This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The high-order nonrelativistic Hamiltonian of electromagnetic system

Wanping Zhou School of Physics and Telecommunications, Huanggang Normal University, Huanggang, China, 438000    Xuesong Mei Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China, 430072    Haoxue Qiao 111Email: [email protected] School of Physics and Technology, Wuhan University, Wuhan, 430000 China
Abstract

The nonrelativistic Hamiltonians of scalar, spinor and vector particles in the electromagnetic field are studied by applying the Douglas-Kroll-Hess approach. Their relativistic Hamiltonians are expanded on the potential, and the Hamiltonians containing one- and two-photon potentials are derived. The nonrelativistic Hamiltonians up to mα8m\alpha^{8} order are obtained by applying Taylor expansion on momentum, and the result of spin-1/2 spinor is coincided with the result obtained by applying scattering matching approach in the Ref. [Phys. Rev. A 100, 012513 (2019)]. Then, the singularities in Hamiltonian of Coulomb systems are separated out and cancelled. The regularized Hamiltonian up to mα8m\alpha^{8} order for scaler and electron in Coulomb field are obtained. The numerical results of relativistic corrections are coincided with the relativistic theory. The regularized Hamiltonian up to mα6m\alpha^{6} for multi-electrons in Coulomb field are also derived.

Foldy-Wouthuysen transformation, Douglas-Kroll-Hess approach, Nonrelativistic Quantum Electrodynamic, Scattering Matching
pacs:
31.30.jv, 31.30.jy

I INTRODUCTION

The nonrelativistic few-body atomic and molecular systems like hydrogen, helium, lithium and hydrogen molecular ions, are widely studied. Because of the astonishing accuracy of spectroscopy measurements, those systems are advised to determine the fundamental physical constants and search the hint of the new physics beyond the standard model Schiller et al. (2014); Zheng et al. (2017a); Mohr et al. (2016); Safronova et al. (2018). In the aspects of theories, the nonrelativistic energy of systems can be calculated with very high accuracy by applying Hyllerass algorithm Hylleraas (1928, 1929); Yan and Drake (1996); Drake et al. (2002); Wang et al. (2012). The relativistic and radiative corrections are calculated by applying perturbation theory. The key point is deriving the formula of the relativistic and radiative corrections.

There are two famous methods obtaining the relativistic and radiative corrections to the nonrelativistic systems. One is an effective field theory proposed by Pachucki et.al. Its low-energy effective Hamiltonian is the Foldy-Wouthuysen (FW) transformed Hamiltonian Foldy and Wouthuysen (1950); Zatorski and Pachucki (2010). The effective currents of electron coupling with electromagnetic field can be extracted from the FW Hamiltonian, and the high-order interactions between the electrons and the self-energy correction can be derived by using the currentsPachucki and Yerokhin (2010); Pachucki (2005); Patkóš et al. (2016, 2017); Jentschura et al. (2005); Pachucki (2006). Another method is the nonrelativistic quantum electrodynamics (NRQED), proposed by W. Caswell and G. Lepage Caswell and Lepage (1986) and successfully be applied on positronium and muoniumKinoshita and Nio (1996); Nio and Kinoshita (1997). The low-energy effective Hamiltonian of NRQED consists of all possible local interactions satisfying the required symmetries of quantum electrodynamics (QED). And the coefficients of the interaction terms of the effective Hamiltonian are fixed by scattering matching approachCaswell and Lepage (1986): the scattering amplitude of the NRQED must be coincided with the corresponding scattering amplitude of the QED at given energy scale. The great difference between the two method is that their effective Hamiltonians are different.

Both the high-order energy corrections and operator of Hamiltonians can be expanded with the fine-structure constant α\alpha Eides et al. (2001); Kinoshita and Nio (1996); Nio and Kinoshita (1997). For helium, the energy correction for helium up to mα6m\alpha^{6} and the fine-structure correction up to mα7m\alpha^{7} have been obtained Pachucki (2005); Pachucki and Yerokhin (2010); Patkóš et al. (2019). The energy correction up to order of mα7m\alpha^{7} allowed one to directly extract the nuclear charge radii Pachucki et al. (2017); Patkóš et al. (2021). The values of nuclear charge radii extracted from transitions 23S23P2^{3}S-2^{3}P and 23S21S2^{3}S-2^{1}S have notable discrepancy Van Rooij et al. (2011); Rengelink et al. (2018); Zheng et al. (2017b). For hydrogen molecular ions, ionization energies and fundamental vibrational transitions are calculated up to mα7m\alpha^{7} order Korobov et al. (2017). The mα8m\alpha^{8} loop corrections are estimated, and the relativistic corrections haven’t derived. The mα8m\alpha^{8} corrections could be a very big challenge for theoretical study in nowadays. Its result will improve both theoretical accuracy of spectroscopy experiment and fundamental physical constants Pachucki and Yerokhin (2010); Pachucki et al. (2017); Mohr et al. (2008). One purpose of this work is deriving the mα8m\alpha^{8} order FW hamiltonian. Another purpose is testing the equivalence of Pachucki’s effective field theory and NRQED by comparing the FW Hamiltonian and NRQED Hamiltonian. The FW Hamiltonian of spinor up to mα8m\alpha^{8} was obtained by Ref. MEI Xue-Song (2014). In Ref. Zhou et al. (2019), the mα8m\alpha^{8} order NRQED Hamiltonian was obtained by using scattering matching approach at the tree diagram level. It is coincided with the FW Hamiltonian at mα6m\alpha^{6} order. At mα8m\alpha^{8} order we find that there may be some imperceptible mistakes in Ref. MEI Xue-Song (2014). It should be rechecked independently.

The FW transformation is unitary transformation that can decouple the positive energy parts and the negative energy part of particles in the low-energy region. By applying the FW transformation, the relativistic Hamiltonians are expanded on the momentum and potential of charged particles. The traditional approach of FW transformation becomes rather tedious in the higher-order. The Douglas-Kroll-Hess (DKH) approach Douglas and Kroll (1974); Hess (1986); Luber et al. (2009); Reiher and Wolf (2004a, b) is the alternative approach of FW transformation. The relativistic Hamiltonians are expanded on the potential of charged particles. It is two-component relativistic Hamiltonian for fermion. However, the DKH Hamiltonian is too complicated to be combined with Hyllerass algorithm Hylleraas (1928, 1929); Yan and Drake (1996); Drake et al. (2002); Wang et al. (2012), which is the most accurate method for calculating the electrons’ correlation. The DKH Hamiltonian should be expanded on momentum to obtain the FW Hamiltonian. This DHK-FW approach is easier than the FW approach. In this work, DHK-FW method is applied to derive the mα8m\alpha^{8} order FW Hamiltonian of spin-1/2 case and compare them with the results obtained by scattering approaching Zhou et al. (2019); Caswell and Lepage (1986). Furthermore, the effective Hamiltonians for spin-0 and spin 1 cases also derived. It is essential for deriving the interactions between electrons and integer spin heavier particle, such as nucleus, muon or vector meson. The higher-order interactions between the electrons and integer spin heavier particle can be derived by using the currents extracted from the FW Hamiltonian. It is essential for deriving the recoil effect of spin heavier particle and isotopic shift.

The FW Hamiltonian is singular at high order. For example, the relativistic kinetic energy p6\langle p^{6}\rangle is proportional to δ3(r)r\langle\dfrac{\delta^{3}(r)}{r}\rangle\rightarrow\infty for s state of hydrogen, and the expectation value of Hamiltonian is always divergent. The second perturbation term such as p4QE0H0p4\langle p^{4}\frac{Q}{E_{0}-H_{0}}p^{4}\rangle also contains divergent part. All the divergent parts in the higher-order energy corrections should be cancelled exactly. Because the FW Hamiltonian is unitary equivalent to the relativistic Hamiltonian, their eigenvalue are equal and finite. It is essential to separate and cancel the singular terms from original nonrelativistic Hamiltonian, and then deriving the calculable formula. In this work, we study the Coulomb Hamiltonian and cancel the divergence by applying transformation. Then, we obtain an equivalent formula of energy correction. In the transformed formula, Most singularities of the FW Hamiltonian are cancelled directly. The regularized Coulomb Hamiltonians up to mα8m\alpha^{8} order for scaler and electron are obtained. The regularized Hamiltonian up to mα6m\alpha^{6} for multi-electrons in Coulomb field are also derived. The singularities always appear in the high-order correction, such as the relativistic correction, radiative correction and photon-exchanging interactions. It is essential to cancel all the divergences. The singularities of the total Hamiltonian up to mα6m\alpha^{6} order were cancelled togetherPachucki (2006). Our study will indicate the singularities can be cancelled part by part. It also simplifies the verifying the correctness of the theoretical results in the higher-order.

In Sec. II, we derive the FW Hamiltonians of the spin-1/2, spin-0 and spin-1 particles separately by using DKH-FW approach. In Sec. III, The singularities of Coulomb Hamiltonian are studied. We derive the mα8m\alpha^{8} order regularized Coulomb Hamiltonians of the scaler and electron, and mα6m\alpha^{6} order regularized Coulomb Hamiltonians of multi-electron systems. In Sec. IV, the derived formulas are checked. The relativistic corrections to energy of scalar and electron in Coulomb field are calculated by using the regularized Coulomb Hamiltonians. The results are coincided with energy of relativistic theory. Conclusion is given in Sec. V.

II The nonrelativistic Hamiltonians of scalar, spinor and vector particles

II.1 Spin-1/2 case

II.1.1 Spinor in electromagnetic field

The relativistic spin-1/2 fermion in the electromagnetic field is described by the Dirac Hamiltonian HF=βm+απ+A0H_{F}=\beta m+\vec{\alpha}\cdot\vec{\pi}+A^{0}, where αi=(𝟎2×2𝝈i𝝈i𝟎2×2),β=(𝟏2×2𝟎2×2𝟎2×2𝟏2×2)\alpha^{i}=\left(\begin{array}[]{cc}\bm{0}_{2\times 2}&\bm{\sigma}^{i}\\ \bm{\sigma}^{i}&\bm{0}_{2\times 2}\end{array}\right),\beta=\left(\begin{array}[]{cc}\bm{1}_{2\times 2}&\bm{0}_{2\times 2}\\ \bm{0}_{2\times 2}&-\bm{1}_{2\times 2}\end{array}\right), σi\sigma^{i} is Pauli matrix, and πμ=pμAμ\pi_{\mu}=p_{\mu}-A_{\mu}. In this work, the velocity of light and the mass and charges of particles are chosen as unit one, and the form factor and multi-pole terms are neglected for simplification.

In the rest frame, the two upper components of spinor wave function are the freedom of positive energy particle, and the lower components are the freedom of negative energy particle. The positive part couples with the negative part due by the off-diagonal matrices like απ\vec{\alpha}\cdot\vec{\pi}. These off-diagonal matrices are defined as odd terms, and the diagonal parts of the Hamiltonian are defined as even terms. By applying Foldy-Wouthuysen transformation, the odd terms become negligible higher-order terms, and the positive part can be decoupled with the negative parts in the low-energy region.

The FW Hamiltonian H^FW=eiS(H^it)eiS\hat{H}_{FW}=e^{iS}\left(\hat{H}-i\partial_{t}\right)e^{-iS} can be derived by commutator form Zatorski and Pachucki (2010)

HFW\displaystyle H_{FW} =n=01n![(iS)(n),(Hit)]+it,\displaystyle=\sum_{n=0}\frac{1}{n!}\left[(iS)^{(n)},\left(H-i\partial_{t}\right)\right]+i\partial_{t}, (1)

where recurrence relations [A(n+1),B]=[A,[A(n),B]][{A}^{(n+1)},{B}]=[{A},[{A}^{(n)},{B}]] and [A(0),B]=B[{A}^{(0)},B]=B are used. According to the commutator, the odd terms can be suppressed to smaller contributions and make the positive and negative part no longer coupling with each other up to the accuracy of requirements. However, with the increase of the order of magnitude, this process will become bloated and complicated. Because the decoupling is synchronized with the momentum expansion and potential expansion in the traditional FW transformation.

By DKH approach, the Hamiltonian is expanded with the electromagnetic potential. The first transformation will produce the exact form of the relativistic energy p2+m2\sqrt{p^{2}+m^{2}} of free particle, and the reminder odd terms are eliminated by applying subsequent transformation Eq.(1). The Hamiltonian is expanded in the power of the potential.

For spin-1/2 fermion, the first transformation is eiSF=cF+iβsFe^{iS_{F}}=c_{F}+i\beta s_{F}, where cF=m+ET2ET,sF=i(απ)2ET(ET+m),SF=i12βtan1απmc_{F}=\frac{\sqrt{m+E_{T}}}{\sqrt{2E_{T}}},s_{F}=\frac{-i(\alpha\cdot\pi)}{\sqrt{2E_{T}\left(E_{T}+m\right)}},S_{F}=-i\frac{1}{2}\beta\tan^{-1}\frac{\alpha\cdot\pi}{m} and ET=m2+(απ)2E_{T}=\sqrt{m^{2}+(\alpha\cdot\pi)^{2}}. The transformed Hamiltonian can be written as

HF=eiSF(HFit)eiSF=βET+H1γ+O.H_{F}^{\prime}=e^{iS_{F}}\left(H_{F}-i\partial_{t}\right)e^{-iS_{F}}=\beta E_{T}+H_{1\gamma}^{\prime}+O^{\prime}. (2)

The first two terms βET,H1γ\beta E_{T},H^{\prime}_{1\gamma} are even terms, OO^{\prime} represents the odd terms. The relativistic kinetic energy βET\beta E_{T} is exact here. The even one-photon terms H1γH_{1\gamma}^{\prime} only contain one scalar potential term

H1γ=cF(A0it)cFsF(A0it)sF,H_{1\gamma}^{\prime}=c_{F}\left(A^{0}-i\partial_{t}\right)c_{F}-s_{F}\left(A^{0}-i\partial_{t}\right)s_{F}, (3)

and the one-photon odd terms OO^{\prime} are

O=iβsF(A0it)cFiβcF(A0it)sF.O^{\prime}=i\beta s_{F}\left(A^{0}-i\partial_{t}\right)c_{F}-i\beta c_{F}\left(A^{0}-i\partial_{t}\right)s_{F}. (4)

The odd one-photon terms can be eliminated by applying another unitary transformation eiSFe^{iS_{F}^{\prime}}. The first-order Eq.(1) is [iSF,βET]tSF+O=0\left[iS_{F}^{\prime},\beta E_{T}\right]-\partial_{t}S_{F}^{\prime}+O^{\prime}=0, and SFS_{F}^{\prime} can be derived by the recurrence relation,

SF=12miβn=0{(iβt(π2+m2m)2m)(n),O},S_{F}^{\prime}=-\frac{1}{2m}i\beta\sum_{n=0}\left\{\left(\frac{i\beta\partial_{t}-(\sqrt{\pi^{2}+m^{2}}-m)}{2m}\right)^{(n)},O^{\prime}\right\}, (5)

the curly braces is anti-commutator.

