\\ m_{1}(2)m_{2}(2)t&1+m_{1}(2)m_{2}(2)t&m_{1}(2)m_{2}(2)t&\ldots\\ m_{1}(3)m_{2}(3)t&m_{1}(3)m_{2}(3)t&1+m_{1}(3)m_{2}(3)t&\ldots\\ \vdots&\vdots&\vdots&\ddots\end{vmatrix}
=|1+m1(1)m2(1)t11m1(2)m2(2)t10m1(3)m2(3)t01|\displaystyle=\begin{vmatrix}1+m_{1}(1)m_{2}(1)t&-1&-1&\ldots\\ m_{1}(2)m_{2}(2)t&1&0&\ldots\\ m_{1}(3)m_{2}(3)t&0&1&\ldots\\ \vdots&\vdots&\vdots&\ddots\end{vmatrix}
=|1+μt00m1(2)m2(2)t10m1(3)m2(3)t01|\displaystyle=\begin{vmatrix}1+\mu t&0&0&\ldots\\ m_{1}(2)m_{2}(2)t&1&0&\ldots\\ m_{1}(3)m_{2}(3)t&0&1&\ldots\\ \vdots&\vdots&\vdots&\ddots\end{vmatrix}
=1+μt\displaystyle=1+\mu t

Remark 2.

A more refined expression of (I+tM)1(I+tM)^{-1} is possible; however, we give the above expression for convenience.

Lemma 3.2.

Let M1Mat(k,l;)M_{1}{\;\in\;}\operatorname{Mat}(k,l;\mathbb{C}) and M2Mat(l,k;)M_{2}{\;\in\;}\operatorname{Mat}(l,k;\mathbb{C}) with (M1)ij=m1(i)m2(k+j)(M_{1})_{ij}=m_{1}(i)m_{2}(k+j) and (M2)ij=m1(k+i)m2(j)(M_{2})_{ij}=m_{1}(k+i)m_{2}(j), respectively. Let μ1\mu_{1} and μ2\mu_{2} denote i=1km1(i)m2(i)\sum_{i=1}^{k}m_{1}(i)m_{2}(i) and i=k+1lm1(i)m2(i)\sum_{i=k+1}^{l}m_{1}(i)m_{2}(i), respectively. For a variable tt and a matrix M:=[OkM1M2Ol]M:=\begin{bmatrix}O_{k}&M_{1}\\ M_{2}&O_{l}\end{bmatrix}, the following identity holds:

(I+tM)1=It(1μ1μ2t2)1M+t2(1μ1μ2t2)1M2,\displaystyle(I+tM)^{-1}=I-t(1-\mu_{1}\mu_{2}t^{2})^{-1}M+t^{2}(1-\mu_{1}\mu_{2}t^{2})^{-1}M^{2},

and the determinant det(I+tM)\det(I+tM) equals 1μ1μ2t21-\mu_{1}\mu_{2}t^{2}.

Proof.

Let M1Mat(k,k;)M_{1}^{\prime}{\;\in\;}\operatorname{Mat}(k,k;\mathbb{C}) and M2Mat(l,l;)M_{2}^{\prime}{\;\in\;}\operatorname{Mat}(l,l;\mathbb{C}) with (M1)ij=m1(i)m2(j)(M_{1})_{ij}=m_{1}(i)m_{2}(j) and (M2)ij=m1(k+i)m2(k+j)(M_{2})_{ij}=m_{1}(k+i)m_{2}(k+j), respectively. Since M1M2=μ2M1M_{1}M_{2}=\mu_{2}M_{1}^{\prime} and M2M1=μ1M2M_{2}M_{1}=\mu_{1}M_{2}^{\prime} hold, we get

M2=[M1M2OOM2M1]=[μ2M1OOμ1M2].M^{2}=\begin{bmatrix}M_{1}M_{2}&O\\ O&M_{2}M_{1}\end{bmatrix}=\begin{bmatrix}\mu_{2}M_{1}^{\prime}&O\\ O&\mu_{1}M_{2}^{\prime}\end{bmatrix}.

It also holds that (M1)n=μ1n1M1,(M2)n=μ2n1M2(M_{1}^{\prime})^{n}=\mu_{1}^{n-1}M_{1}^{\prime},\ (M_{2}^{\prime})^{n}=\mu_{2}^{n-1}M_{2}^{\prime}. Thus, M2nM^{2n} is written by

M2n\displaystyle M^{2n} =[μ2n(M1)nOOμ1n(M2)n]\displaystyle=\begin{bmatrix}\mu_{2}^{n}(M_{1}^{\prime})^{n}&O\\ O&\mu_{1}^{n}(M_{2}^{\prime})^{n}\end{bmatrix}
=(μ1μ2)n1[μ2M1OOμ1M2]\displaystyle=(\mu_{1}\mu_{2})^{n-1}\begin{bmatrix}\mu_{2}M_{1}^{\prime}&O\\ O&\mu_{1}M_{2}^{\prime}\end{bmatrix}
=(μ1μ2)n1M2.\displaystyle=(\mu_{1}\mu_{2})^{n-1}M^{2}.

