This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The girths of the cubic Pancake graphs

Elena V. Konstantinova [email protected] Son En Gun [email protected] Sobolev Institute of Mathematics, Ak. Koptyug av. 4, Novosibirsk, 630090, Russia Novosibisk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
Abstract

The Pancake graphs Pn,n2P_{n},n\geqslant 2, are Cayley graphs over the symmetric group Symn\mathrm{Sym}_{n} generated by prefix-reversals. There are six generating sets of prefix-reversals of cardinality three which give connected Cayley graphs over the symmetric group known as cubic Pancake graphs. In this paper we study the girth of the cubic Pancake graphs. It is proved that considered cubic Pancake graphs have the girths at most twelve.

keywords:
Pancake graph; cubic Pancake graph; prefix-reversal; girth
MSC:
[2010] 05C25, 05C38, 05C82, 68R10
journal: arXiv

1 Introduction

The Pancake graph Pn=(Symn,PR),n2P_{n}=(\mathrm{Sym}_{n},PR),n\geqslant 2, is the Cayley graph over the symmetric group Symn\mathrm{Sym}_{n} of permutations π=[π1π2πn]\pi=[\pi_{1}\pi_{2}\ldots\pi_{n}] written as strings in one-line notation, where πi=π(i)\pi_{i}=\pi(i) for any 1in1\leqslant i\leqslant n, with the generating set PR={riSymn:2in}PR=\{r_{i}\in\mathrm{Sym}_{n}:2\leqslant i\leqslant n\} of all prefix–reversals rir_{i} inversing the order of any substring [1,i],2in[1,i],2\leqslant i\leqslant n, of a permutation π\pi when multiplied on the right, i.e. [π1πiπi+1πn]ri=[πiπ1πi+1πn][\pi_{1}\ldots\pi_{i}\pi_{i+1}\ldots\pi_{n}]r_{i}=[\pi_{i}\ldots\pi_{1}\pi_{i+1}\ldots\pi_{n}]. This graph is well known because of the open combinatorial Pancake problem of finding its diameter [3].

The graph PnP_{n} is a connected vertex–transitive (n1)(n-1)-regular graph of order n!n! with no loops and multiple edges. It is almost pancyclic [4, 9] since it contains cycles of length \ell, 6n!6\leqslant\ell\leqslant n!, but doesn’t contain cycles of length 3,43,4 or 55. Since the length of the shortest cycle contained in the graph is six, hence we have g(Pn)=6g(P_{n})=6 for any n3n\geqslant 3, where g(Pn)g(P_{n}) is the girth of PnP_{n}. The girths of the burnt Pancake graphs over the hyperoctahedral group was considered in [2]. The (burnt) Pancake graphs are commonly used in computer science to represent interconnection networks [1, 10, 11].

Importance of fixed–degree Pancake graphs, in particular, cubic Pancake graphs as models of networks was shown in [1] by D. W. Bass and I. H. Sudborough. The authors have considered cubic Pancake graphs as induced subgraphs of the Pancake graph PnP_{n}. The necessary conditions for a set of three prefix–reversals to generate the symmetric group Symn\mathrm{Sym}_{n} were found. In particular, it was shown that the cubic Pancake graphs over the symmetric group Symn\mathrm{Sym}_{n}, n4n\geqslant 4, are connected with the following generating sets:

BS1={r2,rn1,rn};BS2={rn2,rn1,rn};BS3={r3,rn2,rn},n is even;BS_{1}=\{r_{2},r_{n-1},r_{n}\};\ BS_{2}=\{r_{n-2},r_{n-1},r_{n}\};\ BS_{3}=\{r_{3},r_{n-2},r_{n}\},n\mbox{ is even};
BS4={r3,rn1,rn}, where n is odd;BS5={rn3,rn1,rn},n is odd;BS_{4}=\{r_{3},r_{n-1},r_{n}\},\mbox{ where }n\mbox{ is odd};\ BS_{5}=\{r_{n-3},r_{n-1},r_{n}\},n\mbox{ is odd};
BS6={rn3,rn2,rn} for any n5.BS_{6}=\{r_{n-3},r_{n-2},r_{n}\}\mbox{ for any }n\geqslant 5.

The set BS2BS_{2} is known as ’big-3’ flips, and the corresponding cubic Pancake graph generated by this set is called as the Big-3 Pancake network [10]. J. Sawada and A. Williams have conjectured in [10] that this graph has cyclic Gray codes.

In this paper we study cubic Pancake graphs and their girths. Our main result is obtained for the cubic Pancake graphs Pni=Cay(Symn,BSi)P_{n}^{i}=Cay(\mathrm{Sym}_{n},BS_{i}) that are Cayley graphs over the symmetric group Symn\mathrm{Sym}_{n} generated by the sets BSi,i=1,,5BS_{i},\ i=1,\ldots,5.

Theorem 1
g(Pn1,Pn2,Pn3)={6,when n=4;8,when n5;g(P_{n}^{1},P_{n}^{2},P_{n}^{3})=\begin{cases}6,&\text{when $n=4$;}\\ 8,&\text{when $n\geqslant 5$;}\end{cases} (1)
g(Pn4)=8,when n5 is odd;g(P_{n}^{4})=8,\ \ \ \text{when $n\geqslant 5$ is odd;} (2)
g(Pn5)={8,when n=5;12,when n7 is odd;g(P_{n}^{5})=\begin{cases}8,&\text{when $n=5$;}\\ 12,&\text{when $n\geqslant 7$ is odd;}\end{cases} (3)

For 5n195\leqslant n\leqslant 19, the computational results on the girths of the cubic Pancake graph Pn6=Cay(Symn,BS6)P_{n}^{6}=Cay(\mathrm{Sym}_{n},BS_{6}) are given as follows:

nn 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
g(Pn6)g(P_{n}^{6}) 6 8 10 12 12 16 16 16 20 20 20 24 24 24 28

For any 19n3319\leqslant n\leqslant 33, the computational results show that g(Pn6)=28g(P_{n}^{6})=28. One can conjecture that this is true for any n19n\geqslant 19.

The paper is organized as follows. The proof of Theorem 1 is based on the characterization of small cycles in the Pancake graphs. We present preliminary results with main definitions and notation in Section 2, where it is shown that for any n7n\geqslant 7 there are no 1010–cycles and 1111–cycles in Pn5P_{n}^{5}. Then we prove Theorem 1 in Section 3.

2 Preliminary results

The first results on a characterization of small cycles in the Pancake graph were obtained in [5] where the following cycle representation via a product of generating elements was used. A sequence of prefix–reversals C=ri0ri1C_{\ell}=r_{i_{0}}\ldots r_{i_{\ell-1}}, where 2ijn2\leqslant i_{j}\leqslant n, and ijij+1i_{j}\neq i_{j+1} for any 0j10\leqslant j\leqslant\ell-1, such that πri0ri1=π\pi r_{i_{0}}\ldots r_{i_{\ell-1}}=\pi, where πSymn,\pi\in\mathrm{Sym}_{n}, is called a form of a cycle CC_{\ell} of length \ell. A cycle CC_{\ell} of length \ell is also called an \ell–cycle, and a vertex of PnP_{n} is identified with the permutation which corresponds to this vertex. It is evident that any \ell–cycle can be presented by 22\,\ell forms (not necessarily different) with respect to a vertex and a direction. The canonical form CC_{\ell} of an \ell–cycle is called a form with a lexicographically maximal sequence of indices i0i1i_{0}\ldots i_{\ell-1}. We shortly write C=(rarb)kC_{\ell}=(r_{a}r_{b})^{k} for a cycle form C=rarbrarbC_{\ell}=r_{a}r_{b}\ldots r_{a}r_{b}, where =2k,ab\ell=2\,k,\ a\neq b, rarbr_{a}r_{b} appears exactly kk times and πrarbrarb=π\pi\,r_{a}r_{b}\ldots r_{a}r_{b}=\pi for any πSymn\pi\in\mathrm{Sym}_{n}. The form C=(rarb)kC_{\ell}=(r_{a}r_{b})^{k} is canonical if a>ba>b. By using this description, the following results characterizing 66– and 77–cycles were obtained.

Theorem 2

[5] The Pancake graph Pn,n3,P_{n},n\geqslant 3, has n!6\frac{n!}{6} independent 66–cycles of the canonical form

C6=(r3r2)3C_{6}=(r_{3}\,r_{2})^{3} (4)

and n!(n3)n!(n-3) distinct 77–cycles of the canonical form

C7=rkrk1rkrk1rk2rkr2,C_{7}=r_{k}\,r_{k-1}\,r_{k}\,r_{k-1}\,r_{k-2}\,r_{k}\,r_{2}, (5)

where 4kn4\leqslant k\leqslant n. Each of the vertices of PnP_{n} belongs to exactly one 66–cycle and 7(n3)7(n-3) distinct 77–cycles.

The complete characterization of 88–cycles is given by the following theorem.

Theorem 3

[7] Each of vertices of Pn,n4,P_{n},n\geqslant 4, belongs to N=n3+12n2103n+1762N=\frac{n^{3}+12n^{2}-103n+176}{2} distinct 88–cycles of the following canonical forms:

C81=rkrjrirjrkrkj+irirkj+i,2i<jk1,  4knC^{1}_{8}=r_{k}\,r_{j}\,r_{i}\,r_{j}\,r_{k}\,r_{k-j+i}\,r_{i}\,r_{k-j+i},\hskip 28.45274pt2\leqslant i<j\leqslant k-1,\,\,4\leqslant k\leqslant n (6)
C82=rkrk1r2rk1rkr2r3r2,4knC^{2}_{8}=r_{k}\,r_{k-1}\,r_{2}\,r_{k-1}\,r_{k}\,r_{2}\,r_{3}\,r_{2},\hskip 130.88268pt4\leqslant k\leqslant n (7)
C83=rkrkirk1rirkrkirk1ri,2ik2,  4knC^{3}_{8}=r_{k}\,r_{k-i}\,r_{k-1}\,r_{i}\,r_{k}\,r_{k-i}\,r_{k-1}\,r_{i},\hskip 45.5244pt2\leqslant i\leqslant k-2,\,\,4\leqslant k\leqslant n (8)
C84=rkrki+1rkrirkrkirk1ri1,3ik2,  5knC^{4}_{8}=r_{k}\,r_{k-i+1}\,r_{k}\,r_{i}\,r_{k}\,r_{k-i}\,r_{k-1}\,r_{i-1},\hskip 34.1433pt3\leqslant i\leqslant k-2,\,\,5\leqslant k\leqslant n (9)
C85=rkrk1ri1rkrki+1rkirkri,3ik2,  5knC^{5}_{8}=r_{k}\,r_{k-1}\,r_{i-1}\,r_{k}\,r_{k-i+1}\,r_{k-i}\,r_{k}\,r_{i},\hskip 28.45274pt3\leqslant i\leqslant k-2,\,\,5\leqslant k\leqslant n (10)
C86=rkrk1rkrkirki1rkriri+1,2ik3,  5knC^{6}_{8}=r_{k}\,r_{k-1}\,r_{k}\,r_{k-i}\,r_{k-i-1}\,r_{k}\,r_{i}\,r_{i+1},\hskip 28.45274pt2\leqslant i\leqslant k-3,\,\,5\leqslant k\leqslant n (11)
C87=rkrkj+1rkrirkrkj+1rkri,2i<jk1,  4knC_{8}^{7}=r_{k}\,r_{k-j+1}\,r_{k}\,r_{i}\,r_{k}\,r_{k-j+1}\,r_{k}\,r_{i},\hskip 19.91692pt2\leqslant i<j\leqslant k-1,\,\,4\leqslant k\leqslant n (12)
C88=(r4r3)4.C_{8}^{8}=(r_{4}\,r_{3})^{4}.\hskip 239.00314pt (13)

The complete characterization of 99–cycles in the Pancake graphs were obtained in [6].

In general, the complete characterization of small cycles in the Pancake graphs presented in [5, 6] is based on the hierarchical structure of the Pancake graphs. The graph Pn,n4,P_{n},n\geqslant 4, is constructed from nn copies of Pn1(i),1in,P_{n-1}(i),1\leqslant i\leqslant n, such that each Pn1(i)P_{n-1}(i) has the vertex set

Vi={[π1πn1i],V_{i}=\{[\pi_{1}\dots\pi_{n-1}i],

where πk{1,,n}{i}:1kn1},\pi_{k}\in\{1,\dots,n\}\setminus\{i\}:1\leqslant k\leqslant n-1\}, |Vi|=(n1)!,|V_{i}|=(n-1)!, and the edge set

Ei={{[π1πn1i],[π1πn1i]rj}:2jn1},E_{i}=\{\{[\pi_{1}\dots\pi_{n-1}i],[\pi_{1}\dots\pi_{n-1}i]r_{j}\}:2\leqslant j\leqslant n-1\},

where |Ei|=(n1)!(n2)2.|E_{i}|=\frac{(n-1)!(n-2)}{2}. Any two copies Pn1(i)P_{n-1}(i) and Pn1(j),ij,P_{n-1}(j),i\neq j, are connected by (n2)!(n-2)! edges presented as {[iπ2πn1j],[jπ(n1π2i]},\{[i\pi_{2}\dots\pi_{n-1}j],[j\pi_{(}n-1\dots\pi_{2}i]\}, where [iπ2πn1j]rn=[jπ(n1π2i].[i\pi_{2}\dots\pi_{n-1}j]r_{n}=[j\pi_{(}n-1\dots\pi_{2}i]. Prefix-reversals rj,r_{j}, 2jn1,2\leqslant j\leqslant n-1, defines internal edges in Pn1(i),1inP_{n-1}(i),1\leqslant i\leqslant n, and the prefix-reversal rnr_{n} defines external edges between copies. Copies Pn1(i)P_{n-1}(i), or just Pn1P_{n-1} when it is not important to specify the last element of permutations belonging to the copy, are also called (n1)(n-1)-copies.

The hierarchical structure of the Pancake graphs is used to prove the following two results.

Theorem 4

In the cubic Pancake graphs Pn5=Cay(Symn,{rn3,rn1,rn})P_{n}^{5}=Cay(\mathrm{Sym}_{n},\{r_{n-3},r_{n-1},r_{n}\}), n7,n\geqslant 7, there are no cycles of length 1010. For n=5n=5 there are 1010-cycles of the canonical form C10=(r5r4)5C_{10}=(r_{5}\,r_{4})^{5}.

Proof.  Since the cubic Pancake graphs Pn5,n5,P_{n}^{5},n\geqslant 5, are induced subgraphs of the Pancake graph PnP_{n}, then let us consider all possible cases for forming 1010–cycles in the Pancake graphs with taking into account that the generating set of Pn5P_{n}^{5} contains only three elements rn3,rn1,rnr_{n-3},r_{n-1},r_{n}, where nn is odd. If n=5n=5 then there are cycles of length 1010 of the canonical form C10=(r5r4)5C_{10}=(r_{5}\,r_{4})^{5} (see Lemma 1 in [8]). If n7n\geqslant 7 then due to the hierarchical structure of the Pancake graph PnP_{n}, cycles of length 1010 could be formed from paths of length l, 2l8l,\ 2\leqslant l\leqslant 8, belonging to different (n1)(n-1)-copies of PnP_{n}.

Further, we consider all possible options for the distribution of vertices by copies. Without loss of generality we always put τ1=In=[1 2 3n1n]\tau^{1}=I_{n}=[1\,2\,3\,\dots\,n-1\,n].

Case 1: 10-cycle within PnP_{n} has vertices from two copies of Pn1P_{n-1}

Suppose that a sought 1010–cycle is formed on vertices from copies Pn1(i)P_{n-1}(i) and Pn1(j)P_{n-1}(j), where 1ijn1\leqslant i\neq j\leqslant n. It was shown in [5, Lemma 2] that if two vertices π\pi and τ,\tau, belonging to the same (n1)(n-1)-copy, are at the distance at most two, then their external neighbours π¯\overline{\pi} and τ¯\overline{\tau} should belong to distinct (n1)(n-1)-copies. Hence, a sought cycle cannot occur in situations when its two (three) vertices belong to one copy and eight (seven) vertices belong to another one. Therefore, such a cycle must have at least four vertices in each of the two copies. Hence, there are two following cases.

