This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Generalized Degrees-of-Freedom of the Asymmetric Interference Channel with Delayed CSIT

Tong Zhang11, Yufan Zhuang11, and Yinfei Xu22, Email: {zhangt7, zhuangyf2019}@sustech.edu.cn, [email protected] 11Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China 22School of Information Science and Engineering, Southeast University, Nanjing, China
Abstract

In this paper, we investigate the generalized degrees-of-freedom (GDoF) of the asymmetric interference channel with delayed channel state information at the transmitter (CSIT), where each transmitter has two antennas, each receiver has one antenna, and the strength for each interfering link can vary. The optimal sum-GDoF is characterized by matched converse and achievability proof. Through our results, we also reveal that in our antenna setting, the symmetric GDoF lower bound in [Mohanty et. al, TIT 2019] can be elevated, and the symmetric GDoF upper bound in [Mohanty et. al, TIT 2019] is tight in fact.

Index Terms:
Delayed CSIT, sum-GDoF, interference channel.

I Introduction

The degrees-of-freedom (DoF) characterization with delayed channel state information at the transmitter (CSIT) has attracted a plenty of research interests in the past decade. For example, the DoF region of multiple-input multiple-output (MIMO) interference channel with delayed CSIT was derived in [1]. The study of DoF of MIMO broadcast channel with delayed CSIT can be found in [2, 3, 4, 5], whose exact value was still not completely obtained. The linear DoF region of MIMO X channel with delayed CSIT was characterized in [6].

One limitation of DoF is that the strength of each link is assumed to be equal, whereas the link strength can vary tremendously in wireless. Nevertheless, the generalized degrees-of-freedom (GDoF) overcomes this drawback by considering the different strength of each link, which was first proposed in [7]. The GDoF characterization with delayed CSIT can be found in [8, 9, 10, 11]. In [8], the GDoF was studied in the two-user multiple-input single-output (MISO) broadcast channel under alternating delayed, perfect, and no CSIT, where sum-GDoF upper and lower bounds were shown to be partially coincided. In [9], the secure GDoF was investigated in the two-user MISO broadcast channel with an external eaversdropper and alternating delayed, perfect, and no CSIT. The GDoF region of the MIMO Z channel with delayed CSIT was characterized in [10]. For MIMO interference channel with delayed CSIT and symmetric interfering link strengths, symmetric GDoF upper and lower bounds were derived in [11], where the symmetric GDoF was characterized partially, and the upper and lower bounds do not change with antenna ratio, i.e., number of antenna at each transmitter over number of antennas at each receiver, if the antenna ratio is equal to or larger than two111A representative antenna setting for this antenna configuration case is that the transmitter has 2 antennas and the receiver has 1 antenna..

In this paper, we study the GDoF of the asymmetric interference channel with delayed CSIT, where the transmitter has two antennas, the receiver has one antenna, and the strength for each interfering link can vary. We characterize the sum-GDoF by presenting matched converse and achievability proof. Then, via this result, we reveal that in our antenna setting, the symmetric GDoF lower bound in [11] can be elevated, and the symmetric GDoF upper bound in [11] is tight in fact. The idea of elevating the GDoF lower bound comes from [9], where the authors in [9] fully exploit the receiver signal space by sending new fresh symbols in each time slot. Our transmission scheme generalizes the scheme in [9, Appendix C], which was designed for achieving the corner points of GDoF region of MISO broadcast channel with delayed CSIT.

Refer to caption
Figure 1: The considered scenario of asymmetric interference channel, where each transmitter has 2 antennas and each receiver has 1 antenna.

II System Model

The considered asymmetric interference channel has two transmitters, denoted by Tx1\text{Tx}_{1} and Tx2\text{Tx}_{2}, each with two antennas, and two receivers, denoted by Rx1\text{Rx}_{1} and Rx2\text{Rx}_{2}, each with one antenna, as depicted in Fig. 1. The transmitter Txi,i=1,2,\text{Tx}_{i},\,i=1,2, sends private message WiW_{i} to the receiver Rxi\text{Rx}_{i}. The received signals at two receivers and time slot tt can be written as

y1[t]=ρh11[t]x1[t]+ρα2h12[t]x2[t]+n1[t],\displaystyle y_{1}[t]=\sqrt{\rho}\textbf{h}_{11}[t]\textbf{x}_{1}[t]+\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[t]\textbf{x}_{2}[t]+n_{1}[t], (1a)
y2[t]=ρα1h21[t]x1[t]+ρh22[t]x2[t]+n2[t],\displaystyle y_{2}[t]=\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[t]\textbf{x}_{1}[t]+\sqrt{\rho}\textbf{h}_{22}[t]\textbf{x}_{2}[t]+n_{2}[t], (1b)

where xi[t]2×1\textbf{x}_{i}[t]\in\mathbb{C}^{2\times 1} denotes the transmitted signal from transmitter Txi\text{Tx}_{i} at time slot tt, yj[t]1,j=1,2,y_{j}[t]\in\mathbb{C}^{1},\,j=1,2, denotes the received signal at receiver Rxj\text{Rx}_{j} and time slot tt, hji1×2\textbf{h}_{ji}\in\mathbb{C}^{1\times 2} denotes the channel matrix from transmitter Txi\text{Tx}_{i} to receiver Rxj\text{Rx}_{j}, nj𝒞𝒩(0,σ2)n_{j}\sim{\cal{CN}}(0,\sigma^{2}) denotes the additive White Gaussian noise (AWGN) at receiver Rxj\text{Rx}_{j}, the channel gains of desired links and interfering links are denoted by ρ\sqrt{\rho} and ραi\sqrt{\rho^{\alpha_{i}}} with 0<ρ0<\rho and 0αi0\leq\alpha_{i}, respectively. Without loss of generality, we assume that α2α1\alpha_{2}\leq\alpha_{1}. The transmit signals follow an average power constraint, given by 1nt=1ntr(𝔼{xi[t]xi[t]H})1\frac{1}{n}\sum_{t=1}^{n}\text{tr}\left(\mathbb{E}\{\textbf{x}_{i}[t]\textbf{x}_{i}[t]^{H}\}\right)\leq 1. All entries of channel matrices are independent and identical distributed (i.i.d.) across space and time slot. The signal-to-noise ratio (SNR) at each receiver is ρ\rho, and interference-to-noise ratio (INR) at receivers Rx1\text{Rx}_{1} and Rx2\text{Rx}_{2} are ρα2\rho^{\alpha_{2}} and ρα1\rho^{\alpha_{1}}, respectively. We define the following assembly of channel matrices: [t]{hji[t]}i,j=1,2\mathcal{H}[t]\triangleq\{\textbf{h}_{ji}[t]\}_{i,j=1,2}, and τ{[t]}t=1τ\mathcal{H}^{\tau}\triangleq\{\mathcal{H}[t]\}_{t=1}^{\tau}.