In addition, we have M1M1=μ1M1M_{1}^{\prime}M_{1}=\mu_{1}M_{1} and M2M2=μ2M2M_{2}^{\prime}M_{2}=\mu_{2}M_{2}, and M2n+1M^{2n+1} is written by

M2n+1\displaystyle M^{2n+1} =(μ1μ2)n1[Okμ2M1M1μ1M2M2Ol]\displaystyle=(\mu_{1}\mu_{2})^{n-1}\begin{bmatrix}O_{k}&\mu_{2}M_{1}^{\prime}M_{1}\\ \mu_{1}M_{2}^{\prime}M_{2}&O_{l}\end{bmatrix}
=(μ1μ2)n1[Okμ2μ1M1μ1μ2M2Ol]\displaystyle=(\mu_{1}\mu_{2})^{n-1}\begin{bmatrix}O_{k}&\mu_{2}\mu_{1}M_{1}\\ \mu_{1}\mu_{2}M_{2}&O_{l}\end{bmatrix}
=(μ1μ2)nM\displaystyle=(\mu_{1}\mu_{2})^{n}M

Therefore, a power series expansion of (I+tM)1(I+tM)^{-1} is as follows:

(I+tM)1\displaystyle(I+tM)^{-1} =I+n0(tM)2n+1+n1(tM)2n\displaystyle=I+\sum_{n\geq 0}(-tM)^{2n+1}+\sum_{n\geq 1}(-tM)^{2n}
=Itn0t2n(μ1μ2)nM+t2n1t2(n1)(μ1μ2)n1M2\displaystyle=I-t\sum_{n\geq 0}t^{2n}(\mu_{1}\mu_{2})^{n}M+t^{2}\sum_{n\geq 1}t^{2(n-1)}(\mu_{1}\mu_{2})^{n-1}M^{2}
=It(1μ1μ2t2)1M+t2(1μ1μ2t2)1M2.\displaystyle=I-t(1-\mu_{1}\mu_{2}t^{2})^{-1}M+t^{2}(1-\mu_{1}\mu_{2}t^{2})^{-1}M^{2}.

Since the matrix I+tMI+tM is decomposed as [IOtM2I][IOOIt2M2M1][ItM1OI]\begin{bmatrix}I&O\\ tM_{2}&I\end{bmatrix}\begin{bmatrix}I&O\\ O&I-t^{2}M_{2}M_{1}\end{bmatrix}\begin{bmatrix}I&tM_{1}\\ O&I\end{bmatrix}, det(I+tM)=det(It2M2M1)=det(It2μ1M2)\det(I+tM)=\det(I-t^{2}M_{2}M_{1})=\det(I-t^{2}\mu_{1}M_{2}^{\prime}) holds. Note that the matrix tμ1M2-t\mu_{1}M_{2}^{\prime} is an example of MM of Lemma 3.1, and we get

det(It2μ1M2)=det(I+t(tμ1M2))=1+(μ1μ2t)t=1μ1μ2t2.\det(I-t^{2}\mu_{1}M_{2}^{\prime})=\det(I+t(-t\mu_{1}M_{2}^{\prime}))=1+(-\mu_{1}\mu_{2}t)t=1-\mu_{1}\mu_{2}t^{2}.