Case (4+6).(4+6). Suppose that four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} of a sought 1010–cycle belong to one copy, and other six vertices τ1,τ2,τ3,τ4,τ5,τ6\tau^{1},\tau^{2},\tau^{3},\tau^{4},\tau^{5},\tau^{6} belong to another copy. Let π1=τ1rn\pi^{1}=\tau^{1}r_{n} and π4=τ6rn\pi^{4}=\tau^{6}r_{n}. Since τ1=In\tau^{1}=I_{n} then π1\pi^{1} and π4\pi^{4} should belong to Pn1(1)P_{n-1}(1). Herewith, the four vertices of Pn1(1)P_{n-1}(1) should form a path of length three whose endpoints should be adjacent to vertices from Pn1(n)P_{n-1}(n).

Consider all options for passing from τ1\tau^{1} to τ6\tau^{6} by internal edges in a copy Pn1(n)P_{n-1}(n). Since the generating set of Pn5P_{n}^{5} consists of the elements rn1r_{n-1} and rn3r_{n-3} corresponding to internal edges then there are two ways to get paths of length five from τ1\tau^{1} to τ6\tau^{6} (see Figure 1).

The first path is presented as follows:

τ1(rn3rn1)2rn3=τ6\tau^{1}\,(r_{n-3}\,r_{n-1})^{2}\,r_{n-3}=\tau^{6} (14)

such that:

τ1=[1 2 3n1n]rn3[n3n4 2 1n2n1n]rn1\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-3}}[n-3\,n-4\,\dots\,2\,1\,n-2\,n-1\,n]\xrightarrow{r_{n-1}}
[n1n2 1 2n4n3n]rn3[n5n6 2 1n2n1n4n3n]rn1[n-1\,n-2\,1\,2\,\dots\,n-4\,n-3\,n]\xrightarrow{r_{n-3}}[n-5\,n-6\,\dots\,2\,1\,n-2\,n-1\,n-4\,n-3\,n]\xrightarrow{r_{n-1}}
[n3n4n1n2 1 2n6n5n]rn3[n-3\,n-4\,n-1\,n-2\,1\,2\,\dots\,n-6\,n-5\,n]\xrightarrow{r_{n-3}}
[n7n8 2 1n2n1n4n3n6n5n]=τ6.[n-7\,n-8\,\dots\,2\,1\,n-2\,n-1\,n-4\,n-3\,n-6\,n-5\,n]=\tau^{6}.

Since π4=τ6rn\pi^{4}=\tau^{6}\,r_{n} then we have:

π4=[nn5n6n3n4n1n2 1 2n8n7].\pi^{4}=[n\,n-5\,n-6\,n-3\,n-4\,n-1\,n-2\,1\,2\,\dots\,n-8\,n-7]. (15)
Refer to caption
Figure 1: Case 1: 10-cycle within PnP_{n} has vertices from two copies of Pn1P_{n-1}

Note that π1=τ1rn=[nn1 2 1]\pi^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1] with πn1=1\pi_{n}^{1}=1 for any n5n\geqslant 5. Hence, we immediately can conclude that π4\pi^{4} given by (15) and π1\pi^{1} belong to different copies of PnP_{n} since πn41\pi_{n}^{4}\neq 1 for any odd n7n\geqslant 7. For n=5n=5 we get π4=[5 3 4 2 1]\pi^{4}=[5\,3\,4\,2\,1] and there is no path of length three between π4\pi^{4} and π1\pi^{1}, presented as rn3rn1rn3r_{n-3}\,r_{n-1}\,r_{n-3} or rn1rn3rn1r_{n-1}\,r_{n-3}\,r_{n-1}, since π4r2r4r2=[4 2 5 3 1]\pi^{4}\,r_{2}\,r_{4}\,r_{2}=[4\,2\,5\,3\,1] and π4r4r2r4=[5 3 2 4 1]\pi^{4}\,r_{4}\,r_{2}\,r_{4}=[5\,3\,2\,4\,1]. This gives a contradiction with an assumption that π1\pi^{1} and π4\pi^{4} belong to the same copy Pn1(1)P_{n-1}(1). Thus, a sought cycle cannot occur neither in PnP_{n} nor in Pn5P_{n}^{5}.

The second path is presented as follows:

τ1(rn1rn3)2rn1=τ6\tau^{1}\,(r_{n-1}\,r_{n-3})^{2}\,r_{n-1}=\tau^{6} (16)

such that

τ1=[1 2 3n1n]rn1[n1n2 2 1n]rn3[3 4n1 2 1n]rn1\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-1}}[n-1\,n-2\,\dots\,2\,1\,n]\xrightarrow{r_{n-3}}[3\,4\,\dots\,n-1\,2\,1\,n]\xrightarrow{r_{n-1}}
[1 2n1n2 4 3n]rn3[5 6n2n1 2 1 4 3n]rn1[1\,2\,n-1\,n-2\,\dots\,4\,3\,n]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-2\,n-1\,2\,1\,4\,3\,n]\xrightarrow{r_{n-1}}
[3 4 1 2n1n2 6 5n]=τ6,[3\,4\,1\,2\,n-1\,n-2\,\dots\,6\,5\,n]=\tau^{6},

and hence

π4=τ6rn=[n 5 6n2n1 2 1 4 3],\pi^{4}=\tau^{6}\,r_{n}=[n\,5\,6\,\dots\,n-2\,n-1\,2\,1\,4\,3],

which means that this permutation belongs to Pn1(3)P_{n-1}(3). However, π1\pi^{1} belongs to Pn1(1)P_{n-1}(1) which gives a contradiction again. Thus, a sought 1010–cycle cannot occur in this case.

Case (5+5).(5+5). Suppose that five vertices π1,π2,π3,π4,π5\pi^{1},\pi^{2},\pi^{3},\pi^{4},\pi^{5} of a sought 1010–cycle belong to a copy Pn1(1)P_{n-1}(1), and other five vertices τ1,τ2,τ3,τ4,τ5\tau^{1},\tau^{2},\tau^{3},\tau^{4},\tau^{5} belong to a copy Pn1(n)P_{n-1}(n), where τ1=In\tau^{1}=I_{n}, π1=τ1rn\pi^{1}=\tau^{1}r_{n}, and π5=τ5rn\pi^{5}=\tau^{5}r_{n}. Then the five vertices of Pn1(1)P_{n-1}(1) should form a path of length four whose endpoints should be adjacent to the vertices from Pn1(n)P_{n-1}(n) (see Figure 1).

There are two ways to get paths of length four from τ1\tau^{1} to τ5\tau^{5}.

The first way is given as follows:

τ1(rn3rn1)2=τ5,\tau^{1}\,(r_{n-3}\,r_{n-1})^{2}=\tau^{5},

more precisely, we have:

τ1=[1 2 3n1n]rn3[n3n4 2 1n2n1n]rn1\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-3}}[n-3\,n-4\,\dots\,2\,1\,n-2\,n-1\,n]\xrightarrow{r_{n-1}}
[n1n2 1 2n4n3n]rn3[n5n6 2 1n2n1n4n3n]rn1[n-1\,n-2\,1\,2\,\dots\,n-4\,n-3\,n]\xrightarrow{r_{n-3}}[n-5\,n-6\,\dots\,2\,1\,n-2\,n-1\,n-4\,n-3\,n]\xrightarrow{r_{n-1}}
[n3n4n1n2 1 2n6n5n]=τ5.[n-3\,n-4\,n-1\,n-2\,1\,2\,\dots\,n-6\,n-5\,n]=\tau^{5}.

The second way is presented as follows:

τ1(rn1rn3)2=τ5,\tau^{1}\,(r_{n-1}\,r_{n-3})^{2}=\tau^{5},

and we have:

τ1=[1 2 3n1n]rn1[n1n2 2 1n]rn3[3 4n1 2 1n]rn1\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-1}}[n-1\,n-2\,\dots\,2\,1\,n]\xrightarrow{r_{n-3}}[3\,4\,\dots\,n-1\,2\,1\,n]\xrightarrow{r_{n-1}}
[1 2n1n2 4 3n]rn3[5 6n2n1 2 1 4 3n]=τ5.[1\,2\,n-1\,n-2\,\dots\,4\,3\,n]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-2\,n-1\,2\,1\,4\,3\,n]=\tau^{5}.

Since π5=τ5rn\pi^{5}=\tau^{5}\,r_{n} then we have either:

π5=[nn5n6 2 1n2n1n4n3]\pi^{5}=[n\,n-5\,n-6\,\dots\,2\,1\,n-2\,n-1\,n-4\,n-3]

or

π5=[n 3 4  1 2n1n2 6 5],\pi^{5}=[n\,3\,4\,\,1\,2\,n-1\,n-2\,\dots\,6\,5],

which gives a contradiction with an assumption that π1\pi^{1} and π5\pi^{5} belong to the copy Pn1(1)P_{n-1}(1) for any odd n5n\geqslant 5. Thus, in this case a sought cycle cannot occur in PnP_{n}, and hence in Pn5P_{n}^{5}.

Case 2: 10-cycle within PnP_{n} has vertices from three copies of Pn1P_{n-1}

There are four possible situations in this case.

Case (2+2+6).(2+2+6). Suppose that two vertices π1,π2\pi^{1},\pi^{2} of a sought 1010–cycle belong to one copy, other two vertices τ1,τ2\tau^{1},\tau^{2} belong to another copy, and remaining six vertices γ1,γ2,γ3,γ4,γ5,γ6\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5},\gamma^{6} belong to the third copy. Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π2=γ6rn\pi^{2}=\gamma^{6}r_{n}, and τ1=γ1rn=In\tau^{1}=\gamma^{1}r_{n}=I_{n}, then γ1\gamma^{1} and γ6\gamma^{6} should belong to Pn1(1)P_{n-1}(1) (see Figure 2).

It is evident that there are two ways to get paths of length one from τ1\tau^{1} to τ2\tau^{2}:

τ1=[1 2 3n1n]rn3[n3n4 2 1n2n1n]=τ2\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-3}}[n-3\,n-4\,\dots\,2\,1\,n-2\,n-1\,n]=\tau^{2}

or

τ1=[1 2 3n1n]rn1[n1n2 2 1n]=τ2.\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-1}}[n-1\,n-2\,\dots\,2\,1\,n]=\tau^{2}.

Since π1=τ2rn\pi^{1}=\tau^{2}\,r_{n}, we have either

π1=[nn1n2 1 2n4n3]\pi^{1}=[n\,n-1\,n-2\,1\,2\,\dots\,n-4\,n-3]

or

π1=[n 1 2n2n1].\pi^{1}=[n\,1\,2\,\dots\,n-2\,n-1].

Similar, there are two ways to get a path of length one from π1\pi^{1} to π2\pi^{2} such that the first way is given by π1rn3=π2\pi^{1}r_{n-3}=\pi^{2}, where we have either

π2=[n6n7 2 1n2n1nn5n4n3]\pi^{2}=[n-6\,n-7\,\dots\,2\,1\,n-2\,n-1\,n\,n-5\,n-4\,n-3]

or

π2=[n4n5 2 1nn3n2n1],\pi^{2}=[n-4\,n-5\,\dots\,2\,1\,n\,n-3\,n-2\,n-1],

and the second way is given by π1rn1=π2\pi^{1}r_{n-1}=\pi^{2}, where we have either

π2=[n4n5 2 1n2n1nn3]\pi^{2}=[n-4\,n-5\,\dots\,2\,1\,n-2\,n-1\,n\,n-3]

or

π2=[n2n3 2 1nn1],\pi^{2}=[n-2\,n-3\,\dots\,2\,1\,n\,n-1],
Refer to caption
Figure 2: Case 2: 10-cycle within PnP_{n} has vertices from three copies of Pn1P_{n-1}

and since γ6=π2rn\gamma^{6}=\pi^{2}\,r_{n} we get:

γ6={[n3n4n5nn1n2 1 2n7n6]=γ6(A)or[n1n2n3n 1 2n5n4]=γ6(B)or[n3nn1n2 1 2n5n4]=γ6(C)or[n1n 1 2n3n2]=γ6(D).\gamma^{6}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]=\gamma^{6}(A)&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\ldots\,n-5\,n-4]=\gamma^{6}(B)&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]=\gamma^{6}(C)&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2]=\gamma^{6}(D).\\ \end{cases}

To get a sought 1010-cycle there should be a path of length five between γ6\gamma^{6} and γ1\gamma^{1}, where γ1=τ1rn=[nn1 2 1]\gamma^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1]. Let us check this. If n=5n=5 the vertices γ6(B)\gamma^{6}(B), γ6(C)\gamma^{6}(C) and γ1=[5 4 3 2 1]\gamma^{1}=[5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and there are two ways to get a path of length five from γ6\gamma^{6} and γ1\gamma^{1}. Namely, applying (r2r4)2r2(r_{2}\,r_{4})^{2}r_{2} to γ6\gamma^{6} we have either:

γ6(B)=[4 3 2 5 1]r2[3 4 2 5 1]r4[5 2 4 3 1]r2[2 5 4 3 1]r4\gamma^{6}(B)=[4\,3\,2\,5\,1]\xrightarrow{r_{2}}[3\,4\,2\,5\,1]\xrightarrow{r_{4}}[5\,2\,4\,3\,1]\xrightarrow{r_{2}}[2\,5\,4\,3\,1]\xrightarrow{r_{4}}
[3 4 5 2 1]r2[4 3 5 2 1]γ1[3\,4\,5\,2\,1]\xrightarrow{r_{2}}[4\,3\,5\,2\,1]\neq\gamma^{1}

or

γ6(C)=[2 5 4 3 1]r2[5 2 4 3 1]r4[3 4 2 5 1]r2[4 3 2 5 1]r4\gamma^{6}(C)=[2\,5\,4\,3\,1]\xrightarrow{r_{2}}[5\,2\,4\,3\,1]\xrightarrow{r_{4}}[3\,4\,2\,5\,1]\xrightarrow{r_{2}}[4\,3\,2\,5\,1]\xrightarrow{r_{4}}
[5 2 3 4 1]r2[2 5 3 4 1]γ1,[5\,2\,3\,4\,1]\xrightarrow{r_{2}}[2\,5\,3\,4\,1]\neq\gamma^{1},

and applying (r4r2)2r4(r_{4}r_{2})^{2}r_{4} to γ6\gamma^{6} we have either:

γ6(B)=[4 3 2 5 1]r4[5 2 3 4 1]r2[2 5 3 4 1]r4[4 3 5 2 1]r2\gamma^{6}(B)=[4\,3\,2\,5\,1]\xrightarrow{r_{4}}[5\,2\,3\,4\,1]\xrightarrow{r_{2}}[2\,5\,3\,4\,1]\xrightarrow{r_{4}}[4\,3\,5\,2\,1]\xrightarrow{r_{2}}
[3 4 5 2 1]r4[2 5 4 3 1]γ1[3\,4\,5\,2\,1]\xrightarrow{r_{4}}[2\,5\,4\,3\,1]\neq\gamma^{1}

or

γ6(C)=[2 5 4 3 1]r4[3 4 5 2 1]r2[4 3 5 2 1]r4[2 5 3 4 1]r2\gamma^{6}(C)=[2\,5\,4\,3\,1]\xrightarrow{r_{4}}[3\,4\,5\,2\,1]\xrightarrow{r_{2}}[4\,3\,5\,2\,1]\xrightarrow{r_{4}}[2\,5\,3\,4\,1]\xrightarrow{r_{2}}
[5 2 3 4 1]r4[4 3 2 5 1]γ1.[5\,2\,3\,4\,1]\xrightarrow{r_{4}}[4\,3\,2\,5\,1]\neq\gamma^{1}.

Hence, a path of length five does not occur between γ6\gamma^{6} and γ1\gamma^{1}.