Due to feedback delay, the transmitter has delayed channel state information. Specifically, at time slot tt, the transmitters know τ\mathcal{H}^{\tau}, namely all the channel matrices up to time slot t1t-1. Two receivers have instantaneous knowledge of channel matrices. The encoding function at transmitter Txi\text{Tx}_{i} and time slot tt is denoted by ei,t(Wi,t1)e_{i,t}(W_{i},\mathcal{H}^{t-1}). The decoding function at receiver Rxj\text{Rx}_{j} after nn time slots is denoted by cj,n(Wi,n)c_{j,n}(W_{i},\mathcal{H}^{n}).

The rate tuple is written as (R1(ρ,α1,α2),R2(ρ,α1,α2))(R_{1}(\rho,\alpha_{1},\alpha_{2}),R_{2}(\rho,\alpha_{1},\alpha_{2})), where rate Ri=log|𝒲i|nR_{i}=\frac{\log|\mathcal{W}_{i}|}{n} is the cardinality of message set 𝒲i\mathcal{W}_{i}. The rate is achievable, if there are a sequence of codebook pairs {𝒞1,t,𝒞1,t}t=1n\{\mathcal{C}_{1,t},\mathcal{C}_{1,t}\}_{t=1}^{n} and decoding functions {c1,n,c2,n}\{c_{1,n},c_{2,n}\} such that the error probability Pe(n)P_{e}^{(n)} goes to zero when nn goes to infinity. The sum-capacity is defined as the supremum of sum of achievable rates, i.e., Csum=supi=12Ri(ρ,α1,α2)C_{\text{sum}}=\sup\sum_{i=1}^{2}R_{i}(\rho,\alpha_{1},\alpha_{2}). Then, the sum-GDoF is defined as the pre-log factor of sum-capacity, i.e., i=12di=limρ1Csumlogρ.\sum_{i=1}^{2}d_{i}=\lim_{\rho\rightarrow{\cal{1}}}\frac{C_{\text{sum}}}{\log\rho}.

III Main Results and Discussion

Theorem 1: For the considered asymmetric interference channel with delayed CSIT, defined in Section-II, the sum-GDoF is given as follows:

i=12di={2α1+α23,α1,α21,min{4+α1α23,2},1<α1&α21& 2α1+2α2,min{2+α1+α23,2},1<α1,α2.\displaystyle\sum_{i=1}^{2}d_{i}=\begin{cases}2-\dfrac{\alpha_{1}+\alpha_{2}}{3},&\alpha_{1},\alpha_{2}\leq 1,\\ \min\left\{\dfrac{4+\alpha_{1}-\alpha_{2}}{3},2\right\},&\begin{aligned} &1<\alpha_{1}\,\&\,\alpha_{2}\leq 1\\ &\&\,2\leq\alpha_{1}+2\alpha_{2}\end{aligned},\\ \min\left\{\dfrac{2+\alpha_{1}+\alpha_{2}}{3},2\right\},&1<\alpha_{1},\alpha_{2}.\end{cases} (2)
Proof:

Please refer to Section-IV for the converse proof and Section-V for the achievability proof. ∎

Remark 1: This sum-GDoF in (2) degenerates to optimal sum-DoF in [1], by setting α1=α2=1\alpha_{1}=\alpha_{2}=1, whose value is the celebrated 4/34/3. Furthermore, in our antenna setting, it can be verified that the symmetric GDoF upper bound in [11] is tight.

IV Converse Proof of Theorem 1

The key steps of this proof follows the that in [11]. To begin with, we define the following virtual received signals, which are obtained from removing the impact of x1[t]\textbf{x}_{1}[t] in the received signals at each receiver:

y¯1[t]=ρα2h12[t]x2[t]+n1[t],\displaystyle\overline{y}_{1}[t]=\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[t]\textbf{x}_{2}[t]+n_{1}[t], (3a)
y¯2[t]=ρh22[t]x2[t]+n2[t].\displaystyle\overline{y}_{2}[t]=\sqrt{\rho}\textbf{h}_{22}[t]\textbf{x}_{2}[t]+n_{2}[t]. (3b)

Before the next step, we define the following assembly of channel matrices: 𝒴¯iτ{y¯i[t]}t=1τ\overline{\mathcal{Y}}_{i}^{\tau}\triangleq\{\overline{y}_{i}[t]\}_{t=1}^{\tau}, 𝒴iτ{yi[t]}t=1τ\mathcal{Y}_{i}^{\tau}\triangleq\{y_{i}[t]\}_{t=1}^{\tau}, and 𝒳iτ{xi[t]}t=1τ\mathcal{X}_{i}^{\tau}\triangleq\{\textbf{x}_{i}[t]\}_{t=1}^{\tau}, i=1,2i=1,2. Since the error probability Pe(n)P_{e}^{(n)} goes to zero as nn goes to infinity, we denote nϵn1+nRiPe(n)n\epsilon_{n}\triangleq 1+nR_{i}P_{e}^{(n)} so that limn1ϵn=0\lim_{n\rightarrow{\cal{1}}}\epsilon_{n}=0. According to [11], the rate of receiver 1 can be bounded as

n(R1ϵn)t=1nh(y1[t]|[t])t=1nh(y¯1[t]|𝒰[t],[t]),\displaystyle n(R_{1}-\epsilon_{n})\leq\sum_{t=1}^{n}h(y_{1}[t]|\mathcal{H}[t])-\sum_{t=1}^{n}h(\overline{y}_{1}[t]|\mathcal{U}[t],\mathcal{H}[t]), (4)

where 𝒰[t]{𝒴¯1t1,𝒴¯2t1,t1}\mathcal{U}[t]\triangleq\{\overline{\mathcal{Y}}_{1}^{t-1},\overline{\mathcal{Y}}_{2}^{t-1},\mathcal{H}^{t-1}\}. Next, according to [11], the rate of receiver 2 can be bounded as

n(R2ϵn)t=1nh(y¯1[t],y¯2[t]|𝒰[t],[t]).\displaystyle n(R_{2}-\epsilon_{n})\leq\sum_{t=1}^{n}h(\overline{y}_{1}[t],\overline{y}_{2}[t]|\mathcal{U}[t],\mathcal{H}[t]). (5)

