This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Geometry and Kinematics of the Matrix Lie Group SEK(3)SE_{K}(3)

Yarong Luo, [email protected]
Mengyuan Wang, [email protected]
Chi Guo, [email protected]
GNSS Research Center, Wuhan University

Abstract
Currently state estimation is very important for the robotics, and the uncertainty representation based Lie group is natural for the state estimation problem. It is necessary to exploit the geometry and kinematic of matrix Lie group sufficiently. Therefore, this note gives a detailed derivation of the recently proposed matrix Lie group SEK(3)SE_{K}(3) for the first time, our results extend the results in Barfoot [1]. Then the closed form for the inverse Jacobian in SEK(3)SE_{K}(3) is derived. Next, we give detailed derivation of the composition of general poses. We also describe the situations where this group is suitable for state representation. Finally, we have developed code based on Matlab framework for quickly implementing and testing.

Key Words
matrix Lie group SEK(3)SE_{K}(3), Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3), geometry, kinematics, state estimation

Introduction

It is common to estimate the attitude, velocity and position for inertial navigation in mobile robotics. However, there is no much theory about the description of the extended poses. Alex Barrau proposed the matrix Lie group SEK(d)(K,d+)SE_{K}(d)(K\in\mathbb{N},d\in\mathbb{N_{+}}) which is called group of KK direct isometries to describe extended poses [2, 3] in the invariant extended Kalman filter algorithm[4]. This group seems to include all the Lie groups currently applied in the state estimation problem for robotics. The group SEK(d)SE_{K}(d) allows recovering SEK(3)SE_{K}(3) with d=3d=3, and the theory of SEK(3)SE_{K}(3) is further developed recently in contact-aided invariant extended Kalman filter for the legged robot state estimation[5]. The multiple direct spatial isometries group SEK(2)SE_{K}(2) was also proposed for two dimensional state estimation problem in [3]. When KK equals to 0, the group SEK(3)SE_{K}(3) reduced to the Matrix Lie group SO(3)SO(3) (the Special Orthogonal group) which represents the rotation matrices, and when KK equals to 1, it reduced to the Matrix Lie group SE(3)SE(3) (the Special Euclidean group) which is usually used to represent the pose (orientation, position) in state estimation. More details about these two special matrix Lie groups can be found in [1]. When KK equals to 2, the group SEK(3)SE_{K}(3) is called group of double direct isometries[2] and denoted as SE2(3)SE_{2}(3). The matrix Lie group SE2(3)SE_{2}(3) has been used in many applications, such as solving the localization problem from noisy inertial sensors and a noisy GPS by using SE2(3)SE_{2}(3)[6], representing the extended poses (orientation, position,velocity) in 3D inertial navigation[7] and leveraging the theory of preintegration on manifolds that account for rotating earth[8]. In most invariant filtering theory works, SEk(3)SE_{k}(3) is proposed to resolve the consistency issues of KF-like problem[3][9].

The contribution in this note including:

  • the geometry and kinematics of the matrix Lie group SEK(3)SE_{K}(3) are given similar to the matrix Lie group SO(3)SO(3) and SE(3)SE(3).

  • the composition of general poses is derived in detail.

  • the monotonicity of the uncertainty propagation on matrix Lie group SEK(3)SE_{K}(3) is investigated.

  • the applications about the SEK(3)SE_{K}(3) group are also discussed.

  • the simulation code about the manipulations of this group is released at https://github.com/LYRen1900/Matrix-Lie-group-and-its-application.

Geometry of Matrix Lie Group SEK(3)SE_{K}(3)

This section gives detailed derivation about the geometry of the KK direct isometries group SEK(3)SE_{K}(3) by analogy with matrix Lie group SE(3)SE(3) and SO(3)SO(3) which have been shown in Barfoot’s book [1].

Group of K Direct Isometries SEK(3)SE_{K}(3)

The group represents the space of matrices that apply a rigid body rotation and K translations to points in 3\mathbb{R}^{3}. The group SO(3)SO(3) and the three dimensional vector space 3\mathbb{R}^{3} is the subgroup of SEK(3)SE_{K}(3). Moreover, the group SEK(3)SE_{K}(3) has the structure of the semidirect product of SO(3)SO(3) by 3×3××3K\underbrace{\mathbb{R}^{3}\times\mathbb{R}^{3}\times\cdots\times\mathbb{R}^{3}}_{K} and it can be expressed as:

SEK(3)=SO(3)3×3××3KSE_{K}(3)=SO(3)\propto\underbrace{\mathbb{R}^{3}\times\mathbb{R}^{3}\times\cdots\times\mathbb{R}^{3}}_{K} (1)

The geometric meaning of the above semi-direct product is the rotation acting on the KK translations.

Formally, the matrix Lie group SEK(3)SE_{K}(3) is defined as follows:

SEK(3):={T=[Rp1p2pK𝟎𝐓100𝟎𝐓010𝟎𝐓001](K+3)×(K+3)|RSO(3),pk3,k=1,,K}SE_{K}(3):=\left\{T=\begin{bmatrix}R&p_{1}&p_{2}&\cdots&p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix}\in\mathbb{R}^{(K+3)\times(K+3)}|R\in SO(3),p_{k}\in\mathbb{R}^{3},k=1,\cdots,K\right\} (2)

where SO(3) is the space of valid rotation matrices:

SO(3):={R3×3|RRT=I3,detR=1}SO(3):=\left\{R\in\mathbb{R}^{3\times 3}|RR^{T}=I_{3},\det R=1\right\} (3)

and IdI_{d} is the identity matrix of dimension d.

The identity element of the group is the (K+3)×(K+3)(K+3)\times(K+3) identity matrix. The matrix multiplication provides the group composition operation of any two elements in Lie group SEK(3)SE_{K}(3). The closure for SEK(3)SE_{K}(3) can be verified by multiplication,

T1T2\displaystyle T_{1}T_{2} =[R1p11p12p1K𝟎𝐓100𝟎𝐓010𝟎𝐓001][R2p21p22p2K𝟎𝐓100𝟎𝐓010𝟎𝐓001]\displaystyle=\begin{bmatrix}R_{1}&{p_{1}}_{1}&{p_{1}}_{2}&\cdots&{p_{1}}_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdot&1\end{bmatrix}\begin{bmatrix}R_{2}&{p_{2}}_{1}&{p_{2}}_{2}&\cdots&{p_{2}}_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix} (4)
=[R1R2R1p21+p11R1p22+p12R1p2K+p1K𝟎𝐓100𝟎𝐓010𝟎𝐓001]SEK(3)\displaystyle=\begin{bmatrix}R_{1}R_{2}&R_{1}{p_{2}}_{1}+{p_{1}}_{1}&R_{1}{p_{2}}_{2}+{p_{1}}_{2}&\cdots&R_{1}{p_{2}}_{K}+{p_{1}}_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix}\in SE_{K}(3)

as a result of the closure R1R2SO(3)R_{1}R_{2}\in SO(3) and R1p2k+p1k3,k=1,,KR_{1}{p_{2}}_{k}+{p_{1}}_{k}\in\mathbb{R}^{3},k=1,\cdots,K.

For invertibility, the inverse of the element is given as

T1=[R1R1p1R1p2R1pK𝟎𝐓100𝟎𝐓010𝟎𝐓001]SEK(3)T^{-1}=\begin{bmatrix}R^{-1}&-R^{-1}p_{1}&-R^{-1}p_{2}&\cdots&-R^{-1}p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix}\in SE_{K}(3) (5)

Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3)

The tangent space of the matrix Lie group SEK(3)SE_{K}(3) at the identity element is the Lie algebra 𝔰𝔢3(k)\mathfrak{se}_{3}(k), which is also a vectorspace that completely captures the local structure of the group. The Lie algebra associated with SEK(3)SE_{K}(3) is given by

vectorspace:\displaystyle\text{vectorspace}: 𝔰𝔢k(3)={S=(ξ)(K+3)×(K+3)|ξ3(K+1)}\displaystyle\quad\mathfrak{se}_{k}(3)=\left\{S=\mathcal{L}(\xi)\in\mathbb{R}^{(K+3)\times(K+3)}|\xi\in\mathbb{R}^{3(K+1)}\right\}
field:\displaystyle\text{field}: \displaystyle\quad\mathbb{R}
Lie bracket:\displaystyle\text{Lie bracket}: [S1,S2]=S1S2S2S1\displaystyle\quad[S_{1},S_{2}]=S_{1}S_{2}-S_{2}S_{1}

This space of matrices is isomorphic to 3(K+1)\mathbb{R}^{3(K+1)}, and aims at to identify 𝔰𝔢k(3)\mathfrak{se}_{k}(3) to 3(K+1)\mathbb{R}^{3(K+1)}. We define a linear map :3(K+1)(K+3)×(K+3)\mathcal{L}:\mathbb{R}^{3(K+1)}\rightarrow\mathbb{R}^{(K+3)\times(K+3)} that converts the Euclidean vector to the matrix forms:

(ξ)=([ϕt1t2tK])=[ϕt1t2tK𝟎𝐓000𝟎𝐓000𝟎𝐓000],ϕ,t1,t2,,tK3\mathcal{L}(\xi)=\mathcal{L}\left(\begin{bmatrix}\phi\\ t_{1}\\ t_{2}\\ \vdots\\ t_{K}\end{bmatrix}\right)=\begin{bmatrix}\phi_{\wedge}&t_{1}&t_{2}&\cdots&t_{K}\\ \bf{0}^{T}&0&0&\cdots&0\\ \bf{0}^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&0\end{bmatrix},\phi,t_{1},t_{2},\cdots,t_{K}\in\mathbb{R}^{3} (6)

where ϕ\phi_{\wedge} denotes the skew-symmetric matrix of a vector ϕ=(ϕ1ϕ2ϕ3)T3\phi=\begin{pmatrix}\phi_{1}&\phi_{2}&\phi_{3}\end{pmatrix}^{T}\in\mathbb{R}^{3}.

Let S1=(ξ1),S2=(ξ2)𝔰𝔢k(3)S_{1}=\mathcal{L}(\xi_{1}),S_{2}=\mathcal{L}(\xi_{2})\in\mathfrak{se}_{k}(3), then, for the closure property of the Lie bracket, we can get

[S1,S2]=S1S2S2S1=(ξ1)(ξ2)(ξ2)(ξ1)=(𝔏(ξ1)ξ2)𝔰𝔢k(3)[S_{1},S_{2}]=S_{1}S_{2}-S_{2}S_{1}=\mathcal{L}(\xi_{1})\mathcal{L}(\xi_{2})-\mathcal{L}(\xi_{2})\mathcal{L}(\xi_{1})=\mathcal{L}\left(\mathfrak{L}(\xi_{1})\xi_{2}\right)\in\mathfrak{se}_{k}(3) (7)

where 𝔏\mathfrak{L} is also defined as a linear map 𝔏:3(K+1)(K+3)×(K+3)\mathfrak{L}:\mathbb{R}^{3(K+1)}\rightarrow\mathbb{R}^{(K+3)\times(K+3)} that converts the Euclidean vector to the matrix forms:

𝔏(ξ)=𝔏([ϕt1t2tK])=[ϕ000(t1)ϕ00(t2)0ϕ0(tK)00ϕ]3(K+1)×3(K+1)\mathfrak{L}(\xi)=\mathfrak{L}\left(\begin{bmatrix}\phi\\ t_{1}\\ t_{2}\\ \vdots\\ t_{K}\end{bmatrix}\right)=\begin{bmatrix}\phi_{\wedge}&0&0&\cdots&0\\ (t_{1})_{\wedge}&\phi_{\wedge}&0&\cdots&0\\ (t_{2})_{\wedge}&0&\phi_{\wedge}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (t_{K})_{\wedge}&0&0&\cdots&\phi_{\wedge}\end{bmatrix}\in\mathbb{R}^{3(K+1)\times 3(K+1)} (8)

The Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3) is the set of (K+3)×(K+3)(K+3)\times(K+3) matrices corresponding to differential translations and rotations. Therefore, there are thus 3(K+1)3(K+1) generators of this Lie algebra:

G1\displaystyle G_{1} =[00001×3K00101×3K01001×3K03K×103K×103K×103K×3K],G2=[00101×3K00001×3K1001×3K03K×103K×103K×103K×3K]\displaystyle=\begin{bmatrix}0&0&0&0_{1\times 3K}\\ 0&0&-1&0_{1\times 3K}\\ 0&1&0&0_{1\times 3K}\\ 0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 3K}\end{bmatrix},G_{2}=\begin{bmatrix}0&0&1&0_{1\times 3K}\\ 0&0&0&0_{1\times 3K}\\ -1&&0&0_{1\times 3K}\\ 0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 3K}\end{bmatrix} (9)
G3\displaystyle G_{3} =[01001×3K10001×3K00001×3K03K×103K×103K×103K×3K],G3k+1=[03×301×(k1)101×(Kk)01×(k1)001×(Kk)01×(k1)001×(Kk)03K×303K×3K]\displaystyle=\begin{bmatrix}0&-1&0&0_{1\times 3K}\\ 1&0&0&0_{1\times 3K}\\ 0&0&0&0_{1\times 3K}\\ 0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 1}&0_{3K\times 3K}\end{bmatrix},G_{3k+1}=\begin{bmatrix}0_{3\times 3}&\begin{array}[]{ccc}0_{1\times(k-1)}&1&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\end{array}\\ 0_{3K\times 3}&0_{3K\times 3K}\end{bmatrix}
G3k+2\displaystyle G_{3k+2} =[03×301×(k1)001×(Kk)01×(k1)101×(Kk)01×(k1)001×(Kk)03K×303K×3K],G3k+3=[03×301×(k1)001×(Kk)01×(k1)001×(Kk)01×(k1)101×(Kk)03K×303K×3K]\displaystyle=\begin{bmatrix}0_{3\times 3}&\begin{array}[]{ccc}0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&1&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\end{array}\\ 0_{3K\times 3}&0_{3K\times 3K}\end{bmatrix},G_{3k+3}=\begin{bmatrix}0_{3\times 3}&\begin{array}[]{ccc}0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&0&0_{1\times{(K-k)}}\\ 0_{1\times(k-1)}&1&0_{1\times{(K-k)}}\end{array}\\ 0_{3K\times 3}&0_{3K\times 3K}\end{bmatrix}
k=1,,K\displaystyle k=1,\cdots,K

Any element of the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3) can be represented as a linear combination of the generators:

[ϕTt1Tt2TtKT]T\displaystyle\begin{bmatrix}\phi^{T}&t_{1}^{T}&t_{2}^{T}&\cdots&t_{K}^{T}\end{bmatrix}^{T} 3(K+1)\displaystyle\in\mathbb{R}^{3(K+1)} (10)
ϕ1G1+ϕ2G2+ϕ3G3+k=1K(tk1G3k+1+tk2G3k+2+tk3G3k+3)\displaystyle\phi_{1}G_{1}+\phi_{2}G_{2}+\phi_{3}G_{3}+\sum_{k=1}^{K}\left({t_{k}}_{1}G_{3k+1}+{t_{k}}_{2}G_{3k+2}+{t_{k}}_{3}G_{3k+3}\right) 𝔰𝔢k(3)\displaystyle\in\mathfrak{se}_{k}(3)

Consequently, the Lie algebra space is a 3(K+1)3(K+1)-dimensional vector space with basis elements {G1,,G3(K+1)}\{G_{1},\cdots,G_{3(K+1)}\}, and there is a linear isomorphism between 𝔰𝔢k(3)\mathfrak{se}_{k}(3) and 3(K+1)\mathbb{R}^{3(K+1)} that we denote as follows: :3(K+1)(K+3)×(K+3)\mathcal{L}:\mathbb{R}^{3(K+1)}\rightarrow\mathbb{R}^{(K+3)\times(K+3)} and 1:(K+3)×(K+3)3(K+1)\mathcal{L}^{-1}:\mathbb{R}^{(K+3)\times(K+3)}\rightarrow\mathbb{R}^{3(K+1)}. The isomorphism property will allow us to express the differential calculus of the matrix Lie group computation in vector form with the minimal number of parameters 3(K+1)3(K+1), as opposed to considering the matrices with (K+3)2(K+3)^{2} coefficients. Moreover, the Euclidean space 3(K+1)\mathbb{R}^{3(K+1)} is sometimes called the Lie algebra of the Lie group SEK(3)SE_{K}(3) in some literatures.

Exponential Map

The exponential map from the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3) to the Lie group SEK(3)SE_{K}(3) is the simple extension of the Lie algebra 𝔰𝔢(3)\mathfrak{se}(3). Consequently, given the vector ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)} and the Lie algebra (ξ)\mathcal{L}(\xi), the Lie group can be given by

T\displaystyle T =Exp(ξ)=expG((ξ))=[expG(ϕ)Jlt1Jlt2JltK𝟎𝐓100𝟎𝐓010𝟎𝐓001]\displaystyle=Exp(\xi)=\exp_{G}(\mathcal{L}(\xi))=\begin{bmatrix}\exp_{G}(\phi_{\wedge})&J_{l}t_{1}&J_{l}t_{2}&\cdots&J_{l}t_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix} (11)
=[Rp1p2pK𝟎𝐓100𝟎𝐓010𝟎𝐓001](K+3)×(K+3),RSO(3),pk3,k=1,,K\displaystyle=\begin{bmatrix}R&p_{1}&p_{2}&\cdots&p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix}\in\mathbb{R}^{(K+3)\times(K+3)},R\in SO(3),p_{k}\in\mathbb{R}^{3},k=1,\cdots,K

where ExpExp denotes the map that maps the vector ξ\xi to SEK(3)SE_{K}(3), expG\exp_{G} denotes the matrix exponential,

R=R(ϕ)=expG(ϕ)\displaystyle R=R(\phi)=\exp_{G}(\phi_{\wedge}) =I3+sinθu+(1cosθ)u2\displaystyle=I_{3}+\sin\theta u_{\wedge}+(1-\cos\theta)u_{\wedge}^{2} (12)
=I3+sinθu+(1cosθ)(I3+uuT)\displaystyle=I_{3}+\sin\theta u_{\wedge}+(1-\cos\theta)(-I_{3}+uu^{T})
=cosθI3+(1cosθ)uuT+sinθu\displaystyle=\cos\theta I_{3}+(1-\cos\theta)uu^{T}+\sin\theta u_{\wedge}
=I3+sinθθϕ+1cosθθ2ϕ2,θ=ϕ,u=ϕ/θ\displaystyle=I_{3}+\frac{\sin\theta}{\theta}\phi_{\wedge}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2},\theta=||\phi||,u=\phi/\theta
u3=uu_{\wedge}^{3}=-u_{\wedge} (13)
pk=Jltk3,k=1,,Kp_{k}=J_{l}t_{k}\in\mathbb{R}^{3},k=1,\cdots,K (14)

and JlJ_{l} is the left Jacobian matrix of the rotation matrices group SO(3)SO(3) which is given by

Jl=Jl(ϕ)\displaystyle J_{l}=J_{l}(\phi) =n=01(n+1)!(ϕ)n=01Rα𝑑α\displaystyle=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\phi_{\wedge})^{n}=\int_{0}^{1}R^{\alpha}d\alpha (15)
=I3+1cosθθu+(1sinθθ)u2\displaystyle=I_{3}+\frac{1-\cos\theta}{\theta}u_{\wedge}+(1-\frac{\sin\theta}{\theta})u_{\wedge}^{2}
=I3+1cosθθu+(1sinθθ)(I3+uuT)\displaystyle=I_{3}+\frac{1-\cos\theta}{\theta}u_{\wedge}+(1-\frac{\sin\theta}{\theta})(-I_{3}+uu^{T})
=sinθθI3+(1sinθθ)uuT+1cosθθu\displaystyle=\frac{\sin\theta}{\theta}I_{3}+(1-\frac{\sin\theta}{\theta})uu^{T}+\frac{1-\cos\theta}{\theta}u_{\wedge}
=I3+1cosθθ2ϕ+θsinθθ3ϕ2\displaystyle=I_{3}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{2}

and the inverse of the left Jacobian matrix JlJ_{l} is

Jl1=Jl1(ϕ)\displaystyle J_{l}^{-1}=J_{l}^{-1}(\phi) =n=0Bnn!(ϕ)n=I3θ2u+(1θ2cotθ2)uu\displaystyle=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(\phi_{\wedge})^{n}=I_{3}-\frac{\theta}{2}u_{\wedge}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})u_{\wedge}u_{\wedge} (16)
=I3θ2u+(1θ2cotθ2)(I3+uuT)\displaystyle=I_{3}-\frac{\theta}{2}u_{\wedge}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})(-I_{3}+uu^{T})
=θ2cotθ2I3+(1θ2cotθ2)uuTθ2u\displaystyle=\frac{\theta}{2}\cot\frac{\theta}{2}I_{3}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})uu^{T}-\frac{\theta}{2}u_{\wedge}
=I12ϕ+(1θ21+cosθ2θsinθ)ϕ2\displaystyle=I-\frac{1}{2}\phi_{\wedge}+\left(\frac{1}{\theta^{2}}-\frac{1+\cos\theta}{2\theta\sin\theta}\right)\phi_{\wedge}^{2}

where Bn(n=1,,)B_{n}(n=1,\cdots,\infty) are the Bernoulli numbers.

According to the identity (13), it is easy to verify that

θ3(u3+u)=ϕ3+θ2ϕ=03×3ϕ3=θ2ϕ\theta^{3}(u_{\wedge}^{3}+u_{\wedge})=\phi_{\wedge}^{3}+\theta^{2}\phi_{\wedge}=0_{3\times 3}\Rightarrow\phi_{\wedge}^{3}=-\theta^{2}\phi_{\wedge} (17)

The identity relationship between the Rodriguez formula and the left Jacobian matrix can be proofed as following:

Jl(Rϕ)\displaystyle J_{l}(R\phi) =I3+1cosθθ2(Rϕ)+θsinθθ3(Rϕ)2\displaystyle=I_{3}+\frac{1-\cos\theta}{\theta^{2}}(R\phi)_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}(R\phi)_{\wedge}^{2} (18)
=I3+1cosθθ2RϕRT+θsinθθ3RϕRTRϕRT\displaystyle=I_{3}+\frac{1-\cos\theta}{\theta^{2}}R\phi_{\wedge}R^{T}+\frac{\theta-\sin\theta}{\theta^{3}}R\phi_{\wedge}R^{T}R\phi_{\wedge}R^{T}
=RRT+1cosθθ2RϕRT+θsinθθ3Rϕ2RT=RJl(ϕ)RT\displaystyle=RR^{T}+\frac{1-\cos\theta}{\theta^{2}}R\phi_{\wedge}R^{T}+\frac{\theta-\sin\theta}{\theta^{3}}R\phi_{\wedge}^{2}R^{T}=RJ_{l}(\phi)R^{T}
Jl(ϕ)ϕ=(I3+1cosθθ2ϕ+θsinθθ3ϕ2)ϕ=ϕ+1cosθθ2ϕ2+θsinθθ3ϕ3\displaystyle J_{l}(\phi)\phi_{\wedge}=\left(I_{3}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{2}\right)\phi_{\wedge}=\phi_{\wedge}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{3} (19)
=\displaystyle= ϕ+1cosθθ2ϕ2+(θsinθ)u3=ϕ+1cosθθ2ϕ2+(θsinθ)(u)\displaystyle\phi_{\wedge}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+(\theta-\sin\theta)u_{\wedge}^{3}=\phi_{\wedge}+\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+(\theta-\sin\theta)(-u_{\wedge})
=\displaystyle= 1cosθθ2ϕ2+sinθθϕ=R(ϕ)I3\displaystyle\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+\frac{\sin\theta}{\theta}\phi_{\wedge}=R(\phi)-I_{3}

It is well known that

(Rϕ)=R(ϕ)RT,RSO(3),ϕ3(R\phi)_{\wedge}=R(\phi_{\wedge})R^{T},R\in SO(3),\phi\in\mathbb{R}^{3} (20)

Therefore, we can get

R(R1ϕ)=I3+sinθθ(R1ϕ)+1cosθθ2(R1ϕ)2\displaystyle R(R_{1}\phi)=I_{3}+\frac{\sin\theta}{\theta}(R_{1}\phi)_{\wedge}+\frac{1-\cos\theta}{\theta^{2}}(R_{1}\phi)_{\wedge}^{2} (21)
=\displaystyle= R1R1T+sinθθR1(ϕ)R1T+1cosθθ2R1(ϕ2)R1T=R1R(ϕ)R1T,R1SO(3),ϕ3\displaystyle R_{1}R_{1}^{T}+\frac{\sin\theta}{\theta}R_{1}(\phi_{\wedge})R_{1}^{T}+\frac{1-\cos\theta}{\theta^{2}}R_{1}(\phi_{\wedge}^{2})R_{1}^{T}=R_{1}R(\phi)R_{1}^{T},R_{1}\in SO(3),\phi\in\mathbb{R}^{3}

Furthermore, we have that

expG((Rϕ))=RexpG(ϕ)RT,RSO(3),ϕ3\exp_{G}((R\phi)_{\wedge})=R\exp_{G}(\phi_{\wedge})R^{T},R\in SO(3),\phi\in\mathbb{R}^{3} (22)

By equation (20), the proof is as follows:

expG((Rϕ))=n=01n!(Rϕ)n=n=01n!(R(ϕ)RT)n=n=01n!R(ϕ)nRT\displaystyle\exp_{G}((R\phi)_{\wedge})=\sum_{n=0}^{\infty}\frac{1}{n!}(R\phi)_{\wedge}^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}(R(\phi_{\wedge})R^{T})^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}R(\phi_{\wedge})^{n}R^{T} (23)
=\displaystyle= Rn=01n!(ϕ)nRT=RexpG(ϕ)RT\displaystyle R\sum_{n=0}^{\infty}\frac{1}{n!}(\phi_{\wedge})^{n}R^{T}=R\exp_{G}(\phi_{\wedge})R^{T}

we can go in the other direction but not uniquely use the logarithmic mapping:

ξ=Log(T)=1(logG(T))\xi=Log(T)=\mathcal{L}^{-1}(\log_{G}(T)) (24)

where LogLog denotes the map that maps the element TT of matrix Lie group SEK(3)SE_{K}(3) to the vector ξ\xi, and logG\log_{G} denotes the matrix logarithm.

