This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The geometry of sedenion zero divisors

Silvio Reggiani CONICET and Universidad Nacional de Rosario, ECEN-FCEIA, Departamento de MatemΓ‘tica. Av. Pellegrini 250, 2000 Rosario, Argentina. [email protected] http://www.fceia.unr.edu.ar/~reggiani
(Date: January 28, 2025)
Abstract.

The sedenion algebra π•Š\mathbb{S} is a non-commutative, non-associative, 1616-dimensional real algebra with zero divisors. It is obtained from the octonions through the Cayley-Dickson construction. The zero divisors of π•Š\mathbb{S} can be viewed as the submanifold 𝒡​(π•Š)βŠ‚π•ŠΓ—π•Š\mathcal{Z}(\mathbb{S})\subset\mathbb{S}\times\mathbb{S} of normalized pairs whose product equals zero, or as the submanifold 𝑍𝐷⁑(π•Š)βŠ‚π•Š\operatorname{\mathit{ZD}}(\mathbb{S})\subset\mathbb{S} of normalized elements with non-trivial annihilators. We prove that 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is isometric to the excepcional Lie group G2G_{2}, equipped with a naturally reductive left-invariant metric. Moreover, 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is the total space of a Riemannian submersion over the excepcional symmetric space of quaternion subalgebras of the octonion algebra, with fibers that are locally isometric to a product of two round 33-spheres with different radii. Additionally, we prove that 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) is isometric to the Stiefel manifold V2​(ℝ7)V_{2}(\mathbb{R}^{7}), the space of orthonormal 22-frames in ℝ7\mathbb{R}^{7}, endowed with a specific G2G_{2}-invariant metric. By shrinking this metric along a circle fibration, we construct new examples of an Einstein metric and a family of homogenous metrics on V2​(ℝ7)V_{2}(\mathbb{R}^{7}) with non-negative sectional curvature.

Key words and phrases:
Cayley-Dickson algebras, Sedenion algebra, Zero divisors, Einstein manifolds, Non-negative curvature
2020 Mathematics Subject Classification:
53C30, 17A20

1. Introduction

The Cayley-Dickson algebras form a sequence of real algebras 𝔸n\mathbb{A}_{n}, defined recursively beginning with ℝ\mathbb{R} and doubling in dimension with each iteration. The first members of this family are the familiar real division algebras: ℝ=𝔸0\mathbb{R}=\mathbb{A}_{0}, β„‚=𝔸1\mathbb{C}=\mathbb{A}_{1}, ℍ=𝔸2\mathbb{H}=\mathbb{A}_{2} and 𝕆=𝔸3\mathbb{O}=\mathbb{A}_{3}. The next algebra in this sequence is the so-called sedenion algebra π•Š=𝔸4\mathbb{S}=\mathbb{A}_{4}, which is often overlooked in comparison to its lower-dimensional relatives due to its lack of certain desirable algebraic properties. Nonetheless, this somewhat enigmatic algebra has long intrigued mathematicians and has recently found applications in fields such as theoretical physics [GG19] and machine learning [SA20].

Since π•Š\mathbb{S} is not a division algebra, it is interesting to understand the structure of its zero divisors. The topology of the sedenion zero divisors is described by the principal bundle

SU⁑(2)β†’G2β†’V2​(ℝ7),\operatorname{SU}(2)\to G_{2}\to V_{2}(\mathbb{R}^{7}),

where G2G_{2} is the excepcional compact Lie group of rank 22 and V2​(ℝ7)V_{2}(\mathbb{R}^{7}) is the Stiefel manifold of orthonormal 22-frames in ℝ7\mathbb{R}^{7}. Specifically, G2G_{2} is homeomorphic to the submanifold 𝒡​(π•Š)βŠ‚π•ŠΓ—π•Š\mathcal{Z}(\mathbb{S})\subset\mathbb{S}\times\mathbb{S} of normalized sedenion pairs that multiply to zero; V2​(ℝ7)V_{2}(\mathbb{R}^{7}) is homeomorphic to the submanifold 𝑍𝐷⁑(π•Š)βŠ‚π•Š\operatorname{\mathit{ZD}}(\mathbb{S})\subset\mathbb{S} of sedenions with norm 2\sqrt{2} that have non-trivial annihilators; and, for each uβˆˆπ‘π·β‘(π•Š)u\in\operatorname{\mathit{ZD}}(\mathbb{S}), the fiber SU⁑(2)\operatorname{SU}(2) corresponds to the sphere of the annihilator subspace of uu (see [Mor98, BDI08]). However, little is known regarding the geometry of the sedenion zero divisors.

Both 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) and 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) carry a natural geometry as submanifolds of ℝ32\mathbb{R}^{32} and ℝ16\mathbb{R}^{16}, respectively. Furthermore, since the zero divisors of π•Š\mathbb{S} are invariant under Aut⁑(π•Š)\operatorname{Aut}(\mathbb{S}), whose connected component is isomorphic to G2G_{2}, it follows that 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) and 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) are homogeneous submanifolds. In this article, we study the intrinsic geometry of the zero divisors of π•Š\mathbb{S}. First, we prove that 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is isometric to G2G_{2} with a naturally reductive left-invariant metric, forming the total space of a Riemannian submersion over the exceptional symmetric space G2/SO⁑(4)G_{2}/{\operatorname{SO}(4)}, with fibers locally isometric to a product of two round 33-spheres with different radii.

Next, we analyze the geometry of 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}), which is isometric to V2​(ℝ7)=G2/SU⁑(2)V_{2}(\mathbb{R}^{7})=G_{2}/{\operatorname{SU}(2)} with a particular G2G_{2}-invariant metric. At first glance, the geometry of 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) does not seem very interesting; however, by shrinking the metric along a certain circle fibration, we obtain a family grg_{r} (r>0r>0) of G2G_{2}-invariant metrics on V2​(ℝ7)V_{2}(\mathbb{R}^{7}), where g23g_{\frac{2}{3}} represents the original metric. This process reveals several distinguished examples. Specifically, we prove, among other things, that (V2​(ℝ7),gr)(V_{2}(\mathbb{R}^{7}),g_{r}):

  • β€’

    has positive scalar curvature if and only of r<203r<\frac{20}{3};

  • β€’

    is an Einstein manifold if and only if r=59r=\frac{5}{9};

  • β€’

    has non-negative sectional curvature if and only if 0<r≀490<r\leq\frac{4}{9}.

These results are quite remarkable, as Einstein metrics and metrics with non-negative curvature are very rare. To the best of our knowledge, the examples presented in this article are new. The known homogeneous Einstein metrics on V2​(ℝ7)=G2/SU⁑(2)=SO⁑(7)/SO⁑(5)V_{2}(\mathbb{R}^{7})=G_{2}/{\operatorname{SU}(2)}=\operatorname{SO}(7)/{\operatorname{SO}(5)} are limited to the unique SO⁑(7)\operatorname{SO}(7)-invariant Einstein metric discovered by Sagle and the so-called Jensen metrics (see [Sag70, Jen73, BH87, Ker98]). It is worth noticing that the metric g59g_{\frac{5}{9}} is neither SO⁑(7)\operatorname{SO}(7)-invariant nor a Jensen metric. Regarding metrics with non-negative sectional curvature, we refer to the survey [Zil07]. Typically, examples of homogeneous metrics with non-negative curvature appear as normal homogeneous metrics or are constructed through a Cheeger deformation of a metric already known to have non-negative curvature. Recall that none of the metrics grg_{r} is normal homogeneous (nor even naturally reductive) and that the initial metric g23g_{\frac{2}{3}} does not possess non-negative sectional curvature.

Let us comment briefly on the proof our main results. In order to study the geometry of 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}), it is necessary to β€œfix an origin” so that the metric can be identified with a left-invariant metric on G2G_{2}. Any choice of such an origin for 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) leads to isometric metrics on G2G_{2}, but a well-chosen origin can greatly simplify computations. We select the origin from among the so-called 84 standard zero divisors of π•Š\mathbb{S}. Then, using the results in [DZ79], we show that 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is a naturally reductive space. A similar approach applies to the study of 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) with the metric grg_{r}. Here, we select another standard zero divisor (different from the previous one) so that the isotropy subgroup of G2G_{2} acts trivially on the usual subalgebra β„βŠ‚π•Š\mathbb{H}\subset\mathbb{S}. This choice allows the metric grg_{r} to be expressed in diagonal form with respect to the normal homogeneous metric, making it possible to derive a nice expression for the Ricci tensor of grg_{r}.

The most challenging part is to determine the sign of the sectional curvatures of grg_{r}. Since there is no manageable expression for the curvature (as there is for naturally reductive spaces), using algebraic manipulation proves to be nearly impossible. Indeed, the sectional curvature function FrF_{r} of grg_{r} can be interpreted as a homogeneous polynomial of degree 44 in 2222 real variables, which, for a generic rr, has 285 non-trivial coefficients. To show that FrF_{r} is non-negative for 0<r≀490<r\leq\frac{4}{9}, we reduce the problem to proving that both F0F_{0} (the formal extension of FrF_{r} at r=0r=0) and F49F_{\frac{4}{9}} are non-negative. By using convex optimization techniques, we are able to prove the stronger result that F0F_{0} and F49F_{\frac{4}{9}} are polynomial sums of squares.

Finally we want to mention that the computations required in the proof of some of our results are often cumbersome and were computer checked using the software SageMath. The code used to verify our results is available at [Reg24].

We believe this work shows that the study of the geometry of Cayley-Dickson algebras, particularly regarding their zero divisors, deserves further attention, as it may have interesting implications in differential geometry of compact homogeneous spaces.

Acknowledgements

This work is supported by CONICET and partially supported by SeCyT-UNR and ANPCyT. The author would like to thank Andreas Arvanitoyeorgos for helpful discussions on homogeneous Einstein metrics on Stiefel manifolds.

2. Preliminaries and notation

The main references for this section are [Mor98, BDI08] on Cayley-Dickson algebras and their zero divisors, [Arv03] on the geometry of homogeneous spaces and [DZ79] on naturally reductive left-invariant metrics on compact Lie groups. Observe that in this section, as well as throughout the rest of the article, we start counting indices from 0.

2.1. Cayley-Dickson algebras

The Cayley-Dickson algebras 𝔸n\mathbb{A}_{n} are a family of real algebras, equipped with an involution a↦aβˆ—a\mapsto a^{*} (also called conjugation), which are recursively defined starting from 𝔸0=ℝ\mathbb{A}_{0}=\mathbb{R}, where aβˆ—=aa^{*}=a. Each subsequent algebra is defined by setting 𝔸n=𝔸nβˆ’1×𝔸nβˆ’1\mathbb{A}_{n}=\mathbb{A}_{n-1}\times\mathbb{A}_{n-1} as a vector space, with multiplication given by

(a,b)​(c,d)=(a​cβˆ’dβˆ—β€‹b,d​a+b​cβˆ—)(a,b)(c,d)=(ac-d^{*}b,da+bc^{*})

and involution defined by

(a,b)βˆ—=(aβˆ—,βˆ’b).(a,b)^{*}=(a^{*},-b).

Notice that the inclusion a↦(a,0)a\mapsto(a,0) is a monomorphism of algebras from 𝔸nβˆ’1\mathbb{A}_{n-1} into 𝔸n\mathbb{A}_{n} for all nβ‰₯0n\geq 0. It is well known that the first four algebras in the Cayley-Dickson construction are the real division algebras ℝ\mathbb{R}, β„‚\mathbb{C}, ℍ\mathbb{H} and 𝕆\mathbb{O}, respectively. It is also known that the Cayley-Dickson algebras lose some important properties with each iteration. For example, 𝔸n\mathbb{A}_{n} is commutative if and only if n≀1n\leq 1, associative if and only if n≀2n\leq 2; alterative (i.e., x​(x​y)=(x​x)​yx(xy)=(xx)y and (x​y)​y=x​(y​y)(xy)y=x(yy) for all x,yβˆˆπ”Έnx,y\in\mathbb{A}_{n}) if and only of n≀3n\leq 3. On the other hand, every Cayley-Dickson algebra is flexible (i.e., x​(y​x)=(x​y)​xx(yx)=(xy)x for all x,yβˆˆπ”Έnx,y\in\mathbb{A}_{n}) and power associative (i.e., xkx^{k} is well defined for all xβˆˆπ”Έnx\in\mathbb{A}_{n} and kβˆˆβ„•k\in\mathbb{N}).

For xβˆˆπ”Έnx\in\mathbb{A}_{n} we define its real and imaginary parts as Re⁑x=12​(x+xβˆ—)\operatorname{Re}x=\frac{1}{2}(x+x^{*}) and Im⁑x=12​(xβˆ’xβˆ—)\operatorname{Im}x=\frac{1}{2}(x-x^{*}), respectively. We say that xx is real (resp.Β imaginary) if Im⁑x=0\operatorname{Im}x=0 (resp.Β Re⁑x=0\operatorname{Re}x=0). Thus, one can recover the usual inner product on 𝔸n≃ℝ2n\mathbb{A}_{n}\simeq\mathbb{R}^{2^{n}} by

⟨x,y⟩=Re⁑(x​yβˆ—).\langle x,y\rangle=\operatorname{Re}(xy^{*}).

In 𝔸n\mathbb{A}_{n}, one has that β€–xβ€–2=x​xβˆ—\|x\|^{2}=xx^{*} for all xx. However, the identity β€–x​yβ€–=β€–x‖​‖yβ€–\|xy\|=\|x\|\|y\| does not hold in general if nβ‰₯4n\geq 4. Recall that 𝔸n\mathbb{A}_{n} is a division algebra if and only n≀3n\leq 3. If nβ‰₯4n\geq 4, then 𝔸n\mathbb{A}_{n} has zero divisors. Since, x​y=0xy=0 implies y​x=0yx=0, the left and right zero divisors of 𝔸n\mathbb{A}_{n} coincide. Thus, an element 0β‰ uβˆˆπ”Έn0\neq u\in\mathbb{A}_{n} is a zero divisor if and only if ann⁑uβ‰ 0\operatorname{ann}u\neq 0, where ann⁑u\operatorname{ann}u is the kernel of the ℝ\mathbb{R}-linear map Lu:𝔸n→𝔸nL_{u}:\mathbb{A}_{n}\to\mathbb{A}_{n} given by Lu​(x)=u​xL_{u}(x)=ux. In [Mor98], it is proven that a zero divisor uu must be imaginary and dim(ann⁑u)≑0mod4\dim(\operatorname{ann}u)\equiv 0\mod 4. Furthermore, in [BDI08] it is proven that dimann⁑u≀2nβˆ’4​n+4\dim\operatorname{ann}u\leq 2^{n}-4n+4. One can study the zero divisors globally by defining the sets

𝒡​(𝔸n)\displaystyle\mathcal{Z}(\mathbb{A}_{n}) ={(u,v)βˆˆπ”Έn×𝔸n:β€–uβ€–=β€–vβ€–=2​ and ​u​v=0},\displaystyle=\{(u,v)\in\mathbb{A}_{n}\times\mathbb{A}_{n}:\|u\|=\|v\|=\sqrt{2}\text{ and }uv=0\},
𝑍𝐷⁑(𝔸n)\displaystyle\operatorname{\mathit{ZD}}(\mathbb{A}_{n}) ={uβˆˆπ”Έn:(u,v)βˆˆπ’΅β€‹(𝔸n)​ for some ​vβˆˆπ”Έn}.\displaystyle=\{u\in\mathbb{A}_{n}:(u,v)\in\mathcal{Z}(\mathbb{A}_{n})\text{ for some }v\in\mathbb{A}_{n}\}.