If n=7n=7 the vertices γ6(A)\gamma^{6}(A) and γ1=[7 6 5 4 3 2 1]\gamma^{1}=[7\,6\,5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and the following two cases are possible:

γ6(A)(r4r6)2r4=[4 3 2 7 6 5 1](r4r6)2r4=[6 5 2 7 4 3 1]γ1\gamma^{6}(A)(r_{4}\,r_{6})^{2}r_{4}=[4\,3\,2\,7\,6\,5\,1](r_{4}\,r_{6})^{2}r_{4}=[6\,5\,2\,7\,4\,3\,1]\neq\gamma^{1}

or

γ6(A)(r6r4)2r6=[4 3 2 7 6 5 1](r6r4)2r6=[2 7 4 3 5 6 1]γ1.\gamma^{6}(A)(r_{6}\,r_{4})^{2}r_{6}=[4\,3\,2\,7\,6\,5\,1](r_{6}\,r_{4})^{2}r_{6}=[2\,7\,4\,3\,5\,6\,1]\neq\gamma^{1}.

Again, a path of length five does not occur between γ6\gamma^{6} and γ1\gamma^{1}.

If n9n\geqslant 9, there is a contradiction with an assumption that γ1\gamma^{1} and γ6\gamma^{6} belong to the copy Pn1(1)P_{n-1}(1). Thus, a sought cycle cannot occur in this case.

Case (2+3+5).(2+3+5). Suppose that two vertices τ1,τ2\tau^{1},\tau^{2} of a sought 1010–cycle belong to one copy, other three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to another copy, and remaining five vertices γ1,γ2,γ3,γ4,γ5\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5} belong to the third copy. Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π3=γ5rn\pi^{3}=\gamma^{5}r_{n}, and τ1=γ1rn=In\tau^{1}=\gamma^{1}r_{n}=I_{n}, then γ1\gamma^{1} and γ5\gamma^{5} should belong to Pn1(1)P_{n-1}(1) (see Figure 2). There are two ways to get a path of length two from τ1=In\tau^{1}=I_{n} to π1\pi^{1} such that either

τ1rn3rn=[nn1n2 1 2n4n3]=π1\tau^{1}r_{n-3}r_{n}=[n\,n-1\,n-2\,1\,2\,\dots\,n-4\,n-3]=\pi^{1}

or

τ1rn1rn=[n 1 2n2n1]=π1.\tau^{1}r_{n-1}r_{n}=[n\,1\,2\,\dots\,n-2\,n-1]=\pi^{1}.

Similar, there are two ways to get a path of length two from π1\pi^{1} to π3\pi^{3}. The first one is presented as follows:

π1rn3rn1=π3,\pi^{1}r_{n-3}r_{n-1}=\pi^{3}, (17)

such that either

π1=[nn1n2 1 2n7n6n5n4n3]rn3\pi^{1}=[n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6\,n-5\,n-4\,n-3]\xrightarrow{r_{n-3}}
[n6n7 2 1n2n1nn5n4n3]rn1[n-6\,n-7\,\dots\,2\,1\,n-2\,n-1\,n\,n-5\,n-4\,n-3]\xrightarrow{r_{n-1}}
[n4n5nn1n2 1 2n7n6n3]=π3[n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6\,n-3]=\pi^{3}

or

π1=[n 1 2n2n1]rn3[n4n5 2 1nn3n2n1]rn1\pi^{1}=[n\,1\,2\,\dots\,n-2\,n-1]\xrightarrow{r_{n-3}}[n-4\,n-5\,\dots\,2\,1\,n\,n-3\,n-2\,n-1]\xrightarrow{r_{n-1}}
[n2n3n 1 2 3n5n4n1]=π3.[n-2\,n-3\,n\,1\,2\,3\,\dots\,n-5\,n-4\,n-1]=\pi^{3}.

The second way is presented as follows:

π1rn1rn3=π3,\pi^{1}r_{n-1}r_{n-3}=\pi^{3}, (18)

such that either

π1=[nn1n2 1 2n4n3]rn1[n4n5 2 1n2n1nn3]rn3\pi^{1}=[n\,n-1\,n-2\,1\,2\,\dots\,n-4\,n-3]\xrightarrow{r_{n-1}}[n-4\,n-5\,\dots\,2\,1\,n-2\,n-1\,n\,n-3]\xrightarrow{r_{n-3}}
[n2 1 2 3n4n1nn3]=π3[n-2\,1\,2\,3\,\dots\,n-4\,n-1\,n\,n-3]=\pi^{3}

or

π1=[n 1 2n2n1]rn1[n2n3 2 1nn1]rn3\pi^{1}=[n\,1\,2\,\dots\,n-2\,n-1]\xrightarrow{r_{n-1}}[n-2\,n-3\,\dots\,2\,1\,n\,n-1]\xrightarrow{r_{n-3}}
[2 3n2 1nn1]=π3.[2\,3\,\dots\,n-2\,1\,n\,n-1]=\pi^{3}.

Since π3=γ5rn\pi^{3}=\gamma^{5}\,r_{n}, then by (17) and (18) we obtain:

γ5={[n3n6n72 1n2n1nn5n4]=γ5(A)or[n1n4 3 2 1nn3n2]=γ5(B)or[n3nn1n4 3 2 1n2]=γ5(C)or[n1n  1n2 3 2]=γ5(D).\gamma^{5}=\begin{cases}[n-3\,n-6\,n-7\,\dots 2\,1\,n-2\,n-1\,n\,n-5\,n-4]=\gamma^{5}(A)&or\\ [n-1\,n-4\,\dots\,3\,2\,1\,n\,n-3\,n-2]=\gamma^{5}(B)&or\\ [n-3\,n\,n-1\,n-4\,\dots\,3\,2\,1\,n-2]=\gamma^{5}(C)&or\\ [n-1\,n\,\,1\,n-2\,\dots\,3\,2]=\gamma^{5}(D).\\ \end{cases}

To get a sought 1010-cycle there should be a path of length four between γ5\gamma^{5} and γ1\gamma^{1}, where γ1=τ1rn=[nn1 2 1]\gamma^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1]. Let us check this. If n=5n=5 the vertices γ5(A)=Inrn3rnrn3rn1rn=[2 4 5 3 1]\gamma^{5}(A)=I_{n}\,r_{n-3}\,r_{n}\,r_{n-3}\,r_{n-1}\,r_{n}=[2\,4\,5\,3\,1] and γ1=[5 4 3 2 1]\gamma^{1}=[5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and the following cases are possible:

γ5(A)(rn3rn1)2=[2 4 5 3 1](r2r4)2=[4 2 3 5 1]γ1\gamma^{5}(A)(r_{n-3}\,r_{n-1})^{2}=[2\,4\,5\,3\,1](r_{2}\,r_{4})^{2}=[4\,2\,3\,5\,1]\neq\gamma^{1}

or

γ5(A)(rn1rn3)2=[2 4 5 3 1](r4r2)2=[4 2 3 5 1]γ1.\gamma^{5}(A)(r_{n-1}\,r_{n-3})^{2}=[2\,4\,5\,3\,1](r_{4}\,r_{2})^{2}=[4\,2\,3\,5\,1]\neq\gamma^{1}.

Hence, a path of length four does not occur between γ5\gamma^{5} and γ1\gamma^{1}. However, let us note that in this case we have a cycle of length eight given by the canonical form C8=(r4r2)4C_{8}=(r_{4}\,r_{2})^{4} obtained from (12) by putting k=4,j=3,i=2k=4,\,j=3,\,i=2.

If n7n\geqslant 7, there is a contradiction with an assumption that γ1\gamma^{1} and γ6\gamma^{6} belong to the copy Pn1(1)P_{n-1}(1). Thus, a sought cycle cannot occur in this case.

Case (2+4+4).(2+4+4). Suppose that two vertices τ1,τ2\tau^{1},\tau^{2} of a sought 1010–cycle belong to one copy, other four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} belong to another copy, and remaining four vertices γ1,γ2,γ3,γ4\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4} belong to the third copy (see Figure 3). Let π1=τ1rn=[nn1n2 2 1]\pi^{1}=\tau^{1}r_{n}=[n\,n-1\,n-2\,\dots\,2\,1], π4=γ4rn\pi^{4}=\gamma^{4}r_{n}, and τ2=γ1rn\tau^{2}=\gamma^{1}r_{n}. Then both γ1\gamma^{1} and γ4\gamma^{4} should belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(n3)P_{n-1}(n-3), since either γ1=τ1rn1rn\gamma^{1}=\tau^{1}r_{n-1}r_{n} or γ1=τ1rn3rn\gamma^{1}=\tau^{1}r_{n-3}r_{n}. More precisely, we have:

γ1={[n 1 2n2n1]=γ1(A)or[nn1n2 1 2n4n3]=γ1(B).\gamma^{1}=\begin{cases}[n\,1\,2\,\dots\,n-2\,n-1]=\gamma^{1}(A)&or\\ [n\,n-1\,n-2\,1\,2\,\dots\,n-4\,n-3]=\gamma^{1}(B).\\ \end{cases} (19)

On the other hand, there are two ways to get a path of length three from π1\pi^{1} to π4\pi^{4}. The first way is presented as follows:

π1rn3rn1rn3=π4\pi^{1}r_{n-3}r_{n-1}r_{n-3}=\pi^{4} (20)

such that we have:

π1=[nn1n2 5 4 3 2 1]rn3[4 5n1n 3 2 1]rn1\pi^{1}=[n\,n-1\,n-2\,\dots\,5\,4\,3\,2\,1]\xrightarrow{r_{n-3}}[4\,5\,\dots\,n-1\,n\,3\,2\,1]\xrightarrow{r_{n-1}}
[2 3nn1 5 4 1]rn3[6 7n1n 3 2 5 4 1]=π4.[2\,3\,n\,n-1\dots\,5\,4\,1]\xrightarrow{r_{n-3}}[6\,7\,\dots\,n-1\,n\,3\,2\,5\,4\,1]=\pi^{4}.
Refer to caption
Figure 3: Case 2: 10-cycle within PnP_{n} has vertices from three copies of Pn1P_{n-1}

The second way is presented as follows:

π1rn1rn3rn1=π4,\pi^{1}r_{n-1}r_{n-3}r_{n-1}=\pi^{4}, (21)

where we have:

π1=[nn1n2 2 1]rn1[2 3n2n1n 1]rn3\pi^{1}=[n\,n-1\,n-2\,\dots\,2\,1]\xrightarrow{r_{n-1}}[2\,3\,\dots\,n-2\,n-1\,n\,1]\xrightarrow{r_{n-3}}
[n2n3 3 2n1n 1]rn1[nn1 2 3n3n2 1]=π4.[n-2\,n-3\dots\,3\,2\,n-1\,n\,1]\xrightarrow{r_{n-1}}[n\,n-1\,2\,3\,\dots\,n-3\,n-2\,1]=\pi^{4}.

Since π4=γ4rn,\pi^{4}=\gamma^{4}\,r_{n}, then by (20) and (21) we obtain:

γ4={[1 4 5 2 3nn1 7 6]=γ4(C)or[1n2 3 2n1n]=γ4(D).\gamma^{4}=\begin{cases}[1\,4\,5\,2\,3\,n\,n-1\dots\,7\,6]=\gamma^{4}(C)&or\\ [1\,n-2\,\dots\,3\,2\,n-1\,n]=\gamma^{4}(D).\\ \end{cases} (22)

To get a sought 1010-cycle there should be a path of length three between γ1\gamma^{1} and γ4\gamma^{4} (see Figure 3, Subcase (2+4+4)(2+4+4)). Let us check this.

If n=5n=5 or n11n\geqslant 11, there is a contradiction with an assumption that both γ1\gamma^{1} and γ4\gamma^{4} belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(n3)P_{n-1}(n-3).

If n=7n=7 then by (19) and (22) we have γ1(B)=[7 1 2 3 4 5 6]\gamma^{1}(B)=[7\,1\,2\,3\,4\,5\,6] and γ4(C)=[1 4 5 2 3 7 6]\gamma^{4}(C)=[1\,4\,5\,2\,3\,7\,6], but there is no a path of length three between them, since we have either

γ4(C)r4r6r4=[4 1 3 7 5 2 6]γ1(B)\gamma^{4}(C)\,r_{4}\,r_{6}\,r_{4}=[4\,1\,3\,7\,5\,2\,6]\neq\gamma^{1}(B)

or

γ4(C)r6r4r6=[1 4 7 3 2 5 6]γ1(B).\gamma^{4}(C)\,r_{6}\,r_{4}\,r_{6}=[1\,4\,7\,3\,2\,5\,6]\neq\gamma^{1}(B).

If n=9n=9 then by (19) and (22) we have γ1(A)=[9 8 7 1 2 3 4 5 6]\gamma^{1}(A)=[9\,8\,7\,1\,2\,3\,4\,5\,6] and γ4(C)=[1 4 5 2 3 9 8 7 6]\gamma^{4}(C)=[1\,4\,5\,2\,3\,9\,8\,7\,6], but there is no a path of length three between them, since we have either

γ4(C)r6r8r6=[2 5 4 1 8 7 3 9 6]γ1(A)\gamma^{4}(C)\,r_{6}\,r_{8}\,r_{6}=[2\,5\,4\,1\,8\,7\,3\,9\,6]\neq\gamma^{1}(A)

or

γ4(C)r8r6r8=[1 4 7 8 9 3 2 5 6]γ1(A).\gamma^{4}(C)\,r_{8}\,r_{6}\,r_{8}=[1\,4\,7\,8\,9\,3\,2\,5\,6]\neq\gamma^{1}(A).

Thus, a sought cycle cannot occur in this case.

Case (3+3+4).(3+3+4). Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1010–cycle belong to one copy, other three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to another copy, and remaining four vertices γ1,γ2,γ3,γ4\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4} belong to the third copy (see Figure 3). Let π1=τ1rn\pi^{1}=\tau^{1}\,r_{n}, π3=γ4rn\pi^{3}=\gamma^{4}\,r_{n}, and τ3=γ1rn\tau^{3}=\gamma^{1}\,r_{n}. Then both γ1\gamma^{1} and γ4\gamma^{4} should belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3), since either γ1=τ1rn1rn3rn\gamma^{1}=\tau^{1}r_{n-1}r_{n-3}r_{n} or γ1=τ1rn3rn1rn\gamma^{1}=\tau^{1}r_{n-3}r_{n-1}r_{n}. More precisely, we have:

γ1={[n 1 2n1n2 4 3]=γ1(A)or[nn3n4 2 1n2n1]=γ1(B).\gamma^{1}=\begin{cases}[n\,1\,2\,n-1\,n-2\,\dots\,4\,3]=\gamma^{1}(A)&or\\ [n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]=\gamma^{1}(B).\\ \end{cases} (23)

On the other hand, since π1=τ1rn=[nn1n2 2 1]\pi^{1}=\tau^{1}\,r_{n}=[n\,n-1\,n-2\,\dots\,2\,1], then by (17) and (18) there are two ways to get a path of length two from π1\pi^{1} to π3\pi^{3} such that either

π1rn3rn1=[2 3nn1 5 4 1]=π3,\pi^{1}r_{n-3}r_{n-1}=[2\,3\,n\,n-1\dots\,5\,4\,1]=\pi^{3},

or

π1rn1rn3=[n2n3 3 2n1n 1]=π3,\pi^{1}r_{n-1}r_{n-3}=[n-2\,n-3\dots\,3\,2\,n-1\,n\,1]=\pi^{3},

and since π3=γ4rn\pi^{3}=\gamma^{4}\,r_{n}, then we have:

γ4={[1 4 5n1n 3 2]=γ4(C)or[1nn1 2 3n3n2]=γ4(D).\gamma^{4}=\begin{cases}[1\,4\,5\,\dots\,n-1\,n\,3\,2]=\gamma^{4}(C)&or\\ [1\,n\,n-1\,2\,3\,\dots\,n-3\,n-2]=\gamma^{4}(D).\\ \end{cases} (24)

To get a sought 1010-cycle there should be a path of length three between γ1\gamma^{1} and γ4\gamma^{4}. Let us check this. If n=5n=5 then by (23) and (24) we have γ1(A)=[5 1 2 4 3]\gamma^{1}(A)=[5\,1\,2\,4\,3] and γ4(D)=[1 5 4 2 3]\gamma^{4}(D)=[1\,5\,4\,2\,3], but there is no a path of length three between them, since we have either

γ4(D)r2r4r2=[4 2 1 5 3]γ1(A)\gamma^{4}(D)\,r_{2}\,r_{4}\,r_{2}=[4\,2\,1\,5\,3]\neq\gamma^{1}(A)

or

γ4(D)r4r2r4=[1 5 2 4 3]γ1(A).\gamma^{4}(D)\,r_{4}\,r_{2}\,r_{4}=[1\,5\,2\,4\,3]\neq\gamma^{1}(A).