3.2 The Ihara expression of the graph zeta function on a finite digraph

We fix a total order << on VV, and if one writes 𝒜(u,v)\mathcal{A}(u,v), then the condition u<vu<v is always assumed. Let J=(jaa)a,a𝒜J=(j_{aa^{\prime}})_{a,a^{\prime}\in\mathcal{A}}, K=(kav)a𝒜,vVK=(k_{av})_{a\in\mathcal{A},v\in V} and L=(lua)uV,a𝒜L=(l_{ua^{\prime}})_{u\in V,a^{\prime}\in\mathcal{A}} be matrices defined by jaa=υ(a,a)δaa1j_{aa^{\prime}}=\upsilon(a,a^{\prime})\delta_{a^{\prime}\in a^{-1}}, kav=τ1(a)δ𝔥(a)vk_{av}=\tau_{1}(a)\delta_{\mathfrak{h}(a)v} and lua=τ2(a)δu𝔱(a)l_{ua^{\prime}}=\tau_{2}(a^{\prime})\delta_{u\mathfrak{t}(a^{\prime})}. Recall that 𝒜=(u,v)ΦΔaB(u,v)𝒜(a)\mathcal{A}=\sqcup_{(u,v)\in\Phi_{\Delta}}\sqcup_{a\in B(u,v)}\mathcal{A}(a) holds. For each aB(u,v)a\in B(u,v) of (u,v)ΦΔ(u,v)\in\Phi_{\Delta}, let J(𝒜(a)):=(jaa)a,a𝒜(a)J(\mathcal{A}(a)):=(j_{aa^{\prime}})_{a,a^{\prime}\in\mathcal{A}(a)}, K(𝒜(a)):=(kaw)a𝒜(a),wVK(\mathcal{A}(a)):=(k_{aw})_{a\in\mathcal{A}(a),w\in V} and L(𝒜(a)):=(lwa)wV,a𝒜(a)L(\mathcal{A}(a)):=(l_{wa^{\prime}})_{w\in V,a^{\prime}\in\mathcal{A}(a)}. Note that we can choose a total order on VV, which makes JJ a diagonal matrix. We fix such a total order on VV. Let TT denote the block diagonal matrix I+tJI+tJ, and the diagonal blocks are given by T(𝒜(a)):=I+tJ(𝒜(a))T(\mathcal{A}(a)):=I+tJ(\mathcal{A}(a)). Then, one can see that detT=(u,v)ΦΔaB(u,v)detT(𝒜(a))\det T=\prod_{(u,v)\in\Phi_{\Delta}}\prod_{a\in B(u,v)}\det T(\mathcal{A}(a)) holds.

For a set of arcs SS, let υ(S):=aSυ(a,a)\upsilon(S):=\sum_{a\in S}\upsilon(a,a). We consider the following matrices

AΔ(θ)\displaystyle A_{\Delta}(\theta) =(u,v)ΦΔaB(u,v)L(𝒜(a))K(𝒜(a)),\displaystyle=\sum_{(u,v)\in\Phi_{\Delta}}\sum_{a\in B(u,v)}L(\mathcal{A}(a))K(\mathcal{A}(a)),
DΔ(θ)\displaystyle D_{\Delta}(\theta) =(u,v)ΦΔaB(u,v)L(𝒜(a))J(𝒜(a))K(𝒜(a))1υ(𝒜[a])υ(a1)t2,\displaystyle=\sum_{(u,v)\in\Phi_{\Delta}}\sum_{a\in B(u,v)}\frac{L(\mathcal{A}(a))J(\mathcal{A}(a))K(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}},
XΔ(θ)\displaystyle X_{\Delta}(\theta) =(u,v)ΦΔaB(u,v)L(𝒜(a))J(𝒜(a))2K(𝒜(a))1υ(𝒜[a])υ(a1)t2.\displaystyle=\sum_{(u,v)\in\Phi_{\Delta}}\sum_{a\in B(u,v)}\frac{L(\mathcal{A}(a))J(\mathcal{A}(a))^{2}K(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}.
Theorem 3.3.

For a finite digraph Δ\Delta, the following identity holds:

ZΔ(t;θ)1=det(ItMθ)=detTdet(ItAΔ(θ)+t2DΔ(θ)t3XΔ(θ)).Z_{\Delta}(t;\theta)^{-1}=\det(I-tM_{\theta})=\det T\det(I-tA_{\Delta}(\theta)+t^{2}D_{\Delta}(\theta)-t^{3}X_{\Delta}(\theta)).
Proof.

Let H:=(τ(a,a)δ𝔥(a)𝔱(a))a,a𝒜H:=(\tau(a,a^{\prime})\delta_{\mathfrak{h}(a)\mathfrak{t}(a^{\prime})})_{a,a^{\prime}\in\mathcal{A}}, and we have Mθ=HJM_{\theta}=H-J. Since τ(a,a)δ𝔥(a)𝔱(a)=vV(τ1(a)δ𝔥(a)v)(τ2(a)δv𝔱(a))\tau(a,a^{\prime})\delta_{\mathfrak{h}(a)\mathfrak{t}(a^{\prime})}=\sum_{v\in V}(\tau_{1}(a)\delta_{\mathfrak{h}(a)v})(\tau_{2}(a^{\prime})\delta_{v\mathfrak{t}(a^{\prime})}), it follows that H=KLH=KL and

det(ItMθ)=det(It(KLJ))=det(TtKL).\det(I-tM_{\theta})=\det(I-t(KL-J))=\det(T-tKL).

Hence we have

det(TtKL)\displaystyle\det(T-tKL) =det(T)det(ItT1KL)\displaystyle=\det(T)\det(I-tT^{-1}KL)
=det(T)det(ItLT1K).\displaystyle=\det(T)\det(I-tLT^{-1}K).