Normalizing the zero divisors to 2\sqrt{2} is not particularly important, but it will be convenient later. When nβ‰₯5n\geq 5, the sets 𝑍𝐷k⁑(𝔸n)={uβˆˆπ‘π·β‘(𝔸n):dim(ann⁑u)=k}\operatorname{\mathit{ZD}}_{k}(\mathbb{A}_{n})=\{u\in\operatorname{\mathit{ZD}}(\mathbb{A}_{n}):\dim(\operatorname{ann}u)=k\} are also of interest.

For nβ‰₯4n\geq 4, one has that the automorphism group of 𝔸n\mathbb{A}_{n} is given by

Aut⁑(𝔸n)≃Aut⁑(𝔸nβˆ’1)Γ—S3≃G2Γ—(S3)nβˆ’3,\operatorname{Aut}(\mathbb{A}_{n})\simeq\operatorname{Aut}(\mathbb{A}_{n-1})\times S_{3}\simeq G_{2}\times(S_{3})^{n-3},

where S3S_{3} is the symmetric group in three elements, and G2=Aut⁑(𝕆)G_{2}=\operatorname{Aut}(\mathbb{O}) is the 1414-dimensional compact simple Lie group of rank 22. Recall that G2G_{2} acts diagonally on 𝔸n\mathbb{A}_{n}. It follows that Der⁑(𝔸n)=𝔀2\operatorname{Der}(\mathbb{A}_{n})=\mathfrak{g}_{2} for all nβ‰₯4n\geq 4, where 𝔀2\mathfrak{g}_{2} is the Lie algebra of G2G_{2}.

2.2. Sedenion zero divisors

From now on we denote the sedenion algebra 𝔸4\mathbb{A}_{4} by π•Š\mathbb{S}. Let us denote by e0,…,e15e_{0},\ldots,e_{15} the canonical basis of π•Š\mathbb{S}. By making an abuse of notation, we also denote by e0,…,e3e_{0},\ldots,e_{3} and e0,…,e7e_{0},\ldots,e_{7} the canonical basis of ℍ\mathbb{H} and 𝕆\mathbb{O} respectively. The zero divisors of π•Š\mathbb{S} have the following form.

Proposition 2.1 (See [BDI08]).

An element (a,b)βˆˆπ•Š(a,b)\in\mathbb{S} is a zero divisor if and only if a,ba,b are imaginary elements of 𝕆\mathbb{O} such that β€–aβ€–=β€–bβ€–β‰ 0\|a\|=\|b\|\neq 0 and aβŸ‚ba\perp b.

From this result, one can construct the 8484 standard zero divisors of π•Š\mathbb{S}. Namely, the elements of the form (ei+ej,ekΒ±el)βˆˆπ’΅β€‹(π•Š)(e_{i}+e_{j},e_{k}\pm e_{l})\in\mathcal{Z}(\mathbb{S}) such that 1≀i≀61\leq i\leq 6, 9≀j≀159\leq j\leq 15, i<k≀7i<k\leq 7 and 9≀l≀159\leq l\leq 15 (see Table 1). Clearly, every automorphism of π•Š\mathbb{S} maps 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) into itself. Moreover, we have that the connected component of Aut⁑(π•Š)\operatorname{Aut}(\mathbb{S}) acts simply and transitively on 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}):

Theorem 2.2 ([Mor98]).

𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is homeomorphic (and moreover, diffeomorphic) to G2G_{2}.

Given (u0,v0)βˆˆπ’΅β€‹(π•Š)(u_{0},v_{0})\in\mathcal{Z}(\mathbb{S}), we have that G2β‹…u0=𝑍𝐷⁑(π•Š)G_{2}\cdot u_{0}=\operatorname{\mathit{ZD}}(\mathbb{S}). It is not difficult to see that the isotropy subgroup at u0u_{0} is isomorphic to SU⁑(2)\operatorname{SU}(2). Note that G2/SU⁑(2)G_{2}/{\operatorname{SU}(2)} is diffeomorphic to the Stiefel manifold V2​(ℝ7)V_{2}(\mathbb{R}^{7}). In fact, every automorphism of 𝕆\mathbb{O} is completely determined by its values a,b,ca,b,c at e1,e2,e4e_{1},e_{2},e_{4} respectively. Here (a,b,c)(a,b,c) can be any triple of pairwise orthonormal imaginary octonions of norm 1 such that a​bβŸ‚cab\perp c. Hence the map (a,b,c)↦(a,b)(a,b,c)\mapsto(a,b) identifies with a transitive action of G2G_{2} in V2​(ℝ7)V_{2}(\mathbb{R}^{7}), whose isotropy subgroup at (e1,e2)(e_{1},e_{2}) are the octonion automorphism that act trivially on ℍ\mathbb{H}, and therefore are isomorphic to SU⁑(2)\operatorname{SU}(2). Thus, the topology of the sedenion zero divisors is encoded by the principal bundle

SU⁑(2)β†’G2β†’V2​(ℝ7).\operatorname{SU}(2)\to G_{2}\to V_{2}(\mathbb{R}^{7}).

2.3. The Lie algebra of G2G_{2}

We think of the Lie group G2=Aut⁑(𝕆)G_{2}=\operatorname{Aut}(\mathbb{O}) as a subgroup of SO⁑(8)\operatorname{SO}(8) in the natural way (since every automorphism of 𝕆\mathbb{O} fixes e0e_{0}, we have that G2G_{2} is actually a subgroup of SO⁑(7)\operatorname{SO}(7), but we do not use this identification here). So, we have 𝔀2\mathfrak{g}_{2} as a subalgebra of 𝔰​𝔬​(8)\mathfrak{so}(8). Let us consider the bi-invariant metric gbig_{\mathrm{bi}} induced by the inner product on 𝔀2\mathfrak{g}_{2}, which we denote with the same symbol, given by

gbi​(X,Y)=βˆ’tr⁑(X​Y).g_{\mathrm{bi}}(X,Y)=-\operatorname{tr}(XY).

Let us denote by Ei​jβˆˆπ”°β€‹π”¬β€‹(8)E_{ij}\in\mathfrak{so}(8), where 0≀i<j≀70\leq i<j\leq 7, the matrix such that (Ei​j)i​j=βˆ’(Ei​j)j​i=βˆ’1(E_{ij})_{ij}=-(E_{ij})_{ji}=-1 and (Ei​j)k​l=0(E_{ij})_{kl}=0 in any other case. We define

X0\displaystyle X_{0} =12​(E45+E67),\displaystyle=\tfrac{1}{2}(E_{45}+E_{67}), X7\displaystyle X_{7} =12​(E16+E25),\displaystyle=\tfrac{1}{2}(E_{16}+E_{25}),
X1\displaystyle X_{1} =12​(E46βˆ’E57),\displaystyle=\tfrac{1}{2}(E_{46}-E_{57}), X8\displaystyle X_{8} =βˆ’12​(E15βˆ’E26),\displaystyle=-\tfrac{1}{2}(E_{15}-E_{26}),
X2\displaystyle X_{2} =12​(E47+E56),\displaystyle=\tfrac{1}{2}(E_{47}+E_{56}), X9\displaystyle X_{9} =12​(E14+E27),\displaystyle=\tfrac{1}{2}(E_{14}+E_{27}),
X3\displaystyle X_{3} =βˆ’36​(2​E23βˆ’E45+E67),\displaystyle=-\tfrac{\sqrt{3}}{6}(2E_{23}-E_{45}+E_{67}), X10\displaystyle X_{10} =36​(E16βˆ’E25+2​E34),\displaystyle=\tfrac{\sqrt{3}}{6}(E_{16}-E_{25}+2E_{34}),
X4\displaystyle X_{4} =36​(2​E13+E46+E57),\displaystyle=\tfrac{\sqrt{3}}{6}(2E_{13}+E_{46}+E_{57}), X11\displaystyle X_{11} =36​(E17+E24+2​E35),\displaystyle=\tfrac{\sqrt{3}}{6}(E_{17}+E_{24}+2E_{35}),
X5\displaystyle X_{5} =βˆ’36​(2​E12βˆ’E47+E56),\displaystyle=-\tfrac{\sqrt{3}}{6}(2E_{12}-E_{47}+E_{56}), X12\displaystyle X_{12} =βˆ’36​(E14βˆ’E27βˆ’2​E36),\displaystyle=-\tfrac{\sqrt{3}}{6}(E_{14}-E_{27}-2E_{36}),
X6\displaystyle X_{6} =βˆ’12​(E17βˆ’E24),\displaystyle=-\tfrac{1}{2}(E_{17}-E_{24}), X13\displaystyle X_{13} =βˆ’36​(E15+E26βˆ’2​E37).\displaystyle=-\tfrac{\sqrt{3}}{6}(E_{15}+E_{26}-2E_{37}).

One can see that X0,…,X13X_{0},\ldots,X_{13} is an orthonormal basis of 𝔀2\mathfrak{g}_{2} with respect to the bi-invariant metric. We will denote by X0,…,X13X^{0},\ldots,X^{13} its dual basis. Define

𝔨0=⨁i=02ℝ​Xi,\displaystyle\mathfrak{k}_{0}=\bigoplus_{i=0}^{2}\mathbb{R}X_{i}, π”ͺ0=⨁i=35ℝ​Xi,\displaystyle\mathfrak{m}_{0}=\bigoplus_{i=3}^{5}\mathbb{R}X_{i}, π”ͺ1=⨁i=69ℝ​Xi,\displaystyle\mathfrak{m}_{1}=\bigoplus_{i=6}^{9}\mathbb{R}X_{i}, π”ͺ2=⨁i=1013ℝ​Xi.\displaystyle\mathfrak{m}_{2}=\bigoplus_{i=10}^{13}\mathbb{R}X_{i}.

We have that 𝔨0\mathfrak{k}_{0} and π”ͺ0\mathfrak{m}_{0} are two subalgebras of 𝔀2\mathfrak{g}_{2} isomorphic to 𝔰​𝔬​(3)\mathfrak{so}(3) such that [𝔨0,π”ͺ0]=0[\mathfrak{k}_{0},\mathfrak{m}_{0}]=0. Moreover, 𝔨0βŠ•π”ͺ0≃𝔰​𝔬​(4)\mathfrak{k}_{0}\oplus\mathfrak{m}_{0}\simeq\mathfrak{so}(4) is the subalgebra of a maximal subgroup of G2G_{2} isomorphic to SO⁑(4)\operatorname{SO}(4) (cfr.Β [BLS20]). Such subgroup preserves the orthogonal decomposition 𝕆=β„βŠ•β„βŠ₯\mathbb{O}=\mathbb{H}\oplus\mathbb{H}^{\bot}. Furthermore, the subgroup of G2G_{2} with Lie algebra 𝔨0\mathfrak{k}_{0} is isomorphic to SU⁑(2)\operatorname{SU}(2) and acts trivially on ℍ\mathbb{H}. Recall that G2/SO⁑(4)G_{2}/{\operatorname{SO}(4)}, with the normal homogeneous metric, is the symmetric space of quaternion subalgebras of 𝕆\mathbb{O}.

2.4. Homogeneous and naturally reductive spaces

Let GG be a Lie group and HH be a compact subgroup of GG. Let us denote by 𝔀\mathfrak{g} and π”₯\mathfrak{h} the Lie algebras of GG and HH, respectively. Assume that GG acts almost effectively on M=G/HM=G/H and that MM is endowed with a GG-invariant metric gg. Recall that every Xβˆˆπ”€X\in\mathfrak{g} induces a Killing vector field Xβˆ—X^{*} on MM defined as Xqβˆ—=dd​t|0​Exp⁑(t​X)β‹…qX^{*}_{q}=\frac{d}{dt}\big{|}_{0}\operatorname{Exp}(tX)\cdot q. The map X↦Xβˆ—X\mapsto X^{*} from 𝔀\mathfrak{g} into 𝔛​(M)\mathfrak{X}(M) satisfies

[X,Y]βˆ—=βˆ’[Xβˆ—,Yβˆ—].[X,Y]^{*}=-[X^{*},Y^{*}].

Let us fix a reductive decomposition 𝔀=π”₯βŠ•π”ͺ\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m} (i.e., π”ͺ\mathfrak{m} is an Ad⁑(H)\operatorname{Ad}(H)-invariant subspace of 𝔀\mathfrak{g} complementary to π”₯\mathfrak{h}), which always exists since HH is compact. Assume that HH is the isotropy subgroup of p∈Mp\in M. Then we can identify π”ͺ≃Tp​M\mathfrak{m}\simeq T_{p}M. The geometry of MM is determined by an Ad⁑(H)\operatorname{Ad}(H)-invariant inner product on π”ͺ\mathfrak{m}, which we also denote by gg, defined such that the map X∈π”ͺ↦Xpβˆ—βˆˆTp​MX\in\mathfrak{m}\mapsto X^{*}_{p}\in T_{p}M is a linear isometry. With this setting, we can compute the Levi-Civita connection of MM as

(βˆ‡Xβˆ—Yβˆ—)p=βˆ’12​[X,Y]π”ͺ+U​(X,Y),X,Y∈π”ͺ,(\nabla_{X^{*}}Y^{*})_{p}=-\frac{1}{2}[X,Y]_{\mathfrak{m}}+U(X,Y),\qquad X,Y\in\mathfrak{m}, (2.1)

where UU is the algebraic tensor on π”ͺ\mathfrak{m} given by

2​g​(U​(X,Y),Z)=g​([Z,X]π”ͺ,Y)+g​(X,[Z,Y]π”ͺ),X,Y,Z∈π”ͺ.2g(U(X,Y),Z)=g([Z,X]_{\mathfrak{m}},Y)+g(X,[Z,Y]_{\mathfrak{m}}),\qquad X,Y,Z\in\mathfrak{m}.