If n7n\geqslant 7 then by (23) and (24) there is a contradiction with an assumption that both γ1\gamma^{1} and γ4\gamma^{4} belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3). Hence, a sought cycle cannot occur in this case.

Case 3: 10-cycle within PnP_{n} has vertices from four copies of Pn1P_{n-1}

There are two possible situations in this case.

Case (2+2+2+4).(2+2+2+4). Suppose that two vertices π1,π2\pi^{1},\pi^{2} of a sought 1010–cycle belong to the first copy, two vertices τ1,τ2\tau^{1},\tau^{2} belong to the second copy, two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the third copy and remaining four vertices σ1,σ2,σ3,σ4\sigma^{1},\sigma^{2},\sigma^{3},\sigma^{4} belong to the fourth copy (see Figure 4).

Refer to caption
Figure 4: Case 3: 10-cycle within PnP_{n} has vertices from four copies of Pn1P_{n-1}

Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π2=σ4rn\pi^{2}=\sigma^{4}r_{n}, τ1=γ1rn\tau^{1}=\gamma^{1}r_{n} and γ2=σ1rn\gamma^{2}=\sigma^{1}r_{n}, then both σ1\sigma^{1} and σ4\sigma^{4} should belong to either Pn1(4)P_{n-1}(4) or Pn1(2)P_{n-1}(2), since either σ1=τ1rnrn1rn\sigma^{1}=\tau^{1}r_{n}r_{n-1}r_{n} or σ1=τ1rnrn3rn\sigma^{1}=\tau^{1}r_{n}r_{n-3}r_{n}. More precisely, we have:

σ1={[1nn1n2 3 2]=σ1(A)or[1 2 3nn1n2 6 5 4]=σ1(B).\sigma^{1}=\begin{cases}[1\,n\,n-1\,n-2\,\dots\,3\,2]=\sigma^{1}(A)&or\\ [1\,2\,3\,n\,n-1\,n-2\,\dots\,6\,5\,4]=\sigma^{1}(B).\\ \end{cases} (25)

On the other hand, similar to Case (2+2+6)(2+2+6) there are four ways to reach σ4\sigma^{4} by a path of length four from τ1\tau^{1} such that we have:

σ4={[n3n4n5nn1n2 1 2n7n6]=σ4(C)or[n1n2n3n 1 2n5n4]=σ4(D)or[n3nn1n2 1 2n5n4]=σ4(E)or[n1n 1 2n3n2]=σ4(F).\sigma^{4}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]=\sigma^{4}(C)&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\ldots\,n-5\,n-4]=\sigma^{4}(D)&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]=\sigma^{4}(E)&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2]=\sigma^{4}(F).\\ \end{cases} (26)

To get a sought 1010-cycle there should be a path of length three between σ1\sigma^{1} and σ4\sigma^{4}. Let us check this. If n=5n=5 then by (25) we have σ1(B)=[1 2 3 5 4]\sigma^{1}(B)=[1\,2\,3\,5\,4] and σ4(C)=In(rn3rn)2=[2 1 3 5 4]\sigma^{4}(C)=I_{n}\,(r_{n-3}\,r_{n})^{2}=[2\,1\,3\,5\,4], but there is no a path of length three between them, since we have either

σ4(C)r2r4r2=[3 5 2 1 4]σ1(B)\sigma^{4}(C)\,r_{2}\,r_{4}\,r_{2}=[3\,5\,2\,1\,4]\neq\sigma^{1}(B)

or

σ4(C)r4r2r4=[2 1 5 3 4]σ1(B).\sigma^{4}(C)\,r_{4}\,r_{2}\,r_{4}=[2\,1\,5\,3\,4]\neq\sigma^{1}(B).

If n7n\geqslant 7 then by (25) and (26) there is a contradiction with an assumption that both σ1\sigma^{1} and σ4\sigma^{4} belong to either Pn1(4)P_{n-1}(4) or Pn1(2)P_{n-1}(2). Hence, a sought cycle cannot occur in this case.

Refer to caption
Figure 5: Case 3: 10-cycle within PnP_{n} has vertices from four copies of Pn1P_{n-1}

Case (2+2+3+3).(2+2+3+3). There are two subcases due to a sequence of vertices from copies forming a cycle: 1) (2,3,3,2); 2) (3,2,3,2) (see Figure 5).

Subcase 1) Suppose that two vertices τ1,τ2\tau^{1},\tau^{2} of a sought 1010–cycle belong to the first copy, three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to the second copy, three vertices σ1,σ2,σ3\sigma^{1},\sigma^{2},\sigma^{3} belong to the third copy and remaining two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the fourth copy (see Figure 5, Subcase 1).

Let π1=τ2rn\pi^{1}=\tau^{2}\,r_{n}, σ3=π3rn\sigma^{3}=\pi^{3}\,r_{n}, and γ1=τ1rn\gamma^{1}=\tau^{1}\,r_{n}, σ1=γ2rn\sigma^{1}=\gamma^{2}\,r_{n}. Similar to Case (2+3+5)(2+3+5) there are four ways to reach σ3\sigma^{3} by a path of length five from τ1\tau^{1} such that we have:

σ3={[n3n6n7 3 2 1n2n1nn5n4]=σ3(A)or[n1n4n5 3 2 1nn3n2]=σ3(B)or[n3nn1n4n5 3 2 1n2]=σ3(C)or[n1n 1n2n3 3 2]=σ3(D).\sigma^{3}=\begin{cases}[n-3\,n-6\,n-7\,\dots\,3\,2\,1\,n-2\,n-1\,n\,n-5\,n-4]=\sigma^{3}(A)&or\\ [n-1\,n-4\,n-5\,\dots\,3\,2\,1\,n\,n-3\,n-2]=\sigma^{3}(B)&or\\ [n-3\,n\,n-1\,n-4\,n-5\,\dots\,3\,2\,1\,n-2]=\sigma^{3}(C)&or\\ [n-1\,n\,1\,n-2\,n-3\,\dots\,3\,2]=\sigma^{3}(D).\\ \end{cases}

On the other hand, since γ1=τ1rn\gamma^{1}=\tau^{1}\,r_{n} and τ1=In\tau^{1}=I_{n} then γ1=[nn1n2 2 1]\gamma^{1}=[n\,n-1\,n-2\,\dots\,2\,1], and there are two ways to get a path of length one from γ1\gamma^{1} to γ2\gamma^{2} such that either

γ1=[nn1n2 5 4 3 2 1]rn3[4 5n2n1n 3 2 1]=γ2\gamma^{1}=[n\,n-1\,n-2\,\dots\,5\,4\,3\,2\,1]\xrightarrow{r_{n-3}}[4\,5\,\dots\,n-2\,n-1\,n\,3\,2\,1]=\gamma^{2}

or

γ1=[nn1n2 3 2 1]rn1[2 3n2n1n 1]=γ2,\gamma^{1}=[n\,n-1\,n-2\,\dots\,3\,2\,1]\xrightarrow{r_{n-1}}[2\,3\,\dots\,n-2\,n-1\,n\,1]=\gamma^{2},

and since σ1=γ2rn\sigma^{1}=\gamma^{2}\,r_{n} then we have either

σ1=[1 2 3nn1n2 6 5 4]=σ1(E)\sigma^{1}=[1\,2\,3\,n\,n-1\,n-2\,\dots\,6\,5\,4]=\sigma^{1}(E)

or

σ1=[1nn1n2 3 2]=σ1(F).\sigma^{1}=[1\,n\,n-1\,n-2\,\dots\,3\,2]=\sigma^{1}(F).

As one can see, vertices σ1(F)\sigma^{1}(F) and σ3(D)\sigma^{3}(D) belong to the same copy Pn1(2)P_{n-1}(2). Let us check whether there is a path of length two between these two vertices. Indeed, there are two ways to get a path of length two from σ1(F)\sigma^{1}(F) to σ3(D)\sigma^{3}(D). The first way is presented as follows:

σ1rn1rn3=σ3,\sigma^{1}r_{n-1}r_{n-3}=\sigma^{3}, (27)

where

σ1(F)=[1nn1 3 2]rn1[3 4n1n 1 2]rn3\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-1}}[3\,4\,\dots\,n-1\,n\,1\,2]\xrightarrow{r_{n-3}}
[n1n2 4 3n 1 2]σ3(D).[n-1\,n-2\,\dots\,4\,3\,n\,1\,2]\neq\sigma^{3}(D).

The second way is presented as follows:

σ1rn3rn1=σ3,\sigma^{1}r_{n-3}r_{n-1}=\sigma^{3}, (28)

where

σ1(F)=[1nn1 3 2]rn3[5 6n1n 1 4 3 2]rn1\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-1\,n\,1\,4\,3\,2]\xrightarrow{r_{n-1}}
[3 4 1nn1 6 5 2]σ3(D).[3\,4\,1\,n\,n-1\,\dots\,6\,5\,2]\neq\sigma^{3}(D).

Thus, a sought cycle cannot occur in this subcase.

Subcase 2. Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1010–cycle belong to the first copy, two vertices π1,π2\pi^{1},\pi^{2} belong to the second copy, three vertices σ1,σ2,σ3\sigma^{1},\sigma^{2},\sigma^{3} belong to the third copy and remaining two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the fourth copy. Let π1=τ3rn\pi^{1}=\tau^{3}r_{n}, σ3=π2rn\sigma^{3}=\pi^{2}r_{n} and γ1=τ1rn=In\gamma^{1}=\tau^{1}r_{n}=I_{n}, σ1=γ2rn\sigma^{1}=\gamma^{2}r_{n} (see Figure 5, Subcase 2). There are two ways to get a path of length two from τ1\tau^{1} to τ3\tau^{3}. The first way is given as follows:

τ1rn3rn1=τ3,\tau^{1}r_{n-3}r_{n-1}=\tau^{3}, (29)

where

τ1=[1 2 3n1n]rn3[n3n4 2 1n2n1n]rn1\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-3}}[n-3\,n-4\,\dots\,2\,1\,n-2\,n-1\,n]\xrightarrow{r_{n-1}}
[n1n2 1 2n4n3n]=τ3.[n-1\,n-2\,1\,2\,\dots\,n-4\,n-3\,n]=\tau^{3}.

The second way is given as follows:

τ1rn1rn3=τ3,\tau^{1}r_{n-1}r_{n-3}=\tau^{3}, (30)

where

τ1=[1 2 3n1n]rn1[n1n2 2 1n]rn3\tau^{1}=[1\,2\,3\,\dots\,n-1\,n]\xrightarrow{r_{n-1}}[n-1\,n-2\,\dots\,2\,1\,n]\xrightarrow{r_{n-3}}
[3 4n2n1 2 1n]=τ3.[3\,4\,\dots\,n-2\,n-1\,2\,1\,n]=\tau^{3}.

Since π1=τ3rn\pi^{1}=\tau^{3}\,r_{n}, then by (29) and (30) either π1=[nn3n4 2 1n2n1]\pi^{1}=[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1] or π1=[n 1 2n1n2 4 3]\pi^{1}=[n\,1\,2\,n-1\,n-2\,\dots\,4\,3], and since either π2=π1rn1\pi^{2}=\pi^{1}\,r_{n-1} or π2=π1rn3\pi^{2}=\pi^{1}\,r_{n-3} we have:

π2={[2 3n4n3n 1n2n1]=π2(A)or[6 7n2n1 2 1n 5 4 3]=π2(B)or[n2 1 2n4n3nn1]=π2(C)or[4 5n2n1 2 1n 3]=π2(D),\pi^{2}=\begin{cases}[2\,3\,\dots\,n-4\,n-3\,n\,1\,n-2\,n-1]=\pi^{2}(A)&or\\ [6\,7\,\dots\,n-2\,n-1\,2\,1\,n\,5\,4\,3]=\pi^{2}(B)&or\\ [n-2\,1\,2\,\dots\,n-4\,n-3\,n\,n-1]=\pi^{2}(C)&or\\ [4\,5\,\dots\,n-2\,n-1\,2\,1\,n\,3]=\pi^{2}(D),\\ \end{cases}

such that with σ3=π2rn\sigma^{3}=\pi^{2}r_{n} we obtain:

σ3={[n1n2 1nn3n4 3 2]=σ3(A)or[3 4 5n 1 2n1n2 7 6]=σ3(B)or[n1nn3n4 2 1n2]=σ3(C)or[3n 1 2n1n2 5 4]=σ3(D).\sigma^{3}=\begin{cases}[n-1\,n-2\,1\,n\,n-3\,n-4\,\dots\,3\,2]=\sigma^{3}(A)&or\\ [3\,4\,5\,n\,1\,2\,n-1\,n-2\,\dots\,7\,6]=\sigma^{3}(B)&or\\ [n-1\,n\,n-3\,n-4\,\dots\,2\,1\,n-2]=\sigma^{3}(C)&or\\ [3\,n\,1\,2\,n-1\,n-2\,\dots\,5\,4]=\sigma^{3}(D).\\ \end{cases}

On the other hand, there are two ways to get a path of length three from τ1\tau^{1} to σ1\sigma^{1} such that either

σ1=τ1rnrn3rn=[1 2 3n 6 5 4]=σ1(E)\sigma^{1}=\tau^{1}\,r_{n}\,r_{n-3}\,r_{n}=[1\,2\,3\,n\,\dots\,6\,5\,4]=\sigma^{1}(E)

or

σ1=τ1rnrn1rn=[1nn1 3 2]=σ1(F).\sigma^{1}=\tau^{1}\,r_{n}\,r_{n-1}\,r_{n}=[1\,n\,n-1\,\dots\,3\,2]=\sigma^{1}(F).

It is easy to see that vertices σ1(E)\sigma^{1}(E) and σ3(D)\sigma^{3}(D) belong to the copy Pn1(4)P_{n-1}(4). Let us check whether there is a path of length two between these two vertices. By (27) and (28), there are two ways to get a path of length two from σ1(E)\sigma^{1}(E) to σ3(D)\sigma^{3}(D) such that either

σ1(E)=[1 2 3n 6 5 4]rn1[5 6n1n 3 2 1 4]rn3\sigma^{1}(E)=[1\,2\,3\,n\,\dots\,6\,5\,4]\xrightarrow{r_{n-1}}[5\,6\,\dots\,n-1\,n\,3\,2\,1\,4]\xrightarrow{r_{n-3}}
[3nn1 6 5 2 1 4]σ3(D),[3\,n\,n-1\,\dots\,6\,5\,2\,1\,4]\neq\sigma^{3}(D),

or

σ1(E)=[1 2 3n 6 5 4]rn3[7 8n1n 3 2 1 6 5 4]rn1\sigma^{1}(E)=[1\,2\,3\,n\,\dots\,6\,5\,4]\xrightarrow{r_{n-3}}[7\,8\,\dots\,n-1\,n\,3\,2\,1\,6\,5\,4]\xrightarrow{r_{n-1}}
[5 6 1 2 3nn1 8 7 4]σ3(D).[5\,6\,1\,2\,3\,n\,n-1\,\dots\,8\,7\,4]\neq\sigma^{3}(D).

Hence, there is no a path of length two between these two vertices.

One can also see that vertices σ1(F)\sigma^{1}(F) and σ3(A)\sigma^{3}(A) belong to the copy Pn1(2)P_{n-1}(2). Let us check whether there is a path of length two between these two vertices. By (27) and (28), there are two ways to get a path of length two from σ1(F)\sigma^{1}(F) to σ3(A)\sigma^{3}(A) such as either

σ1(F)=[1nn1 3 2]rn1[3 4n1n 1 2]rn3\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-1}}[3\,4\,\dots\,n-1\,n\,1\,2]\xrightarrow{r_{n-3}}
[n1n2 4 3n 1 2]σ3(A),[n-1\,n-2\,\dots\,4\,3\,n\,1\,2]\neq\sigma^{3}(A),

or

σ1(F)=[1nn1 3 2]rn3[5 6n1n 1 4 3 2]rn1\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-1\,n\,1\,4\,3\,2]\xrightarrow{r_{n-1}}
[3 4 1nn1 6 5 2]σ3(A).[3\,4\,1\,n\,n-1\,\dots\,6\,5\,2]\neq\sigma^{3}(A).

