This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Gan-Gross-Prasad period of Klingen Eisenstein families over unitary groups

Ruichen Xu Academy of Mathematics and Systems Science, Chinese Academy of Science, No. 55 Zhongguancun East Road, Beijing, 100190, China. [email protected]
Abstract.

In this article, we compute the Gan-Gross-Prasad period integral of Klingen Eisenstein series over the unitary group U(m+1,n+1)\mathrm{U}(m+1,n+1) with a cuspidal automorphic form over U(m+1,n)\mathrm{U}(m+1,n), and show that it is related to certain special Rankin-Selberg LL-values. We pp-adically interpolate these Gan-Gross-Prasad period integrals as the Klingen Eisenstein series and the cuspidal automorphic form vary in Hida families. As a byproduct, we obtain a pp-adic LL-function of Rankin-Selberg type over U(m,n)×U(m+1,n)\mathrm{U}(m,n)\times\mathrm{U}(m+1,n). The ultimate motivation is to show the pp-primitive property of Klingen Eisenstein series over unitary groups, by computing such Gan-Gross-Prasad period integrals, and this article is a starting point of this project. The pp-primitivity of Eisenstein series is an essential property in the automorphic method in Iwasawa theory.

1. Introduction

Let pp be an odd prime. In Iwasawa theory, people study the mysterious relations between special values of LL-functions and arithmetic objects as they vary in pp-adic families. Such relations are formulated as Iwasawa main conjectures. Among the successful attempts on Iwasawa main conjectures, one divisibility of them, namely “the lower bound of Selmer groups”, are often proved by the machinery of Eisenstein congruences.

When running Eisenstein congruences, the most challenging part is to verify the “pp-primitivity” of the Eisenstein series and their pp-adic families (i.e. Eisenstein families), which can be regarded as certain “modulo pp nonvanishing” property of Eisenstein families. In 1990s, Wiles [Wil90] proved the Iwasawa main conjecture for GL1\mathrm{GL}_{1} over totally real field by running Eisenstein congruences over GL2\mathrm{GL}_{2}, where the Eisenstein series have explicit qq-expansions. Later on, Skinner and Urban [SU14] proved one-side divisibility of Iwasawa main conjecture for modular forms that are ordinary at pp. They used the Klingen Eisenstein series over the unitary group U(2,2)\mathrm{U}(2,2), and the pp-primitive property is proved by computing the Fourier coefficients of them. Hsieh [Hsi14] proved the Iwasawa main conjectures for GL1\mathrm{GL}_{1} over CM fields using the Klingen Eisenstein series over U(2,1)\mathrm{U}(2,1), using the Fourier-Jacobi coefficient of Klingen Eisenstein family. Wan [Wan20] considered the complement of the case in [SU14], that is, the Rankin-Selberg product of a modular form ff and an ordinary CM form whose weight is higher than ff, using Klingen Eisenstein series over another rank four unitary group U(3,1)\mathrm{U}(3,1). The highlight is that Wan’s approach removed the ordinary condition of ff at pp, yet still keeps the “ordinary nature” of the problem. The pp-primitivity of the Klingen Eisenstein series there is also proved by computing their Fourier-Jacobi coefficients. 111The aforementioned results on Iwasawa main conjectures depend on various technical assumptions, which we did not specify.

In this article, we start the project of investigating the pp-primitivity of Klingen Eisenstein series over unitary groups of general signatures U(m+1,n+1)\mathrm{U}(m+1,n+1) (constructed explicitly in [Wan15]), by computing the Gan-Gross-Prasad period of them with cuspidal automorphic forms over U(m+1,n)\mathrm{U}(m+1,n). Now we summarize the main result of this article, starting with introducing necessary notations.

Let 𝒦/\mathcal{K}/\mathcal{F} be a CM extension, that is, \mathcal{F} is a totally real number field and 𝒦\mathcal{K} is an imaginary quadratic extension of \mathcal{F}. Let pp be an odd prime that is unramified in \mathcal{F} and each prime of \mathcal{F} above pp splits in 𝒦\mathcal{K}. Throughout, we fix an isomorphism ιp:¯p\iota_{p}:\overline{\mathbb{Q}}_{p}\simeq\mathbb{C}. Let 𝒦/𝒦\mathcal{K}_{\infty}/\mathcal{K} be the composition of all p\mathbb{Z}_{p}-extensions of 𝒦\mathcal{K}, with Galois group Γ𝒦\Gamma_{\mathcal{K}}. Let mn0m\geq n\geq 0 be integers, we put U(m,n)\mathrm{U}(m,n) as the unitary group of signature (m,n)(m,n), that is, the unitary group associated to the skew-Hermitian matrix

[𝟏nϑ𝟏n],\begin{bmatrix}&&\mathbf{1}_{n}\\ &\vartheta&\\ -\mathbf{1}_{n}\end{bmatrix},

where ϑ\vartheta is a diagonal matrix such that i1ϑi^{-1}\vartheta is totally positive definite, and we assume U(m,n)(v)\mathrm{U}(m,n)(\mathcal{F}_{v}) is quasi-split for every finite place vv of \mathcal{F}. Throughout, we assume that the multiplicity one theorem holds for automorphic representations over any unitary groups U(m,n)\mathrm{U}(m,n) (see Section 2.3).

1.1. Main result: automorphic computations

Let σ\sigma be an irreducible tempered unitary cuspidal representation of H:=U(m,n)H:=\mathrm{U}(m,n) and χ\chi be a Hecke character over 𝒦\mathcal{K}. Let Φ\Phi be a cuspidal automorphic form in σ\sigma. We can construct a Klingen Eisenstein series by pulling back from a Siegel Eisenstein series Eχ,sSieg()E^{\mathrm{Sieg}}_{\chi,s}(-) on the large unitary group G:=U(m+n+1,m+n+1)G^{\blacklozenge}:=\mathrm{U}(m+n+1,m+n+1) with the cuspidal automorphic form Φ\Phi. We denote the Klingen Eisenstein series by

EKling(F(fs,χSieg,Φ;);) over G:=U(m+1,n+1),E^{\mathrm{Kling}}(F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-);-)\quad\text{ over }G^{\heartsuit}:=\mathrm{U}(m+1,n+1),

where fs,χSieg()f^{\mathrm{Sieg}}_{s,\chi}(-) is the Siegel Eisenstein section defining the Siegel Eisenstein series. The operator F()F^{\heartsuit}(-) is the so-called pullback integral.

Let π\pi be an irreducible tempered unitary cuspidal representation of G:=U(m+1,n)G:=\mathrm{U}(m+1,n). The main theme of this article is to compute and pp-adically interpolate the following Gan-Gross-Prasad (GGP) period integral of EKling()E^{\mathrm{Kling}}(-) over GG^{\heartsuit} with a cuspidal automorphic form Ψ\Psi in π\pi,

𝒫Kling(Φ,Ψ,χ,s):=G()\G(𝔸)EKling((fs,χSieg,Φ;);ȷ(g))Ψ(g)dg,\mathcal{P}^{\mathrm{Kling}}(\Phi,\Psi,\chi,s):=\int_{G(\mathcal{F})\backslash G(\mathbb{A}_{\mathcal{F}})}E^{\mathrm{Kling}}((f^{\mathrm{Sieg}}_{s,\chi},\Phi;-);\jmath^{\flat}(g))\Psi(g)\,\mathrm{d}g,

where ȷ:GG\jmath^{\flat}:G\hookrightarrow G^{\heartsuit} is a canonical embedding of unitary groups. By the cuspidality of Ψ\Psi, this converges absolutely for those values of ss at which the Klingen Eisenstein series is defined.

The first main result of this article is to unfold this period integral into local integrals and show that the local LL-factors appear at unramified places of \mathcal{F}. We write 𝒫Kling(Φ,Ψ,χ,s)\mathcal{P}^{\mathrm{Kling}}(\Phi,\Psi,\chi,s) as 𝒫Φ,ΨKling\mathcal{P}_{\Phi,\Psi}^{\mathrm{Kling}} for simplicity, and let

  • 𝒱ur\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}} be the set of finite places vv of \mathcal{F} such that σv,πv\sigma_{v},\pi_{v} and the local extension 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} are all unramified. The complement of 𝒱ur\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}} in the set of all places of \mathcal{F} is denoted by 𝒱bad\mathscr{V}_{\mathcal{F}}^{\mathrm{bad}}, and let

  • 𝒮ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} be the set of finite places vv of \mathcal{F} such that σv,πv,χv\sigma_{v},\pi_{v},\chi_{v} and the local extension 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} are all unramified. The complement of 𝒮ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} in the set of all places of \mathcal{F} is denoted by 𝒮bad\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}}.

Then we state our first main theorem.

Theorem A (Theorem 3.7).