The exponential map from 𝔰𝔢k(3)\mathfrak{se}_{k}(3) to SEK(3)SE_{K}(3) is surjective-only: every TSEK(3)T\in SE_{K}(3) can be generated by many ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)}.

We can also develop a direct series expression for T from the exponential map by using the useful identity

(ξ)4+θ2(ξ)2=S4+θ2S2=𝟎𝐊+𝟑\mathcal{L}(\xi)^{4}+\theta^{2}\mathcal{L}(\xi)^{2}=S^{4}+\theta^{2}S^{2}=\bf{0}_{K+3} (25)

where ξ=[ϕTt1Tt2TtKT]T3(K+1)\xi=\begin{bmatrix}\phi^{T}&t_{1}^{T}&t_{2}^{T}&\cdots&t_{K}^{T}\end{bmatrix}^{T}\in\mathbb{R}^{3(K+1)}. Expanding the series and using the identity to rewrite all quartic and higher terms in terms of lower-order terms, the closed form expression for the exponential map of SEK(3)SE_{K}(3) is given by

T=Exp(ξ)=expG((ξ))=expG(S)=n=01n!Sn\displaystyle T=Exp(\xi)=\exp_{G}(\mathcal{L}(\xi))=\exp_{G}(S)=\sum_{n=0}^{\infty}\frac{1}{n!}S^{n} (26)
=\displaystyle= IK+3+S+12!S2+13!S3+14!S4+15!S5+\displaystyle I_{K+3}+S+\frac{1}{2!}S^{2}+\frac{1}{3!}S^{3}+\frac{1}{4!}S^{4}+\frac{1}{5!}S^{5}+\cdots
=\displaystyle= IK+3+S+(12!14!θ2+16!θ418!θ6+)1cosθθ2S2\displaystyle I_{K+3}+S+\underbrace{\left(\frac{1}{2!}-\frac{1}{4!}\theta^{2}+\frac{1}{6!}\theta^{4}-\frac{1}{8!}\theta^{6}+\cdots\right)}_{\frac{1-\cos{\theta}}{\theta^{2}}}S^{2}
+(13!15!θ2+17!θ419!θ6+)θsinθθ3S3\displaystyle+\underbrace{\left(\frac{1}{3!}-\frac{1}{5!}\theta^{2}+\frac{1}{7!}\theta^{4}-\frac{1}{9!}\theta^{6}+\cdots\right)}_{\frac{\theta-\sin{\theta}}{\theta^{3}}}S^{3}
=\displaystyle= IK+3+S+1cosθθ2S2+θsinθθ3S3\displaystyle I_{K+3}+S+\frac{1-\cos\theta}{\theta^{2}}S^{2}+\frac{\theta-\sin\theta}{\theta^{3}}S^{3}

Adjoints

The Adjoint representation of a matrix Lie group GG on the Euclidean space p\mathbb{R}^{p} is defined as the linear operator AdTAd_{T}, it captures properties related to commutation:

TG,ξp\displaystyle\forall T\in G,\xi\in\mathbb{R}^{p} Exp(AdTξ)=expG((AdTξ))\displaystyle Exp(Ad_{T}\cdot\xi)=\exp_{G}(\mathcal{L}(Ad_{T}\cdot\xi)) (27)
:=\displaystyle:= expG(T(ξ)T1)=n=0(T(ξ)T1)n\displaystyle\exp_{G}(T\mathcal{L}(\xi)T^{-1})=\sum_{n=0}^{\infty}(T\mathcal{L}(\xi)T^{-1})^{n}
=\displaystyle= Tn=0((ξ))nT1=TexpG((ξ))T1=TExp(ξ)T1\displaystyle T\sum_{n=0}^{\infty}(\mathcal{L}(\xi))^{n}T^{-1}=T\exp_{G}(\mathcal{L}(\xi))T^{-1}=TExp(\xi)T^{-1}

the Adjoint representation describes the effect of non-commutability matrix multiplication.

Assuming we have a vector ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)}, the corresponded Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3) and matrix Lie group TSEK(3)T\in SE_{K}(3), combining the nice property that RϕR1=(Rϕ)R\phi_{\wedge}R^{-1}=(R\phi)_{\wedge}, the adjoin of an element of SEK(3)SE_{K}(3) is given by analogy to SE(3)SE(3):

Exp(AdTξ)=expG((AdTξ))=expG(T(ξ)T1)\displaystyle\qquad Exp(Ad_{T}\cdot\xi)=\exp_{G}(\mathcal{L}(Ad_{T}\cdot\xi))=\exp_{G}(T\mathcal{L}(\xi)T^{-1}) (28)
=expG([Rp1p2pK𝟎𝐓100𝟎𝐓010𝟎𝐓001][ϕt1t2tK𝟎𝐓000𝟎𝐓000𝟎𝐓000][R1R1p1R1p2R1pK𝟎𝐓100𝟎𝐓010𝟎𝐓001])\displaystyle=\exp_{G}\left(\begin{bmatrix}R&p_{1}&p_{2}&\cdots&p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdot&1\end{bmatrix}\begin{bmatrix}\phi_{\wedge}&t_{1}&t_{2}&\cdots&t_{K}\\ \bf{0}^{T}&0&0&\cdots&0\\ \bf{0}^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdot&0\end{bmatrix}\begin{bmatrix}R^{-1}&-R^{-1}p_{1}&-R^{-1}p_{2}&\cdots&-R^{-1}p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdot&1\end{bmatrix}\right)
=expG([RϕR1RϕR1p1+Rt1RϕR1p2+Rt2RϕR1pK+RtK𝟎𝐓000𝟎𝐓000𝟎𝐓000])\displaystyle=\exp_{G}\left(\begin{bmatrix}R\phi_{\wedge}R^{-1}&-R\phi_{\wedge}R^{-1}p_{1}+Rt_{1}&-R\phi_{\wedge}R^{-1}p_{2}+Rt_{2}&\cdots&-R\phi_{\wedge}R^{-1}p_{K}+Rt_{K}\\ \bf{0}^{T}&0&0&\cdots&0\\ \bf{0}^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&0\end{bmatrix}\right)
=expG([(Rϕ)(p1)Rϕ+Rt1(p2)Rϕ+Rt2(pK)Rϕ+RtK𝟎𝐓000𝟎𝐓000𝟎𝐓000])\displaystyle=\exp_{G}\left(\begin{bmatrix}(R\phi)_{\wedge}&(p_{1})_{\wedge}R\phi+Rt_{1}&(p_{2})_{\wedge}R\phi+Rt_{2}&\cdots&(p_{K})_{\wedge}R\phi+Rt_{K}\\ \bf{0}^{T}&0&0&\cdots&0\\ \bf{0}^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&0\end{bmatrix}\right)
=expG(([Rϕ(p1)Rϕ+Rt1(p2)Rϕ+Rt2(pK)Rϕ+RtK]))=Exp([R000(p1)RR00(p2)R0R0(pK)R00R][ϕt1t2tK])\displaystyle=\exp_{G}\left(\mathcal{L}\left(\begin{bmatrix}R\phi\\ (p_{1})_{\wedge}R\phi+Rt_{1}\\ (p_{2})_{\wedge}R\phi+Rt_{2}\\ \vdots\\ (p_{K})_{\wedge}R\phi+Rt_{K}\end{bmatrix}\right)\right)=Exp\left(\begin{bmatrix}R&0&0&\cdots&0\\ (p_{1})_{\wedge}R&R&0&\cdots&0\\ (p_{2})_{\wedge}R&0&R&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (p_{K})_{\wedge}R&0&0&\cdots&R\end{bmatrix}\begin{bmatrix}\phi\\ t_{1}\\ t_{2}\\ \vdots\\ t_{K}\end{bmatrix}\right)

It is obvious that the Adjoint representation of SEK(3)SE_{K}(3) can be rewritten as:

AdT=[R000(p1)RR00(p2)R0R0(pK)R00R]3(K+1)×3(K+1)Ad_{T}=\begin{bmatrix}R&0&0&\cdots&0\\ (p_{1})_{\wedge}R&R&0&\cdots&0\\ (p_{2})_{\wedge}R&0&R&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (p_{K})_{\wedge}R&0&0&\cdots&R\end{bmatrix}\in\mathbb{R}^{3(K+1)\times 3(K+1)} (29)

AdTAd_{T} is described as an operator that can act directly on 3(K+1)\mathbb{R}^{3(K+1)} instead of on the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3).

The set of Adjoint representations of all the elements of SEK(3)SE_{K}(3) can form a matrix Lie group, we denote it as:

Ad(SEK(3))={𝒯=AdT|TSEK(3)}Ad\left(SE_{K}(3)\right)=\left\{\mathcal{T}=Ad_{T}|T\in SE_{K}(3)\right\} (30)

It turns out that {𝒯=AdT|TSEK(3)}\left\{\mathcal{T}=Ad_{T}|T\in SE_{K}(3)\right\} is also a matrix Lie group. For closure we let 𝒯1=AdT1,𝒯2=AdT2Ad(SEK(3))\mathcal{T}_{1}=Ad_{T_{1}},\mathcal{T}_{2}=Ad_{T_{2}}\in Ad(SE_{K}(3)), and then

𝒯1𝒯2\displaystyle\mathcal{T}_{1}\mathcal{T}_{2} =AdT1AdT2=[R1000(p11)R1R100(p21)R10R10(pK1)R100R1][R2000(p12)R2R200(p22)R20R20(pK2)R200R2]\displaystyle=Ad_{T_{1}}Ad_{T_{2}}=\begin{bmatrix}R_{1}&0&0&\cdots&0\\ ({p_{1}}_{1})_{\wedge}R_{1}&R_{1}&0&\cdots&0\\ ({p_{2}}_{1})_{\wedge}R_{1}&0&R_{1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ ({p_{K}}_{1})_{\wedge}R_{1}&0&0&\cdots&R_{1}\end{bmatrix}\begin{bmatrix}R_{2}&0&0&\cdots&0\\ ({p_{1}}_{2})_{\wedge}R_{2}&R_{2}&0&\cdots&0\\ ({p_{2}}_{2})_{\wedge}R_{2}&0&R_{2}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ ({p_{K}}_{2})_{\wedge}R_{2}&0&0&\cdots&R_{2}\end{bmatrix} (31)
=[R1R2000(p11)R1R2+R1(p12)R2R1R200(p21)R1R2+R1(p22)R20R1R20(pK1)R1R2+R1(pK2)R200R1R2]\displaystyle=\begin{bmatrix}R_{1}R_{2}&0&0&\cdots&0\\ ({p_{1}}_{1})_{\wedge}R_{1}R_{2}+R_{1}({p_{1}}_{2})_{\wedge}R_{2}&R_{1}R_{2}&0&\cdots&0\\ ({p_{2}}_{1})_{\wedge}R_{1}R_{2}+R_{1}({p_{2}}_{2})_{\wedge}R_{2}&0&R_{1}R_{2}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ ({p_{K}}_{1})_{\wedge}R_{1}R_{2}+R_{1}({p_{K}}_{2})_{\wedge}R_{2}&0&0&\cdots&R_{1}R_{2}\end{bmatrix}
=[R1R2000(R1p12+p11)R1R2R1R200(R1p22+p21)R1R20R1R20(R1pK2+pK1)R1R200R1R2]=AdT1T2Ad(SEK(3))\displaystyle=\begin{bmatrix}R_{1}R_{2}&0&0&\cdots&0\\ (R_{1}{p_{1}}_{2}+{p_{1}}_{1})_{\wedge}R_{1}R_{2}&R_{1}R_{2}&0&\cdots&0\\ (R_{1}{p_{2}}_{2}+{p_{2}}_{1})_{\wedge}R_{1}R_{2}&0&R_{1}R_{2}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (R_{1}{p_{K}}_{2}+{p_{K}}_{1})_{\wedge}R_{1}R_{2}&0&0&\cdots&R_{1}R_{2}\end{bmatrix}=Ad_{T_{1}T_{2}}\in Ad(SE_{K}(3))

where we have used the linearity of the \wedge operator. Associativity follows from basic properties of matrix multiplication, and the identity element of the group is the 3(K+1)×3(K+1)3(K+1)\times 3(K+1) identity matrix. For invertibility, we let 𝒯=AdTAd(SEK(3))\mathcal{T}=Ad_{T}\in Ad(SE_{K}(3)), and then we have

𝒯1\displaystyle\mathcal{T}^{-1} =(AdT)1=[R000(p1)RR00(p2)R0R0(pK)R00R]1=[R1000R1(p1)R100R1(p2)0R10R1(pK)00R1]\displaystyle=(Ad_{T})^{-1}=\begin{bmatrix}R&0&0&\cdots&0\\ (p_{1})_{\wedge}R&R&0&\cdots&0\\ (p_{2})_{\wedge}R&0&R&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (p_{K})_{\wedge}R&0&0&\cdots&R\end{bmatrix}^{-1}=\begin{bmatrix}R^{-1}&0&0&\cdots&0\\ -R^{-1}(p_{1})_{\wedge}&R^{-1}&0&\cdots&0\\ -R^{-1}(p_{2})_{\wedge}&0&R^{-1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -R^{-1}(p_{K})_{\wedge}&0&0&\cdots&R^{-1}\end{bmatrix} (32)
=[R1000(R1p1)R1R100(R1p2)R10R10(R1pK)R100R1]=AdT1Ad(SEK(3))\displaystyle=\begin{bmatrix}R^{-1}&0&0&\cdots&0\\ (-R^{-1}p_{1})_{\wedge}R^{-1}&R^{-1}&0&\cdots&0\\ (-R^{-1}p_{2})_{\wedge}R^{-1}&0&R^{-1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (-R^{-1}p_{K})_{\wedge}R^{-1}&0&0&\cdots&R^{-1}\end{bmatrix}=Ad_{T^{-1}}\in Ad(SE_{K}(3))

In the end, it is shown that Ad(SEK(3))Ad(SE_{K}(3)) is a matrix Lie group. The Lie group Ad(SEK(3))Ad(SE_{K}(3)) plays important role in the invariant filter theory[4] when the error needs to be switched between the left and right error forms[5]. Meanwhile, we can also consider the adjoint of an element of the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3). Let S=(ξ)𝔰𝔢k(3)S=\mathcal{L}(\xi)\in\mathfrak{se}_{k}(3), then the adjoint of this element is 𝔏(ξ)\mathfrak{L}(\xi) which has been defined in equation (8);

𝔗:=adS=ad(ξ)=𝔏(ξ)\mathfrak{T}:=ad_{S}=ad_{\mathcal{L}(\xi)}=\mathfrak{L}(\xi) (33)

It is easy to verify that

𝔏(ξ1)ξ2=𝔏(ξ2)ξ1,ξ1,ξ23(K+1)\mathfrak{L}(\xi_{1})\xi_{2}=-\mathfrak{L}(\xi_{2})\xi_{1},\forall\xi_{1},\xi_{2}\in\mathbb{R}^{3(K+1)} (34)

The Lie algebra associated with the matrix Lie group Ad(SEK(3))Ad(SE_{K}(3)) is given by

vectorspace:\displaystyle\text{vectorspace}: ad(𝔰𝔢3(k))={𝔗=adS3(K+1)×3(K+1)|S𝔰𝔢k(3)}\displaystyle\quad ad(\mathfrak{se}_{3}(k))=\left\{\mathfrak{T}=ad_{S}\in\mathbb{R}^{3(K+1)\times 3(K+1)}|S\in\mathfrak{se}_{k}(3)\right\}
field:\displaystyle\text{field}: \displaystyle\quad\mathbb{R}
Lie bracket:\displaystyle\text{Lie bracket}: [𝔗1,𝔗2]=𝔗1𝔗2𝔗2𝔗1\displaystyle\quad[\mathfrak{T}_{1},\mathfrak{T}_{2}]=\mathfrak{T}_{1}\mathfrak{T}_{2}-\mathfrak{T}_{2}\mathfrak{T}_{1}

We will omit to show that ad(𝔰𝔢k(3))ad(\mathfrak{se}_{k}(3)) is a vectorspace, but will briefly show that the closure, bilinearity, alternating and Jacaobi identity are satisfied. Let 𝔗,𝔗1=𝔏(ξ1),𝔗2=𝔏(ξ2)ad(𝔰𝔢k(3))\mathfrak{T},\mathfrak{T}_{1}=\mathfrak{L}(\xi_{1}),\mathfrak{T}_{2}=\mathfrak{L}(\xi_{2})\in ad(\mathfrak{se}_{k}(3)). Then, for the closure property, we have

[𝔗1,𝔗2]=𝔗1𝔗2𝔗2𝔗1=𝔏(ξ1)𝔏(ξ2)𝔏(ξ2)𝔏(ξ1)=𝔏(𝔏(ξ1)ξ2)ad(𝔰𝔢k(3))[\mathfrak{T}_{1},\mathfrak{T}_{2}]=\mathfrak{T}_{1}\mathfrak{T}_{2}-\mathfrak{T}_{2}\mathfrak{T}_{1}=\mathfrak{L}(\xi_{1})\mathfrak{L}(\xi_{2})-\mathfrak{L}(\xi_{2})\mathfrak{L}(\xi_{1})=\mathfrak{L}\left(\mathfrak{L}(\xi_{1})\xi_{2}\right)\in ad\left(\mathfrak{se}_{k}(3)\right) (35)

Bilinearity follows directly from the fact that 𝔏()\mathfrak{L}(\cdot) is a linear operator. The alternating property can be seen easily through

[𝔗,𝔗]=𝔗𝔗𝔗𝔗=𝟎𝟑(𝐊+𝟏)𝐚𝐝(𝔰𝔢𝐤(𝟑))[\mathfrak{T},\mathfrak{T}]=\mathfrak{T}\mathfrak{T}-\mathfrak{T}\mathfrak{T}=\bf{0}_{3(K+1)}\in ad\left(\mathfrak{se}_{k}(3)\right) (36)

Finally, the Jacobi identity can be verified by substituting and applying the definition of the Lie bracket. Again, we will refer to ad(𝔰𝔢k(3))ad(\mathfrak{se}_{k}(3)) as the Lie algebra, although technically this is only the associated vectorspace.

Once again, the Lie algebra ad(𝔰𝔢k(3))ad(\mathfrak{se}_{k}(3)) can be mapped to the Lie group Ad(SEK(3))Ad(SE_{K}(3)) through the exponential map as shown below:

𝒯\displaystyle\mathcal{T} =expG(𝔏(ξ))=expG(𝔗)=n=01n!(𝔏(ξ))n=n=01n![ϕ000(t1)ϕ00(t2)0ϕ0(tK)00ϕ]n\displaystyle=\exp_{G}(\mathfrak{L}(\xi))=\exp_{G}(\mathfrak{T})=\sum_{n=0}^{\infty}\frac{1}{n!}(\mathfrak{L}(\xi))^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}\begin{bmatrix}\phi_{\wedge}&0&0&\cdots&0\\ (t_{1})_{\wedge}&\phi_{\wedge}&0&\cdots&0\\ (t_{2})_{\wedge}&0&\phi_{\wedge}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (t_{K})_{\wedge}&0&0&\cdots&\phi_{\wedge}\end{bmatrix}^{n} (37)
=[R000(p1)RR00(p2)R0R0(pK)R00R]=[R000(Jlt1)RR00(Jlt2)R0R0(JltK)R00R]=n=01n!(ad(ξ))n\displaystyle=\begin{bmatrix}R&0&0&\cdots&0\\ (p_{1})_{\wedge}R&R&0&\cdots&0\\ (p_{2})_{\wedge}R&0&R&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (p_{K})_{\wedge}R&0&0&\cdots&R\end{bmatrix}=\begin{bmatrix}R&0&0&\cdots&0\\ (J_{l}t_{1})_{\wedge}R&R&0&\cdots&0\\ (J_{l}t_{2})_{\wedge}R&0&R&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (J_{l}t_{K})_{\wedge}R&0&0&\cdots&R\end{bmatrix}=\sum_{n=0}^{\infty}\frac{1}{n!}(ad_{\mathcal{L}(\xi)})^{n}

where 𝒯Ad(SEK(3)),𝔏(ξ)ad(𝔰𝔢k(3))\mathcal{T}\in Ad(SE_{K}(3)),\mathfrak{L}(\xi)\in ad(\mathfrak{se}_{k}(3)) and the key property which has been proven in [1] is used:

(Jltk)R=n=0m=01(n+m+1)!(θ)n(tk)(θ)m,k=1,,K(J_{l}t_{k})_{\wedge}R=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\frac{1}{(n+m+1)!}(\theta_{\wedge})^{n}(t_{k})_{\wedge}(\theta_{\wedge})^{m},k=1,\cdots,K (38)

For the exponential map of SEK(3)SE_{K}(3), it can be shown that

(𝒯ξ)=T(ξ)T1\mathcal{L}(\mathcal{T}\xi)=T\mathcal{L}(\xi)T^{-1} (39)
𝔏(𝒯ξ)=𝒯𝔏(ξ)𝒯1\mathfrak{L}(\mathcal{T}\xi)=\mathcal{T}\mathfrak{L}(\xi)\mathcal{T}^{-1} (40)

with ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)}, TSEK(3)T\in SE_{K}(3), 𝒯Ad(SEK(3))\mathcal{T}\in Ad(SE_{K}(3)) to establish

T1T2(ξ2)T11=T2(𝒯1ξ2)T_{1}T_{2}(\xi_{2})T_{1}^{-1}=T_{2}(\mathcal{T}_{1}\xi_{2}) (41)
𝒯1𝒯2(ξ2)𝒯11=𝒯2(𝒯1ξ2)\mathcal{T}_{1}\mathcal{T}_{2}(\xi_{2})\mathcal{T}_{1}^{-1}=\mathcal{T}_{2}(\mathcal{T}_{1}\xi_{2}) (42)

where the proofs are similar to equation (21).

By equation (39), it is also easy to get

expG((𝒯ξ))=n=01n!((𝒯ξ))n=n=01n!(T(ξ)T1)n\displaystyle\exp_{G}(\mathcal{L}(\mathcal{T}\xi))=\sum_{n=0}^{\infty}\frac{1}{n!}(\mathcal{L}(\mathcal{T}\xi))^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}(T\mathcal{L}(\xi)T^{-1})^{n} (43)
=\displaystyle= Tn=01n!((ξ))nT1=TexpG((ξ))T1\displaystyle T\sum_{n=0}^{\infty}\frac{1}{n!}(\mathcal{L}(\xi))^{n}T^{-1}=T\exp_{G}(\mathcal{L}(\xi))T^{-1}

This formulation is the same as the equation (27).

By equation (40), it is also easy to get

expG(𝔏(𝒯ξ))=n=01n!(𝔏(𝒯ξ))n=n=01n!(𝒯𝔏(ξ)𝒯1)n\displaystyle\exp_{G}(\mathfrak{L}(\mathcal{T}\xi))=\sum_{n=0}^{\infty}\frac{1}{n!}(\mathfrak{L}(\mathcal{T}\xi))^{n}=\sum_{n=0}^{\infty}\frac{1}{n!}(\mathcal{T}\mathfrak{L}(\xi)\mathcal{T}^{-1})^{n} (44)
=\displaystyle= 𝒯n=01n!(𝔏(ξ))n𝒯1=𝒯expG(𝔏(ξ))𝒯1\displaystyle\mathcal{T}\sum_{n=0}^{\infty}\frac{1}{n!}(\mathfrak{L}(\xi))^{n}\mathcal{T}^{-1}=\mathcal{T}\exp_{G}(\mathfrak{L}(\xi))\mathcal{T}^{-1}

The logarithm mapping is defined through:

ξ=𝔏1(logG(𝒯))\xi=\mathfrak{L}^{-1}(\log_{G}(\mathcal{T})) (45)

The exponential mapping is again surjective-only: every 𝒯Ad(SEK(3))\mathcal{T}\in Ad(SE_{K}(3)) can be generated by many ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)}.

So far, we see a nice commutative relationship between the various Lie groups and algebras associated with SEK(3)SE_{K}(3):

Lie algebraLie group(K+3)×(K+3)\textstyle{(K+3)\times(K+3)}S=(ξ)𝔰𝔢k(3)\textstyle{S=\mathcal{L}(\xi)\in\mathfrak{se}_{k}(3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}expG\scriptstyle{\exp_{G}}ad\scriptstyle{ad}TSEK(3)\textstyle{T\in SE_{K}(3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ad\scriptstyle{Ad}3(K+1)×3(K+1)\textstyle{3(K+1)\times 3(K+1)}𝔗=𝔏(ξ)ad(𝔰𝔢k(3))\textstyle{\mathfrak{T}=\mathfrak{L}(\xi)\in ad(\mathfrak{se}_{k}(3))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}expG\scriptstyle{\exp_{G}}𝒯Ad(SEK(3))\textstyle{\mathcal{T}\in Ad(SE_{K}(3))}

The two paths from the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3) to the Lie group Ad(SEK(3))Ad(SE_{K}(3)) amount to show that the Adjoint representation Ad(SEK(3))Ad(SE_{K}(3)) is the automorphism of the group SEK(3)SE_{K}(3) and therefore we get

Ad(expG((ξ)))𝒯=expG(ad((ξ))𝔏(ξ))\underbrace{Ad\left(\exp_{G}(\mathcal{L}(\xi))\right)}_{\mathcal{T}}=\exp_{G}\left(\underbrace{ad(\mathcal{L}(\xi))}_{\mathfrak{L}(\xi)}\right) (46)

which implies that we can go from ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)} to 𝒯Ad(SEK(3))\mathcal{T}\in Ad(SE_{K}(3)) and back.