The second transformed Hamiltonian is

HF′′=βET+H1γ+H2γ+,H^{\prime\prime}_{F}=\beta E_{T}+H_{1\gamma}^{\prime}+H_{2\gamma}^{\prime}+\ldots, (6)

where

H2γ=12[iSF,O]=12mβn=0{{(iβt(π2+m2m)2m)(n),O},O},H_{2\gamma}^{\prime}=\frac{1}{2}\left[iS^{\prime}_{F},O^{\prime}\right]=\frac{1}{2m}\beta\sum_{n=0}\left\{\left\{\left(\frac{i\beta\partial_{t}-(\sqrt{\pi^{2}+m^{2}}-m)}{2m}\right)^{(n)},O^{\prime}\right\},O^{\prime}\right\}, (7)

are even two-photons terms, which contains two scalar potential. The odd two-photons terms and the terms containing more than two scalar potential are neglected here.

The Hamiltonian Eq.(6) can be expanded on momentum to arbitrary order. In the Coulomb bound system, the order of magnitude of electromagnetic potential is counted as piα\langle p^{i}\rangle\sim\alpha, A0α2\langle A^{0}\rangle\sim\alpha^{2} and Aiα3\langle A^{i}\rangle\sim\alpha^{3}. Then Eq.(6) is expanded on momentum or the fine-structure constant α\alpha. The effective Hamiltonian (FW) up to mα8m\alpha^{8} is

HF′′=\displaystyle H^{\prime\prime}_{F}= βET+A0i8[π~,E~]i128[π~2,{π~,E~}]+3i32[π~3,E~]+116β{E~,E~}\displaystyle\beta E_{T}+A^{0}-\frac{i}{8}[\widetilde{\pi},\widetilde{E}]-\frac{i}{128}\left[\widetilde{\pi}^{2},\{\widetilde{\pi},\widetilde{E}\}\right]+\frac{3i}{32}\left[\widetilde{\pi}^{3},\widetilde{E}\right]+\frac{1}{16}\beta\{\widetilde{E},\widetilde{E}\} (8)
+11i1024[π~4,{π~,E~}]31i512[π~5,E~]9i512[π~3,π~2E~+E~π~2+π~E~π~]\displaystyle+\frac{11i}{1024}\left[\widetilde{\pi}^{4},\{\widetilde{\pi},\widetilde{E}\}\right]-\frac{31i}{512}\left[\widetilde{\pi}^{5},\widetilde{E}\right]-\frac{9i}{512}\left[\widetilde{\pi}^{3},\widetilde{\pi}^{2}\widetilde{E}+\widetilde{E}\widetilde{\pi}^{2}+\widetilde{\pi}\widetilde{E}\widetilde{\pi}\right]
+i32[tE~,E~]132β{E~,(2π~2E~+2E~π~2+π~E~π~)}+o(mα8),\displaystyle+\frac{i}{32}\left[\partial_{t}\widetilde{E},\widetilde{E}\right]-\frac{1}{32}\beta\left\{\widetilde{E},\left(2\widetilde{\pi}^{2}\widetilde{E}+2\widetilde{E}\widetilde{\pi}^{2}+\widetilde{\pi}\widetilde{E}\widetilde{\pi}\right)\right\}+o\left(m\alpha^{8}\right),

where the tilde is abbreviation defined as F~=σF\widetilde{F}=\vec{\sigma}\cdot\vec{F}. This result is coincided with the result obtained by scattering matching approach in Ref. Zhou et al. (2019).

It is beneficial to compare these two methods. In Ref. Zhou et al. (2019), one-photon terms are derived by expanding fermion-photon scattering amplitude u¯(p)γμu(p)Aμ\bar{u}(p^{\prime})\gamma^{\mu}u(p)A_{\mu} on 3-momentums, where u(p)u(p) is the free positive-energy Dirac spinor. The expansion of u¯(p)γμu(p)Aμ\bar{u}(p^{\prime})\gamma^{\mu}u(p)A_{\mu} is ψH1γψ\psi^{\dagger}H^{\prime}_{1\gamma}\psi, and H1γH^{\prime}_{1\gamma} are coincided with one-photon potential even terms given above. There are another two fermion-photon scattering processes v¯(p)γμu(p)Aμ\bar{v}(p^{\prime})\gamma^{\mu}u(p)A_{\mu} and u¯(p)γμv(p)Aμ\bar{u}(p^{\prime})\gamma^{\mu}v(p)A_{\mu}. They are the coupling terms between photon AμA_{\mu}, positive-energy states u(p)u(p^{\prime}) and negative-energy states v(p)v(p). It is corresponding to the one-photon odd terms OO^{\prime}. In the low-energy region, free negative state is decoupled. But the contribution of negative-energy parts to the intermediate state should be considered. The positive-energy state can transit to negative-energy intermediate state, and transits back to positive-energy state. Because the energy of intermediate state E2mc2EboundE\simeq 2mc^{2}\gg E_{bound}, the Green function of the intermediate state can be replaced with 12m\frac{1}{2m}. The contribution of negative-energy intermediate state is proportional to the product of v¯(p)γμu(p)Aμ\bar{v}(p^{\prime})\gamma^{\mu}u(p)A_{\mu}, u¯(p)γμv(p)Aμ\bar{u}(p^{\prime})\gamma^{\mu}v(p)A_{\mu} and 12mc2\frac{1}{2mc^{2}}. It is corresponding to the product of O2O^{\prime 2} and 12m\frac{1}{2m} in the Eq.(7). Through comparison of above results and method, it can be concluded that: the DKH-FW approach is equivalent to scattering matching at mα8m\alpha^{8} order.

II.1.2 The nonrelativistic approximation of Dirac-Coulomb Hamiltonian

The relativistic energy can be calculated by using the Dirac-Coulomb(DC) Hamiltonian. The DC Hamiltonian is

HDC=a(αapa+βama)+VC,\displaystyle H_{DC}=\sum_{a}\left(\alpha_{a}\cdot p_{a}+\beta_{a}m_{a}\right)+V_{C}, (9)

where the Coulomb potential is

VC=i,aZiria+a<b1rab.\displaystyle V_{C}=-\sum_{i,a}\frac{Z_{i}}{r_{ia}}+\sum_{a<b}\frac{1}{r_{ab}}. (10)

It contains both the electron-electron (subscript i,a) and electron-nucleus interaction (subscript a,b).

The nonrelativistic approximation of Dirac-Coulomb Hamiltonian can be obtained by using the similar method. In this subsection, we will study the two electrons systems, and the results can be extended to the general case.

The first transformation also produces the exact form of the relativistic energy p2+m2\sqrt{p^{2}+m^{2}}. It is the same as the form in Eq.(2)

HDC=eiS2eiS1HDCeiS2eiS1=β1m12+p12+β2m22+p22+Vee+Veo+Voe+Voo,H^{\prime}_{DC}=e^{iS_{2}}e^{iS_{1}}H_{DC}e^{-iS_{2}}e^{-iS_{1}}=\beta_{1}\sqrt{m^{2}_{1}+p^{2}_{1}}+\beta_{2}\sqrt{m^{2}_{2}+p^{2}_{2}}+V^{\prime}_{ee}+V^{\prime}_{eo}+V^{\prime}_{oe}+V^{\prime}_{oo}, (11)

where eiSa=ca+iβsae^{iS_{a}}=c_{a}+i\beta s_{a}, ca=ma+Ea2Ea,sa=i(αapa)2Ea(Ea+ma),Sa=i12βatan1αapamac_{a}=\frac{\sqrt{m_{a}+E_{a}}}{\sqrt{2E_{a}}},s_{a}=\frac{-i(\alpha_{a}\cdot p_{a})}{\sqrt{2E_{a}\left(E_{a}+m_{a}\right)}},S_{a}=-i\frac{1}{2}\beta_{a}\tan^{-1}\frac{\alpha_{a}\cdot p_{a}}{m_{a}}, Ea=ma2+pa2E_{a}=\sqrt{m^{2}_{a}+p_{a}^{2}} and

Vee\displaystyle V^{\prime}_{ee} =c1c2VCc1c2c1iβ2s2VCc1iβ2s2iβ1s1c2VCiβ1s1c2+iβ1s1iβ2s2VCiβ1s1iβ2s2,\displaystyle=c_{1}c_{2}V_{C}c_{1}c_{2}-c_{1}i\beta_{2}s_{2}V_{C}c_{1}i\beta_{2}s_{2}-i\beta_{1}s_{1}c_{2}V_{C}i\beta_{1}s_{1}c_{2}+i\beta_{1}s_{1}i\beta_{2}s_{2}V_{C}i\beta_{1}s_{1}i\beta_{2}s_{2}, (12)
Veo\displaystyle V^{\prime}_{eo} =c1c2VCc1iβ2s2+c1iβ2s2VCc1c2+iβ1s1c2VCiβ1s1iβ2s2iβ1s1iβ2s2VCiβ1s1c2\displaystyle=-c_{1}c_{2}V_{C}c_{1}i\beta_{2}s_{2}+c_{1}i\beta_{2}s_{2}V_{C}c_{1}c_{2}+i\beta_{1}s_{1}c_{2}V_{C}i\beta_{1}s_{1}i\beta_{2}s_{2}-i\beta_{1}s_{1}i\beta_{2}s_{2}V_{C}i\beta_{1}s_{1}c_{2}
Voe\displaystyle V^{\prime}_{oe} =c1c2VCiβ1s1c2+iβ1s1c2VCc1c2+c1iβ2s2VCiβ1s1iβ2s2iβ1s1iβ2s2VCc1iβ2s2\displaystyle=-c_{1}c_{2}V_{C}i\beta_{1}s_{1}c_{2}+i\beta_{1}s_{1}c_{2}V_{C}c_{1}c_{2}+c_{1}i\beta_{2}s_{2}V_{C}i\beta_{1}s_{1}i\beta_{2}s_{2}-i\beta_{1}s_{1}i\beta_{2}s_{2}V_{C}c_{1}i\beta_{2}s_{2}
Voo\displaystyle V^{\prime}_{oo} =c1c2VCiβ1s1iβ2s2c1iβ2s2VCiβ1s1c2iβ1s1c2VCc1iβ2s2+iβ1s1iβ2s2VCc1c2.\displaystyle=c_{1}c_{2}V_{C}i\beta_{1}s_{1}i\beta_{2}s_{2}-c_{1}i\beta_{2}s_{2}V_{C}i\beta_{1}s_{1}c_{2}-i\beta_{1}s_{1}c_{2}V_{C}c_{1}i\beta_{2}s_{2}+i\beta_{1}s_{1}i\beta_{2}s_{2}V_{C}c_{1}c_{2}.

The subscript eoeo is abbreviated as even and odd. VeoV_{eo} is even for first particle and odd for second particle, etc.

The odd terms or odd-even-mixing terms should be eliminated by applying another transformation Eq.(1)

HDC′′\displaystyle H^{\prime\prime}_{DC} =eiSHDCeiS\displaystyle=e^{iS^{\prime}}H^{\prime}_{DC}e^{-iS^{\prime}} (13)
=β1m12+p12+β2m22+p22+Vee+12[iS,Veo+Voe+Voo]+.\displaystyle=\beta_{1}\sqrt{m^{2}_{1}+p^{2}_{1}}+\beta_{2}\sqrt{m^{2}_{2}+p^{2}_{2}}+V^{\prime}_{ee}+\frac{1}{2}[iS^{\prime},V^{\prime}_{eo}+V^{\prime}_{oe}+V^{\prime}_{oo}]+....

The last terms are two-photon terms, and the ellipsis is the multi-photon term, which is mα12m\alpha^{12} order. The SS^{\prime} satisfies the first-order Eq.(1)

[iS,β1m12+p12+β2m22+p22]+Veo+Voe+Voo=0.[iS^{\prime},\beta_{1}\sqrt{m^{2}_{1}+p^{2}_{1}}+\beta_{2}\sqrt{m^{2}_{2}+p^{2}_{2}}]+V^{\prime}_{eo}+V^{\prime}_{oe}+V^{\prime}_{oo}=0. (14)

It can be solved by using iteration method. The result is

iS=β12m1Moe+β22m2Meo+β1m1β2m22(m12m22)Noo,iS^{\prime}=\frac{\beta_{1}}{2m_{1}}M_{oe}+\frac{\beta_{2}}{2m_{2}}M_{eo}+\frac{\beta_{1}m_{1}-\beta_{2}m_{2}}{2(m_{1}^{2}-m_{2}^{2})}N_{oo}, (15)

where

Moe=n=0(β12m1)n[(n),Voe],M_{oe}=\sum_{n=0}\left(-\frac{\beta_{1}}{2m_{1}}\right)^{n}[\triangle^{(n)},V^{\prime}_{oe}], (16)
Meo=n=0(β22m2)n[(n),Veo],M_{eo}=\sum_{n=0}\left(-\frac{\beta_{2}}{2m_{2}}\right)^{n}[\triangle^{(n)},V^{\prime}_{eo}], (17)
Noo=n=0(β1m1β2m22(m12m22))n[(n),Voo],N_{oo}=\sum_{n=0}\left(-\frac{\beta_{1}m_{1}-\beta_{2}m_{2}}{2(m_{1}^{2}-m_{2}^{2})}\right)^{n}[\triangle^{(n)},V^{\prime}_{oo}], (18)

and

=β1(m12+p12m1)+β2(m22+p22m2).\triangle=\beta_{1}(\sqrt{m^{2}_{1}+p^{2}_{1}}-m_{1})+\beta_{2}(\sqrt{m^{2}_{2}+p^{2}_{2}}-m_{2}). (19)

The nonrelativisitc approximation of Dirac-Coulomb Hamiltonian can be obtained by applying momentum expansion. The transformed Hamiltonian up to mα6m\alpha^{6} order is

HDC′′=\displaystyle H^{\prime\prime}_{DC}= apa22+VC+a(pa4818[pa~,[pa~,VC]])\displaystyle\sum_{a}\frac{p^{2}_{a}}{2}+V_{C}+\sum_{a}\left(-\frac{p^{4}_{a}}{8}-\frac{1}{8}[\widetilde{p_{a}},[\widetilde{p_{a}},V_{C}]]\right) (20)
+a(pa616+332[pa~3,[pa~,VC]]1128[pa~2,[pa~2,VC]116{[pa~,VC],[pa~,VC]})\displaystyle+\sum_{a}\left(\frac{p^{6}_{a}}{16}+\frac{3}{32}[\widetilde{p_{a}}^{3},[\widetilde{p_{a}},V_{C}]]-\frac{1}{128}[\widetilde{p_{a}}^{2},[\widetilde{p_{a}}^{2},V_{C}]-\frac{1}{16}\{[\widetilde{p_{a}},V_{C}],[\widetilde{p_{a}},V_{C}]\}\right)
+a<b(164[pa~,[pa~,[pb~,[pb~,VC]]]])+o(mα6).\displaystyle+\sum_{a<b}\left(\frac{1}{64}[\widetilde{p_{a}},[\widetilde{p_{a}},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]\right)+o(m\alpha^{6}).