Let RX,Y=βˆ‡[X,Y]βˆ’[βˆ‡X,βˆ‡Y]R_{X,Y}=\nabla_{[X,Y]}-[\nabla_{X},\nabla_{Y}] be the curvature tensor of MM. The sectional curvature of MM is determined by

g​(RX,Y​X,Y)=\displaystyle g(R_{X,Y}X,Y)= βˆ’34​‖[X,Y]π”ͺβ€–2βˆ’12​g​([X,[X,Y]π”ͺ]π”ͺ,Y)βˆ’12​g​([Y,[Y,X]π”ͺ]π”ͺ,X)\displaystyle-\frac{3}{4}\|[X,Y]_{\mathfrak{m}}\|^{2}-\frac{1}{2}g([X,[X,Y]_{\mathfrak{m}}]_{\mathfrak{m}},Y)-\frac{1}{2}g([Y,[Y,X]_{\mathfrak{m}}]_{\mathfrak{m}},X)
+β€–U​(X,Y)β€–2βˆ’g​(U​(X,X),U​(Y,Y))+g​(Y,[[X,Y]π”₯,X]π”ͺ)\displaystyle+\|U(X,Y)\|^{2}-g(U(X,X),U(Y,Y))+g(Y,[[X,Y]_{\mathfrak{h}},X]_{\mathfrak{m}})

for X,Y∈π”ͺX,Y\in\mathfrak{m}. Also, the Ricci tensor of MM is determined by

Ric⁑(X,X)=\displaystyle\operatorname{Ric}(X,X)= βˆ’12β€‹βˆ‘i{β€–[X,Xi]π”ͺβ€–2+g​([X,[X,Xi]π”ͺ]π”ͺ,Xi)+2​g​([X,[X,Xi]π”₯]π”ͺ,Xi)}\displaystyle-\frac{1}{2}\sum_{i}\{\|[X,X_{i}]_{\mathfrak{m}}\|^{2}+g([X,[X,X_{i}]_{\mathfrak{m}}]_{\mathfrak{m}},X_{i})+2g([X,[X,X_{i}]_{\mathfrak{h}}]_{\mathfrak{m}},X_{i})\}
+14β€‹βˆ‘i,jg​([Xi,Xj]π”ͺ,X)2βˆ’g​([Z,X]π”ͺ,X),\displaystyle+\frac{1}{4}\sum_{i,j}g([X_{i},X_{j}]_{\mathfrak{m}},X)^{2}-g([Z,X]_{\mathfrak{m}},X), (2.2)

for X∈π”ͺX\in\mathfrak{m}, where {Xi}\{X_{i}\} is an orthonormal basis of π”ͺ\mathfrak{m} and Z=βˆ‘iU​(Xi,Xi)Z=\sum_{i}U(X_{i},X_{i}).

Recall that the metric gg on M=G/HM=G/H is naturally reductive if and only if U≑0U\equiv 0. An interesting particular case is when a left-invariant metric on a Lie group is naturally reductive (with respect to a certain transitive Lie group of isometries).

Theorem 2.3 ([DZ79]).

Let GG be a compact, simple Lie group group endowed with a left-invariant metric gg. Let 𝔀\mathfrak{g} denote the Lie algebra of GG and let gbig_{\mathrm{bi}} be a bi-invariant metric on GG (which is a negative multiple of the Killing form of 𝔀\mathfrak{g}). The metric gg is naturally reductive if and only if there exists a subalgebra 𝔨\mathfrak{k} of 𝔀\mathfrak{g} such that

g=g𝔨0βŠ•Ξ±1​gbi|𝔨1βŠ•β‹―βŠ•Ξ±r​gbi|𝔨rβŠ•Ξ±β€‹gbi|𝔨βŠ₯g=g_{\mathfrak{k}_{0}}\oplus\alpha_{1}\,g_{\mathrm{bi}}|_{\mathfrak{k}_{1}}\oplus\cdots\oplus\alpha_{r}\,g_{\mathrm{bi}}|_{\mathfrak{k}_{r}}\oplus\alpha\,g_{\mathrm{bi}}|_{\mathfrak{k}^{\bot}}

where 𝔨=𝔨0βŠ•π”¨1βŠ•β‹―βŠ•π”¨r\mathfrak{k}=\mathfrak{k}_{0}\oplus\mathfrak{k}_{1}\oplus\cdots\oplus\mathfrak{k}_{r}, with 𝔨0\mathfrak{k}_{0} the center of 𝔨\mathfrak{k} and 𝔨1,…,𝔨r\mathfrak{k}_{1},\ldots,\mathfrak{k}_{r} are simple ideals. Here, 𝔨βŠ₯\mathfrak{k}^{\bot} is the orthogonal complement of 𝔨\mathfrak{k} with respect to the bi-invariant metric, g𝔨0g_{\mathfrak{k}_{0}} is an arbitrary inner product on 𝔨0\mathfrak{k}_{0}, and Ξ±1,…,Ξ±r,Ξ±\alpha_{1},\ldots,\alpha_{r},\alpha are positive real numbers.

3. The G2G_{2}-invariant metrics on 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) and 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S})

Consider 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) as a submanifold of π•ŠΓ—π•Šβ‰ƒβ„32\mathbb{S}\times\mathbb{S}\simeq\mathbb{R}^{32} with the induced metric. Although this reduction is not necessary here, one could lower the codimension of 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}). In fact, by PropositionΒ 2.1, 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is a submanifold of S6Γ—S6Γ—S6Γ—S6S^{6}\times S^{6}\times S^{6}\times S^{6}. Since G2=Aut⁑(𝕆)βŠ‚Aut⁑(π•Š)G_{2}=\operatorname{Aut}(\mathbb{O})\subset\operatorname{Aut}(\mathbb{S}) acts isometrically on π•ŠΓ—π•Š\mathbb{S}\times\mathbb{S}, we have that 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is a homogeneous submanifold. Furthermore, by TheoremΒ 2.2, the diffeomorphism 𝒡​(π•Š)≃G2\mathcal{Z}(\mathbb{S})\simeq G_{2} induces a left-invariant metric gg on G2G_{2}.

Theorem 3.1.

The metric on 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is naturally reductive. Furthermore, 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is the total space of a Riemannian submersion over the excepcional symmetric space G2/SO⁑(4)G_{2}/{\operatorname{SO}(4)} with totally geodesic fibers, which are locally isometric to a product of two round 33-spheres with different radii.

Proof.

It is sufficient to prove the theorem for the left-invariant metric on G2G_{2} defined in the paragraph preceding the statement. To determine such a metric, one fixes an element (u0,v0)βˆˆπ’΅β€‹(π•Š)(u_{0},v_{0})\in\mathcal{Z}(\mathbb{S}) and computes

g​(Xi,Xj)=(Xiβ‹…(u0,v0))T​(Xjβ‹…(u0,v0)).g(X_{i},X_{j})=(X_{i}\cdot(u_{0},v_{0}))^{T}(X_{j}\cdot(u_{0},v_{0})). (3.1)

Note that not every zero divisor pair behaves nicely with respect to the decomposition 𝔀2=𝔨0βŠ•π”ͺ0βŠ•π”ͺ1βŠ•π”ͺ2\mathfrak{g}_{2}=\mathfrak{k}_{0}\oplus\mathfrak{m}_{0}\oplus\mathfrak{m}_{1}\oplus\mathfrak{m}_{2} given in Subsection 2.3. By running (3.1) over the standard zero divisors from Table 1, we observe that if (u0,v0)=(e4+e13,e6+e15)(u_{0},v_{0})=(e_{4}+e_{13},e_{6}+e_{15}) the metric can be expressed as

g\displaystyle g =βˆ‘i=02XiβŠ—Xi+13β€‹βˆ‘i=35XiβŠ—Xi+12β€‹βˆ‘i=613XiβŠ—Xi=gbi|𝔨0βŠ•13​gbi|π”ͺ0βŠ•12​gbi|π”ͺ1βŠ•π”ͺ2.\displaystyle=\sum_{i=0}^{2}X^{i}\otimes X^{i}+\frac{1}{3}\sum_{i=3}^{5}X^{i}\otimes X^{i}+\frac{1}{2}\sum_{i=6}^{13}X^{i}\otimes X^{i}=g_{\mathrm{bi}}|_{\mathfrak{k}_{0}}\oplus\frac{1}{3}\,g_{\mathrm{bi}}|_{\mathfrak{m}_{0}}\oplus\frac{1}{2}\,g_{\mathrm{bi}}|_{\mathfrak{m}_{1}\oplus\mathfrak{m}_{2}}.

From Theorem 2.3, it follows that this metric is naturally reductive. More precisely, this metric is naturally reductive with respect to G2Γ—SO⁑(4)G_{2}\times\operatorname{SO}(4), where the second factor acts on the right and the isotropy subgroup is given by diag⁑(SO⁑(4)Γ—SO⁑(4))\operatorname{diag}(\operatorname{SO}(4)\times\operatorname{SO}(4)). Thus, from [DZ79, Theorem 8], the subgroup SO⁑(4)βŠ‚G2\operatorname{SO}(4)\subset G_{2}, whose Lie algebra is given by 𝔨0βŠ•π”ͺ0\mathfrak{k}_{0}\oplus\mathfrak{m}_{0}, is totally geodesic.

Since g|π”ͺ1βŠ•π”ͺ2g|_{\mathfrak{m}_{1}\oplus\mathfrak{m}_{2}} is a multiple of the bi-invariant metric, when restricted to π”ͺ1βŠ•π”ͺ2\mathfrak{m}_{1}\oplus\mathfrak{m}_{2}, and 𝔨0βŠ•π”ͺ0≃𝔰​𝔬​(4)\mathfrak{k}_{0}\oplus\mathfrak{m}_{0}\simeq\mathfrak{so}(4) is orthogonal to π”ͺ1βŠ•π”ͺ2\mathfrak{m}_{1}\oplus\mathfrak{m}_{2} with respect to both metrics, we conclude that (G2,g)β†’G2/SO⁑(4)(G_{2},g)\to G_{2}/{\operatorname{SO}(4)} is a Riemannian submersion. The fiber of this submersion is isometric to the Lie group SO⁑(4)\operatorname{SO}(4) endowed with the bi-invariant metric g|𝔨0βŠ•π”ͺ0g|_{\mathfrak{k}_{0}\oplus\mathfrak{m}_{0}}, which is obtained by taking two different scalings of the bi-invariant metric on the simple ideals 𝔰​𝔬​(3)≃𝔨0≃π”ͺ0\mathfrak{so}(3)\simeq\mathfrak{k}_{0}\simeq\mathfrak{m}_{0} of 𝔰​𝔬​(4)\mathfrak{so}(4). Hence, the universal cover of SO⁑(4)\operatorname{SO}(4) splits into a product of two round spheres with different radii. ∎

Remark 3.2.

Since the metric in 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is naturally reductive, many geometric properties follow from existing results. For example, the (connected component of the) full isometry group is computed in [DZ79] (see also [OR13]). The so-called index of symmetry of 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}), which in this case is trivial, can be computed from the results in [ORT14]. It can also be seen from [DZ79] that the metric on 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) is not Einstein. We verify this fact again in the next proposition by explicitly computing the Ricci tensor, which also allows us to show that the Ricci curvature is positive.

Proposition 3.3.

𝒡​(π•Š)\mathcal{Z}(\mathbb{S}) has positive Ricci curvature. Moreover,

Ric=52β€‹βˆ‘i=02XiβŠ—Xi+2954β€‹βˆ‘i=35XiβŠ—Xi+56β€‹βˆ‘i=613XiβŠ—Xi.\operatorname{Ric}=\frac{5}{2}\sum_{i=0}^{2}X^{i}\otimes X^{i}+\frac{29}{54}\sum_{i=3}^{5}X^{i}\otimes X^{i}+\frac{5}{6}\sum_{i=6}^{13}X^{i}\otimes X^{i}. (3.2)
Proof.

It follows from a straightforward computation using the following well-known formula. Let Y0,…,Y13Y_{0},\ldots,Y_{13} be an gg-orthonormal basis of 𝔀2\mathfrak{g}_{2}. Then

Ric⁑(Yj,Yh)=12β€‹βˆ‘i,k{ci​k​i​(ck​j​h+ck​h​j)+12​ci​k​h​ci​k​jβˆ’ci​j​k​ck​h​i+ci​k​i​cj​h​kβˆ’ci​j​k​ci​h​k}\operatorname{Ric}(Y_{j},Y_{h})=\frac{1}{2}\sum_{i,k}\left\{c_{iki}(c_{kjh}+c_{khj})+\frac{1}{2}c_{ikh}c_{ikj}-c_{ijk}c_{khi}+c_{iki}c_{jhk}-c_{ijk}c_{ihk}\right\}

where ci​j​k=g​([Yi,Yj],Yk)c_{ijk}=g([Y_{i},Y_{j}],Y_{k}). Since gg has diagonal form in the basis X0,…,X13X_{0},\ldots,X_{13}, we can choose Yi=g​(Xi,Xi)βˆ’12​XiY_{i}=g(X_{i},X_{i})^{-\frac{1}{2}}X_{i}. From this, we can show that

Ric=52β€‹βˆ‘i=02YiβŠ—Yi+2918β€‹βˆ‘i=35YiβŠ—Yi+53β€‹βˆ‘i=613YiβŠ—Yi,\operatorname{Ric}=\frac{5}{2}\sum_{i=0}^{2}Y^{i}\otimes Y^{i}+\frac{29}{18}\sum_{i=3}^{5}Y^{i}\otimes Y^{i}+\frac{5}{3}\sum_{i=6}^{13}Y^{i}\otimes Y^{i},

which is equivalent to (3.2). ∎

Now we direct our attention to the geometry of 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) with the metric induced from the ambient space π•Šβ‰ƒβ„16\mathbb{S}\simeq\mathbb{R}^{16}. Since G2G_{2} acts isometrically and transitively on 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}), we have that 𝑍𝐷⁑(π•Š)\operatorname{\mathit{ZD}}(\mathbb{S}) is isometric to the Stiefel manifold G2β‹…u0=G2/SU⁑(2)=V2​(ℝ7)G_{2}\cdot u_{0}=G_{2}/{\operatorname{SU}(2)}=V_{2}(\mathbb{R}^{7}), equipped with a certain G2G_{2}-invariant metric, where SU⁑(2)\operatorname{SU}(2) is the isotropy subgroup of u0βˆˆπ‘π·β‘(π•Š)u_{0}\in\operatorname{\mathit{ZD}}(\mathbb{S}). We again denote by gg such a metric, which is defined by

g​(Xi,Xj)=(Xiβ‹…u0)T​(Xjβ‹…u0).g(X_{i},X_{j})=(X_{i}\cdot u_{0})^{T}(X_{j}\cdot u_{0}).

Similarly to the case of 𝒡​(π•Š)\mathcal{Z}(\mathbb{S}), we can choose u0u_{0} appropriately so that the Lie algebra of SU⁑(2)\operatorname{SU}(2) is 𝔨0\mathfrak{k}_{0}. Taking u0=e1+e10u_{0}=e_{1}+e_{10}, we obtain that

𝔀2=𝔨0βŠ•π”ͺ,where ​π”ͺ=π”ͺ0βŠ•π”ͺ1βŠ•π”ͺ2,\mathfrak{g}_{2}=\mathfrak{k}_{0}\oplus\mathfrak{m},\qquad\text{where }\mathfrak{m}=\mathfrak{m}_{0}\oplus\mathfrak{m}_{1}\oplus\mathfrak{m}_{2},

is a reductive decomposition for G2/SU⁑(2)G_{2}/{\operatorname{SU}(2)}. The corresponding Ad⁑(SU⁑(2))\operatorname{Ad}(\operatorname{SU}(2))-invariant inner product on π”ͺ\mathfrak{m} is given by

g\displaystyle g =13​(X3βŠ—X3+X4βŠ—X4)+23​X5βŠ—X5+12β€‹βˆ‘i=69XiβŠ—Xi+16β€‹βˆ‘i=1013XiβŠ—Xi.\displaystyle=\frac{1}{3}(X^{3}\otimes X^{3}+X^{4}\otimes X^{4})+\frac{2}{3}X^{5}\otimes X^{5}+\frac{1}{2}\sum_{i=6}^{9}X^{i}\otimes X^{i}+\frac{1}{6}\sum_{i=10}^{13}X^{i}\otimes X^{i}.