Similarly to the direct series expression for TT, we can also work one out for 𝒯=AdT\mathcal{T}=Ad_{T} by using the identity

(𝔏(ξ))5+2θ2(𝔏(ξ))3+θ4𝔏(ξ)=𝔗5+2θ2𝔗3+θ4𝔗=𝟎𝟑(𝐊+𝟏)\left(\mathfrak{L}(\xi)\right)^{5}+2\theta^{2}\left(\mathfrak{L}(\xi)\right)^{3}+\theta^{4}\mathfrak{L}(\xi)=\mathfrak{T}^{5}+2\theta^{2}\mathfrak{T}^{3}+\theta^{4}\mathfrak{T}=\bf{0}_{3(K+1)} (47)

Expanding the series and using the identity to rewrite all quintic and higher terms in lower-order terms, we have

𝒯=Exp(ξ)=expG(𝔏(ξ))=expG(𝔗)=n=01n!𝔗n\displaystyle\quad\mathcal{T}=Exp(\xi)=\exp_{G}(\mathfrak{L}(\xi))=\exp_{G}(\mathfrak{T})=\sum_{n=0}^{\infty}\frac{1}{n!}\mathfrak{T}^{n} (48)
=I3(K+1)+𝔗+12!𝔗2+13!𝔗3+14!𝔗4+15!𝔗5+\displaystyle=I_{3(K+1)}+\mathfrak{T}+\frac{1}{2!}\mathfrak{T}^{2}+\frac{1}{3!}\mathfrak{T}^{3}+\frac{1}{4!}\mathfrak{T}^{4}+\frac{1}{5!}\mathfrak{T}^{5}+\cdots
=I3(K+1)+(115!θ4+27!θ639!θ8+411!θ10)3sinθθcosθ2θ𝔗\displaystyle=I_{3(K+1)}+\underbrace{\left(1-\frac{1}{5!}\theta^{4}+\frac{2}{7!}\theta^{6}-\frac{3}{9!}\theta^{8}+\frac{4}{11!}\theta^{10}-\cdots\right)}_{\frac{3\sin\theta-\theta\cos\theta}{2\theta}}\mathfrak{T}
+(12!16!θ4+28!θ6310!θ8+412!θ10)4θsinθ4cosθ2θ2𝔗2\displaystyle\quad+\underbrace{\left(\frac{1}{2!}-\frac{1}{6!}\theta^{4}+\frac{2}{8!}\theta^{6}-\frac{3}{10!}\theta^{8}+\frac{4}{12!}\theta^{10}-\cdots\right)}_{\frac{4-\theta\sin\theta-4\cos\theta}{2\theta^{2}}}\mathfrak{T}^{2}
+(13!25!θ2+37!θ449!θ6+411!θ8)sinθθcosθ2θ3𝔗3\displaystyle\quad+\underbrace{\left(\frac{1}{3!}-\frac{2}{5!}\theta^{2}+\frac{3}{7!}\theta^{4}-\frac{4}{9!}\theta^{6}+\frac{4}{11!}\theta^{8}-\cdots\right)}_{\frac{\sin\theta-\theta\cos\theta}{2\theta^{3}}}\mathfrak{T}^{3}
+(14!26!θ2+38!θ4410!θ6+512!θ8)2θsinθ2cosθ2θ4𝔗4\displaystyle\quad+\underbrace{\left(\frac{1}{4!}-\frac{2}{6!}\theta^{2}+\frac{3}{8!}\theta^{4}-\frac{4}{10!}\theta^{6}+\frac{5}{12!}\theta^{8}-\cdots\right)}_{\frac{2-\theta\sin\theta-2\cos\theta}{2\theta^{4}}}\mathfrak{T}^{4}
=I3(K+1)+(3sinθθcosθ2θ)𝔗+(4θsinθ4cosθ2θ2)𝔗2\displaystyle=I_{3(K+1)}+\left(\frac{3\sin\theta-\theta\cos\theta}{2\theta}\right)\mathfrak{T}+\left(\frac{4-\theta\sin\theta-4\cos\theta}{2\theta^{2}}\right)\mathfrak{T}^{2}
+(sinθθcosθ2θ3)𝔗3+(2θsinθ2cosθ2θ4)𝔗43(K+1)×3(K+1)\displaystyle\quad+\left(\frac{\sin\theta-\theta\cos\theta}{2\theta^{3}}\right)\mathfrak{T}^{3}+\left(\frac{2-\theta\sin\theta-2\cos\theta}{2\theta^{4}}\right)\mathfrak{T}^{4}\in\mathbb{R}^{3(K+1)\times 3(K+1)}

Actions of the group SEK(3)SE_{K}(3)

Each group SEK(3)SE_{K}(3) comes with a family of natural group actions allowing to recover many of the observation functions of robotics and navigation. The vector action of the group SEK(3)SE_{K}(3) on 3\mathbb{R}^{3} with parameters (γ1,,γK)TK(\gamma_{1},\cdots,\gamma_{K})^{T}\in\mathbb{R}^{K} can be defined as:

xb=Rb+i=1Kγiri3,x=expG((R,r1,,rK))SEK(3),b3x\circ b=Rb+\sum_{i=1}^{K}\gamma_{i}r_{i}\in\mathbb{R}^{3},x=\exp_{G}(\mathcal{L}(R,r_{1},\cdots,r_{K}))\in SE_{K}(3),b\in\mathbb{R}^{3} (49)

It is easy to check that this defines an action of the group SEK(3)SE_{K}(3): Given x=expG((R,r1,,rK))SEK(3)x=\exp_{G}(\mathcal{L}(R,r_{1},\cdots,r_{K}))\in SE_{K}(3), x=expG((R,t1,,tK))SEK(3)x^{\prime}=\exp_{G}(\mathcal{L}(R^{\prime},t_{1},\cdots,t_{K}))\in SE_{K}(3), and b3b\in\mathbb{R}^{3}, we have:

x(xb)\displaystyle x\circ(x^{\prime}\circ b) =x(Rb+i=1Kγiti)=R(Rb+i=1Kγiti)+i=1Kγiri\displaystyle=x\circ(R^{\prime}b+\sum_{i=1}^{K}\gamma_{i}t_{i})=R(R^{\prime}b+\sum_{i=1}^{K}\gamma_{i}t_{i})+\sum_{i=1}^{K}\gamma_{i}r_{i} (50)
=RRb+i=1Kγi(Rti+ri)=(xx)b\displaystyle=RR^{\prime}b+\sum_{i=1}^{K}\gamma_{i}(Rt_{i}+r_{i})=(xx^{\prime})\circ b

where we used the group multiplication xx=(RR,Rt1+r1,,RtK+rK)xx^{\prime}=(RR^{\prime},Rt_{1}+r_{1},\cdots,Rt_{K}+r_{K}).

Baker-Campbell-Hausdorff

Given two non-commuting elements A,B𝔰𝔢k(3)A,B\in\mathfrak{se}_{k}(3), the well known Baker-Campbell-Hausdorff (BCH) formula states that the element C𝔰𝔢k(3)C\in\mathfrak{se}_{k}(3) defined by expG(A)expG(B)=expG(C)\exp_{G}(A)\exp_{G}(B)=\exp_{G}(C) can be expressed in the vectorspace without requiring the application of the exponential or the logarithm map:

C\displaystyle C =logG(expG(A)expG(B))\displaystyle=\log_{G}(\exp_{G}(A)\exp_{G}(B)) (51)
=A+B+12[A,B]+112([A,[A,B]]+[B,[B,A]])124[B,[A,[A,B]]]+\displaystyle=A+B+\frac{1}{2}[A,B]+\frac{1}{12}([A,[A,B]]+[B,[B,A]])-\frac{1}{24}[B,[A,[A,B]]]+\cdots

In particular cases of SEK(3)SE_{K}(3) and Ad(SEK(3))Ad(SE_{K}(3)), let expG((ξ1)),expG((ξ2))SEK(3)\exp_{G}(\mathcal{L}(\xi_{1})),\exp_{G}(\mathcal{L}(\xi_{2}))\in SE_{K}(3), and expG(𝔏(ξ1)),expG(𝔏(ξ2))Ad(SEK(3))\exp_{G}(\mathfrak{L}(\xi_{1})),\exp_{G}(\mathfrak{L}(\xi_{2}))\in Ad(SE_{K}(3)), we can show that

ξ=1(S)=1(logG(expG(S1)expG(S2))=1(logG(expG((ξ1))expG((ξ2))))\displaystyle\quad\xi=\mathcal{L}^{-1}(S)=\mathcal{L}^{-1}\left(\log_{G}(\exp_{G}(S_{1})\exp_{G}(S_{2})\right)=\mathcal{L}^{-1}\left(\log_{G}(\exp_{G}(\mathcal{L}(\xi_{1}))\exp_{G}(\mathcal{L}(\xi_{2})))\right) (52)
=ξ1+ξ2+12!𝔏(ξ1)ξ2+112!𝔏(ξ1)𝔏(ξ1)ξ2+112!𝔏(ξ2)𝔏(ξ2)ξ1124!𝔏(ξ2)𝔏(ξ1)𝔏(ξ1)ξ2+\displaystyle=\xi_{1}+\xi_{2}+\frac{1}{2!}\mathfrak{L}(\xi_{1})\xi_{2}+\frac{1}{12!}\mathfrak{L}(\xi_{1})\mathfrak{L}(\xi_{1})\xi_{2}+\frac{1}{12!}\mathfrak{L}(\xi_{2})\mathfrak{L}(\xi_{2})\xi_{1}-\frac{1}{24!}\mathfrak{L}(\xi_{2})\mathfrak{L}(\xi_{1})\mathfrak{L}(\xi_{1})\xi_{2}+\cdots
ξ=𝔏1(𝔗)=𝔏1(logG(expG(𝔗1)expG(𝔗2)))=𝔏1(logG(expG(𝔏(ξ1))expG(𝔏(ξ2))))\displaystyle\quad\xi=\mathfrak{L}^{-1}(\mathfrak{T})=\mathfrak{L}^{-1}\left(\log_{G}(\exp_{G}(\mathfrak{T}_{1})\exp_{G}(\mathfrak{T}_{2}))\right)=\mathfrak{L}^{-1}\left(\log_{G}(\exp_{G}(\mathfrak{L}(\xi_{1}))\exp_{G}(\mathfrak{L}(\xi_{2})))\right) (53)
=ξ1+ξ2+12!𝔏(ξ1)ξ2+112!𝔏(ξ1)𝔏(ξ1)ξ2+112!𝔏(ξ2)𝔏(ξ2)ξ1124!𝔏(ξ2)𝔏(ξ1)𝔏(ξ1)ξ2+\displaystyle=\xi_{1}+\xi_{2}+\frac{1}{2!}\mathfrak{L}(\xi_{1})\xi_{2}+\frac{1}{12!}\mathfrak{L}(\xi_{1})\mathfrak{L}(\xi_{1})\xi_{2}+\frac{1}{12!}\mathfrak{L}(\xi_{2})\mathfrak{L}(\xi_{2})\xi_{1}-\frac{1}{24!}\mathfrak{L}(\xi_{2})\mathfrak{L}(\xi_{1})\mathfrak{L}(\xi_{1})\xi_{2}+\cdots

Alternatively, if we assume that ξ1\xi_{1} or ξ2\xi_{2} is small, then using the approximate BCH formulas, we can show that

ξ=1(logG(expG((ξ1))expG((ξ2)))){𝒥l(ξ2)1ξ1+ξ2if ξ1 smallξ1+𝒥r(ξ1)1ξ2if ξ2 small\displaystyle\quad\xi=\mathcal{L}^{-1}\left(\log_{G}(\exp_{G}(\mathcal{L}(\xi_{1}))\exp_{G}(\mathcal{L}(\xi_{2})))\right)\approx\left\{\begin{array}[]{lr}\mathcal{J}_{l}(\xi_{2})^{-1}\xi_{1}+\xi_{2}&\text{if $\xi_{1}$ small}\\ \xi_{1}+\mathcal{J}_{r}(\xi_{1})^{-1}\xi_{2}&\text{if $\xi_{2}$ small}\end{array}\right. (54)
ξ=𝔏1(logG(expG(𝔏(ξ1))expG(𝔏(ξ2)))){𝒥l(ξ2)1ξ1+ξ2if ξ1 smallξ1+𝒥r(ξ1)1ξ2if ξ2 small\displaystyle\quad\xi=\mathfrak{L}^{-1}\left(\log_{G}(\exp_{G}(\mathfrak{L}(\xi_{1}))\exp_{G}(\mathfrak{L}(\xi_{2})))\right)\approx\left\{\begin{array}[]{lr}\mathcal{J}_{l}(\xi_{2})^{-1}\xi_{1}+\xi_{2}&\text{if $\xi_{1}$ small}\\ \xi_{1}+\mathcal{J}_{r}(\xi_{1})^{-1}\xi_{2}&\text{if $\xi_{2}$ small}\end{array}\right. (55)

where 𝒥l(ξ)1\mathcal{J}_{l}(\xi)^{-1} and 𝒥r(ξ)1\mathcal{J}_{r}(\xi)^{-1} are denoted as the inverse of the left and right Jacobians of matrix Lie group SEK(3)SE_{K}(3), respectively. And they are given as

𝒥l(ξ)1=n=0Bnn!(𝔏(ξ))n=n=0Bnn!(ad(ξ))n=ad(ξ)expG(ad(ξ))I\mathcal{J}_{l}(\xi)^{-1}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(\mathfrak{L}(\xi))^{n}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(ad_{\mathcal{L}(\xi)})^{n}=\frac{ad_{\mathcal{L}(\xi)}}{\exp_{G}(ad_{\mathcal{L}(\xi)})-I} (56)
𝒥r(ξ)1=n=0Bnn!(𝔏(ξ))n=n=0Bnn!(ad(ξ))n=ad(ξ)expG(ad(ξ))+I\mathcal{J}_{r}(\xi)^{-1}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(-\mathfrak{L}(\xi))^{n}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(-ad_{\mathcal{L}(\xi)})^{n}=\frac{ad_{\mathcal{L}(\xi)}}{-\exp_{G}(-ad_{\mathcal{L}(\xi)})+I} (57)

On the other hand, if we perturb the Lie algebra by adding small element ξ\xi, which is equivalent to multiplying the Lie group SEK(3)SE_{K}(3) and Ad(SEK(3))Ad(SE_{K}(3)) by small increments, we can get the left and right form of BCH formula separately

expG((δξ+ξ))=expG((𝒥l(ξ)1𝒥l(ξ)δξ+ξ))expG((𝒥l(ξ)δξ))expG((ξ))\exp_{G}(\mathcal{L}(\delta\xi+\xi))=\exp_{G}(\mathcal{L}(\mathcal{J}_{l}(\xi)^{-1}\mathcal{J}_{l}(\xi)\delta\xi+\xi))\approx\exp_{G}(\mathcal{L}(\mathcal{J}_{l}(\xi)\delta\xi))\exp_{G}(\mathcal{L}(\xi)) (58)
expG((ξ+δξ))=expG((ξ+𝒥r(ξ)1𝒥r(ξ)δξ))expG((ξ))expG((𝒥r(ξ)δξ))\exp_{G}(\mathcal{L}(\xi+\delta\xi))=\exp_{G}(\mathcal{L}(\xi+\mathcal{J}_{r}(\xi)^{-1}\mathcal{J}_{r}(\xi)\delta\xi))\approx\exp_{G}(\mathcal{L}(\xi))\exp_{G}(\mathcal{L}(\mathcal{J}_{r}(\xi)\delta\xi)) (59)
expG(𝔏(δξ+ξ))=expG(𝔏(𝒥l(ξ)1𝒥l(ξ)δξ+ξ))expG(𝔏(𝒥l(ξ)δξ))expG(𝔏(ξ))\exp_{G}(\mathfrak{L}(\delta\xi+\xi))=\exp_{G}(\mathfrak{L}(\mathcal{J}_{l}(\xi)^{-1}\mathcal{J}_{l}(\xi)\delta\xi+\xi))\approx\exp_{G}(\mathfrak{L}(\mathcal{J}_{l}(\xi)\delta\xi))\exp_{G}(\mathfrak{L}(\xi)) (60)
expG(𝔏(ξ+δξ))=expG(𝔏(ξ+𝒥r(ξ)1𝒥r(ξ)δξ))expG(𝔏(ξ))expG(𝔏(𝒥r(ξ)δξ))\exp_{G}(\mathfrak{L}(\xi+\delta\xi))=\exp_{G}(\mathfrak{L}(\xi+\mathcal{J}_{r}(\xi)^{-1}\mathcal{J}_{r}(\xi)\delta\xi))\approx\exp_{G}(\mathfrak{L}(\xi))\exp_{G}(\mathfrak{L}(\mathcal{J}_{r}(\xi)\delta\xi)) (61)

The expressions for the right and left Jacobians of SEK(3)SE_{K}(3) can be given as

𝒥l(ξ)\displaystyle\mathcal{J}_{l}(\xi) =n=01(n+1)!(𝔏(ξ))n=01𝒯α𝑑α=[Jl000Q1lJl00Q2l0Jl0QKl00Jl]\displaystyle=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\mathfrak{L}(\xi))^{n}=\int_{0}^{1}\mathcal{T}^{\alpha}d\alpha=\begin{bmatrix}J_{l}&0&0&\cdots&0\\ {Q_{1}}_{l}&J_{l}&0&\cdots&0\\ {Q_{2}}_{l}&0&J_{l}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ {Q_{K}}_{l}&0&0&\cdots&J_{l}\end{bmatrix} (62)
=n=01(n+1)!(ad(ξ))n=expG(ad(ξ))Iad(ξ)\displaystyle=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(ad_{\mathcal{L}(\xi)})^{n}=\frac{\exp_{G}(ad_{\mathcal{L}(\xi)})-I}{ad_{\mathcal{L}(\xi)}}
𝒥r(ξ)\displaystyle\mathcal{J}_{r}(\xi) =n=01(n+1)!(𝔏(ξ))n=01𝒯α𝑑α=[Jr000Q1rJr00Q2r0Jr0QKr00Jr]\displaystyle=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(-\mathfrak{L}(\xi))^{n}=\int_{0}^{1}\mathcal{T}^{-\alpha}d\alpha=\begin{bmatrix}J_{r}&0&0&\cdots&0\\ {Q_{1}}_{r}&J_{r}&0&\cdots&0\\ {Q_{2}}_{r}&0&J_{r}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ {Q_{K}}_{r}&0&0&\cdots&J_{r}\end{bmatrix} (63)
=n=01(n+1)!(ad(ξ))n=expG(ad(ξ))Iad(ξ)=expG(ad(ξ))+Iad(ξ)\displaystyle=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(-ad_{\mathcal{L}(\xi)})^{n}=\frac{\exp_{G}(-ad_{\mathcal{L}(\xi)})-I}{-ad_{\mathcal{L}(\xi)}}=\frac{-\exp_{G}(-ad_{\mathcal{L}(\xi)})+I}{ad_{\mathcal{L}(\xi)}}

where

Qkl(ξ)\displaystyle{Q_{k}}_{l}(\xi) =n=0m=0(ϕ)n(tk)(ϕ)m\displaystyle=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}(\phi_{\wedge})^{n}(t_{k})_{\wedge}(\phi_{\wedge})^{m} (64)
=12(tk)+(θsinθθ3)(ϕ(tk)+(tk)ϕ+ϕ(tk)ϕ)\displaystyle=\frac{1}{2}(t_{k})_{\wedge}+(\frac{\theta-\sin\theta}{\theta^{3}})(\phi_{\wedge}(t_{k})_{\wedge}+(t_{k})_{\wedge}\phi_{\wedge}+\phi_{\wedge}(t_{k})_{\wedge}\phi_{\wedge})
+(θ2+2cosθ22θ4)(ϕϕ(tk)+(tk)ϕϕ3ϕ(tk)ϕ)\displaystyle\qquad+(\frac{\theta^{2}+2\cos\theta-2}{2\theta^{4}})(\phi_{\wedge}\phi_{\wedge}(t_{k})_{\wedge}+(t_{k})_{\wedge}\phi_{\wedge}\phi_{\wedge}-3\phi_{\wedge}(t_{k})_{\wedge}\phi_{\wedge})
+(2θ3sinθ+θcosθ2θ5)(ϕ(tk)ϕϕ+ϕϕ(tk)ϕ)\displaystyle\qquad+(\frac{2\theta-3\sin\theta+\theta\cos\theta}{2\theta^{5}})(\phi_{\wedge}(t_{k})_{\wedge}\phi_{\wedge}\phi_{\wedge}+\phi_{\wedge}\phi_{\wedge}(t_{k})_{\wedge}\phi_{\wedge})
Jr=Jr(ϕ)=n=01(n+1)!(ϕ)n=01Rα𝑑α=I31cosθθu+(1sinθθ)u2\displaystyle J_{r}=J_{r}(\phi)=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(-\phi_{\wedge})^{n}=\int_{0}^{1}R^{-\alpha}d\alpha=I_{3}-\frac{1-\cos\theta}{\theta}u_{\wedge}+(1-\frac{\sin\theta}{\theta})u_{\wedge}^{2} (65)
=\displaystyle= I31cosθθu+θsinθθ(I3+uuT)=sinθθI31cosθθu+(1sinθθ)uuT\displaystyle I_{3}-\frac{1-\cos\theta}{\theta}u_{\wedge}+\frac{\theta-\sin\theta}{\theta}(-I_{3}+uu^{T})=\frac{\sin\theta}{\theta}I_{3}-\frac{1-\cos\theta}{\theta}u_{\wedge}+(1-\frac{\sin\theta}{\theta})uu^{T}
=\displaystyle= I31cosθθ2ϕ+θsinθθ3ϕ2\displaystyle I_{3}-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{2}

𝒯=expG(𝔏(ξ))\mathcal{T}=\exp_{G}(\mathfrak{L}(\xi)), R=expG(ϕ)R=\exp_{G}(\phi_{\wedge}), and ξ=[ϕTt1Tt2TtKT]T3(K+1)\xi=\begin{bmatrix}\phi^{T}&t_{1}^{T}&t_{2}^{T}&\cdots&t_{K}^{T}\end{bmatrix}^{T}\in\mathbb{R}^{3(K+1)}. JlJ_{l} and JrJ_{r} are referred to as the right and left Jacobians of SO(3)SO(3), respectively. The expression for Qkl{Q_{k}}_{l} comes from expanding the series and grouping terms into the series forms of the trigonometric functions[1].