For the direct sum decomposition T=(u,v)ΦΔ,aB(u,v)T(𝒜(a))T=\bigoplus_{\begin{subarray}{c}(u,v)\in\Phi_{\Delta},\\ a\in B(u,v)\end{subarray}}T(\mathcal{A}(a)), we arrange the submatrices L(𝒜(a))L(\mathcal{A}(a)) and K(𝒜(a))K(\mathcal{A}(a)) of LL and KK in order of submatrices T(𝒜(a))T(\mathcal{A}(a)) of TT. Then, LT1KLT^{-1}K is written by

(u,v)ΦΔaB(u,v)L(𝒜(a))T(𝒜(a))1K(𝒜(a)).\displaystyle\sum_{(u,v)\in\Phi_{\Delta}}\sum_{a\in B(u,v)}L(\mathcal{A}(a))T(\mathcal{A}(a))^{-1}K(\mathcal{A}(a)). (3)

Recall that

𝒜(a)=𝒜[a]a1={a}{a¯}\mathcal{A}(a)=\mathcal{A}[a]\cup a^{-1}=\{a\}\sqcup\{\overline{a}\}

for a𝒜(G)a\in\mathcal{A}(G) on Δ(G)\Delta(G), and

𝒜(a)=𝒜uv𝒜vu,𝒜(l)=𝒜ww𝒜ww=𝒜ww\mathcal{A}(a)=\mathcal{A}_{uv}\sqcup\mathcal{A}_{vu},\quad\mathcal{A}(l)=\mathcal{A}_{ww}\cup\mathcal{A}_{ww}=\mathcal{A}_{ww}

for a𝒜uv,l𝒜wwa\in\mathcal{A}_{uv},l\in\mathcal{A}_{ww} on Δ\Delta with ΔΔ(G)\Delta\neq\Delta(G). For a𝒜(G)a\in\mathcal{A}(G) on Δ(G)\Delta(G), J(𝒜(a))J(\mathcal{A}(a)) is given by

J(𝒜(a))=[0υ(a,a¯)υ(a¯,a)0]=[0υ1(a)υ2(a¯)υ1(a¯)υ2(a)0],J(\mathcal{A}(a))=\begin{bmatrix}0&\upsilon(a,\overline{a})\\ \upsilon(\overline{a},a)&0\end{bmatrix}=\begin{bmatrix}0&\upsilon_{1}(a)\upsilon_{2}(\overline{a})\\ \upsilon_{1}(\overline{a})\upsilon_{2}(a)&0\end{bmatrix},

and from Lemma 3.2, the following holds:

T(𝒜(a))1\displaystyle T(\mathcal{A}(a))^{-1} =ItJ(𝒜(a))1υ(a,a)υ(a¯,a¯)t2+t2J(𝒜(a))21υ(a,a)υ(a¯,a¯)t2\displaystyle=I-t\frac{J(\mathcal{A}(a))}{1-\upsilon(a,a)\upsilon(\overline{a},\overline{a})t^{2}}+t^{2}\frac{J(\mathcal{A}(a))^{2}}{1-\upsilon(a,a)\upsilon(\overline{a},\overline{a})t^{2}}
=ItJ(𝒜(a))1υ(𝒜[a])υ(a1)t2+t2J(𝒜(a))21υ(𝒜[a])υ(a1)t2.\displaystyle=I-t\frac{J(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}+t^{2}\frac{J(\mathcal{A}(a))^{2}}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}.

On the other hand, for Δ\Delta, let Juv:=(υ(a,a′′))a𝒜uv,a′′𝒜vuJ_{uv}:=(\upsilon(a^{\prime},a^{\prime\prime}))_{a^{\prime}\in\mathcal{A}_{uv},a^{\prime\prime}\in\mathcal{A}_{vu}}. Then, J(𝒜(a))J(\mathcal{A}(a)) is given by

J(𝒜(a))={Juuifa𝒜uu,[0JuvJvu0]otherwise.J(\mathcal{A}(a))=\begin{cases}J_{uu}&{\rm if}\ a\in\mathcal{A}_{uu},\\ \begin{bmatrix}0&J_{uv}\\ J_{vu}&0\end{bmatrix}&{\rm otherwise}.\end{cases}

In both cases, from Lemma 3.1 and Lemma 3.2, we can write T(𝒜(a))1T(\mathcal{A}(a))^{-1} as follows:

T(𝒜(a))1=ItJ(𝒜(a))1υ(𝒜[a])υ(a1)t2+t2J(𝒜(a))21υ(𝒜[a])υ(a1)t2.T(\mathcal{A}(a))^{-1}=I-t\frac{J(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}+t^{2}\frac{J(\mathcal{A}(a))^{2}}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}.