Henceforth, we define S[t][ρα2h12[t],ρh22[t]]T\textbf{S}[t]\triangleq[\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[t],\sqrt{\rho}\textbf{h}_{22}[t]]^{T}, K[t]𝔼{x2[t]x2[t]H|𝒰[t]}\textbf{K}[t]\triangleq\mathbb{E}\{\textbf{x}_{2}[t]\textbf{x}_{2}[t]^{H}|\mathcal{U}[t]\}, L[t]𝔼{x1[t]x1[t]H|t1}\textbf{L}[t]\triangleq\mathbb{E}\{\textbf{x}_{1}[t]\textbf{x}_{1}[t]^{H}|\mathcal{H}^{t-1}\}, 𝒱[t]{𝒰[t],[t]}\mathcal{V}[t]\triangleq\{\mathcal{U}[t],\mathcal{H}[t]\}, where the transmit covariance matrix K[t]\textbf{K}[t] is independent of h12[t],\textbf{h}_{12}[t], h22[t]\textbf{h}_{22}[t], and S[t]\textbf{S}[t]. Applying the extremal inequality in [12] for the physically degraded channel 𝒳2τ(𝒴¯1n,𝒴¯2n)𝒴¯1n\mathcal{X}_{2}^{\tau}\rightarrow(\overline{\mathcal{Y}}_{1}^{n},\overline{\mathcal{Y}}_{2}^{n})\rightarrow\overline{\mathcal{Y}}_{1}^{n}, we have the following inequality:

h(y¯1[t],y¯2[t]|𝒱[t])2h(y¯1[t]|𝒱[t])\displaystyle\frac{h(\overline{y}_{1}[t],\overline{y}_{2}[t]|\mathcal{V}[t])}{2}-h(\overline{y}_{1}[t]|\mathcal{V}[t])
maxK[t]0tr{K[t]}1𝔼{log|I2+S[t]K[t]S[t]H|/2\displaystyle\leq\max_{\begin{matrix}\textbf{K}[t]\succeq 0\\ \text{tr}\{\textbf{K}[t]\}\leq 1\end{matrix}}\mathbb{E}\left\{\log\left|\textbf{I}_{2}+\textbf{S}[t]\textbf{K}[t]\textbf{S}[t]^{H}\right|/2\right.
log|1+ρα2h12[t]K[t]h12[t]H|}.\displaystyle\left.\quad-\log\left|1+\rho^{\alpha_{2}}\textbf{h}_{12}[t]\textbf{K}[t]\textbf{h}_{12}[t]^{H}\right|\right\}. (6)

To proceed, we can approximate the first term of (6) as

log|I2+S[t]K[t]S[t]H|\displaystyle\!\!\!\!\!\!\!\!\!\!\!\log\left|\textbf{I}_{2}+\textbf{S}[t]\textbf{K}[t]\textbf{S}[t]^{H}\right|
=(a)log|I2+[ρα2h~12[t]ρh~22[t]][ρα2h~12[t]ρh~22[t]]H|\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(a)}{=}\log\left|\textbf{I}_{2}+\begin{bmatrix}\sqrt{\rho^{\alpha_{2}}}\widetilde{\textbf{h}}_{12}[t]\\ \sqrt{\rho}\widetilde{\textbf{h}}_{22}[t]\end{bmatrix}\begin{bmatrix}\sqrt{\rho^{\alpha_{2}}}\widetilde{\textbf{h}}_{12}[t]\\ \sqrt{\rho}\widetilde{\textbf{h}}_{22}[t]\end{bmatrix}^{H}\right|
=(b)log|I2kt+ρα2h~12[t]Hh~12[t]+ρh~22[t]Hh~22[t]|\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(b)}{=}\log\left|\textbf{I}_{2-k_{t}}+\rho^{\alpha_{2}}\widetilde{\textbf{h}}_{12}[t]^{H}\widetilde{\textbf{h}}_{12}[t]+\rho\widetilde{\textbf{h}}_{22}[t]^{H}\widetilde{\textbf{h}}_{22}[t]\right|
=(c)f(2kt,(α2,1),(1,1))logρ+𝒪(1)\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(c)}{=}f(2-k_{t},(\alpha_{2},1),(1,1))\log\rho+\mathcal{O}(1)
={(min{2kt,1}+min{[1kt]+,1}α2)logρ+𝒪(1),α21,(min{2kt,1}α2+min{[1kt]+,1})logρ+𝒪(1),1<α2,\displaystyle\!\!\!\!\!\!\!\!\!\!\!=\begin{cases}(\min\{2-k_{t},1\}+\\ \quad\min\{[1-k_{t}]^{+},1\}\alpha_{2})\log\rho+\mathcal{O}(1),&\alpha_{2}\leq 1,\\ (\min\{2-k_{t},1\}\alpha_{2}+\\ \quad\min\{[1-k_{t}]^{+},1\})\log\rho+\mathcal{O}(1),&1<\alpha_{2},\end{cases} (7)

where (a) is from SVD of K[t]\textbf{K}[t], i.e., K[t]=U[t]𝚺[t]U[t]H\textbf{K}[t]=\textbf{U}[t]{\bf{\Sigma}}[t]\textbf{U}[t]^{H} with unitary matrix U[t]2×(2kt)\textbf{U}[t]\in\mathbb{C}^{2\times(2-k_{t})} and diagonal matrix 𝚺[t](2kt)×(2kt){\bf{\Sigma}}[t]\in\mathbb{C}^{(2-k_{t})\times(2-k_{t})}, and h~j2[t]hj2[t]U[t]𝚺[t]1/2\widetilde{\textbf{h}}_{j2}[t]\triangleq\textbf{h}_{j2}[t]\textbf{U}[t]{\bf{\Sigma}}[t]^{1/2}, where kt{0,1,2}k_{t}\in\{0,1,2\} denotes the number of zero singular values; (b) is from |I+AB|=|I+BA||\textbf{I}+\textbf{AB}|=|\textbf{I}+\textbf{BA}|; (c) is from [11, Lemma 1]. The second term of (6) can be approximated as

log|1+ρα2h12[t]K[t]h12[t]H|\displaystyle\log\left|1+\rho^{\alpha_{2}}\textbf{h}_{12}[t]\textbf{K}[t]\textbf{h}_{12}[t]^{H}\right|
=(a)min{2kt,1}α2logρ+𝒪(1),\displaystyle\overset{(a)}{=}\min\{2-k_{t},1\}\alpha_{2}\log\rho+\mathcal{O}(1), (8)

where (a) is from SVD of K[t]\textbf{K}[t] and [11, Lemma 1]. Next, we can approximate the first term of (4) as

h(y1[t]|[t])\displaystyle\!\!\!\!\!\!\!\!\!\!\!h(y_{1}[t]|\mathcal{H}[t])
(a)log|1+ρh11[t]L[t]h11[t]H+ρα2h12[t]K[t]h12[t]H|\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(a)}{\leq}\log\left|1+\rho\textbf{h}_{11}[t]\textbf{L}[t]\textbf{h}_{11}[t]^{H}+\rho^{\alpha_{2}}\textbf{h}_{12}[t]\textbf{K}[t]\textbf{h}_{12}[t]^{H}\right|
(b)log|1+ρh11[t]h11[t]H+ρα2h~12[t]h~12[t]H|\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(b)}{\leq}\log\left|1+\rho\textbf{h}_{11}[t]\textbf{h}_{11}[t]^{H}+\rho^{\alpha_{2}}\widetilde{\textbf{h}}_{12}[t]\widetilde{\textbf{h}}_{12}[t]^{H}\right|
=(c)f(1,(1,2),(α2,2kt))logρ+𝒪(1),\displaystyle\!\!\!\!\!\!\!\!\!\!\!\overset{(c)}{=}f(1,(1,2),(\alpha_{2},2-k_{t}))\log\rho+\mathcal{O}(1),
={logρ+𝒪(1),α21,(min{2kt,1}α2+min{[1(2kt)]+,2})logρ+𝒪(1),1<α2,\displaystyle\!\!\!\!\!\!\!\!\!\!\!=\begin{cases}\log\rho+\mathcal{O}(1),&\alpha_{2}\leq 1,\\ (\min\{2-k_{t},1\}\alpha_{2}+\\ \min\{[1-(2-k_{t})]^{+},2\})\log\rho+\mathcal{O}(1),&1<\alpha_{2},\end{cases} (9)

where (a) is from Gaussian input maximizing the entropy with covariance constraints; (b) is from L[t]I2\textbf{L}[t]\preceq\textbf{I}_{2} for tr{L[t]}1\text{tr}\{\textbf{L}[t]\}\leq 1 and the SVD of K[t]\textbf{K}[t]; and (c) is from [11, Lemma 1].