The inverse for the right Jacobian matrix JrJ_{r} is

Jr1=Jr1(ϕ)=n=0Bnn!(ϕ)n=I3+θ2u+(1θ2cotθ2)uu\displaystyle J_{r}^{-1}=J_{r}^{-1}(\phi)=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}(-\phi_{\wedge})^{n}=I_{3}+\frac{\theta}{2}u_{\wedge}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})u_{\wedge}u_{\wedge} (66)
=\displaystyle= I3+θ2u+(1θ2cotθ2)(I3+uuT)=θ2cotθ2I3+(1θ2cotθ2)uuT+θ2u\displaystyle I_{3}+\frac{\theta}{2}u_{\wedge}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})(-I_{3}+uu^{T})=\frac{\theta}{2}\cot\frac{\theta}{2}I_{3}+(1-\frac{\theta}{2}\cot\frac{\theta}{2})uu^{T}+\frac{\theta}{2}u_{\wedge}
=\displaystyle= I+12ϕ+(1θ21+cosθ2θsinθ)ϕ2\displaystyle I+\frac{1}{2}\phi_{\wedge}+\left(\frac{1}{\theta^{2}}-\frac{1+\cos\theta}{2\theta\sin\theta}\right)\phi_{\wedge}^{2}

The identity relationship between the Rodriguez formula and the right Jacobian matrix can be proofed as following:

Jr(Rϕ)\displaystyle J_{r}(R\phi) =I31cosθθ2(Rϕ)+θsinθθ3(Rϕ)2\displaystyle=I_{3}-\frac{1-\cos\theta}{\theta^{2}}(R\phi)_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}(R\phi)_{\wedge}^{2} (67)
=I31cosθθ2RϕRT+θsinθθ3RϕRTRϕRT\displaystyle=I_{3}-\frac{1-\cos\theta}{\theta^{2}}R\phi_{\wedge}R^{T}+\frac{\theta-\sin\theta}{\theta^{3}}R\phi_{\wedge}R^{T}R\phi_{\wedge}R^{T}
=RRT1cosθθ2RϕRT+θsinθθ3Rϕ2RT=RJr(ϕ)RT\displaystyle=RR^{T}-\frac{1-\cos\theta}{\theta^{2}}R\phi_{\wedge}R^{T}+\frac{\theta-\sin\theta}{\theta^{3}}R\phi_{\wedge}^{2}R^{T}=RJ_{r}(\phi)R^{T}
Jr(ϕ)ϕ=(I31cosθθ2ϕ+θsinθθ3ϕ2)ϕ=ϕ1cosθθ2ϕ2+θsinθθ3ϕ3\displaystyle J_{r}(\phi)\phi_{\wedge}=\left(I_{3}-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{2}\right)\phi_{\wedge}=\phi_{\wedge}-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+\frac{\theta-\sin\theta}{\theta^{3}}\phi_{\wedge}^{3} (68)
=\displaystyle= ϕ1cosθθ2ϕ2+(θsinθ)u3=ϕ1cosθθ2ϕ2+(θsinθ)(u)\displaystyle\phi_{\wedge}-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+(\theta-\sin\theta)u_{\wedge}^{3}=\phi_{\wedge}-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+(\theta-\sin\theta)(-u_{\wedge})
=\displaystyle= 1cosθθ2ϕ2+sinθθϕ=I3R(ϕ)\displaystyle-\frac{1-\cos\theta}{\theta^{2}}\phi_{\wedge}^{2}+\frac{\sin\theta}{\theta}\phi_{\wedge}=I_{3}-R(-\phi)

The relations for Qkr{Q_{k}}_{r} come from the relationships between the left and right Jacobians:

𝒥l(ξ)=𝒯𝒥r(ξ)=AdT𝒥r(ξ)=AdExp(ξ)𝒥r(ξ)\mathcal{J}_{l}(\xi)=\mathcal{T}\mathcal{J}_{r}(\xi)=Ad_{T}\mathcal{J}_{r}(\xi)=Ad_{Exp(\xi)}\mathcal{J}_{r}(\xi) (69)
𝒥l(ξ)=𝒥r(ξ)\mathcal{J}_{l}(-\xi)=\mathcal{J}_{r}(\xi) (70)

Equation (69) is proved by

𝒯𝒥r(ξ)=𝒯01𝒯α𝑑α=01𝒯1α𝑑α=10𝒯β𝑑β=01𝒯β𝑑β=𝒥l(ξ)\mathcal{T}\mathcal{J}_{r}(\xi)=\mathcal{T}\int_{0}^{1}\mathcal{T}^{-\alpha}d\alpha=\int_{0}^{1}\mathcal{T}^{1-\alpha}d\alpha=-\int_{1}^{0}\mathcal{T}^{\beta}d\beta=\int_{0}^{1}\mathcal{T}^{\beta}d\beta=\mathcal{J}_{l}(\xi) (71)

Equation (70) is to be true from

𝒥r(ξ)=01𝒯(ξ)α𝑑α=01(𝒯(ξ)1)α𝑑α=01(𝒯(ξ))α𝑑α=𝒥l(ξ)\mathcal{J}_{r}(\xi)=\int_{0}^{1}\mathcal{T}(\xi)^{-\alpha}d\alpha=\int_{0}^{1}(\mathcal{T}(\xi)^{-1})^{\alpha}d\alpha=\int_{0}^{1}(\mathcal{T}(-\xi))^{\alpha}d\alpha=\mathcal{J}_{l}(-\xi) (72)

From the equation (69) we have

Jl=RJr,Qkl=RQkr+(Jltk)RJr,k=1,,KJ_{l}=RJ_{r},{Q_{k}}_{l}=R{Q_{k}}_{r}+(J_{l}t_{k})_{\wedge}RJ_{r},k=1,\cdots,K (73)

From the equation (70) we have

Jl(ξ)=Jr(ξ),Qkl(ξ)=Qkr(ξ),k=1,,KJ_{l}(-\xi)=J_{r}(\xi),{Q_{k}}_{l}(-\xi)={Q_{k}}_{r}(\xi),k=1,\cdots,K (74)

From the Taylor series expressions of 𝒯\mathcal{T} and 𝒥l\mathcal{J}_{l}, we know that

𝒯=n=01n!(𝔏(ξ))n=I3(K+1)+𝔏(ξ)n=01(n+1)!(𝔏(ξ))n=I3(K+1)+𝔏(ξ)𝒥l\mathcal{T}=\sum_{n=0}^{\infty}\frac{1}{n!}(\mathfrak{L}(\xi))^{n}=I_{3(K+1)}+\mathfrak{L}(\xi)\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\mathfrak{L}(\xi))^{n}=I_{3(K+1)}+\mathfrak{L}(\xi)\mathcal{J}_{l} (75)

Expanding the expression for the Jacobian, we have that

𝒥l(ξ)=n=01(n+1)!(𝔏(ξ))n=I3(K+1)+α1𝔏(ξ)+α2(𝔏(ξ))2+α3(𝔏(ξ))3+α4(𝔏(ξ))4\mathcal{J}_{l}(\xi)=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\mathfrak{L}(\xi))^{n}=I_{3(K+1)}+\alpha_{1}\mathfrak{L}(\xi)+\alpha_{2}(\mathfrak{L}(\xi))^{2}+\alpha_{3}(\mathfrak{L}(\xi))^{3}+\alpha_{4}(\mathfrak{L}(\xi))^{4} (76)

where α1,α2,α3,α4\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4} are unknown coefficients. These series can be expressed using only terms up to quartic through the use of the identity in equation (47). Substituting this into equation (75) we see that

𝒯=I3(K+1)+𝔏(ξ)+α1(𝔏(ξ))2+α2(𝔏(ξ))3+α3(𝔏(ξ))4+α4(𝔏(ξ))5\mathcal{T}=I_{3(K+1)}+\mathfrak{L}(\xi)+\alpha_{1}(\mathfrak{L}(\xi))^{2}+\alpha_{2}(\mathfrak{L}(\xi))^{3}+\alpha_{3}(\mathfrak{L}(\xi))^{4}+\alpha_{4}(\mathfrak{L}(\xi))^{5} (77)

Using equation (47) to rewrite the quintic term using the lower-order terms, we have that

𝒯=I3(K+1)+(11!α4θ4)𝔏(ξ)+α1(𝔏(ξ))2+(α22α4θ2)(𝔏(ξ))3+α3(𝔏(ξ))4\mathcal{T}=I_{3(K+1)}+(\frac{1}{1!}-\alpha_{4}\theta^{4})\mathfrak{L}(\xi)+\alpha_{1}(\mathfrak{L}(\xi))^{2}+(\alpha_{2}-2\alpha_{4}\theta^{2})(\mathfrak{L}(\xi))^{3}+\alpha_{3}(\mathfrak{L}(\xi))^{4} (78)

Comparing the coefficients to those in equation (48), we can solve for α1\alpha_{1}, α2\alpha_{2}, α3\alpha_{3} and α4\alpha_{4} such that

𝒥l(ξ)\displaystyle\mathcal{J}_{l}(\xi) =I3(K+1)+(4θsinθ4cosθ2θ2)𝔗+(4θ5sinθ+θcosθ2θ3)𝔗2\displaystyle=I_{3(K+1)}+\left(\frac{4-\theta\sin\theta-4\cos\theta}{2\theta^{2}}\right)\mathfrak{T}+\left(\frac{4\theta-5\sin\theta+\theta\cos\theta}{2\theta^{3}}\right)\mathfrak{T}^{2} (79)
+(2θsinθ2cosθ2θ4)𝔗3+(2θ3sinθ+θcosθ2θ5)𝔗43(K+1)×3(K+1)\displaystyle\quad+\left(\frac{2-\theta\sin\theta-2\cos\theta}{2\theta^{4}}\right)\mathfrak{T}^{3}+\left(\frac{2\theta-3\sin\theta+\theta\cos\theta}{2\theta^{5}}\right)\mathfrak{T}^{4}\in\mathbb{R}^{3(K+1)\times 3(K+1)}

This avoids the need to work out JlJ_{l} and Qkl,k=1,,K{Q_{k}}_{l},k=1,\cdots,K individually and then to assemble them into 𝒥l\mathcal{J}_{l}.

For some applications involving linearization and discretization, the following auxiliary quantity is introduced:

Γm(ξ)=n=01(n+m)!(𝔏(ξ))n=n=01(n+m)!𝔗n\Gamma_{m}(\xi)=\sum_{n=0}^{\infty}\frac{1}{(n+m)!}(\mathfrak{L}(\xi))^{n}=\sum_{n=0}^{\infty}\frac{1}{(n+m)!}\mathfrak{T}^{n} (80)

It is obvious that it draws on the series expansion of the matrix exponential. For m=0m=0, it yields:

Γ0(ξ)=n=01(n)!(𝔏(ξ))n=𝒯\Gamma_{0}(\xi)=\sum_{n=0}^{\infty}\frac{1}{(n)!}(\mathfrak{L}(\xi))^{n}=\mathcal{T} (81)

For m=1m=1, it yields

Γ1(ξ)=n=01(n+1)!(𝔏(ξ))n=𝒥l(ξ)\Gamma_{1}(\xi)=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\mathfrak{L}(\xi))^{n}=\mathcal{J}_{l}(\xi) (82)

For m=2m=2, it yields

Γ2(ξ)=n=01(n+2)!(𝔏(ξ))n\Gamma_{2}(\xi)=\sum_{n=0}^{\infty}\frac{1}{(n+2)!}(\mathfrak{L}(\xi))^{n} (83)

In order to obtain the closed-form expression for Γ2(ξ)\Gamma_{2}(\xi), the similar procedure as in derivation Γ1(ξ)\Gamma_{1}(\xi) id adopted. The relationship between Γ1(ξ)\Gamma_{1}(\xi) and Γ2(ξ)\Gamma_{2}(\xi) can be expressed as

Γ1(ξ)=I3(K+1)+Γ2(ξ)𝔏(ξ)\displaystyle\Gamma_{1}(\xi)=I_{3(K+1)}+\Gamma_{2}(\xi)\mathfrak{L}(\xi) (84)
=\displaystyle= I3(K+1)+(12!α4θ4)𝔏(ξ)+α1(𝔏(ξ))2+(α22α4θ2)(𝔏(ξ))3+α3(𝔏(ξ))4\displaystyle I_{3(K+1)}+(\frac{1}{2!}-\alpha_{4}\theta^{4})\mathfrak{L}(\xi)+\alpha_{1}(\mathfrak{L}(\xi))^{2}+(\alpha_{2}-2\alpha_{4}\theta^{2})(\mathfrak{L}(\xi))^{3}+\alpha_{3}(\mathfrak{L}(\xi))^{4}

Comparing equation (84) with equation (79), the coefficients of Γ2(ξ)\Gamma_{2}(\xi) can be obtained, that is

α1=(4θ5sinθ+θcosθ2θ3),α2=(2θ26+θsinθ+6cosθ2θ4),\displaystyle\alpha_{1}=\left(\frac{4\theta-5\sin\theta+\theta\cos\theta}{2\theta^{3}}\right),\alpha_{2}=\left(\frac{2\theta^{2}-6+\theta\sin\theta+6\cos\theta}{2\theta^{4}}\right), (85)
α3=(2θ3sinθ+θcosθ2θ5),α4=(θ24+θsinθ+4cosθ2θ6)\displaystyle\alpha_{3}=\left(\frac{2\theta-3\sin\theta+\theta\cos\theta}{2\theta^{5}}\right),\alpha_{4}=\left(\frac{\theta^{2}-4+\theta\sin\theta+4\cos\theta}{2\theta^{6}}\right)

Therefore, the closed-form expression for Γ2(ξ)\Gamma_{2}(\xi) is

Γ2(ξ)=12!I3(K+1)+(4θ5sinθ+θcosθ2θ3)𝔗+(2θ26+θsinθ+6cosθ2θ4)𝔗2\displaystyle\Gamma_{2}(\xi)=\frac{1}{2!}\cdot I_{3(K+1)}+\left(\frac{4\theta-5\sin\theta+\theta\cos\theta}{2\theta^{3}}\right)\mathfrak{T}+\left(\frac{2\theta^{2}-6+\theta\sin\theta+6\cos\theta}{2\theta^{4}}\right)\mathfrak{T}^{2} (86)
+(2θ3sinθ+θcosθ2θ5)𝔗3+(θ24+θsinθ+4cosθ2θ6)𝔗4\displaystyle+\left(\frac{2\theta-3\sin\theta+\theta\cos\theta}{2\theta^{5}}\right)\mathfrak{T}^{3}+\left(\frac{\theta^{2}-4+\theta\sin\theta+4\cos\theta}{2\theta^{6}}\right)\mathfrak{T}^{4}

In order to obtain the closed-form expression for Γ3(ξ)\Gamma_{3}(\xi), the relationship between Γ2(ξ)\Gamma_{2}(\xi) and Γ3(ξ)\Gamma_{3}(\xi) can be given as

Γ2(ξ)=12!I3(K+1)+Γ3(ξ)𝔏(ξ)\displaystyle\Gamma_{2}(\xi)=\frac{1}{2!}\cdot I_{3(K+1)}+\Gamma_{3}(\xi)\mathfrak{L}(\xi) (87)
=\displaystyle= 12!I3(K+1)+(13!α4θ4)𝔏(ξ)+α1(𝔏(ξ))2+(α22α4θ2)(𝔏(ξ))3+α3(𝔏(ξ))4\displaystyle\frac{1}{2!}\cdot I_{3(K+1)}+(\frac{1}{3!}-\alpha_{4}\theta^{4})\mathfrak{L}(\xi)+\alpha_{1}(\mathfrak{L}(\xi))^{2}+(\alpha_{2}-2\alpha_{4}\theta^{2})(\mathfrak{L}(\xi))^{3}+\alpha_{3}(\mathfrak{L}(\xi))^{4}

Comparing equation (87) with equation (86), the coefficients of Γ2(ξ)\Gamma_{2}(\xi) can be obtained, that is

α1\displaystyle\alpha_{1} =(2θ26+θsinθ+6cosθ2θ4),α2=(2θ318θ+21sinθ3θcosθ6θ5),\displaystyle=\left(\frac{2\theta^{2}-6+\theta\sin\theta+6\cos\theta}{2\theta^{4}}\right),\alpha_{2}=\left(\frac{2\theta^{3}-18\theta+21\sin\theta-3\theta\cos\theta}{6\theta^{5}}\right), (88)
α3\displaystyle\alpha_{3} =(θ24+θsinθ+4cosθ2θ6),α4=(θ312θ+15sinθ3θcosθ6θ7)\displaystyle=\left(\frac{\theta^{2}-4+\theta\sin\theta+4\cos\theta}{2\theta^{6}}\right),\alpha_{4}=\left(\frac{\theta^{3}-12\theta+15\sin\theta-3\theta\cos\theta}{6\theta^{7}}\right)

Therefore, the closed-form expression for Γ3(ξ)\Gamma_{3}(\xi) is

Γ3(ξ)=\displaystyle\Gamma_{3}(\xi)= 13!I3(K+1)+(2θ26+θsinθ+6cosθ2θ4)𝔗\displaystyle\frac{1}{3!}\cdot I_{3(K+1)}+\left(\frac{2\theta^{2}-6+\theta\sin\theta+6\cos\theta}{2\theta^{4}}\right)\mathfrak{T} (89)
+(2θ318θ+21sinθ3θcosθ6θ5)𝔗2\displaystyle+\left(\frac{2\theta^{3}-18\theta+21\sin\theta-3\theta\cos\theta}{6\theta^{5}}\right)\mathfrak{T}^{2}
+(θ24+θsinθ+4cosθ2θ6)𝔗3+(θ312θ+15sinθ3θcosθ6θ7)𝔗4\displaystyle+\left(\frac{\theta^{2}-4+\theta\sin\theta+4\cos\theta}{2\theta^{6}}\right)\mathfrak{T}^{3}+\left(\frac{\theta^{3}-12\theta+15\sin\theta-3\theta\cos\theta}{6\theta^{7}}\right)\mathfrak{T}^{4}

Owing to equation (40), we have that

Γm(Γ0(ξ)ξ)=Γ0(ξ)Γm(ξ)Γ0(ξ)1Γ0(ξ)Γm(ξ)=Γm(Γ0(ξ)ξ)Γ0(ξ)\Gamma_{m}\left(\Gamma_{0}(\xi)\xi\right)=\Gamma_{0}(\xi)\Gamma_{m}(\xi)\Gamma_{0}(\xi)^{-1}\Rightarrow\Gamma_{0}(\xi)\Gamma_{m}(\xi)=\Gamma_{m}\left(\Gamma_{0}(\xi)\xi\right)\Gamma_{0}(\xi) (90)

The proof is as follows:

Γ0(ξ)Γm(ξ)Γ0(ξ)1\displaystyle\Gamma_{0}(\xi)\Gamma_{m}(\xi)\Gamma_{0}(\xi)^{-1} (91)
=\displaystyle= Γ0(ξ)(α0I3(K+1)+α1𝔏(ξ)+α2(𝔏(ξ))2+α3(𝔏(ξ))3+α4(𝔏(ξ))4)Γ0(ξ)1\displaystyle\Gamma_{0}(\xi)\left(\alpha_{0}I_{3(K+1)}+\alpha_{1}\mathfrak{L}(\xi)+\alpha_{2}(\mathfrak{L}(\xi))^{2}+\alpha_{3}(\mathfrak{L}(\xi))^{3}+\alpha_{4}(\mathfrak{L}(\xi))^{4}\right)\Gamma_{0}(\xi)^{-1}
=\displaystyle= α0I3(K+1)+α1Γ0(ξ)𝔏(ξ)Γ0(ξ)1+α2Γ0(ξ)(𝔏(ξ))2Γ0(ξ)1\displaystyle\alpha_{0}I_{3(K+1)}+\alpha_{1}\Gamma_{0}(\xi)\mathfrak{L}(\xi)\Gamma_{0}(\xi)^{-1}+\alpha_{2}\Gamma_{0}(\xi)(\mathfrak{L}(\xi))^{2}\Gamma_{0}(\xi)^{-1}
+α3Γ0(ξ)(𝔏(ξ))3Γ0(ξ)1+α4Γ0(ξ)(𝔏(ξ))4Γ0(ξ)1\displaystyle+\alpha_{3}\Gamma_{0}(\xi)(\mathfrak{L}(\xi))^{3}\Gamma_{0}(\xi)^{-1}+\alpha_{4}\Gamma_{0}(\xi)(\mathfrak{L}(\xi))^{4}\Gamma_{0}(\xi)^{-1}
=\displaystyle= α0I3(K+1)+α1𝔏(Γ0(ξ)ξ)+α2(𝔏(Γ0(ξ)ξ))2+α3(𝔏(Γ0(ξ)ξ))3+α4(𝔏(Γ0(ξ)ξ))4\displaystyle\alpha_{0}I_{3(K+1)}+\alpha_{1}\mathfrak{L}(\Gamma_{0}(\xi)\xi)+\alpha_{2}(\mathfrak{L}(\Gamma_{0}(\xi)\xi))^{2}+\alpha_{3}(\mathfrak{L}(\Gamma_{0}(\xi)\xi))^{3}+\alpha_{4}(\mathfrak{L}(\Gamma_{0}(\xi)\xi))^{4}
=\displaystyle= Γm(Γ0(ξ)ξ)\displaystyle\Gamma_{m}\left(\Gamma_{0}(\xi)\xi\right)

The linearization of the function Γm()\Gamma_{m}(\cdot) is the first order Taylor series of the function evaluated as a certain elements of the domain. If we assume that ϕ\phi is small, then using the first order Taylor series we can obtain

Γm(ϕ+ψ)Exp(Γm+1(ψ)ϕ)Γm(ψ)=Γ0(Γm+1(ψ)ϕ)Γm(ψ)\Gamma_{m}(\phi+\psi)\approx Exp(\Gamma_{m+1}(\psi)\phi)\Gamma_{m}(\psi)=\Gamma_{0}(\Gamma_{m+1}(\psi)\phi)\Gamma_{m}(\psi) (92)

The left Jacobian matrix approximation in the BCH formula given in equation (60) can also be obtained by equation (92) when m=0m=0.

If we assume that ϕ\phi is small, then using the first order Taylor series we can obtain

Γm(ϕ+ψ)Γm(ϕ)Exp(Γm+1(ϕ)ψ)=Γm(ϕ)Γ0(Γm+1(ϕ)ψ)\Gamma_{m}(\phi+\psi)\approx\Gamma_{m}(\phi)Exp(\Gamma_{m+1}(-\phi)\psi)=\Gamma_{m}(\phi)\Gamma_{0}(\Gamma_{m+1}(-\phi)\psi) (93)

where equation (70) has been used in the above derivation. The right Jacobian matrix approximation in the BCH formula given in equation (61) can also be obtained by equation (93) when m=0m=0.

In particular, the auxiliary function for 3-dimensional special orthogonal group introduce by  [10] is given

Γm(ϕ)n=01(n+m)!(ϕn)\Gamma_{m}(\phi)\triangleq\sum_{n=0}^{\infty}\frac{1}{(n+m)!}(\phi_{\wedge}^{n}) (94)

Then the integrals can be easily expressed and computed by the matrix Taylor series

Γ0(ϕ)=I3+sinϕϕϕ+1cosϕϕ2ϕ2=T\Gamma_{0}(\phi)=I_{3}+\frac{\sin||\phi||}{||\phi||}\phi_{\wedge}+\frac{1-\cos||\phi||}{||\phi||^{2}}\phi_{\wedge}^{2}=T (95)
Γ1=I3+1cosϕϕ2ϕ+ϕsinϕϕ3ϕ2=J=Jl(ϕ)\Gamma_{1}=I_{3}+\frac{1-\cos||\phi||}{||\phi||^{2}}\phi_{\wedge}+\frac{||\phi||-\sin||\phi||}{||\phi||^{3}}\phi_{\wedge}^{2}=J=J_{l}(\phi) (96)

It is worth noting that Γ0(ϕ)\Gamma_{0}(\phi) is the exponential mapping of SO(3)SO(3), while Γ1(ϕ)\Gamma_{1}(\phi) is the left Jacobian of SO(3)SO(3).

Since we have Γ2(ϕ)ϕ+I3=Γ1(ϕ)\Gamma_{2}(\phi)\phi_{\wedge}+I_{3}=\Gamma_{1}(\phi) and Γ2(ϕ)\Gamma_{2}(\phi) can be represented as Γ2(ϕ)=12!I3+xϕ+yϕ2\Gamma_{2}(\phi)=\frac{1}{2!}I_{3}+x\phi_{\wedge}+y\phi_{\wedge}^{2}, then xx and yy can be obtained by determined coefficient method:

Γ2(ϕ)=12I3+ϕsinϕϕ3ϕ+ϕ2+2cosϕ22ϕ4ϕ2\Gamma_{2}(\phi)=\frac{1}{2}I_{3}+\frac{||\phi||-\sin||\phi||}{||\phi||^{3}}\phi_{\wedge}+\frac{||\phi||^{2}+2\cos||\phi||-2}{2||\phi||^{4}}\phi_{\wedge}^{2} (97)

Similarly, as we have Γ3(ϕ)ϕ+12I3=Γ2(ϕ)\Gamma_{3}(\phi)\phi_{\wedge}+\frac{1}{2}I_{3}=\Gamma_{2}(\phi) and Γ3(ϕ)\Gamma_{3}(\phi) can be represented as Γ3(ϕ)=13!I3+aϕ+bϕ2\Gamma_{3}(\phi)=\frac{1}{3!}I_{3}+a\phi_{\wedge}+b\phi_{\wedge}^{2}, then aa and bb can be obtained by determined coefficient method:

Γ3(ϕ)=13!I3+ϕ2+2cosϕ22ϕ4ϕ+ϕ36ϕ+6sinϕ6ϕ5ϕ2\Gamma_{3}(\phi)=\frac{1}{3!}I_{3}+\frac{||\phi||^{2}+2\cos||\phi||-2}{2||\phi||^{4}}\phi_{\wedge}+\frac{||\phi||^{3}-6||\phi||+6\sin||\phi||}{6||\phi||^{5}}\phi_{\wedge}^{2} (98)

It can be verified that

Γm(ϕ)=Γm(ϕ)T\Gamma_{m}(-\phi)=\Gamma_{m}(\phi)^{T} (99)

and

Γm(Γ0(ϕ)ϕ)=Γ0(ϕ)Γm(ϕ)Γ0(ϕ)Γ0(ϕ)Γm(ϕ)=Γm(Γ0(ϕ)ϕ)Γ0(ϕ)\Gamma_{m}\left(\Gamma_{0}(\phi)\phi\right)=\Gamma_{0}(\phi)\Gamma_{m}(\phi)\Gamma_{0}(-\phi)\Rightarrow\Gamma_{0}(\phi)\Gamma_{m}(\phi)=\Gamma_{m}(\Gamma_{0}(\phi)\phi)\Gamma_{0}(\phi) (100)

Equation (99) is true due to the antisymmetric property of the wedge operator in 𝔰𝔬3\mathfrak{so}_{3}.

The linearization of a function Γm()\Gamma_{m}(\cdot) is the first order Taylor series of the function evaluated as a certain element of the domain. If we assume that ϕ\phi is small, then using the first order Taylor series we can obtain

Γm(ϕ+ψ)Exp(Γm+1(ψ)ϕ)Γm(ψ)=Γ0(Γm+1(ψ)ϕ)Γm(ψ)\Gamma_{m}(\phi+\psi)\approx Exp(\Gamma_{m+1}(\psi)\phi)\Gamma_{m}(\psi)=\Gamma_{0}(\Gamma_{m+1}(\psi)\phi)\Gamma_{m}(\psi) (101)

It is obvious that the approximate BCH formula that using left Jacobian matrix is the case when m=0m=0.

If we assume that ψ\psi is small, then using the first order Taylor series we can obtain

Γm(ϕ+ψ)Γm(ϕ)Exp(Γm+1(ϕ)ψ)=Γm(ϕ)Γ0(Γm+1(ϕ)ψ)\Gamma_{m}(\phi+\psi)\approx\Gamma_{m}(\phi)Exp(\Gamma_{m+1}(-\phi)\psi)=\Gamma_{m}(\phi)\Gamma_{0}(\Gamma_{m+1}(-\phi)\psi) (102)

It is obvious that the approximate BCH formula that using right Jacobian matrix is the case when m=0m=0.

From the definition of Jacobians of SEK(3)SE_{K}(3) in equation (62) and equation (63), we get:

𝒥l1=[Jl1000Jl1Q1lJl1Jl100Jl1Q2lJl10Jl100Jl1QKlJl100Jl1]\mathcal{J}_{l}^{-1}=\begin{bmatrix}J_{l}^{-1}&0&0&\cdots&0\\ -J_{l}^{-1}{Q_{1}}_{l}J_{l}^{-1}&J_{l}^{-1}&0&\cdots&0\\ -J_{l}^{-1}{Q_{2}}_{l}J_{l}^{-1}&0&J_{l}^{-1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&0\\ -J_{l}^{-1}{Q_{K}}_{l}J_{l}^{-1}&0&0&\cdots&J_{l}^{-1}\end{bmatrix} (103)
𝒥r1=[Jr1000Jr1Q1rJr1Jr100Jr1Q2rJr10Jr100Jr1QKrJr100Jr1]\mathcal{J}_{r}^{-1}=\begin{bmatrix}J_{r}^{-1}&0&0&\cdots&0\\ -J_{r}^{-1}{Q_{1}}_{r}J_{r}^{-1}&J_{r}^{-1}&0&\cdots&0\\ -J_{r}^{-1}{Q_{2}}_{r}J_{r}^{-1}&0&J_{r}^{-1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&0\\ -J_{r}^{-1}{Q_{K}}_{r}J_{r}^{-1}&0&0&\cdots&J_{r}^{-1}\end{bmatrix} (104)

We have that the singularities of 𝒥l\mathcal{J}_{l} and 𝒥r\mathcal{J}_{r} are precisely the same as the singularities of JlJ_{l} and JrJ_{r}, respectively, since

det(𝒥l)=(det(Jl))(K+1),det(𝒥r)=(det(Jr))(K+1)\det(\mathcal{J}_{l})=(\det(J_{l}))^{(K+1)},\det(\mathcal{J}_{r})=(\det(J_{r}))^{(K+1)} (105)

and having a non-zero determinant is a necessary and sufficient condition for invertibility, and therefore 𝒥\mathcal{J} has no singularity.