Hence, there is no a path of length two between these two vertices, and a sought cycle cannot occur in this subcase.

Case 4: 10-cycle within PnP_{n} has vertices from five copies of Pn1P_{n-1}

There is the only possible situation if each of five copies has two vertices.

Refer to caption
Figure 6: Case 4: 10-cycle within PnP_{n} has vertices from five copies of Pn1P_{n-1}

Case (2+2+2+2+2).(2+2+2+2+2). Suppose that vertices π1,π2\pi^{1},\pi^{2} of a sought 1010–cycle belong to the first copy, vertices τ1,τ2\tau^{1},\tau^{2} belong to the second copy, vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the third copy, vertices δ1,δ2\delta^{1},\delta^{2} belong to the fourth copy and vertices σ1,σ2\sigma^{1},\sigma^{2} belong to the fifth copy.

Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, γ1=τ1rn\gamma^{1}=\tau^{1}\,r_{n}, σ1=γ2rn\sigma^{1}=\gamma^{2}\,r_{n}, δ2=π2rn\delta^{2}=\pi^{2}\,r_{n} and δ1=σ2rn\delta^{1}=\sigma^{2}\,r_{n}. Since τ2\tau^{2} can be reached from τ1\tau^{1} by either rn1r_{n-1} or rn3r_{n-3}, and the same we have for π2\pi^{2} and π1\pi^{1}, then there are four ways to get a path of length three from τ1=In\tau^{1}=I_{n} to π2\pi^{2} (see Figure 6) such that:

π2={[n6n7 2 1n2n1nn5n4n3]or[n4n5 2 1nn3n2n1]or[n4n5 2 1n2n1nn3]or[n2n3 2 1nn1],\pi^{2}=\begin{cases}[n-6\,n-7\,\dots\,2\,1\,n-2\,n-1\,n\,n-5\,n-4\,n-3]&or\\ [n-4\,n-5\,\dots\,2\,1\,n\,n-3\,n-2\,n-1]&or\\ [n-4\,n-5\,\dots\,2\,1\,n-2\,n-1\,n\,n-3]&or\\ [n-2\,n-3\,\dots\,2\,1\,n\,n-1],\\ \end{cases}

and since δ2=π2rn\delta^{2}=\pi^{2}\,r_{n} we have:

δ2={[n3n4n5nn1n2 1 2n7n6]or[n1n2n3n 1 2n5n4]or[n3nn1n2 1 2n5n4]or[n1n 1 2n3n2].\delta^{2}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\dots\,n-5\,n-4]&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2].\\ \end{cases} (31)

On the other hand, there are two ways to get a path of length two from τ1\tau^{1} to γ2\gamma^{2} such that either

τ1rnrn3=[4 5n1n 3 2 1]=γ2\tau^{1}\,r_{n}\,r_{n-3}=[4\,5\,\dots\,n-1\,n\,3\,2\,1]=\gamma^{2}

or

τ1rnrn1=[2 3n1n 1]=γ2,\tau^{1}\,r_{n}\,r_{n-1}=[2\,3\,\dots\,n-1\,n\,1]=\gamma^{2},

and since σ1=γ2rn\sigma^{1}=\gamma^{2}r_{n} we have:

σ1={[1 2 3n 6 5 4]or[1nn1 3 2],\sigma^{1}=\begin{cases}[1\,2\,3\,n\,\dots\,6\,5\,4]&or\\ [1\,n\,n-1\,\dots\,3\,2],\\ \end{cases}

and since either σ2=σ1rn1\sigma^{2}=\sigma^{1}\,r_{n-1} or σ2=σ1rn3\sigma^{2}=\sigma^{1}\,r_{n-3} we also have:

σ2={[7 8n1n 3 2 1 6 5 4]or[5 6n1n 1 4 3 2]or[5 6n1n 3 2 1 4]or[3 4n1n 1 2],\sigma^{2}=\begin{cases}[7\,8\,\dots\,n-1\,n\,3\,2\,1\,6\,5\,4]&or\\ [5\,6\,\dots\,n-1\,n\,1\,4\,3\,2]&or\\ [5\,6\,\dots\,n-1\,n\,3\,2\,1\,4]&or\\ [3\,4\,\dots\,n-1\,n\,1\,2],\\ \end{cases}

which gives us δ1=σ2rn\delta^{1}=\sigma^{2}\,r_{n} as follows:

δ1={[4 5 6 1 2 3nn1 8 7]or[2 3 4 1nn1 6 5]or[4 1 2 3nn1 6 5]or[2 1nn1 4 3].\delta^{1}=\begin{cases}[4\,5\,6\,1\,2\,3\,n\,n-1\,\dots\,8\,7]&or\\ [2\,3\,4\,1\,n\,n-1\,\dots\,6\,5]&or\\ [4\,1\,2\,3\,n\,n-1\,\dots\,6\,5]&or\\ [2\,1\,n\,n-1\,\dots\,4\,3].\\ \end{cases} (32)

To get a sought 1010-cycle, either δ1=δ2rn3\delta^{1}=\delta^{2}\,r_{n-3} or δ1=δ2rn1\delta^{1}=\delta^{2}\,r_{n-1} should hold. Let us check this.

If n=5n=5, then by (31) and (32) we have:

δ1={[4 5 3 1 2]=In(rnrn3)2rnor[2 3 4 1 5]or[4 1 2 3 5]or[2 1 5 4 3],\delta^{1}=\begin{cases}[4\,5\,3\,1\,2]=I_{n}(r_{n}\,r_{n-3})^{2}\,r_{n}&or\\ [2\,3\,4\,1\,5]&or\\ [4\,1\,2\,3\,5]&or\\ [2\,1\,5\,4\,3],\\ \end{cases}
δ2={[4 3 2 5 1]or[4 5 1 2 3]or[2 1 3 5 4]or[2 5 4 3 1].\delta^{2}=\begin{cases}[4\,3\,2\,5\,1]&or\\ [4\,5\,1\,2\,3]&or\\ [2\,1\,3\,5\,4]&or\\ [2\,5\,4\,3\,1].\\ \end{cases}

As one can see, there are two vertices [2 1 5 4 3][2\,1\,5\,4\,3] and [4 5 1 2 3][4\,5\,1\,2\,3] belonging to the same copy, and there is the only way to get a sought 1010-cycle containing these vertices by the canonical form C10=(r5r4)5C_{10}=(r_{5}\,r_{4})^{5}.

If n=7n=7, then by (31) and (32) we have:

δ1={[4 5 6 1 2 3 7]or[2 3 4 1 7 6 5]or[4 1 2 3 7 6 5]or[2 1 7 6 5 4 3],\delta^{1}=\begin{cases}[4\,5\,6\,1\,2\,3\,7]&or\\ [2\,3\,4\,1\,7\,6\,5]&or\\ [4\,1\,2\,3\,7\,6\,5]&or\\ [2\,1\,7\,6\,5\,4\,3],\\ \end{cases}
δ2={[4 3 2 7 6 5 1]or[6 5 4 7 1 2 3]or[4 7 6 5 1 2 3]or[6 7 1 2 3 4 5].\delta^{2}=\begin{cases}[4\,3\,2\,7\,6\,5\,1]&or\\ [6\,5\,4\,7\,1\,2\,3]&or\\ [4\,7\,6\,5\,1\,2\,3]&or\\ [6\,7\,1\,2\,3\,4\,5].\\ \end{cases}

It is evident that neither [6 5 4 7 1 2 3][6\,5\,4\,7\,1\,2\,3] nor [4 7 6 5 1 2 3][4\,7\,6\,5\,1\,2\,3] could not be reached from [2 1 7 6 5 4 3][2\,1\,7\,6\,5\,4\,3] neither by r4r_{4} nor by r6r_{6}. Thus, a sought 1010-cycle can not occur in this case. By using similar arguments, one can check that for n=9,11,13n=9,11,13 there is no a 1010-cycle in the graph. For any odd n15n\geqslant 15, there is a contradiction with an assumption that both δ1\delta^{1} and δ2\delta^{2} belong to the same copy.

This complete the proof since all possible cases are considered. A 1010-cycle in the graph Pn5P_{n}^{5} occurs only in the case when n=5n=5 and with the canonical form C10=(r5r4)5C_{10}=(r_{5}\,r_{4})^{5}.

\square

Theorem 5

In the cubic Pancake graphs Pn5,n5,P_{n}^{5},n\geqslant 5, there are no cycles of length 1111.

Proof.  To prove this theorem, we use the same arguments as we used to prove Theorem 4. Namely, we consider all possible cases for forming 1111–cycles in the Pancake graphs PnP_{n} with taking into account that the generating set of Pn5P_{n}^{5} contains only three elements rn3,rn1,rnr_{n-3},r_{n-1},r_{n}, where nn is odd. Due to the hierarchical structure of PnP_{n}, cycles of length 1111 could be formed from paths of length l, 2l9l,\ 2\leqslant l\leqslant 9, belonging to different (n1)(n-1)-copies of PnP_{n}. Further, we consider all possible options for the distribution of vertices by copies.

Within the proof without loss of generality we always put τ1=In=[1 2 3n1n]\tau^{1}=I_{n}=[1\,2\,3\,\dots\,n-1\,n].

Case 1: 1111–cycle within PnP_{n} has vertices from two copies of Pn1P_{n-1}

Suppose that a sought 1111–cycle is formed on vertices from two different copies of Pn1P_{n-1}. By [5, Lemma 2], such a cycle cannot occur if its two (three) vertices belong to one copy and nine (eight) vertices belong to another one. Therefore, a sought cycle must have at least four vertices in each of the two copies. Hence, there are two following cases.

Case (4+7).(4+7). Suppose that four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} of a sought 1111–cycle belong to one copy, and other seven vertices τ1,τ2,τ3,τ4,τ5,τ6,τ7\tau^{1},\tau^{2},\tau^{3},\tau^{4},\tau^{5},\tau^{6},\tau^{7} belong to another copy. Let π1=τ1rn\pi^{1}=\tau^{1}r_{n}, π4=τ7rn\pi^{4}=\tau^{7}r_{n}, then π1\pi^{1} and π4\pi^{4} should belong to Pn1(1)P_{n-1}(1). Herewith, the four vertices of Pn1(1)P_{n-1}(1) should form a path of length three whose endpoints should be adjacent to vertices from Pn1(n)P_{n-1}(n). On the other hand, it is obvious that there are only two ways to get path of length six from τ1\tau^{1} to τ7\tau^{7}, namely, either:

τ1(rn3rn1)3=[n5n6n3n4n1n2 1 2n8n7n]=τ7\tau^{1}\,(r_{n-3}\,r_{n-1})^{3}=[n-5\,n-6\,n-3\,n-4\,n-1\,n-2\,1\,2\,\dots\,n-8\,n-7\,n]=\tau^{7}

or

τ1(rn1rn3)3=[7 8n2n1 2 1 4 3 6 5n]=τ7.\tau^{1}\,(r_{n-1}\,r_{n-3})^{3}=[7\,8\,\dots\,n-2\,n-1\,2\,1\,4\,3\,6\,5\,n]=\tau^{7}.

Since π4=τ7rn\pi^{4}=\tau^{7}\,r_{n} then we have either:

π4=[nn7n8 2 1n2n1n4n3n6n5]\pi^{4}=[n\,n-7\,n-8\dots\,2\,1\,n-2\,n-1\,n-4\,n-3\,n-6\,n-5]

or

π4=[n 5 6 3 4 1 2n1n2 8 7].\pi^{4}=[n\,5\,6\,3\,4\,1\,2\,n-1\,n-2\,\dots\,8\,7].

Note that π1=τ1rn=[nn1 2 1]\pi^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1] with πn1=1\pi_{n}^{1}=1 for any n5n\geqslant 5. Hence, we immediately can conclude that π4\pi^{4} and π1\pi^{1} belong to different copies of PnP_{n} since πn41\pi_{n}^{4}\neq 1 for any odd n5n\geqslant 5. This gives a contradiction with an assumption that π1\pi^{1} and π4\pi^{4} belong to the same copy Pn1(1)P_{n-1}(1). Thus, a sought 1111–cycle cannot occur in this case.

Case (5+6).(5+6). Suppose that five vertices π1,π2,π3,π4,π5\pi^{1},\pi^{2},\pi^{3},\pi^{4},\pi^{5} of a sought 1111–cycle belong to copy Pn1(1)P_{n-1}(1), and other six vertices τ1,τ2,τ3,τ4,τ5,τ6\tau^{1},\tau^{2},\tau^{3},\tau^{4},\tau^{5},\tau^{6} belong to copy Pn1(n)P_{n-1}(n), where π1=τ1rn\pi^{1}=\tau^{1}r_{n}, and π5=τ6rn\pi^{5}=\tau^{6}r_{n}. Herewith, the five vertices of Pn1(1)P_{n-1}(1) should form a path of length four whose endpoints should be adjacent to vertices from Pn1(n)P_{n-1}(n). By (14) and (16), there are two ways to get paths of length five from τ1\tau^{1} to τ6\tau^{6}. Moreover, since π5=τ6rn\pi^{5}=\tau^{6}\,r_{n} then we have either:

π5=[nn5n6n3n4n1n2 1 2n8n7]\pi^{5}=[n\,n-5\,n-6\,n-3\,n-4\,n-1\,n-2\,1\,2\,\dots\,n-8\,n-7]

or

π5=[n 5 6n2n1 2 1 4 3].\pi^{5}=[n\,5\,6\,\dots\,n-2\,n-1\,2\,1\,4\,3].

Since π1=τ1rn=[nn1 2 1]\pi^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1] with πn1=1\pi_{n}^{1}=1 for any n5n\geqslant 5, then we immediately can conclude that π5\pi^{5} and π1\pi^{1} belong to different copies of PnP_{n} since πn51\pi_{n}^{5}\neq 1 for any odd n5n\geqslant 5. This gives a contradiction with an assumption that π1\pi^{1} and π5\pi^{5} belong to the same copy Pn1(1)P_{n-1}(1). Thus, a sought 1111–cycle cannot occur in this case.

Case 2: 11-cycle within PnP_{n} has vertices from three copies of Pn1P_{n-1}

There are five different situations in this case.

Case (2+2+7).(2+2+7). Suppose that two vertices π1,π2\pi^{1},\pi^{2} of a sought 1111–cycle belong to one copy, other two vertices τ1,τ2\tau^{1},\tau^{2} belong to another copy, and remaining seven vertices γ1,γ2,γ3,γ4,γ5,γ6,γ7\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5},\gamma^{6},\gamma^{7} belong to the third copy. Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π2=γ7rn\pi^{2}=\gamma^{7}r_{n}, τ1=γ1rn\tau^{1}=\gamma^{1}r_{n}, then γ1\gamma^{1} and γ7\gamma^{7} should belong to Pn1(1)P_{n-1}(1). Using similar reasoning shown in the proof of Theorem 4, Case (2+2+6)(2+2+6), one can conclude that there are four ways to reach γ7\gamma^{7} by a path of length four from τ1=In\tau^{1}=I_{n} such that we have:

γ7={[n3n4n5nn1n2 1 2n7n6]=γ7(A)or[n1n2n3n 1 2n5n4]=γ7(B)or[n3nn1n2 1 2n5n4]=γ7(C)or[n1n 1 2n3n2]=γ7(D).\gamma^{7}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]=\gamma^{7}(A)&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\ldots\,n-5\,n-4]=\gamma^{7}(B)&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]=\gamma^{7}(C)&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2]=\gamma^{7}(D).\\ \end{cases}

To get a sought 1111-cycle there should be a path of length six between γ7\gamma^{7} and γ1\gamma^{1}, where γ1=τ1rn=[nn1 2 1]\gamma^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1]. Let us check this. If n=5n=5 then the vertices γ7(B)=[4 3 2 5 1]\gamma^{7}(B)=[4\,3\,2\,5\,1], γ7(C)=[2 5 4 3 1]\gamma^{7}(C)=[2\,5\,4\,3\,1] and γ1=[5 4 3 2 1]\gamma^{1}=[5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and the following cases are possible:

γ7(B)(r2r4)3=[2 5 3 4 1]γ1\gamma^{7}(B)(r_{2}r_{4})^{3}=[2\,5\,3\,4\,1]\neq\gamma^{1}

or

γ7(C)(r2r4)3=[4 3 5 2 1]γ1,\gamma^{7}(C)(r_{2}r_{4})^{3}=[4\,3\,5\,2\,1]\neq\gamma^{1},

and

γ7(B)(r4r2)3=[5 2 4 3 1]γ1\gamma^{7}(B)(r_{4}r_{2})^{3}=[5\,2\,4\,3\,1]\neq\gamma^{1}

or

γ7(C)(r4r2)3=[3 4 2 5 1]γ1.\gamma^{7}(C)(r_{4}r_{2})^{3}=[3\,4\,2\,5\,1]\neq\gamma^{1}.