Regardless of whether Δ\Delta is symmetric or not, L(𝒜(a))T(𝒜(a))1K(𝒜(a))L(\mathcal{A}(a))T(\mathcal{A}(a))^{-1}K(\mathcal{A}(a)) is written by

L(𝒜(a))K(𝒜(a))tL(𝒜(a))J(𝒜(a))K(𝒜(a))1υ(𝒜[a])υ(a1)t2+t2L(𝒜(a))J(𝒜(a))2K(𝒜(a))1υ(𝒜[a])υ(a1)t2.L(\mathcal{A}(a))K(\mathcal{A}(a))-t\frac{L(\mathcal{A}(a))J(\mathcal{A}(a))K(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}+t^{2}\frac{L(\mathcal{A}(a))J(\mathcal{A}(a))^{2}K(\mathcal{A}(a))}{1-\upsilon(\mathcal{A}[a])\upsilon(a^{-1})t^{2}}.

Therefore, from (3), we have

det(ItMθ)\displaystyle\det(I-tM_{\theta}) =det(T)det(It(AΔ(θ)tDΔ(θ)+t2XΔ(θ)))\displaystyle=\det(T)\det(I-t(A_{\Delta}(\theta)-tD_{\Delta}(\theta)+t^{2}X_{\Delta}(\theta)))
=det(T)det(ItAΔ(θ)+t2DΔ(θ)t3XΔ(θ)).\displaystyle=\det(T)\det(I-tA_{\Delta}(\theta)+t^{2}D_{\Delta}(\theta)-t^{3}X_{\Delta}(\theta)).

4 Example

We consider our zeta function on Δ=(V,𝒜)\Delta=(V,\mathcal{A}) in Figure 2.

We regard Δ\Delta as a usual graph as in Example 2.1. For each (vi,vj)ΦΔ(v_{i},v_{j})\in\Phi_{\Delta} and aB(vi,vj)a\in B(v_{i},v_{j}), J(𝒜(a))J(\mathcal{A}(a)), K(𝒜(a))K(\mathcal{A}(a)), and L(𝒜(a))L(\mathcal{A}(a)) are as follows:

J(𝒜(a11))=[υ(a11,a11)υ(a11,a12)υ(a12,a11)υ(a12,a12)],\displaystyle J(\mathcal{A}(a_{11}))=\begin{bmatrix}\upsilon(a_{11},a_{11})&\upsilon(a_{11},a_{12})\\ \upsilon(a_{12},a_{11})&\upsilon(a_{12},a_{12})\end{bmatrix},
K(𝒜(a11))=[τ1(a11)00τ1(a12)00],L(𝒜(a11))=[τ2(a11)τ2(a12)0000],\displaystyle K(\mathcal{A}(a_{11}))=\begin{bmatrix}\tau_{1}(a_{11})&0&0\\ \tau_{1}(a_{12})&0&0\end{bmatrix},\quad L(\mathcal{A}(a_{11}))=\begin{bmatrix}\tau_{2}(a_{11})&\tau_{2}(a_{12})\\ 0&0\\ 0&0\end{bmatrix},
J(𝒜(a21))=[00υ(a21,a23)υ(a21,a24)00υ(a22,a23)υ(a22,a24)υ(a23,a21)υ(a23,a22)00υ(a24,a21)υ(a24,a22)00],\displaystyle J(\mathcal{A}(a_{21}))=\begin{bmatrix}0&0&\upsilon(a_{21},a_{23})&\upsilon(a_{21},a_{24})\\ 0&0&\upsilon(a_{22},a_{23})&\upsilon(a_{22},a_{24})\\ \upsilon(a_{23},a_{21})&\upsilon(a_{23},a_{22})&0&0\\ \upsilon(a_{24},a_{21})&\upsilon(a_{24},a_{22})&0&0\end{bmatrix},
K(𝒜(a21))=[0τ1(a21)00τ1(a22)0τ1(a23)00τ1(a24)00],\displaystyle K(\mathcal{A}(a_{21}))=\begin{bmatrix}0&\tau_{1}(a_{21})&0\\ 0&\tau_{1}(a_{22})&0\\ \tau_{1}(a_{23})&0&0\\ \tau_{1}(a_{24})&0&0\end{bmatrix},
L(𝒜(a21))=[τ2(a21)τ2(a22)000τ2(a23)τ2(a24)0000],\displaystyle L(\mathcal{A}(a_{21}))=\begin{bmatrix}\tau_{2}(a_{21})&\tau_{2}(a_{22})&0\\ 0&0&\tau_{2}(a_{23})&\tau_{2}(a_{24})\\ 0&0&0&0\end{bmatrix},
J(𝒜(a31))=[0υ(a31,a32)υ(a32,a31)0],\displaystyle J(\mathcal{A}(a_{31}))=\begin{bmatrix}0&\upsilon(a_{31},a_{32})\\ \upsilon(a_{32},a_{31})&0\end{bmatrix},
K(𝒜(a31))=[00τ1(a31)0τ1(a32)0],L(𝒜(a31))=[000τ2(a31)000τ2(a32)0],\displaystyle K(\mathcal{A}(a_{31}))=\begin{bmatrix}0&0&\tau_{1}(a_{31})\\ 0&\tau_{1}(a_{32})&0\end{bmatrix},\quad L(\mathcal{A}(a_{31}))=\begin{bmatrix}0&0&0\\ \tau_{2}(a_{31})&0&0\\ 0&\tau_{2}(a_{32})&0\end{bmatrix},
J(𝒜(a41))=[0υ(a41,a42)υ(a42,a41)0],\displaystyle J(\mathcal{A}(a_{41}))=\begin{bmatrix}0&\upsilon(a_{41},a_{42})\\ \upsilon(a_{42},a_{41})&0\end{bmatrix},
K(𝒜(a41))=[00τ1(a41)τ1(a42)00],L(𝒜(a41))=[τ2(a41)0000τ2(a42)].\displaystyle K(\mathcal{A}(a_{41}))=\begin{bmatrix}0&0&\tau_{1}(a_{41})\\ \tau_{1}(a_{42})&0&0\end{bmatrix},\quad L(\mathcal{A}(a_{41}))=\begin{bmatrix}\tau_{2}(a_{41})&0\\ 0&0\\ 0&\tau_{2}(a_{42})\end{bmatrix}.