It is worth noting that 𝒥𝒥T>0\mathcal{J}\mathcal{J}^{T}>0 means 𝒥𝒥T\mathcal{J}\mathcal{J}^{T} is positive definite for either the left or right Jacobian matrix. We can see this through the following factorization:

𝒥𝒥T\displaystyle\mathcal{J}\mathcal{J}^{T} =[I3(K+1)000Q1J1I3(K+1)00Q2J10I3(K+1)00QKJ100I3(K+1)]>0[JJT0000JJT0000JJT00000JJT]>0\displaystyle=\underbrace{\begin{bmatrix}I_{3(K+1)}&0&0&\cdots&0\\ Q_{1}J^{-1}&I_{3(K+1)}&0&\cdots&0\\ Q_{2}J^{-1}&0&I_{3(K+1)}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&0\\ Q_{K}J^{-1}&0&0&\cdots&I_{3(K+1)}\end{bmatrix}}_{>0}\underbrace{\begin{bmatrix}JJ^{T}&0&0&\cdots&0\\ 0&JJ^{T}&0&\cdots&0\\ 0&0&JJ^{T}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&0\\ 0&0&0&\cdots&JJ^{T}\end{bmatrix}}_{>0} (106)
[I3(K+1)JTQ1TJTQ2TJTQKT0I3(K+1)0000I3(K+1)00000I3(K+1)]>0>0\displaystyle\quad\underbrace{\begin{bmatrix}I_{3(K+1)}&J^{-T}Q_{1}^{T}&J^{-T}Q_{2}^{T}&\cdots&J^{-T}Q_{K}^{T}\\ 0&I_{3(K+1)}&0&\cdots&0\\ 0&0&I_{3(K+1)}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&0\\ 0&0&0&\cdots&I_{3(K+1)}\end{bmatrix}}_{>0}>0

where we have used JJT>0JJ^{T}>0 which has been proved in [1].

Distance, Volume, Integration

We need to think about the concepts of distance, volume, and integration differently for Lie groups than for vectorspaces.

There are two common ways to define the difference of two elements of the matrix Lie group SEK(3)SE_{K}(3) and Ad(SEK(3))Ad(SE_{K}(3)), and they are called the right and left distance metrics, respectively:

ξ12=1(logG(T11T2))=𝔏1(logG(𝒯11𝒯2)),left invariant\xi_{12}=\mathcal{L}^{-1}(\log_{G}(T_{1}^{-1}T_{2}))=\mathfrak{L}^{-1}(\log_{G}(\mathcal{T}_{1}^{-1}\mathcal{T}_{2})),\quad\text{left invariant} (107)
ξ21=1(logG(T2T11))=𝔏1(logG(𝒯2𝒯11)),right invariant\xi_{21}=\mathcal{L}^{-1}(\log_{G}(T_{2}T_{1}^{-1}))=\mathfrak{L}^{-1}(\log_{G}(\mathcal{T}_{2}\mathcal{T}_{1}^{-1})),\quad\text{right invariant} (108)

Then we can define the (K+3)×(K+3)(K+3)\times(K+3) and 3(K+1)×3(K+1)3(K+1)\times 3(K+1) inner products for 𝔰𝔢k(3)\mathfrak{se}_{k}(3) as

<(ξ1),(ξ2)>=ξ1Tξ2<\mathcal{L}(\xi_{1}),\mathcal{L}(\xi_{2})>=\xi_{1}^{T}\xi_{2} (109)
<𝔏(ξ1),𝔏(ξ2)>=ξ1Tξ2<\mathfrak{L}(\xi_{1}),\mathfrak{L}(\xi_{2})>=\xi_{1}^{T}\xi_{2} (110)

Suppose there are weight matrices that make the inner product completely defined, the weight matrices should be diagonal:

<(ξ1),(ξ2)>=tr((ξ1)[cI3000𝟎𝐓d100𝟎𝐓0d20𝟎𝐓00dK](ξ2))\displaystyle\quad<\mathcal{L}(\xi_{1}),\mathcal{L}(\xi_{2})>=tr\left(\mathcal{L}(\xi_{1})\begin{bmatrix}cI_{3}&0&0&\cdots&0\\ \bf{0}^{T}&d_{1}&0&\cdots&0\\ \bf{0}^{T}&0&d_{2}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&d_{K}\end{bmatrix}\mathcal{L}(\xi_{2})\right) (111)
=ctr(θ1θ2)+tr(k=1Kdk(t1k)(t2k)T=ξ1Tξ2\displaystyle=-c\cdot tr({\theta_{1}}_{\wedge}{\theta_{2}}_{\wedge})+tr(\sum_{k=1}^{K}d_{k}({t_{1}}_{k})({t_{2}}_{k})^{T}=\xi_{1}^{T}\xi_{2}
<𝔏(ξ1),𝔏(ξ2)>=tr(𝔏(ξ1)[aI30000b1I30000b2I30000bKI3]𝔏(ξ2))\displaystyle\quad<\mathfrak{L}(\xi_{1}),\mathfrak{L}(\xi_{2})>=tr\left(\mathfrak{L}(\xi_{1})\begin{bmatrix}aI_{3}&0&0&\cdots&0\\ 0&b_{1}I_{3}&0&\cdots&0\\ 0&0&b_{2}I_{3}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&b_{K}I_{3}\end{bmatrix}\mathfrak{L}(\xi_{2})\right) (112)
=(a+b1+b2++bK)tr(θ1θ2)atr(k=1K(t1k)(t2k))=ξ1Tξ2\displaystyle=-(a+b_{1}+b_{2}+\cdots+b_{K})tr({\theta_{1}}_{\wedge}{\theta_{2}}_{\wedge})-a\cdot tr(\sum_{k=1}^{K}({t_{1}}_{k})_{\wedge}({t_{2}}_{k})_{\wedge})=\xi_{1}^{T}\xi_{2}

where tr()tr(\cdot) means the trace of matrix and the unknown coefficients c,d1,d2,,dKc,d_{1},d_{2},\cdots,d_{K} and a,b1,b2,,bKa,b_{1},b_{2},\cdots,b_{K} can be solved such that

c=12,d1=d2==dK=1,a=12,b1=b2==bK=0c=\frac{1}{2},d_{1}=d_{2}=\cdots=d_{K}=1,a=\frac{1}{2},b_{1}=b_{2}=\cdots=b_{K}=0 (113)

The right and left distance are

ξ12=<(ξ12),(ξ12)>=<𝔏(ξ12),𝔏(ξ12)>=ξ12Tξ12=ξ12\xi_{12}=\sqrt{<\mathcal{L}(\xi_{12}),\mathcal{L}(\xi_{12})>}=\sqrt{<\mathfrak{L}(\xi_{12}),\mathfrak{L}(\xi_{12})>}=\sqrt{\xi_{12}^{T}\xi_{12}}=||\xi_{12}|| (114)
ξ21=<(ξ21),(ξ21)>=<𝔏(ξ21),𝔏(ξ21)>=ξ21Tξ21=ξ21\xi_{21}=\sqrt{<\mathcal{L}(\xi_{21}),\mathcal{L}(\xi_{21})>}=\sqrt{<\mathfrak{L}(\xi_{21}),\mathfrak{L}(\xi_{21})>}=\sqrt{\xi_{21}^{T}\xi_{21}}=||\xi_{21}|| (115)

Using the parameterization

T=expG((ξ))T=\exp_{G}(\mathcal{L}(\xi)) (116)

and the perturbation

T=expG((ξ+δξ))T^{\prime}=\exp_{G}(\mathcal{L}(\xi+\delta\xi)) (117)

by combining with equation (58) and equation (59), the differences relative to TT are

1(logG(δTr))\displaystyle\mathcal{L}^{-1}(\log_{G}(\delta T_{r})) =1(logG(T1T))=1(logG(expG((ξ))1expG((ξ+δξ))))\displaystyle=\mathcal{L}^{-1}(\log_{G}(T^{-1}T^{\prime}))=\mathcal{L}^{-1}(\log_{G}(\exp_{G}(\mathcal{L}(\xi))^{-1}\exp_{G}(\mathcal{L}(\xi+\delta\xi)))) (118)
=1(logG(expG((ξ))expG((ξ)+(δξ))))𝒥rδξ\displaystyle=\mathcal{L}^{-1}(\log_{G}(\exp_{G}(\mathcal{L}(-\xi))\exp_{G}(\mathcal{L}(\xi)+\mathcal{L}(\delta\xi))))\approx\mathcal{J}_{r}\delta\xi
1(logG(δTl))\displaystyle\mathcal{L}^{-1}(\log_{G}(\delta T_{l})) =1(logG(TT1))=1(logG(expG((ξ+δξ)expG((ξ))1)))\displaystyle=\mathcal{L}^{-1}(\log_{G}(T^{\prime}T^{-1}))=\mathcal{L}^{-1}(\log_{G}(\exp_{G}(\mathcal{L}(\xi+\delta\xi)\exp_{G}(\mathcal{L}(\xi))^{-1}))) (119)
=1(logG(expG((δξ)+(ξ))expG((ξ))))𝒥lδξ\displaystyle=\mathcal{L}^{-1}(\log_{G}(\exp_{G}(\mathcal{L}(\delta\xi)+\mathcal{L}(\xi))\exp_{G}(\mathcal{L}(-\xi))))\approx\mathcal{J}_{l}\delta\xi

The right and left infinitesimal volume elements are

dTr=|det(𝒥r)|dξdT_{r}=|\det(\mathcal{J}_{r})|d\xi (120)
dTl=|det(𝒥l)|dξdT_{l}=|\det(\mathcal{J}_{l})|d\xi (121)

We have that

det(𝒥l)=det(𝒯𝒥r)=det(𝒯)det(𝒥r)=det(𝒥r)\det(\mathcal{J}_{l})=\det(\mathcal{T}\mathcal{J}_{r})=\det(\mathcal{T})\det(\mathcal{J}_{r})=\det(\mathcal{J}_{r}) (122)

since det(𝒯)=(det(R))K+1=1\det(\mathcal{T})=(\det(R))^{K+1}=1. We can therefore write

dT=|det(𝒥)|dξdT=|\det(\mathcal{J})|d\xi (123)

for our integration volume. Finally, we have that

|det(𝒥)|=|det(J)|K+1=(21cosθθ2)K+1=(sin(θ2)θ2)2(K+1)|\det(\mathcal{J})|=|\det(J)|^{K+1}=\left(2\frac{1-\cos\theta}{\theta^{2}}\right)^{K+1}=\left(\frac{\sin(\frac{\theta}{2})}{\frac{\theta}{2}}\right)^{2(K+1)} (124)

To integrate functions over SEK(3)SE_{K}(3), we can now use our infinitesimal volume in the calculation:

SEK(3)f(T)𝑑T=|θ|<π,3Kf(ξ)|det(𝒥)|𝑑ξ\int_{SE_{K}(3)}f(T)dT=\int_{|\theta|<\pi,\mathbb{R}^{3K}}f(\xi)|\det(\mathcal{J})|d\xi (125)

where we limit θ\theta to the ball of radius π\pi (due to the surjective-only nature of the exponential map) but let tk3,k=1,,Kt_{k}\in\mathbb{R}^{3},k=1,\cdots,K.

Interpolation

We let T=expG((ξ))T=\exp_{G}(\mathcal{L}(\xi)), T1=expG((ξ1))T_{1}=\exp_{G}(\mathcal{L}(\xi_{1})), T2=expG((ξ2))SEK(3)T_{2}=\exp_{G}(\mathcal{L}(\xi_{2}))\in SE_{K}(3) with ξ,ξ1,ξ23(K+1)\xi,\xi_{1},\xi_{2}\in\mathbb{R}^{3(K+1)}. If we are able to make the assumption that ξ21\xi_{21} is small in the sense of distance from equation (108), then we have

ξ\displaystyle\xi =1(logG(T))=1(logG((T2T11)αT1))=1(logG(expG(α(ξ21))expG((ξ1))))\displaystyle=\mathcal{L}^{-1}(\log_{G}(T))=\mathcal{L}^{-1}(\log_{G}((T_{2}T_{1}^{-1})^{\alpha}T_{1}))=\mathcal{L}^{-1}(\log_{G}(\exp_{G}(\alpha\mathcal{L}(\xi_{21}))\exp_{G}(\mathcal{L}(\xi_{1})))) (126)
αJl(ξ1)1ξ21+ξ1\displaystyle\approx\alpha J_{l}(\xi_{1})^{-1}\xi_{21}+\xi_{1}

which is a form of linear interpolation.

Another case worth noting when T1=IK+3T_{1}=I_{K+3}, whereupon

T=T2α,ξ=αξ2T=T_{2}^{\alpha},\xi=\alpha\xi_{2} (127)

with no approximation.

Homogeneous Points

Points in 3\mathbb{R}^{3} can be represented using 4×14\times 1 homogeneous coordinates as follows

p=[sxsyszs]=[εη]p=\begin{bmatrix}sx\\ sy\\ sz\\ s\end{bmatrix}=\begin{bmatrix}\varepsilon\\ \eta\end{bmatrix} (128)

where s is some real, nonzero scalar, ε3\varepsilon\in\mathbb{R}^{3}, and η\eta is scalar. When s is zero, it is not possible to convert back to 3\mathbb{R}^{3}, as this case represents points that are infinitely far away [1].

It is useful to define the operator

p=[εη]=[εηI301×301×3]4×6,ε3,ηp^{\odot}=\begin{bmatrix}\varepsilon\\ \eta\end{bmatrix}^{\odot}=\begin{bmatrix}-\varepsilon_{\wedge}&\eta I_{3}\\ 0_{1\times 3}&0_{1\times 3}\end{bmatrix}_{4\times 6},\varepsilon\in\mathbb{R}^{3},\eta\in\mathbb{R} (129)

such that (x)p=px\mathcal{L}(x)p=p^{\odot}x holds, where x6,p4x\in\mathbb{R}^{6},p\in\mathbb{R}^{4}.

It is also useful to define the operator

p=[εη1η2ηK]K+3,p=[εη1η2ηK]=[εη1I3η2I3ηKI30K×30K×30K×30K×3](K+3)×3(K+1)\forall p=\begin{bmatrix}\varepsilon\\ \eta_{1}\\ \eta_{2}\\ \vdots\\ \eta_{K}\end{bmatrix}\in\mathbb{R}^{K+3},p^{\odot}=\begin{bmatrix}\varepsilon\\ \eta_{1}\\ \eta_{2}\\ \vdots\\ \eta_{K}\end{bmatrix}^{\odot}=\begin{bmatrix}-\varepsilon_{\wedge}&\eta_{1}I_{3}&\eta_{2}I_{3}&\cdots&\eta_{K}I_{3}\\ 0_{K\times 3}&0_{K\times 3}&0_{K\times 3}&\cdots&0_{K\times 3}\end{bmatrix}_{(K+3)\times 3(K+1)} (130)

where ε3\varepsilon\in\mathbb{R}^{3} and η1,η2,,ηK\eta_{1},\eta_{2},\cdots,\eta_{K}\in\mathbb{R}, such that x3(K+1),(x)p=px\forall x\in\mathbb{R}^{3(K+1)},\mathcal{L}(x)p=p^{\odot}x holds.

We also have the following identities

TSEK(3),(Tp)=Tp𝒯1\forall T\in SE_{K}(3),(Tp)^{\odot}=Tp^{\odot}\mathcal{T}^{-1} (131)
TSEK(3),(Tp)T(Tp)=𝒯TpTp𝒯1\forall T\in SE_{K}(3),{(Tp)^{\odot}}^{T}(Tp)^{\odot}=\mathcal{T}^{-T}{p^{\odot}}^{T}p^{\odot}\mathcal{T}^{-1} (132)

Calculus and Optimization

On occasion, we construct functions related to the Lie group elements and then discuss the perturbation of the elements. Consequently, we face the problem taking derivatives with respect to the Lie algebras so as to find the minimal perturbation. There two ways of thinking about it:

  • One way is to represent the Lie group with the Lie algebra, and then take the derivative of the Lie algebra according to the Euclidean space addition.

  • Another way is to multiply the Lie group left or right by a small perturbation, and then take the derivative of that perturbation.

For the group Ad(SEK(3))Ad(SE_{K}(3)), we may want to take the derivative of the product of a 3(K+1)×3(K+1)3(K+1)\times 3(K+1) transformation matrix and a 3(K+1)×13(K+1)\times 1 column, with respect to the 3(K+1)×13(K+1)\times 1 pose variable. Assume 𝒯3(K+1)×3(K+1)\mathcal{T}\in\mathbb{R}^{3(K+1)\times 3(K+1)}, x3(K+1)x\in\mathbb{R}^{3(K+1)} and ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)}, taking the derivative of the group left action of Ad(SEK(3))Ad(SE_{K}(3)) on vector xx along ξ\xi, we have

(𝒯x)ξ=(expG(𝔏(ξ))x)ξ=limδξ𝟎expG(𝔏(ξ+δξ))xexpG(𝔏(ξ))xδξ\displaystyle\quad\frac{\partial(\mathcal{T}x)}{\partial\xi}=\frac{\partial(\exp_{G}(\mathfrak{L}(\xi))x)}{\partial\xi}=\lim\limits_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathfrak{L}(\xi+\delta\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi} (133)
=limδξ𝟎expG(𝔏(𝒥lδξ))expG(𝔏(ξ))xexpG(𝔏(ξ))xδξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathfrak{L}(\mathcal{J}_{l}\delta\xi))\exp_{G}(\mathfrak{L}(\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi}
=limδξ𝟎(I3(K+1)+𝔏(𝒥lδξ))expG(𝔏(ξ))xexpG(𝔏(ξ))xδξ=limδξ𝟎𝔏(𝒥lδξ)expG(𝔏(ξ))xδξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{(I_{3(K+1)}+\mathfrak{L}(\mathcal{J}_{l}\delta\xi))\exp_{G}(\mathfrak{L}(\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\mathfrak{L}(\mathcal{J}_{l}\delta\xi)\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi}

Using the property stated in the equation (34), we have

(𝒯x)ξ=limδξ𝟎𝔏(expG(𝔏(ξ))x)𝒥lδξδξ=𝔏(𝒯x)𝒥l\frac{\partial(\mathcal{T}x)}{\partial\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{-\mathfrak{L}(\exp_{G}(\mathfrak{L}(\xi))x)\mathcal{J}_{l}\delta\xi}{\delta\xi}=-\mathfrak{L}(\mathcal{T}x)\mathcal{J}_{l} (134)

However, since the result contain a complex form of the left Jacobian matrix 𝒥l\mathcal{J}_{l}, we do not want to calculate it. Another way to perturb TT by left multiplying a perturbation δ𝒯=expG(𝔏(δξ))\delta\mathcal{T}=\exp_{G}(\mathfrak{L}(\delta\xi)) as:

(𝒯x)δξ=(expG(𝔏(ξ))x)δξ=limδξ𝟎δ𝒯expG(𝔏(ξ))xexpG(𝔏(ξ))xδξ\displaystyle\quad\frac{\partial(\mathcal{T}x)}{\partial\delta\xi}=\frac{\partial(\exp_{G}(\mathfrak{L}(\xi))x)}{\partial\delta\xi}=\lim\limits_{\delta\xi\rightarrow\bf{0}}\frac{\delta\mathcal{T}\exp_{G}(\mathfrak{L}(\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi} (135)
=limδξ𝟎expG(𝔏(δξ))expG(𝔏(ξ))xexpG(𝔏(ξ))xδξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathfrak{L}(\delta\xi))\exp_{G}(\mathfrak{L}(\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi}
=limδξ𝟎(I3(K+1)+𝔏(δξ))expG(𝔏(ξ))xexpG(𝔏(ξ))xδξ=limδξ𝟎𝔏(δξ)𝒯xδξ=𝔏(𝒯x)\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{(I_{3(K+1)}+\mathfrak{L}(\delta\xi))\exp_{G}(\mathfrak{L}(\xi))x-\exp_{G}(\mathfrak{L}(\xi))x}{\delta\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\mathfrak{L}(\delta\xi)\mathcal{T}x}{\delta\xi}=-\mathfrak{L}(\mathcal{T}x)

Meanwhile, the targets are three-dimensional points in space when we usually want to manipulate. We turn our attention to the homogeneous points in space. As the Lie group SEK(3)SE_{K}(3) has KK translational components, we define a new matrix that combines KK homogeneous points as follows:

Q=[q1q2q3qK100001000001](K+3)×K,qk3,k=1,,KQ=\begin{bmatrix}q_{1}&q_{2}&q_{3}&\cdots&q_{K}\\ 1&0&0&\cdots&0\\ 0&1&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&1\end{bmatrix}\in\mathbb{R}^{(K+3)\times K},q_{k}\in\mathbb{R}^{3},k=1,\cdots,K (136)

It is easy to verify that

(Tqm)=[(Rqm+pm)𝟎𝟑×(𝐦𝟏)I3𝟎𝟑×(𝐊𝐦)\hdashline[2pt/2pt]OK×3(K+1)]\displaystyle(Tq_{m})^{\odot}=\left[\begin{array}[]{c}\begin{array}[]{cccc}-\mathcal{L}{(Rq_{m}+p_{m})}&\bf{0}_{3\times(m-1)}&I_{3}&\bf{0}_{3\times(K-m)}\end{array}\\ \hdashline[2pt/2pt]O_{K\times 3(K+1)}\end{array}\right] (137)
=\displaystyle= [EmOK×3(K+1)](K+3)×3(K+1),m=1,2,,K\displaystyle\begin{bmatrix}E_{m}\\ O_{K\times 3(K+1)}\end{bmatrix}\in\mathbb{R}^{(K+3)\times 3(K+1)},m=1,2,\cdots,K

Analogously, The Jacobian of KK transformed point with respect to the Lie algebra vector representing the transformation is

(TQ)ξ=(expG((ξ))Q)ξ=limδξ𝟎expG((ξ+δξ))QexpG((ξ))Qδξ\displaystyle\quad\frac{\partial(TQ)}{\partial\xi}=\frac{\partial(\exp_{G}(\mathcal{L}(\xi))Q)}{\partial\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathcal{L}(\xi+\delta\xi))Q-\exp_{G}(\mathcal{L}(\xi))Q}{\delta\xi} (138)
=limδξ𝟎expG((𝒥lδξ))expG((ξ))QexpG((ξ))Qδξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathcal{L}(\mathcal{J}_{l}\delta\xi))\exp_{G}(\mathcal{L}(\xi))Q-\exp_{G}(\mathcal{L}(\xi))Q}{\delta\xi}
=limδξ𝟎(I3(K+1)+(𝒥lδξ))expG((ξ))QexpG((ξ))Qδξ=limδξ𝟎(𝒥lδξ)expG((ξ))Qδξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{(I_{3(K+1)}+\mathcal{L}(\mathcal{J}_{l}\delta\xi))\exp_{G}(\mathcal{L}(\xi))Q-\exp_{G}(\mathcal{L}(\xi))Q}{\delta\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\mathcal{L}(\mathcal{J}_{l}\delta\xi)\exp_{G}(\mathcal{L}(\xi))Q}{\delta\xi}
=limδξ𝟎([JlδϕQ1δϕ+Jlδt1Q2δϕ+Jlδt2QKδϕ+JlδtK])[Rq1+p1Rq2+p2Rq3+p3RqK+tp1000010000100001][δϕ,δt1,,δtK]T\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\mathcal{L}\left(\begin{bmatrix}J_{l}\delta\phi_{\wedge}\\ Q_{1}\delta\phi+J_{l}\delta t_{1}\\ Q_{2}\delta\phi+J_{l}\delta t_{2}\\ \vdots\\ Q_{K}\delta\phi+J_{l}\delta t_{K}\end{bmatrix}\right)\begin{bmatrix}Rq_{1}+p_{1}&Rq_{2}+p_{2}&Rq_{3}+p_{3}&\cdots&Rq_{K}+t_{p}\\ 1&0&0&\cdots&0\\ 0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ 0&0&0&\cdots&1\end{bmatrix}}{[\delta\phi,\delta t_{1},\cdots,\delta t_{K}]^{T}}
=limδξ𝟎[(Jlδϕ)(Rq1+p1)+Q1δϕ+Jlδt1(Jlδϕ)(RqK+pK)+QKδϕ+JlδtK\hdashline[2pt/2pt]OK×K][δϕ,δt1,,δtK]T\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\left[\begin{array}[]{c}\begin{array}[]{cccc}(J_{l}\delta\phi)_{\wedge}(Rq_{1}+p_{1})+Q_{1}\delta\phi+J_{l}\delta t_{1}&\cdots&(J_{l}\delta\phi)_{\wedge}(Rq_{K}+p_{K})+Q_{K}\delta\phi+J_{l}\delta t_{K}\end{array}\\ \hdashline[2pt/2pt]O_{K\times K}\end{array}\right]}{[\delta\phi,\delta t_{1},\cdots,\delta t_{K}]^{T}}
=[E1𝒥lE2𝒥lEK𝒥l\hdashline[2pt/2pt]OK×3K(K+1)](K+3)×3K(K+1)\displaystyle=\left[\begin{array}[]{c}\begin{array}[]{cccc}E_{1}\mathcal{J}_{l}&E_{2}\mathcal{J}_{l}&\cdots&E_{K}\mathcal{J}_{l}\end{array}\\ \hdashline[2pt/2pt]O_{K\times 3K(K+1)}\end{array}\right]\in\mathbb{R}^{(K+3)\times 3K(K+1)}

where Em=[(Rqm+pm)𝟎𝟑×(𝐦𝟏)I3𝟎𝟑×(𝐊𝐦)]3×3(K+1),m=1,,KE_{m}=\begin{bmatrix}-\mathcal{L}{(Rq_{m}+p_{m})}&\bf{0}_{3\times(m-1)}&I_{3}&\bf{0}_{3\times(K-m)}\end{bmatrix}\in\mathbb{R}^{3\times 3(K+1)},m=1,\cdots,K and 𝒥l\mathcal{J}_{l} is the left Jacobian of SEK(3)SE_{K}(3).