Hence, a path of length five does not occur between γ7\gamma^{7} and γ1\gamma^{1}.

If n=7n=7 the vertices γ7(A)=[4 3 2 7 6 5 1]\gamma^{7}(A)=[4\,3\,2\,7\,6\,5\,1] and γ1=[7 6 5 4 3 2 1]\gamma^{1}=[7\,6\,5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and the following two cases are possible:

γ7(A)(r4r6)3=[3 4 7 2 5 6 1]γ1\gamma^{7}(A)(r_{4}\,r_{6})^{3}=[3\,4\,7\,2\,5\,6\,1]\neq\gamma^{1}

or

γ7(A)(r6r4)3=[4 3 7 2 5 6 1]γ1.\gamma^{7}(A)(r_{6}\,r_{4})^{3}=[4\,3\,7\,2\,5\,6\,1]\neq\gamma^{1}.

Again, a path of length five does not occur between γ7\gamma^{7} and γ1\gamma^{1}.

If n9n\geqslant 9, there is a contradiction with an assumption that γ1\gamma^{1} and γ7\gamma^{7} belong to the copy Pn1(1)P_{n-1}(1). Thus, a sought cycle cannot occur in this case.

Case (2+3+6).(2+3+6). Suppose that two vertices τ1,τ2\tau^{1},\tau^{2} of a sought 1111–cycle belong to the first copy, other three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to the second copy, and remaining six vertices γ1,γ2,γ3,γ4,γ5,γ6\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5},\gamma^{6} belong to the third copy. Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π3=γ6rn\pi^{3}=\gamma^{6}r_{n}, τ1=γ1rn\tau^{1}=\gamma^{1}r_{n}, then γ1\gamma^{1} and γ6\gamma^{6} should belong to Pn1(1)P_{n-1}(1). Taking into account similar reasoning used in the proof of Theorem 4, Case (2+3+5)(2+3+5), one can conclude that there are four ways to reach γ6\gamma^{6} by a path of length five from τ1=In\tau^{1}=I_{n} such that we have:

γ6={[n3n6n72 1n2n1nn5n4]=γ6(A)or[n1n4 3 2 1nn3n2]=γ6(B)or[n3nn1n4 3 2 1n2]=γ6(C)or[n1n  1n2 3 2]=γ6(D).\gamma^{6}=\begin{cases}[n-3\,n-6\,n-7\,\dots 2\,1\,n-2\,n-1\,n\,n-5\,n-4]=\gamma^{6}(A)&or\\ [n-1\,n-4\,\dots\,3\,2\,1\,n\,n-3\,n-2]=\gamma^{6}(B)&or\\ [n-3\,n\,n-1\,n-4\,\dots\,3\,2\,1\,n-2]=\gamma^{6}(C)&or\\ [n-1\,n\,\,1\,n-2\,\dots\,3\,2]=\gamma^{6}(D).\\ \end{cases}

To get a sought 1111-cycle there should be a path of length five between γ6\gamma^{6} and γ1\gamma^{1}, where γ1=τ1rn=[nn1 2 1]\gamma^{1}=\tau^{1}\,r_{n}=[n\,n-1\,\dots\,2\,1]. Let us check this. If n=5n=5 the vertices γ6(A)=[2 4 5 3 1]\gamma^{6}(A)=[2\,4\,5\,3\,1] and γ1=[5 4 3 2 1]\gamma^{1}=[5\,4\,3\,2\,1] belong to the copy Pn1(1)P_{n-1}(1), and the following cases are possible:

γ6(A)(rn3rn1)2rn3=[2 4 5 3 1](r2r4)2r2=[2 4 3 5 1]γ1\gamma^{6}(A)(r_{n-3}\,r_{n-1})^{2}\,r_{n-3}=[2\,4\,5\,3\,1](r_{2}\,r_{4})^{2}r_{2}=[2\,4\,3\,5\,1]\neq\gamma^{1}

or

γ6(A)(rn1rn3)2rn1=[2 4 5 3 1](r4r2)2r4=[5 3 2 4 1]γ1.\gamma^{6}(A)(r_{n-1}\,r_{n-3})^{2}\,r_{n-1}=[2\,4\,5\,3\,1](r_{4}\,r_{2})^{2}r_{4}=[5\,3\,2\,4\,1]\neq\gamma^{1}.

Hence, a path of length five does not occur between γ6\gamma^{6} and γ1\gamma^{1}.

If n7n\geqslant 7, there is a contradiction with an assumption that γ1\gamma^{1} and γ6\gamma^{6} belong to the copy Pn1(1)P_{n-1}(1). Thus, a sought cycle cannot occur in this case.

Case (2+4+5).(2+4+5). Suppose that two vertices τ1,τ2\tau^{1},\tau^{2} of a sought 1111–cycle belong to the first copy, other four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} belong to the second copy, and remaining five vertices γ1,γ2,γ3,γ4,γ5\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5} belong to the third copy. Let π1=τ1rn\pi^{1}=\tau^{1}r_{n}, π4=γ5rn\pi^{4}=\gamma^{5}r_{n}, τ2=γ1rn\tau^{2}=\gamma^{1}r_{n}, then γ1\gamma^{1} and γ5\gamma^{5} should belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(n3)P_{n-1}(n-3), since either γ1=τ1rn1rn\gamma^{1}=\tau^{1}r_{n-1}r_{n} or γ1=τ1rn3rn\gamma^{1}=\tau^{1}r_{n-3}r_{n}, where:

γ1={[n 1 2n2n1]=γ1(A)or[nn1n2 1 2n4n3]=γ1(B).\gamma^{1}=\begin{cases}[n\,1\,2\,\dots\,n-2\,n-1]=\gamma^{1}(A)&or\\ [n\,n-1\,n-2\,1\,2\,\dots\,n-4\,n-3]=\gamma^{1}(B).\\ \end{cases} (33)

By the same reasoning used in the proof of Theorem 4, Case (2+4+4)(2+4+4), one can see that there are two ways to reach γ5\gamma^{5} by a path of length five from τ1=In\tau^{1}=I_{n} such that we have:

γ5={[1 4 5 2 3nn1 7 6]=γ5(C)or[1n2 3 2n1n]=γ5(D).\gamma^{5}=\begin{cases}[1\,4\,5\,2\,3\,n\,n-1\dots\,7\,6]=\gamma^{5}(C)&or\\ [1\,n-2\,\dots\,3\,2\,n-1\,n]=\gamma^{5}(D).\\ \end{cases} (34)

To get a sought 1111-cycle there should be a path of length four between γ1\gamma^{1} and γ5\gamma^{5}. Let us check this. If n=5n=5 or n11n\geqslant 11, there is a contradiction with an assumption that both γ1\gamma^{1} and γ5\gamma^{5} belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(n3)P_{n-1}(n-3). If n=7n=7 then by (33) and (34) we have γ1(A)=[7 1 2 3 4 5 6]\gamma^{1}(A)=[7\,1\,2\,3\,4\,5\,6] and γ5(C)=[1 4 5 2 3 7 6]\gamma^{5}(C)=[1\,4\,5\,2\,3\,7\,6], but there is no a path of length four between them, since we have either

γ5(C)(r4r6)2=[2 5 7 3 1 4 6]γ1(A)\gamma^{5}(C)(r_{4}\,r_{6})^{2}=[2\,5\,7\,3\,1\,4\,6]\neq\gamma^{1}(A)

or

γ5(C)(r6r4)2=[3 7 4 1 2 5 6]γ1(A).\gamma^{5}(C)(r_{6}\,r_{4})^{2}=[3\,7\,4\,1\,2\,5\,6]\neq\gamma^{1}(A).

If n=9n=9 then by (33) and (34) we have γ1(B)=[9 8 7 1 2 3 4 5 6]\gamma^{1}(B)=[9\,8\,7\,1\,2\,3\,4\,5\,6] and γ5(C)=[1 4 5 2 3 9 8 7 6]\gamma^{5}(C)=[1\,4\,5\,2\,3\,9\,8\,7\,6], but there is no a path of length four between them, since we have either

γ5(C)(r6r8)2=[9 3 7 8 1 4 5 2 6]γ1(A)\gamma^{5}(C)(r_{6}\,r_{8})^{2}=[9\,3\,7\,8\,1\,4\,5\,2\,6]\neq\gamma^{1}(A)

or

γ5(C)(r8r6)2=[3 9 8 7 1 4 2 5 6]γ1(A).\gamma^{5}(C)(r_{8}\,r_{6})^{2}=[3\,9\,8\,7\,1\,4\,2\,5\,6]\neq\gamma^{1}(A).

Thus, a sought cycle cannot occur in this case.

Case (3+3+5).(3+3+5). Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1111–cycle belong to the first copy, other three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to the second copy, and remaining five vertices γ1,γ2,γ3,γ4,γ5\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4},\gamma^{5} belong to the third copy. Let π1=τ1rn=[nn1 2 1]\pi^{1}=\tau^{1}r_{n}=[n\,n-1\,\dots\,2\,1], π3=γ5rn\pi^{3}=\gamma^{5}r_{n}, τ3=γ1rn\tau^{3}=\gamma^{1}r_{n}, then γ1\gamma^{1} and γ5\gamma^{5} should belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3), since either γ1=τ1rn3rn1rn\gamma^{1}=\tau^{1}\,r_{n-3}\,r_{n-1}\,r_{n} or γ1=τ1rn1rn3rn\gamma^{1}=\tau^{1}\,r_{n-1}\,r_{n-3}\,r_{n}, where

γ1={[nn3n4 2 1n2n1]=γ1(A)or[n 1 2n1n2 4 3]=γ1(B).\gamma^{1}=\begin{cases}[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]=\gamma^{1}(A)&or\\ [n\,1\,2\,n-1\,n-2\,\dots\,4\,3]=\gamma^{1}(B).\\ \end{cases} (35)

Taking into account the same arguments as we used in the proof of Theorem 4, Case (3+3+4)(3+3+4), one can conclude that there are two ways to reach γ5\gamma^{5} by a path of length five from τ1=In\tau^{1}=I_{n} such that we have:

γ5={[1 4 5n1n 3 2]=γ5(C)or[1nn1 2 3n3n2]=γ5(D).\gamma^{5}=\begin{cases}[1\,4\,5\,\dots\,n-1\,n\,3\,2]=\gamma^{5}(C)&or\\ [1\,n\,n-1\,2\,3\,\dots\,n-3\,n-2]=\gamma^{5}(D).\\ \end{cases} (36)

To get a sought 1111-cycle there should be a path of length four between γ1\gamma^{1} and γ5\gamma^{5}. Let us check this. If n=5n=5 then by (35) and (36) we have γ1(B)=[5 1 2 4 3]\gamma^{1}(B)=[5\,1\,2\,4\,3] and γ5(D)=[1 5 4 2 3]\gamma^{5}(D)=[1\,5\,4\,2\,3], but there is no a path of length four between them, since we have either

γ5(D)(r2r4)2=[5 1 2 4 3]γ1(B)\gamma^{5}(D)(r_{2}\,r_{4})^{2}=[5\,1\,2\,4\,3]\neq\gamma^{1}(B)

or

γ5(D)(r4r2)2=[5 1 2 4 3]γ1(B).\gamma^{5}(D)(r_{4}\,r_{2})^{2}=[5\,1\,2\,4\,3]\neq\gamma^{1}(B).

Hence, a path of length four does not occur between γ5\gamma^{5} and γ1\gamma^{1}. However, let us note that in this case we have a cycle of length eight given by the canonical form C8=(r4r2)4C_{8}=(r_{4}\,r_{2})^{4} obtained from (12) by putting k=4,j=3,i=2k=4,\,j=3,\,i=2.

If n7n\geqslant 7 then by (35) and (36) there is a contradiction with an assumption that both γ1\gamma^{1} and γ5\gamma^{5} belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3). Hence, a sought cycle cannot occur in this case.

Case (3+4+4).(3+4+4). Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1111–cycle belong to the first copy, other four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} belong to the second copy, and remaining four vertices γ1,γ2,γ3,γ4\gamma^{1},\gamma^{2},\gamma^{3},\gamma^{4} belong to the third copy. Let π1=τ1rn=[nn1 2 1]\pi^{1}=\tau^{1}r_{n}=[n\,n-1\,\dots\,2\,1], π4=γ4rn\pi^{4}=\gamma^{4}r_{n}, τ3=γ4rn\tau^{3}=\gamma^{4}r_{n}, then γ1\gamma^{1} and γ4\gamma^{4} should belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3), since either γ1=τ1rn1rn3rn\gamma^{1}=\tau^{1}r_{n-1}r_{n-3}r_{n} or γ1=τ1rn3rn1rn\gamma^{1}=\tau^{1}r_{n-3}r_{n-1}r_{n}, where

γ1={[nn3n4 2 1n2n1]=γ1(A)or[n 1 2n1n2 4 3]=γ1(B).\gamma^{1}=\begin{cases}[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]=\gamma^{1}(A)&or\\ [n\,1\,2\,n-1\,n-2\,\dots\,4\,3]=\gamma^{1}(B).\\ \end{cases} (37)

On the other hand, it is obvious that there are two ways to get a path of length five from τ1\tau^{1} to γ5\gamma^{5}:

γ4={τ1rnrn3rn1rn3rn=[1 4 5 2 3nn1 7 6]=γ4(C)orτ1rnrn1rn3rn1rn=[1n2 3 2n1n]=γ4(D).\gamma^{4}=\begin{cases}\tau^{1}\,r_{n}\,r_{n-3}\,r_{n-1}\,r_{n-3}\,r_{n}=[1\,4\,5\,2\,3\,n\,n-1\dots\,7\,6]=\gamma^{4}(C)&or\\ \tau^{1}\,r_{n}\,r_{n-1}\,r_{n-3}\,r_{n-1}\,r_{n}=[1\,n-2\,\dots\,3\,2\,n-1\,n]=\gamma^{4}(D).\\ \end{cases} (38)

To get a sought 1111-cycle there should be a path of length four between γ1\gamma^{1} and γ4\gamma^{4}. Let us check this. If n=5n=5 then by (37) and (38) we have γ1(B)=[5 1 2 4 3]\gamma^{1}(B)=[5\,1\,2\,4\,3] and γ4(C)=[1 4 5 2 3]\gamma^{4}(C)=[1\,4\,5\,2\,3], but there is no a path of length three between them, since we have either

γ4(C)r2r4r2=[5 2 1 4 3]γ1(B)\gamma^{4}(C)\,r_{2}\,r_{4}\,r_{2}=[5\,2\,1\,4\,3]\neq\gamma^{1}(B)

or

γ4(C)r4r2r4=[1 4 2 5 3]γ1(B).\gamma^{4}(C)\,r_{4}\,r_{2}\,r_{4}=[1\,4\,2\,5\,3]\neq\gamma^{1}(B).

Hence, a path of length three does not occur between γ4\gamma^{4} and γ1\gamma^{1}.

If n=7n=7 then by (37) and (38) we have γ1(A)=[7 4 3 2 1 5 6]\gamma^{1}(A)=[7\,4\,3\,2\,1\,5\,6] and γ4(C)=[1 4 5 2 3 7 6]\gamma^{4}(C)=[1\,4\,5\,2\,3\,7\,6], but there is no a path of length three between them, since we have either

γ4(C)r4r6r4=[4 1 3 7 5 2 6]γ1(A)\gamma^{4}(C)\,r_{4}\,r_{6}\,r_{4}=[4\,1\,3\,7\,5\,2\,6]\neq\gamma^{1}(A)

or

γ4(C)r6r4r6=[1 4 7 3 2 5 6]γ1(A).\gamma^{4}(C)\,r_{6}\,r_{4}\,r_{6}=[1\,4\,7\,3\,2\,5\,6]\neq\gamma^{1}(A).