The first two terms are Shro¨\ddot{o}dinger Hamiltonian. The third term is the leading order of relativistic corrections, and it is mα4m\alpha^{4} order. The second and third lines are mα6m\alpha^{6} order. Although it is nonrelativisitc Hamiltonian of two electrons system, this result is appropriate to multi-electron atom. It can be proved by using the similar method.

The mα8m\alpha^{8} order terms of Hamiltonian of two electrons systems are

HDC(8)′′=\displaystyle H^{\prime\prime}_{DC(8)}= 5pa81289512[pa~3,[pa~3,VC]]31512[pa~5,[pa~,VC]]+111024[pa~4,[pa~2,VC]]\displaystyle-\frac{5p^{8}_{a}}{128}-\frac{9}{512}[\widetilde{p_{a}}^{3},[\widetilde{p_{a}}^{3},V_{C}]]-\frac{31}{512}[\widetilde{p_{a}}^{5},[\widetilde{p_{a}},V_{C}]]+\frac{11}{1024}[\widetilde{p_{a}}^{4},[\widetilde{p_{a}}^{2},V_{C}]] (21)
18{[pa~,VC],(316[pa~3,VC]532{pa~2,[pa~,VC]}+132[pa~2,{pa~,VC}])}\displaystyle-\frac{1}{8}\{[\widetilde{p_{a}},V_{C}],\left(-\frac{3}{16}[\widetilde{p_{a}}^{3},V_{C}]-\frac{5}{32}\{\widetilde{p_{a}}^{2},[\widetilde{p_{a}},V_{C}]\}+\frac{1}{32}[\widetilde{p_{a}}^{2},\{\widetilde{p_{a}},V_{C}\}]\right)\}
+3256[pa~3,[pa~,[pb~,[pb~,VC]]]]+11024[pa~2,[pa~2,[pb~,[pb~,VC]]]]\displaystyle+\frac{3}{256}[\widetilde{p_{a}}^{3},[\widetilde{p_{a}},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]+\frac{1}{1024}[\widetilde{p_{a}}^{2},[\widetilde{p_{a}}^{2},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]
1128{[pa~,VC],[pb~,[pb~,[pa~,VC]]]}+1128{[pa~,[pb~,VC]],[pa~,[pb~,VC]]}\displaystyle-\frac{1}{128}\{[\widetilde{p_{a}},V_{C}],[\widetilde{p_{b}},[\widetilde{p_{b}},[\widetilde{p_{a}},V_{C}]]]\}+\frac{1}{128}\{[\widetilde{p_{a}},[\widetilde{p_{b}},V_{C}]],[\widetilde{p_{a}},[\widetilde{p_{b}},V_{C}]]\}
164[[pa~,VC],[pb2,[pa~,VC]]],\displaystyle-\frac{1}{64}[[\widetilde{p_{a}},V_{C}],[p_{b}^{2},[\widetilde{p_{a}},V_{C}]]],

where the summation aa and a<ba<b are omitted.

II.2 Spin-0 case

In the electromagnetic field, the equation of the scalar field is (πμπμm2)ϕ=0\left(\pi^{\mu}\pi_{\mu}-m^{2}\right)\phi=0. The positive energy part and the negative part wave functions are respectively θ=12(ϕ+1mπ0ϕ)\theta=\frac{1}{2}\left(\phi+\frac{1}{m}\pi^{0}\phi\right) and χ=12(ϕ1mπ0ϕ)\chi=\frac{1}{2}\left(\phi-\frac{1}{m}\pi^{0}\phi\right) Zatorski and Pachucki (2010), where the 12(1±1mπ0)\frac{1}{2}\left(1\pm\frac{1}{m}\pi^{0}\right) is the positive//negative project operator. In the rest reference frame, positive state satisfies χ=0\chi=0, and negative state satisfies θ=0\theta=0.

One can find out that the equation of scalar field equivalent expression is iηtΦ=HsΦi\eta\partial_{t}\Phi=H_{s}\Phi, where η=(1001),τ=(0110)\eta=\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right),\tau=\left(\begin{array}[]{ll}0&1\\ 1&0\end{array}\right), Φ=(θχ)\Phi=\left(\begin{array}[]{l}\theta\\ \chi\end{array}\right) and the Hamitonian is

Hs=(1+τ)12mπ2+m+ηA0.H_{s}=(1+\tau)\frac{1}{2m}\vec{\pi}^{2}+m+\eta A_{0}. (22)

In this Hamiltonian, the positive energy part couple with the negative part through τ\tau. The terms containing τ\tau is odd. The purpose of FW and DKH transformation is reducing the odd term to be insignificant. The transformations of wave function and Hamiltonian are Φ=UΦ\Phi={U}\Phi^{\prime} and HFW=U(Hiηt)UH^{\prime}_{FW}=U^{\dagger}\left(H-i\eta\partial_{t}\right)U. The U=eS{U}=e^{{S}} satisfy UηU=ηU^{\dagger}\eta U=\eta , and S{S} is a Hermitian operator. Because the normalization condition of the Φ\Phi is ΦηΦd3x=1\int\Phi^{\dagger}\eta\Phi d^{3}x=1.

Let S=τ2lnETmS=-\frac{\tau}{2}\ln\frac{E_{T}}{m}, and ET=π2+m2E_{T}=\sqrt{\vec{\pi}^{2}+m^{2}}. The transformed Hamiltonian is

Hs=ET+H1γ+O.H_{s}^{\prime}=E_{T}+H_{1\gamma}^{\prime}+O^{\prime}. (23)

The even one-photon terms and odd one-photon terms are

H1γ=ηA0+12η([ss,[ss,(A0itS)]][cs,[cs,(A0itS)]]),H_{1\gamma}^{\prime}=\eta A_{0}+\frac{1}{2}\eta\left(\left[s_{s},\left[s_{s},\left(A_{0}-i\partial_{t}S\right)\right]\right]-\left[c_{s},\left[c_{s},\left(A_{0}-i\partial_{t}S\right)\right]\right]\right), (24)

and

O=12η({cs,[ss,(A0itS)]}+{ss,[cs,(A0itS)]}),O^{\prime}=\frac{1}{2}\eta\left(-\left\{c_{s},\left[s_{s},\left(A_{0}-i\partial_{t}S\right)\right]\right\}+\left\{s_{s},\left[c_{s},\left(A_{0}-i\partial_{t}S\right)\right]\right\}\right), (25)

where ss=τπ24mET(ET+m)s_{s}=-\frac{\tau\pi^{2}}{\sqrt{4mE_{T}}\left(E_{T}+m\right)} and cs=ET+m4mETc_{s}=\frac{E_{T}+m}{\sqrt{4mE_{T}}}.

The odd one-photon terms can be eliminated by applying another transformation eSse^{S_{s}^{\prime}}. The transformed Hamiltonian can be obtained by using the expanded formula

Hs′′=\displaystyle H_{s}^{\prime\prime}= U(Hsiηt)U\displaystyle U^{\dagger}\left(H_{s}^{\prime}-i\eta\partial_{t}\right)U (26)
=\displaystyle= Hs+n=11n!{S(n),(Hsiηt)}+\displaystyle H_{s}^{\prime}+\sum_{n=1}\frac{1}{n!}\{S^{(n)},\left(H_{s}^{\prime}-i\eta\partial_{t}\right)\}+\ldots
=\displaystyle= Hs+{S,(Hsiηt)}+12{S,{S,(Hsiηt)}}+.\displaystyle H_{s}^{\prime}+\{S,\left(H_{s}^{\prime}-i\eta\partial_{t}\right)\}+\frac{1}{2}\{S,\{S,\left(H_{s}^{\prime}-i\eta\partial_{t}\right)\}\}+\ldots.

Its one order term satisfies {Ss,ETiηt}+O=0\{S_{s}^{\prime},E_{T}-i\eta\partial_{t}\}+O^{\prime}=0, where SsS_{s}^{\prime} can be derived by the recurrence relation,

Ss=12mn=0{(iηt(π2+m2m)2m)(n),O}.S_{s}^{\prime}=-\frac{1}{2m}\sum_{n=0}\left\{\left(\frac{i\eta\partial_{t}-(\sqrt{\pi^{2}+m^{2}}-m)}{2m}\right)^{(n)},O^{\prime}\right\}. (27)

The transformed Hamiltonian is

Hs′′=ET+H1γ+H2γ+,H^{\prime\prime}_{s}=E_{T}+H_{1\gamma}^{\prime}+H_{2\gamma}^{\prime}+\ldots, (28)

where H2γ=12{Ss,O}H_{2\gamma}^{\prime}=\frac{1}{2}\left\{S_{s}^{\prime},O^{\prime}\right\}, and higher-order terms are neglected.

The nonrelativistic Hamiltonian up to mα8m\alpha^{8} order can be obtained by expanding Hs′′H^{\prime\prime}_{s} on momentum. It is

Hs′′=\displaystyle H^{\prime\prime}_{s}= ET+ηA0+i32η[π2,{πi,Ei}]\displaystyle E_{T}+\eta A_{0}+\frac{i}{32}\eta\left[\pi^{2},\left\{\pi^{i},E^{i}\right\}\right] (29)
i32η[π4,{πi,Ei}]132{πi,Ei}{πi,Ei}+o(mα8).\displaystyle-\frac{i}{32}\eta\left[\pi^{4},\left\{\pi^{i},E^{i}\right\}\right]-\frac{1}{32}\left\{\pi^{i},E^{i}\right\}\left\{\pi^{i},E^{i}\right\}+o\left(m\alpha^{8}\right).

The first three terms are Hamiltonian up to mα6m\alpha^{6}. This result is coincided with the part without the form factor and multi-pole terms in Ref. Zatorski and Pachucki (2010). The second line is mα8m\alpha^{8} order Hamiltonian.

II.3 Spin-1 case

The vector field equation in the electromagnetic with minimal coupling is πν(πνuμπμuν)m2uμ=0\pi_{\nu}\left(\pi^{\nu}u^{\mu}-\pi^{\mu}u^{\nu}\right)-m^{2}u^{\mu}=0, where uμu^{\mu} represents the vector field. The positive energy part and the negative part of the particle are θi=12(ui+1m(π0uiπiu0))\theta^{i}=\frac{1}{2}\left(u^{i}+\frac{1}{m}\left(\pi^{0}u^{i}-\pi^{i}u^{0}\right)\right) and χi=12(ui1m(π0uiπiu0))\chi^{i}=\frac{1}{2}\left(u^{i}-\frac{1}{m}\left(\pi^{0}u^{i}-\pi^{i}u^{0}\right)\right) Zatorski and Pachucki (2010). In the rest reference frame, positive state satisfies χi=0\chi^{i}=0, and negative state satisfies θi=0\theta^{i}=0. The index ii is the polarization direction of the vector field.

The vector field is Ψi=(θiχi)\Psi^{i}=\left(\begin{array}[]{l}\theta^{i}\\ \chi^{i}\end{array}\right). And its equation of motion is iηtΨi=HVijΨji\eta\partial_{t}\Psi^{i}=H_{V}^{ij}\Psi^{j}, where the Hamiltonian is

HVij=mδij+12m(π2δijΣijB)12mτ(π2δij+ΣijB2((Σπ)2)ij)+ηA0δij,H_{V}^{ij}=m\delta^{ij}+\frac{1}{2m}\left(\vec{\pi}^{2}\delta^{ij}-\vec{\Sigma}^{ij}\cdot\vec{B}\right)-\frac{1}{2m}\tau\left(\vec{\pi}^{2}\delta^{ij}+\vec{\Sigma}^{ij}\cdot\vec{B}-2((\vec{\Sigma}\cdot\vec{\pi})^{2})^{ij}\right)+\eta A^{0}\delta^{ij}, (30)

B\vec{B} is the magnetic field, and (Σi)jk=iεijk(\Sigma^{i})^{jk}=-i\varepsilon^{ijk} is the spin operator of the vector field. Because spin is internal degrees, the equation and Hamiltonian can be expressed as iηtΨ=HVΨi\eta\partial_{t}\Psi=H_{V}\Psi and

HV=\displaystyle H_{V}= m+12m(π2ΣB)12mτ(π2+ΣB2(Σπ)2)+ηA0\displaystyle m+\frac{1}{2m}\left(\vec{\pi}^{2}-\vec{\Sigma}\cdot\vec{B}\right)-\frac{1}{2m}\tau\left(\vec{\pi}^{2}+\vec{\Sigma}\cdot\vec{B}-2(\vec{\Sigma}\cdot\vec{\pi})^{2}\right)+\eta A^{0} (31)
=\displaystyle= (m+12mp2)+12mτ(p2+2(Σp)2)+VE+VO.\displaystyle\left(m+\frac{1}{2m}p^{2}\right)+\frac{1}{2m}\tau\left(-p^{2}+2(\vec{\Sigma}\cdot\vec{p})^{2}\right)+V_{E}+V_{O}.