Using the equation (137), the above equation can be denoted as

(TQ)ξ=[(Tq1)𝒥l(Tq2)𝒥l(TqK)𝒥l]\quad\frac{\partial(TQ)}{\partial\xi}=\begin{bmatrix}(Tq_{1})^{\odot}\mathcal{J}_{l}&(Tq_{2})^{\odot}\mathcal{J}_{l}&\cdots&(Tq_{K})^{\odot}\mathcal{J}_{l}\end{bmatrix} (139)

Again, the result still contains a complex form of the left Jacobian matrix 𝒥l\mathcal{J}_{l}, we do not want to calculate it. Another way to perturb TT by left multiplying a perturbation δT=expG((δξ))\delta T=\exp_{G}(\mathcal{L}(\delta\xi)) as:

(TQ)δξ=(expG((ξ))Q)δξ=limδξ𝟎expG((δξ))expG((ξ))QexpG((ξ))Qξ\displaystyle\quad\frac{\partial(TQ)}{\partial\delta\xi}=\frac{\partial(\exp_{G}(\mathcal{L}(\xi))Q)}{\partial\delta\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\exp_{G}(\mathcal{L}(\delta\xi))\exp_{G}(\mathcal{L}(\xi))Q-\exp_{G}(\mathcal{L}(\xi))Q}{\partial\xi} (140)
=limδξ𝟎(I3(K+1)+(δξ))expG((ξ))QexpG((ξ))Qξ=limδξ𝟎(δξ)expG((ξ))Qξ\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{(I_{3(K+1)}+\mathcal{L}(\delta\xi))\exp_{G}(\mathcal{L}(\xi))Q-\exp_{G}(\mathcal{L}(\xi))Q}{\partial\xi}=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\mathcal{L}(\delta\xi)\exp_{G}(\mathcal{L}(\xi))Q}{\partial\xi}
=limδξ𝟎[δϕδt1δt2δtK𝟎𝐓000𝟎𝐓000𝟎𝐓000][Rq1+p1Rq2+p2Rp3+t3RqK+pK1000010000100001][δϕ,δt1,,δtK]T\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\begin{bmatrix}\delta\phi_{\wedge}&\delta t_{1}&\delta t_{2}&\cdots&\delta t_{K}\\ \bf{0}^{T}&0&0&\cdots&0\\ \bf{0}^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&0\end{bmatrix}\begin{bmatrix}Rq_{1}+p_{1}&Rq_{2}+p_{2}&Rp_{3}+t_{3}&\cdots&Rq_{K}+p_{K}\\ 1&0&0&\cdots&0\\ 0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ 0&0&0&\cdots&1\end{bmatrix}}{[\delta\phi,\delta t_{1},\cdots,\delta t_{K}]^{T}}
=limδξ𝟎[ϕ(Rq1+p1)+δt1ϕ(Rq2+p2)+δt2ϕ(RqK+pK)+δtK\hdashline[2pt/2pt]OK×K][δϕ,δt1,,δtK]T\displaystyle=\lim_{\delta\xi\rightarrow\bf{0}}\frac{\left[\begin{array}[]{c}\begin{array}[]{cccc}\phi_{\wedge}(Rq_{1}+p_{1})+\delta t_{1}&\phi_{\wedge}(Rq_{2}+p_{2})+\delta t_{2}&\cdots&\phi_{\wedge}(Rq_{K}+p_{K})+\delta t_{K}\end{array}\\ \hdashline[2pt/2pt]O_{K\times K}\end{array}\right]}{[\delta\phi,\delta t_{1},\cdots,\delta t_{K}]^{T}}
=[E1E2EK\hdashline[2pt/2pt]OK×3K(K+1)](K+3)×3K(K+1)\displaystyle=\left[\begin{array}[]{c}\begin{array}[]{cccc}E_{1}&E_{2}&\cdots&E_{K}\end{array}\\ \hdashline[2pt/2pt]O_{K\times 3K(K+1)}\end{array}\right]\in\mathbb{R}^{(K+3)\times 3K(K+1)}

where Em=[(Rqm+pm)𝟎𝟑×(𝐦𝟏)I3𝟎𝟑×(𝐊𝐦)]3×3(K+1),m=1,,KE_{m}=\begin{bmatrix}-\mathcal{L}{(Rq_{m}+p_{m})}&\bf{0}_{3\times(m-1)}&I_{3}&\bf{0}_{3\times(K-m)}\end{bmatrix}\in\mathbb{R}^{3\times 3(K+1)},m=1,\cdots,K. It is worth noting that we will not calculate Jacobian matrix 𝒥l\mathcal{J}_{l} anymore, which makes the perturbation more practical and useful.

Similarly, using the equation (137), the above equation can be denoted as

(TQ)δξ=[(Tq1)(Tq2)(TqK)]\quad\frac{\partial(TQ)}{\partial\delta\xi}=\begin{bmatrix}(Tq_{1})^{\odot}&(Tq_{2})^{\odot}&\cdots&(Tq_{K})^{\odot}\end{bmatrix} (141)

Finally, for optimization, suppose we have a general nonlinear, quadratic cost function of a transformation of the form

C(T)=12n(un(TQ))2C(T)=\frac{1}{2}\sum_{n}(u_{n}(TQ))^{2} (142)

where un()u_{n}(\cdot) are nonlinear functions of matrices and Q(K+3)×KQ\in\mathbb{R}^{(K+3)\times K} are combined by K three-dimensional points expressed in homogeneous coordinates. This could be solved by the Gauss-Newton algorithm.

Kinematics of Lie group SEK(3)SE_{K}(3)

We have seen how the geometry of a Lie group works. The next step is to allow the geometry to change over time. We will work out the kinematics associated with our matrix Lie group SEK(3)SE_{K}(3).

Lie Group and Lie Algebra

Let us rewrite the exponential map from the Lie algebra to the matrix Lie group SEK(3)SE_{K}(3) here:

T\displaystyle T =expG((ξ))=[Rp1p2pK𝟎𝐓100𝟎𝐓010𝟎𝐓001],RSO(3),pk3,k=1,,K\displaystyle=\exp_{G}(\mathcal{L}(\xi))=\begin{bmatrix}R&p_{1}&p_{2}&\cdots&p_{K}\\ \bf{0}^{T}&1&0&\cdots&0\\ \bf{0}^{T}&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \bf{0}^{T}&0&0&\cdots&1\end{bmatrix},R\in SO(3),p_{k}\in\mathbb{R}^{3},k=1,\cdots,K (143)

Suppose the kinematics in terms of separated translation and rotation are given by

p˙k\displaystyle\dot{p}_{k} =ωlpk+νlk=Rνrk,k=1,,K\displaystyle={\omega_{l}}_{\wedge}p_{k}+{\nu_{l}}_{k}=R{\nu_{r}}_{k},k=1,\cdots,K (144)
R˙\displaystyle\dot{R} =ωlR=Rωr\displaystyle={\omega_{l}}_{\wedge}R=R{\omega_{r}}_{\wedge}

where ωl,νlk,k=1,,K\omega_{l},{\nu_{l}}_{k},k=1,\cdots,K are the rotational and translational left velocities, respectively; ωr,νrk,k=1,,K\omega_{r},{\nu_{r}}_{k},k=1,\cdots,K are the rotational and translational right velocities, respectively.

Using the transformation matrices, the kinematic differential equation in terms of TT can be written equivalently as

T˙=(ω¯l)T=T(ω¯r)=T(ω¯r)T1T=(AdTω¯r)T\displaystyle\dot{T}=\mathcal{L}(\overline{\omega}_{l})T=T\mathcal{L}(\overline{\omega}_{r})=T\mathcal{L}(\overline{\omega}_{r})T^{-1}T=\mathcal{L}({Ad_{T}}\overline{\omega}_{r})T (145)
\displaystyle\Rightarrow (ω¯l)=T˙T1(ω¯r)=T1T˙ω¯l=AdTω¯r\displaystyle\mathcal{L}(\overline{\omega}_{l})=\dot{T}T^{-1}\quad\mathcal{L}(\overline{\omega}_{r})=T^{-1}\dot{T}\quad\overline{\omega}_{l}={Ad_{T}}\overline{\omega}_{r}

where

ω¯l=[ωlνl1νl2νlK]3(K+1),ω¯r=[ωrνr1νr2νrK]3(K+1),[ωl=Rωrνl1=p1Rωr+Rνr1νl2=p2Rωr+Rνr2νlK=pKRωr+RνrK]\overline{\omega}_{l}=\begin{bmatrix}\omega_{l}\\ \nu_{l1}\\ \nu_{l2}\\ \vdots\\ \nu_{lK}\end{bmatrix}\in\mathbb{R}^{3(K+1)},\overline{\omega}_{r}=\begin{bmatrix}\omega_{r}\\ \nu_{r1}\\ \nu_{r2}\\ \vdots\\ \nu_{rK}\end{bmatrix}\in\mathbb{R}^{3(K+1)},\begin{bmatrix}\omega_{l}=R\omega_{r}\\ \nu_{l1}={p_{1}}_{\wedge}R\omega_{r}+R\nu_{r1}\\ \nu_{l2}={p_{2}}_{\wedge}R\omega_{r}+R\nu_{r2}\\ \vdots\\ \nu_{lK}={p_{K}}_{\wedge}R\omega_{r}+R\nu_{rK}\end{bmatrix} (146)

ω¯l\overline{\omega}_{l} and ω¯r\overline{\omega}_{r} are the generalized left velocity and the generalized right velocity, respectively. It is worth noting that these equations are singularity-free but still have the constraint that RR1=I3RR^{-1}=I_{3}.

The kinematics can also be written using the adjoint quantities:

𝒯˙=𝔏(ω¯l)𝒯=𝒯𝔏(ω¯r)\dot{\mathcal{T}}=\mathfrak{L}(\overline{\omega}_{l})\mathcal{T}=\mathcal{T}\mathfrak{L}(\overline{\omega}_{r}) (147)

To see the equivalent kinematics in terms of the Lie algebra, we need to differentiate the group element TSEK(3)T\in SE_{K}(3) by analogy to the groups SO(3)SO(3) and SE(3)SE(3), which comes from the general expression for the time derivative of the matrix exponential [1]:

T˙=ddtexpG((ξ))\displaystyle\dot{T}=\frac{d}{dt}\exp_{G}(\mathcal{L}(\xi)) =01expG(α(ξ))(ξ˙)expG((1α)(ξ))𝑑α\displaystyle=\int_{0}^{1}\exp_{G}(\alpha\mathcal{L}(\xi))\mathcal{L}(\dot{\xi})\exp_{G}((1-\alpha)\mathcal{L}(\xi))d\alpha (148)
=01expG((1α)(ξ))(ξ˙)expG(α(ξ))𝑑α\displaystyle=\int_{0}^{1}\exp_{G}((1-\alpha)\mathcal{L}(\xi))\mathcal{L}(\dot{\xi})\exp_{G}(\alpha\mathcal{L}(\xi))d\alpha

or equivalently,

T˙T1=01Tα(ξ˙)Tα𝑑α=01(𝒯αξ˙)𝑑α=((01𝒯α𝑑α)ξ˙)=(𝒥lξ˙)\dot{T}T^{-1}=\int_{0}^{1}T^{\alpha}\mathcal{L}(\dot{\xi})T^{-\alpha}d\alpha=\int_{0}^{1}\mathcal{L}(\mathcal{T}^{\alpha}\dot{\xi})d\alpha=\mathcal{L}((\int_{0}^{1}\mathcal{T}^{\alpha}d\alpha)\dot{\xi})=\mathcal{L}(\mathcal{J}_{l}\dot{\xi}) (149)
T1T˙=01Tα(ξ˙)Tα𝑑α=01(𝒯αξ˙)𝑑α=((01𝒯α𝑑α)ξ˙)=(𝒥rξ˙)T^{-1}\dot{T}=\int_{0}^{1}T^{-\alpha}\mathcal{L}(\dot{\xi})T^{\alpha}d\alpha=\int_{0}^{1}\mathcal{L}(\mathcal{T}^{-\alpha}\dot{\xi})d\alpha=\mathcal{L}((\int_{0}^{1}\mathcal{T}^{-\alpha}d\alpha)\dot{\xi})=\mathcal{L}(\mathcal{J}_{r}\dot{\xi}) (150)

where 𝒥l=01𝒯α𝑑α\mathcal{J}_{l}=\int_{0}^{1}\mathcal{T}^{\alpha}d\alpha is the left Jacobian for SEK(3)SE_{K}(3); 𝒥r=01𝒯α𝑑α\mathcal{J}_{r}=\int_{0}^{1}\mathcal{T}^{-\alpha}d\alpha is the right Jacobian for SEK(3)SE_{K}(3). Comparing equation (145) and equation (149), we can get the relationship between generalized velocity and the pose parameter derivative:

ω¯l=𝒥lξ˙,ω¯r=𝒥rξ˙\overline{\omega}_{l}=\mathcal{J}_{l}\dot{\xi},\overline{\omega}_{r}=\mathcal{J}_{r}\dot{\xi} (151)

or

ξ˙=𝒥l1ω¯l=(AdT𝒥r)1(AdTω¯l)=𝒥r1ω¯r\dot{\xi}=\mathcal{J}_{l}^{-1}\overline{\omega}_{l}=(Ad_{T}\mathcal{J}_{r})^{-1}(Ad_{T}\overline{\omega}_{l})=\mathcal{J}_{r}^{-1}\overline{\omega}_{r} (152)

for our equivalent kinematics in terms of the Lie algebra. Again, these equations are now free of constraints.

Then we can derive a SEK(3)SE_{K}(3) Jacobian identity similar to the SO(3)SO(3) group and SE(3)SE(3) group[1]:

𝒥˙(ξ)𝔏(ω¯)𝒥(ξ)ω¯ξ\dot{\mathcal{J}}(\xi)-\mathfrak{L}(\overline{\omega})\mathcal{J}(\xi)\equiv\frac{\partial\overline{\omega}}{\partial\xi} (153)

Starting from the right-hand side, we get

ω¯ξ\displaystyle\frac{\partial\overline{\omega}}{\partial\xi} =ξ(𝒥(ξ)ξ˙)=ξ(01𝒯(ξ)α𝑑α𝒥(ξ)ξ˙)=01ξ(𝒯(αξ)ξ˙)𝑑α\displaystyle=\frac{\partial}{\partial\xi}(\mathcal{J}(\xi)\dot{\xi})=\frac{\partial}{\partial\xi}\left(\underbrace{\int_{0}^{1}\mathcal{T}(\xi)^{\alpha}d\alpha}_{\mathcal{J}(\xi)}\dot{\xi}\right)=\int_{0}^{1}\frac{\partial}{\partial\xi}\left(\mathcal{T}(\alpha\xi)\dot{\xi}\right)d\alpha (154)
=01𝔏(𝒯(αξ)ξ˙)α𝒥(αξ)𝑑α\displaystyle=-\int_{0}^{1}\mathfrak{L}\left(\mathcal{T}(\alpha\xi)\dot{\xi}\right)\alpha\mathcal{J}(\alpha\xi)d\alpha

Noting that

ddα(α𝒥(αξ))=𝒯(αξ),𝒯(αξ)𝑑α=α𝒥(αξ)\frac{d}{d\alpha}\left(\alpha\mathcal{J}(\alpha\xi)\right)=\mathcal{T}(\alpha\xi),\int\mathcal{T}(\alpha\xi)d\alpha=\alpha\mathcal{J}(\alpha\xi) (155)

we can then integrate by parts to see that

ω¯ξ\displaystyle\frac{\partial\overline{\omega}}{\partial\xi} =𝔏(α𝒥(αξ)ξ˙)α𝒥(αξ)|α=0α=1𝔏(ω¯)𝒥(ξ)+01𝔏(α𝒥l(αξ)ξ˙)𝒯(αξ)𝒯˙(αξ)𝑑α\displaystyle=-\underbrace{\mathfrak{L}\left(\alpha\mathcal{J}(\alpha\xi)\dot{\xi}\right)\alpha\mathcal{J}(\alpha\xi)|_{\alpha=0}^{\alpha=1}}_{\mathfrak{L}(\overline{\omega})\mathcal{J}(\xi)}+\int_{0}^{1}\underbrace{\mathfrak{L}(\alpha\mathcal{J}_{l}(\alpha\xi)\dot{\xi})\mathcal{T}(\alpha\xi)}_{\dot{\mathcal{T}}(\alpha\xi)}d\alpha (156)
=𝔏(ω¯)𝒥(ξ)+ddt01𝒯(ξ)α𝑑α𝒥(ξ)=𝒥˙(ξ)𝔏(ω¯)𝒥(ξ)\displaystyle=-\mathfrak{L}(\overline{\omega})\mathcal{J}(\xi)+\frac{d}{dt}\underbrace{\int_{0}^{1}\mathcal{T}(\xi)^{\alpha}d\alpha}_{\mathcal{J}(\xi)}=\dot{\mathcal{J}}(\xi)-\mathfrak{L}(\overline{\omega})\mathcal{J}(\xi)

which is the desired result.

Linearization in Lie Group and Lie Algebra

We can also perturb our kinematic about some nominal solution, both in the Lie group and the Lie algebra. We begin with the Lie group SEK(3)SE_{K}(3). Consider the following perturbed matrix TSEK(3)T^{\prime}\in SE_{K}(3):

T=expG((δξ))T(IK+3+(δξ))TT^{\prime}=\exp_{G}(\mathcal{L}(\delta\xi))T\approx(I_{K+3}+\mathcal{L}(\delta\xi))T (157)

where TSEK(3)T\in SE_{K}(3) and ξ3(K+1)\xi\in\mathbb{R}^{3(K+1)} is a perturbation. The perturbed kinematics,

T˙=(ω¯l)T\dot{T}^{\prime}=\mathcal{L}(\overline{\omega}_{l}^{\prime})T^{\prime} (158)

can then be broken into nominal and perturbation kinematics:

nominal kinematics:\displaystyle\text{nominal kinematics}: T˙=(ω¯l)T\displaystyle\dot{T}=\mathcal{L}(\overline{\omega}_{l})T (159)
perturbation kinematics:\displaystyle\text{perturbation kinematics}: δξ˙=𝔏(ω¯l)δξ+δω¯l\displaystyle\delta\dot{\xi}=\mathfrak{L}(\overline{\omega}_{l})\delta\xi+\delta\overline{\omega}_{l}

where ω¯l=ω¯l+δω¯l\overline{\omega}_{l}^{\prime}=\overline{\omega}_{l}+\delta\overline{\omega}_{l}. These can be integrated separately and combined to provide the complete solution approximately.

Uncertainties on Matrix Lie Group SEK(3)SE_{K}(3)

Aiming at defining random variables on matrix Lie group SEK(3)SE_{K}(3), we can not apply the usual method of additive Gaussian noise for T1,T2SEK(3)T_{1},T_{2}\in SE_{K}(3) as SEK(3)SE_{K}(3) is not a vector space, i.e., generally T1+T2SEK(3)T_{1}+T_{2}\notin SE_{K}(3) does not hold. In contract, we adopt the concentrated Gaussian distribution[11] using differential geometry tools to define a Gaussian distribution directly on the manifold. Specifically, in matrix Lie group SEK(3)SE_{K}(3), there are both left multiplication and right multiplication depending on whether the noise is multiplied through the left or right of the group element:

left multiplication:Tl\displaystyle\text{left multiplication}:{T}_{l} =T^expG((εl))=T^expG((εl))T^1T^=expG((AdT^(εl)))T^\displaystyle=\hat{T}\exp_{G}(\mathcal{L}{(\varepsilon_{l})})=\hat{T}\exp_{G}(\mathcal{L}{(\varepsilon_{l})})\hat{T}^{-1}\hat{T}=\exp_{G}(\mathcal{L}{(Ad_{\hat{T}}(\varepsilon_{l}))})\hat{T} (160)
right multiplication:Tr\displaystyle\text{right multiplication}:{T}_{r} =expG((εr))T^\displaystyle=\exp_{G}(\mathcal{L}{(\varepsilon_{r})})\hat{T}

Therefore, the probability distributions for the random variables TSEK(3)T\in SE_{K}(3) can be defined as left-invariant concentrated Gaussian distribution on SEK(3)SE_{K}(3) and right-invariant concentrated Gaussian distribution on SEK(3)SE_{K}(3):

left-invariant:T𝒩L(T^,P),Tl\displaystyle\text{left-invariant}:T\sim\mathcal{N}_{L}(\hat{T},P),{T}_{l} =T^expG((εl)),εl𝒩(0,P)\displaystyle=\hat{T}\exp_{G}(\mathcal{L}{(\varepsilon_{l})}),\varepsilon_{l}\sim\mathcal{N}(0,P) (161)
right-invariant:T𝒩R(T^,P),Tr\displaystyle\text{right-invariant}:T\sim\mathcal{N}_{R}(\hat{T},P),{T}_{r} =expG((εr))T^,εr𝒩(0,P)\displaystyle=\exp_{G}(\mathcal{L}{(\varepsilon_{r})})\hat{T},\varepsilon_{r}\sim\mathcal{N}(0,P)

where 𝒩(,)\mathcal{N}(\cdot,\cdot) is the classical Gaussian distribution in Euclidean space and P3(K+1)×3(K+1)P\in\mathbb{R}^{3(K+1)\times 3(K+1)} is a covariance matrix. The invariant property can be verified by expG((εr))=(TrΓ)(T^Γ)1=TrT^1\exp_{G}(\mathcal{L}{(\varepsilon_{r})})=({T}_{r}\Gamma)(\hat{T}\Gamma)^{-1}={T}_{r}\hat{T}^{-1} and expG((εl))=(ΓT^)1(ΓTl)=T^1Tl\exp_{G}(\mathcal{L}{(\varepsilon_{l})})=(\Gamma\hat{T})^{-1}(\Gamma{T}_{l})=\hat{T}^{-1}{T}_{l}. The noise-free quantity T^\hat{T} is viewed as the mean, and the dispersion arises through left multiplication or right multiplication with the matrix exponential of a zero mean Gaussian random variable.

Riemannian Metric, Projection, and dual adjoint

Definition 1

(Right- and Left- Invariant Riemannian Metric [12]). A Riemannian matrix <,>X<\cdot,\cdot>_{X} is right-invariant if the differential map of the right translation is an isometry between tangent spaces, that is

<V,U>X=<TXRY(V),TXRY(U)>XY<V,U>_{X}=<T_{X}R_{Y}(V),T_{X}R_{Y}(U)>_{XY} (162)

for all X,YGX,Y\in G and V,UTXGV,U\in T_{X}G, and is left-invariant if the differential map of the left translation is an isometry between tangent spaces, that is

<V,U>X=<TXLY(V),TXLY(U)>YX<V,U>_{X}=<T_{X}L_{Y}(V),T_{X}L_{Y}(U)>_{YX} (163)

for all X,YGX,Y\in G and V,UTXGV,U\in T_{X}G.

Definition 2

(Bi-Invariant Riemannian metric [12]). A Riemannian metric is bi-invariant if it is both right-invariant and left-invariant.

It is thus uniquely determined by an inner product on the tangent space at the identity TeG=𝔤T_{e}G=\mathfrak{g}. To find a Riemannian metric on the Lie group, an inner product on the Lie algebra is first found. An inner product on matrix Lie algebra 𝔤\mathfrak{g} is denoted as <,>𝔤:𝔤×𝔤<\cdot,\cdot>_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathbb{R} with associated norm ||||𝔤=<,>||\cdot||_{\mathfrak{g}}=\sqrt{<\cdot,\cdot>}. The standard matrix inner product is given by <X,Y>=tr(XTY)<X,Y>=tr(X^{T}Y),X,Yn×n\forall X,Y\in\mathbb{R}^{n\times n}.

For all XSEK(3)X\in SE_{K}(3), A1,A2𝔰𝔢k(3)A_{1},A_{2}\in\mathfrak{se}_{k}(3), a right-invariant Riemannian metrix <,>X<\cdot,\cdot>_{X} on Lie group can be deduced by the inner product on the Lie algebra 𝔤\mathfrak{g} by the following relationship

<A1X,A2X>X:=<A1XX1,A2XX1>=<A1,A2>,XG<A_{1}X,A_{2}X>_{X}:=<A_{1}XX^{-1},A_{2}XX^{-1}>=<A_{1},A_{2}>,\forall X\in G (164)

When the Riemannian metric is assumed to be bi-invariant, it is also assumed that the inner product on 𝔤\mathfrak{g} gives rise to a bi-invariant Riemannian metric by the same relationship [13].

Definition 3

A Lie group for which det(Adg)=1,gG\det(Ad_{g})=1,\forall g\in G is called unimodular [14]. The Lie group is unimodular means the determinants of the left and right Jacobians are the same since Jl=AdgJrJ_{l}=Ad_{g}J_{r}.

Remark 1

Since the special orthogonal group SO(n)SO(n) is compact, it admits a bi-invariant measure, hence det(AdR)=det(R)=1\det(Ad_{R})=\det(R)=1.