Again, a path of length three does not occur between γ4\gamma^{4} and γ1\gamma^{1}.

If n9n\geqslant 9 then there is a contradiction with an assumption that both γ1\gamma^{1} and γ4\gamma^{4} belong to either Pn1(n1)P_{n-1}(n-1) or Pn1(3)P_{n-1}(3). Hence, a sought cycle cannot occur in this case.

Case 3: 11-cycle within PnP_{n} has vertices from four copies of Pn1P_{n-1}

There are three possible situations in this case.

Case (2+2+2+5).(2+2+2+5). Suppose that two vertices π1,π2\pi^{1},\pi^{2} of a sought 1111–cycle belong to the first copy, two vertices τ1,τ2\tau^{1},\tau^{2} belong to the second copy, two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the third copy and remaining five vertices σ1,σ2,σ3,σ4,σ5\sigma^{1},\sigma^{2},\sigma^{3},\sigma^{4},\sigma^{5} belong to the fourth copy. Let τ1=γ1rn\tau^{1}=\gamma^{1}r_{n}, γ2=σ1rn\gamma^{2}=\sigma^{1}r_{n}, σ5=π2rn\sigma^{5}=\pi^{2}r_{n} and π1=τ2rn\pi^{1}=\tau^{2}r_{n}, then σ1\sigma^{1} and σ5\sigma^{5} should belong to either Pn1(2)P_{n-1}(2) or Pn1(4)P_{n-1}(4), since either σ1=τ1rnrn1rn\sigma^{1}=\tau^{1}r_{n}r_{n-1}r_{n} or σ1=τ1rnrn3rn\sigma^{1}=\tau^{1}r_{n}r_{n-3}r_{n} where

σ1={[1nn1n2 3 2]=σ1(A)or[1 2 3nn1 5 4]=σ1(B).\sigma^{1}=\begin{cases}[1\,n\,n-1\,n-2\,\dots\,3\,2]=\sigma^{1}(A)&or\\ [1\,2\,3\,n\,n-1\,\dots\,5\,4]=\sigma^{1}(B).\\ \end{cases} (39)

Taking into account the same arguments as we used in the proof of Theorem 4, Case (2+2+2+4)(2+2+2+4), one can conclude that there are four ways to reach σ5\sigma^{5} by a path of length four from τ1=In\tau^{1}=I_{n} such that we have:

σ5={[n3n4n5nn1n2 1 2n7n6]=σ5(C)or[n1n2n3n 1 2n5n4]=σ5(D)or[n3nn1n2 1 2n5n4]=σ5(E)or[n1n 1 2n3n2]=σ5(F).\sigma^{5}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]=\sigma^{5}(C)&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\ldots\,n-5\,n-4]=\sigma^{5}(D)&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]=\sigma^{5}(E)&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2]=\sigma^{5}(F).\\ \end{cases} (40)

To get a sought 1111-cycle there should be a path of length four between σ1\sigma^{1} and σ5\sigma^{5}. Let us check this. If n=5n=5 then by (39) we have σ1(B)=[1 2 3 5 4]\sigma^{1}(B)=[1\,2\,3\,5\,4], and σ5(C)=In(rn3rn)2=[2 1 3 5 4]\sigma^{5}(C)=I_{n}(r_{n-3}\,r_{n})^{2}=[2\,1\,3\,5\,4], but there is no a path of length four between them, since we have either

σ5(C)(r2r4)2=[1 2 5 3 4]σ1(B)\sigma^{5}(C)(r_{2}\,r_{4})^{2}=[1\,2\,5\,3\,4]\neq\sigma^{1}(B)

or

σ5(C)(r4r2)2=[2 1 5 3 4]σ1(B).\sigma^{5}(C)(r_{4}\,r_{2})^{2}=[2\,1\,5\,3\,4]\neq\sigma^{1}(B).

If n7n\geqslant 7 then by (39) and (40) there is a contradiction with an assumption that both σ1\sigma^{1} and σ5\sigma^{5} belong to either Pn1(2)P_{n-1}(2) or Pn1(4)P_{n-1}(4). Hence, a sought cycle cannot occur in this case.

Case (2+3+3+3).(2+3+3+3). Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1111–cycle belong to the first copy, three vertices π1,π2,π3\pi^{1},\pi^{2},\pi^{3} belong to the second copy, three vertices γ1,γ2,γ3\gamma^{1},\gamma^{2},\gamma^{3} belong to the third copy and remaining two vertices σ1,σ2\sigma^{1},\sigma^{2} belong to the fourth copy. Let τ1=π1rn\tau^{1}=\pi^{1}r_{n}, π3=σ2rn\pi^{3}=\sigma^{2}r_{n}, τ3=γ1rn\tau^{3}=\gamma^{1}r_{n} and γ3=σ1rn\gamma^{3}=\sigma^{1}r_{n}. Taking into account the same arguments as we used in the proof of Theorem 4, Case (3+3+4)(3+3+4), one can conclude that there are two ways to reach σ2\sigma^{2} by a path of length three from τ1=In\tau^{1}=I_{n} such that we have:

σ2={τ1rnrn3rn1rn3rn=[1 4 5 2 3nn1 7 6]=σ2(A)orτ1rnrn1rn3rn1rn=[1n2 3 2n1n]=σ2(B).\sigma^{2}=\begin{cases}\tau^{1}\,r_{n}\,r_{n-3}\,r_{n-1}\,r_{n-3}\,r_{n}=[1\,4\,5\,2\,3\,n\,n-1\dots\,7\,6]=\sigma^{2}(A)&or\\ \tau^{1}\,r_{n}\,r_{n-1}\,r_{n-3}\,r_{n-1}\,r_{n}=[1\,n-2\,\dots\,3\,2\,n-1\,n]=\sigma^{2}(B).\\ \end{cases} (41)

On the other hand, by (29) and (30), and since γ1=τ3rn\gamma_{1}=\tau^{3}r_{n}, there are two ways to get paths of length three from τ1\tau^{1} to γ1\gamma^{1} such that either

γ1=[nn3n4 2 1n2n1]\gamma^{1}=[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]

or

γ1=[n 1 2n1n2 4 3].\gamma^{1}=[n\,1\,2\,n-1\,n-2\,\dots\,4\,3].

Then there are two ways to get paths of length two from γ1\gamma^{1} to γ3\gamma^{3} such that the first way is presented as follows:

γ1rn3rn1=γ3.\gamma^{1}r_{n-3}r_{n-1}=\gamma^{3}.

Namely, we get either

γ1=[nn3n4 2 1n2n1]rn3[2 3n4n3n 1n2n1]rn1\gamma^{1}=[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]\xrightarrow{r_{n-3}}[2\,3\,\dots\,n-4\,n-3\,n\,1\,n-2\,n-1]\xrightarrow{r_{n-1}}
[n2 1nn3n4 3 2n1]=γ3[n-2\,1\,n\,n-3\,n-4\,\dots\,3\,2\,n-1]=\gamma^{3}

or

γ1=[n 1 2n1n2 4 3]rn3[6 7n2n1 2 1n 5 4 3]rn1\gamma^{1}=[n\,1\,2\,n-1\,n-2\,\dots\,4\,3]\xrightarrow{r_{n-3}}[6\,7\,\dots\,n-2\,n-1\,2\,1\,n\,5\,4\,3]\xrightarrow{r_{n-1}}
[4 5n 1 2n1n2 6 5 3]=γ3.[4\,5\,n\,1\,2\,n-1\,n-2\,\dots\,6\,5\,3]=\gamma^{3}.

The second way is presented as follows:

γ1rn1rn3=γ3.\gamma^{1}r_{n-1}r_{n-3}=\gamma^{3}.

Namely, we get

γ1=[nn3n4 2 1n2n1]rn1[n2 1 2n4n3nn1]rn3\gamma^{1}=[n\,n-3\,n-4\,\dots\,2\,1\,n-2\,n-1]\xrightarrow{r_{n-1}}[n-2\,1\,2\,\dots\,n-4\,n-3\,n\,n-1]\xrightarrow{r_{n-3}}
[n4n5 2 1n2n3nn1]=γ3[n-4\,n-5\,\dots\,2\,1\,n-2\,n-3\,n\,n-1]=\gamma^{3}

or

γ1=[n 1 2n1n2 4 3]rn1[4 5n2n1 2 1n 3]rn3\gamma^{1}=[n\,1\,2\,n-1\,n-2\,\dots\,4\,3]\xrightarrow{r_{n-1}}[4\,5\,\dots\,n-2\,n-1\,2\,1\,n\,3]\xrightarrow{r_{n-3}}
[2n1n2 5 4 1n 3]=γ3.[2\,n-1\,n-2\,\dots\,5\,4\,1\,n\,3]=\gamma^{3}.

Since σ1=γ3rn\sigma^{1}=\gamma^{3}r_{n}, we get

σ1={[n1 2 3n4n3n 1n2]=σ1(C)or[3 5 6n2n1 2 1n 5 4]=σ1(D)or[n1nn3n2 1 2n5n4]=σ1(E)or[3n 1 4 5n1 2]=σ1(F).\sigma^{1}=\begin{cases}[n-1\,2\,3\,\dots\,n-4\,n-3\,n\,1\,n-2]=\sigma^{1}(C)&or\\ [3\,5\,6\,\dots\,n-2\,n-1\,2\,1\,n\,5\,4]=\sigma^{1}(D)&or\\ [n-1\,n\,n-3\,n-2\,1\,2\,\dots\,n-5\,n-4]=\sigma^{1}(E)&or\\ [3\,n\,1\,4\,5\,\dots\,n-1\,2]=\sigma^{1}(F).\\ \end{cases} (42)

To get a sought 1111-cycle vertices σ1\sigma^{1} and σ2\sigma^{2} should be adjacent by an internal edge. However, if n=5n=5 then by (42) and (41), we have two non-adjacent vertices σ1(C)=[4 2 5 1 3]\sigma^{1}(C)=[4\,2\,5\,1\,3] and σ2(A)=[1 4 5 2 3]\sigma^{2}(A)=[1\,4\,5\,2\,3]. If n7n\geqslant 7 then by (41) and (42) there is a contradiction with an assumption that σ1\sigma^{1} and σ2\sigma^{2} belong to the same copy. Hence, a sought cycle cannot occur in this case.

Case (2+2+3+4).(2+2+3+4). There are two subcases due to a sequence of vertex from the copies forming a cycle: 1) (2,3,4,2); 2) (3,2,4,2).

Subcase 1. Suppose that four vertices π1,π2,π3,π4\pi^{1},\pi^{2},\pi^{3},\pi^{4} of a sought 1111–cycle belong to the first copy, two vertices τ1,τ2\tau^{1},\tau^{2} belong to the second copy, three vertices γ1,γ2,γ3\gamma^{1},\gamma^{2},\gamma^{3} belong to the third copy and remaining two vertices σ1,σ2\sigma^{1},\sigma^{2} belong to the fourth copy. Taking into account the same arguments as we used in the proof of Theorem 4, Case (2+3+2+3)(2+3+2+3), one can conclude that there are four ways to reach σ4\sigma^{4} by a path of length five from τ1=In\tau^{1}=I_{n}:

σ4={[n3n6n7 3 2 1n2n1nn5n4]=σ4(A)or[n1n4n5 3 2 1nn3n2]=σ4(B)or[n3nn1n4n5 3 2 1n2]=σ4(C)or[n1n 1n2n3 3 2]=σ4(D).\sigma^{4}=\begin{cases}[n-3\,n-6\,n-7\,\dots\,3\,2\,1\,n-2\,n-1\,n\,n-5\,n-4]=\sigma^{4}(A)&or\\ [n-1\,n-4\,n-5\,\dots\,3\,2\,1\,n\,n-3\,n-2]=\sigma^{4}(B)&or\\ [n-3\,n\,n-1\,n-4\,n-5\,\dots\,3\,2\,1\,n-2]=\sigma^{4}(C)&or\\ [n-1\,n\,1\,n-2\,n-3\,\dots\,3\,2]=\sigma^{4}(D).\\ \end{cases}

On the other hand, there are two ways to reach σ1\sigma^{1} by a path of length three from τ1\tau^{1} such that we have:

σ1={[1 2 3nn1n2 6 5 4]=σ1(E)or[1nn1n2 3 2]=σ1(F).\sigma^{1}=\begin{cases}[1\,2\,3\,n\,n-1\,n-2\,\dots\,6\,5\,4]=\sigma^{1}(E)&or\\ [1\,n\,n-1\,n-2\,\dots\,3\,2]=\sigma^{1}(F).\\ \end{cases}

As one can see, vertices σ1(F)\sigma^{1}(F) and σ4(D)\sigma^{4}(D) belong to the same copy Pn1(2)P_{n-1}(2). Let us check whether there is a path of length three between these two vertices. Indeed, there are two ways to get a path of length three from σ1(F)\sigma^{1}(F) to σ4(D)\sigma^{4}(D). The first way is presented as follows:

σ1rn1rn3rn1=σ4,\sigma^{1}r_{n-1}r_{n-3}r_{n-1}=\sigma^{4}, (43)

where

σ1(F)=[1nn1 3 2]rn1[3 4n1n 1 2]rn3\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-1}}[3\,4\,\dots\,n-1\,n\,1\,2]\xrightarrow{r_{n-3}}
[n1n2 4 3n 1 2]rn1[1n 3 4n2n1 2]σ4(D).[n-1\,n-2\,\dots\,4\,3\,n\,1\,2]\xrightarrow{r_{n-1}}[1\,n\,3\,4\,\dots\,n-2\,n-1\,2]\neq\sigma^{4}(D).

The second way is presented as follows:

σ1rn3rn1rn3=σ4,\sigma^{1}r_{n-3}r_{n-1}r_{n-3}=\sigma^{4}, (44)

where

σ1(F)=[1nn1 3 2]rn3[5 6n1n 1 4 3 2]rn1\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-1\,n\,1\,4\,3\,2]\xrightarrow{r_{n-1}}
[3 4 1nn1 6 5 2]rn3[7 8n1n 1 4 3 6 5 2]σ4(D).[3\,4\,1\,n\,n-1\,\dots\,6\,5\,2]\xrightarrow{r_{n-3}}[7\,8\,\dots\,n-1\,n\,1\,4\,3\,6\,5\,2]\neq\sigma^{4}(D).

Thus, a sought cycle cannot occur in this subcase.