In the second line, the first two terms are Hamiltonian of free particle, and the last two terms are even and odd interactions

VE=ηA0+12m({pi,Ai}+A2ΣB),VO=12mτ({pi,Ai}A2ΣB+2(ΣA)22{Σp,ΣA}).\begin{array}[]{l}V_{E}=\eta A^{0}+\frac{1}{2m}\left(-\left\{p^{i},A^{i}\right\}+\vec{A}^{2}-\vec{\Sigma}\cdot\vec{B}\right),\\ V_{O}=\frac{1}{2m}\tau\left(\left\{p^{i},A^{i}\right\}-\vec{A}^{2}-\vec{\Sigma}\cdot\vec{B}+2(\vec{\Sigma}\cdot\vec{A})^{2}-2\{\vec{\Sigma}\cdot\vec{p},\vec{\Sigma}\cdot\vec{A}\}\right).\end{array} (32)

For spin-1 particle, the relativistic Hamiltonian will be expanded with electromagnetic potential AμA^{\mu}. The transformations of wave function and Hamiltonian are Ψ=UΨ\Psi=U\Psi^{\prime} and HFW=U(Hiηt)UH^{\prime}_{FW}=U^{\dagger}\left(H-i\eta\partial_{t}\right)U. The U=eSU=e^{S} satisfy UηU=ηU^{\dagger}\eta U=\eta, and SS is Hermitian operator. After performing the transformation eS=cV+sVe^{S}=c_{V}+s_{V}, where sV=τ[p22(Σp)2]2mET(m+ET)s_{V}=\frac{\tau\left[p^{2}-2(\Sigma\cdot p)^{2}\right]}{2\sqrt{mE_{T}}\left(m+E_{T}\right)}, cV=(ET+m)4mETc_{V}=\frac{\left(E_{T}+m\right)}{\sqrt{4mE_{T}}} and ET=p2+m2E_{T}=\sqrt{p^{2}+m^{2}}, the transformed Hamitonian is

HV=eSV(HViηt)eSV=ET+H1γ+O,\displaystyle H_{V}^{\prime}=e^{S_{V}}\left(H_{V}-i\eta\partial_{t}\right)e^{S_{V}}=E_{T}+H_{1\gamma}+O^{\prime}, (33)

and one-photon terms are

H1γ=cVVEcV+sVVEsV+cVVOsV+sVVOcV,\displaystyle H_{1\gamma}=c_{V}V_{E}c_{V}+s_{V}V_{E}s_{V}+c_{V}V_{O}s_{V}+s_{V}V_{O}c_{V}, (34)
O=cVVOcV+sVVOsV+cVVEsV+sVVEcV.\displaystyle O^{\prime}=c_{V}V_{O}c_{V}+s_{V}V_{O}s_{V}+c_{V}V_{E}s_{V}+s_{V}V_{E}c_{V}.

The odd one-photon terms OO^{\prime} can be cancelled by using Eq.(26). The SVS^{\prime}_{V} is

SV=12mn=0{(iηt(p2+m2m)2m)(n),O}.S_{V}^{\prime}=-\frac{1}{2m}\sum_{n=0}\left\{\left(\frac{i\eta\partial_{t}-(\sqrt{p^{2}+m^{2}}-m)}{2m}\right)^{(n)},O^{\prime}\right\}. (35)

The second transformed Hamiltonian is

HV′′=ET+H1γ+H2γ+H^{\prime\prime}_{V}=E_{T}+H_{1\gamma}^{\prime}+H_{2\gamma}^{\prime}+\ldots (36)

where H2γ=12{SV,O}H_{2\gamma}^{\prime}=\frac{1}{2}\left\{S^{\prime}_{V},O^{\prime}\right\} is the two-photons term. And higher-order terms are neglected.

The FW Hamiltonian up to mα8m\alpha^{8} order can be obtained by expanding HV′′H^{\prime\prime}_{V} with momentum. It is

HV′′\displaystyle H_{V}^{\prime\prime} =ET+ηA012({pi,Ai}+B~)+116η[(p22p~2),[(p22p~2),A0]]\displaystyle=E_{T}+\eta A_{0}-\frac{1}{2}\left(\left\{p^{i},A^{i}\right\}+\widetilde{B}\right)+\frac{1}{16}\eta\left[\left(p^{2}-2\widetilde{p}^{2}\right),\left[\left(p^{2}-2\widetilde{p}^{2}\right),A_{0}\right]\right] (37)
+18{({pi,Ai}B~2{p~,A~}),(p22p~2)}+12A2\displaystyle+\frac{1}{8}\left\{\left(\left\{p^{i},A^{i}\right\}-\widetilde{B}-2\{\widetilde{p},\widetilde{A}\}\right),\left(p^{2}-2\widetilde{p}^{2}\right)\right\}+\frac{1}{2}A^{2}
η116[(p22p~2)p2,[(p22p~2),A0]]164{p4,({pi,Ai}+B~)}\displaystyle-\eta\frac{1}{16}\left[\left(p^{2}-2\widetilde{p}^{2}\right)p^{2},\left[\left(p^{2}-2\widetilde{p}^{2}\right),A_{0}\right]\right]-\frac{1}{64}\left\{p^{4},\left(\left\{p^{i},A^{i}\right\}+\widetilde{B}\right)\right\}
132(p22p~2)({pi,Ai}+B~)(p22p~2)\displaystyle-\frac{1}{32}\left(p^{2}-2\widetilde{p}^{2}\right)\left(\left\{p^{i},A^{i}\right\}+\widetilde{B}\right)\left(p^{2}-2\widetilde{p}^{2}\right)
116{({pi,Ai}B~2{p~,A~}),(p22p~2)p2}\displaystyle-\frac{1}{16}\left\{\left(\left\{p^{i},A^{i}\right\}-\widetilde{B}-2\{\widetilde{p},\widetilde{A}\}\right),\left(p^{2}-2\widetilde{p}^{2}\right)p^{2}\right\}
18({pi,Ai}B~2{p~,A~})2+132[p22p~2,A0][p22p~2,A0]\displaystyle-\frac{1}{8}\left(\left\{p^{i},A^{i}\right\}-\widetilde{B}-2\{\widetilde{p},\widetilde{A}\}\right)^{2}+\frac{1}{32}\left[p^{2}-2\widetilde{p}^{2},A^{0}\right]\left[p^{2}-2\widetilde{p}^{2},A^{0}\right]
+18{(A2+2A~2),(p22p~2)}\displaystyle+\frac{1}{8}\left\{\left(A^{2}+2\widetilde{A}^{2}\right),\left(p^{2}-2\widetilde{p}^{2}\right)\right\}
116η[({pi,Ai}B~2{p~,A~}),[p22p~2,A0]]+o(mα8),\displaystyle-\frac{1}{16}\eta\left[\left(\left\{p^{i},A^{i}\right\}-\widetilde{B}-2\{\widetilde{p},\widetilde{A}\}\right),\left[p^{2}-2\widetilde{p}^{2},A^{0}\right]\right]+o\left(m\alpha^{8}\right),

where the tilde is defined as A~=AΣ\widetilde{A}=A\cdot\Sigma. The first two line is Hamiltonian up to mα6m\alpha^{6} order, and the rest are mα8m\alpha^{8} order terms.

III Elimination of singularities

The nonrelativistic Hamiltonians of Coulomb Bound state are expanded on pa2p^{2}_{a}, VCV_{C} or equivalent term α2pa2\alpha^{2}\sim\langle p^{2}_{a}\rangle,

H=H0+H(4)+H(6)+H(8)+o(mα8).\displaystyle H=H_{0}+H_{(4)}+H_{(6)}+H_{(8)}+o(m\alpha^{8}). (38)

H0H_{0} is the Sco¨\ddot{o}dinger Hamiltonian, which is mα2m\alpha^{2} order. H(4)H_{(4)}, H(6)H_{(6)} and H(8)H_{(8)} are mα4m\alpha^{4},mα6m\alpha^{6} and mα8m\alpha^{8} order. The relativistic corrections are calculated by using the perturbation theory. At the mα4m\alpha^{4} order, it is E(4)=H(4)E_{(4)}=\langle H_{(4)}\rangle. The expected value H(4)H_{(4)} is finite for Coulomb Bound state, and E(4)E_{(4)} can be calculated directly.

The mα6m\alpha^{6} and mα8m\alpha^{8} order energy corrections are

E(6)=H(6)+H(4)QE0H0H(4),\displaystyle E_{(6)}=\langle H_{(6)}\rangle+\langle H_{(4)}\frac{Q}{E_{0}-H_{0}}H_{(4)}\rangle, (39)

and

E(8)=\displaystyle E_{(8)}= H(8)+H(6)QE0H0H(4)+H(4)QE0H0H(6)\displaystyle\langle H_{(8)}\rangle+\langle H_{(6)}\frac{Q}{E_{0}-H_{0}}H_{(4)}\rangle+\langle H_{(4)}\frac{Q}{E_{0}-H_{0}}H_{(6)}\rangle (40)
+H(4)QE0H0(H(4)E4)QE0H0H(4),\displaystyle+\langle H_{(4)}\frac{Q}{E_{0}-H_{0}}(H_{(4)}-E_{{4}})\frac{Q}{E_{0}-H_{0}}H_{(4)}\rangle,

where Q=IP,P=|φφ|Q=I-P,P=|\varphi\rangle\langle\varphi| and φ\varphi is the perturbed state. The singularities will appear in these terms, and their expected values are infinite. For example, the total contribution of H(6)H_{(6)} contains δ3(r)r\langle\dfrac{\delta^{3}(r)}{r}\rangle and 1r4\langle\dfrac{1}{r^{4}}\rangle terms. They are divergent for s states of hydrogen. The second perturbation term H(4)QE0H0H(4)\langle H_{(4)}\frac{Q}{E_{0}-H_{0}}H_{(4)}\rangle is also divergent. These divergent parts should be cancelled exactly. Because the nonrelativistic Hamiltonian is unitary equivalent to the relativistic Hamiltonian, which has finite eigenvalues. It is essential to separate and cancel the singular terms from original nonrelativistic Hamiltonian, and then deriving the calculable formula.

Some conventions are adopted to simplify the derivation. Two operators are defined as A=E0VCA=E_{0}-V_{C} and B=H0E0B=H_{0}-E_{0}. E0,VCE_{0},V_{C} are energy of perturbed state and the Coulomb interaction. Then the operators H(4),H(6)H_{(4)},H_{(6)} and H(8)H_{(8)} are expanded by the following formula

H(n)=H(n)00+H(n)01B+BH(n)10+BH(n)11B,\displaystyle H_{(n)}=H^{00}_{(n)}+H^{01}_{(n)}B+BH^{10}_{(n)}+BH^{11}_{(n)}B, (41)

where n=4,6,8n=4,6,8.

Because φ\varphi is the perturbed state, B|φ=(H0E0)|φ=0B|\varphi\rangle=(H_{0}-E_{0})|\varphi\rangle=0. The leading order energy correction is

E(4)=H(4)=H(4)00,\displaystyle E_{(4)}=\langle H_{(4)}\rangle=\langle H_{(4)}^{00}\rangle, (42)

and the mα6m\alpha^{6} order energy correction is equal to

E(6)=H(6)H(4)00QBH(4)00,\displaystyle E_{(6)}=\langle H_{(6)}^{\prime}\rangle-\langle H^{00}_{(4)}\frac{Q}{B}H^{00}_{(4)}\rangle, (43)

where

H(6)H(6)00H(4)01Q(H(4)00E(4))(H(4)00E(4))QH(4)10H(4)01BH(4)10.\displaystyle H_{(6)}^{\prime}\equiv H^{00}_{(6)}-H^{01}_{(4)}Q(H^{00}_{(4)}-E_{(4)})-(H^{00}_{(4)}-E_{(4)})QH^{10}_{(4)}-H^{01}_{(4)}BH^{10}_{(4)}. (44)

The last three term is separated from the H(4)QE0H0H(4)\langle H_{(4)}\frac{Q}{E_{0}-H_{0}}H_{(4)}\rangle. If all the singular terms in H(6)H_{(6)}^{\prime} can be are cancelled. Then other terms in E(6)E_{(6)} are finite.

At mα8m\alpha^{8} order, the relativistic correction is equal to

E(8)=\displaystyle E_{(8)}= H(8)H(6)QBH(4)00H(4)00QBH(6)+H(4)00QB(H(4)00E(4))QBH(4)00,\displaystyle\left\langle H_{(8)}^{\prime}\right\rangle-\langle H_{(6)}^{\prime}\frac{Q}{B}H_{(4)}^{00}\rangle-\langle H_{(4)}^{00}\frac{Q}{B}H_{(6)}^{\prime}\rangle+\langle H_{(4)}^{00}\frac{Q}{B}\left(H_{(4)}^{00}-E_{(4)}\right)\frac{Q}{B}H_{(4)}^{00}\rangle, (45)

where

H(8)\displaystyle H_{(8)}^{\prime}\equiv H(8)00H(6)01QH(4)00H(6)00QH(4)10H(6)01BH(4)10H(4)01QH(6)00H(4)00QH(6)10H(4)01BH(6)10\displaystyle H_{(8)}^{00}-H_{(6)}^{01}QH_{(4)}^{00}-H_{(6)}^{00}QH_{(4)}^{10}-H_{(6)}^{01}BH_{(4)}^{10}-H_{(4)}^{01}QH_{(6)}^{00}-H_{(4)}^{00}QH_{(6)}^{10}-H_{(4)}^{01}BH_{(6)}^{10} (46)
+(H(4)00+H(4)01B)QH(4)11Q(H(4)00+BH(4)10)+H(4)01Q(BH(4)10+H(4)01B)QH(4)10\displaystyle+\left(H_{(4)}^{00}+H_{(4)}^{01}B\right)QH_{(4)}^{11}Q\left(H_{(4)}^{00}+BH_{(4)}^{10}\right)+H_{(4)}^{01}Q\left(BH_{(4)}^{10}+H_{(4)}^{01}B\right)QH_{(4)}^{10}
+H(4)00QH(4)10QH(4)10+H(4)01Q(H(4)00E(4))QH(4)10+H(4)01QH(4)01QH(4)00.\displaystyle+H_{(4)}^{00}QH_{(4)}^{10}QH_{(4)}^{10}+H_{(4)}^{01}Q\left(H_{(4)}^{00}-E_{(4)}\right)QH_{(4)}^{10}+H_{(4)}^{01}QH_{(4)}^{01}QH_{(4)}^{00}.

It maybe contains singularities in H(8)H_{(8)}^{\prime}. We can expand H(6)H_{(6)}^{\prime} to cancel the singularities by applying a similar strategy. In order to illustrate this method is effective, we will study the Hamiltonians of scalar and fermion.