As such, the upper bound of weighted sum of achievable rates from (4) and (5) is given in (10), shown on the top of next page,

n(R1+R22ϵn)(a)t=1nf(N,(1,M),(α2,Mkt))logρ+12t=1nh(y¯1[t],y¯2[t]|𝒱[t])t=1nh(y¯1[t]|𝒱[t])+n𝒪(1)\displaystyle\!\!\!\!\!\!\!\!\!\!\!n\left(R_{1}+\frac{R_{2}}{2}-\epsilon_{n}\right)\overset{(a)}{\leq}\sum_{t=1}^{n}f(N,(1,M),(\alpha_{2},M-k_{t}))\log\rho+\frac{1}{2}\sum_{t=1}^{n}h(\overline{y}_{1}[t],\overline{y}_{2}[t]|\mathcal{V}[t])-\sum_{t=1}^{n}h(\overline{y}_{1}[t]|\mathcal{V}[t])+n\mathcal{O}(1)
(b){t=1n((1+min{2kt,1}/2+min{[1kt]+,1}α2/2min{2kt,1}α2)logρ+𝒪(1)),α1,t=1n((min{[1(2kt)]+,2}+min{2kt,1}α2/2+min{[1kt]+,1}/2)logρ+𝒪(1)),1<α2.\displaystyle\!\!\!\!\!\!\!\!\!\!\!\qquad\quad\overset{(b)}{\leq}\begin{cases}\sum_{t=1}^{n}((1+\min\{2-k_{t},1\}/2+\min\{[1-k_{t}]^{+},1\}\alpha_{2}/2-\min\{2-k_{t},1\}\alpha_{2})\log\rho+\mathcal{O}(1)),&\alpha\leq 1,\\ \sum_{t=1}^{n}((\min\{[1-(2-k_{t})]^{+},2\}+\min\{2-k_{t},1\}\alpha_{2}/2+\min\{[1-k_{t}]^{+},1\}/2)\log\rho+\mathcal{O}(1)),&1<\alpha_{2}.\end{cases}
(c){3α22nlogρ+𝒪(1),α21,1+α22nlogρ+𝒪(1),1<α2,\displaystyle\!\!\!\!\!\!\!\!\!\!\!\qquad\quad\overset{(c)}{\leq}\begin{cases}\dfrac{3-\alpha_{2}}{2}n\log\rho+\mathcal{O}(1),&\alpha_{2}\leq 1,\\ \dfrac{1+\alpha_{2}}{2}n\log\rho+\mathcal{O}(1),&1<\alpha_{2},\\ \end{cases} (10)

 

where (a) is from (4), (5) and (9); (b) is from (7) and (8); (c) is from maximizer is kt=0k_{t}=0 by exhausting kt{0,1,2}k_{t}\in\{0,1,2\}. Then, we rewrite (10) into GDoF expression,

d1(α1,α2)+d2(α1,α2)2{3α22,α21,1+α22,1<α2,d_{1}(\alpha_{1},\alpha_{2})+\frac{d_{2}(\alpha_{1},\alpha_{2})}{2}\ \leq\begin{cases}\dfrac{3-\alpha_{2}}{2},&\alpha_{2}\leq 1,\\ \dfrac{1+\alpha_{2}}{2},&1<\alpha_{2},\\ \end{cases} (11)

Due to the symmetry, we have another GDoF inequality, i.e.,

d2(α1,α2)+d1(α1,α2)2{3α12,α11,1+α12,1<α1,d_{2}(\alpha_{1},\alpha_{2})+\frac{d_{1}(\alpha_{1},\alpha_{2})}{2}\leq\begin{cases}\dfrac{3-\alpha_{1}}{2},&\alpha_{1}\leq 1,\\ \dfrac{1+\alpha_{1}}{2},&1<\alpha_{1},\\ \end{cases} (12)

Moreover, considering single-user GDoF bound for MIMO point-to-point channel, we have

di(α1,α2)1,i=1,2.d_{i}(\alpha_{1},\alpha_{2})\leq 1,\quad i=1,2. (13)

Combing (11) with (12) and (13), we derive the sum-GDoF upper bound in Theorem 1 (see (2)). This ends the proof.

V Achievability Proof of Theorem 1

V-A Proposed Transmission Scheme for 1<α1,α21<\alpha_{1},\alpha_{2} and 1<α1&α21& 2α1+2α21<\alpha_{1}\,\&\,\alpha_{2}\leq 1\,\&\,2\leq\alpha_{1}+2\alpha_{2} Cases

The proposed transmission scheme is with block-Markov structure, and has BB blocks with ss time slot each block. Without loss of generality, we assume s=1s=1.

In the bth(1b<B)b^{th}(1\leq b<B) block, the transmitter Txi\text{Tx}_{i} encodes the message wi[b]w_{i}[b] desired by receiver Rxi\text{Rx}_{i} using the vector ui(wi[b])2×1\textbf{u}_{i}(w_{i}[b])\in\mathbb{C}^{2\times 1}, such that ui𝒞𝒩(0,ρAiI2)\textbf{u}_{i}\sim\mathcal{CN}(0,\rho^{-A_{i}}\textbf{I}_{2}) with 0Aiα10\leq A_{i}\leq\alpha_{1}. The common message li[b1]l_{i}[b-1] is encoded using the vector xic(li[b1])2×1\textbf{x}_{ic}(l_{i}[b-1])\in\mathbb{C}^{2\times 1}, which is transmitted at transmitter Txi\text{Tx}_{i} with power 𝒪(ρ0)\mathcal{O}(\rho^{0}). The transmit signal at block bb and transmitter Txi\text{Tx}_{i} can be written as follows:

xi[b]=ui(wi[b])𝒪(ρAi)+xic(li[b1])𝒪(ρ0),\textbf{x}_{i}[b]=\underbrace{\textbf{u}_{i}(w_{i}[b])}_{\mathcal{O}(\rho^{-A_{i}})}+\underbrace{\textbf{x}_{ic}(l_{i}[b-1])}_{\mathcal{O}(\rho^{0})}, (14)

where i=1,2i=1,2. The received signal at block bb and receiver Rxi\text{Rx}_{i} is given as follows:

yi[b]=ρhii[b]xic(li[b1])𝒪(ρ1)+ραjhij[b]xjc(lj[b1])𝒪(ραj)\displaystyle y_{i}[b]=\underbrace{\sqrt{\rho}\textbf{h}_{ii}[b]\textbf{x}_{ic}(l_{i}[b-1])}_{\mathcal{O}(\rho^{1})}+\underbrace{\sqrt{\rho^{\alpha_{j}}}\textbf{h}_{ij}[b]\textbf{x}_{jc}(l_{j}[b-1])}_{\mathcal{O}(\rho^{\alpha_{j}})}
+ρhii[b]ui(wi[b])𝒪(ρ1Ai)+ραjhij[b]uj(wj[b])ηi[b]𝒪(ραjAj)+ni[b],\displaystyle+\underbrace{\sqrt{\rho}\textbf{h}_{ii}[b]\textbf{u}_{i}(w_{i}[b])}_{\mathcal{O}(\rho^{1-A_{i}})}+\underbrace{\sqrt{\rho^{\alpha_{j}}}\textbf{h}_{ij}[b]\textbf{u}_{j}(w_{j}[b])}_{\eta_{i}[b]\sim\mathcal{O}(\rho^{\alpha_{j}-A_{j}})}+n_{i}[b], (15)

where iji\neq j, and ηi[b]\eta_{i}[b] denotes the interference at receiver Rxi\text{Rx}_{i}, which can be reconstructed at block b+1b+1. From the rate distortion theorem [13], this interference ηi[b]\eta_{i}[b] can be quantized using a source codebook with size 𝒪(ραjAj)\mathcal{O}(\rho^{\alpha_{j}-A_{j}}), such that the average distortion does not exceed the noise power level and can be ignored in GDoF analysis. The quantization index of interference ηi[b]\eta_{i}[b] is denoted by lj[b]l_{j}[b], which is transmitted as xjc(lj[b])\textbf{x}_{jc}(l_{j}[b]) from transmitter Txj\text{Tx}_{j} in block b+1b+1.

In the BthB^{th} block, the transmitter Txi\text{Tx}_{i} sends common messages only, namely

xi[B]=xic(li[B1])𝒪(ρ0),\textbf{x}_{i}[B]=\underbrace{\textbf{x}_{ic}(l_{i}[B-1])}_{\mathcal{O}(\rho^{0})}, (16)

where i=1,2i=1,2. The received signal at block BB and receiver Rxi\text{Rx}_{i} is given as follows:

yi[B]=ρhii[B]xic(li[B1])𝒪(ρ1)+\displaystyle y_{i}[B]=\underbrace{\sqrt{\rho}\textbf{h}_{ii}[B]\textbf{x}_{ic}(l_{i}[B-1])}_{\mathcal{O}(\rho^{1})}+
ραjhij[B]xjc(lj[B1])𝒪(ραj)+ni[B],\displaystyle\qquad\qquad\underbrace{\sqrt{\rho^{\alpha_{j}}}\textbf{h}_{ij}[B]\textbf{x}_{jc}(l_{j}[B-1])}_{\mathcal{O}(\rho^{\alpha_{j}})}+n_{i}[B], (17)

where i=1,2i=1,2. The decoding procedure is backward and begins with block BB, where the common messages are firstly decoded. After that, at the (B1)th(B-1)^{th} block, the interference from transmitter Txj\text{Tx}_{j} can be canceled and extra information about ui(wi[B1])\textbf{u}_{i}(w_{i}[B-1]) can be provided. Generally, the equivalent channel for decoding can be written as follows:

[yi[b]ηi[b]ηj[b]]Yi=[ρhii[b]0]Sicxic(li[b1])dηj\displaystyle\underbrace{\begin{bmatrix}y_{i}[b]-\eta_{i}[b]\\ \eta_{j}[b]\end{bmatrix}}_{Y^{\prime}_{i}}=\underbrace{\begin{bmatrix}\sqrt{\rho}\textbf{h}_{ii}[b]\\ \textbf{0}\end{bmatrix}}_{\textbf{S}_{ic}}\underbrace{\textbf{x}_{ic}(l_{i}[b-1])}_{d_{\eta_{j}}}
+[ραjhij[b]0]Sjcxjc(lj[b1])dηi\displaystyle+\underbrace{\begin{bmatrix}\sqrt{\rho^{\alpha_{j}}}\textbf{h}_{ij}[b]\\ \textbf{0}\end{bmatrix}}_{\textbf{S}_{jc}}\underbrace{\textbf{x}_{jc}(l_{j}[b-1])}_{d_{\eta_{i}}}
+[ρhii[b]ραihji[b]]Siui(wi[b])di[b]+[ni[b]0],\displaystyle+\underbrace{\begin{bmatrix}\sqrt{\rho}\textbf{h}_{ii}[b]\\ \sqrt{\rho^{\alpha_{i}}}\textbf{h}_{ji}[b]\end{bmatrix}}_{\textbf{S}_{i}}\underbrace{\textbf{u}_{i}(w_{i}[b])}_{d_{i}[b]}+\begin{bmatrix}n_{i}[b]\\ 0\end{bmatrix}, (18)

where i,j=1,2i,j=1,2 and iji\neq j. Note that (18) is equivalent to the three-user multiple-access channel (MAC). Applying capacity region of three-user MAC, we have the following general condition for achievable GDoF tuple to our problem:

Proposition 1: For the GDoF tuple (dη1,dη2,d1[b],d2[b])(d_{\eta_{1}},d_{\eta_{2}},d_{1}[b],d_{2}[b]), which denote the GDoF carried in x2c(l2[b1])\textbf{x}_{2c}(l_{2}[b-1]), x1c(l1[b1])\textbf{x}_{1c}(l_{1}[b-1]), u1(w1[b])\textbf{u}_{1}(w_{1}[b]), and u2(w2[b])\textbf{u}_{2}(w_{2}[b]), respectively, we have (19)-(29), where f()f(\cdot) and g()g(\cdot) are defined in [11, Lemmas 1 & 2].