We choose Siegel Eisenstein sections at v𝒮urv\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} as spherical sections fv,s,χSieg,sphf^{\mathrm{Sieg},\mathrm{sph}}_{v,s,\chi} in the construction of the Klingen Eisenstein series. Then

(𝒫Φ,ΨKling)2Φσ,Pet2Ψπ,Pet2=12ϰσ+ϰπ𝒱ur(σ×π)L𝒮ur(s+12,πv,χv)L𝒮ur(s+12,πv,χv)×v𝒱badv(σv,πv)v𝒮urdN+1,v(s,χv)1v𝒮bad𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv),\dfrac{(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}}{\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}}=\dfrac{1}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\cdot\mathscr{L}_{\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}}(\sigma\times\pi)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v},\chi_{v}\right)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v}^{\vee},\chi_{v}\right)\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{I}_{v}(\sigma_{v},\pi_{v})\prod_{v\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}d_{N+1,v}(s,\chi_{v})^{-1}\prod_{v\in\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee}),

Here the local LL-factors are

  • local Rankin-Selberg LL-factors

    𝒱ur(σ×π):=v𝒱ur(L(12,σv×πv)L(1,σv,Ad)L(1,πv,Ad)i=1m+n+1L(i,ϵ𝒦v/vi)),\mathscr{L}_{\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}}(\sigma\times\pi):=\prod_{v\in\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(\dfrac{L(\frac{1}{2},\sigma_{v}\times\pi_{v})}{L(1,\sigma_{v},\operatorname{Ad})L(1,\pi_{v},\operatorname{Ad})}\prod_{i=1}^{m+n+1}L(i,\epsilon_{\mathcal{K}_{v}/\mathcal{F}_{v}}^{i})\right),

    with L(s,σv×πv)L(s,\sigma_{v}\times\pi_{v}) is the local LL-factor of the Rankin-Selberg product BC(σ)×BC(π)\mathrm{BC}(\sigma)\times\mathrm{BC}(\pi), where BC()\mathrm{BC}(-) is the base change to an automorphic representation of general linear groups over 𝒦\mathcal{K}, and

  • local doubling LL-factors

    L𝒮ur(s+12,πv,χv):=v𝒮urLv(s,BC(πv)χvdet),L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v}^{\vee},\chi_{v}\right):=\prod_{v\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}L_{v}(s,\mathrm{BC}(\pi_{v})\otimes\chi_{v}\circ\det),

    where the right hand side is the standard local Godement-Jacquet LL-factor and BC(πv)\mathrm{BC}(\pi_{v}) is the local base change from G(v)G(\mathcal{F}_{v}) to GLm+n+1(𝒦v)\mathrm{GL}_{m+n+1}(\mathcal{K}_{v}).

Here v\mathscr{I}_{v}’s are local Ichino-Ikeda integrals and 𝒵v\mathscr{Z}_{v}^{\diamondsuit}’s are local doubling integrals. Other unspecified factors will be defined in the text.

The next task is to compute the local Ichino-Ikeda integrals at bad places explicitly. We require σ\sigma and π\pi are regularly ordinary at places of \mathcal{F} above pp (see Definition 5.10). We put some further technical assumptions to make the calculation simpler.

  • At archimedean places, we require σ\sigma_{\infty} is of constant scalar weight, with the weights of σ\sigma_{\infty} and π\pi_{\infty} satisfying the “Gan-Gross-Prasad weight interlacing property”.

  • We require 𝒦/\mathcal{K}/\mathcal{F} is unramified at any finite places of \mathcal{F}.

  • The local representations σv\sigma_{v} and πv\pi_{v} are “ramified disjointly” (i.e. they cannot be both ramified at any places), and these places where either σv\sigma_{v} or πv\pi_{v} ramifies shall split in 𝒦\mathcal{K}.

  • For pp-adic places vv of \mathcal{F}, the local representations (σv,χv)(\sigma_{v},\chi_{v}) satisfy the generic assumption in [Wan15, Definition 4.42].

They are recorded as Assumption 3.8, 3.9, 3.10, 3.11, 6.1, 6.2 more explicitly in the text.

Theorem B (Theorem 6.3).

Under aforementioned assumptions, we have

(𝒫Φ,ΨKling)2Φσ,Pet2Ψπ,Pet2=12ϰσ+ϰπ𝒱(p)(σ×π)L𝒮ur(s+12,πv,χv)L𝒮ur(s+12,πv,χv)×v𝒱ramζvCσv,𝝍vCσv,𝝍v1πvessσvessv𝒱(p)ζvΔβ2𝔊(κ,μ¯˘,λ¯˘)𝔊(κ,μ¯ˇ˘,λ¯ˇ˘)𝒞σord𝒞πord×v𝒮urdN+1,v(s,χv)1v𝒮bad𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv).\dfrac{(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}}{\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}}=\dfrac{1}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\cdot\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma\times\pi)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v},\chi_{v}\right)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v}^{\vee},\chi_{v}\right)\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}}}\zeta_{v}C_{\sigma_{v},\boldsymbol{\psi}_{v}}C_{\sigma_{v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}\mathcal{B}_{\pi_{v}}^{\mathrm{ess}}\mathcal{B}_{\sigma_{v}}^{\mathrm{ess}}\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\zeta_{v}\Delta_{\beta}^{2}\cdot\mathfrak{G}(\kappa,\breve{\underline{\mu}},\breve{\underline{\lambda}})\mathfrak{G}(\kappa,\breve{\check{\underline{\mu}}},\breve{\check{\underline{\lambda}}})\mathcal{C}_{\sigma}^{\operatorname{ord}}\mathcal{C}_{\pi}^{\operatorname{ord}}\\ \times\prod_{v\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}d_{N+1,v}(s,\chi_{v})^{-1}\prod_{v\in\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee}).

Here 𝒱(p)(σ×π)\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma\times\pi) is the product of all corresponding local factors except for those in 𝒱(p)\mathscr{V}_{\mathcal{F}}^{(p)}, and the second line arises from the local Ichino-Ikeda integrals. They are defined explicitly in the text which we shall not record here, but instead remark that the unspecified local factors involve only explicit local Gauss sums, local critical adjoint LL-values, the local inner product of canonically chosen local vectors in local representations.

We present these theorems in Part I of this article.

  • In Section 2, we introduce some backgrounds on unitary groups and their embeddings, then on Eisenstein series over unitary groups. We recall the doubling methods, both in the manner of Piatetski-Shapiro and Rallis and that of Garrett. These facts are definitely well-known but we offer proofs for some results due to the lack of references.

  • In Section 3, we define the Gan-Gross-Prasad period integral of Klingen Eisenstein series with cuspidal automorphic forms, unfold them and relate them to local LL-factors. There will be a more detailed sketch of our approach at the beginning of Section 3.

  • From Section 4 to Section 6, we calculate the local Ichino-Ikeda integrals at bad places.

1.2. Main result: pp-adic interpolations

The next step is to pp-adically interpolate the Gan-Gross-Prasad period integrals defined above, when the Klingen Eisenstein series EKlingE^{\mathrm{Kling}} and the cuspidal automorphic form Ψ\Psi vary in pp-adic families.

Let L/pL/\mathbb{Q}_{p} be a sufficiently large finite extension, with 𝒪L\mathcal{O}_{L} being its ring of integers, and let Λm,n:=𝒪LTm+n(1+pp)\Lambda_{m,n}^{\circ}:=\mathcal{O}_{L}\llbracket{T_{m+n}(1+p\mathbb{Z}_{p})}\rrbracket be the weight algebra for Hida families over the unitary group GU(m,n){\mathrm{GU}}(m,n), where Tm+nT_{m+n} is the diagonal torus in the general linear group GLm+n\mathrm{GL}_{m+n}. Let 𝕀\mathbb{I} (resp. 𝕁\mathbb{J}) be a normal domain over (resp. Λm+1,n\Lambda_{m+1,n}^{\circ}), which is also a finite algebra over Λm,n\Lambda_{m,n}^{\circ} (resp. Λm+1,n\Lambda_{m+1,n}^{\circ}). Consider 𝐟\mathbf{f} (resp. 𝐠\mathbf{g}), an 𝕀\mathbb{I}-adic (resp. 𝕁\mathbb{J}-adic) Hida family of tempered cuspidal ordinary eigenforms on GU(m,n){\mathrm{GU}}(m,n) (resp. GU(m+1,n){\mathrm{GU}}(m+1,n)) of branching character η0\eta_{0}. Let χ0\chi_{0} be a finite order Hecke character 𝒦×\𝕂××\mathcal{K}^{\times}\backslash\mathbb{K}^{\times}\rightarrow\mathbb{C}^{\times} whose conductors at primes above pp divides (p)(p). We collect these inputs as a tuple

𝐆:=(L,𝕀,𝕁,𝐟,𝐠,χ0,η0),\mathbf{G}:=(L,\mathbb{I},\mathbb{J},\mathbf{f},\mathbf{g},\chi_{0},\eta_{0}),

called a pp-adic Gan-Gross-Prasad datum (see Definition 9.1). Given such a datum 𝐆\mathbf{G}, we have a corresponding weight space 222Here ()ur(-)^{{\mathrm{ur}}} is an “unramified extension of coefficient rings”, see Definition 8.3 for details.

𝒳𝐆:=𝒳𝐃×𝒴𝐆:=Spec𝕀urΓ𝒦(¯p×)×Spec𝕁ur(¯p×).\mathcal{X}_{\mathbf{G}}:=\mathcal{X}_{\mathbf{D}}\times\mathcal{Y}_{\mathbf{G}}:=\operatorname{Spec}\mathbb{I}^{{\mathrm{ur}}}\llbracket{\Gamma_{\mathcal{K}}}\rrbracket(\overline{\mathbb{Q}}_{p}^{\times})\times\operatorname{Spec}\mathbb{J}^{{\mathrm{ur}}}(\overline{\mathbb{Q}}_{p}^{\times}).

and we pp-adically interpolate the Gan-Gross-Prasad period integral on a Zariski dense subset 𝒳𝐆gen\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}} of 𝒳𝐆\mathcal{X}_{\mathbf{G}}, consisting of “classical generic admissible points” (see Definition 9.2). Then the next main result of this article is as follows.

Theorem C (Theorem 9.3).