Remark 2

The special Euclidean group SE(n)SE(n) is unimodular, that is, admits a biinvariant measure. To see that SE(n)SE(n) is unimodular, consider a left-invariant volume form ω\omega, the volume form is bi-invariant if and only if

dLgdRg1(ωe)=ωedL_{g}\circ dR_{g^{-1}}(\omega_{e})=\omega_{e} (165)

or equivalently det(dLgdRg1)=det(Adg)=1\det(dL_{g}\circ dR_{g^{-1}})=\det(Ad_{g})=1.

Remark 3

The structure of the adjoint matrix of the Euclidean group SE(n)SE(n) implies that the derivative of the exponential admits an explict expression.

For any gSEK(3)g\in SE_{K}(3), we define |g|I|g|_{I} as the distance with respect to IK+3I_{K+3}, which is given by

|g|I:=Ik+3gF=I3RF2+i=1Kpi2=8RI2+i=1Kpi2|g|_{I}:=||I_{k+3}-g||_{F}=\sqrt{||I_{3}-R||_{F}^{2}+\sum_{i=1}^{K}||p_{i}||^{2}}=\sqrt{8||R||_{I}^{2}+\sum_{i=1}^{K}||p_{i}||^{2}} (166)

where |R|I|R|_{I} denotes normalized attitude norm on RSO(3)R\in SO(3) with respect to the identity I3I_{3} [15]:

|R|I=I3RF8=12tr(I3R)[0,1]|R|_{I}=\frac{||I_{3}-R||_{F}}{\sqrt{8}}=\frac{1}{2}\sqrt{tr(I_{3}-R)}\in[0,1] (167)

Let 𝒫𝔰𝔢k(3):(K+1)×(K+1)𝔰𝔢k(3)\mathcal{P}_{\mathfrak{se}_{k}(3)}:\mathbb{R}^{(K+1)\times(K+1)}\rightarrow\mathfrak{se}_{k}(3) denotes the projection of A(K+1)×(K+1)A\in\mathbb{R}^{(K+1)\times(K+1)} on the Lie algebra 𝔰𝔢k(3)\mathfrak{se}_{k}(3), such that, for B3×3B\in\mathbb{R}^{3\times 3}, a1,a2,,a2K3a_{1},a_{2},\cdots,a_{2K}\in\mathbb{R}^{3} and b1,b2,,bK2b_{1},b_{2},\cdots,b_{K^{2}}\in\mathbb{R}, one has

𝒫𝔰𝔢k(3)(A)=𝒫𝔰𝔢k(3)([Ba1a2aKaK+1Tb1b2bKaK+2TbK+1bK+2b2Ka2KTbK(K1)+1bK(K1)+2bK2])\displaystyle\mathcal{P}_{\mathfrak{se}_{k}(3)}(A)=\mathcal{P}_{\mathfrak{se}_{k}(3)}\left(\begin{bmatrix}B&a_{1}&a_{2}&\cdots&a_{K}\\ a_{K+1}^{T}&b_{1}&b_{2}&\cdots&b_{K}\\ a_{K+2}^{T}&b_{K+1}&b_{K+2}&\cdots&b_{2K}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ a_{2K}^{T}&b_{K(K-1)+1}&b_{{K(K-1)+}2}&\cdots&b_{K^{2}}\end{bmatrix}\right) (168)
=\displaystyle= [𝒫𝔰𝔬(3)(B)a1a2aK0T0000T0000T000]\displaystyle\begin{bmatrix}\mathcal{P}_{\mathfrak{so}(3)}(B)&a_{1}&a_{2}&\cdots&a_{K}\\ 0^{T}&0&0&\cdots&0\\ 0^{T}&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0^{T}&0&0&\cdots&0\end{bmatrix}

where 𝒫𝔰𝔬3:3×3𝔰𝔬3\mathcal{P}_{\mathfrak{so}_{3}}:\mathbb{R}^{3\times 3}\rightarrow\mathfrak{so}_{3} is the anti-symmetric projection operator [13, 15].

It follows that, U𝔰𝔢k(3)\forall U\in\mathfrak{se}_{k}(3), A(K+1)×(K+1)A\in\mathbb{R}^{(K+1)\times(K+1)} one has <U,A>=<U,𝒫𝔰𝔢k(3)(A)>=<𝒫𝔰𝔢k(3)(A),U>=<A,U><U,A>=<U,\mathcal{P}_{\mathfrak{se}_{k}(3)}(A)>=<\mathcal{P}_{\mathfrak{se}_{k}(3)}(A),U>=<A,U>.

The Adjoint representation of Lie group GG on its Lie algebra 𝔤\mathfrak{g} is defined as the linear operator AdTAd_{T}:

AdTξ:=1(T(ξ)T1),TG,ξpAd_{T}\cdot\xi:=\mathcal{L}^{-1}\left(T\mathcal{L}(\xi)T^{-1}\right),\forall T\in G,\xi\in\mathbb{R}^{p} (169)

where 1\mathcal{L}^{-1} is the inverse isomorphism of the map \mathcal{L}. It captures the property related to commutation and is equivalent with equation (27).

Specifically, given a rigid body with configuration TSEK(3)T\in SE_{K}(3), the Adjoint mapping AdT:SEK(3)×𝔰𝔢k(3)𝔰𝔢k(3)Ad_{T}:SE_{K}(3)\times\mathfrak{se}_{k}(3)\rightarrow\mathfrak{se}_{k}(3) is given by

AdTU:=TUT1,TSEK(3),U𝔰𝔢k(3)Ad_{T}U:=TUT^{-1},\forall T\in SE_{K}(3),U\in\mathfrak{se}_{k}(3) (170)

The adjoint mapping allows us to linearly and exactly transforms vectors from the tangent space about one group element to the differential tangent space about another group element. It is easy to verify that AdT1AdT2=AdT1T2,T1,T2SEK(3)Ad_{T_{1}}Ad_{T_{2}}=Ad_{T_{1}T_{2}},\forall T_{1},T_{2}\in SE_{K}(3).

The cotangent space of matrix Lie group SEK(3)SE_{K}(3) is denoted as 𝔰𝔢k(3)\mathfrak{se}_{k}^{*}(3). For the case K=1K=1, the elements of 𝔰𝔢k(3)\mathfrak{se}_{k}^{*}(3) is denoted as ξ\xi_{\wedge}^{*} and can be identified by a pair (f,m)({f},{m}), where f3f\in\mathbb{R}^{3} and m3m\in\mathbb{R}^{3} can are the force and moment vector, respectively. Furthermore, ξ\xi^{*} is the wrench and its matrix form is given as

ξ=[fm01×30]\xi_{\wedge}^{*}=\begin{bmatrix}f_{\wedge}&m\\ 0_{1\times 3}&0\end{bmatrix} (171)

Finally, we consider the dual mapping ad𝔤ad_{\mathfrak{g}}^{*} and its associated Lie group AdTAd_{T}^{*}. The metric dual to the adjoint mapping is defined such that [16]

U,V,W𝔤,<adU(V),W>=<V,adU(W)>=<[U,W],V>\forall U,V,W\in\mathfrak{g},<ad_{U}^{*}(V),W>=<V,ad_{U}(W)>=<[U,W],V> (172)

As the bracket can be computed explicitly in the Lie algebra, so can ad𝔤ad_{\mathfrak{g}}^{*} thanks to the orthogonal basis of 𝔤\mathfrak{g}.

As usual, given a basis for the vector space of the Lie algebra, the matrix representation ad𝔤ad_{\mathfrak{g}}^{*} is simply the transpose of ad𝔤ad_{\mathfrak{g}} [12]. The dual adjoint mapping ad𝔤ad_{\mathfrak{g}}^{*} is given by

ad𝔤=(ad𝔤)T=[ϕ(t1)(t2)(tK)03×3ϕ03×303×303×303×3ϕ03×303×303×303×3ϕ]ad_{\mathfrak{g}}^{*}=(ad_{\mathfrak{g}})^{T}=\begin{bmatrix}-\phi_{\wedge}&-(t_{1})_{\wedge}&-(t_{2})_{\wedge}&\cdots&-(t_{K})_{\wedge}\\ 0_{3\times 3}&-\phi_{\wedge}&0_{3\times 3}&\cdots&0_{3\times 3}\\ 0_{3\times 3}&0_{3\times 3}&-\phi_{\wedge}&\cdots&0_{3\times 3}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0_{3\times 3}&0_{3\times 3}&0_{3\times 3}&\cdots&-\phi_{\wedge}\\ \end{bmatrix} (173)

The dual Adjoint mapping AdT:SEK(3)×𝔰𝔢k(3)𝔰𝔢k(3)Ad_{T}^{*}:SE_{K}(3)\times\mathfrak{se}_{k}^{*}(3)\rightarrow\mathfrak{se}_{k}^{*}(3) is defined by

AdTU:=T1UT,TSEK(3),U𝔰𝔢k(3)Ad_{T}^{*}U:=T^{-1}UT,\forall T\in SE_{K}(3),U\in\mathfrak{se}_{k}^{*}(3) (174)

Similarly, the matrix representation AdTAd_{T}^{*} is the simply the transpose of AdTAd_{T}. The matrix representation of the dual Adjoint mapping AdTAd_{T}^{*} is given by

AdT=(AdT)T=[RTRT(p1)RT(p2)RT(pK)03×3RT03×303×303×303×3RT03×303×303×303×3RT]Ad_{T}^{*}=(Ad_{T})^{T}=\begin{bmatrix}R^{T}&-R^{T}(p_{1})_{\wedge}&-R^{T}(p_{2})_{\wedge}&\cdots&-R^{T}(p_{K})_{\wedge}\\ 0_{3\times 3}&R^{T}&0_{3\times 3}&\cdots&0_{3\times 3}\\ 0_{3\times 3}&0_{3\times 3}&R^{T}&\cdots&0_{3\times 3}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0_{3\times 3}&0_{3\times 3}&0_{3\times 3}&\cdots&R^{T}\\ \end{bmatrix} (175)

Vectorial Parameterizations of Matrix Lie Group SEK(3)SE_{K}(3)

Building on the work of Barfoot [17], we show that there also exist several options for mapping vectors onto the matrix Lie group SEK(3)SE_{K}(3).

Motivated by the general vector pose mapping given by [17], we consider the general vector extended pose mapping to be of the same form

T(ξ)=I+a(ξ)+b(ξ)2+c(ξ)3T(\xi)=I+a\mathcal{L}(\xi)+b\mathcal{L}(\xi)^{2}+c\mathcal{L}(\xi)^{3} (176)

for some a, b, and c such that the result is an element of the matrix Lie group SEK(3)SE_{K}(3). Owing to the equation (25), we can know that any higher-order term of (ξ)\mathcal{L}(\xi) will be reduced to a lower-order term.

Therefore, we can formulate the explicit expression of T(ξ)T(\xi) by substituting the definition of (ξ)\mathcal{L}(\xi) in equation (6) into equation (176):

T(ξ)\displaystyle T(\xi) =[R(ϕ)D(ϕ)t1D(ϕ)tK0T100T01]\displaystyle=\begin{bmatrix}R(\phi)&D(\phi)t_{1}&\cdots&D(\phi)t_{K}\\ 0^{T}&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0^{T}&0&\cdots&1\end{bmatrix} (177)
=[I+(aθ2c)ϕ+bϕ2(aI+bϕ+cϕ2)t1(aI+bϕ+cϕ2)tK0T100T01]\displaystyle=\begin{bmatrix}I+(a-\theta^{2}c)\phi_{\wedge}+b\phi_{\wedge}^{2}&(aI+b\phi_{\wedge}+c\phi_{\wedge}^{2})t_{1}&\cdots&(aI+b\phi_{\wedge}+c\phi_{\wedge}^{2})t_{K}\\ 0^{T}&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0^{T}&0&\cdots&1\end{bmatrix}

where equation (17) is used to simplify the top-left entry.

It is obvious that the above result is the direct extension of pose mapping of SE(3)SE(3). The results of vector mappings for poses can be applied directly here. Therefore, the selection of aa and cc means the general pose mapping becomes

T(ξ)=I+μ(ξ)+ν222+1θ2(μν2ε)((ξ))3T(\xi)=I+\mu\mathcal{L}(\xi)+\frac{\nu^{2}}{2}\mathcal{L}^{2}+\frac{1}{\theta^{2}}\left(\mu-\frac{\nu^{2}}{\varepsilon}\right)(\mathcal{L}(\xi))^{3} (178)

When the rotation angle, θ\theta, becomes small, we have the infinitesimal expression

T(ξ)I+(ξ)T(\xi)\approx I+\mathcal{L}(\xi) (179)

This approximation is important and have been used in the perturbations such as equation (157).

With the definition of adjoint and Adjoint, we can transform the vector parameterization of general pose to its Adjoint in two equivalent ways. To verify this commutative property, the series form of the Adjoint mapping can be written as

𝒯(ξ)=I+d𝔏(ξ)+e𝔏(ξ)2+f𝔏(ξ)3+g𝔏(ξ)4\mathcal{T}(\xi)=I+d\mathfrak{L}(\xi)+e\mathfrak{L}(\xi)^{2}+f\mathfrak{L}(\xi)^{3}+g\mathfrak{L}(\xi)^{4} (180)

for some unknowns, dd, ee, ff, gg. The higher-order terms can be reduced due to the equation (47).

Exponential function is one possibility for local parameterization with the advantages that it can be used for any matrix Lie group such that it is applied as standard parameterization. Nevertheless, the usage of the exponential function suffers from one big disadvantage that the inverse of the derivative of the exponential function is an infinite series [18].

Composition of general poses

Consider two uncertain general poses TijT_{ij} and TjkT_{jk} with perturbations ξij\xi_{ij} and ξjk\xi_{jk} that are jointly Gaussian in Lie algebra and its covariance matrix is given as

Σ=[ΣijΣij,jkΣij,jkTΣjk]\Sigma=\begin{bmatrix}\Sigma_{ij}&\Sigma_{ij,jk}\\ \Sigma_{ij,jk}^{T}&\Sigma_{jk}\end{bmatrix} (181)

Denote the composition of the general pose as TikT_{ik} and its associated mean and covariance as {T¯ik,Σik}\left\{\overline{T}_{ik},\Sigma_{ik}\right\}. Under the Lie group multiplication operation, we have

Tik=TijTjk{T}_{ik}=T_{ij}T_{jk} (182)

Following the left uncertainties definition on matrix Lie group, we can get

expG((ξik))T¯ik=expG((ξij))T¯ijexpG((ξjk))T¯jk\exp_{G}(\mathcal{L}(\xi_{ik}))\overline{T}_{ik}=\exp_{G}(\mathcal{L}(\xi_{ij}))\overline{T}_{ij}\exp_{G}(\mathcal{L}(\xi_{jk}))\overline{T}_{jk} (183)

Moving all the uncertain factors to the left side by the Adjoint property of the matrix Lie group, we have

expG((ξik))T¯ik=expG((ξij))expG((AdT¯ijξjk))T¯ijT¯jk\exp_{G}(\mathcal{L}(\xi_{ik}))\overline{T}_{ik}=\exp_{G}(\mathcal{L}(\xi_{ij}))\exp_{G}(\mathcal{L}(Ad_{\overline{T}_{ij}}\xi_{jk}))\overline{T}_{ij}\overline{T}_{jk} (184)

If we let

T¯ik=T¯ijT¯jk\overline{T}_{ik}=\overline{T}_{ij}\overline{T}_{jk} (185)

gives us

expG((ξik))=expG((ξij))expG((AdT¯ijξjk))\exp_{G}(\mathcal{L}(\xi_{ik}))=\exp_{G}(\mathcal{L}(\xi_{ij}))\exp_{G}(\mathcal{L}(Ad_{\overline{T}_{ij}}\xi_{jk})) (186)

Letting ξjk=AdT¯ijξjk\xi_{jk}^{\prime}=Ad_{\overline{T}_{ij}}\xi_{jk}, we can use the Baker-Campbell-Housdorff (BCH) formula to show that

ξik=\displaystyle\xi_{ik}= ξij+ξjk+12𝔏(ξij)ξjk+112𝔏(ξij)𝔏(ξij)ξjk\displaystyle\xi_{ij}+\xi_{jk}^{\prime}+\frac{1}{2}\mathfrak{L}(\xi_{ij})\xi_{jk}^{\prime}+\frac{1}{12}\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij})\xi_{jk}^{\prime} (187)
+112𝔏(ξjk)𝔏(ξjk)ξij124𝔏(ξjk)𝔏(ξij)𝔏(ξij)ξjk+\displaystyle+\frac{1}{12}\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime})\xi_{ij}-\frac{1}{24}\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij})\xi_{jk}^{\prime}+\cdots

In order to compute the covariance Σik\Sigma_{ik}, we have to multiply out up-to fourth order:

𝔼[ξikξikT]𝔼[ξijξijT+ξjkξjkT2nd Order Diag. Terms+ξijξjkT+ξjkξijT2nd Order Cross Terms\displaystyle\mathbb{E}[\xi_{ik}\xi_{ik}^{T}]\approx\mathbb{E}[\underbrace{\xi_{ij}\xi_{ij}^{T}+\xi_{jk}^{\prime}\xi_{jk}^{\prime T}}_{\text{2nd Order Diag. Terms}}+\underbrace{\xi_{ij}\xi_{jk}^{\prime T}+\xi_{jk}^{\prime}\xi_{ij}^{T}}_{\text{2nd Order Cross Terms}} (188)
+112((𝔏(ξij)𝔏(ξij))(ξjkξjkT)+(ξjkξjkT)(𝔏(ξij)𝔏(ξij))T4th Order Diagonal Terms\displaystyle+\underbrace{\frac{1}{12}\left({(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})+(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))^{T}}\right.}_{\text{4th Order Diagonal Terms}}
+(𝔏(ξjk)𝔏(ξjk))(ξijξijT)+(ξijξijT)(𝔏(ξjk)𝔏(ξjk))T)+14𝔏(ξij)(ξjkξjkT)𝔏(ξij)T4th Order Diagonal Terms\displaystyle\underbrace{\left.{+(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))(\xi_{ij}\xi_{ij}^{T})+(\xi_{ij}\xi_{ij}^{T})(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))^{T}}\right)+\frac{1}{4}\mathfrak{L}(\xi_{ij})(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})\mathfrak{L}(\xi_{ij})^{T}}_{\text{4th Order Diagonal Terms}}
+112((ξijξjkT)(𝔏(ξij)T𝔏(ξij)T)+(ξjkξijT)(𝔏(ξjk)T𝔏(ξjk)T)+(𝔏(ξij)𝔏(ξij))(ξjkξijT)4th Order Cross Terms\displaystyle+\underbrace{\frac{1}{12}\left({(\xi_{ij}\xi_{jk}^{\prime T})(\mathfrak{L}(\xi_{ij})^{T}\mathfrak{L}(\xi_{ij})^{T})+(\xi_{jk}^{\prime}\xi_{ij}^{T})(\mathfrak{L}(\xi_{jk}^{\prime})^{T}\mathfrak{L}(\xi_{jk}^{\prime})^{T})+(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))(\xi_{jk}^{\prime}\xi_{ij}^{T})}\right.}_{\text{4th Order Cross Terms}}
+(𝔏(ξjk)𝔏(ξjk)(ξijξjkT))4th Order Cross Terms]\displaystyle\underbrace{\left.{+(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime})(\xi_{ij}\xi_{jk}^{\prime T})}\right)}_{\text{4th Order Cross Terms}}]

If ξij\xi_{ij} and ξjk\xi_{jk}^{\prime} are assumed to be uncorrelated with each other, then we have

𝔼[ξik]=124𝔏(ξjk)𝔏(ξij)𝔏(ξij)ξjk+𝒪(ξik6)\mathbb{E}[\xi_{ik}]=-\frac{1}{24}\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij})\xi_{jk}^{\prime}+\mathcal{O}(||\xi_{ik}||^{6}) (189)

since everything except the fourth-order term has zero mean [1].

As for 𝔼[ξikξikT]\mathbb{E}[\xi_{ik}\xi_{ik}^{T}], when TijT_{ij} and TjkT_{jk} are independent measurements of consecutive robot motion, the cross terms are zero and the resulting covariance is given as

𝔼[ξikξikT]𝔼[ξijξijT+ξjkξjkT2nd Order Diag. Terms\displaystyle\mathbb{E}[\xi_{ik}\xi_{ik}^{T}]\approx\mathbb{E}[\underbrace{\xi_{ij}\xi_{ij}^{T}+\xi_{jk}^{\prime}\xi_{jk}^{\prime T}}_{\text{2nd Order Diag. Terms}} (190)
+112((𝔏(ξij)𝔏(ξij))(ξjkξjkT)+(ξjkξjkT)(𝔏(ξij)𝔏(ξij))T4th Order Diagonal Terms\displaystyle+\underbrace{\frac{1}{12}\left({(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})+(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))^{T}}\right.}_{\text{4th Order Diagonal Terms}}
+(𝔏(ξjk)𝔏(ξjk))(ξijξijT)+(ξijξijT)(𝔏(ξjk)𝔏(ξjk))T)+14𝔏(ξij)(ξjkξjkT)𝔏(ξij)T4th Order Diagonal Terms]\displaystyle\underbrace{\left.{+(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))(\xi_{ij}\xi_{ij}^{T})+(\xi_{ij}\xi_{ij}^{T})(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))^{T}}\right)+\frac{1}{4}\mathfrak{L}(\xi_{ij})(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})\mathfrak{L}(\xi_{ij})^{T}}_{\text{4th Order Diagonal Terms}}]

where we have omitted showing any terms that have an odd power in either ξij\xi_{ij} and ξjk\xi_{jk}^{\prime} since these will by definition have expectation zero.

We define two linear operators along the lines of [1]:

<<A>>:=tr(A)I+A<<A>>:=-tr(A)I+A (191)
<<A,B>>:=<<A>><<B>>+<<BA>><<A,B>>:=<<A>><<B>>+<<BA>> (192)

where A,Bn×nA,B\in\mathbb{R}^{n\times n}. These provide the following useful identity,

ϕDω=<<ωϕT,D>>-\phi_{\wedge}D\omega_{\wedge}=<<\omega\phi^{T},D>> (193)

where ϕ,ω3\phi,\omega\in\mathbb{R}^{3} and D3×3D\in\mathbb{R}^{3\times 3}.

Now we compute the equation (190) term by term.