The matrices AΔ(θ),DΔ(θ)A_{\Delta}(\theta),D_{\Delta}(\theta) and XΔ(θ)X_{\Delta}(\theta) are given by

AΔ(θ)=[τ(a11,a11)+τ(a12,a12)τ(a21,a21)+τ(a22,a22)τ(a41,a41)τ(a23,a23)+τ(a24,a24)0τ(a31,a31)τ(a42,a42)τ(a32,a32)0],\displaystyle A_{\Delta}(\theta)=\begin{bmatrix}\tau(a_{11},a_{11})+\tau(a_{12},a_{12})&\tau(a_{21},a_{21})+\tau(a_{22},a_{22})&\tau(a_{41},a_{41})\\ \tau(a_{23},a_{23})+\tau(a_{24},a_{24})&0&\tau(a_{31},a_{31})\\ \tau(a_{42},a_{42})&\tau(a_{32},a_{32})&0\end{bmatrix},
DΔ(θ)=[dv1,v1+dv1,v2+dv1,v3000dv2,v1+dv2,v3000dv3,v1+dv3,v2],\displaystyle D_{\Delta}(\theta)=\begin{bmatrix}d_{v_{1},v_{1}}+d_{v_{1},v_{2}}+d_{v_{1},v_{3}}&0&0\\ 0&d_{v_{2},v_{1}}+d_{v_{2},v_{3}}&0\\ 0&0&d_{v_{3},v_{1}}+d_{v_{3},v_{2}}\end{bmatrix},
XΔ(θ)=[0xv1,v2xv1,v3xv2,v10xv2,v3xv3,v1xv3,v20],\displaystyle X_{\Delta}(\theta)=\begin{bmatrix}0&x_{v_{1},v_{2}}&x_{v_{1},v_{3}}\\ x_{v_{2},v_{1}}&0&x_{v_{2},v_{3}}\\ x_{v_{3},v_{1}}&x_{v_{3},v_{2}}&0\end{bmatrix},

where

dvi,vj=(1t2υ(𝒜vi,vj)υ(𝒜vj,vi))1(a𝒜vi,vj,a𝒜vj,viυ(a,a)τ(a,a)),\displaystyle d_{v_{i},v_{j}}=\left(1-t^{2}\upsilon(\mathcal{A}_{v_{i},v_{j}})\upsilon(\mathcal{A}_{v_{j},v_{i}})\right)^{-1}\left(\sum_{a\in\mathcal{A}_{v_{i},v_{j}},a^{\prime}\in\mathcal{A}_{v_{j},v_{i}}}\upsilon(a,a^{\prime})\tau(a^{\prime},a)\right),
xvi,vj=(1t2υ(𝒜vi,vj)υ(𝒜vj,vi))1(a,a𝒜vi,vja′′𝒜vj,viυ(a,a′′)υ(a′′,a)τ(a,a)).\displaystyle x_{v_{i},v_{j}}=\left(1-t^{2}\upsilon(\mathcal{A}_{v_{i},v_{j}})\upsilon(\mathcal{A}_{v_{j},v_{i}})\right)^{-1}\left(\sum_{a,a^{\prime}\in\mathcal{A}_{v_{i},v_{j}}}\sum_{a^{\prime\prime}\in\mathcal{A}_{v_{j},v_{i}}}\upsilon(a,a^{\prime\prime})\upsilon(a^{\prime\prime},a^{\prime})\tau(a,a^{\prime})\right).