A detailed study of the isometry group and the curvature of gg is given in the next section. Before proceeding, we note a simple fact about the sectional curvatures of gg.

Remark 3.4.

Let us denote by Ο€i​j\pi_{ij} the 22-dimensional subspace of π”ͺ\mathfrak{m} generated by XiX_{i} and XjX_{j}, where 3≀i<j≀133\leq i<j\leq 13. Then the sectional curvature of Ο€i​j\pi_{ij} is non-negative if and only if Ο€i​jβ‰ Ο€34\pi_{ij}\neq\pi_{34}. This suggests that one could attempt to modify the metric gg along the direction normal to Ο€34\pi_{34} inside π”ͺ1\mathfrak{m}_{1} in order to get some examples of metrics with non-negative sectional curvature. We explore this approach in the next section.

4. A family of G2G_{2}-invariant metrics on V2​(ℝ7)V_{2}(\mathbb{R}^{7})

For each r>0r>0, we consider on V2​(ℝ7)V_{2}(\mathbb{R}^{7}) the family of G2G_{2}-invariant metrics given by

gr=13​(X3βŠ—X3+X4βŠ—X4)+r​X5βŠ—X5+12β€‹βˆ‘i=69XiβŠ—Xi+16β€‹βˆ‘i=1013XiβŠ—Xi.g_{r}=\frac{1}{3}\,(X^{3}\otimes X^{3}+X^{4}\otimes X^{4})+r\,X^{5}\otimes X^{5}+\frac{1}{2}\sum_{i=6}^{9}X^{i}\otimes X^{i}+\frac{1}{6}\sum_{i=10}^{13}X^{i}\otimes X^{i}. (4.1)

Indeed, grg_{r} gives an Ad⁑(SU⁑(2))\operatorname{Ad}(\operatorname{SU}(2))-invariant inner product on π”ͺ\mathfrak{m} since π”ͺ0\mathfrak{m}_{0} is the subspace of fixed points of the isotropy representation of G2/SU⁑(2)G_{2}/{\operatorname{SU}(2)} and

gr|π”ͺ1=12​gbi|π”ͺ1,\displaystyle g_{r}|_{\mathfrak{m}_{1}}=\frac{1}{2}\,g_{\mathrm{bi}}|_{\mathfrak{m}_{1}}, gr|π”ͺ2=16​gbi|π”ͺ2.\displaystyle g_{r}|_{\mathfrak{m}_{2}}=\frac{1}{6}\,g_{\mathrm{bi}}|_{\mathfrak{m}_{2}}.

Next, we compute the connected component of the full isometry group of grg_{r}.

Theorem 4.1.

I0​(V2​(ℝ7),gr)≃G2Γ—S1I_{0}(V_{2}(\mathbb{R}^{7}),g_{r})\simeq G_{2}\times S^{1}.

Proof.

Since G2G_{2} is a compact simple Lie group, it follows from the results in [Oni92] that I0​(V2​(ℝ7),gr)βŠ‚I0​(V2​(ℝ7),gnh)I_{0}(V_{2}(\mathbb{R}^{7}),g_{r})\subset I_{0}(V_{2}(\mathbb{R}^{7}),g_{\mathrm{nh}}), where gnh=gbi|π”ͺg_{\mathrm{nh}}=g_{\mathrm{bi}}|_{\mathfrak{m}} is the normal homogeneous metric associated with the homogeneous presentation V2​(ℝ7)=G2/SU⁑(2)V_{2}(\mathbb{R}^{7})=G_{2}/{\operatorname{SU}(2)}. From [Reg10], we have that I0​(V2​(ℝ7),gnh)≃G2Γ—KI_{0}(V_{2}(\mathbb{R}^{7}),g_{\mathrm{nh}})\simeq G_{2}\times K (almost direct product) where the Lie algebra of KK is given by the G2G_{2}-invariant vector fields, which are identified with the fixed vectors of the isotropy representation. That is, the Lie algebra of KK is identified with π”ͺ0\mathfrak{m}_{0}, but the elements of K≃SU⁑(2)K\simeq\operatorname{SU}(2) act β€œon the right”. Then, it is not difficult to see that I0​(V2​(ℝ7))≃G2Γ—Kβ€²I_{0}(V_{2}(\mathbb{R}^{7}))\simeq G_{2}\times K^{\prime} (almost direct product) for a compact and connected subgroup Kβ€²K^{\prime} of KK, which in principle depends on rr. Since dimK=3\dim K=3, it is enough to see that Kβ€²β‰ KK^{\prime}\neq K and dimKβ€²β‰₯1\dim K^{\prime}\geq 1.

Now, for Y∈π”ͺ0Y\in\mathfrak{m}_{0}, let Y^\hat{Y} be the G2G_{2}-invariant vector field induced by YY. Using (2.1) and the fact that βˆ‡Xβˆ—Y^=βˆ‡Y^Xβˆ—\nabla_{X^{*}}\hat{Y}=\nabla_{\hat{Y}}X^{*} for all X∈π”ͺX\in\mathfrak{m}, one can see that Y^\hat{Y} is a Killing field for grg_{r} if and only if [Y,βˆ’]π”ͺ:π”ͺβ†’π”ͺ[Y,-]_{\mathfrak{m}}:\mathfrak{m}\to\mathfrak{m} is skew-symmetric with respect to grg_{r}. The 12\frac{1}{2}- and 16\frac{1}{6}-scalings of the metric on the irreducible subspaces π”ͺ1\mathfrak{m}_{1} and π”ͺ2\mathfrak{m}_{2} prevent X^3\hat{X}_{3} and X^4\hat{X}_{4} from being Killing fields for grg_{r}. However, one can check that X^5\hat{X}_{5} is a Killing field for grg_{r} for any r>0r>0. Thus Kβ€²=S1K^{\prime}=S^{1}, which implies I0​(V2​(ℝ7))=G2Γ—S1I_{0}(V_{2}(\mathbb{R}^{7}))=G_{2}\times S^{1} is actually a direct product. Observe that we have proved that the S1S^{1} factor is independent of rr. ∎

Now, we compute the Ricci and scalar curvature of grg_{r}. In particular, we obtain the following result.

Theorem 4.2.
  1. (1)

    The metric grg_{r} is Einstein if and only if r=59r=\frac{5}{9}.

  2. (2)

    The metric grg_{r} has positive scalar curvature if and only if r<203r<\frac{20}{3}.

Proof.

Let Y3,…,Y13Y_{3},\ldots,Y_{13} be the grg_{r}-orthonormal basis of π”ͺ\mathfrak{m} obtained from normalizing the basis X3,…,X13X_{3},\ldots,X_{13}. We can use formula (2.2) to explicitly compute the Ricci tensor Ricgr\operatorname{Ric}_{g_{r}} of grg_{r}. After lengthy computations, carefully verified using a computer (see [Reg24]), we obtain

Ricgr=15​r2​Y5βŠ—Y5+(βˆ’3​r2+5)β€‹βˆ‘iβ‰ 5YiβŠ—Yi.\operatorname{Ric}_{g_{r}}=\frac{15r}{2}\,Y^{5}\otimes Y^{5}+\left(-\frac{3r}{2}+5\right)\sum_{i\neq 5}Y^{i}\otimes Y^{i}. (4.2)

Hence, grg_{r} is Einstein if and only if r=59r=\frac{5}{9}. Also, from (4.2) we get that the scalar curvature scalgr=50βˆ’152​r\operatorname{scal}_{g_{r}}=50-\frac{15}{2}r is positive if and only if r<203r<\frac{20}{3}. ∎

Remark 4.3.

In [Jen73], the construction of remarkable examples of Einstein metrics on the base space of certain principal bundles can be found. Such metrics are now known as Jensen metrics. In particular, there exist G2G_{2}-invariant Einstein metrics on V2​(ℝ7)V_{2}(\mathbb{R}^{7}), arising from the principal bundle SU⁑(2)β†’G2β†’G2/SU⁑(2)\operatorname{SU}(2)\to G_{2}\to G_{2}/{\operatorname{SU}(2)}, which in our notation takes the form t2​gbi|π”ͺ0βŠ•gbi|π”ͺ1βŠ•π”ͺ2t^{2}\,g_{\mathrm{bi}}|_{\mathfrak{m}_{0}}\oplus g_{\mathrm{bi}}|_{\mathfrak{m}_{1}\oplus\mathfrak{m}_{2}} for certain values of t>0t>0. Notice that the metric g59g_{\frac{5}{9}} from TheoremΒ 4.2 is not a Jensen metric. Moreover, it is not even bi-invariant when restricted to π”ͺ0\mathfrak{m}_{0}.

Theorem 4.4.

The metric grg_{r} has non-negative sectional curvature if and only if r≀49r\leq\frac{4}{9}.

In order to prove our theorem, we will need the following result, which is a particular case of Theorem 1 in [PW98] (see also [CLR95]).

Lemma 4.5.

Let Fβˆˆβ„β€‹[x0,…,xn]F\in\mathbb{R}[x_{0},\ldots,x_{n}] be a homogeneous polynomial of degree 44. Then FF is a (polynomial) sum of squares if and only if there exists a symmetric positive semi-definite matrix HH such that

F=𝒙T​H​𝒙F=\boldsymbol{x}^{T}H\boldsymbol{x} (4.3)

where 𝐱=(x02,x0​x1,…,xnβˆ’1​xn,xn2)T\boldsymbol{x}=(x_{0}^{2},x_{0}x_{1},\ldots,x_{n-1}x_{n},x_{n}^{2})^{T} is the vector of monomials of degree 22.

Let us mention that the vector 𝒙\boldsymbol{x} has (n+2)​(n+1)2\frac{(n+2)(n+1)}{2} coordinates and the subspace of, not necessarily positive semi-definite, matrices HH satisfying (4.3) has dimension (n+2)​(n+1)2​n12\frac{(n+2)(n+1)^{2}n}{12}. Thus, finding an exact (positive semi-definite) solution HH for equation (4.3) can be quite difficult, even for relatively small values of nn.

Proof of Theorem 4.4.

It is not hard to see that if Ο€34=ℝ​X3βŠ•β„β€‹X4\pi_{34}=\mathbb{R}X_{3}\oplus\mathbb{R}X_{4}, then the sectional curvature of the plane Ο€34\pi_{34} is

ΞΊgr​(Ο€34)=βˆ’94​r+1.\kappa_{g_{r}}(\pi_{34})=-\frac{9}{4}\,r+1.

Thus, grg_{r} does not have non-negative sectional curvature for r>49r>\frac{4}{9}. Let Y3,…,Y13Y_{3},\ldots,Y_{13} be the orthonormal basis of π”ͺ\mathfrak{m} defined in the proof of Theorem 4.2 and write

X=βˆ‘i=313xiβˆ’3​Yi,\displaystyle X=\sum_{i=3}^{13}x_{i-3}Y_{i}, Y=βˆ‘i=313xi+8​Yi.\displaystyle Y=\sum_{i=3}^{13}x_{i+8}Y_{i}.

For each rr, consider the polynomial

Fr=gr​(RX,Ygr​X,Y)βˆˆβ„β€‹[x0,…,x21],F_{r}=g_{r}(R^{g_{r}}_{X,Y}X,Y)\in\mathbb{R}[x_{0},\ldots,x_{21}],

where RgrR^{g_{r}} denotes the curvature tensor of grg_{r}. Observe that we can formally extend the polynomial FrF_{r} to every rβˆˆβ„r\in\mathbb{R} (even when grg_{r} does not make sense for r≀0r\leq 0). Moreover, from the explicit formula for FrF_{r}, which can be found in the Appendix A.2, we see that fixing x0,…,x21x_{0},\ldots,x_{21}, the map r↦Fr​(x0,…,x21)r\mapsto F_{r}(x_{0},\ldots,x_{21}) defines a linear function on rr. Thus, it is enough to prove that the polynomials F0F_{0} and F49F_{\frac{4}{9}} are non-negative. We will use LemmaΒ 4.5 to prove the stronger statement that F0F_{0} and F49F_{\frac{4}{9}} are polynomial sums of squares. Since FrF_{r} is obtained from computing sectional curvatures, every monomial xi​xj​xk​xlx_{i}x_{j}x_{k}x_{l} with non-trivial coefficient in FrF_{r} satisfies 0≀i≀j≀10<k≀l≀210\leq i\leq j\leq 10<k\leq l\leq 21. Hence, we do not lose generality replacing 𝒙T\boldsymbol{x}^{T} in Lemma 4.5 with

𝒙T=(x0​x11,…,x0​x21,…,x10​x11,…,x10​x21,x02,…,x212).\boldsymbol{x}^{T}=(x_{0}x_{11},\ldots,x_{0}x_{21},\ldots,x_{10}x_{11},\ldots,x_{10}x_{21},x_{0}^{2},\ldots,x_{21}^{2}).

This change substantially reduces the size of the system (4.3) from 253Γ—253253\times 253 to 143Γ—143143\times 143. Now we are looking for symmetric positive semi-definite matrices HΞ±H_{\alpha} such that

FΞ±=𝒙T​Hα​𝒙,\displaystyle F_{\alpha}=\boldsymbol{x}^{T}H_{\alpha}\boldsymbol{x}, α∈{0,49}.\displaystyle\alpha\in\{0,\tfrac{4}{9}\}.

This is a convex optimization problem, which, thanks to the reduction of the dimension mentioned above, can be successfully solved by the Python solver CVXOPT. We implemented the computer code in SageMath through two instances of SemidefiniteProgram(). However, this only yields numerical solutions, and since the condition of being positive semi-definite is a closed one, an exact solution is not guaranteed. Nonetheless, since the polynomial sums of squares are dense in the set of non-negative polynomials, exact solutions are expected to exist. Moreover, since FrF_{r} has relatively few non-trivial coefficients, one can expect to find sparse solutions H0H_{0} and H49H_{\frac{4}{9}}. This is indeed the case, since rounding the numerical solutions lead us to the exact solution described as follows.