dη1min{α2,1},\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}\leq\min\{\alpha_{2},1\}, (19)
dη2min{α1,1},\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{2}}\leq\min\{\alpha_{1},1\}, (20)
d1[b]f(2,(1A1,1),(α1A1,1)),\displaystyle\!\!\!\!\!\!\!\!\!d_{1}[b]\leq f(2,(1-A_{1},1),(\alpha_{1}-A_{1},1)), (21)
d2[b]f(2,(1A2,1),(α2A2,1)),\displaystyle\!\!\!\!\!\!\!\!\!d_{2}[b]\leq f(2,(1-A_{2},1),(\alpha_{2}-A_{2},1)), (22)
dη1+dη2f(1,(1,2),(α2,2)),\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}+d_{\eta_{2}}\leq f(1,(1,2),(\alpha_{2},2)), (23)
dη1+d1[b]α1A1\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}+d_{1}[b]\leq\alpha_{1}-A_{1}
+g(1,(α2,2),(1α1,1),(1A1,1)),\displaystyle\!\!\!\!\!\!\!\!\!\qquad+g(1,(\alpha_{2},2),(1-\alpha_{1},1),(1-A_{1},1)), (24)
dη2+d2[b]α2A2\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{2}}+d_{2}[b]\leq\alpha_{2}-A_{2}
+g(1,(α1,2),(1α2,1),(1A2,1)),\displaystyle\!\!\!\!\!\!\!\!\!\qquad+g(1,(\alpha_{1},2),(1-\alpha_{2},1),(1-A_{2},1)), (25)
dη2+d1[b]α1A1+1,\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{2}}+d_{1}[b]\leq\alpha_{1}-A_{1}+1, (26)
dη1+d2[b]α2A2+1,\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}+d_{2}[b]\leq\alpha_{2}-A_{2}+1, (27)
dη1+dη2+d1[b]\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}+d_{\eta_{2}}+d_{1}[b]
α1A1+f(1,(1,2),(α2,2)),\displaystyle\!\!\!\!\!\!\!\!\!\quad\leq\alpha_{1}-A_{1}+f(1,(1,2),(\alpha_{2},2)), (28)
dη1+dη2+d2[b]\displaystyle\!\!\!\!\!\!\!\!\!d_{\eta_{1}}+d_{\eta_{2}}+d_{2}[b]
α2A2+f(1,(1,2),(α1,2)),\displaystyle\!\!\!\!\!\!\!\!\!\quad\leq\alpha_{2}-A_{2}+f(1,(1,2),(\alpha_{1},2)), (29)
Proof:

The proof is similar to that in [11]. Thus, it is omitted for simplicity. ∎

For the block-Markov transmission, the achievable GDoF of receiver ii is calculated as di=limb11Bb=1Bdi[b]=di[B]d_{i}=\lim_{b\rightarrow{\cal{1}}}\frac{1}{B}\sum_{b=1}^{B}d_{i}[b]=d_{i}[B]. Moreover, dηid_{\eta_{i}} is allocated as αjAj\alpha_{j}-A_{j}, since the common message from transmitter Txi\text{Tx}_{i} need to be decoded at receiver Rxj\text{Rx}_{j}. In the following, we analyze the achievable sum-GDoF case by case, by means of Proposition 1.

V-A1 1<α1,α21<\alpha_{1},\alpha_{2} Case

According to Proposition 1, we present the achievable GDoF condition in this case as follows:

α1A11,α2A21,\displaystyle\!\!\!\!\!\!\alpha_{1}-A_{1}\leq 1,\quad\alpha_{2}-A_{2}\leq 1, (30)
d1α1+12A1,\displaystyle\!\!\!\!\!\!d_{1}\leq\alpha_{1}+1-2A_{1}, (31)
d2α2+12A2,\displaystyle\!\!\!\!\!\!d_{2}\leq\alpha_{2}+1-2A_{2}, (32)
α1+α2A1+A2+1,\displaystyle\!\!\!\!\!\!\alpha_{1}+\alpha_{2}\leq A_{1}+A_{2}+1, (33)
d1α1A1+A2,\displaystyle\!\!\!\!\!\!d_{1}\leq\alpha_{1}-A_{1}+A_{2}, (34)
d2α2A2+A1,\displaystyle\!\!\!\!\!\!d_{2}\leq\alpha_{2}-A_{2}+A_{1}, (35)
d11,\displaystyle\!\!\!\!\!\!d_{1}\leq 1, (36)
d21,\displaystyle\!\!\!\!\!\!d_{2}\leq 1, (37)
d1A2,\displaystyle\!\!\!\!\!\!d_{1}\leq A_{2}, (38)
d2A1.\displaystyle\!\!\!\!\!\!d_{2}\leq A_{1}. (39)

Therefore, we are able to formulate the following sum-GDoF lower bound maximization problem:

maxA1,A2min{A1+A2,α1+α2+22(A1+A2),2},\max_{A_{1},A_{2}}\min\{A_{1}+A_{2},\alpha_{1}+\alpha_{2}+2-2(A_{1}+A_{2}),2\}, (40)

where the maximizer is A1+A2=min{(2+α1+α2)/3,2}A_{1}^{*}+A_{2}^{*}=\min\{(2+\alpha_{1}+\alpha_{2})/3,2\}. This leads to the sum-GDoF lower bound min{(2+α1+α2)/3,2}\min\{(2+\alpha_{1}+\alpha_{2})/3,2\} achievable.

V-A2 1<α1&α2<1& 2α1+2α21<\alpha_{1}\,\&\,\alpha_{2}<1\,\&\,2\leq\alpha_{1}+2\alpha_{2} Case

According to Proposition 1, we present the achievable GDoF condition in this case as follows:

0A2,α1A11,\displaystyle\!\!\!\!\!\!0\leq A_{2},\quad\alpha_{1}-A_{1}\leq 1, (41)
d1α1+12A1,\displaystyle\!\!\!\!\!\!d_{1}\leq\alpha_{1}+1-2A_{1}, (42)
d2α2+12A2,\displaystyle\!\!\!\!\!\!d_{2}\leq\alpha_{2}+1-2A_{2}, (43)
α1+α21+A1+A2,\displaystyle\!\!\!\!\!\!\alpha_{1}+\alpha_{2}\leq 1+A_{1}+A_{2}, (44)
d1{α1A1+A2,1A1α2,α1α2+A2+12A1,1A1>α2,\displaystyle\!\!\!\!\!\!d_{1}\leq\begin{cases}\alpha_{1}-A_{1}+A_{2},&1-A_{1}\leq\alpha_{2},\\ \alpha_{1}-\alpha_{2}+A_{2}+1-2A_{1},&1-A_{1}>\alpha_{2},\end{cases} (45)
d2α2A2+A1,\displaystyle\!\!\!\!\!\!d_{2}\leq\alpha_{2}-A_{2}+A_{1}, (46)
d11,\displaystyle\!\!\!\!\!\!d_{1}\leq 1, (47)
d21,\displaystyle\!\!\!\!\!\!d_{2}\leq 1, (48)
d1A2α2+1,\displaystyle\!\!\!\!\!\!d_{1}\leq A_{2}-\alpha_{2}+1, (49)
d2A1.\displaystyle\!\!\!\!\!\!d_{2}\leq A_{1}. (50)

Therefore, due to 2α1+2α22\leq\alpha_{1}+2\alpha_{2}, we are able to formulate the following sum-GDoF lower bound maximization problem:

maxA1,A2min{A1+A2α2+1,α1+α2+22(A1+A2)},\max_{A_{1},A_{2}}\min\{A_{1}+A_{2}-\alpha_{2}+1,\alpha_{1}+\alpha_{2}+2-2(A_{1}+A_{2})\}, (51)

where the maximizer is A1+A2=(α1+2α2+1)/3A_{1}^{*}+A_{2}^{*}=(\alpha_{1}+2\alpha_{2}+1)/3. This leads to the sum-GDoF lower bound (4+α1α2)/3(4+\alpha_{1}-\alpha_{2})/3 achievable.