Notations being as above, then there exists an element

𝐏𝐆(𝕀urΓ𝒦Frac(𝕀ur))Frac(𝕁ur),\mathbf{P}_{\mathbf{G}}\in(\mathbb{I}^{{\mathrm{ur}}}\llbracket{\Gamma_{\mathcal{K}}}\rrbracket\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}))\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}),

such that for any “classical generic admissible points” 𝖯×𝖰𝒳𝐆gen\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}}, we have

(𝖯×𝖰)(𝐏𝐆)=B(s𝖯,χ𝖯)𝒫Kling(𝐟𝖯,𝐠𝖰,χ𝖯,s𝖯),(\mathsf{P}\times\mathsf{Q})(\mathbf{P}_{\mathbf{G}})=B(s_{\mathsf{P}},\chi_{\mathsf{P}})\mathcal{P}^{\mathrm{Kling}}(\mathbf{f}_{\mathsf{P}},\mathbf{g}_{\mathsf{Q}},\chi_{\mathsf{P}},s_{\mathsf{P}}),

with right-hand-side the GGP period integral of Klingen Eisenstein series with a cuspidal automorphic form, normalized by an explicit factor B(s𝖯,χ𝖯)B(s_{\mathsf{P}},\chi_{\mathsf{P}}) defined in (8.25).

The main technique is to apply appropriate Hecke projectors introduced by Wan in [Wan19] to the family of Klingen Eisenstein series. When n=0n=0, an alternative approach is to use the pp-adic interpolation of Petersson inner products in Hida families. The method of Hecke projectors may date back to the series of works by Hida [Hid85, Hid88, Hid91], where he constructed pp-adic LL-functions for the Rankin-Selberg product of two modular forms and their Hida families.

When Hida families 𝐟\mathbf{f} and 𝐠\mathbf{g} satisfy the aforementioned ramification conditions at classical points together with certain multiplicity one property (Assumption 9.4), combining with the automorphic computations (Theorem B), we have a more explicit interpolation formula relating 𝐏𝐆2\mathbf{P}_{\mathbf{G}}^{2} to critial LL-values at points 𝖯×𝖰𝒳𝐆gen\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}}, which is Theorem 9.5 in the text.

In [Wan15], Wan constructed pp-adic LL-functions 𝐋𝐠,χ0\mathbf{L}_{\mathbf{g},\chi_{0}} for Hida families 𝐠\mathbf{g} over unitary groups. Comparing the interpolation formulas, a byproduct of our construction is an imprimitive pp-adic LL-function for the Rankin-Selberg product of Hida families 𝐟\mathbf{f} and 𝐠\mathbf{g} over U(m,n)×U(m+1,n)\mathrm{U}(m,n)\times\mathrm{U}(m+1,n).

Theorem D (Theorem 9.7).

Notations being as above with the aforementioned ramification conditions, then there exists an element

𝐋𝐟,𝐠Frac(𝕀ur)Frac(𝕁ur)\mathbf{L}_{\mathbf{f},\mathbf{g}}\in\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}})

such that for any 𝖯×𝖰\mathsf{P}\times\mathsf{Q} in a certain Zariski dense subset of 𝒳𝐆gen\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}} with valid multiplicity one theorems, we have (𝖯×𝖰)(𝐋𝐟,𝐠)(\mathsf{P}\times\mathsf{Q})(\mathbf{L}_{\mathbf{f},\mathbf{g}}) equals

12ϰσ𝐟𝖯+ϰπ𝐠𝖰×𝐟𝖯σ,Pet2𝐠𝖰𝐠𝖰,Pet2v𝒮𝐟𝒮𝐠ζvCσ𝐟𝖯,v,𝝍vCσ𝐟𝖯,v,𝝍v1π𝐠𝖰,vessσ𝐟𝖯,vess×v𝒱(p)ζvΔv,βv2𝔊(κv,μ¯v,𝖯˘,λ¯v,𝖰˘)𝔊(κv,μ¯v,𝖯ˇ˘,λ¯v,𝖰ˇ˘)𝒞σ𝐟𝖯ord𝒞π𝐠𝖰ord𝒱(p)(σ𝐟𝖯×π𝐠𝖰).\dfrac{1}{2^{\varkappa_{\sigma_{\mathbf{f}_{\mathsf{P}}}}+\varkappa_{\pi_{\mathbf{g}_{\mathsf{Q}}}}}}\times\left|\left|{\mathbf{f}_{\mathsf{P}}}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\mathbf{g}_{\mathsf{Q}}}\right|\right|_{\mathbf{g}_{\mathsf{Q}},\mathrm{Pet}}^{2}\cdot\prod_{v\in\mathscr{S}_{\mathbf{f}}\cup\mathscr{S}_{\mathbf{g}}}\zeta_{v}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v},\boldsymbol{\psi}_{v}}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}\mathcal{B}_{\pi_{\mathbf{g}_{\mathsf{Q}},v}}^{\mathrm{ess}}\mathcal{B}_{\sigma_{\mathbf{f}_{\mathsf{P}},v}}^{\mathrm{ess}}\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\zeta_{v}\Delta_{v,\beta_{v}}^{2}\cdot\mathfrak{G}(\kappa_{v},\breve{\underline{\mu}_{v,\mathsf{P}}},\breve{\underline{\lambda}_{v,\mathsf{Q}}})\mathfrak{G}(\kappa_{v},\breve{\check{\underline{\mu}_{v,\mathsf{P}}}},\breve{\check{\underline{\lambda}_{v,\mathsf{Q}}}})\mathcal{C}_{\sigma_{\mathbf{f}_{\mathsf{P}}}}^{\operatorname{ord}}\mathcal{C}_{\pi_{\mathbf{g}_{\mathsf{Q}}}}^{\operatorname{ord}}\cdot\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma_{\mathbf{f}_{\mathsf{P}}}\times\pi_{\mathbf{g}_{\mathsf{Q}}}).

where 𝒮𝐟\mathscr{S}_{\mathbf{f}} and 𝒮𝐠\mathscr{S}_{\mathbf{g}} are the set of places of \mathcal{F} dividing the “tame level” of Hida families 𝐟\mathbf{f} and 𝐠\mathbf{g} respectively.

We note that there are similar recent works on such pp-adic LL-functions in various generalizations, for instance [Liu23, HY23, Dim24].

We present these theorems in Part II of this article.

  • In Section 7, we recall the geometric backgrounds of modular forms, pp-adic modular forms and their pp-adic families, over unitary groups.

  • In Section 8, we recall the construction of Siegel Eisenstein families and Klingen Eisenstein families over unitary groups.

  • In Section 9, we pp-adically interpolate the GGP period integral, where Theorem C and Theorem D is proved.

1.3. Future works

Firstly, some of the assumptions in this article is technical and is expected to be removed or weakened in the future.

  • For the computation of local Ichino-Ikeda integrals, Assumption 3.9 and 3.11 are expected to be removed.

  • Though it is believed that the Klingen Eisenstein family over unitary groups could be constructed in full generality, it is still missing in the literature. The Klingen Eisenstein family we are using is the one in [Wan15]. That is why Assumption 6.1 and 6.2 are put in this article.

Secondly, besides the construction of pp-adic LL-functions 𝐋𝐟,𝐠\mathbf{L}_{\mathbf{f},\mathbf{g}} in Theorem D, recall that our motivation is the pp-primitive property of Klingen Eisenstein series and their pp-adic families over unitary groups. This article acts as the first step of this project. From this perspective, we could consider next steps of this project.

  • The main result in this article reduce the pp-primitivity problem of Klingen Eisenstein families over U(m+1,n+1)\mathrm{U}(m+1,n+1) to certain “modulo pp nonvanishing” property of the special LL-values of Rankin-Selberg LL-functions and standard LL-functions. Nevertheless, this latter problem is not an easy one, and definitely needs new ideas. In future works, we shall first start with some lower rank cases, where more tools might be available.

  • Granting the pp-primitivity of Klingen Eisenstein families, another key input for the machinery of Eisenstein congruences is the noncuspidal Hida theory of unitary group with general signatures. This will provide a “fundamental exact sequence of Eisenstein congruences”, which is essential in the arguments. Though it is expected to hold and shall follows from the same technique with [LR20], as far as we are aware of, it is still missing in the literature. We remark that some special cases are known. In [SU14, Chapter 6], the case U(m,m)\mathrm{U}(m,m) is considered and in [Hsi14, Chapter 4], the case U(m,1)\mathrm{U}(m,1) is considered, both for all positive integer mm.

So the project is indeed a challenging one.

1.4. Notations and conventions

In this subsection, we introduce basic notations of this article.

1.4.1. Fields and places
  • Let ,\mathbb{Q},\mathbb{Z} (resp. p,p\mathbb{Q}_{p},\mathbb{Z}_{p}) be the field of (resp. pp-adic) rational numbers and the ring of (resp. pp-adic) integers respectively.

  • Let L/pL/\mathbb{Q}_{p} be a finite extension, we write 𝒪L\mathcal{O}_{L} be its ring of integers, and 𝒪Lur\mathcal{O}_{L}^{{\mathrm{ur}}} be the completion of the maximal unramified extension of 𝒪L\mathcal{O}_{L}.

  • Let \mathcal{M} be a number field, that is, a finite extension of \mathbb{Q}. We put 𝔸,𝔸,f,𝔸,fp\mathbb{A}_{\mathcal{M}},\mathbb{A}_{\mathcal{M},\mathrm{f}},\mathbb{A}_{\mathcal{M},\mathrm{f}}^{p} be the ring of adèles of \mathcal{M}, the ring of finite adèles and the ring of finite adèles with pp-coordinates removed.

  • Let 𝒦/\mathcal{K}/\mathcal{F} be a CM extension, that is, \mathcal{F} is a totally real number field of degree dd over \mathbb{Q}, and 𝒦\mathcal{K} is an imaginary quadratic extension of \mathcal{F}. We put 𝕂\mathbb{K} (resp. 𝔸\mathbb{A}) the ring of adeles of 𝒦\mathcal{K} (resp. \mathcal{F}).