Define the index subsets

I0,βˆ’2=\displaystyle I_{0,-2}={} {(39,69),(49,59),(87,117),(97,107)},\displaystyle\{(39,69),(49,59),(87,117),(97,107)\},
I0,βˆ’1=\displaystyle I_{0,-1}={} {(1,11),(1,39),(1,59),(1,87),(1,107),(11,49),(11,69),(11,97),(11,117),\displaystyle\{(1,11),(1,39),(1,59),(1,87),(1,107),(11,49),(11,69),(11,97),(11,117),
(39,49),(39,117),(49,107),(59,69),(59,97),(69,87),(87,97),(107,117)},\displaystyle(39,49),(39,117),(49,107),(59,69),(59,97),(69,87),(87,97),(107,117)\},
I0,βˆ’12=\displaystyle I_{0,-\frac{1}{2}}={} {(3,17),(3,33),(3,88),(3,100),(4,7),(4,44),(4,56),(4,111),(5,10),(5,15),\displaystyle\{(3,17),(3,33),(3,88),(3,100),(4,7),(4,44),(4,56),(4,111),(5,10),(5,15),
(5,18),(5,55),(6,19),(6,34),(6,66),(6,99),(7,16),(7,21),(7,77),(8,17),\displaystyle(5,18),(5,55),(6,19),(6,34),(6,66),(6,99),(7,16),(7,21),(7,77),(8,17),
(8,33),(8,88),(8,100),(9,19),(9,34),(9,66),(9,99),(10,45),(10,78),(10,110),\displaystyle(8,33),(8,88),(8,100),(9,19),(9,34),(9,66),(9,99),(10,45),(10,78),(10,110),
(14,19),(14,34),(14,66),(14,99),(15,45),(15,78),(15,110),(16,44),(16,56),\displaystyle(14,19),(14,34),(14,66),(14,99),(15,45),(15,78),(15,110),(16,44),(16,56),
(16,111),(17,20),(17,67),(18,45),(18,78),(18,110),(19,89),(20,33),(20,88),\displaystyle(16,111),(17,20),(17,67),(18,45),(18,78),(18,110),(19,89),(20,33),(20,88),
(20,100),(21,44),(21,56),(21,111),(33,67),(34,89),(37,47),(37,71),(37,95),\displaystyle(20,100),(21,44),(21,56),(21,111),(33,67),(34,89),(37,47),(37,71),(37,95),
(37,119),(38,50),(38,58),(38,98),(38,106),(40,80),(40,92),(40,104),\displaystyle(37,119),(38,50),(38,58),(38,98),(38,106),(40,80),(40,92),(40,104),
(40,116),(43,53),(43,73),(43,93),(43,113),(44,77),(45,55),(47,61),(47,85),\displaystyle(40,116),(43,53),(43,73),(43,93),(43,113),(44,77),(45,55),(47,61),(47,85),
(47,109),(50,70),(50,86),(50,118),(52,80),(52,92),(52,104),(52,116),\displaystyle(47,109),(50,70),(50,86),(50,118),(52,80),(52,92),(52,104),(52,116),
(53,63),(53,83),(53,103),(55,78),(55,110),(56,77),(58,70),(58,86),(58,118),\displaystyle(53,63),(53,83),(53,103),(55,78),(55,110),(56,77),(58,70),(58,86),(58,118),
(61,71),(61,95),(61,119),(63,73),(63,93),(63,113),(64,80),(64,92),(64,104),\displaystyle(61,71),(61,95),(61,119),(63,73),(63,93),(63,113),(64,80),(64,92),(64,104),
(64,116),(66,89),(67,88),(67,100),(70,98),(70,106),(71,85),(71,109),\displaystyle(64,116),(66,89),(67,88),(67,100),(70,98),(70,106),(71,85),(71,109),
(73,83),(73,103),(76,80),(76,92),(76,104),(76,116),(77,111),(83,93),\displaystyle(73,83),(73,103),(76,80),(76,92),(76,104),(76,116),(77,111),(83,93),
(83,113),(85,95),(85,119),(86,98),(86,106),(89,99),(93,103),(95,109),\displaystyle(83,113),(85,95),(85,119),(86,98),(86,106),(89,99),(93,103),(95,109),
(98,118),(103,113),(106,118),(109,119)},\displaystyle(98,118),(103,113),(106,118),(109,119)\},
I0,12=\displaystyle I_{0,\frac{1}{2}}={} {(3,3),(3,8),(3,20),(3,67),(4,4),(4,16),(4,21),(4,77),(5,5),(5,45),(5,78),\displaystyle\{(3,3),(3,8),(3,20),(3,67),(4,4),(4,16),(4,21),(4,77),(5,5),(5,45),(5,78),
(5,110),(6,6),(6,9),(6,14),(6,89),(7,7),(7,44),(7,56),(7,111),(8,8),(8,20),\displaystyle(5,110),(6,6),(6,9),(6,14),(6,89),(7,7),(7,44),(7,56),(7,111),(8,8),(8,20),
(8,67),(9,9),(9,14),(9,89),(10,10),(10,15),(10,18),(10,55),(14,14),(14,89),\displaystyle(8,67),(9,9),(9,14),(9,89),(10,10),(10,15),(10,18),(10,55),(14,14),(14,89),
(15,15),(15,18),(15,55),(16,16),(16,21),(16,77),(17,17),(17,33),(17,88),\displaystyle(15,15),(15,18),(15,55),(16,16),(16,21),(16,77),(17,17),(17,33),(17,88),
(17,100),(18,18),(18,55),(19,19),(19,34),(19,66),(19,99),(20,20),(20,67),\displaystyle(17,100),(18,18),(18,55),(19,19),(19,34),(19,66),(19,99),(20,20),(20,67),
(21,21),(21,77),(33,33),(33,88),(33,100),(34,34),(34,66),(34,99),(37,37),\displaystyle(21,21),(21,77),(33,33),(33,88),(33,100),(34,34),(34,66),(34,99),(37,37),
(37,61),(37,85),(37,109),(38,38),(38,70),(38,86),(38,118),(40,40),(40,52),\displaystyle(37,61),(37,85),(37,109),(38,38),(38,70),(38,86),(38,118),(40,40),(40,52),
(40,64),(40,76),(43,43),(43,63),(43,83),(43,103),(44,44),(44,56),(44,111),\displaystyle(40,64),(40,76),(43,43),(43,63),(43,83),(43,103),(44,44),(44,56),(44,111),
(45,45),(45,78),(45,110),(47,47),(47,71),(47,95),(47,119),(50,50),(50,58),\displaystyle(45,45),(45,78),(45,110),(47,47),(47,71),(47,95),(47,119),(50,50),(50,58),
(50,98),(50,106),(52,52),(52,64),(52,76),(53,53),(53,73),(53,93),(53,113),\displaystyle(50,98),(50,106),(52,52),(52,64),(52,76),(53,53),(53,73),(53,93),(53,113),
(55,55),(56,56),(56,111),(58,58),(58,98),(58,106),(61,61),(61,85),(61,109),\displaystyle(55,55),(56,56),(56,111),(58,58),(58,98),(58,106),(61,61),(61,85),(61,109),
(63,63),(63,83),(63,103),(64,64),(64,76),(66,66),(66,99),(67,67),(70,70),\displaystyle(63,63),(63,83),(63,103),(64,64),(64,76),(66,66),(66,99),(67,67),(70,70),
(70,86),(70,118),(71,71),(71,95),(71,119),(73,73),(73,93),(73,113),(76,76),\displaystyle(70,86),(70,118),(71,71),(71,95),(71,119),(73,73),(73,93),(73,113),(76,76),
(77,77),(78,78),(78,110),(80,80),(80,92),(80,104),(80,116),(83,83),\displaystyle(77,77),(78,78),(78,110),(80,80),(80,92),(80,104),(80,116),(83,83),
(83,103),(85,85),(85,109),(86,86),(86,118),(88,88),(88,100),(89,89),\displaystyle(83,103),(85,85),(85,109),(86,86),(86,118),(88,88),(88,100),(89,89),
(92,92),(92,104),(92,116),(93,93),(93,113),(95,95),(95,119),(98,98),\displaystyle(92,92),(92,104),(92,116),(93,93),(93,113),(95,95),(95,119),(98,98),
(98,106),(99,99),(100,100),(103,103),(104,104),(104,116),(106,106),\displaystyle(98,106),(99,99),(100,100),(103,103),(104,104),(104,116),(106,106),
(109,109),(110,110),(111,111),(113,113),(116,116),(118,118),(119,119)},\displaystyle(109,109),(110,110),(111,111),(113,113),(116,116),(118,118),(119,119)\},
I0,1=\displaystyle I_{0,1}={} {(1,1),(1,49),(1,69),(1,97),(1,117),(11,11),(11,39),(11,59),(11,87),(11,107),\displaystyle\{(1,1),(1,49),(1,69),(1,97),(1,117),(11,11),(11,39),(11,59),(11,87),(11,107),
(39,59),(39,87),(49,69),(49,97),(59,107),(69,117),(87,107),(97,117)},\displaystyle(39,59),(39,87),(49,69),(49,97),(59,107),(69,117),(87,107),(97,117)\},
I0,2=\displaystyle I_{0,2}={} {(39,39),(49,49),(59,59),(69,69),(87,87),(97,97),(107,107),(117,117)},\displaystyle\{(39,39),(49,49),(59,59),(69,69),(87,87),(97,97),(107,107),(117,117)\},

and let H0H_{0} be the symmetric matrix defined as

(H0)i​j={a,(i,j)∈I0,a,0,(i,j)βˆ‰I0,Β±12βˆͺI0,Β±1βˆͺI0,Β±2.(H_{0})_{ij}=\begin{cases}a,&(i,j)\in I_{0,a},\\ 0,&(i,j)\notin I_{0,\pm\frac{1}{2}}\cup I_{0,\pm 1}\cup I_{0,\pm 2}.\end{cases}

Now it is routine to verify that H0H_{0} is positive semi-definite and satisfies F0=𝒙T​H0​𝒙F_{0}=\boldsymbol{x}^{T}H_{0}\boldsymbol{x}. Similarly, if

I49,βˆ’1=\displaystyle I_{\frac{4}{9},-1}={} {(39,69),(39,107),(49,59),(49,117),(59,87),(69,97),(87,117),(97,107)},\displaystyle\{(39,69),(39,107),(49,59),(49,117),(59,87),(69,97),(87,117),(97,107)\},
I49,βˆ’12=\displaystyle I_{\frac{4}{9},-\frac{1}{2}}={} {(3,17),(3,33),(3,88),(3,100),(4,7),(4,44),(4,56),(4,111),(5,10),(5,15),\displaystyle\{(3,17),(3,33),(3,88),(3,100),(4,7),(4,44),(4,56),(4,111),(5,10),(5,15),
(5,18),(5,55),(6,19),(6,34),(6,66),(6,99),(7,16),(7,21),(7,77),(8,17),\displaystyle(5,18),(5,55),(6,19),(6,34),(6,66),(6,99),(7,16),(7,21),(7,77),(8,17),
(8,33),(8,88),(8,100),(9,19),(9,34),(9,66),(9,99),(10,45),(10,78),(10,110),\displaystyle(8,33),(8,88),(8,100),(9,19),(9,34),(9,66),(9,99),(10,45),(10,78),(10,110),
(14,19),(14,34),(14,66),(14,99),(15,45),(15,78),(15,110),(16,44),(16,56),\displaystyle(14,19),(14,34),(14,66),(14,99),(15,45),(15,78),(15,110),(16,44),(16,56),
(16,111),(17,20),(17,67),(18,45),(18,78),(18,110),(19,89),(20,33),(20,88),\displaystyle(16,111),(17,20),(17,67),(18,45),(18,78),(18,110),(19,89),(20,33),(20,88),
(20,100),(21,44),(21,56),(21,111),(33,67),(34,89),(37,47),(37,71),(37,95),\displaystyle(20,100),(21,44),(21,56),(21,111),(33,67),(34,89),(37,47),(37,71),(37,95),
(37,119),(38,50),(38,58),(38,98),(38,106),(40,80),(40,92),(40,104),\displaystyle(37,119),(38,50),(38,58),(38,98),(38,106),(40,80),(40,92),(40,104),
(40,116),(43,53),(43,73),(43,93),(43,113),(44,77),(45,55),(47,61),(47,85),\displaystyle(40,116),(43,53),(43,73),(43,93),(43,113),(44,77),(45,55),(47,61),(47,85),
(47,109),(50,70),(50,86),(50,118),(52,80),(52,92),(52,104),(52,116),\displaystyle(47,109),(50,70),(50,86),(50,118),(52,80),(52,92),(52,104),(52,116),
(53,63),(53,83),(53,103),(55,78),(55,110),(56,77),(58,70),(58,86),(58,118),\displaystyle(53,63),(53,83),(53,103),(55,78),(55,110),(56,77),(58,70),(58,86),(58,118),
(61,71),(61,95),(61,119),(63,73),(63,93),(63,113),(64,80),(64,92),(64,104),\displaystyle(61,71),(61,95),(61,119),(63,73),(63,93),(63,113),(64,80),(64,92),(64,104),
(64,116),(66,89),(67,88),(67,100),(70,98),(70,106),(71,85),(71,109),\displaystyle(64,116),(66,89),(67,88),(67,100),(70,98),(70,106),(71,85),(71,109),
(73,83),(73,103),(76,80),(76,92),(76,104),(76,116),(77,111),(83,93),\displaystyle(73,83),(73,103),(76,80),(76,92),(76,104),(76,116),(77,111),(83,93),
(83,113),(85,95),(85,119),(86,98),(86,106),(89,99),(93,103),(95,109),\displaystyle(83,113),(85,95),(85,119),(86,98),(86,106),(89,99),(93,103),(95,109),
(98,118),(103,113),(106,118),(109,119)},\displaystyle(98,118),(103,113),(106,118),(109,119)\},
I49,βˆ’13=\displaystyle I_{\frac{4}{9},-\frac{1}{3}}={} {(2,22),(13,23),(25,35),(26,46),(27,57),(28,68),(29,79),(30,90),(31,101),\displaystyle\{(2,22),(13,23),(25,35),(26,46),(27,57),(28,68),(29,79),(30,90),(31,101),
(32,112)},\displaystyle(32,112)\},
I49,13=\displaystyle I_{\frac{4}{9},\frac{1}{3}}={} {(2,2),(13,13),(22,22),(23,23),(25,25),(26,26),(27,27),(28,28),(29,29),\displaystyle\{(2,2),(13,13),(22,22),(23,23),(25,25),(26,26),(27,27),(28,28),(29,29),
(30,30),(31,31),(32,32),(35,35),(46,46),(57,57),(68,68),(79,79),(90,90),\displaystyle(30,30),(31,31),(32,32),(35,35),(46,46),(57,57),(68,68),(79,79),(90,90),
(101,101),(112,112)},\displaystyle(101,101),(112,112)\},
I49,12=\displaystyle I_{\frac{4}{9},\frac{1}{2}}={} {(3,3),(3,8),(3,20),(3,67),(4,4),(4,16),(4,21),(4,77),(5,5),(5,45),(5,78),\displaystyle\{(3,3),(3,8),(3,20),(3,67),(4,4),(4,16),(4,21),(4,77),(5,5),(5,45),(5,78),
(5,110),(6,6),(6,9),(6,14),(6,89),(7,7),(7,44),(7,56),(7,111),(8,8),(8,20),\displaystyle(5,110),(6,6),(6,9),(6,14),(6,89),(7,7),(7,44),(7,56),(7,111),(8,8),(8,20),
(8,67),(9,9),(9,14),(9,89),(10,10),(10,15),(10,18),(10,55),(14,14),(14,89),\displaystyle(8,67),(9,9),(9,14),(9,89),(10,10),(10,15),(10,18),(10,55),(14,14),(14,89),
(15,15),(15,18),(15,55),(16,16),(16,21),(16,77),(17,17),(17,33),(17,88),\displaystyle(15,15),(15,18),(15,55),(16,16),(16,21),(16,77),(17,17),(17,33),(17,88),
(17,100),(18,18),(18,55),(19,19),(19,34),(19,66),(19,99),(20,20),(20,67),\displaystyle(17,100),(18,18),(18,55),(19,19),(19,34),(19,66),(19,99),(20,20),(20,67),
(21,21),(21,77),(33,33),(33,88),(33,100),(34,34),(34,66),(34,99),(37,37),\displaystyle(21,21),(21,77),(33,33),(33,88),(33,100),(34,34),(34,66),(34,99),(37,37),
(37,61),(37,85),(37,109),(38,38),(38,70),(38,86),(38,118),(40,40),(40,52),\displaystyle(37,61),(37,85),(37,109),(38,38),(38,70),(38,86),(38,118),(40,40),(40,52),
(40,64),(40,76),(43,43),(43,63),(43,83),(43,103),(44,44),(44,56),(44,111),\displaystyle(40,64),(40,76),(43,43),(43,63),(43,83),(43,103),(44,44),(44,56),(44,111),
(45,45),(45,78),(45,110),(47,47),(47,71),(47,95),(47,119),(50,50),(50,58),\displaystyle(45,45),(45,78),(45,110),(47,47),(47,71),(47,95),(47,119),(50,50),(50,58),
(50,98),(50,106),(52,52),(52,64),(52,76),(53,53),(53,73),(53,93),(53,113),\displaystyle(50,98),(50,106),(52,52),(52,64),(52,76),(53,53),(53,73),(53,93),(53,113),
(55,55),(56,56),(56,111),(58,58),(58,98),(58,106),(61,61),(61,85),(61,109),\displaystyle(55,55),(56,56),(56,111),(58,58),(58,98),(58,106),(61,61),(61,85),(61,109),
(63,63),(63,83),(63,103),(64,64),(64,76),(66,66),(66,99),(67,67),(70,70),\displaystyle(63,63),(63,83),(63,103),(64,64),(64,76),(66,66),(66,99),(67,67),(70,70),
(70,86),(70,118),(71,71),(71,95),(71,119),(73,73),(73,93),(73,113),(76,76),\displaystyle(70,86),(70,118),(71,71),(71,95),(71,119),(73,73),(73,93),(73,113),(76,76),
(77,77),(78,78),(78,110),(80,80),(80,92),(80,104),(80,116),(83,83),\displaystyle(77,77),(78,78),(78,110),(80,80),(80,92),(80,104),(80,116),(83,83),
(83,103),(85,85),(85,109),(86,86),(86,118),(88,88),(88,100),(89,89),\displaystyle(83,103),(85,85),(85,109),(86,86),(86,118),(88,88),(88,100),(89,89),
(92,92),(92,104),(92,116),(93,93),(93,113),(95,95),(95,119),(98,98),\displaystyle(92,92),(92,104),(92,116),(93,93),(93,113),(95,95),(95,119),(98,98),
(98,106),(99,99),(100,100),(103,103),(104,104),(104,116),(106,106),\displaystyle(98,106),(99,99),(100,100),(103,103),(104,104),(104,116),(106,106),
(109,109),(110,110),(111,111),(113,113),(116,116),(118,118),(119,119)},\displaystyle(109,109),(110,110),(111,111),(113,113),(116,116),(118,118),(119,119)\},
I49,1=\displaystyle I_{\frac{4}{9},1}={} {(39,39),(39,97),(49,49),(49,87),(59,59),(59,117),(69,69),(69,107),(87,87),\displaystyle\{(39,39),(39,97),(49,49),(49,87),(59,59),(59,117),(69,69),(69,107),(87,87),
(97,97),(107,107),(117,117)},\displaystyle(97,97),(107,107),(117,117)\},