On the other hand, we regard Δ\Delta as a symmetric digraph of GG in Figure 2 as in Example 2.2. For aB(vi,vj)a\in B(v_{i},v_{j}), the matrices J(𝒜(a)),K(𝒜(a))J(\mathcal{A}(a)),K(\mathcal{A}(a)), and L(𝒜(a))L(\mathcal{A}(a)) are as follows:

J(𝒜(a11))=[0υ(a11,a12)υ(a12,a11)0],K(𝒜(a11))=[τ1(a11)00τ1(a12)00],\displaystyle J(\mathcal{A}(a_{11}))=\begin{bmatrix}0&\upsilon(a_{11},a_{12})\\ \upsilon(a_{12},a_{11})&0\end{bmatrix},\quad K(\mathcal{A}(a_{11}))=\begin{bmatrix}\tau_{1}(a_{11})&0&0\\ \tau_{1}(a_{12})&0&0\end{bmatrix},
L(𝒜(a11))=[τ2(a11)τ2(a12)0000],\displaystyle L(\mathcal{A}(a_{11}))=\begin{bmatrix}\tau_{2}(a_{11})&\tau_{2}(a_{12})\\ 0&0\\ 0&0\end{bmatrix},
J(𝒜(a21))=[0υ(a21,a23)υ(a23,a21)0],K(𝒜(a21))=[0τ1(a21)0τ1(a23)00],\displaystyle J(\mathcal{A}(a_{21}))=\begin{bmatrix}0&\upsilon(a_{21},a_{23})\\ \upsilon(a_{23},a_{21})&0\end{bmatrix},\quad K(\mathcal{A}(a_{21}))=\begin{bmatrix}0&\tau_{1}(a_{21})&0\\ \tau_{1}(a_{23})&0&0\end{bmatrix},
L(𝒜(a21))=[τ2(a21)00τ2(a23)00],\displaystyle L(\mathcal{A}(a_{21}))=\begin{bmatrix}\tau_{2}(a_{21})&0\\ 0&\tau_{2}(a_{23})\\ 0&0\end{bmatrix},
J(𝒜(a22))=[0υ(a22,a24)υ(a24,a22)0],K(𝒜(a22))=[0τ1(a22)0τ1(a24)00],\displaystyle J(\mathcal{A}(a_{22}))=\begin{bmatrix}0&\upsilon(a_{22},a_{24})\\ \upsilon(a_{24},a_{22})&0\end{bmatrix},\quad K(\mathcal{A}(a_{22}))=\begin{bmatrix}0&\tau_{1}(a_{22})&0\\ \tau_{1}(a_{24})&0&0\end{bmatrix},
L(𝒜(a22))=[τ2(a22)00τ2(a24)00],\displaystyle L(\mathcal{A}(a_{22}))=\begin{bmatrix}\tau_{2}(a_{22})&0\\ 0&\tau_{2}(a_{24})\\ 0&0\end{bmatrix},
J(𝒜(a31))=[0υ(a31,a32)υ(a32,a31)0],K(𝒜(a31))=[00τ1(a31)0τ1(a32)0],\displaystyle J(\mathcal{A}(a_{31}))=\begin{bmatrix}0&\upsilon(a_{31},a_{32})\\ \upsilon(a_{32},a_{31})&0\end{bmatrix},\quad K(\mathcal{A}(a_{31}))=\begin{bmatrix}0&0&\tau_{1}(a_{31})\\ 0&\tau_{1}(a_{32})&0\end{bmatrix},
L(𝒜(a31))=[00τ2(a31)00τ2(a32)],\displaystyle L(\mathcal{A}(a_{31}))=\begin{bmatrix}0&0\\ \tau_{2}(a_{31})&0\\ 0&\tau_{2}(a_{32})\end{bmatrix},
J(𝒜(a41))=[0υ(a41,a42)υ(a42,a41)0],K(𝒜(a41))=[00τ1(a41)τ1(a42)00],\displaystyle J(\mathcal{A}(a_{41}))=\begin{bmatrix}0&\upsilon(a_{41},a_{42})\\ \upsilon(a_{42},a_{41})&0\end{bmatrix},\quad K(\mathcal{A}(a_{41}))=\begin{bmatrix}0&0&\tau_{1}(a_{41})\\ \tau_{1}(a_{42})&0&0\end{bmatrix},
L(𝒜(a41))=[τ2(a41)0000τ2(a42)].\displaystyle L(\mathcal{A}(a_{41}))=\begin{bmatrix}\tau_{2}(a_{41})&0\\ 0&0\\ 0&\tau_{2}(a_{42})\end{bmatrix}.