III.1 Scalar particle in Coulomb field

The mα8m\alpha^{8} order Hamiltonian of scalar particle in Coulomb field obtained in Sec.II is

Hs=\displaystyle H_{s}= p22+VCp48+p616+132[p2,[p2,VC]]\displaystyle\frac{p^{2}}{2}+V_{C}-\frac{p^{4}}{8}+\frac{p^{6}}{16}+\frac{1}{32}\left[p^{2},\left[p^{2},V_{C}\right]\right] (47)
5p8128132[p4,[p2,VC]]+132[p2,VC][p2,VC]+o(mα8),\displaystyle-\frac{5p^{8}}{128}-\frac{1}{32}\left[p^{4},\left[p^{2},V_{C}\right]\right]+\frac{1}{32}\left[p^{2},V_{C}\right]\left[p^{2},V_{C}\right]+o\left(m\alpha^{8}\right),

where VCV_{C} is the Coulomb potential. The relativistic corrections to Hamiltonian are

H(4)=p48=12A212B212{A,B},\displaystyle H_{(4)}=-\frac{p^{4}}{8}=-\frac{1}{2}A^{2}-\frac{1}{2}B^{2}-\frac{1}{2}\{A,B\}, (48)
H(6)=\displaystyle H_{(6)}= p616+132[p2,[p2,VC]]\displaystyle\frac{p^{6}}{16}+\frac{1}{32}\left[p^{2},\left[p^{2},V_{C}\right]\right] (49)
=\displaystyle= 12A3+14ABA+58{A2,B}+38{B2,A}+34BAB+12B3,\displaystyle\frac{1}{2}A^{3}+\frac{1}{4}ABA+\frac{5}{8}\{A^{2},B\}+\frac{3}{8}\{B^{2},A\}+\frac{3}{4}BAB+\frac{1}{2}B^{3},

and

H(8)=\displaystyle H_{(8)}= 5p8128132[p4,[p2,VC]]+132[p2,VC][p2,VC]\displaystyle-\frac{5p^{8}}{128}-\frac{1}{32}\left[p^{4},\left[p^{2},V_{C}\right]\right]+\frac{1}{32}\left[p^{2},V_{C}\right]\left[p^{2},V_{C}\right] (50)
\displaystyle\simeq H(8)00=58A438(ABA2+A2BA)14AB2A.\displaystyle H_{(8)}^{00}=-\frac{5}{8}A^{4}-\frac{3}{8}(ABA^{2}+A^{2}BA)-\frac{1}{4}AB^{2}A.

where the p2=2(A+B)p^{2}=2(A+B) is used. The H(n)H(n)00H_{(n)}\simeq H_{(n)}^{00} means H(n)=H(n)00\langle H_{(n)}\rangle=\langle H_{(n)}^{00}\rangle. The difference between H(8)H_{(8)} and H(8)00H_{(8)}^{00} doesn’t contribute to the mα8m\alpha^{8} order energy.

The relativistic corrections to the energy can be derived by using the Eq.(42)(43)(44)(45)(46)

E(4)=12A2,\displaystyle E_{(4)}=-\dfrac{1}{2}\langle A^{2}\rangle, (51)
E(6)=\displaystyle E_{(6)}= H(6)H(4)00QBH(4)00\displaystyle\langle H_{(6)}^{\prime}\rangle-\langle H^{00}_{(4)}\frac{Q}{B}H^{00}_{(4)}\rangle (52)
=\displaystyle= 12A2A14A2QBA2,\displaystyle\dfrac{1}{2}\langle A^{2}\rangle\langle A\rangle-\dfrac{1}{4}\langle A^{2}\dfrac{Q}{B}A^{2}\rangle,

and

E(8)=\displaystyle E_{(8)}= H(8)H(6)QBH(4)00H(4)00QBH(6)+H(4)00QB(H(4)00E(4))QBH(4)00\displaystyle\left\langle H_{(8)}^{\prime}\right\rangle-\langle H_{(6)}^{\prime}\frac{Q}{B}H_{(4)}^{00}\rangle-\langle H_{(4)}^{00}\frac{Q}{B}H_{(6)}^{\prime}\rangle+\langle H_{(4)}^{00}\frac{Q}{B}\left(H_{(4)}^{00}-E_{(4)}\right)\frac{Q}{B}H_{(4)}^{00}\rangle (53)
=\displaystyle= 12A2A218A22+14A2QBA2A+14AQBA2A2+14A2QBAA2\displaystyle-\dfrac{1}{2}\langle A^{2}\rangle\langle A\rangle^{2}-\dfrac{1}{8}\langle A^{2}\rangle^{2}+\dfrac{1}{4}\langle A^{2}\dfrac{Q}{B}A^{2}\rangle\langle A\rangle+\dfrac{1}{4}\langle A\dfrac{Q}{B}A^{2}\rangle\langle A^{2}\rangle+\dfrac{1}{4}\langle A^{2}\dfrac{Q}{B}A\rangle\langle A^{2}\rangle
18A2QB(A2+2E(4))QBA2\displaystyle-\dfrac{1}{8}\langle A^{2}\dfrac{Q}{B}(A^{2}+2E_{(4)})\dfrac{Q}{B}A^{2}\rangle
=\displaystyle= E(4)2+E(2)E(6)+12AQBA2A218A2QB(A2+2E(4))QBA2,\displaystyle-E_{(4)}^{2}+E_{(2)}E_{(6)}+\dfrac{1}{2}\langle A\dfrac{Q}{B}A^{2}\rangle\langle A^{2}\rangle-\dfrac{1}{8}\langle A^{2}\dfrac{Q}{B}(A^{2}+2E_{(4)})\dfrac{Q}{B}A^{2}\rangle,

where the regularized Hamiltonians are H(4)00=12A2H^{00}_{(4)}=-\dfrac{1}{2}A^{2}, H(6)=14(A2PA+APA2)+12E(4)(AP+PA)E(4)AH_{(6)}^{\prime}=\dfrac{1}{4}(A^{2}PA+APA^{2})+\dfrac{1}{2}E_{(4)}(AP+PA)-E_{(4)}A, and H(8)=12APA2PA18A2PA2H_{(8)}^{\prime}=-\dfrac{1}{2}APA^{2}PA-\dfrac{1}{8}A^{2}PA^{2}. All the terms in the E(4),E(6)E_{(4)},E_{(6)}, and E(8)E_{(8)} are finite. We will give some numerical results in the next section.

III.2 Electron in Coulomb field

The Hamiltonian of electron in Coulomb field is

H=\displaystyle H= p22+VCp4818[p~,[p~,VC]]\displaystyle\frac{p^{2}}{2}+V_{C}-\frac{p^{4}}{8}-\frac{1}{8}[\widetilde{p},[\widetilde{p},V_{C}]] (54)
+p616+364{p~2,[p~,[p~,VC]]}+5128[p~2,[p~2,VC]116{[p~,VC],[p~,VC]}\displaystyle+\frac{p^{6}}{16}+\frac{3}{64}\{\widetilde{p}^{2},[\widetilde{p},[\widetilde{p},V_{C}]]\}+\frac{5}{128}[\widetilde{p}^{2},[\widetilde{p}^{2},V_{C}]-\frac{1}{16}\{[\widetilde{p},V_{C}],[\widetilde{p},V_{C}]\}
5p81285128{p~4,[p~,[p~,VC]]}+91024[p~2,[p~2,[p~,[p~,VC]]]]19512[p~4,[p~2,VC]\displaystyle-\frac{5p^{8}}{128}-\frac{5}{128}\{\widetilde{p}^{4},[\widetilde{p},[\widetilde{p},V_{C}]]\}+\frac{9}{1024}[\widetilde{p}^{2},[\widetilde{p}^{2},[\widetilde{p},[\widetilde{p},V_{C}]]]]-\frac{19}{512}[\widetilde{p}^{4},[\widetilde{p}^{2},V_{C}]
+164{[p~,VC],{p~,{p~,[p~,VC]}}}+364{[p~,VC],{p2,[p~,VC]}}+o(mα8),\displaystyle+\frac{1}{64}\{[\widetilde{p},V_{C}],\{\widetilde{p},\{\widetilde{p},[\widetilde{p},V_{C}]\}\}\}+\frac{3}{64}\{[\widetilde{p},V_{C}],\{p^{2},[\widetilde{p},V_{C}]\}\}+o(m\alpha^{8}),

p~=pσ\widetilde{p}=\vec{p}\cdot\vec{\sigma}, and VCV_{C} is the Coulomb potential. The last two terms in the first line is mα4m\alpha^{4} order. It is easy to check that they are spin-orbit coupling terms and Darwin terms. The second line is mα6m\alpha^{6} order terms and third and fourth lines are mα8m\alpha^{8} order terms. It is the Hamiltonian of hydrogen-like atoms or Hydrogen molecular ion. They are different in potential VCV_{C}. The specific form of VCV_{C} are not applied in this section.

By using A=E0VCA=E_{0}-V_{C} and B=H0E0B=H_{0}-E_{0}, the relativistic Hamiltonian H(n)(n=4,6,8)H_{(n)}(n=4,6,8) are transformed to the H(n)00+H(n)01B+BH(n)10+BH(n)11BH^{00}_{(n)}+H^{01}_{(n)}B+BH^{10}_{(n)}+BH^{11}_{(n)}B by applying Eq.(41). The mα4m\alpha^{4} order Hamiltonian is

H(4)=p4818[p~,[p~,VC]]=14p~VCp~14{A,B}12B2,\displaystyle H_{(4)}=-\frac{p^{4}}{8}-\frac{1}{8}[\widetilde{p},[\widetilde{p},V_{C}]]=-\frac{1}{4}\widetilde{p}V_{C}\widetilde{p}-\frac{1}{4}\{A,B\}-\frac{1}{2}B^{2}, (55)

and

H(4)00=\displaystyle H_{(4)}^{00}= 14p~VCp~,\displaystyle-\frac{1}{4}\widetilde{p}V_{C}\widetilde{p}, (56)
H(4)01=\displaystyle H_{(4)}^{01}= H(4)10=14A,\displaystyle H_{(4)}^{10}=-\frac{1}{4}A,
H(4)11=\displaystyle H_{(4)}^{11}= 12.\displaystyle-\frac{1}{2}.

The mα6m\alpha^{6} order Hamiltonian is

H(6)=\displaystyle H_{(6)}= p616+364{p~2,[p~,[p~,VC]]}+5128[p~2,[p~2,VC]116{[p~,VC],[p~,VC]}\displaystyle\frac{p^{6}}{16}+\frac{3}{64}\{\widetilde{p}^{2},[\widetilde{p},[\widetilde{p},V_{C}]]\}+\frac{5}{128}[\widetilde{p}^{2},[\widetilde{p}^{2},V_{C}]-\frac{1}{16}\{[\widetilde{p},V_{C}],[\widetilde{p},V_{C}]\} (57)
=\displaystyle= 14A3+116ABA132{A2,B}+532{B2,A}+716BAB+12B3\displaystyle-\frac{1}{4}A^{3}+\frac{1}{16}ABA-\frac{1}{32}\{A^{2},B\}+\frac{5}{32}\{B^{2},A\}+\frac{7}{16}BAB+\frac{1}{2}B^{3}
+316(p~Ap~A+Ap~Ap~+p~Ap~B+Bp~Ap~),\displaystyle+\frac{3}{16}(\widetilde{p}A\widetilde{p}A+A\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}B+B\widetilde{p}A\widetilde{p}),

and

H(6)00=\displaystyle H_{(6)}^{00}= 14A3+116ABA+316(p~Ap~A+Ap~Ap~),\displaystyle-\frac{1}{4}A^{3}+\frac{1}{16}ABA+\frac{3}{16}(\widetilde{p}A\widetilde{p}A+A\widetilde{p}A\widetilde{p}), (58)
H(6)01=\displaystyle H_{(6)}^{01}= 132A2+532AB+316p~Ap~,\displaystyle-\frac{1}{32}A^{2}+\frac{5}{32}AB+\frac{3}{16}\widetilde{p}A\widetilde{p},
H(4)10=\displaystyle H_{(4)}^{10}= 132A2+532BA+316p~Ap~,\displaystyle-\frac{1}{32}A^{2}+\frac{5}{32}BA+\frac{3}{16}\widetilde{p}A\widetilde{p},
H(6)11=\displaystyle H_{(6)}^{11}= 716A+12B.\displaystyle\frac{7}{16}A+\frac{1}{2}B.

The mα8m\alpha^{8} order Hamiltonian

H(8)=\displaystyle H_{(8)}= 5p81285128{p~4,[p~,[p~,VC]]}+91024[p~2,[p~2,[p~,[p~,VC]]]]19512[p~4,[p~2,VC]\displaystyle-\frac{5p^{8}}{128}-\frac{5}{128}\{\widetilde{p}^{4},[\widetilde{p},[\widetilde{p},V_{C}]]\}+\frac{9}{1024}[\widetilde{p}^{2},[\widetilde{p}^{2},[\widetilde{p},[\widetilde{p},V_{C}]]]]-\frac{19}{512}[\widetilde{p}^{4},[\widetilde{p}^{2},V_{C}] (59)
+164{[p~,VC],{p~,{p~,[p~,VC]}}}+364{[p~,VC],{p2,[p~,VC]}}\displaystyle+\frac{1}{64}\{[\widetilde{p},V_{C}],\{\widetilde{p},\{\widetilde{p},[\widetilde{p},V_{C}]\}\}\}+\frac{3}{64}\{[\widetilde{p},V_{C}],\{p^{2},[\widetilde{p},V_{C}]\}\}
\displaystyle\simeq H(8)00,\displaystyle H_{(8)}^{00},

and

H(8)00=\displaystyle H_{(8)}^{00}= A44+37128(ABA2+A2BA)+2164AB2A\displaystyle\frac{A^{4}}{4}+\frac{37}{128}\left(ABA^{2}+A^{2}BA\right)+\frac{21}{64}AB^{2}A (60)
316p~A3p~+332(p~A2p~A+Ap~A2p~)19128(p~Ap~A2+A2p~Ap~)\displaystyle-\frac{3}{16}\widetilde{p}A^{3}\widetilde{p}+\frac{3}{32}\left(\widetilde{p}A^{2}\widetilde{p}A+A\widetilde{p}A^{2}\widetilde{p}\right)-\frac{19}{128}\left(\widetilde{p}A\widetilde{p}A^{2}+A^{2}\widetilde{p}A\widetilde{p}\right)
132(p~BA2p~+p~A2Bp~)27128(p~Ap~BA+ABp~Ap~)\displaystyle-\frac{1}{32}\left(\widetilde{p}BA^{2}\widetilde{p}+\widetilde{p}A^{2}B\widetilde{p}\right)-\frac{27}{128}(\widetilde{p}A\widetilde{p}BA+AB\widetilde{p}A\widetilde{p})
+132(p~BAp~A+Ap~ABp¯)+532(p~ABp~A+Ap~BAp~)\displaystyle+\frac{1}{32}(\widetilde{p}BA\widetilde{p}A+A\widetilde{p}AB\bar{p})+\frac{5}{32}(\tilde{p}AB\widetilde{p}A+A\widetilde{p}BA\widetilde{p})
964Ap~Ap~A316Ap~Bp~A18p~ABAp~,\displaystyle-\frac{9}{64}A\widetilde{p}A\widetilde{p}A-\frac{3}{16}A\widetilde{p}B\widetilde{p}A-\frac{1}{8}\widetilde{p}ABA\widetilde{p},

The terms H(8)01,H(8)10H_{(8)}^{01},H_{(8)}^{10} and H(8)11H_{(8)}^{11} are neglected. Because H(n)01B+BH(n)10+BH(n)11B=0\langle H^{01}_{(n)}B+BH^{10}_{(n)}+BH^{11}_{(n)}B\rangle=0, their contributions to mα8m\alpha^{8} order energy correction is zero.