  • Let 𝒦/𝒦\mathcal{K}_{\infty}/\mathcal{K} be the composition of all p\mathbb{Z}_{p}-extensions of 𝒦\mathcal{K}, with Galois group Γ𝒦\Gamma_{\mathcal{K}}.

  • Let cGal(𝒦/)\mathrm{c}\in\operatorname{Gal}(\mathcal{K}/\mathcal{F}) be the unique nontrivial automorphism of 𝒦\mathcal{K}, called the complex conjugation.

  • We fix an element 𝗂𝒦\mathsf{i}\in\mathcal{K} such that c(𝗂)=𝗂\mathrm{c}(\mathsf{i})=-\mathsf{i} and Nm𝒦(𝗂)=1\operatorname{Nm}^{\mathcal{K}}_{\mathcal{F}}(\mathsf{i})=1 (where Nm𝒦\operatorname{Nm}^{\mathcal{K}}_{\mathcal{F}} is the norm map from 𝒦×\mathcal{K}^{\times} to ×\mathcal{F}^{\times}), which equivalently, means that 𝗂c(𝗂)=1\mathsf{i}\cdot\mathrm{c}(\mathsf{i})=1.

Let \mathcal{M} be a number field, we denote 𝒱\mathscr{V}_{\mathcal{M}} or 𝒮\mathscr{S}_{\mathcal{M}} as the set of places of \mathcal{M}. We denote by

  • 𝒱\mathscr{V}_{\mathcal{F}}^{\square} (resp. 𝒱𝒦\mathscr{V}_{\mathcal{K}}^{\square}) the set of places of \mathcal{F} (resp. 𝒦\mathcal{K}) above a finite set \square of places of \mathbb{Q} (resp. \mathcal{F}) 333When ={w}\square=\{w\} is a singleton, we simply write 𝒱(w)=𝒱{w}\mathscr{V}_{\mathcal{F}}^{(w)}=\mathscr{V}_{\mathcal{F}}^{\{w\}}.,

  • 𝒱\mathscr{V}_{\mathcal{F}}^{\infty} (resp. 𝒱0\mathscr{V}_{\mathcal{F}}^{0}) the set of archimedean (resp. nonarchimedean) places of \mathcal{F}.

  • 𝒱spl\mathscr{V}_{\mathcal{F}}^{\mathrm{spl}} (resp. 𝒱ns\mathscr{V}_{\mathcal{F}}^{\mathrm{ns}}) the subset of 𝒱0\mathscr{V}_{\mathcal{F}}^{0} of those that are split (resp. nonsplit) in 𝒦\mathcal{K} respectively.

  • 𝒱ur\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}} be the set of finite places of \mathcal{F} such that σv\sigma_{v}, πv\pi_{v} and the local extension 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} are unramified, and 𝒱bad\mathscr{V}_{\mathcal{F}}^{\mathrm{bad}} be the complement of 𝒱ur\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}} in 𝒱\mathscr{V}_{\mathcal{F}}.

  • 𝒱ram\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}} be the set of finite places of \mathcal{F} such that either σv\sigma_{v} or πv\pi_{v} or both is ramified.

We denote 𝒮ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} the set of finite places of \mathcal{F} such that σv\sigma_{v}, πv\pi_{v} and χv\chi_{v}, and the local extension 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} are unramified, and 𝒮bad\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}} the complement of 𝒮ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} in 𝒮\mathscr{S}_{\mathcal{F}}. By definition, 𝒮ur𝒱ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}\subseteq\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}. For any ?{ur,bad}?\not\in\{{\mathrm{ur}},\mathrm{bad}\}, we set 𝒮?:=𝒱?\mathscr{S}_{\mathcal{F}}^{?}:=\mathscr{V}_{\mathcal{F}}^{?}. There is also a third partition of 𝒱\mathscr{V}_{\mathcal{F}}, introduced in Section 6.

Let L()L(\cdots) be a certain LL-function with Euler product expression L()=v𝒱Lv()L(\cdots)=\prod_{v\in\mathscr{V}_{\mathcal{F}}}L_{v}(\cdots). Then for any subset 𝒱\mathscr{V} of 𝒱\mathscr{V}_{\mathcal{F}}, we write

L𝒱():=v𝒱Lv() and L𝒱():=v𝒱𝒱Lv().L_{\mathscr{V}}(\cdots):=\prod_{v\in\mathscr{V}}L_{v}(\cdots)\quad\text{ and }\quad L^{\mathscr{V}}(\cdots):=\prod_{v\in\mathscr{V}_{\mathcal{F}}\smallsetminus\mathscr{V}}L_{v}(\cdots).
1.4.2. Characters and automorphic representations
  • By saying χ\chi a Hecke character of a number field \mathcal{M}, we mean automatically an algebraic Hecke character χ:×\𝔸××\chi:\mathcal{M}^{\times}\backslash\mathbb{A}^{\times}_{\mathcal{M}}\rightarrow\mathbb{C}^{\times}.

  • ϵ𝒦/:𝔸××\epsilon_{\mathcal{K}/\mathcal{F}}:\mathbb{A}^{\times}\rightarrow\mathbb{C}^{\times} is the quadratic character attached to the quadratic extension 𝒦/\mathcal{K}/\mathcal{F}. It decomposes into local quadratic characters ϵ𝒦w/v:v××\epsilon_{\mathcal{K}_{w}/\mathcal{F}_{v}}:\mathcal{F}_{v}^{\times}\rightarrow\mathbb{C}^{\times}.

  • For any Hecke character χ\chi of 𝒦\mathcal{K}, we write χ\chi^{\mathcal{F}} for its restriction to 𝔸×\mathbb{A}^{\times}. We write χ𝖼\chi^{\mathsf{c}} to be the conjugation of χ\chi on the source, defined as xχ(x𝖼)x\mapsto\chi(x^{\mathsf{c}}). We write χ¯\overline{\chi} as the conjugation of χ\chi on the target, defined as x(χ(x))𝖼x\mapsto(\chi(x))^{\mathsf{c}}.

By a unitary automorphic representation of U(m,n)\mathrm{U}(m,n) over \mathcal{F}, we realize it as a L2L^{2}-subspace of the space of automorphic forms over U(m,n)\mathrm{U}(m,n), with the inner product given by the L2L^{2} inner product. We denote the space of automorphic forms over U(m,n)\mathrm{U}(m,n) (resp. cuspidal automorphic forms) by 𝒜(U(m,n)()\U(m,n)(𝔸))\mathcal{A}(\mathrm{U}(m,n)(\mathcal{F})\backslash\mathrm{U}(m,n)(\mathbb{A})) (resp. 𝒜cusp(U(m,n)()\U(m,n)(𝔸))\mathcal{A}_{\mathrm{cusp}}(\mathrm{U}(m,n)(\mathcal{F})\backslash\mathrm{U}(m,n)(\mathbb{A}))).

1.4.3. General linear groups and operation on matrices

Let m,nm,n be positive integers. For any square matrix AA of size n×nn\times n, we put (whenever the operations makes sense)

  • AtA^{\mathrm{t}} as the transpose of AA, and AtA^{-\mathrm{t}} as the inverse of AtA^{\mathrm{t}},

  • A¯\overline{A} as the conjugation of AA, whenever the conjugation makes sense, and

  • A:=A¯tA^{\star}:=\overline{A}^{\mathrm{t}} and A:=(A)1A^{-\star}:=(A^{\star})^{-1}.

  • We write Hermn\mathrm{Herm}_{n} be the set of matrices in MnM_{n} such that A=AA^{\star}=A.

We write 𝟏n\mathbf{1}_{n} as the identity square matrix of size n×nn\times n. we put Mm,nM_{m,n} to be the set of matrices with mm rows and nn columns. We denote by

  • GLn\mathrm{GL}_{n} the general linear group of matrices of size n×nn\times n.

  • TnT_{n} the diagonal torus of GLn\mathrm{GL}_{n},

  • BnB_{n} the upper triangular matrices in GLn\mathrm{GL}_{n}, that is, the Borel subgroup of GLn\mathrm{GL}_{n}, BnB_{n}^{-} the lower triangular matrices in GLn\mathrm{GL}_{n},

  • UnU_{n} the strictly upper triangular matrices in GLn\mathrm{GL}_{n}, that is, upper triangular matrices with 11’s on the diagonal. It is the unipotent subgroup of BnB_{n} and Bn=TnUnB_{n}=T_{n}U_{n} is the Levi decomposition of BnB_{n}. In the same way we have Bn=TnUnB_{n}^{-}=T_{n}U_{n}^{-}.

  • More generally, let n=n1++nrn=n_{1}+\cdots+n_{r} be a partition of nn. We put P[n1,,nr]P[n_{1},\ldots,n_{r}] as the parabolic subgroup of GLn\mathrm{GL}_{n} with respect to this partition, that is,

    P[n1,,nr]=[GLn1GLn2GLnr].P[n_{1},\ldots,n_{r}]=\begin{bmatrix}\mathrm{GL}_{n_{1}}&\ast&\ast&\ast\\ &\mathrm{GL}_{n_{2}}&\ast&\ast\\ &&\ddots&\vdots\\ &&&\mathrm{GL}_{n_{r}}\end{bmatrix}.