Subcase 2. Suppose that three vertices τ1,τ2,τ3\tau^{1},\tau^{2},\tau^{3} of a sought 1111–cycle belong to the first copy, two vertices π1,π2\pi^{1},\pi^{2} belong to the second copy, four vertices σ1,σ2,σ3,σ4\sigma^{1},\sigma^{2},\sigma^{3},\sigma^{4} belong to the third copy and remaining two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the fourth copy. Let π1=τ3rn\pi^{1}=\tau^{3}r_{n}, π2=σ4rn\pi^{2}=\sigma^{4}r_{n} and τ1=γ1rn\tau^{1}=\gamma^{1}r_{n}, γ2=σ1rn\gamma^{2}=\sigma^{1}r_{n}. Taking into account the same arguments as we used in the proof of Theorem 4, Case (3+2+3+2)(3+2+3+2), one can conclude that there are four ways to reach σ4\sigma^{4} by a path of length five from τ1=In\tau^{1}=I_{n}:

σ4={[n1n2 1nn3n4 3 2]=σ4(A)or[3 4 5n 1 2n1n2 7 6]=σ4(B)or[n1nn3n4 2 1n2]=σ4(C)or[3n 1 2n1n2 5 4]=σ4(D).\sigma^{4}=\begin{cases}[n-1\,n-2\,1\,n\,n-3\,n-4\,\dots\,3\,2]=\sigma^{4}(A)&or\\ [3\,4\,5\,n\,1\,2\,n-1\,n-2\,\dots\,7\,6]=\sigma^{4}(B)&or\\ [n-1\,n\,n-3\,n-4\,\dots\,2\,1\,n-2]=\sigma^{4}(C)&or\\ [3\,n\,1\,2\,n-1\,n-2\,\dots\,5\,4]=\sigma^{4}(D).\\ \end{cases}

On the other hand, there are two ways to reach σ1\sigma^{1} by a path of length three from τ1\tau^{1} such that we have:

σ1={[1 2 3n 6 5 4]=σ1(E)or[1nn1n2 3 2]=σ1(F).\sigma^{1}=\begin{cases}[1\,2\,3\,n\,\dots\,6\,5\,4]=\sigma^{1}(E)&or\\ [1\,n\,n-1\,n-2\,\dots\,3\,2]=\sigma^{1}(F).\\ \end{cases}

It is easy to see that vertices σ1(E)\sigma^{1}(E) and σ4(D)\sigma^{4}(D) belong to the copy Pn1(4)P_{n-1}(4). However, there is no a path of length three between these two vertices. Indeed, by (43) and (44), there are two ways to get a path of length three from σ1(E)\sigma^{1}(E) to σ4(D)\sigma^{4}(D) such that either

σ1(E)=[1 2 3n 6 5 4]rn1[5 6n1n 3 2 1 4]rn3\sigma^{1}(E)=[1\,2\,3\,n\,\dots\,6\,5\,4]\xrightarrow{r_{n-1}}[5\,6\,\dots\,n-1\,n\,3\,2\,1\,4]\xrightarrow{r_{n-3}}
[3nn1 6 5 2 1 4]rn1[1 2 5 6n1n 3 4]σ4(D),[3\,n\,n-1\,\dots\,6\,5\,2\,1\,4]\xrightarrow{r_{n-1}}[1\,2\,5\,6\,\dots\,n-1\,n\,3\,4]\neq\sigma^{4}(D),

or

σ1(E)=[1 2 3n 6 5 4]rn3[7 8n1n 3 2 1 6 5 4]rn1\sigma^{1}(E)=[1\,2\,3\,n\,\dots\,6\,5\,4]\xrightarrow{r_{n-3}}[7\,8\,\dots\,n-1\,n\,3\,2\,1\,6\,5\,4]\xrightarrow{r_{n-1}}
[5 6 1 2 3nn1 8 7 4]rn3[9 10n1n 3 2 1 6 5 8 7 4]σ4(D).[5\,6\,1\,2\,3\,n\,n-1\,\dots\,8\,7\,4]\xrightarrow{r_{n-3}}[9\,10\,\dots\,n-1\,n\,3\,2\,1\,6\,5\,8\,7\,4]\neq\sigma^{4}(D).

Hence, there is no a path of length three between these two vertices.

One can also see that vertices σ1(F)\sigma^{1}(F) and σ4(A)\sigma^{4}(A) belong to the copy Pn1(2)P_{n-1}(2). Let us check whether there is a path of length three between these two vertices. By (43) and (44), there are two ways to get a path of length three from σ1(F)\sigma^{1}(F) to σ4(A)\sigma^{4}(A) such as either

σ1(F)=[1nn1 3 2]rn1[3 4n1n 1 2]rn3\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-1}}[3\,4\,\dots\,n-1\,n\,1\,2]\xrightarrow{r_{n-3}}
[n1n2 4 3n 1 2]rn1[1n 3 4n2n1 2]σ4(A),[n-1\,n-2\,\dots\,4\,3\,n\,1\,2]\xrightarrow{r_{n-1}}[1\,n\,3\,4\,\dots\,n-2\,n-1\,2]\neq\sigma^{4}(A),

or

σ1(F)=[1nn1 3 2]rn3[5 6n1n 1 4 3 2]rn1\sigma^{1}(F)=[1\,n\,n-1\,\dots\,3\,2]\xrightarrow{r_{n-3}}[5\,6\,\dots\,n-1\,n\,1\,4\,3\,2]\xrightarrow{r_{n-1}}
[3 4 1nn1 6 5 2]rn3[7 8n1n 1 4 3 6 5 2]σ4(A).[3\,4\,1\,n\,n-1\,\dots\,6\,5\,2]\xrightarrow{r_{n-3}}[7\,8\,\dots\,n-1\,n\,1\,4\,3\,6\,5\,2]\neq\sigma^{4}(A).

Thus, a sought cycle cannot occur in this subcase.

Case 4: 11-cycle within PnP_{n} has vertices from five copies of Pn1P_{n-1}

There is the only possible situation in this case.

Case (2+2+2+2+3).(2+2+2+2+3). Suppose that two vertices π1,π2\pi^{1},\pi^{2} of a sought 1111–cycle belong to the first copy, two vertices τ1,τ2\tau^{1},\tau^{2} belong to the second copy, two vertices γ1,γ2\gamma^{1},\gamma^{2} belong to the third copy, three vertices δ1,δ2,δ3\delta^{1},\delta^{2},\delta^{3} belong to the fourth copy and remaining two vertices σ1,σ2\sigma^{1},\sigma^{2} belong to the fifth copy. Let π1=τ2rn\pi^{1}=\tau^{2}r_{n}, π2=δ3rn\pi^{2}=\delta^{3}r_{n}, δ1=σ2rn\delta^{1}=\sigma^{2}r_{n}, σ1=γ2rn\sigma^{1}=\gamma^{2}r_{n} and γ1=τ1rn\gamma^{1}=\tau^{1}r_{n}. Taking into account the same arguments as we used in the proof of Theorem 4, Case (2+2+2+2+2)(2+2+2+2+2), one can conclude that there are four ways to reach δ3\delta^{3} by a path of length four from τ1=In\tau^{1}=I_{n}:

δ3={[n3n4n5nn1n2 1 2n7n6]or[n1n2n3n 1 2n5n4]or[n3nn1n2 1 2n5n4]or[n1n 1 2n3n2].\delta^{3}=\begin{cases}[n-3\,n-4\,n-5\,n\,n-1\,n-2\,1\,2\,\dots\,n-7\,n-6]&or\\ [n-1\,n-2\,n-3\,n\,1\,2\,\dots\,n-5\,n-4]&or\\ [n-3\,n\,n-1\,n-2\,1\,2\,\dots\,n-5\,n-4]&or\\ [n-1\,n\,1\,2\,\dots\,n-3\,n-2].\\ \end{cases} (45)

On the other hand, there are four ways to reach δ1\delta^{1} by a path of length five from τ1\tau^{1} such that we have:

δ1={[4 5 6 1 2 3nn1 8 7]or[2 3 4 1nn1 6 5]or[4 1 2 3nn1 6 5]or[2 1nn1 4 3].\delta^{1}=\begin{cases}[4\,5\,6\,1\,2\,3\,n\,n-1\,\dots\,8\,7]&or\\ [2\,3\,4\,1\,n\,n-1\,\dots\,6\,5]&or\\ [4\,1\,2\,3\,n\,n-1\,\dots\,6\,5]&or\\ [2\,1\,n\,n-1\,\dots\,4\,3].\\ \end{cases} (46)

To get a sought 1111-cycle, either δ1=δ3rn3rn1\delta^{1}=\delta^{3}\,r_{n-3}\,r_{n-1} or δ1=δ3rn1rn3\delta^{1}=\delta^{3}\,r_{n-1}\,r_{n-3} should hold. Let us check this. If n=5n=5, then by (46) and (45) we have:

δ1={[4 5 3 1 2]=In(rnrn3)2rnor[2 3 4 1 5]or[4 1 2 3 5]or[2 1 5 4 3],\delta^{1}=\begin{cases}[4\,5\,3\,1\,2]=I_{n}(r_{n}\,r_{n-3})^{2}\,r_{n}&or\\ [2\,3\,4\,1\,5]&or\\ [4\,1\,2\,3\,5]&or\\ [2\,1\,5\,4\,3],\\ \end{cases}
δ3={[4 3 2 5 1]or[4 5 1 2 3]or[2 1 3 5 4]or[2 5 4 3 1].\delta^{3}=\begin{cases}[4\,3\,2\,5\,1]&or\\ [4\,5\,1\,2\,3]&or\\ [2\,1\,3\,5\,4]&or\\ [2\,5\,4\,3\,1].\\ \end{cases}

As one can see, there are no a path of length two between δ1\delta^{1} and δ3\delta^{3}. Thus, a sought 1111-cycle can not occur in this case. If n=7n=7, then by (46) and (45) we have:

δ1={[4 5 6 1 2 3 7]or[2 3 4 1 7 6 5]or[4 1 2 3 7 6 5]or[2 1 7 6 5 4 3],\delta^{1}=\begin{cases}[4\,5\,6\,1\,2\,3\,7]&or\\ [2\,3\,4\,1\,7\,6\,5]&or\\ [4\,1\,2\,3\,7\,6\,5]&or\\ [2\,1\,7\,6\,5\,4\,3],\\ \end{cases}
δ3={[4 3 2 7 6 5 1]or[6 5 4 7 1 2 3]or[4 7 6 5 1 2 3]or[6 7 1 2 3 4 5].\delta^{3}=\begin{cases}[4\,3\,2\,7\,6\,5\,1]&or\\ [6\,5\,4\,7\,1\,2\,3]&or\\ [4\,7\,6\,5\,1\,2\,3]&or\\ [6\,7\,1\,2\,3\,4\,5].\\ \end{cases}

Again, a sought 1111-cycle can not occur in this case, since there is no a path of length two between δ1\delta^{1} and δ3\delta^{3}. By using similar arguments, one can check that for n=9,11,13n=9,11,13 there is no a 1111-cycle in the graph. For any odd n15n\geqslant 15, there is a contradiction with an assumption that both δ1\delta^{1} and δ3\delta^{3} belong to the same copy. This complete the proof of the last case of Theorem 5. \square

3 Proof of Theorem 1

It is obvious that any cycle of the cubic Pancake graphs Pni,i=1,,5,P_{n}^{i},\ i=1,\ldots,5, does belong to the Pancake graph Pn,n4P_{n},n\geqslant 4, and should be described by one of the canonical formulas from Theorem 2 and Theorem 3. Let us check which cycles appear in PniP_{n}^{i} for each i{1,,5}.i\in\{1,\ldots,5\}.

Case (1.1) Any cycle of Pn1,n4P_{n}^{1},n\geqslant 4, is formed by prefix–reversals from the set BS1={r2,rn1,rn}BS_{1}=\{r_{2},r_{n-1},r_{n}\}. If n=4n=4 then by Theorem 2 the prefix–reversals r2r_{2} and r3r_{3} give 66-cycles of the form (4). For n4n\geqslant 4, by (5) there are no 77–cycles in Pn1P_{n}^{1}, but there are 88–cycles of the form (7) when n=4n=4 and there are 88–cycles of the form (12) for n5n\geqslant 5 if we put k=nk=n, i=2i=2, j=n1j=n-1. The canonical form in the last case is given by (rnr2)4(r_{n}\,r_{2})^{4} for any n5n\geqslant 5. Hence, the formula (1) holds.

Using similar arguments, one can see that any cycle of Pn2,n4P_{n}^{2},n\geqslant 4, is presented by prefix–reversals from the set BS2={rn2,rn1,rn}BS_{2}=\{r_{n-2},r_{n-1},r_{n}\}. If n=4n=4 then obviously P42P_{4}^{2} has 66–cycles. If n>4n>4 then by (5) there are no 77–cycles in Pn2P_{n}^{2}, however by Theorem 3 there are 88–cycles of the canonical form (6). Indeed, if we put k=nk=n, j=n1j=n-1, i=n2i=n-2 in (6) then we have the sequence rnrn1rn2rn1rnrn1rn2rn1r_{n}\,r_{n-1}\,r_{n-2}\,r_{n-1}\,r_{n}\,r_{n-1}\,r_{n-2}\,r_{n-1}. Thus, the formula (1) holds in this case.

The same arguments appear for the graph Pn3,n4P_{n}^{3},n\geqslant 4 is even, whose generating set contains prefix–reversals r3r_{3}, rn2r_{n-2} and rnr_{n}. It has 66–cycles of the form (4) and 88–cycles of the form (13) if n=4n=4, but it does not have 77–cycles for n4n\geqslant 4. Moreover, for any even n6n\geqslant 6 in Pn3P_{n}^{3} there are no 66–cycles, but there are 88–cycles of the form (12) if we put k=nk=n, i=3i=3, j=n2j=n-2. The canonical form of 88–cycles in this case is given by (rnr3)4(r_{n}\,r_{3})^{4} for any even n6n\geqslant 6. Thus, the formula (1) holds.

Case (1.2) In the case of the graph Pn4,n5P_{n}^{4},n\geqslant 5 is odd, its generating elements r3r_{3}, rn1r_{n-1} and rnr_{n} give 88–cycles of the canonical form (rnrn1rnr3)2(r_{n}\,r_{n-1}\,r_{n}\,r_{3})^{2} if we put k=nk=n, j=2j=2 and i=3i=3 in the form (12). Obviously, there are no 66–cycles in the graph since r2r_{2} does not belong to the generating set for any n5n\geqslant 5. Hence, the formula (2) holds for any odd n5n\geqslant 5.

Case (1.3) The generating set BS5={rn3,rn1,rn}BS_{5}=\{r_{n-3},r_{n-1},r_{n}\} of the graph Pn5P_{n}^{5}, where n5n\geqslant 5 is odd, gives the canonical form (r5r4r5r2)2(r_{5}\,r_{4}\,r_{5}\,r_{2})^{2} of 88–cycles if we put k=5k=5, j=2j=2 and i=2i=2 in the form (12). By Theorem 2 there are no 66–cycles in the graph for any n5n\geqslant 5. By Theorem 3 and by the characterization of 99-cycles in the Pancake graph [6, Theorem 4] there are no 88– and 99–cycles in Pn5P_{n}^{5} for any n7n\geqslant 7. By Theorem 4 and Theorem 5 for any n7n\geqslant 7 there are no 1010–cycles and 1111–cycles in Pn5P_{n}^{5}, and the smallest cycle in Pn5P_{n}^{5} is 1212–cycle of the canonical form C12=(rnrn1rnrn1rn3rn1)2C_{12}=(r_{n}\,r_{n-1}\,r_{n}\,r_{n-1}\,r_{n-3}\,r_{n-1})^{2}. This complete the proof of Theorem 1. \square

4 Acknowledgements

The first author is supported by the project No. FWNF-2022-0017 (the state contract of the Sobolev Institute of Mathematics). The second author was partially supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

References

  • [1] D. W. Bass, I. H. Sudborough, Pancake problems with restricted prefix reversals and some corresponding Cayley networks, Journal of Parallel and Distributed Computing, 63 (2003) 327–336.
  • [2] P. E. C. Compeau, Girth of pancake graphs, Discrete Applied Mathematics, 159 (2011) 1641–1645.
  • [3] H. Dweighter, E 2569 in: Elementary problems and solutions, Amer. Math. Monthly, 82 (1975) 1010.
  • [4] A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs, Parallel Computing, 21 (1995) 923–936.
  • [5] E. V. Konstantinova, A. N. Medvedev, Cycles of length seven in the Pancake graph, Diskretnyi Analiz i Issledovanie Operatsii, 17 (2010) 46–55. (in Russian)
  • [6] E. V. Konstantinova, A. N. Medvedev, Cycles of length nine in the Pancake graph, Diskretnyi Analiz i Issledovanie Operatsii, 18 (2011) 33–60. (in Russian)
  • [7] E. Konstantinova, A. Medvedev, Small cycles in the Pancake graph, Ars Mathematica Contemporanea, 7 (2014) 237–246.
  • [8] E. Konstantinova, A. Medvedev, Independent even cycles in the Pancake graph and greedy Prefix-reversal Gray codes, Graphs and Combinatorics 32 (2016) 1965–1978.
  • [9] J. J. Sheu, J. J. M. Tan, K. T. Chu, Cycle embedding in pancake interconnection networks, In.: Proc. 23rd Workshop on Combinatorial Mathematics and Computation Theory, Taiwan, 2006, 85–92.
  • [10] J. Sawada, A. Williams, Successor rules for flipping pancakes and burnt pancakes, Theoretical Computer Science, 609 (2016) 60–75.
  • [11] A. Williams, The greedy gray code algorithm, LNCS, 8037 (2013) 525–536.