V-B Proposed Transmission Scheme for α1,α21\alpha_{1},\alpha_{2}\leq 1 Case

In the 1st1^{\text{st}} time slot, the transmitter Tx1\text{Tx}_{1} sends three symbols for receiver Rx1\text{Rx}_{1} and transmitter Tx2\text{Tx}_{2} sends one symbol for receiver Rx2\text{Rx}_{2}. Let us denote the symbols desired by receiver Rx1\text{Rx}_{1} transmitted in time slot 11 by a1,a2,a3a_{1},a_{2},a_{3}, and denote the symbol desired by receiver Rx2\text{Rx}_{2} transmitted in time slot 11 by b1b_{1}. The transmit signal at transmitter Tx1\text{Tx}_{1} is designed as

x1[1]=[a1a2]+[a3ρα1/2ϕ].\textbf{x}_{1}[1]=\begin{bmatrix}a_{1}\\ a_{2}\end{bmatrix}+\begin{bmatrix}a_{3}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}. (52)

The transmit signal at transmitter Tx2\text{Tx}_{2} is designed as

x2[1]=[b1ρα1/2ϕ].\textbf{x}_{2}[1]=\begin{bmatrix}b_{1}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}. (53)

As such, the received signals at each receiver are expressed as

y1[1]=ρh11[1][a1a2]𝒪(ρ1(1α1))=𝒪(ρα1)+ρh11[1][a3ρα1/2ϕ]𝒪(ρ1α1)\displaystyle y_{1}[1]=\underbrace{\sqrt{\rho}\textbf{h}_{11}[1]\begin{bmatrix}a_{1}\\ a_{2}\end{bmatrix}}_{\mathcal{O}(\rho^{1-(1-\alpha_{1})})=\mathcal{O}(\rho^{\alpha_{1}})}+\underbrace{\sqrt{\rho}\textbf{h}_{11}[1]\begin{bmatrix}a_{3}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{1}})}
+ρα2h12[1][b1ρα1/2ϕ]𝒪(ρ0),\displaystyle\qquad\quad+\underbrace{\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[1]\begin{bmatrix}b_{1}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}, (54a)
y2[1]=ρα1h21[1][a1a2]𝒪(ρα1)+ρα1h21[1][a3ρα1/2ϕ]𝒪(ρ0)\displaystyle y_{2}[1]=\underbrace{\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[1]\begin{bmatrix}a_{1}\\ a_{2}\end{bmatrix}}_{\mathcal{O}(\rho^{\alpha_{1}})}+\underbrace{\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[1]\begin{bmatrix}a_{3}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}
+ρh22[1][b1ρα1/2ϕ]𝒪(ρ1α1).\displaystyle\qquad\quad+\underbrace{\sqrt{\rho}\textbf{h}_{22}[1]\begin{bmatrix}b_{1}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{1}})}. (54b)

It can be seen that a part of interference fall into noise level. Moreover, each receiver can retrieve the profile of 𝒪(ρα1)\mathcal{O}(\rho^{\alpha_{1}}) part and decode the information of 𝒪(ρ1α1)\mathcal{O}(\rho^{1-\alpha_{1}}) part immediately.

In the 2nd2^{\text{nd}} time slot, the transmitter Tx2\text{Tx}_{2} sends three symbols for receiver Rx2\text{Rx}_{2} and transmitter Tx1\text{Tx}_{1} sends three symbols for receiver Rx1\text{Rx}_{1}. Let us denote the symbols desired by receiver Rx2\text{Rx}_{2} transmitted in time slot 22 by b2,b3,b4b_{2},b_{3},b_{4}, and denote the symbol desired by receiver Rx1\text{Rx}_{1} transmitted in time slot 22 by a4a_{4}. The transmit signal at transmitter Tx1\text{Tx}_{1} is designed as

x1[2]=[a4ρα2/2ϕ].\textbf{x}_{1}[2]=\begin{bmatrix}a_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}. (55)

The transmit signal at transmitter Tx2\text{Tx}_{2} is designed as

x2[2]=[b2b3]+[b4ρα2/2ϕ].\textbf{x}_{2}[2]=\begin{bmatrix}b_{2}\\ b_{3}\end{bmatrix}+\begin{bmatrix}b_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}. (56)

As such, the received signals at each receiver are expressed as

y1[2]=ρh11[2][a4ρα2/2ϕ]𝒪(ρ1α2)+ρα2h12[2][b2b3]𝒪(ρα2)\displaystyle y_{1}[2]=\underbrace{\sqrt{\rho}\textbf{h}_{11}[2]\begin{bmatrix}a_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{2}})}+\underbrace{\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[2]\begin{bmatrix}b_{2}\\ b_{3}\end{bmatrix}}_{\mathcal{O}(\rho^{\alpha_{2}})}
+ρα2h12[2][b4ρα2/2ϕ]𝒪(ρ0),\displaystyle\qquad\quad+\underbrace{\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[2]\begin{bmatrix}b_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}, (57a)
y2[2]=ρα2h21[2][a4ρα2/2ϕ]𝒪(ρ0)+ρh22[2][b2b3]𝒪(ρ1(1α2))=𝒪(ρα2)\displaystyle y_{2}[2]=\underbrace{\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{21}[2]\begin{bmatrix}a_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}+\underbrace{\sqrt{\rho}\textbf{h}_{22}[2]\begin{bmatrix}b_{2}\\ b_{3}\end{bmatrix}}_{\mathcal{O}(\rho^{1-(1-\alpha_{2})})=\mathcal{O}(\rho^{\alpha_{2}})}
+ρh22[2][b4ρα2/2ϕ]𝒪(ρ1α2).\displaystyle\qquad\quad+\underbrace{\sqrt{\rho}\textbf{h}_{22}[2]\begin{bmatrix}b_{4}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{2}})}. (57b)

It can be seen that a part of interference fall into noise level. Moreover, each receiver can retrieve the profile of 𝒪(ρα2)\mathcal{O}(\rho^{\alpha_{2}}) part and decode the information of 𝒪(ρ1α2)\mathcal{O}(\rho^{1-\alpha_{2}}) part immediately.