    It has a Levi decomposition P[n1,,nr]=M[n1,,nr]U[n1,,nr]P[n_{1},\ldots,n_{r}]=M[n_{1},\ldots,n_{r}]U[n_{1},\ldots,n_{r}], where

    M[n1,,nr]=diag[GLn1,GLn2,,GLnr]M[n_{1},\ldots,n_{r}]=\operatorname{diag}[\mathrm{GL}_{n_{1}},\mathrm{GL}_{n_{2}},\ldots,\mathrm{GL}_{n_{r}}]

    is its Levi component and

    U[n1,,nr]=[𝟏n1𝟏n2𝟏nr]U[n_{1},\ldots,n_{r}]=\begin{bmatrix}\mathbf{1}_{n_{1}}&\ast&\ast&\ast\\ &\mathbf{1}_{n_{2}}&\ast&\ast\\ &&\ddots&\vdots\\ &&&\mathbf{1}_{n_{r}}\end{bmatrix}

    is its unipotent radical.

Given a square matrix of size n×nn\times n, we can group its entries into blocks by a partition of nn. We denote such a partition as n=[n1n2nr]n=[n_{1}\mid n_{2}\mid\cdots\mid n_{r}].

1.4.4. Measures and pairings

We fix a Haar measure dg\,\mathrm{d}g on the adèle group of a reductive group GG over \mathcal{F}. We take dg\,\mathrm{d}g to be the Tamagawa measure for definiteness. We write dg=v𝒱dgv\,\mathrm{d}g=\prod_{v\in\mathscr{V}_{\mathcal{F}}}\,\mathrm{d}g_{v}, with dgv\,\mathrm{d}g_{v} a Haar measure on G(v)G(\mathcal{F}_{v}), the v\mathcal{F}_{v}-points of GG, under the following hypothesis (following [EHLS20, Hypothesis 1.4.4]):

  • At all finite places vv of \mathcal{F} at which the group GG us unramified, dgv\,\mathrm{d}g_{v} is the measure that gives volume 11 to a hyperspecial maximal compact subgroup.

  • At all finite places vv at which G(v)G(\mathcal{F}_{v}) is isomorphic to iGLni(i,wi)\prod_{i}\mathrm{GL}_{n_{i}}(\mathcal{F}_{i,w_{i}}), where i,wi\mathcal{F}_{i,w_{i}} is a finite extension of v\mathcal{F}_{v} with integer 𝒪i\mathcal{O}_{i}, the measure dgv\,\mathrm{d}g_{v} is the measure that gives volume 11 to the group iGLni(𝒪i)\prod_{i}\mathrm{GL}_{n_{i}}(\mathcal{O}_{i}).

  • At all finite places vv of \mathcal{F}, the values of dgv\,\mathrm{d}g_{v} on open compact subgroups are rational numbers.

  • At archimedean places vv of \mathcal{F}, we choose measures such that v𝒱dgv\prod_{v\in\mathscr{V}_{\mathcal{F}}^{\infty}}\,\mathrm{d}g_{v} is Tamagawa measure.

For the reductive group GG over \mathcal{F}, we let [G][G] denote the quotient G(F)\G(𝔸)G(F)\backslash G(\mathbb{A}). Endowing G(𝔸)G(\mathbb{A}) with the Tamagawa measure, [G][G] is endowed with the quotient measure by the counting measure on G()G(\mathcal{F}). Give two automorphic forms Φ,Φ\Phi,\Phi^{\prime} over GG, we define their Petersson inner product by

Φ,ΦPet:=[G]Φ(g)Φ(g)dg.\left\langle{\Phi,\Phi^{\prime}}\right\rangle_{\mathrm{Pet}}:=\int_{[G]}\Phi(g)\Phi^{\prime}(g)\,\mathrm{d}g.

Let π\pi be an irreducible unitary cuspidal automorphic representation of GG. We denote π\pi^{\vee} be the contragredient representation of π\pi. Then the Petersson inner product is a canonically defined pairing π×π\pi\times\pi^{\vee}\rightarrow\mathbb{C}. We have factorizations

facπ:ππv,facπ:ππv,\mathrm{fac}_{\pi}:\pi\mathrel{\leavevmode\hbox to16.64pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 2.07999pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07999pt}{2.39998pt}\pgfsys@curveto{-1.69998pt}{0.95998pt}{-0.85318pt}{0.28pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85318pt}{-0.28pt}{-1.69998pt}{-0.95998pt}{-2.07999pt}{-2.39998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\otimes^{\prime}\pi_{v},\quad\mathrm{fac}_{\pi^{\vee}}:\pi^{\vee}\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\otimes^{\prime}\pi_{v}^{\vee},

where πv\pi_{v} is an irreducible representation of G(v)G(\mathcal{F}_{v}). We have non-degenerate canonical G(v)G(\mathcal{F}_{v})-pairings

,v:πv×πv\left\langle{-,-}\right\rangle_{v}:\pi_{v}\times\pi_{v}^{\vee}\rightarrow\mathbb{C}

for all vv. We renormalize the local pairings such that for facπ(Φ)=vΦv\mathrm{fac}_{\pi}(\Phi)=\otimes_{v}\Phi_{v} and facπ(Φ)=vΦv\mathrm{fac}_{\pi^{\vee}}(\Phi^{\vee})=\otimes_{v}\Phi_{v}^{\vee}, we have

Φ,ΦPet=v𝒱Φv,Φvv.\left\langle{\Phi,\Phi^{\vee}}\right\rangle_{\mathrm{Pet}}=\prod_{v\in\mathscr{V}_{\mathcal{F}}}\left\langle{\Phi_{v},\Phi_{v}^{\vee}}\right\rangle_{v}.

Acknowledgements

This article will be a crucial part of the the author’s doctoral thesis under the supervision of Professor Xin Wan. The author would like to express the most sincere gratitude to him for suggesting this interesting project and his patient and insightful guidance along the way. He also thanks Yangyu Fan, Zhibin Geng, Ming-Lun Hsieh, Haijun Jia, Shilin Lai, Haidong Li, Wen-Wei Li, Yifeng Liu, Loren Spice, Ye Tian and Luochen Zhao as well as many others for many insightful conversations. The author is partially supported by the grant No. E01O010201 of Professor Xin Wan.

Part I Automorphic Computations

In this part, we shall define and compute the Gan-Gross-Prasad period integral of Klingen Eisenstein series with a cuspidal automorphic form.

2. Backgrounds

In this section, we introduce backgrounds on automorphic computations, including unitary groups and Eisenstein series over them. We also recall backgrounds on doubling methods.

2.1. Unitary groups

Let 𝒦\mathcal{K} be a quadratic imaginary extension of a totally real number field \mathcal{F}. Let VV be an NN-dimensional vector space VV over 𝒦\mathcal{K}. Let ϕ:V×V𝒦\phi:V\times V\rightarrow\mathcal{K} be a non-degenerate skew-Hermitian form on VV. Note that we can linearly extend ϕ\phi to any \mathcal{F}-algebra RR and the RR-module VRV\otimes_{\mathcal{F}}R.

Definition 2.1.

The general unitary group attached to (V,ϕ)(V,\phi) is the algebraic group GU(V,ϕ){\mathrm{GU}}(V,\phi) over \mathcal{F}, whose RR-points, for each \mathcal{F}-algebra RR, are given by

GU(V,ϕ)(R):={gAut𝒦R(VR):ϕ(gv,gw)=ν(g)ϕ(v,w),v,wVR,ν(g)R}.{\mathrm{GU}}(V,\phi)(R):=\{g\in\operatorname{Aut}_{\mathcal{K}\otimes_{\mathcal{F}}R}(V\otimes_{\mathcal{F}}R):\phi(gv,gw)=\nu(g)\phi(v,w),\,v,w\in V\otimes_{\mathcal{F}}R,\nu(g)\in R\}.

The unitary group attached to (V,ϕ)(V,\phi) is defined as the algebraic group U(V,ϕ)\mathrm{U}(V,\phi) over \mathcal{F}, whose RR-points, for each \mathcal{F}-algebra RR, are given by

U(V,ϕ)(R):={gAut𝒦R(VR):ϕ(gv,gw)=ϕ(v,w),v,wVR}.\mathrm{U}(V,\phi)(R):=\{g\in\operatorname{Aut}_{\mathcal{K}\otimes_{\mathcal{F}}R}(V\otimes_{\mathcal{F}}R):\phi(gv,gw)=\phi(v,w),\,v,w\in V\otimes_{\mathcal{F}}R\}.

In Part I, we only deal with unitary groups, not general unitary groups, see Remark 8.1.

Let 𝙱\mathtt{B} be an ordered 𝒦\mathcal{K}-basis of VV, then ϕ\phi can be expressed as a matrix [ϕ]𝙱[\phi]_{\mathtt{B}} under this basis and the unitary group U(V,ϕ)\mathrm{U}(V,\phi) can be identified with the matrix group

U(V,ϕ,𝙱):={gGLN(𝒦R):g[ϕ]𝙱g=[ϕ]𝙱}.\mathrm{U}(V,\phi,\mathtt{B}):=\{g\in\mathrm{GL}_{N}(\mathcal{K}\otimes_{\mathcal{F}}R):g[\phi]_{\mathtt{B}}g^{\star}=[\phi]_{\mathtt{B}}\}.

Let nn be the maximum dimension of totally ϕ\phi-isotropic subspaces of VV and write m=Nnm=N-n. By [Shi97, Lemma 1.5, Lemma 1.6], we can find an ordered 𝒦\mathcal{K}-basis of VV, that is,

𝚆𝚒𝚝𝚝m,n:𝚢1,,𝚢n,𝚠1,,𝚠mn,𝚡1,,𝚡n\mathtt{Witt}_{m,n}:\mathtt{y}^{1},\ldots,\mathtt{y}^{n},\mathtt{w}^{1},\ldots,\mathtt{w}^{m-n},\mathtt{x}^{1},\ldots,\mathtt{x}^{n} (2.1)

called Witt basis, under which ϕ\phi has a matrix representation as

Jm,n:=[ϕ]𝚆𝚒𝚝𝚝m,n:=[𝟏nϑ𝟏n].J_{m,n}:=[\phi]_{\mathtt{Witt}_{m,n}}:=\begin{bmatrix}&&\mathbf{1}_{n}\\ &\vartheta&\\ -\mathbf{1}_{n}&&\end{bmatrix}.