then

(H49)i​j={a,(i,j)∈I49,a,0,(i,j)βˆ‰I49,Β±13βˆͺI49,Β±12βˆͺI49,Β±1,(H_{\frac{4}{9}})_{ij}=\begin{cases}a,&(i,j)\in I_{\frac{4}{9},a},\\ 0,&(i,j)\notin I_{\frac{4}{9},\pm\frac{1}{3}}\cup I_{\frac{4}{9},\pm\frac{1}{2}}\cup I_{\frac{4}{9},\pm 1},\end{cases}

defines a symmetric positive semi-definite matrix satisfying F49=𝒙T​H49​𝒙F_{\frac{4}{9}}=\boldsymbol{x}^{T}H_{\frac{4}{9}}\boldsymbol{x}. This concludes the proof of the theorem. ∎

Remark 4.6.

We are not certain if FrF_{r} is a polynomial sum of squares for 0<r<490<r<\frac{4}{9}. Although it is not needed in the proof of Theorem 4.4, it would be interesting to know if this is indeed the case.

Remark 4.7.

The definition (4.1) of the metric grg_{r} resembles the construction of Berger spheres from the Hopf fibration by shrinking the metrics along the fibers. Moreover, if we restrict grg_{r} to π”ͺ0≃𝔰​𝔲​(2)\mathfrak{m}_{0}\simeq\mathfrak{su}(2), then Sr3=(SU⁑(2),gr|π”ͺ0)S^{3}_{r}=(\operatorname{SU}(2),g_{r}|_{\mathfrak{m}_{0}}) is a Berger sphere. Recall that Sr3S^{3}_{r} has (strictly) positive sectional curvature if and only if 0<r<490<r<\frac{4}{9}.

Appendix A

A.1. Standard zero divisors

In this appendix, we include Table 1 with the standard zero divisors of the sedenion algebra.

Table 1. The 8484 standard zero divisors of π•Š\mathbb{S}

(e1+e10,e4βˆ’e15)(e1+e10,e5+e14)(e1+e10,e6βˆ’e13)(e1+e10,e7+e12)(e1+e11,e4+e14)(e1+e11,e5+e15)(e1+e11,e6βˆ’e12)(e1+e11,e7βˆ’e13)(e1+e12,e2+e15)(e1+e12,e3βˆ’e14)(e1+e12,e6+e11)(e1+e12,e7βˆ’e10)(e1+e13,e2βˆ’e14)(e1+e13,e3βˆ’e15)(e1+e13,e6+e10)(e1+e13,e7+e11)(e1+e14,e2+e13)(e1+e14,e3+e12)(e1+e14,e4βˆ’e11)(e1+e14,e5βˆ’e10)(e1+e15,e2βˆ’e12)(e1+e15,e3+e13)(e1+e15,e4+e10)(e1+e15,e5βˆ’e11)(e2+e9,e4+e15)(e2+e9,e5βˆ’e14)(e2+e9,e6+e13)(e2+e9,e7βˆ’e12)(e2+e11,e4βˆ’e13)(e2+e11,e5+e12)(e2+e11,e6+e15)(e2+e11,e7βˆ’e14)(e2+e12,e3+e13)(e2+e12,e5βˆ’e11)(e2+e12,e7+e9)(e2+e13,e3βˆ’e12)(e2+e13,e4+e11)(e2+e13,e6βˆ’e9)(e2+e14,e3βˆ’e15)(e2+e14,e5+e9)(e2+e14,e7+e11)(e2+e15,e3+e14)(e2+e15,e4βˆ’e9)(e2+e15,e6βˆ’e11)(e3+e9,e4βˆ’e14)(e3+e9,e5βˆ’e15)(e3+e9,e6+e12)(e3+e9,e7+e13)(e3+e10,e4+e13)(e3+e10,e5βˆ’e12)(e3+e10,e6βˆ’e15)(e3+e10,e7+e14)(e3+e12,e5+e10)(e3+e12,e6βˆ’e9)(e3+e13,e4βˆ’e10)(e3+e13,e7βˆ’e9)(e3+e14,e4+e9)(e3+e14,e7βˆ’e10)(e3+e15,e5+e9)(e3+e15,e6+e10)(e4+e9,e6βˆ’e11)(e4+e9,e7+e10)(e4+e10,e5+e11)(e4+e10,e7βˆ’e9)(e4+e11,e5βˆ’e10)(e4+e11,e6+e9)(e4+e13,e6+e15)(e4+e13,e7βˆ’e14)(e4+e14,e5βˆ’e15)(e4+e14,e7+e13)(e4+e15,e5+e14)(e4+e15,e6βˆ’e13)(e5+e9,e6βˆ’e10)(e5+e9,e7βˆ’e11)(e5+e10,e6+e9)(e5+e11,e7+e9)(e5+e12,e6βˆ’e15)(e5+e12,e7+e14)(e5+e14,e7βˆ’e12)(e5+e15,e6+e12)(e6+e10,e7βˆ’e11)(e6+e11,e7+e10)(e6+e12,e7βˆ’e13)(e6+e13,e7+e12)\begin{array}[]{llll}\hline\cr\\[-12.0pt] (e_{1}+e_{10},e_{4}-e_{15})&(e_{1}+e_{10},e_{5}+e_{14})&(e_{1}+e_{10},e_{6}-e_{13})&(e_{1}+e_{10},e_{7}+e_{12})\\ (e_{1}+e_{11},e_{4}+e_{14})&(e_{1}+e_{11},e_{5}+e_{15})&(e_{1}+e_{11},e_{6}-e_{12})&(e_{1}+e_{11},e_{7}-e_{13})\\ (e_{1}+e_{12},e_{2}+e_{15})&(e_{1}+e_{12},e_{3}-e_{14})&(e_{1}+e_{12},e_{6}+e_{11})&(e_{1}+e_{12},e_{7}-e_{10})\\ (e_{1}+e_{13},e_{2}-e_{14})&(e_{1}+e_{13},e_{3}-e_{15})&(e_{1}+e_{13},e_{6}+e_{10})&(e_{1}+e_{13},e_{7}+e_{11})\\ (e_{1}+e_{14},e_{2}+e_{13})&(e_{1}+e_{14},e_{3}+e_{12})&(e_{1}+e_{14},e_{4}-e_{11})&(e_{1}+e_{14},e_{5}-e_{10})\\ (e_{1}+e_{15},e_{2}-e_{12})&(e_{1}+e_{15},e_{3}+e_{13})&(e_{1}+e_{15},e_{4}+e_{10})&(e_{1}+e_{15},e_{5}-e_{11})\\ (e_{2}+e_{9},e_{4}+e_{15})&(e_{2}+e_{9},e_{5}-e_{14})&(e_{2}+e_{9},e_{6}+e_{13})&(e_{2}+e_{9},e_{7}-e_{12})\\ (e_{2}+e_{11},e_{4}-e_{13})&(e_{2}+e_{11},e_{5}+e_{12})&(e_{2}+e_{11},e_{6}+e_{15})&(e_{2}+e_{11},e_{7}-e_{14})\\ (e_{2}+e_{12},e_{3}+e_{13})&(e_{2}+e_{12},e_{5}-e_{11})&(e_{2}+e_{12},e_{7}+e_{9})&(e_{2}+e_{13},e_{3}-e_{12})\\ (e_{2}+e_{13},e_{4}+e_{11})&(e_{2}+e_{13},e_{6}-e_{9})&(e_{2}+e_{14},e_{3}-e_{15})&(e_{2}+e_{14},e_{5}+e_{9})\\ (e_{2}+e_{14},e_{7}+e_{11})&(e_{2}+e_{15},e_{3}+e_{14})&(e_{2}+e_{15},e_{4}-e_{9})&(e_{2}+e_{15},e_{6}-e_{11})\\ (e_{3}+e_{9},e_{4}-e_{14})&(e_{3}+e_{9},e_{5}-e_{15})&(e_{3}+e_{9},e_{6}+e_{12})&(e_{3}+e_{9},e_{7}+e_{13})\\ (e_{3}+e_{10},e_{4}+e_{13})&(e_{3}+e_{10},e_{5}-e_{12})&(e_{3}+e_{10},e_{6}-e_{15})&(e_{3}+e_{10},e_{7}+e_{14})\\ (e_{3}+e_{12},e_{5}+e_{10})&(e_{3}+e_{12},e_{6}-e_{9})&(e_{3}+e_{13},e_{4}-e_{10})&(e_{3}+e_{13},e_{7}-e_{9})\\ (e_{3}+e_{14},e_{4}+e_{9})&(e_{3}+e_{14},e_{7}-e_{10})&(e_{3}+e_{15},e_{5}+e_{9})&(e_{3}+e_{15},e_{6}+e_{10})\\ (e_{4}+e_{9},e_{6}-e_{11})&(e_{4}+e_{9},e_{7}+e_{10})&(e_{4}+e_{10},e_{5}+e_{11})&(e_{4}+e_{10},e_{7}-e_{9})\\ (e_{4}+e_{11},e_{5}-e_{10})&(e_{4}+e_{11},e_{6}+e_{9})&(e_{4}+e_{13},e_{6}+e_{15})&(e_{4}+e_{13},e_{7}-e_{14})\\ (e_{4}+e_{14},e_{5}-e_{15})&(e_{4}+e_{14},e_{7}+e_{13})&(e_{4}+e_{15},e_{5}+e_{14})&(e_{4}+e_{15},e_{6}-e_{13})\\ (e_{5}+e_{9},e_{6}-e_{10})&(e_{5}+e_{9},e_{7}-e_{11})&(e_{5}+e_{10},e_{6}+e_{9})&(e_{5}+e_{11},e_{7}+e_{9})\\ (e_{5}+e_{12},e_{6}-e_{15})&(e_{5}+e_{12},e_{7}+e_{14})&(e_{5}+e_{14},e_{7}-e_{12})&(e_{5}+e_{15},e_{6}+e_{12})\\ (e_{6}+e_{10},e_{7}-e_{11})&(e_{6}+e_{11},e_{7}+e_{10})&(e_{6}+e_{12},e_{7}-e_{13})&(e_{6}+e_{13},e_{7}+e_{12})\\[2.0pt] \hline\cr\end{array}

A.2. Expression for the sectional curvature

We write down the polynomial FrF_{r} used in the proof of Theorem 4.4.