The relativistic corrections to the energy can be derived by using the Eq.(42)(43)(44)(45)(46). The mα4m\alpha^{4} order energy correction is

E(4)=H(4)=H(4)00=14p~Ap~,\displaystyle E_{(4)}=\langle H_{(4)}\rangle=\langle H_{(4)}^{00}\rangle=-\dfrac{1}{4}\langle\widetilde{p}A\widetilde{p}\rangle, (61)

At the mα6m\alpha^{6} order, the energy corrections can be obtained by using the Eq.(43) (44)

E(6)=H(6)H(4)00QBH(4)00,\displaystyle E_{(6)}=\langle H_{(6)}^{\prime}\rangle-\langle H^{00}_{(4)}\frac{Q}{B}H^{00}_{(4)}\rangle, (62)

The regularized H(6)H_{(6)}^{\prime} is

H(6)=\displaystyle H_{(6)}^{\prime}= H(6)00H(4)01Q(H(4)00E(4))(H(4)00E(4))QH(4)10H(4)01BH(4)10.\displaystyle H^{00}_{(6)}-H^{01}_{(4)}Q(H^{00}_{(4)}-E_{(4)})-(H^{00}_{(4)}-E_{(4)})QH^{10}_{(4)}-H^{01}_{(4)}BH^{10}_{(4)}. (63)
=\displaystyle= 18p~A2p~+116(p~Ap~PA+APp~Ap~)14(QA+AQ)E(4)+18{A2,B}\displaystyle\frac{1}{8}\widetilde{p}A^{2}\widetilde{p}+\dfrac{1}{16}(\widetilde{p}A\widetilde{p}PA+AP\widetilde{p}A\widetilde{p})-\frac{1}{4}(QA+AQ)E_{(4)}+\frac{1}{8}\{A^{2},B\}

where the equation p~Ap~A+Ap~Ap~=p~A2p~+2A3+{B,A2}\widetilde{p}A\widetilde{p}A+A\widetilde{p}A\widetilde{p}=\widetilde{p}A^{2}\widetilde{p}+2A^{3}+\{B,A^{2}\} (Eq.(91)) is applied, and all singular terms, such as the A3,ABA,p~Ap~AA^{3},ABA,\widetilde{p}A\widetilde{p}A and Ap~Ap~A\widetilde{p}A\widetilde{p} in H(6)00H^{00}_{(6)} are cancelled. The regularized mα6m\alpha^{6} order energy is

E(6)=\displaystyle E_{(6)}= 18p~A2p~+18p~Ap~A116p~Ap~QBp~Ap~\displaystyle\dfrac{1}{8}\langle\widetilde{p}A^{2}\widetilde{p}\rangle+\dfrac{1}{8}\langle\widetilde{p}A\widetilde{p}\rangle\langle A\rangle-\dfrac{1}{16}\langle\widetilde{p}A\widetilde{p}\dfrac{Q}{B}\widetilde{p}A\widetilde{p}\rangle (64)

All the terms in the equation is finite.

The mα8m\alpha^{8} order the energy correction is derived by using Eq.(45),(46). However, these terms are still divergent for electron. Define H(6)00=H(6)18{A2,B}H_{(6)}^{\prime 00}=H_{(6)}^{\prime}-\dfrac{1}{8}\{A^{2},B\}. The energy correction E(8)E_{(8)} in Eq.(45) is equal to

E(8)=\displaystyle E_{(8)}= H(8)′′H(6)00QBH(4)00H(4)00QBH(6)00+H(4)00QB(H(4)00E(4))QBH(4)00,\displaystyle\left\langle H_{(8)}^{\prime\prime}\right\rangle-\langle H_{(6)}^{\prime 00}\frac{Q}{B}H_{(4)}^{00}\rangle-\langle H_{(4)}^{00}\frac{Q}{B}H_{(6)}^{\prime 00}\rangle+\langle H_{(4)}^{00}\frac{Q}{B}\left(H_{(4)}^{00}-E_{(4)}\right)\frac{Q}{B}H_{(4)}^{00}\rangle, (65)

and the regularized H(8)′′H_{(8)}^{\prime\prime} is

H(8)′′\displaystyle H_{(8)}^{\prime\prime}\equiv H(8)18A2QH(4)0018H(4)00QA2.\displaystyle H_{(8)}^{\prime}-\dfrac{1}{8}A^{2}QH_{(4)}^{00}-\dfrac{1}{8}H_{(4)}^{00}QA^{2}. (66)

Almost all singular terms except p~A3p~\widetilde{p}A^{3}\widetilde{p} in H(8)′′H_{(8)}^{\prime\prime} can be cancelled by using the equations p~A2p~A+Ap~A2p~=43p~A3p~+43A4+23{B,A3}\widetilde{p}A^{2}\widetilde{p}A+A\widetilde{p}A^{2}\widetilde{p}=\dfrac{4}{3}\widetilde{p}A^{3}\widetilde{p}+\dfrac{4}{3}A^{4}+\dfrac{2}{3}\{B,A^{3}\} and p~Ap~A2+A2p~Ap~=23p~A3p~+83A4+43{B,A3}\widetilde{p}A\widetilde{p}A^{2}+A^{2}\widetilde{p}A\widetilde{p}=\dfrac{2}{3}\widetilde{p}A^{3}\widetilde{p}+\dfrac{8}{3}A^{4}+\dfrac{4}{3}\{B,A^{3}\} (Eq.(91)).

Then, the mα8m\alpha^{8} order the energy correction is

E(8)=\displaystyle E_{(8)}= 164p~Ap~QB(p~Ap~+4E(4))QBp~Ap~+132p~A2p~QBp~Ap~+p~Ap~QBp~A2p~116p~A3p~\displaystyle-\frac{1}{64}\left\langle\widetilde{p}A\widetilde{p}\frac{Q}{B}\left(\widetilde{p}A\widetilde{p}+4E_{(4)}\right)\frac{Q}{B}\widetilde{p}A\widetilde{p}\right\rangle+\frac{1}{32}\langle\widetilde{p}A^{2}\widetilde{p}\frac{Q}{B}\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}\frac{Q}{B}\widetilde{p}A^{2}\widetilde{p}\rangle-\frac{1}{16}\langle\widetilde{p}A^{3}\widetilde{p}\rangle (67)
18E(4)AQBp~Ap~+p~Ap~QBAE(4)2+12E(2)E(6).\displaystyle-\frac{1}{8}E_{(4)}\langle A\frac{Q}{B}\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}\frac{Q}{B}A\rangle-E_{(4)}^{2}+\frac{1}{2}E_{(2)}E_{(6)}.

All the terms in the second line are finite. In the first line, each term is divergent for s state. A further regularized procedure should be applied. And the first three terms in the first line should be calculated together. By applying p~A3p~=p~A2QAp~=p~AQAQAp~\langle\widetilde{p}A^{3}\widetilde{p}\rangle=\langle\widetilde{p}A^{2}QA\widetilde{p}\rangle=\langle\widetilde{p}AQAQA\widetilde{p}\rangle, the second and third terms in the first line can be absorbed into first terms. The mα8m\alpha^{8} energy correction is

E(8)=\displaystyle E_{(8)}= 164p~A(p~QBp~2Q)A(p~QBp~2Q)Ap~+164p~Ap~p~Ap~QB2p~Ap~\displaystyle-\frac{1}{64}\left\langle\widetilde{p}A(\widetilde{p}\frac{Q}{B}\widetilde{p}-2Q)A(\widetilde{p}\frac{Q}{B}\widetilde{p}-2Q)A\widetilde{p}\right\rangle+\frac{1}{64}\langle\widetilde{p}A\widetilde{p}\rangle\left\langle\widetilde{p}A\widetilde{p}\frac{Q}{B^{2}}\widetilde{p}A\widetilde{p}\right\rangle (68)
18E(4)AQBp~Ap~+p~Ap~QBAE(4)2+12E(4)E(6).\displaystyle-\frac{1}{8}E_{(4)}\langle A\frac{Q}{B}\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}\frac{Q}{B}A\rangle-E_{(4)}^{2}+\frac{1}{2}E_{(4)}E_{(6)}.

All the divergent parts are combined in the first term. The results is finite. We will give some numerical results of hydrogen in next section.

III.3 Multi-electron systems in Coulomb field

The Hamiltonian of multi-electron systems in Coulomb field is

H=\displaystyle H= a(pa22)+VC+a(pa4818[pa~,[pa~,VC]])\displaystyle\sum_{a}\left(\frac{p^{2}_{a}}{2}\right)+V_{C}+\sum_{a}\left(-\frac{p^{4}_{a}}{8}-\frac{1}{8}[\widetilde{p_{a}},[\widetilde{p_{a}},V_{C}]]\right) (69)
+a(pa616+332[pa~3,[pa~,VC]]1128[pa~2,[pa~2,VC]116{[pa~,VC],[pa~,VC]})\displaystyle+\sum_{a}\left(\frac{p^{6}_{a}}{16}+\frac{3}{32}[\widetilde{p_{a}}^{3},[\widetilde{p_{a}},V_{C}]]-\frac{1}{128}[\widetilde{p_{a}}^{2},[\widetilde{p_{a}}^{2},V_{C}]-\frac{1}{16}\{[\widetilde{p_{a}},V_{C}],[\widetilde{p_{a}},V_{C}]\}\right)
+a<b(164[pa~,[pa~,[pb~,[pb~,VC]]]])+o(mα6),\displaystyle+\sum_{a<b}\left(\frac{1}{64}[\widetilde{p_{a}},[\widetilde{p_{a}},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]\right)+o(m\alpha^{6}),

where the Coulomb interactions

VC=i,aZiria+a<b1rab,\displaystyle V_{C}=-\sum_{i,a}\frac{Z_{i}}{r_{ia}}+\sum_{a<b}\frac{1}{r_{ab}}, (70)

contains both the electron-electron (subscript i,a) and electron-nucleus interaction (subscript a,b).

Relativistic correction to Hamiltonian H(4)H_{(4)} and H(6)H_{(6)} are transformed by the same method. The mα4m\alpha^{4} order corrections to Hamiltonian is

H(4)=\displaystyle H_{(4)}= a(pa4818[pa~,[pa~,VC]])\displaystyle\sum_{a}\left(-\frac{p^{4}_{a}}{8}-\frac{1}{8}[\widetilde{p_{a}},[\widetilde{p_{a}},V_{C}]]\right) (71)
=\displaystyle= 14ap~aVCp~a+14a<bpa2pb214{A,B}12B2,\displaystyle-\frac{1}{4}\sum_{a}\widetilde{p}_{a}V_{C}\widetilde{p}_{a}+\dfrac{1}{4}\sum_{a<b}p^{2}_{a}p^{2}_{b}-\frac{1}{4}\{A,B\}-\frac{1}{2}B^{2},

and

H(4)00=\displaystyle H_{(4)}^{00}= 14ap~aVCp~a+14a<bpa2pb2,\displaystyle-\frac{1}{4}\sum_{a}\widetilde{p}_{a}V_{C}\widetilde{p}_{a}+\dfrac{1}{4}\sum_{a<b}p^{2}_{a}p^{2}_{b}, (72)
H(4)01=\displaystyle H_{(4)}^{01}= H(4)10=14A,\displaystyle H_{(4)}^{10}=-\frac{1}{4}A,
H(4)11=\displaystyle H_{(4)}^{11}= 12.\displaystyle-\frac{1}{2}.

The mα6m\alpha^{6} order correction to Hamiltonian

H(6)=\displaystyle H_{(6)}= a(pa616+332[pa~3,[pa~,VC]]1128[pa~2,[pa~2,VC]116{[pa~,VC],[pa~,VC]})\displaystyle\sum_{a}\left(\frac{p^{6}_{a}}{16}+\frac{3}{32}[\widetilde{p_{a}}^{3},[\widetilde{p_{a}},V_{C}]]-\frac{1}{128}[\widetilde{p_{a}}^{2},[\widetilde{p_{a}}^{2},V_{C}]-\frac{1}{16}\{[\widetilde{p_{a}},V_{C}],[\widetilde{p_{a}},V_{C}]\}\right) (73)
+a<b(164[pa~,[pa~,[pb~,[pb~,VC]]]])\displaystyle+\sum_{a<b}\left(\frac{1}{64}[\widetilde{p_{a}},[\widetilde{p_{a}},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]\right)
=\displaystyle= a(pa616+364{p~a2,[p~a,[p~a,VC]]}+132(qaVC)2)\displaystyle\sum_{a}\left(\frac{p^{6}_{a}}{16}+\frac{3}{64}\{\widetilde{p}^{2}_{a},[\widetilde{p}_{a},[\widetilde{p}_{a},V_{C}]]\}+\frac{1}{32}(q_{a}V_{C})^{2}\right)
+a<b(164[pa~,[pa~,[pb~,[pb~,VC]]]]+564[pa2,[pb2,VC]])+532[H0,[H0,VC]]]\displaystyle+\sum_{a<b}\left(\frac{1}{64}[\widetilde{p_{a}},[\widetilde{p_{a}},[\widetilde{p_{b}},[\widetilde{p_{b}},V_{C}]]]]+\frac{5}{64}[p_{a}^{2},[p_{b}^{2},V_{C}]]\right)+\frac{5}{32}[H_{0},[H_{0},V_{C}]]]

and

H(6)00=\displaystyle H_{(6)}^{00}= 14A3+116ABA+316a<b<cpa2pb2pc2+316{A,bp~bAp~ba<bpa2pb2}\displaystyle-\frac{1}{4}A^{3}+\frac{1}{16}ABA+\frac{3}{16}\sum_{a<b<c}p_{a}^{2}p_{b}^{2}p_{c}^{2}+\frac{3}{16}\left\{A,\sum_{b}\tilde{p}_{b}A\widetilde{p}_{b}-\sum_{a<b}p_{a}^{2}p_{b}^{2}\right\} (74)
ab(364{p^a2,{p^b2,A}}+3128[p^a2,[p^b2,A]]+332{p^a2,p~bAp~b})\displaystyle-\sum_{a\neq b}\left(-\frac{3}{64}\left\{\hat{p}_{a}^{2},\left\{\hat{p}_{b}^{2},A\right\}\right\}+\frac{3}{128}\left[\hat{p}_{a}^{2},\left[\hat{p}_{b}^{2},A\right]\right]+\frac{3}{32}\left\{\hat{p}_{a}^{2},\widetilde{p}_{b}A\tilde{p}_{b}\right\}\right)
a<b164[p~a,[p~a,[p~b,[p~b,A]]]].\displaystyle-\sum_{a<b}\frac{1}{64}\left[\tilde{p}_{a},\left[\widetilde{p}_{a},\left[\tilde{p}_{b},\left[\widetilde{p}_{b},A\right]\right]\right]\right].