Throughout this article, we fix such a basis of VV (and hence the matrix ϑ\vartheta) and denote U(V,ϕ,𝚆𝚒𝚝𝚝m,n)\mathrm{U}(V,\phi,\mathtt{Witt}_{m,n}) as U(m,n)\mathrm{U}(m,n) for simplicity, though it surely depends on ϑ\vartheta, not only on mm and nn.

2.1.1. Unitary groups at local places

Let vv be any place of \mathcal{F}.

  • Let vv be an archimedean place of \mathcal{F}, which gives a real embedding ιv:\iota_{v}:\mathcal{F}\hookrightarrow\mathbb{R}. We further require ϑ\vartheta is a (mn)×(mn)(m-n)\times(m-n) diagonal matrix such that

    ιv(𝗂1ϑ) is positive definite for all v𝒱.\iota_{v}(\mathsf{i}^{-1}\vartheta)\text{ is positive definite for all }v\in\mathscr{V}_{\mathcal{F}}^{\infty}. (sgn)

    This implies that U(m,n)(v)\mathrm{U}(m,n)(\mathcal{F}_{v}) is isomorphic to the real Lie group

    Um,n:={gGLm+n():gg=[𝟏m𝟏n]}\mathrm{U}_{m,n}:=\left\{g\in\mathrm{GL}_{m+n}(\mathbb{C}):g^{\star}g=\begin{bmatrix}\mathbf{1}_{m}&\\ &-\mathbf{1}_{n}\end{bmatrix}\right\}

    for any archimedean place vv of \mathcal{F}.

  • Let vv be a finite place of FF such that vv splits as v=ww¯v=w\overline{w} in 𝒦\mathcal{K}. Then 𝒦vv×v\mathcal{K}\otimes\mathcal{F}_{v}\cong\mathcal{F}_{v}\times\mathcal{F}_{v} induces an isomorphism ϱv,N:GLN(𝒦v)GLN(v)×GLN(v)\varrho_{v,N}:\mathrm{GL}_{N}(\mathcal{K}\otimes\mathcal{F}_{v})\cong\mathrm{GL}_{N}(\mathcal{F}_{v})\times\mathrm{GL}_{N}(\mathcal{F}_{v}). Moreover, if gg maps to (g1,g2)(g_{1},g_{2}) via ϱv,N\varrho_{v,N}, then g¯\overline{g} is sent to (g2,g1)(g_{2},g_{1}). Hence

    U(m,n)(v){(g1,g2)GLN(v)×GLN(v):g2=Jm,ntg11Jm,n1}.\mathrm{U}(m,n)(\mathcal{F}_{v})\cong\{(g_{1},g_{2})\in\mathrm{GL}_{N}(\mathcal{F}_{v})\times\mathrm{GL}_{N}(\mathcal{F}_{v}):g_{2}=J_{m,n}^{\mathrm{t}}g_{1}^{-1}J_{m,n}^{-1}\}.

    which is isomorphic to GLN(v)\mathrm{GL}_{N}(\mathcal{F}_{v}) by projecting to the first factor. This involves a choice of place ww of 𝒦\mathcal{K} above vv. We denote the isomorphism by ϱw,m,n\varrho_{w,m,n}.

  • Let vv be a finite nonsplit place of \mathcal{F}. Naturally, the 𝒦\mathcal{K}-vector space extends to a 𝒦v\mathcal{K}_{v}-vector space VvV_{v} over 𝒦v\mathcal{K}_{v} and so does the skew-Hermitian form extended to ϕv\phi_{v}. Then by [Shi97, page 76], there is a local basis 𝚆𝚒𝚝𝚝v\mathtt{Witt}_{v} such that

    [ϕv]𝚆𝚒𝚝𝚝v=[𝟏nvϑv𝟏nv][\phi_{v}]_{\mathtt{Witt}_{v}}=\begin{bmatrix}&&\mathbf{1}_{n_{v}}\\ &\vartheta_{v}&\\ -\mathbf{1}_{n_{v}}\end{bmatrix}

    where ϑv\vartheta_{v} is an anisotropic square matrix of size rv×rvr_{v}\times r_{v}, with rv=1r_{v}=1 when NN is odd and rv=0r_{v}=0 or 22 when NN is even. The group U(m,n)(v)\mathrm{U}(m,n)(\mathcal{F}_{v}) is quasi-split if and only if rv1r_{v}\leq 1. We assume

    rv1 for all finite nonsplit place v of ,r_{v}\leq 1\text{ for all finite nonsplit place }v\text{ of }\mathcal{F}, (QS)

    so that we will not bother dealing with the places where U(m,n)\mathrm{U}(m,n) is not quasi-split.

2.1.2. Hermitian basis

It is sometimes easier to use another basis. One checks immediately that 𝗂ϕ\mathsf{i}\phi is an Hermitian form on VV, so there exists an ordered 𝒦\mathcal{K}-basis

𝙷𝚎𝚛𝚖m,n:𝚊1,,𝚊m,𝚋1,,𝚋n\mathtt{Herm}_{m,n}:\mathtt{a}^{1},\ldots,\mathtt{a}^{m},\mathtt{b}^{1},\ldots,\mathtt{b}^{n}

of VV such that 𝗂ϕ\mathsf{i}\phi has a matrix representation as [𝗂ϕ]𝙷𝚎𝚛𝚖m,n:=[𝟏m00𝟏n][\mathsf{i}\phi]_{\mathtt{Herm}_{m,n}}:=\begin{bmatrix}\mathbf{1}_{m}&0\\ 0&-\mathbf{1}_{n}\end{bmatrix}. Then under this basis, our original skew-Hermitian form can be written as [ϕ]𝙷𝚎𝚛𝚖m,n:=[𝗂𝟏m00𝗂𝟏n][\phi]_{\mathtt{Herm}_{m,n}}:=\begin{bmatrix}-\mathsf{i}\cdot\mathbf{1}_{m}&0\\ 0&\mathsf{i}\cdot\mathbf{1}_{n}\end{bmatrix}. In fact, we can make explicit the transition between the Hermitian basis and Witt basis. Let ϑ0\vartheta_{0} be such that ϑ=ϑ0ϑ0\vartheta=\vartheta_{0}\vartheta_{0}^{\star}. Then one checks immediately that

[𝚢1,,𝚢n,𝚠1,,𝚠mn,𝚡1,,𝚡n]=[𝚊1,,𝚊m,𝚋1,,𝚋n][12𝟏n𝗂𝟏nϑ012𝟏n𝗂𝟏n].[\mathtt{y}^{1},\ldots,\mathtt{y}^{n},\mathtt{w}^{1},\ldots,\mathtt{w}^{m-n},\mathtt{x}^{1},\ldots,\mathtt{x}^{n}]=[\mathtt{a}^{1},\ldots,\mathtt{a}^{m},\mathtt{b}^{1},\ldots,\mathtt{b}^{n}]\begin{bmatrix}\frac{1}{2}\cdot\mathbf{1}_{n}&&-\mathsf{i}\cdot\mathbf{1}_{n}\\ &\vartheta_{0}&\\ \frac{1}{2}\cdot\mathbf{1}_{n}&&\mathsf{i}\cdot\mathbf{1}_{n}\end{bmatrix}.

Denote the matrix on the right hand side by ϱm,n,ϑ0\varrho_{m,n,\vartheta_{0}}, then it gives an isomorphism of unitary groups

ϱm,n,ϑ0:U(V,ϕ,𝚆𝚒𝚝𝚝m,n)U(V,ϕ,𝙷𝚎𝚛𝚖m,n),hϱm,n,ϑ0hϱm,n,ϑ01.\varrho_{m,n,\vartheta_{0}}:\mathrm{U}(V,\phi,\mathtt{Witt}_{m,n})\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{U}(V,\phi,\mathtt{Herm}_{m,n}),\quad h\mapsto\varrho_{m,n,\vartheta_{0}}h\varrho_{m,n,\vartheta_{0}}^{-1}.

When m=nm=n, the matrix ϑ0\vartheta_{0} disappears and we omit it from the notation.

2.1.3. The \sharp-space

Starting from the vector space VV under the basis 𝙷𝚎𝚛𝚖m,n\mathtt{Herm}_{m,n}, we consider the 𝒦\mathcal{K}-vector space

V:=𝒦𝚎𝒦𝚊1𝒦𝚊m𝒦𝚋1𝒦𝚋n,V^{\sharp}:=\mathcal{K}\mathtt{e}\oplus\mathcal{K}\mathtt{a}^{1}\oplus\cdots\mathcal{K}\mathtt{a}^{m}\oplus\mathcal{K}\mathtt{b}^{1}\oplus\cdots\mathcal{K}\mathtt{b}^{n},

with the ordered 𝒦\mathcal{K}-basis 𝙷𝚎𝚛𝚖\mathtt{Herm}^{\sharp} listed as above. The space VV is equipped with a skew-Hermitian form ϕ\phi^{\sharp} such that [𝗂ϕ]𝙷𝚎𝚛𝚖=diag[1,𝟏m,𝟏n][\mathsf{i}\phi^{\sharp}]_{\mathtt{Herm}^{\sharp}}=\operatorname{diag}[1,\mathbf{1}_{m},-\mathbf{1}_{n}]. Accordingly, we have the embedding of unitary groups

ȷ:U(V,ϕ,𝙷𝚎𝚛𝚖m,n)U(V,ϕ,𝙷𝚎𝚛𝚖),hdiag[1,h].\jmath^{\sharp}:\mathrm{U}(V,\phi,\mathtt{Herm}_{m,n})\hookrightarrow\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp}),\quad h\mapsto\operatorname{diag}[1,h].