𝔼[ξijξijT]=Σij=[Σij,ϕϕΣij,ϕt1Σij,ϕt2Σij,ϕtKΣij,t1ϕΣij,t1t1Σij,t1t2Σij,t1tKΣij,t2ϕΣij,t2t1Σij,t2t2Σij,t2tKΣij,tKϕΣij,tKt1Σij,tKt2Σij,tKtK]\mathbb{E}[\xi_{ij}\xi_{ij}^{T}]=\Sigma_{ij}=\begin{bmatrix}\Sigma_{ij,\phi\phi}&\Sigma_{ij,\phi t_{1}}&\Sigma_{ij,\phi t_{2}}&\cdots&\Sigma_{ij,\phi t_{K}}\\ \Sigma_{ij,t_{1}\phi}&\Sigma_{ij,t_{1}t_{1}}&\Sigma_{ij,t_{1}t_{2}}&\cdots&\Sigma_{ij,t_{1}t_{K}}\\ \Sigma_{ij,t_{2}\phi}&\Sigma_{ij,t_{2}t_{1}}&\Sigma_{ij,t_{2}t_{2}}&\cdots&\Sigma_{ij,t_{2}t_{K}}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \Sigma_{ij,t_{K}\phi}&\Sigma_{ij,t_{K}t_{1}}&\Sigma_{ij,t_{K}t_{2}}&\cdots&\Sigma_{ij,t_{K}t_{K}}\end{bmatrix} (194)
𝔼[ξjkξjkT]=Σjk=[Σjk,ϕϕΣjk,ϕt1Σjk,ϕt2Σjk,ϕtKΣjk,t1ϕΣjk,t1t1Σjk,t1t2Σjk,t1tKΣjk,t2ϕΣjk,t2t1Σjk,t2t2Σjk,t2tKΣjk,tKϕΣjk,tKt1Σjk,tKt2Σjk,tKtK]=AdT¯ijΣjkAdT¯ijT\mathbb{E}[\xi_{jk}^{\prime}\xi_{jk}^{\prime T}]=\Sigma_{jk}^{\prime}=\begin{bmatrix}\Sigma_{jk,\phi\phi}^{\prime}&\Sigma_{jk,\phi t_{1}}^{\prime}&\Sigma_{jk,\phi t_{2}}^{\prime}&\cdots&\Sigma_{jk,\phi t_{K}}^{\prime}\\ \Sigma_{jk,t_{1}\phi}^{\prime}&\Sigma_{jk,t_{1}t_{1}}^{\prime}&\Sigma_{jk,t_{1}t_{2}}^{\prime}&\cdots&\Sigma_{jk,t_{1}t_{K}}^{\prime}\\ \Sigma_{jk,t_{2}\phi}^{\prime}&\Sigma_{jk,t_{2}t_{1}}^{\prime}&\Sigma_{jk,t_{2}t_{2}}^{\prime}&\cdots&\Sigma_{jk,t_{2}t_{K}}^{\prime}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \Sigma_{jk,t_{K}\phi}^{\prime}&\Sigma_{jk,t_{K}t_{1}}^{\prime}&\Sigma_{jk,t_{K}t_{2}}^{\prime}&\cdots&\Sigma_{jk,t_{K}t_{K}}^{\prime}\end{bmatrix}=Ad_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T} (195)

We first compute

𝔏(ξij)𝔏(ξij)=[ϕϕ000(t1)ϕ+ϕ(t1)ϕϕ00(t2)ϕ+ϕ(t2)0ϕϕ0(tK)ϕ+ϕ(tK)00ϕϕ]\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij})=\begin{bmatrix}\phi_{\wedge}\phi_{\wedge}&0&0&\cdots&0\\ (t_{1})_{\wedge}\phi_{\wedge}+\phi_{\wedge}(t_{1})_{\wedge}&\phi_{\wedge}\phi_{\wedge}&0&\cdots&0\\ (t_{2})_{\wedge}\phi_{\wedge}+\phi_{\wedge}(t_{2})_{\wedge}&0&\phi_{\wedge}\phi_{\wedge}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ (t_{K})_{\wedge}\phi_{\wedge}+\phi_{\wedge}(t_{K})_{\wedge}&0&0&\cdots&\phi_{\wedge}\phi_{\wedge}\end{bmatrix} (196)

Making use of the property

ϕϕ=(ϕTϕ)I3+ϕϕT\phi_{\wedge}\phi_{\wedge}=-(\phi^{T}\phi)I_{3}+\phi\phi^{T} (197)

and taking the expectation of equation (196), we obtain

𝔼[𝔏(ξij)𝔏(ξij)]=𝒜1\displaystyle\mathbb{E}[\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij})]=\mathcal{A}_{1} (198)
=\displaystyle= [<<Σij,ϕϕ>>000<<Σij,t1ϕ+Σij,ϕt1>><<Σij,ϕϕ>>00<<Σij,t2ϕ+Σij,ϕt2>>0<<Σij,ϕϕ>>0<<Σij,tKϕ+Σij,ϕtK>>00<<Σij,ϕϕ>>]\displaystyle\begin{bmatrix}<<\Sigma_{ij,\phi\phi}>>&0&0&\cdots&0\\ <<\Sigma_{ij,t_{1}\phi}+\Sigma_{ij,\phi t_{1}}>>&<<\Sigma_{ij,\phi\phi}>>&0&\cdots&0\\ <<\Sigma_{ij,t_{2}\phi}+\Sigma_{ij,\phi t_{2}}>>&0&<<\Sigma_{ij,\phi\phi}>>&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ <<\Sigma_{ij,t_{K}\phi}+\Sigma_{ij,\phi t_{K}}>>&0&0&\cdots&<<\Sigma_{ij,\phi\phi}>>\end{bmatrix}
=\displaystyle= [<<Σij,ϕϕ>>000<<Σij,t1ϕ+Σij,t1ϕT>><<Σij,ϕϕ>>00<<Σij,t2ϕ+Σij,t2ϕT>>0<<Σij,ϕϕ>>0<<Σij,tKϕ+Σij,tKϕT>>00<<Σij,ϕϕ>>]\displaystyle\begin{bmatrix}<<\Sigma_{ij,\phi\phi}>>&0&0&\cdots&0\\ <<\Sigma_{ij,t_{1}\phi}+\Sigma_{ij,t_{1}\phi}^{T}>>&<<\Sigma_{ij,\phi\phi}>>&0&\cdots&0\\ <<\Sigma_{ij,t_{2}\phi}+\Sigma_{ij,t_{2}\phi}^{T}>>&0&<<\Sigma_{ij,\phi\phi}>>&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ <<\Sigma_{ij,t_{K}\phi}+\Sigma_{ij,t_{K}\phi}^{T}>>&0&0&\cdots&<<\Sigma_{ij,\phi\phi}>>\end{bmatrix}

Similarly, we can obtain

𝔼[𝔏(ξjk)𝔏(ξjk)]=𝒜2\displaystyle\mathbb{E}[\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime})]=\mathcal{A}_{2}^{\prime} (199)
=\displaystyle= [<<Σjk,ϕϕ>>000<<Σjk,t1ϕ+Σjk,ϕt1>><<Σjk,ϕϕ>>00<<Σjk,t2ϕ+Σjk,ϕt2>>0<<Σjk,ϕϕ>>0<<Σjk,tKϕ+Σjk,ϕtK>>00<<Σjk,ϕϕ>>]\displaystyle\begin{bmatrix}<<\Sigma_{jk,\phi\phi}^{\prime}>>&0&0&\cdots&0\\ <<\Sigma_{jk,t_{1}\phi}^{\prime}+\Sigma_{jk,\phi t_{1}}^{\prime}>>&<<\Sigma_{jk,\phi\phi}^{\prime}>>&0&\cdots&0\\ <<\Sigma_{jk,t_{2}\phi}^{\prime}+\Sigma_{jk,\phi t_{2}}^{\prime}>>&0&<<\Sigma_{jk,\phi\phi}^{\prime}>>&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ <<\Sigma_{jk,t_{K}\phi}^{\prime}+\Sigma_{jk,\phi t_{K}}^{\prime}>>&0&0&\cdots&<<\Sigma_{jk,\phi\phi}^{\prime}>>\end{bmatrix}
=\displaystyle= [<<Σjk,ϕϕ>>000<<Σjk,t1ϕ+Σjk,t1ϕT>><<Σjk,ϕϕ>>00<<Σjk,t2ϕ+Σjk,t2ϕT>>0<<Σjk,ϕϕ>>0<<Σjk,tKϕ+Σjk,tKϕT>>00<<Σjk,ϕϕ>>]\displaystyle\begin{bmatrix}<<\Sigma_{jk,\phi\phi}^{\prime}>>&0&0&\cdots&0\\ <<\Sigma_{jk,t_{1}\phi}^{\prime}+\Sigma_{jk,t_{1}\phi}^{\prime T}>>&<<\Sigma_{jk,\phi\phi}^{\prime}>>&0&\cdots&0\\ <<\Sigma_{jk,t_{2}\phi}^{\prime}+\Sigma_{jk,t_{2}\phi}^{\prime T}>>&0&<<\Sigma_{jk,\phi\phi}^{\prime}>>&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ <<\Sigma_{jk,t_{K}\phi}^{\prime}+\Sigma_{jk,t_{K}\phi}^{\prime T}>>&0&0&\cdots&<<\Sigma_{jk,\phi\phi}^{\prime}>>\end{bmatrix}

As the noises are not correlated, we can obtain

𝔼[(𝔏(ξij)𝔏(ξij))(ξjkξjkT)+(ξjkξjkT)(𝔏(ξij)𝔏(ξij))T+(𝔏(ξjk)𝔏(ξjk))(ξijξijT)+(ξijξijT)(𝔏(ξjk)𝔏(ξjk))T]\displaystyle\mathbb{E}[(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})+(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})(\mathfrak{L}(\xi_{ij})\mathfrak{L}(\xi_{ij}))^{T}+(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))(\xi_{ij}\xi_{ij}^{T})+(\xi_{ij}\xi_{ij}^{T})(\mathfrak{L}(\xi_{jk}^{\prime})\mathfrak{L}(\xi_{jk}^{\prime}))^{T}] (200)
=\displaystyle= 𝒜1Σjk+Σjk𝒜1T+𝒜2Σij+Σij𝒜2T\displaystyle\mathcal{A}_{1}\Sigma_{jk}^{\prime}+\Sigma_{jk}^{\prime}\mathcal{A}_{1}^{T}+\mathcal{A}_{2}^{\prime}\Sigma_{ij}+\Sigma_{ij}\mathcal{A}_{2}^{\prime T}

It now remains to compute

𝔼[𝔏(ξij)(ξjkξjkT)𝔏(ξij)T]==[BϕϕBϕt1Bϕt2BϕtKBt1ϕBt1t1Bt1t2Bt1tKBt2ϕBt2t1Bt2t2Bt2tKBtKϕBtKt1BtKt2BtKtK]\displaystyle\mathbb{E}[\mathfrak{L}(\xi_{ij})(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})\mathfrak{L}(\xi_{ij})^{T}]=\mathcal{B}=\begin{bmatrix}B_{\phi\phi}&B_{\phi t_{1}}&B_{\phi t_{2}}&\cdots&B_{\phi t_{K}}\\ B_{t_{1}\phi}&B_{t_{1}t_{1}}&B_{t_{1}t_{2}}&\cdots&B_{t_{1}t_{K}}\\ B_{t_{2}\phi}&B_{t_{2}t_{1}}&B_{t_{2}t_{2}}&\cdots&B_{t_{2}t_{K}}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ B_{t_{K}\phi}&B_{t_{K}t_{1}}&B_{t_{K}t_{2}}&\cdots&B_{t_{K}t_{K}}\\ \end{bmatrix} (201)

As variables are not correlated, we have

=𝔼[𝔏(ξij)(ξjkξjkT)𝔏(ξij)T]=𝔼[𝔏(ξij)𝔼[(ξjkξjkT)]𝔏(ξij)T]=𝔼[𝔏(ξij)Σjk𝔏(ξij)T]\mathcal{B}=\mathbb{E}[\mathfrak{L}(\xi_{ij})(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})\mathfrak{L}(\xi_{ij})^{T}]=\mathbb{E}[\mathfrak{L}(\xi_{ij})\mathbb{E}[(\xi_{jk}^{\prime}\xi_{jk}^{\prime T})]\mathfrak{L}(\xi_{ij})^{T}]=\mathbb{E}[\mathfrak{L}(\xi_{ij})\Sigma_{jk}^{\prime}\mathfrak{L}(\xi_{ij})^{T}] (202)

Developing the above expression and taking the expectation by using the relation (192), we obtain

Bϕϕ=<<Σij,ϕϕ,Σjk,ϕϕ>>B_{\phi\phi}=<<\Sigma_{ij,\phi\phi},\Sigma_{jk,\phi\phi}^{\prime}>> (203)
Btmϕ=<<Σij,ϕtm,Σjk,ϕϕ>>+<<Σij,ϕϕ,Σjk,tmϕ>>,tm=t1,t2,,tK\displaystyle B_{t_{m}\phi}=<<\Sigma_{ij,\phi t_{m}},\Sigma_{jk,\phi\phi}^{\prime}>>+<<\Sigma_{ij,\phi\phi},\Sigma_{jk,t_{m}\phi}^{\prime}>>,t_{m}=t_{1},t_{2},\cdots,t_{K} (204)
Bϕtm=BtmϕT=<<Σij,tmϕ,Σjk,ϕϕ>>+<<Σij,ϕϕ,Σjk,ϕtm>>,tm=t1,t2,,tK\displaystyle B_{\phi t_{m}}=B_{t_{m}\phi}^{T}=<<\Sigma_{ij,t_{m}\phi},\Sigma_{jk,\phi\phi}^{\prime}>>+<<\Sigma_{ij,\phi\phi},\Sigma_{jk,\phi t_{m}}^{\prime}>>,t_{m}=t_{1},t_{2},\cdots,t_{K} (205)
Btm,tm=\displaystyle B_{t_{m},t_{m}}= <<Σij,tmtm,Σjk,ϕϕ>>+<<Σij,tmϕ,Σjk,tmϕ>>\displaystyle<<\Sigma_{ij,t_{m}t_{m}},\Sigma_{jk,\phi\phi}^{\prime}>>+<<\Sigma_{ij,t_{m}\phi},\Sigma_{jk,t_{m}\phi}^{\prime}>> (206)
+<<Σij,ϕtm,Σjk,ϕtm>>+<<Σij,ϕϕ,Σjk,tmtm>>,tm=t1,t2,,tK\displaystyle+<<\Sigma_{ij,\phi t_{m}},\Sigma_{jk,\phi t_{m}}^{\prime}>>+<<\Sigma_{ij,\phi\phi},\Sigma_{jk,t_{m}t_{m}}^{\prime}>>,t_{m}=t_{1},t_{2},\cdots,t_{K}
Btm,tn=\displaystyle B_{t_{m},t_{n}}= <<Σij,tntm,Σjk,ϕϕ>>+<<Σij,tnϕ,Σjk,tmϕ>>\displaystyle<<\Sigma_{ij,t_{n}t_{m}},\Sigma_{jk,\phi\phi}^{\prime}>>+<<\Sigma_{ij,t_{n}\phi},\Sigma_{jk,t_{m}\phi}^{\prime}>> (207)
+<<Σij,ϕtm,Σjk,ϕtn>>+<<Σij,ϕϕ,Σjk,tmtn>>,\displaystyle+<<\Sigma_{ij,\phi t_{m}},\Sigma_{jk,\phi t_{n}}^{\prime}>>+<<\Sigma_{ij,\phi\phi},\Sigma_{jk,t_{m}t_{n}}^{\prime}>>,
tm=t2,t3,,tK,tn=t1,t2,,tK1,tm>tn\displaystyle t_{m}=t_{2},t_{3},\cdots,t_{K},t_{n}=t_{1},t_{2},\cdots,t_{K-1},t_{m}>t_{n}
Btn,tm=Btm,tnT=\displaystyle B_{t_{n},t_{m}}=B_{t_{m},t_{n}}^{T}= <<Σij,tmtn,Σjk,ϕϕ>>+<<Σij,tmϕ,Σjk,tnϕ>>\displaystyle<<\Sigma_{ij,t_{m}t_{n}},\Sigma_{jk,\phi\phi}^{\prime}>>+<<\Sigma_{ij,t_{m}\phi},\Sigma_{jk,t_{n}\phi}^{\prime}>> (208)
+<<Σij,ϕtn,Σjk,ϕtm>>+<<Σij,ϕϕ,Σjk,tntm>>,\displaystyle+<<\Sigma_{ij,\phi t_{n}},\Sigma_{jk,\phi t_{m}}^{\prime}>>+<<\Sigma_{ij,\phi\phi},\Sigma_{jk,t_{n}t_{m}}^{\prime}>>,
tn=t1,t2,,tK1,tm=t2,t3,,tK,tn<tm\displaystyle t_{n}=t_{1},t_{2},\cdots,t_{K-1},t_{m}=t_{2},t_{3},\cdots,t_{K},t_{n}<t_{m}

We finally get the formula for equation (190):

𝔼[ξikξikT]Σij+ΣjkΣ2nd+112(𝒜1Σjk+Σjk𝒜1T+𝒜2Σij+Σij𝒜2T)+14additional fourth-order terms\mathbb{E}[\xi_{ik}\xi_{ik}^{T}]\approx\underbrace{\Sigma_{ij}+\Sigma_{jk}^{\prime}}_{\Sigma_{2nd}}+\underbrace{\frac{1}{12}\left(\mathcal{A}_{1}\Sigma_{jk}^{\prime}+\Sigma_{jk}^{\prime}\mathcal{A}_{1}^{T}+\mathcal{A}_{2}^{\prime}\Sigma_{ij}+\Sigma_{ij}\mathcal{A}_{2}^{\prime T}\right)+\frac{1}{4}\mathcal{B}}_{\text{additional fourth-order terms}} (209)

In summary, to compound two general poses, the mean and the covariance can be propagates by equation (185) and equation (209), respectively.

However, if the general poses TijT_{ij} and TjkT_{jk} are correlated, as is often the case when they are derived from the solution of a maximum likelihood estimate problem such as Pose Graph SLAM or in the case of wheel slip, the cross terms must be included and evaluation of the fourth order terms becomes more difficult [19]. The general pose composition operation may under-approximate the true distribution and lead to inconsistency problem if the cross term is ignored.

The first order covariance calculation can be obtained by evaluating

𝔼[ξikξikT]𝔼[ξijξijT+ξjkξjkT+ξijξjkT+ξjkξijT]\mathbb{E}[\xi_{ik}\xi_{ik}^{T}]\approx\mathbb{E}[\xi_{ij}\xi_{ij}^{T}+\xi_{jk}^{\prime}\xi_{jk}^{\prime T}+\xi_{ij}\xi_{jk}^{\prime T}+\xi_{jk}^{\prime}\xi_{ij}^{T}] (210)

which means

ΣikΣij+AdT¯ijΣjkAdT¯ijT+Σij,jkAdT¯ijT+AdT¯ijΣij,jkT\Sigma_{ik}\approx\Sigma_{ij}+Ad_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T}+\Sigma_{ij,jk}Ad_{\overline{T}_{ij}}^{T}+Ad_{\overline{T}_{ij}}\Sigma_{ij,jk}^{T} (211)

Thus, for the first-order general pose composition on the matrix Lie algebra can be performed for correlated poses using equation (185) for mean propagation and equation (211) for covariance propagation.

Monotonicity of Uncertainty Propagation of Matrix Lie group SEK(3)SE_{K}(3)

Considering only the second-order terms in equation (209), we can obtain that

Σik=𝔼[ξikξikT]Σij+Σjk=Σijinitial uncertainty+AdT¯ijΣjkAdT¯ijTmotion’s uncertainty\Sigma_{ik}=\mathbb{E}[\xi_{ik}\xi_{ik}^{T}]\approx\Sigma_{ij}+\Sigma_{jk}^{\prime}=\underbrace{\Sigma_{ij}}_{\text{initial uncertainty}}+\underbrace{Ad_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T}}_{\text{motion's uncertainty}} (212)

It is obvious that the uncertainty on matrix Lie group SEK(3)SE_{K}(3) consists of the initial uncertainty and motion’s uncertainty. Furthermore, the initial uncertainty keeps still and is independent of the system’s trajectory even the motion’s uncertainty varies as the vehicle travels [20].

The motion’s uncertainty is related with the Adjoint operator of the transformation T¯ij\overline{T}_{ij}. Since the uncertainty matrix Σjk\Sigma_{jk} is positive definite, the motion’s uncertainty AdT¯ijΣjkAdT¯ijTAd_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T} can be shown to be positive definite. The proof is given as following

xTAdT¯ijΣjkAdT¯ijTx=(AdT¯ijTx)TΣjk(AdT¯ijTx)>0,x3(K+1)x^{T}Ad_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T}x=(Ad_{\overline{T}_{ij}}^{T}x)^{T}\Sigma_{jk}(Ad_{\overline{T}_{ij}}^{T}x)>0,\forall x\in\mathbb{R}^{3(K+1)} (213)

Similar to the Theorem 1 in [20], it can be proven that the monotocinity of uncertainty on matrix Lie group SEK(3)SE_{K}(3) holds for all the optimality criteria (the A-opt(trace of the covariance matrix, or sum of its eigenvalue), D-opt(determinant of the covariance matrix, or product of ite eigenvalue), and E-opt(largest eigenvalue)).

Theorem 1

[20]Every eigenvalue of the uncertainty defined on matrix Lie group SEK(3)SE_{K}(3) as in equation (212) increases, that means eigenvalues of uncertainty matrix Σik\Sigma_{ik} are always greater than the corresponding eigenvalues of uncertainty matrix Σij\Sigma_{ij}.

Proof 1

Assume the matrices MM, HH, and PP are Hermitian matrices and have relationship as M=H+PM=H+P. The eigenvalues of the three matrices are given as

λm(M)λj(M)λ1(M)\lambda_{m}(M)\leq\cdots\leq\lambda_{j}(M)\leq\cdots\leq\lambda_{1}(M) (214)
λm(H)λj(H)λ1(H)\lambda_{m}(H)\leq\cdots\leq\lambda_{j}(H)\leq\cdots\leq\lambda_{1}(H) (215)
λm(P)λj(P)λ1(P)\lambda_{m}(P)\leq\cdots\leq\lambda_{j}(P)\leq\cdots\leq\lambda_{1}(P) (216)

According to the Weyl’s inequality111https://en.wikipedia.org/wiki/Weyl%27s_inequality, the following inequality holds for all jj:

λj(H)+λm(P)λj(M)λj(H)+λ1(P),(1jm)\lambda_{j}(H)+\lambda_{m}(P)\leq\lambda_{j}(M)\leq\lambda_{j}(H)+\lambda_{1}(P),(1\leq j\leq m) (217)

In particular, if PP is positive definite and λm(P)>0\lambda_{m}(P)>0, then

λj(M)>λj(H),j=1,,m\lambda_{j}(M)>\lambda_{j}(H),\forall j=1,\cdots,m (218)

Next, the matrix MM, HH, and PP are considered as uncertainty matrices Σij\Sigma_{ij}, Σik\Sigma_{ik}, and AdT¯ijΣjkAdT¯ijTAd_{\overline{T}_{ij}}\Sigma_{jk}Ad_{\overline{T}_{ij}}^{T} in equation (212), respectively. According to equation (218) we have

λj(Σik)>λj(Σij)\lambda_{j}(\Sigma_{ik})>\lambda_{j}(\Sigma_{ij}) (219)

In other words, every eigenvalue of Σij\Sigma_{ij} is monotonically increasing of the uncertainty propagation on matrix Lie group SEK(3)SE_{K}(3).

The above theorem shows that keeping monotonicity is matter of correctly modeling errors and propagating uncertainty [20].

Nest, we study the monotonicity of the uncertainty from the perspective of Rényi entropy. The Rényi entropy of the multivariate normal distribution can be calculated by

Hα=12log(detΣ)+N2log(2πα1α1),α[0,1)(1,)H_{\alpha}=\frac{1}{2}\log(\det\Sigma)+\frac{N}{2}\log(2\pi\alpha^{\frac{1}{\alpha-1}}),\alpha\in[0,1)\cup(1,\infty) (220)

where α\alpha is a free parameter, NN is the dimension of the state, Σ\Sigma is the uncertainty matrix. As α1\alpha\rightarrow 1, the Shannon entropy of the multivariate normal distribution can be obtained.

It can be shown that the monotonicity of the Rényi entropy is equivalent to the monotonicity of the D-opt optimality criteria because

Hα(Σik)Hα(Σij)=12log(det(Σik)det(Σij))H_{\alpha}(\Sigma_{ik})-H_{\alpha}(\Sigma_{ij})=\frac{1}{2}\log\left(\frac{\det(\Sigma_{ik})}{\det(\Sigma_{ij})}\right) (221)

Applying the Minkowski’s inequality to equation (212), we have

det(Σik)>det(Σij)\det(\Sigma_{ik})>\det(\Sigma_{ij}) (222)

In the end, the monotonicity of the uncertainty propagation for the Rényi entropy is maintained:

Hα(Σik)Hα(Σij)=12log(det(Σik)det(Σij))>0H_{\alpha}(\Sigma_{ik})-H_{\alpha}(\Sigma_{ij})=\frac{1}{2}\log\left(\frac{\det(\Sigma_{ik})}{\det(\Sigma_{ij})}\right)>0 (223)

Applications of SEK(3)SE_{K}(3)

The application about this group mainly includes three aspects: the 3-dimensional inertial navigation, the IMU preintegration and the simultaneous localization and mapping problem. All applications require that the system dynamics are group affine, becasue group affine systems have log-linear property of the error propagation. The invariant EKF framework can improve convergence and accuracy while potentially eliminating the need for re-linearization.

Most of the applications are related to inertial navigation and the error states are easy to be modeled so as to satisfy the group affine property. The measurement equations are determined by the definition form of the error state. When the error state is left invariant by the left group action, the measurement should be also left invariant, this is the world-centric estimator formulation and is suitable for sensors such as GNSS, 5G, etc. When the error state is right invariant by the right group action, the measurement should be also right invariant, this is body-centric formulation and is suitable for sensors such as camera, Lidar, odometry, etc.

Conclusions

In this paper, the geometry and kinematics of the matrix Lie group SEK(3)SE_{K}(3) is given as an extension of the matrix Lie group SE(3)SE(3). The application of this group is analyzed in detail. Finally, we share the simulation code about this group. More applications will be given in future.

Acknowledgement
This research was supported by a grant from the National Key Research and Development Program of China (2018YFB1305001). We express thanks to GNSS Center, Wuhan University.

References

  • [1] T. D. Barfoot, State estimation for robotics.   Cambridge University Press, 2017.
  • [2] A. Barrau, “Non-linear state error based extended kalman filters with applications to navigation,” Ph.D. dissertation, 2015.
  • [3] A. Barrau and S. Bonnabel, “An ekf-slam algorithm with consistency properties,” arXiv preprint arXiv:1510.06263, 2015.
  • [4] ——, “The invariant extended kalman filter as a stable observer,” IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1797–1812, 2016.
  • [5] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended kalman filtering for robot state estimation,” The International Journal of Robotics Research, vol. 39, no. 4, pp. 402–430, 2020. [Online]. Available: https://doi.org/10.1177/0278364919894385
  • [6] A. Barrau and S. Bonnabel, “Invariant particle filtering with application to localization,” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 5599–5605.
  • [7] ——, “Linear observed systems on groups,” Systems &amp; Control Letters, vol. 129, pp. 36–42, 2019.
  • [8] S. Bonnabel and A. Barrau, “A mathematical framework for imu error propagation with applications to preintegration,” in IEEE International Conference on Robotics and Automation (ICRA), 2020.
  • [9] M. Brossard, S. Bonnabel, and A. Barrau, “Unscented kalman filter on lie groups for visual inertial odometry,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 649–655.
  • [10] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart, “State estimation for legged robots-consistent fusion of leg kinematics and imu,” Robotics, vol. 17, pp. 17–24, 2013.
  • [11] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three-dimensional poses for use in estimation problems,” IEEE Transactions on Robotics, vol. 30, no. 3, pp. 679–693, 2014.
  • [12] F. Bullo and A. D. Lewis, Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems.   Springer, 2005, vol. 49.
  • [13] D. Zlotnik, “Lie group observer design for robotic systems: Extensions, synthesis, and higher-order filtering,” Ph.D. dissertation, 2018.
  • [14] G. S. Chirikjian, Stochastic models, information theory, and Lie groups, volume 2: Analytic methods and modern applications.   Springer Science & Business Media, 2011, vol. 2.
  • [15] M. Wang, “Geometric state observers for autonomous navigation systems,” Ph.D. dissertation, 2020.
  • [16] N. Guigui and X. Pennec, “A reduced parallel transport equation on lie groups with a left-invariant metric,” arXiv preprint arXiv:2103.01585, 2021.
  • [17] T. D. Barfoot, J. R. Forbes, and G. M. D’Eleuterio, “Vectorial parameterizations of pose,” arXiv preprint arXiv:2103.07309, 2021.
  • [18] M. Wandelt, M. Günther, and M. Muniz, “Geometric integration on lie groups using the cayley transform with focus on lattice qcd,” Journal of Computational and Applied Mathematics, p. 112495, 2019.
  • [19] J. G. Mangelson, M. Ghaffari, R. Vasudevan, and R. M. Eustice, “Characterizing the uncertainty of jointly distributed poses in the lie algebra,” arXiv preprint arXiv:1906.07795, 2019.
  • [20] Y. Kim and A. Kim, “On the uncertainty propagation: Why uncertainty on lie groups preserves monotonicity?” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 3425–3432.