The matrices AΔ(G)(θ)A_{\Delta(G)}(\theta), DΔ(G)(θ)D_{\Delta(G)}(\theta), and XΔ(G)(θ)X_{\Delta(G)}(\theta) are given by

AΔ(G)(θ)=[τ(a11,a11)+τ(a12,a12)τ(a21,a21)+τ(a22,a22)τ(a41,a41)τ(a23,a23)+τ(a24,a24)0τ(a31,a31)τ(a42,a42)τ(a32,a32)0],\displaystyle A_{\Delta(G)}(\theta)=\begin{bmatrix}\tau(a_{11},a_{11})+\tau(a_{12},a_{12})&\tau(a_{21},a_{21})+\tau(a_{22},a_{22})&\tau(a_{41},a_{41})\\ \tau(a_{23},a_{23})+\tau(a_{24},a_{24})&0&\tau(a_{31},a_{31})\\ \tau(a_{42},a_{42})&\tau(a_{32},a_{32})&0\end{bmatrix},
DΔ(G)(θ)=[dv1,v1+dv1,v2+dv1,v3000dv2,v1+dv2,v3000dv3,v1+dv3,v2],\displaystyle D_{\Delta(G)}(\theta)=\begin{bmatrix}d_{v_{1},v_{1}}+d_{v_{1},v_{2}}+d_{v_{1},v_{3}}&0&0\\ 0&d_{v_{2},v_{1}}+d_{v_{2},v_{3}}&0\\ 0&0&d_{v_{3},v_{1}}+d_{v_{3},v_{2}}\end{bmatrix},
XΔ(G)(θ)=[0xv1,v2xv1,v3xv2,v10xv2,v3xv3,v1xv3,v20],\displaystyle X_{\Delta(G)}(\theta)=\begin{bmatrix}0&x_{v_{1},v_{2}}&x_{v_{1},v_{3}}\\ x_{v_{2},v_{1}}&0&x_{v_{2},v_{3}}\\ x_{v_{3},v_{1}}&x_{v_{3},v_{2}}&0\end{bmatrix},

where

dvi,vj=a𝒜vi,vjυ(a,a¯)τ(a¯,a)1t2υ(a,a)υ(a¯,a¯),xvi,vj=a𝒜vi,vjυ(a,a¯)υ(a¯,a)τ(a,a)1t2υ(a,a)υ(a¯,a¯).\displaystyle d_{v_{i},v_{j}}=\sum_{a\in\mathcal{A}_{v_{i},v_{j}}}\frac{\upsilon(a,\overline{a})\tau(\overline{a},a)}{1-t^{2}\upsilon(a,a)\upsilon(\overline{a},\overline{a})},\quad x_{v_{i},v_{j}}=\sum_{a\in\mathcal{A}_{v_{i},v_{j}}}\frac{\upsilon(a,\overline{a})\upsilon(\overline{a},a)\tau(a,a)}{1-t^{2}\upsilon(a,a)\upsilon(\overline{a},\overline{a})}.

Acknowledgements

The author is partially supported by Grant-in-Aid for JSPS Fellows (Grant No. JP20J20590).

References

  • [1] Lov K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996), 212-219.
  • [2] Y. Ide, A. Ishikawa, H. Morita, I. Sato and E. Segawa, The Ihara expression for the generalized weighted zeta function of a finite simple graph, Linear Algebra and its Applications 627 (2021), 227-241.
  • [3] A. Ishikawa and N. Konno, A weighted graph zeta function involved in the Szegedy walk, Quantum Information and Computation 22 (2022), 38-52.
  • [4] A. Ishikawa, H. Morita and I. Sato, The Ihara expression for generalized weighted zeta functions of Bartholdi type on finite digraphs, submitted.
  • [5] N. Konno and I. Sato, On the relation between quantum walks and zeta functions, Quantum Information Processing 11 (2012), 341-349.
  • [6] L. Matsuoka, A. Ichihara, M. Hashimoto, and K. Yokoyama, Theoretical study for laser isotope separation of heavy-element molecules in a thermal distribution, In Proceedings of the International Conference Toward and Over the Fukushima Daiichi Accident (GLOBAL 2011) (2011), 392063.
  • [7] H. Morita, Ruelle zeta functions for finite digraphs, Linear Algebra and its Applications 603A (2020), 329-358.
  • [8] D. Orrell, A quantum walk model of financial options, SSRN Electronic Journal (2020).
  • [9] R. Portugal, Quantum Walks and Search Algorithms, Springer International Publishing, 2nd edition (2018).
  • [10] I. Sato, A new Bartholdi zeta function of a graph, International Journal of Algebra 1 (2007), 269-281.
  • [11] M. Szegedy (2004), Quantum speed-up of Markov chain based algorithms, In 45th Annual IEEE symposium on foundations of computer science (2004), 32-41.