We go back to the Witt basis 𝚆𝚒𝚝𝚝\mathtt{Witt}^{\sharp} by the transition matrix ϱm+1,n,ϑ0\varrho_{m+1,n,\vartheta_{0}^{\sharp}} where ϑ0:=diag[1,ϑ0]\vartheta_{0}^{\sharp}:=\operatorname{diag}[1,\vartheta_{0}]. The corresponding embedding ȷ\jmath^{\sharp} with respect to the Witt basis 𝚆𝚒𝚝𝚝\mathtt{Witt}^{\sharp} is defined such that the diagram

U(V,ϕ,𝙷𝚎𝚛𝚖m,n){{\mathrm{U}(V,\phi,\mathtt{Herm}_{m,n})}}U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp})}}U(V,ϕ,𝚆𝚒𝚝𝚝m,n){{\mathrm{U}(V,\phi,\mathtt{Witt}_{m,n})}}U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V,\phi,\mathtt{Witt}^{\sharp})}}ȷ\scriptstyle{\jmath^{\sharp}}ϱm,n,ϑ0\scriptstyle{\varrho_{m,n,\vartheta_{0}}}ϱm+1,n,ϑ0\scriptstyle{\varrho_{m+1,n,\vartheta_{0}^{\sharp}}}ȷ\scriptstyle{\jmath^{\sharp}}

commutes.

2.1.4. The \heartsuit-space

Next we consider adding another line to VV^{\sharp}. Starting from the 𝒦\mathcal{K}-ordered basis 𝙷𝚎𝚛𝚖\mathtt{Herm}^{\sharp}, we consider the 𝒦\mathcal{K}-vector space

V:=𝒦𝚎𝒦𝚊1𝒦𝚊m𝒦𝚋1𝒦𝚋n𝒦𝚏.V^{\heartsuit}:=\mathcal{K}\mathtt{e}\oplus\mathcal{K}\mathtt{a}^{1}\oplus\cdots\mathcal{K}\mathtt{a}^{m}\oplus\mathcal{K}\mathtt{b}^{1}\oplus\cdots\mathcal{K}\mathtt{b}^{n}\oplus\mathcal{K}\mathtt{f}.

with the ordered 𝒦\mathcal{K}-basis 𝙷𝚎𝚛𝚖\mathtt{Herm}^{\heartsuit} listed as above. The space VV^{\heartsuit} is equipped with a skew-Hermitian form ϕ\phi^{\heartsuit} such that [𝗂ϕ]𝙷𝚎𝚛𝚖=diag[1,𝟏m,𝟏n,1][\mathsf{i}\phi^{\heartsuit}]_{\mathtt{Herm}^{\heartsuit}}=\operatorname{diag}[1,\mathbf{1}_{m},-\mathbf{1}_{n},-1]. Accordingly, we have the embedding of unitary groups

ȷ:U(V,ϕ,𝙷𝚎𝚛𝚖)U(V,ϕ,Herm),gdiag[g,1].\jmath^{\flat}:\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp})\hookrightarrow\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathrm{Herm}^{\heartsuit}),\quad g\mapsto\operatorname{diag}[g,1].

We go back to the Witt basis by the transition matrix ϱm+1,n+1,ϑ0\varrho_{m+1,n+1,\vartheta_{0}}. Then corresponding ȷ\jmath^{\flat} with respect to the Witt basis 𝚆𝚒𝚝𝚝\mathtt{Witt}^{\heartsuit} is defined such that the diagram

U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp})}}U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathtt{Herm}^{\heartsuit})}}U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Witt}^{\sharp})}}U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathtt{Witt}^{\heartsuit})}}ȷ\scriptstyle{\jmath^{\flat}}ϱm+1,n,ϑ0\scriptstyle{\varrho_{m+1,n,\vartheta_{0}^{\sharp}}}ϱm+1,n+1,ϑ\scriptstyle{\varrho_{m+1,n+1,\vartheta}}ȷ\scriptstyle{\jmath^{\flat}}

commutes.

To conclude, we have successive embeddings of unitary groups

U(m,n)ȷU(m+1,n)ȷU(m+1,n+1).\mathrm{U}(m,n)\mathrel{\leavevmode\hbox to10.36pt{\vbox to17.5pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{9.29448pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.49448pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.84723pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{4.89409pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\jmath^{\sharp}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{U}(m+1,n)\mathrel{\leavevmode\hbox to10.36pt{\vbox to17.61pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{9.29448pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.49448pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.84723pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{4.89409pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\jmath^{\flat}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{U}(m+1,n+1).
2.1.5. Doubling space

Let VV^{\blacklozenge} be the direct sum VVV^{\heartsuit}\oplus V with ordered 𝒦\mathcal{K}-basis

𝙷𝚎𝚛𝚖,:𝚎,𝚊1,,𝚊m,𝚋1,,𝚋n,𝚏,𝚊¯1,,𝚊¯m,𝚋¯1,,𝚋¯n\mathtt{Herm}^{\blacklozenge,\oplus}:\mathtt{e},\mathtt{a}^{1},\ldots,\mathtt{a}^{m},\mathtt{b}^{1},\ldots,\mathtt{b}^{n},\mathtt{f},\bar{\mathtt{a}}^{1},\ldots,\bar{\mathtt{a}}^{m},\bar{\mathtt{b}}^{1},\ldots,\bar{\mathtt{b}}^{n}

by directly putting the Hermitian basis 𝙷𝚎𝚛𝚖\mathtt{Herm}^{\heartsuit} of VV^{\heartsuit} and the Hermitian basis 𝙷𝚎𝚛𝚖m,n\mathtt{Herm}_{m,n} of VV together (where we add “bars” at the basis element of VV to distinguish). We equip it with the skew-Hermitian form ϕ\phi^{\blacklozenge} such that

[𝗂ϕ]𝙷𝚎𝚛𝚖,:=diag[[𝗂ϕ]𝙷𝚎𝚛𝚖,[𝗂ϕ]𝙷𝚎𝚛𝚖]=diag[1,𝟏m,𝟏n,1,𝟏m,𝟏n].[\mathsf{i}\phi^{\blacklozenge}]_{\mathtt{Herm}^{\blacklozenge,\oplus}}:=\operatorname{diag}[[\mathsf{i}\phi^{\heartsuit}]_{\mathtt{Herm}^{\heartsuit}},-[\mathsf{i}\phi]_{\mathtt{Herm}}]=\operatorname{diag}[1,\mathbf{1}_{m},-\mathbf{1}_{n},-1,-\mathbf{1}_{m},\mathbf{1}_{n}].

Accordingly, we have the embedding of unitary groups

ι:U(V,ϕ,𝙷𝚎𝚛𝚖)×U(V,ϕ,𝙷𝚎𝚛𝚖m,n)U(V,ϕ,𝙷𝚎𝚛𝚖,),(g,h)diag[g,h].\iota^{\heartsuit}:\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathtt{Herm}^{\heartsuit})\times\mathrm{U}(V,-\phi,\mathtt{Herm}_{m,n})\hookrightarrow\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge,\oplus}),\quad(g,h)\mapsto\operatorname{diag}[g,h].

Moreover, we have another embedding of unitary groups 444The two embeddings come from two viewpoints on the “direct sum” ϕ\phi^{\blacklozenge}: diag[diag[1,𝟏m,𝟏n,1],diag[𝟏m,𝟏n]]=diag[diag[1,𝟏m,𝟏n],diag[1,𝟏m,𝟏n]].\operatorname{diag}[\operatorname{diag}[1,\mathbf{1}_{m},-\mathbf{1}_{n},-1],\operatorname{diag}[-\mathbf{1}_{m},\mathbf{1}_{n}]]=\operatorname{diag}[\operatorname{diag}[1,\mathbf{1}_{m},-\mathbf{1}_{n}],\operatorname{diag}[-1,-\mathbf{1}_{m},\mathbf{1}_{n}]]. The left hand side partition gives the embedding ι\iota^{\heartsuit} and the right hand side one gives the embedding ι\iota^{\diamondsuit}.

ι:U(V,ϕ,𝙷𝚎𝚛𝚖)×U(V,ϕ,𝙷𝚎𝚛𝚖)U(V,ϕ,𝙷𝚎𝚛𝚖,),(g1,g2)diag[g1,g2].\iota^{\diamondsuit}:\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp})\times\mathrm{U}(V^{\sharp},-\phi^{\sharp},\mathtt{Herm}^{\sharp})\hookrightarrow\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge,\oplus}),\quad(g_{1},g_{2})\mapsto\operatorname{diag}[g_{1},g_{2}].

By the definition of above embedding of unitary groups, we see immediately that

ı(ȷ(g),h)=ı(g,ȷ(h))\imath^{\heartsuit}(\jmath^{\flat}(g),h)=\imath^{\diamondsuit}(g,\jmath^{\sharp}(h)) (2.2)

for any hU(V,ϕ,𝙷𝚎𝚛𝚖m,n)h\in\mathrm{U}(V,\phi,\mathtt{Herm}_{m,n}) and gU(V,ϕ,𝙷𝚎𝚛𝚖)g\in\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp}).

We rearrange the order of the basis to make the corresponding metric in the standard Hermitian form, by

𝙷𝚎𝚛𝚖:𝚎,𝚊1,,𝚊m,𝚋¯1,,𝚋¯n,𝚏,𝚊¯1,,𝚊¯m,𝚋1,,𝚋n.\mathtt{Herm}^{\blacklozenge}:\mathtt{e},\mathtt{a}^{1},\ldots,\mathtt{a}^{m},\bar{\mathtt{b}}^{1},\ldots,\bar{\mathtt{b}}^{n},\mathtt{f},\bar{\mathtt{a}}^{1},\ldots,\bar{\mathtt{a}}^{m},\mathtt{b}^{1},\ldots,\mathtt{b}^{n}.