The terms H(6)01,H(6)10H_{(6)}^{01},H_{(6)}^{10} and H(6)11H_{(6)}^{11} are neglected.

The mα4m\alpha^{4} order energy correction is

E(4)=H(4)=H(4)00=14ap~aVCp~a+14a<bpa2pb2\displaystyle E_{(4)}=\langle H_{(4)}\rangle=\langle H_{(4)}^{00}\rangle=-\frac{1}{4}\sum_{a}\langle\widetilde{p}_{a}V_{C}\widetilde{p}_{a}\rangle+\dfrac{1}{4}\sum_{a<b}\langle p^{2}_{a}p^{2}_{b}\rangle (75)

At mα6m\alpha^{6} order, the terms H(4)QEH0H(4)\langle H_{(4)}\frac{Q}{E-H_{0}}H_{(4)}\rangle and H(6)\langle H_{(6)}\rangle are divergent. The divergent parts are

H(4)QEH0H(4)=\displaystyle\langle H_{(4)}\frac{Q}{E-H_{0}}H_{(4)}\rangle= H(4)00QEH0H(4)00+116{(ap~aAp~ai+a<bpa2pb2),A}\displaystyle\langle H_{(4)}^{00}\frac{Q}{E-H_{0}}H_{(4)}^{00}\rangle+\frac{1}{16}\langle\{\left(-\sum_{a}\tilde{p}_{a}A\widetilde{p}_{a}^{i}+\sum_{a<b}p_{a}^{2}p_{b}^{2}\right),A\}\rangle (76)
116ABA12H(4)00A\displaystyle-\frac{1}{16}\langle ABA\rangle-\frac{1}{2}\langle H_{(4)}^{00}\rangle\langle A\rangle
=\displaystyle= 116{(ap~aAp~a+a<bpa2pb2),A}116ABA+finite,\displaystyle\frac{1}{16}\langle\{\left(-\sum_{a}\tilde{p}_{a}A\widetilde{p}_{a}+\sum_{a<b}p_{a}^{2}p_{b}^{2}\right),A\}\rangle-\frac{1}{16}\langle ABA\rangle+finite,

and

H(6)00=\displaystyle\langle H_{(6)}^{00}\rangle= 14A3+116ABA+316{A,bp~bAp~ba<bpa2pb2}+finite.\displaystyle-\frac{1}{4}\langle A^{3}\rangle+\frac{1}{16}\langle ABA\rangle+\frac{3}{16}\langle\left\{A,\sum_{b}\tilde{p}_{b}A\widetilde{p}_{b}-\sum_{a<b}p_{a}^{2}p_{b}^{2}\right\}\rangle+finite. (77)

All the divergence can be cancelled by using the equations a(p~aAp~aA+Ap~aAp~a)=bp~aA2p~a+2A3+{B,A2}\sum_{a}(\widetilde{p}_{a}A\widetilde{p}_{a}A+A\widetilde{p}_{a}A\widetilde{p}_{a})=\sum_{b}\widetilde{p}_{a}A^{2}\widetilde{p}_{a}+2A^{3}+\{B,A^{2}\} (Eq.(91)), and the total contribution of mα6m\alpha^{6} order energy is

E(6)=\displaystyle E_{(6)}= 18ap~aA2p~a18a<b{A,pa2pb2}+316a<b<cpa2pb2pc2\displaystyle\frac{1}{8}\sum_{a}\left\langle\widetilde{p}_{a}A^{2}\widetilde{p}_{a}\right\rangle-\frac{1}{8}\sum_{a<b}\left\langle\left\{A,p_{a}^{2}p_{b}^{2}\right\}\right\rangle+\frac{3}{16}\sum_{a<b<c}\left\langle p_{a}^{2}p_{b}^{2}p_{c}^{2}\right\rangle (78)
a<b(332{pa2,{pb2,A}}+364[pa2,[pb2,A]]+316{pa2,p~bAp~b})\displaystyle-\sum_{a<b}\left(-\frac{3}{32}\left\langle\left\{p_{a}^{2},\left\{p_{b}^{2},A\right\}\right\}\right\rangle+\frac{3}{64}\left\langle\left[p_{a}^{2},\left[p_{b}^{2},A\right]\right]\right\rangle+\frac{3}{16}\left\langle\left\{p_{a}^{2},\widetilde{p}_{b}A\widetilde{p}_{b}\right\}\right\rangle\right)
a<b164[p~a,[p~a,[p~b,[p~b,A]]]]+H(4)00QEH0H(4)0012H(4)00A.\displaystyle-\sum_{a<b}\frac{1}{64}\left\langle\left[\widetilde{p}_{a},\left[\tilde{p}_{a},\left[\tilde{p}_{b},\left[\tilde{p}_{b},A\right]\right]\right]\right]\right\rangle+\langle H_{(4)}^{00}\frac{Q}{E-H_{0}}H_{(4)}^{00}\rangle-\frac{1}{2}\left\langle H_{(4)}^{00}\right\rangle\langle A\rangle.

All the terms are finite. It can be proved by the following reason. The divergence always appears when one electron approaches the nucleus. It is obvious the first term is finite for s state of Slater-type functions. The summation of power of pa2p^{2}_{a} and 1ra\frac{1}{r_{a}} in the formula except first term is less than three. All terms are finite when ra0r_{a}\rightarrow 0. It applies to other electrons.

IV The relativistic correction of scalar particle and electron in Coulomb field

We will check the formula deriving in this work by comparing their expectation values with the analytic relativistic result of scalar particle and electron in Coulomb field. Because the leading order terms of nonrelativistic Hamiltonian of scalar particle and electron are the same. The eigenvalues, eigenstates and Green function of nonrelativistic hydrogen Swainson and Drake (1991a, b, c) are used to derive the relativistic correction.

The eigenfunction of hydrogen atom is

ψnlm(r,θ,ϕ)=Rnl(r)Ylm(θ,ϕ),\psi_{nlm}(r,\theta,\phi)=R_{nl}(r)Y_{lm}(\theta,\phi), (79)

where RnlR_{nl} is radial part and YlmY_{lm} is spherical harmonics function. The radial part of the nonrelativistic wave function can be written as

Rnl(r)=Nnl(2r/n)ler/nLnl12l+1(2r/n),R_{nl}(r)=N_{nl}(2r/n)^{l}\mathrm{e}^{-r/n}L_{n-l-1}^{2l+1}(2r/n), (80)

Lnl(z)L_{n}^{l}(z) is the generalized Laguerre function and Nnl=(2/n2)(nl1)!/(n+l)!N_{nl}=\left(2/n^{2}\right)\sqrt{(n-l-1)!/(n+l)!} is the normalization factor.

In coordinate representation, the operator Q/BQ/B is reduced Green function. It can be expressed as

G(𝒓1,𝒓2;En)=𝒓1|QB|𝒓2=k,lmgl,k(r1,r2;En)Ylm(θ1,ϕ1)Ylm(θ2,ϕ2).G^{\prime}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2};E_{n}\right)=\left.\langle\boldsymbol{r}_{1}\right|\dfrac{Q}{B}\left|\boldsymbol{r}_{2}\rangle\right.=\sum_{k,l^{\prime}m^{\prime}}g_{l^{\prime},k}\left(r_{1},r_{2};E_{n}\right)Y_{l^{\prime}m^{\prime}}\left(\theta_{1},\phi_{1}\right)Y_{l^{\prime}m^{\prime}}^{*}\left(\theta_{2},\phi_{2}\right). (81)

where the radial function can be expressed as

gl,knl1(r1,r2;En)=(2n)2l+1k!2(r1r2)le(r1+r2)/n(2l+1+k)!(l+1+kn)Lk2l+1(2r1n)Lk2l+1(2r2n),\displaystyle g_{l^{\prime},k\neq n-l^{\prime}-1}\left(r_{1},r_{2};E_{n}\right)=\left(\frac{2}{n}\right)^{2l^{\prime}+1}\frac{k!2\left(r_{1}r_{2}\right)^{l^{\prime}}\mathrm{e}^{-\left(r_{1}+r_{2}\right)/n}}{\left(2l^{\prime}+1+k\right)!\left(l^{\prime}+1+k-n\right)}L_{k}^{2l^{\prime}+1}\left(\frac{2r_{1}}{n}\right)L_{k}^{2l^{\prime}+1}\left(\frac{2r_{2}}{n}\right), (82)

and

gl,nl1(r1,r2;En)\displaystyle g_{l^{\prime},n-l^{\prime}-1}\left(r_{1},r_{2};E_{n}\right) =2(2n)2l+1(r1r2)le(r1+r2)/n(nl1)!2n(n+l)!\displaystyle=2\left(\frac{2}{n}\right)^{2l^{\prime}+1}\left(r_{1}r_{2}\right)^{l^{\prime}}\mathrm{e}^{-\left(r_{1}+r_{2}\right)/n}\frac{\left(n-l^{\prime}-1\right)!}{2n\left(n+l^{\prime}\right)!} (83)
×{[(nl)Lnl2l+1(2r2n)(n+l)Lnl22l+1(2r2n)]Lnl12l+1(2r1n)\displaystyle\times\left\{\left[\left(n-l^{\prime}\right)L_{n-l^{\prime}}^{2l^{\prime}+1}\left(\frac{2r_{2}}{n}\right)-\left(n+l^{\prime}\right)L_{n-l^{\prime}-2}^{2l^{\prime}+1}\left(\frac{2r_{2}}{n}\right)\right]L_{n-l^{\prime}-1}^{2l^{\prime}+1}\left(\frac{2r_{1}}{n}\right)\right.
+[(nl)Lnl2l+1(2r1n)(n+l)Lnl22l+1(2r1n)]Lnl12l+1(2r2n)\displaystyle+\left[\left(n-l^{\prime}\right)L_{n-l^{\prime}}^{2l^{\prime}+1}\left(\frac{2r_{1}}{n}\right)-\left(n+l^{\prime}\right)L_{n-l^{\prime}-2}^{2l^{\prime}+1}\left(\frac{2r_{1}}{n}\right)\right]L_{n-l^{\prime}-1}^{2l^{\prime}+1}\left(\frac{2r_{2}}{n}\right)
+Lnl12l+1(2r1n)Lnl12l+1(2r2n)}.\displaystyle+\left.L_{n-l^{\prime}-1}^{2l^{\prime}+1}\left(\frac{2r_{1}}{n}\right)L_{n-l^{\prime}-1}^{2l^{\prime}+1}\left(\frac{2r_{2}}{n}\right)\right\}.

Although reduced Green function is a summation of infinite terms. The term

H(4)00QBH(4)00=k=0Dk,\displaystyle\langle H^{00}_{(4)}\dfrac{Q}{B}H^{00}_{(4)}\rangle=\sum_{k=0}^{\infty}D_{k}, (84)

in second perturbation of relativistic energy (mα6m\alpha^{6} order) can be calculated by the following two method. (1)Analytical method: The first ten terms are calculated accurately. Then the general term formulas are conjectured. The general term formulas are tested by comparing with exact results of first hundred terms, and the summation can be obtained accurately. (2)Approximate method: The first Ω\Omega terms are calculated accurately. For Ω1\Omega\gg 1, Dkc0ka+c1ka+1+D_{k}\simeq\dfrac{c_{0}}{k^{a}}+\dfrac{c_{1}}{k^{a+1}}+..., the coefficient c0,c1c_{0},c_{1}... and aa are extracted from the first Ω\Omega terms. Then the approximated result is

H(4)00QBH(4)00=k=0Dkk=0ΩDk+i=0qk=Ω+1cika+i.\displaystyle\langle H^{00}_{(4)}\dfrac{Q}{B}H^{00}_{(4)}\rangle=\sum_{k=0}^{\infty}D_{k}\simeq\sum_{k=0}^{\Omega}D_{k}+\sum_{i=0}^{q}\sum_{k=\Omega+1}^{\infty}\dfrac{c_{i}}{k^{a+i}}. (85)

The accuracy could be improved by increasing the qq. In the following calculation, q=2q=2 is chosen. The third perturbation term like H(4)00QBH(4)00QBH(4)00\langle H^{00}_{(4)}\dfrac{Q}{B}H^{00}_{(4)}\dfrac{Q}{B}H^{00}_{(4)}\rangle can be calculated by the similar methods. Almost all the corrections can be obtained by two method, except mα8m\alpha^{8} order relativistic correction of the s state of election in Coulomb field. It will be calculated by applying the first method.

The relativistic energy of scalar particle in Coulomb field VC=1rV_{C}=-\frac{1}{r} is

Enl=\displaystyle E_{nl}= (1+α2(nl1/2+(l+1/2)2α2)2)1/2\displaystyle\left(1+\dfrac{\alpha^{2}}{(n-l-1/2+\sqrt{(l+1/2)^{2}-\alpha^{2}})^{2}}\right)^{-1/2} (86)
=\displaystyle= 1α22n2+(34n(l+1/2))α68n4+.,\displaystyle 1-\dfrac{\alpha^{2}}{2n^{2}}+\left(3-\dfrac{4n}{(l+1/2)}\right)\dfrac{\alpha^{6}}{8n^{4}}+....,

where the n,ln,l are the principal and orbital angular momentum quantum number. The ground state energy E10=112α258α42116α6429128α8+o(α8)E_{10}=1-\dfrac{1}{2}\alpha^{2}-\dfrac{5}{8}\alpha^{4}-\dfrac{21}{16}\alpha^{6}-\dfrac{429}{128}\alpha^{8}+o(\alpha^{8}). The first two terms in the Taylor expansion are mass and nonrelativistic energy. Others are high-order relativistic corrections.

Here, we will test the relativistic corrections Eq.(51)(52)(53). The leading order of relativistic corrections Eq.(51) can be derived analytically,

E4=12A2=12(E(2)2+2E(2)1r+1r2)=38n412n3(l+1/2).\displaystyle E_{4}=-\dfrac{1}{2}\langle A^{2}\rangle=-\dfrac{1}{2}\left(E_{(2)}^{2}+2E_{(2)}\langle\dfrac{1}{r}\rangle+\langle\dfrac{1}{r^{2}}\rangle\right)=\dfrac{3}{8n^{4}}-\dfrac{1}{2n^{3}(l+1/2)}. (87)

It is coincided with the third terms of the Taylor expansion of the relativistic energy EnlE_{nl}. The relativistic corrections (52)(53) are calculated by the methods mentioned before. The results are given in the Table I-III. E6E_{6} is obtained by applying the approximate method with Ω=100,q=2\Omega=100,q=2. Comparing with the exact vale, they have at least eight significant figures. The E6E_{6} and E8E_{8} of 1s1s state obtained by applying the analytical method are coincided with the exact value.