In the 3rd3^{\text{rd}} time slot, each transmitter has delayed CSI of past two time slots. Thus, the transmitter Tx1\text{Tx}_{1} re-constructs the interfering signals and treat it as a common symbol, i.e., c1ρα1h21[1][a1;a2],c_{1}\triangleq\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[1][a_{1};a_{2}], where c1c_{1} is a valid codeword if a1,a2a_{1},a_{2} are selected from lattice. The transmitter Tx2\text{Tx}_{2} re-constructs the interfering signals and treat it as a common symbol, i.e., c2ρα2h12[2][b2;b3],c_{2}\triangleq\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[2][b_{2};b_{3}], where c2c_{2} is a valid codeword if b2,b3b_{2},b_{3} are selected from lattice. The transmit signals at each transmitter are designed as

x1[3]=[c1ϕ]+[a5ρα1/2ϕ],\displaystyle\textbf{x}_{1}[3]=\begin{bmatrix}c_{1}\\ \phi\end{bmatrix}+\begin{bmatrix}a_{5}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}, (58a)
x2[3]=[c2ϕ]+[b5ρα2/2ϕ],\displaystyle\textbf{x}_{2}[3]=\begin{bmatrix}c_{2}\\ \phi\end{bmatrix}+\begin{bmatrix}b_{5}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}, (58b)

where a5,b5a_{5},b_{5} are symbols desired by receivers Rx1\text{Rx}_{1} and Rx2\text{Rx}_{2}, respectively. As such, the received signals at each receiver are expressed as

y1[3]=ρh11[3][c1ϕ]𝒪(ρ1(1α1))=𝒪(ρα1)+ρh11[3][a5ρα1/2ϕ]𝒪(ρ1α1)\displaystyle y_{1}[3]=\underbrace{\sqrt{\rho}\textbf{h}_{11}[3]\begin{bmatrix}c_{1}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-(1-\alpha_{1})})=\mathcal{O}(\rho^{\alpha_{1}})}+\underbrace{\sqrt{\rho}\textbf{h}_{11}[3]\begin{bmatrix}a_{5}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{1}})}
+ρα2h12[3][c2ϕ]+ρα2h12[3][b5ρα2/2ϕ]𝒪(ρ0),\displaystyle+\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[3]\begin{bmatrix}c_{2}\\ \phi\end{bmatrix}+\underbrace{\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[3]\begin{bmatrix}b_{5}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}, (59a)
y2[3]=ρh22[3][c2ϕ]𝒪(ρ1(1α2))=𝒪(ρα2)+ρh22[3][b5ρα2/2ϕ]𝒪(ρ1α2)\displaystyle y_{2}[3]=\underbrace{\sqrt{\rho}\textbf{h}_{22}[3]\begin{bmatrix}c_{2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-(1-\alpha_{2})})=\mathcal{O}(\rho^{\alpha_{2}})}+\underbrace{\sqrt{\rho}\textbf{h}_{22}[3]\begin{bmatrix}b_{5}\rho^{-\alpha_{2}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{1-\alpha_{2}})}
+ρα1h21[3][c1ϕ]+ρα1h21[3][a5ρα1/2ϕ]𝒪(ρ0),\displaystyle+\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[3]\begin{bmatrix}c_{1}\\ \phi\end{bmatrix}+\underbrace{\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[3]\begin{bmatrix}a_{5}\rho^{-\alpha_{1}/2}\\ \phi\end{bmatrix}}_{\mathcal{O}(\rho^{0})}, (59b)

where the impact of ρα2h12[3][c2;ϕ]\sqrt{\rho^{\alpha_{2}}}\textbf{h}_{12}[3][c_{2};\phi] can be subtracted from y1[3]y_{1}[3] and the ρα1h21[3][c1;ϕ]\sqrt{\rho^{\alpha_{1}}}\textbf{h}_{21}[3][c_{1};\phi] can be subtracted from y2[3]y_{2}[3]. It can be seen that a part of interference fall into noise level. Moreover, receiver Rxj\text{Rx}_{j} can retrieve the profile of 𝒪(ραj)\mathcal{O}(\rho^{\alpha_{j}}) part and decode the information of 𝒪(ρ1αj)\mathcal{O}(\rho^{1-\alpha_{j}}) part immediately.

The achievable sum-GDoF is calculated as follows: Receiver Rx1\text{Rx}_{1} acquires 1α11-\alpha_{1}, 1α21-\alpha_{2}, and (1α1)logρ+𝒪(1)(1-\alpha_{1})\log\rho+\mathcal{O}(1) immediately in time slot 1,21,2 and 33, respectively. Additionally, receiver Rx1\text{Rx}_{1} has 2α1logρ+𝒪(1)2\alpha_{1}\log\rho+\mathcal{O}(1) via delayed CSIT. Thus, d11α2/3d_{1}\geq 1-\alpha_{2}/3 is achievable. Likewise, d21α1/3d_{2}\geq 1-\alpha_{1}/3 is achievable. To sum up, d1+d22(α1+α2)/3d_{1}+d_{2}\geq 2-(\alpha_{1}+\alpha_{2})/3 is achievable.

VI Conclusion

The sum-GDoF was characterized in the asymmetry interference channel with delayed CSIT, where each transmitter has 2 antennas and each receiver has 1 antenna. In the future, it is interesting to design a better transmission scheme in 1<α1&α2<1&α1+2α2<21<\alpha_{1}\,\&\,\alpha_{2}<1\,\&\,\alpha_{1}+2\alpha_{2}<2 Case.

References

  • [1] C. S. Vaze and M. K. Varanasi, “The degrees of freedom region and interference alignment for the MIMO interference channel with delayed CSIT,” IEEE Trans. Inf Theory, vol. 58, no. 7, pp. 4396–4417, 2012.
  • [2] M. J. Abdoli, A. Ghasemi, and A. K. Khandani, “On the degrees of freedom of three-user MIMO broadcast channel with delayed CSIT,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg, Russia, 2011, pp. 209–213.
  • [3] T. Zhang, X. W. Wu, Y. F. Xu, Y. Ge, and P. C. Ching, “Three-user MIMO broadcast channel with delayed CSIT: A higher achievable DoF,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2018, pp. 3709–3713.
  • [4] M. J. Abdoli, “Feedback and cooperation in wireless networks,” in PhD Dissertation, University of Waterloo, 2012.
  • [5] T. Zhang and R. Wang, “Achievable DoF regions of three-user MIMO broadcast channel with delayed CSIT,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2240–2253, 2021.
  • [6] D. T. H. Kao and A. S. Avestimehr, “Linear degrees of freedom of the MIMO X-channel with delayed CSIT,” IEEE Trans. Inf Theory, vol. 63, no. 1, pp. 297–319, 2017.
  • [7] R. H. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534–5562, 2008.
  • [8] J. Chen, P. Elia, and S. A. Jafar, “On the two-user MISO broadcast channel with alternating CSIT: A topological perspective,” IEEE Trans. Inf Theory, vol. 61, no. 8, pp. 4345–4366, 2015.
  • [9] Z. H. Awan and A. Sezgin, “Secure MISO broadcast channel: An interplay between CSIT and network topology,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 121–138, 2021.
  • [10] K. Mohanty and M. K. Varanasi, “The generalized degrees of freedom region of the MIMO Z-interference channel with delayed CSIT,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 531–546, 2018.
  • [11] ——, “On the generalized degrees of freedom of the MIMO interference channel with delayed CSIT,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3261–3277, 2019.
  • [12] T. Liu and P. Viswanath, “An extremal inequality motivated by multiterminal information-theoretic problems,” IEEE Trans. Inf Theory, vol. 53, no. 5, pp. 1839–1851, 2007.
  • [13] T. M. Cover, Elements of information theory.   John Wiley & Sons, 1999.