Fr=\displaystyle F_{r}={} (βˆ’94​r+1)​x02​x122+34​r​x02​x132+12​x02​x142+x02​x14​x19+12​x02​x152βˆ’x02​x15​x18+12​x02​x162\displaystyle(-\tfrac{9}{4}r+1)x_{0}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{0}^{2}x_{13}^{2}+\tfrac{1}{2}x_{0}^{2}x_{14}^{2}+x_{0}^{2}x_{14}x_{19}+\tfrac{1}{2}x_{0}^{2}x_{15}^{2}-x_{0}^{2}x_{15}x_{18}+\tfrac{1}{2}x_{0}^{2}x_{16}^{2}
βˆ’x02​x16​x21+12​x02​x172+x02​x17​x20+12​x02​x182+12​x02​x192+12​x02​x202+12​x02​x212\displaystyle-x_{0}^{2}x_{16}x_{21}+\tfrac{1}{2}x_{0}^{2}x_{17}^{2}+x_{0}^{2}x_{17}x_{20}+\tfrac{1}{2}x_{0}^{2}x_{18}^{2}+\tfrac{1}{2}x_{0}^{2}x_{19}^{2}+\tfrac{1}{2}x_{0}^{2}x_{20}^{2}+\tfrac{1}{2}x_{0}^{2}x_{21}^{2}
+(92​rβˆ’2)​x0​x1​x11​x12+2​x0​x1​x14​x20+2​x0​x1​x15​x21βˆ’2​x0​x1​x16​x18\displaystyle+(\tfrac{9}{2}r-2)x_{0}x_{1}x_{11}x_{12}+2x_{0}x_{1}x_{14}x_{20}+2x_{0}x_{1}x_{15}x_{21}-2x_{0}x_{1}x_{16}x_{18}
βˆ’2​x0​x1​x17​x19βˆ’32​r​x0​x2​x11​x13βˆ’x0​x3​x11​x14βˆ’x0​x3​x11​x19\displaystyle-2x_{0}x_{1}x_{17}x_{19}-\tfrac{3}{2}rx_{0}x_{2}x_{11}x_{13}-x_{0}x_{3}x_{11}x_{14}-x_{0}x_{3}x_{11}x_{19}
+(92​rβˆ’3)​x0​x3​x12​x17βˆ’x0​x3​x12​x20βˆ’x0​x4​x11​x15+x0​x4​x11​x18\displaystyle+(\tfrac{9}{2}r-3)x_{0}x_{3}x_{12}x_{17}-x_{0}x_{3}x_{12}x_{20}-x_{0}x_{4}x_{11}x_{15}+x_{0}x_{4}x_{11}x_{18}
+(βˆ’92​r+3)​x0​x4​x12​x16βˆ’x0​x4​x12​x21βˆ’x0​x5​x11​x16+x0​x5​x11​x21\displaystyle+(-\tfrac{9}{2}r+3)x_{0}x_{4}x_{12}x_{16}-x_{0}x_{4}x_{12}x_{21}-x_{0}x_{5}x_{11}x_{16}+x_{0}x_{5}x_{11}x_{21}
+(92​rβˆ’3)​x0​x5​x12​x15+x0​x5​x12​x18βˆ’x0​x6​x11​x17βˆ’x0​x6​x11​x20\displaystyle+(\tfrac{9}{2}r-3)x_{0}x_{5}x_{12}x_{15}+x_{0}x_{5}x_{12}x_{18}-x_{0}x_{6}x_{11}x_{17}-x_{0}x_{6}x_{11}x_{20}
+(βˆ’92​r+3)​x0​x6​x12​x14+x0​x6​x12​x19+x0​x7​x11​x15βˆ’x0​x7​x11​x18+x0​x7​x12​x16\displaystyle+(-\tfrac{9}{2}r+3)x_{0}x_{6}x_{12}x_{14}+x_{0}x_{6}x_{12}x_{19}+x_{0}x_{7}x_{11}x_{15}-x_{0}x_{7}x_{11}x_{18}+x_{0}x_{7}x_{12}x_{16}
+(92​rβˆ’3)​x0​x7​x12​x21βˆ’x0​x8​x11​x14βˆ’x0​x8​x11​x19+x0​x8​x12​x17\displaystyle+(\tfrac{9}{2}r-3)x_{0}x_{7}x_{12}x_{21}-x_{0}x_{8}x_{11}x_{14}-x_{0}x_{8}x_{11}x_{19}+x_{0}x_{8}x_{12}x_{17}
+(βˆ’92​r+3)​x0​x8​x12​x20βˆ’x0​x9​x11​x17βˆ’x0​x9​x11​x20βˆ’x0​x9​x12​x14\displaystyle+(-\tfrac{9}{2}r+3)x_{0}x_{8}x_{12}x_{20}-x_{0}x_{9}x_{11}x_{17}-x_{0}x_{9}x_{11}x_{20}-x_{0}x_{9}x_{12}x_{14}
+(92​rβˆ’3)​x0​x9​x12​x19+x0​x10​x11​x16βˆ’x0​x10​x11​x21βˆ’x0​x10​x12​x15\displaystyle+(\tfrac{9}{2}r-3)x_{0}x_{9}x_{12}x_{19}+x_{0}x_{10}x_{11}x_{16}-x_{0}x_{10}x_{11}x_{21}-x_{0}x_{10}x_{12}x_{15}
+(βˆ’92​r+3)​x0​x10​x12​x18+(βˆ’94​r+1)​x12​x112+34​r​x12​x132+12​x12​x142βˆ’x12​x14​x19\displaystyle+(-\tfrac{9}{2}r+3)x_{0}x_{10}x_{12}x_{18}+(-\tfrac{9}{4}r+1)x_{1}^{2}x_{11}^{2}+\tfrac{3}{4}rx_{1}^{2}x_{13}^{2}+\tfrac{1}{2}x_{1}^{2}x_{14}^{2}-x_{1}^{2}x_{14}x_{19}
+12​x12​x152+x12​x15​x18+12​x12​x162+x12​x16​x21+12​x12​x172βˆ’x12​x17​x20+12​x12​x182\displaystyle+\tfrac{1}{2}x_{1}^{2}x_{15}^{2}+x_{1}^{2}x_{15}x_{18}+\tfrac{1}{2}x_{1}^{2}x_{16}^{2}+x_{1}^{2}x_{16}x_{21}+\tfrac{1}{2}x_{1}^{2}x_{17}^{2}-x_{1}^{2}x_{17}x_{20}+\tfrac{1}{2}x_{1}^{2}x_{18}^{2}
+12​x12​x192+12​x12​x202+12​x12​x212βˆ’32​r​x1​x2​x12​x13+(βˆ’92​r+3)​x1​x3​x11​x17\displaystyle+\tfrac{1}{2}x_{1}^{2}x_{19}^{2}+\tfrac{1}{2}x_{1}^{2}x_{20}^{2}+\tfrac{1}{2}x_{1}^{2}x_{21}^{2}-\tfrac{3}{2}rx_{1}x_{2}x_{12}x_{13}+(-\tfrac{9}{2}r+3)x_{1}x_{3}x_{11}x_{17}
βˆ’x1​x3​x11​x20βˆ’x1​x3​x12​x14+x1​x3​x12​x19+(92​rβˆ’3)​x1​x4​x11​x16βˆ’x1​x4​x11​x21\displaystyle-x_{1}x_{3}x_{11}x_{20}-x_{1}x_{3}x_{12}x_{14}+x_{1}x_{3}x_{12}x_{19}+(\tfrac{9}{2}r-3)x_{1}x_{4}x_{11}x_{16}-x_{1}x_{4}x_{11}x_{21}
βˆ’x1​x4​x12​x15βˆ’x1​x4​x12​x18+(βˆ’92​r+3)​x1​x5​x11​x15+x1​x5​x11​x18\displaystyle-x_{1}x_{4}x_{12}x_{15}-x_{1}x_{4}x_{12}x_{18}+(-\tfrac{9}{2}r+3)x_{1}x_{5}x_{11}x_{15}+x_{1}x_{5}x_{11}x_{18}
βˆ’x1​x5​x12​x16βˆ’x1​x5​x12​x21+(92​rβˆ’3)​x1​x6​x11​x14+x1​x6​x11​x19\displaystyle-x_{1}x_{5}x_{12}x_{16}-x_{1}x_{5}x_{12}x_{21}+(\tfrac{9}{2}r-3)x_{1}x_{6}x_{11}x_{14}+x_{1}x_{6}x_{11}x_{19}
βˆ’x1​x6​x12​x17+x1​x6​x12​x20+x1​x7​x11​x16+(βˆ’92​r+3)​x1​x7​x11​x21\displaystyle-x_{1}x_{6}x_{12}x_{17}+x_{1}x_{6}x_{12}x_{20}+x_{1}x_{7}x_{11}x_{16}+(-\tfrac{9}{2}r+3)x_{1}x_{7}x_{11}x_{21}
βˆ’x1​x7​x12​x15βˆ’x1​x7​x12​x18+x1​x8​x11​x17+(92​rβˆ’3)​x1​x8​x11​x20\displaystyle-x_{1}x_{7}x_{12}x_{15}-x_{1}x_{7}x_{12}x_{18}+x_{1}x_{8}x_{11}x_{17}+(\tfrac{9}{2}r-3)x_{1}x_{8}x_{11}x_{20}
+x1​x8​x12​x14βˆ’x1​x8​x12​x19βˆ’x1​x9​x11​x14+(βˆ’92​r+3)​x1​x9​x11​x19+x1​x9​x12​x17\displaystyle+x_{1}x_{8}x_{12}x_{14}-x_{1}x_{8}x_{12}x_{19}-x_{1}x_{9}x_{11}x_{14}+(-\tfrac{9}{2}r+3)x_{1}x_{9}x_{11}x_{19}+x_{1}x_{9}x_{12}x_{17}
βˆ’x1​x9​x12​x20βˆ’x1​x10​x11​x15+(92​rβˆ’3)​x1​x10​x11​x18βˆ’x1​x10​x12​x16βˆ’x1​x10​x12​x21\displaystyle-x_{1}x_{9}x_{12}x_{20}-x_{1}x_{10}x_{11}x_{15}+(\tfrac{9}{2}r-3)x_{1}x_{10}x_{11}x_{18}-x_{1}x_{10}x_{12}x_{16}-x_{1}x_{10}x_{12}x_{21}
+34​r​x22​x112+34​r​x22​x122+34​r​x22​x142+34​r​x22​x152+34​r​x22​x162+34​r​x22​x172+34​r​x22​x182\displaystyle+\tfrac{3}{4}rx_{2}^{2}x_{11}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{14}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{15}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{16}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{17}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{18}^{2}
+34​r​x22​x192+34​r​x22​x202+34​r​x22​x212βˆ’32​r​x2​x3​x13​x14βˆ’32​r​x2​x4​x13​x15βˆ’32​r​x2​x5​x13​x16\displaystyle+\tfrac{3}{4}rx_{2}^{2}x_{19}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{20}^{2}+\tfrac{3}{4}rx_{2}^{2}x_{21}^{2}-\tfrac{3}{2}rx_{2}x_{3}x_{13}x_{14}-\tfrac{3}{2}rx_{2}x_{4}x_{13}x_{15}-\tfrac{3}{2}rx_{2}x_{5}x_{13}x_{16}
βˆ’32​r​x2​x6​x13​x17βˆ’32​r​x2​x7​x13​x18βˆ’32​r​x2​x8​x13​x19βˆ’32​r​x2​x9​x13​x20βˆ’32​r​x2​x10​x13​x21\displaystyle-\tfrac{3}{2}rx_{2}x_{6}x_{13}x_{17}-\tfrac{3}{2}rx_{2}x_{7}x_{13}x_{18}-\tfrac{3}{2}rx_{2}x_{8}x_{13}x_{19}-\tfrac{3}{2}rx_{2}x_{9}x_{13}x_{20}-\tfrac{3}{2}rx_{2}x_{10}x_{13}x_{21}
+12​x32​x112+12​x32​x122+34​r​x32​x132+12​x32​x152+12​x32​x162+(βˆ’94​r+2)​x32​x172+12​x32​x182\displaystyle+\tfrac{1}{2}x_{3}^{2}x_{11}^{2}+\tfrac{1}{2}x_{3}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{3}^{2}x_{13}^{2}+\tfrac{1}{2}x_{3}^{2}x_{15}^{2}+\tfrac{1}{2}x_{3}^{2}x_{16}^{2}+(-\tfrac{9}{4}r+2)x_{3}^{2}x_{17}^{2}+\tfrac{1}{2}x_{3}^{2}x_{18}^{2}
+12​x32​x212βˆ’x3​x4​x14​x15+(92​rβˆ’3)​x3​x4​x16​x17+x3​x4​x18​x19βˆ’x3​x4​x20​x21\displaystyle+\tfrac{1}{2}x_{3}^{2}x_{21}^{2}-x_{3}x_{4}x_{14}x_{15}+(\tfrac{9}{2}r-3)x_{3}x_{4}x_{16}x_{17}+x_{3}x_{4}x_{18}x_{19}-x_{3}x_{4}x_{20}x_{21}
βˆ’x3​x5​x14​x16+(βˆ’92​r+3)​x3​x5​x15​x17+x3​x5​x18​x20+x3​x5​x19​x21\displaystyle-x_{3}x_{5}x_{14}x_{16}+(-\tfrac{9}{2}r+3)x_{3}x_{5}x_{15}x_{17}+x_{3}x_{5}x_{18}x_{20}+x_{3}x_{5}x_{19}x_{21}
+(92​rβˆ’4)​x3​x6​x14​x17βˆ’x3​x7​x14​x18+x3​x7​x15​x19+x3​x7​x16​x20\displaystyle+(\tfrac{9}{2}r-4)x_{3}x_{6}x_{14}x_{17}-x_{3}x_{7}x_{14}x_{18}+x_{3}x_{7}x_{15}x_{19}+x_{3}x_{7}x_{16}x_{20}
+(βˆ’92​r+3)​x3​x7​x17​x21+x3​x8​x112βˆ’x3​x8​x122βˆ’2​x3​x8​x15​x18βˆ’2​x3​x8​x16​x21\displaystyle+(-\tfrac{9}{2}r+3)x_{3}x_{7}x_{17}x_{21}+x_{3}x_{8}x_{11}^{2}-x_{3}x_{8}x_{12}^{2}-2x_{3}x_{8}x_{15}x_{18}-2x_{3}x_{8}x_{16}x_{21}
+92​r​x3​x8​x17​x20+2​x3​x9​x11​x12+2​x3​x9​x15​x21βˆ’2​x3​x9​x16​x18βˆ’92​r​x3​x9​x17​x19\displaystyle+\tfrac{9}{2}rx_{3}x_{8}x_{17}x_{20}+2x_{3}x_{9}x_{11}x_{12}+2x_{3}x_{9}x_{15}x_{21}-2x_{3}x_{9}x_{16}x_{18}-\tfrac{9}{2}rx_{3}x_{9}x_{17}x_{19}
βˆ’x3​x10​x14​x21βˆ’x3​x10​x15​x20+x3​x10​x16​x19+(92​rβˆ’3)​x3​x10​x17​x18+12​x42​x112\displaystyle-x_{3}x_{10}x_{14}x_{21}-x_{3}x_{10}x_{15}x_{20}+x_{3}x_{10}x_{16}x_{19}+(\tfrac{9}{2}r-3)x_{3}x_{10}x_{17}x_{18}+\tfrac{1}{2}x_{4}^{2}x_{11}^{2}
+12​x42​x122+34​r​x42​x132+12​x42​x142+(βˆ’94​r+2)​x42​x162+12​x42​x172+12​x42​x192+12​x42​x202\displaystyle+\tfrac{1}{2}x_{4}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{4}^{2}x_{13}^{2}+\tfrac{1}{2}x_{4}^{2}x_{14}^{2}+(-\tfrac{9}{4}r+2)x_{4}^{2}x_{16}^{2}+\tfrac{1}{2}x_{4}^{2}x_{17}^{2}+\tfrac{1}{2}x_{4}^{2}x_{19}^{2}+\tfrac{1}{2}x_{4}^{2}x_{20}^{2}
+(92​rβˆ’4)​x4​x5​x15​x16+(βˆ’92​r+3)​x4​x6​x14​x16βˆ’x4​x6​x15​x17+x4​x6​x18​x20\displaystyle+(\tfrac{9}{2}r-4)x_{4}x_{5}x_{15}x_{16}+(-\tfrac{9}{2}r+3)x_{4}x_{6}x_{14}x_{16}-x_{4}x_{6}x_{15}x_{17}+x_{4}x_{6}x_{18}x_{20}
+x4​x6​x19​x21βˆ’x4​x7​x112+x4​x7​x122βˆ’2​x4​x7​x14​x19+92​r​x4​x7​x16​x21\displaystyle+x_{4}x_{6}x_{19}x_{21}-x_{4}x_{7}x_{11}^{2}+x_{4}x_{7}x_{12}^{2}-2x_{4}x_{7}x_{14}x_{19}+\tfrac{9}{2}rx_{4}x_{7}x_{16}x_{21}
βˆ’2​x4​x7​x17​x20+x4​x8​x14​x18βˆ’x4​x8​x15​x19+(βˆ’92​r+3)​x4​x8​x16​x20+x4​x8​x17​x21\displaystyle-2x_{4}x_{7}x_{17}x_{20}+x_{4}x_{8}x_{14}x_{18}-x_{4}x_{8}x_{15}x_{19}+(-\tfrac{9}{2}r+3)x_{4}x_{8}x_{16}x_{20}+x_{4}x_{8}x_{17}x_{21}
βˆ’x4​x9​x14​x21βˆ’x4​x9​x15​x20+(92​rβˆ’3)​x4​x9​x16​x19+x4​x9​x17​x18+2​x4​x10​x11​x12\displaystyle-x_{4}x_{9}x_{14}x_{21}-x_{4}x_{9}x_{15}x_{20}+(\tfrac{9}{2}r-3)x_{4}x_{9}x_{16}x_{19}+x_{4}x_{9}x_{17}x_{18}+2x_{4}x_{10}x_{11}x_{12}
+2​x4​x10​x14​x20βˆ’92​r​x4​x10​x16​x18βˆ’2​x4​x10​x17​x19+12​x52​x112+12​x52​x122+34​r​x52​x132\displaystyle+2x_{4}x_{10}x_{14}x_{20}-\tfrac{9}{2}rx_{4}x_{10}x_{16}x_{18}-2x_{4}x_{10}x_{17}x_{19}+\tfrac{1}{2}x_{5}^{2}x_{11}^{2}+\tfrac{1}{2}x_{5}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{5}^{2}x_{13}^{2}
+12​x52​x142+(βˆ’94​r+2)​x52​x152+12​x52​x172+12​x52​x192+12​x52​x202+(92​rβˆ’3)​x5​x6​x14​x15\displaystyle+\tfrac{1}{2}x_{5}^{2}x_{14}^{2}+(-\tfrac{9}{4}r+2)x_{5}^{2}x_{15}^{2}+\tfrac{1}{2}x_{5}^{2}x_{17}^{2}+\tfrac{1}{2}x_{5}^{2}x_{19}^{2}+\tfrac{1}{2}x_{5}^{2}x_{20}^{2}+(\tfrac{9}{2}r-3)x_{5}x_{6}x_{14}x_{15}
βˆ’x5​x6​x16​x17βˆ’x5​x6​x18​x19+x5​x6​x20​x21βˆ’2​x5​x7​x11​x12βˆ’2​x5​x7​x14​x20\displaystyle-x_{5}x_{6}x_{16}x_{17}-x_{5}x_{6}x_{18}x_{19}+x_{5}x_{6}x_{20}x_{21}-2x_{5}x_{7}x_{11}x_{12}-2x_{5}x_{7}x_{14}x_{20}
βˆ’92​r​x5​x7​x15​x21+2​x5​x7​x17​x19+x5​x8​x14​x21+(92​rβˆ’3)​x5​x8​x15​x20\displaystyle-\tfrac{9}{2}rx_{5}x_{7}x_{15}x_{21}+2x_{5}x_{7}x_{17}x_{19}+x_{5}x_{8}x_{14}x_{21}+(\tfrac{9}{2}r-3)x_{5}x_{8}x_{15}x_{20}
βˆ’x5​x8​x16​x19βˆ’x5​x8​x17​x18+x5​x9​x14​x18+(βˆ’92​r+3)​x5​x9​x15​x19βˆ’x5​x9​x16​x20\displaystyle-x_{5}x_{8}x_{16}x_{19}-x_{5}x_{8}x_{17}x_{18}+x_{5}x_{9}x_{14}x_{18}+(-\tfrac{9}{2}r+3)x_{5}x_{9}x_{15}x_{19}-x_{5}x_{9}x_{16}x_{20}
+x5​x9​x17​x21βˆ’x5​x10​x112+x5​x10​x122βˆ’2​x5​x10​x14​x19+92​r​x5​x10​x15​x18\displaystyle+x_{5}x_{9}x_{17}x_{21}-x_{5}x_{10}x_{11}^{2}+x_{5}x_{10}x_{12}^{2}-2x_{5}x_{10}x_{14}x_{19}+\tfrac{9}{2}rx_{5}x_{10}x_{15}x_{18}
βˆ’2​x5​x10​x17​x20+12​x62​x112+12​x62​x122+34​r​x62​x132+(βˆ’94​r+2)​x62​x142+12​x62​x152\displaystyle-2x_{5}x_{10}x_{17}x_{20}+\tfrac{1}{2}x_{6}^{2}x_{11}^{2}+\tfrac{1}{2}x_{6}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{6}^{2}x_{13}^{2}+(-\tfrac{9}{4}r+2)x_{6}^{2}x_{14}^{2}+\tfrac{1}{2}x_{6}^{2}x_{15}^{2}
+12​x62​x162+12​x62​x182+12​x62​x212+(92​rβˆ’3)​x6​x7​x14​x21+x6​x7​x15​x20βˆ’x6​x7​x16​x19\displaystyle+\tfrac{1}{2}x_{6}^{2}x_{16}^{2}+\tfrac{1}{2}x_{6}^{2}x_{18}^{2}+\tfrac{1}{2}x_{6}^{2}x_{21}^{2}+(\tfrac{9}{2}r-3)x_{6}x_{7}x_{14}x_{21}+x_{6}x_{7}x_{15}x_{20}-x_{6}x_{7}x_{16}x_{19}
βˆ’x6​x7​x17​x18βˆ’2​x6​x8​x11​x12βˆ’92​r​x6​x8​x14​x20βˆ’2​x6​x8​x15​x21+2​x6​x8​x16​x18\displaystyle-x_{6}x_{7}x_{17}x_{18}-2x_{6}x_{8}x_{11}x_{12}-\tfrac{9}{2}rx_{6}x_{8}x_{14}x_{20}-2x_{6}x_{8}x_{15}x_{21}+2x_{6}x_{8}x_{16}x_{18}
+x6​x9​x112βˆ’x6​x9​x122+92​r​x6​x9​x14​x19βˆ’2​x6​x9​x15​x18βˆ’2​x6​x9​x16​x21\displaystyle+x_{6}x_{9}x_{11}^{2}-x_{6}x_{9}x_{12}^{2}+\tfrac{9}{2}rx_{6}x_{9}x_{14}x_{19}-2x_{6}x_{9}x_{15}x_{18}-2x_{6}x_{9}x_{16}x_{21}
+(βˆ’92​r+3)​x6​x10​x14​x18+x6​x10​x15​x19+x6​x10​x16​x20βˆ’x6​x10​x17​x21+12​x72​x112\displaystyle+(-\tfrac{9}{2}r+3)x_{6}x_{10}x_{14}x_{18}+x_{6}x_{10}x_{15}x_{19}+x_{6}x_{10}x_{16}x_{20}-x_{6}x_{10}x_{17}x_{21}+\tfrac{1}{2}x_{7}^{2}x_{11}^{2}
+12​x72​x122+34​r​x72​x132+12​x72​x142+12​x72​x172+12​x72​x192+12​x72​x202+(βˆ’94​r+2)​x72​x212\displaystyle+\tfrac{1}{2}x_{7}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{7}^{2}x_{13}^{2}+\tfrac{1}{2}x_{7}^{2}x_{14}^{2}+\tfrac{1}{2}x_{7}^{2}x_{17}^{2}+\tfrac{1}{2}x_{7}^{2}x_{19}^{2}+\tfrac{1}{2}x_{7}^{2}x_{20}^{2}+(-\tfrac{9}{4}r+2)x_{7}^{2}x_{21}^{2}
+x7​x8​x14​x15βˆ’x7​x8​x16​x17βˆ’x7​x8​x18​x19+(92​rβˆ’3)​x7​x8​x20​x21+x7​x9​x14​x16\displaystyle+x_{7}x_{8}x_{14}x_{15}-x_{7}x_{8}x_{16}x_{17}-x_{7}x_{8}x_{18}x_{19}+(\tfrac{9}{2}r-3)x_{7}x_{8}x_{20}x_{21}+x_{7}x_{9}x_{14}x_{16}
+x7​x9​x15​x17βˆ’x7​x9​x18​x20+(βˆ’92​r+3)​x7​x9​x19​x21+(92​rβˆ’4)​x7​x10​x18​x21\displaystyle+x_{7}x_{9}x_{15}x_{17}-x_{7}x_{9}x_{18}x_{20}+(-\tfrac{9}{2}r+3)x_{7}x_{9}x_{19}x_{21}+(\tfrac{9}{2}r-4)x_{7}x_{10}x_{18}x_{21}
+12​x82​x112+12​x82​x122+34​r​x82​x132+12​x82​x152+12​x82​x162+12​x82​x182+(βˆ’94​r+2)​x82​x202\displaystyle+\tfrac{1}{2}x_{8}^{2}x_{11}^{2}+\tfrac{1}{2}x_{8}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{8}^{2}x_{13}^{2}+\tfrac{1}{2}x_{8}^{2}x_{15}^{2}+\tfrac{1}{2}x_{8}^{2}x_{16}^{2}+\tfrac{1}{2}x_{8}^{2}x_{18}^{2}+(-\tfrac{9}{4}r+2)x_{8}^{2}x_{20}^{2}
+12​x82​x212+(92​rβˆ’4)​x8​x9​x19​x20+x8​x10​x14​x16+x8​x10​x15​x17\displaystyle+\tfrac{1}{2}x_{8}^{2}x_{21}^{2}+(\tfrac{9}{2}r-4)x_{8}x_{9}x_{19}x_{20}+x_{8}x_{10}x_{14}x_{16}+x_{8}x_{10}x_{15}x_{17}
+(βˆ’92​r+3)​x8​x10​x18​x20βˆ’x8​x10​x19​x21+12​x92​x112+12​x92​x122+34​r​x92​x132+12​x92​x152\displaystyle+(-\tfrac{9}{2}r+3)x_{8}x_{10}x_{18}x_{20}-x_{8}x_{10}x_{19}x_{21}+\tfrac{1}{2}x_{9}^{2}x_{11}^{2}+\tfrac{1}{2}x_{9}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{9}^{2}x_{13}^{2}+\tfrac{1}{2}x_{9}^{2}x_{15}^{2}
+12​x92​x162+12​x92​x182+(βˆ’94​r+2)​x92​x192+12​x92​x212βˆ’x9​x10​x14​x15+x9​x10​x16​x17\displaystyle+\tfrac{1}{2}x_{9}^{2}x_{16}^{2}+\tfrac{1}{2}x_{9}^{2}x_{18}^{2}+(-\tfrac{9}{4}r+2)x_{9}^{2}x_{19}^{2}+\tfrac{1}{2}x_{9}^{2}x_{21}^{2}-x_{9}x_{10}x_{14}x_{15}+x_{9}x_{10}x_{16}x_{17}
+(92​rβˆ’3)​x9​x10​x18​x19βˆ’x9​x10​x20​x21+12​x102​x112+12​x102​x122+34​r​x102​x132+12​x102​x142\displaystyle+(\tfrac{9}{2}r-3)x_{9}x_{10}x_{18}x_{19}-x_{9}x_{10}x_{20}x_{21}+\tfrac{1}{2}x_{10}^{2}x_{11}^{2}+\tfrac{1}{2}x_{10}^{2}x_{12}^{2}+\tfrac{3}{4}rx_{10}^{2}x_{13}^{2}+\tfrac{1}{2}x_{10}^{2}x_{14}^{2}
+12​x102​x172+(βˆ’94​r+2)​x102​x182+12​x102​x192+12​x102​x202.\displaystyle+\tfrac{1}{2}x_{10}^{2}x_{17}^{2}+(-\tfrac{9}{4}r+2)x_{10}^{2}x_{18}^{2}+\tfrac{1}{2}x_{10}^{2}x_{19}^{2}+\tfrac{1}{2}x_{10}^{2}x_{20}^{2}.