Table 1: The approximate E(6)E_{(6)} of 1s1s state of scalar in Coulomb field.
Ω\Omega           E(6)E_{(6)}
10 -1.3124906365
20 -1.3124990733
30 -1.3124997838
40 -1.3124999255
50 -1.3124999678
60 -1.3124999839
70 -1.3124999911
80 -1.3124999947
90 -1.3124999966
100 -1.3124999978
\infty -1.3124999993(15)
Exact -1.3125
Table 2: The E(6)E_{(6)} of scalar in Coulomb field. The second column is the calculated by applying the approximate method. There are extrapolating results from Ω=100\Omega=100.
States Approximate Exact
1s1s -1.312499999(2) -1.3125
2s2s -0.17675781250(2) -0.1767578125
2p2p -0.0043041085(8) -0.0043041087…
3s3s -0.049811385(1) -0.049811385…
3p3p -0.0018004112(8) -0.0018004115…
3d3d -0.000231138548(7) -0.000231138545…
Table 3: The relativistic energy of 1s1s state of scaler in Coulomb field. The first four line are calculated by applying the analytical method mentioned below Eq.(84). Then the relativistic energy Eq.(51)(52)(53) are derived. They are coincided with the Taylor expansion of the relativistic energy.
Exact
A2\langle A^{2}\rangle 54\frac{5}{4}
A2QBA2\langle A^{2}\dfrac{Q}{B}A^{2}\rangle 132\frac{13}{2}
AQBA2\langle A\dfrac{Q}{B}A^{2}\rangle 32\frac{3}{2}
A2QB(A2+2E(4))QBA2\langle A^{2}\dfrac{Q}{B}(A^{2}+2E_{(4)})\dfrac{Q}{B}A^{2}\rangle 3838
E4E_{4} 58-\frac{5}{8}
E6E_{6} 2116-\frac{21}{16}
E8E_{8} 429128-\frac{429}{128}

The relativistic energy of hydrogen is

Enκ=\displaystyle E_{n\kappa}= (1+α2(n|κ|+κ2α2)2)1/2\displaystyle\left(1+\dfrac{\alpha^{2}}{(n-\left|\kappa\right|+\sqrt{\kappa^{2}-\alpha^{2}})^{2}}\right)^{-1/2} (88)
=\displaystyle= 1α22n2+(34n|κ|)α68n4+,\displaystyle 1-\dfrac{\alpha^{2}}{2n^{2}}+\left(3-\dfrac{4n}{\left|\kappa\right|}\right)\dfrac{\alpha^{6}}{8n^{4}}+...,

where κ=±(j+1/2)\kappa=\pm(j+1/2). If κ>0\kappa>0, l=κ1l=\kappa-1 and if κ<0\kappa<0, l=κl=-\kappa. n,j,ln,j,l are principal, total angular momentum and orbital angular momentum quantum number. In the second line, the first two terms in the Taylor expansion are mass and nonrelativistic energy. The third term is leading order relativistic corrections. The higher-order relativistic corrections can be obtained from Taylor expansion. The energy of ground state is E11=1α2=112α218α4116α65128α8+o(α8)E_{11}=\sqrt{1-\alpha^{2}}=1-\dfrac{1}{2}\alpha^{2}-\dfrac{1}{8}\alpha^{4}-\dfrac{1}{16}\alpha^{6}-\dfrac{5}{128}\alpha^{8}+o(\alpha^{8}).

In Table.IV-V, approximate results of relativistic correction Eq.(64)(67) are listed. At mα6m\alpha^{6} order, the approximate results have at least eight significant figures. At mα8m\alpha^{8} order, there is artificial divergence appear in relativistic correction of the ss state. The approximate method is invalid. However, all the expectation values of the operators of relativistic corrections are finite for l>0l>0 state. Approximate results have at least five significant figures for E8E_{8}.

The relativistic correction Eq.(61)(64)(67) of ground state of hydrogen are calculated by applying analytical method. The result are listed in Table.VI. Some expectation values are divergent. The divergent parts are proportional to a Harmonic series. However, the divergent part in p~A3p~\langle\widetilde{p}A^{3}\widetilde{p}\rangle can’t be separate from the finite part directly. The key point is applying the equation 2p~A3p~=p~A2QBBAp~+p~ABQBA2p~2\langle\widetilde{p}A^{3}\widetilde{p}\rangle=\langle\widetilde{p}A^{2}\dfrac{Q}{B}BA\widetilde{p}\rangle+\langle\widetilde{p}AB\dfrac{Q}{B}A^{2}\widetilde{p}\rangle. Then a divergent Harmonic series appears. All the divergent Harmonic series cancelled in the total contributions E8E_{8}. The relativistic corrections up mα8m\alpha^{8} order are coincided with the exact value.

Table 4: The E(6)E_{(6)} of hydrogen. The second column is extrapolating result from Ω=100\Omega=100.
States Approximate Exact
1s1s -0.0624999998(4) -0.0625
2s2s -0.020507812501(4) -0.0205078125
2p2p -0.0009765623(5) -0.0009765625…
3s3s -0.0066015090(3) -0.0066015089…
3p3p -0.0006215704(4) -0.0006215706…
3d3d -0.000085733884(5) -0.000085733882…
Table 5: Approximate E(8)E_{(8)} of hydrogen. The second column is extrapolating result from Ω=40\Omega=40.
States Approximate Exact
2p2p -0.00015256(6) -0.00015258…
3p3p -0.00010029(6) -0.00010032…
3d3d -0.0000059538(4) -0.0000059537…
Table 6: Some exact expectation value of 1s1s state of hydrogen. They are calculated by applying the analytical method mentioned below Eq.(84). The hs=1ih_{s}=\sum\frac{1}{i} is Harmonic series. The fine-structure constant is chosen as unit one here.
Exact value
A\langle A\rangle 12\frac{1}{2}
p~Ap~\langle\widetilde{p}A\widetilde{p}\rangle 12\frac{1}{2}
18p~A2p~\dfrac{1}{8}\langle\widetilde{p}A^{2}\widetilde{p}\rangle 532\frac{5}{32}
116p~Ap~QBp~Ap~\dfrac{1}{16}\langle\widetilde{p}A\widetilde{p}\dfrac{Q}{B}\widetilde{p}A\widetilde{p}\rangle 14-\frac{1}{4}
116p~A3p~-\frac{1}{16}\langle\widetilde{p}A^{3}\widetilde{p}\rangle 6712814hs\frac{67}{128}-\frac{1}{4}h_{s}
132p~A2p~QBp~Ap~+p~Ap~QBp~A2p~\frac{1}{32}\langle\widetilde{p}A^{2}\widetilde{p}\frac{Q}{B}\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}\frac{Q}{B}\widetilde{p}A^{2}\widetilde{p}\rangle 1332+12hs-\frac{13}{32}+\frac{1}{2}h_{s}
164p~Ap~QB(p~Ap~+4E(4))QBp~Ap~-\frac{1}{64}\langle\widetilde{p}A\widetilde{p}\frac{Q}{B}\left(\widetilde{p}A\widetilde{p}+4E_{(4)}\right)\frac{Q}{B}\widetilde{p}A\widetilde{p}\rangle 31614hs-\frac{3}{16}-\frac{1}{4}h_{s}
AQBp~Ap~+p~Ap~QBA\langle A\frac{Q}{B}\widetilde{p}A\widetilde{p}+\widetilde{p}A\widetilde{p}\frac{Q}{B}A\rangle 14-\frac{1}{4}
E(4)E_{(4)} in Eq.(61) 18-\frac{1}{8}
E(6)E_{(6)} in Eq.(64) 116-\frac{1}{16}
E(8)E_{(8)} in Eq.(67) 5128-\frac{5}{128}

V Conclusion

In this work, the nonrelativisitc Hamiltonians of spin-0, 1/2, 1 particles in the electromagnetic field are derived by applying DKH-FW method. The result of spin-1/2 is coincided with the previous result obtained by using scattering matching approach Zhou et al. (2019). Comparing with the scattering matching of NRQED, the even one-photon potential of FW Hamiltonian can be obtained by expanding the photon-fermion scattering amplitude. The even two-photon potential of FW Hamiltonian originated in the process of quantum electrodynamic: the positive-energy state can transit to negative-energy intermediate state and transits back to positive-energy state though emit/absorb two photons. It indicates that the two approaches up to mα8m\alpha^{8} order are equivalent at the tree-level, which can satisfy nowadays accuracy requirement. Although the result of spin-0 and spin-1 obtained by scattering matching approach is absent. It is easy to find that H2γH_{2\gamma}^{\prime} is the product of the odd one-photon terms of DKH Hamiltonian and the Green function of negative-energy state. Their two-photon terms may be interpreted as the contribution of the negative energy state. Their equivalence should be proved in the further works.

Parts of high-order corrections to the energy of Coulombic systems can be derived by using these FW Hamiltonians. One is the self-energy correction of low-energy virtual photons. Another is the photon-exchange interactions between electrons or electron and nucleus. The Coulomb-photon-exchange interactions are studied in the work. And the nonrelativistic Coulomb Hamiltonians are obtained. Then, the equivalent formulas of energy corrections are derived. The singularities of Hamiltonian are cancelled. The numerical results of scalar and electron up to mα8m\alpha^{8} are coincided with the relativistic formula. The regularized Coulomb Hamiltonian can be using to calculate relativistic corrections of the Hydrogen molecular ion. Further more, it indicates the singularities in the tree, single loop and multi-loop Feynman diagram contribution or gauge invariant Feynman diagram may be canceled parts by parts. It is essential to simplify obtaining or verifying the higher-order corrections.

Appendix A Some proof of equations

By using ap~a2=2(A+B)\sum_{a}\widetilde{p}_{a}^{2}=2(A+B) and [A,[p~a,A]]=0[A,[\widetilde{p}_{a},A]]=0, a(p~aAmp~aAn+Anp~aAmp~a)\sum_{a}(\widetilde{p}_{a}A^{m}\widetilde{p}_{a}A^{n}+A^{n}\widetilde{p}_{a}A^{m}\widetilde{p}_{a}) can be transformed to

a(p~aAmp~aAn+Anp~aAmp~a)=\displaystyle\sum_{a}(\widetilde{p}_{a}A^{m}\widetilde{p}_{a}A^{n}+A^{n}\widetilde{p}_{a}A^{m}\widetilde{p}_{a})= a(p~a,[Am,p~a]An+An[p~a,Am]p~a+{p~a2,Am+n})\displaystyle\sum_{a}(\widetilde{p}_{a},[A^{m},\widetilde{p}_{a}]A^{n}+A^{n}[\widetilde{p}_{a},A^{m}]\widetilde{p}_{a}+\{\widetilde{p}_{a}^{2},A^{m+n}\}) (89)
=\displaystyle= a([p~a,[Am,p~a]An])+4Am+n+2{B,Am+n}\displaystyle\sum_{a}([\widetilde{p}_{a},[A^{m},\widetilde{p}_{a}]A^{n}])+4A^{m+n}+2\{B,A^{m+n}\}
=\displaystyle= a(m[p~a,[p~a,A]Am+n1])+4Am+n+2{B,Am+n},\displaystyle-\sum_{a}(m[\widetilde{p}_{a},[\widetilde{p}_{a},A]A^{m+n-1}])+4A^{m+n}+2\{B,A^{m+n}\},

and

a(p~aAmp~aAn+Anp~aAmp~a)=\displaystyle\sum_{a}(\widetilde{p}_{a}A^{m}\widetilde{p}_{a}A^{n}+A^{n}\widetilde{p}_{a}A^{m}\widetilde{p}_{a})= a(p~aAm[p~a,An]+[An,p~a]Amp~a+2p~aAm+np~a)\displaystyle\sum_{a}(\widetilde{p}_{a}A^{m}[\widetilde{p}_{a},A^{n}]+[A^{n},\widetilde{p}_{a}]A^{m}\widetilde{p}_{a}+2\widetilde{p}_{a}A^{m+n}\widetilde{p}_{a}) (90)
=\displaystyle= a([p~aAm[p~a,An]]+2p~aAm+np~a)\displaystyle\sum_{a}([\widetilde{p}_{a}A^{m}[\widetilde{p}_{a},A^{n}]]+2\widetilde{p}_{a}A^{m+n}\widetilde{p}_{a})
=\displaystyle= a(n[p~a,[p~a,A]Am+n1]+2p~aAm+np~a).\displaystyle\sum_{a}(n[\widetilde{p}_{a},[\widetilde{p}_{a},A]A^{m+n-1}]+2\widetilde{p}_{a}A^{m+n}\widetilde{p}_{a}).

Eliminating the terms [p~a,[p~a,A]Am+n1][\widetilde{p}_{a},[\widetilde{p}_{a},A]A^{m+n-1}] on the right of these two equations. It is equal to

a(p~aAmp~aAn+Anp~aAmp~a)=2mm+nap~aAm+np~a+4nm+nAm+n+1+2nm+n{B,Am+n}.\displaystyle\sum_{a}(\widetilde{p}_{a}A^{m}\widetilde{p}_{a}A^{n}+A^{n}\widetilde{p}_{a}A^{m}\widetilde{p}_{a})=\dfrac{2m}{m+n}\sum_{a}\widetilde{p}_{a}A^{m+n}\widetilde{p}_{a}+\dfrac{4n}{m+n}A^{m+n+1}+\dfrac{2n}{m+n}\{B,A^{m+n}\}. (91)

The equations used in this work is

a(p~aAp~aA+Ap~aAp~a)=ap~aA2p~a+2A3+{B,A2},\displaystyle\sum_{a}(\widetilde{p}_{a}A\widetilde{p}_{a}A+A\widetilde{p}_{a}A\widetilde{p}_{a})=\sum_{a}\widetilde{p}_{a}A^{2}\widetilde{p}_{a}+2A^{3}+\{B,A^{2}\}, (92)
p~A2p~A+Ap~A2p~=43p~A3p~+43A4+23{B,A3},\begin{aligned} \widetilde{p}A^{2}\widetilde{p}A+A\widetilde{p}A^{2}\widetilde{p}=\dfrac{4}{3}\widetilde{p}A^{3}\widetilde{p}+\dfrac{4}{3}A^{4}+\dfrac{2}{3}\{B,A^{3}\}\end{aligned}, (93)

and

p~Ap~A2+A2p~Ap~=23p~A3p~+83A4+43{B,A3}.\displaystyle\widetilde{p}A\widetilde{p}A^{2}+A^{2}\widetilde{p}A\widetilde{p}=\dfrac{2}{3}\widetilde{p}A^{3}\widetilde{p}+\dfrac{8}{3}A^{4}+\dfrac{4}{3}\{B,A^{3}\}. (94)

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos.12074295 and 12104420). X.-S. Mei was also supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB21020200).

————————