References

  • [Arv03] A.Β Arvanitogeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, no. v. 22, American Mathematical Society, Providence, RI, 2003.
  • [BDI08] D.Β K. Biss, D.Β Dugger, and D.Β C. Isaksen, Large annihilators in Cayley–Dickson algebras, Comm. Algebra 36 (2008), no.Β 2, 632–664.
  • [BH87] A.Β Back and W.Β Y. Hsiang, Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1987), no.Β 1, 207–227.
  • [BLS20] T.Β C. Burness, M.Β W. Liebeck, and A.Β Shalev, The length and depth of compact Lie groups, Math. Z. 294 (2020), no.Β 3-4, 1457–1476.
  • [CLR95] M.Β D. Choi, T.Β Y. Lam, and B.Β Reznick, Sums of squares of real polynomials, K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras. Summer Research Institute on Quadratic Forms and Division Algebras, July 6-24, 1992, University of California, Santa Barbara, CA (USA), Providence, RI: American Mathematical Society, 1995, pp.Β 103–126.
  • [DZ79] J.Β E. D’Atri and W.Β Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs of the American Mathematical Society, no. 215, American Mathematical Society, Providence, RI, 1979.
  • [GG19] A.Β B. Gillard and N.Β G. Gresnigt, Three fermion generations with two unbroken gauge symmetries from the complex sedenions, Eur. Phys. J. C 79 (2019), no.Β 5, 11 p.
  • [Jen73] G.Β R. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geom. 8 (1973), no.Β 4, 599–614.
  • [Ker98] M.Β M. Kerr, New examples of homogeneous Einstein metrics, Michigan Math. J. 45 (1998), no.Β 1, 115–134.
  • [Mor98] G.Β Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mex., III. Ser. 4 (1998), no.Β 1, 13–28.
  • [Oni92] A.Β L. Onishchik, The group of isometries of a compact Riemannian homogeneous space, Differential Geometry and Its Applications. Proceedings of a Colloquium, Held in Eger, Hungary, August 20-25, 1989, Organized by the JΓ‘nos Bolyai Mathematical Society, Amsterdam: North-Holland Publishing Company; Budapest: JΓ‘nos Bolyai Mathematical Society, 1992, pp.Β 597–616.
  • [OR13] C.Β Olmos and S.Β Reggiani, A note on the uniqueness of the canonical connection of a naturally reductive space, Monatsh. Math. 172 (2013), no.Β 3-4, 379–386.
  • [ORT14] C.Β Olmos, S.Β Reggiani, and H.Β Tamaru, The index of symmetry of compact naturally reductive spaces, Math. Z. 277 (2014), no.Β 3-4, 611–628.
  • [PW98] V.Β Powers and T.Β WΓΆrmann, An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra 127 (1998), no.Β 1, 99–104.
  • [Reg10] S.Β Reggiani, On the affine group of a normal homogeneous manifold, Ann. Global Anal. Geom. 37 (2010), no.Β 4, 351–359.
  • [Reg24] by same author, Auxiliary computations for the article The Geometry of Sedenion Zero Divisors, https://github.com/silvioreggiani/sedenion-zero-div, 2024.
  • [SA20] L.Β S. Saoud and H.Β Al-Marzouqi, Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm, IEEE Access 8 (2020), 144823–144838.
  • [Sag70] A.Β A. Sagle, Some Homogeneous Einstein Manifolds, Nagoya Math. J. 39 (1970), 81–106.
  • [Zil07] W.Β Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, Metric and Comparison Geometry. Surveys in Differential Geometry. Vol. XI., Somerville, MA: International Press, 2007, pp.Β 63–102.