Then under this basis,

[ϕ]𝙷𝚎𝚛𝚖:=ςdiag[ψ,ϕ](ς)1=diag[1,𝟏m,𝟏n,1,𝟏m,𝟏n],[\phi^{\blacklozenge}]_{\mathtt{Herm}^{\blacklozenge}}:=\varsigma^{\blacklozenge}\operatorname{diag}[\psi,-\phi](\varsigma^{\blacklozenge})^{-1}=\operatorname{diag}[1,\mathbf{1}_{m},\mathbf{1}_{n},-1,-\mathbf{1}_{m},-\mathbf{1}_{n}],

where

ς=[𝟏1+m𝟏n𝟏1+m𝟏n].\varsigma^{\blacklozenge}=\begin{bmatrix}\mathbf{1}_{1+m}&&&\\ &&&\mathbf{1}_{n}\\ &&\mathbf{1}_{1+m}&\\ &\mathbf{1}_{n}&&\end{bmatrix}.

This gives an isomorphism of unitary groups

ς:U(V,ϕ,𝙷𝚎𝚛𝚖)U(V,ϕ,𝙷𝚎𝚛𝚖,),gςg(ς)1.\varsigma^{\blacklozenge}:\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge})\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge,\oplus}),\quad g\mapsto\varsigma^{\blacklozenge}g(\varsigma^{\blacklozenge})^{-1}.

And we further go back to the Witt basis by ϱm+n+1,m+n+1\varrho_{m+n+1,m+n+1}. The embeddings ι\iota^{\heartsuit} and ι\iota^{\diamondsuit} are defined to make the diagrams

U(V,ϕ,𝙷𝚎𝚛𝚖)×U(V,ϕ,𝙷𝚎𝚛𝚖m,n){{\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathtt{Herm}^{\heartsuit})\times\mathrm{U}(V,-\phi,\mathtt{Herm}_{m,n})}}U(V,ϕ,𝙷𝚎𝚛𝚖,){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge,\oplus})}}U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge})}}U(V,ϕ,𝚆𝚒𝚝𝚝)×U(V,ϕ,𝚆𝚒𝚝𝚝m,n){{\mathrm{U}(V^{\heartsuit},\phi^{\heartsuit},\mathtt{Witt}^{\heartsuit})\times\mathrm{U}(V,-\phi,\mathtt{Witt}_{m,n})}}U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Witt}^{\blacklozenge})}}ι\scriptstyle{\iota^{\heartsuit}}ϱm+1,n+1,ϑ0×ϱm,n,ϑ0\scriptstyle{\varrho_{m+1,n+1,\vartheta_{0}}\times\varrho_{m,n,\vartheta_{0}}}ς\scriptstyle{\varsigma^{\blacklozenge}}ϱm+n+1,m+n+1\scriptstyle{\varrho_{m+n+1,m+n+1}}ι\scriptstyle{\iota^{\heartsuit}}

and

U(V,ϕ,𝙷𝚎𝚛𝚖)×U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Herm}^{\sharp})\times\mathrm{U}(V^{\sharp},-\phi^{\sharp},\mathtt{Herm}^{\sharp})}}U(V,ϕ,𝙷𝚎𝚛𝚖,){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge,\oplus})}}U(V,ϕ,𝙷𝚎𝚛𝚖){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Herm}^{\blacklozenge})}}U(V,ϕ,𝚆𝚒𝚝𝚝)×U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V^{\sharp},\phi^{\sharp},\mathtt{Witt}^{\sharp})\times\mathrm{U}(V^{\sharp},-\phi^{\sharp},\mathtt{Witt}^{\sharp})}}U(V,ϕ,𝚆𝚒𝚝𝚝){{\mathrm{U}(V^{\blacklozenge},\phi^{\blacklozenge},\mathtt{Witt}^{\blacklozenge})}}ι\scriptstyle{\iota^{\diamondsuit}}ϱm+1,n,ϑ0×ϱm+1,n,ϑ0\scriptstyle{\varrho_{m+1,n,\vartheta_{0}^{\sharp}}\times\varrho_{m+1,n,\vartheta_{0}^{\sharp}}}ς\scriptstyle{\varsigma^{\blacklozenge}}ϱm+n+1,m+n+1\scriptstyle{\varrho_{m+n+1,m+n+1}}ι\scriptstyle{\iota^{\diamondsuit}}

commute. Then it follows that Equation (2.2) holds for the embeddings under Witt basis. To sum up, we have two embeddings of unitary groups

ι\displaystyle\iota^{\heartsuit} :U(m+1,n+1)×U(m,n)U(m+n+1,m+n+1),\displaystyle:\mathrm{U}(m+1,n+1)\times\mathrm{U}(m,n)\rightarrow\mathrm{U}(m+n+1,m+n+1),
ι\displaystyle\iota^{\diamondsuit} :U(m+1,n)×U(m+1,n)U(m+n+1,m+n+1).\displaystyle:\mathrm{U}(m+1,n)\times\mathrm{U}(m+1,n)\rightarrow\mathrm{U}(m+n+1,m+n+1).

To ease the notation, we put

H:=U(m,n),G:=U(m+1,n),G:=U(m+1,n),G:=U(m+n+1,m+n+1)H:=\mathrm{U}(m,n),\quad G:=\mathrm{U}(m+1,n),\quad G^{\heartsuit}:=\mathrm{U}(m+1,n),\quad G^{\blacklozenge}:=\mathrm{U}(m+n+1,m+n+1)

and 𝐆=H×G\mathbf{G}=H\times G throughout the rest of the article.

2.2. Eisenstein series on unitary groups

In this section, we define Klingen Eisenstein series and Siegel Eisenstein series over unitary groups.

2.2.1. Klingen Eisenstein series

We first define the Klingen parabolic subgroup PP of GG^{\heartsuit} as the algebraic group PP over \mathcal{F} such that

P(R)={g=[abcxdefhlkx]G(R):g0:=[abcdefhlk]G(R),x𝒦R}.P(R)=\left\{g=\begin{bmatrix}a&&b&c&\ast\\ \ast&x^{-\star}&\ast&\ast&\ast\\ d&&e&f&\ast\\ h&&l&k&\ast\\ &&&&x\end{bmatrix}\in G^{\heartsuit}(R):g_{0}:=\begin{bmatrix}a&b&c\\ d&e&f\\ h&l&k\end{bmatrix}\in G(R),x\in\mathcal{K}\otimes_{\mathcal{F}}R\right\}.

for any \mathcal{F}-algebra RR. Here the block matrix is written with respect to the partition [n1mnn1][n\mid 1\mid m-n\mid n\mid 1]. Then it has a Levi decomposition P=MNP=MN, where MM is the Levi subgroup given by

M(R)={𝐦(g0,x):=[abcxdefhlkx]P(R)}G(R)×Res𝒦/𝔾m(R)M(R)=\left\{\mathbf{m}(g_{0},x):=\begin{bmatrix}a&&b&c&\\ &x^{-\star}&&&\\ d&&e&f&\\ h&&l&k&\\ &&&&x\end{bmatrix}\in P(R)\right\}\mathrel{\leavevmode\hbox to14.89pt{\vbox to16.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-6.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.4pt}{0.0pt}\pgfsys@lineto{14.22218pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.2pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}G(R)\times\operatorname{Res}_{\mathcal{K}/\mathcal{F}}\mathbb{G}_{\mathrm{m}}(R)

with the obvious isomorphism given by 𝐦(,)\mathbf{m}(-,-).

To construct an Eisenstein series on GG^{\heartsuit} with respect to the Klingen parabolic subgroup PP, we start with the following input data.

  • Let (σ,Vσ)(\sigma,V_{\sigma}) be an irreducible tempered unitary cuspidal automorphic representation of HH over \mathcal{F}, with its archimedean part σ\sigma_{\infty} being a holomorphic discrete series representation. We identify VσV_{\sigma} as a subspace of the space of cuspidal automorphic forms 𝒜cusp(H()\H(𝔸))\mathcal{A}_{\mathrm{cusp}}(H(\mathcal{F})\backslash H(\mathbb{A}))

  • Let χ:𝕂××\chi:\mathbb{K}^{\times}\rightarrow\mathbb{C}^{\times} be a unitary Hecke character. So clearly χ¯=χ1\overline{\chi}=\chi^{-1}. We then regard it as an automorphic form over the reductive group Res𝒦(𝔾m)\operatorname{Res}_{\mathcal{F}}^{\mathcal{K}}(\mathbb{G}_{\mathrm{m}}).

  • Let ss be any complex number.

Then σχ\sigma\boxtimes\chi gives an automorphic representation of M(𝔸)M(\mathbb{A}) under the identification 𝐦\mathbf{m}, and we extend it trivially to P(𝔸)P(\mathbb{A}) by the Levi decomposition. Then we consider the induced representation 555Henceforth, by writing IndP(𝔸)G(𝔸)\operatorname{Ind}_{P(\mathbb{A})}^{G^{\heartsuit}(\mathbb{A})}, we mean the unnormalized smooth parabolic induction. Yet here we have added δP12\delta_{P}^{\frac{1}{2}} to actually turning it into a normalized one.

IKling(σ,χ,s):=IndP(𝔸)G(𝔸)(δP12+sσχ).I^{\mathrm{Kling}}(\sigma,\chi,s):=\operatorname{Ind}_{P(\mathbb{A})}^{G^{\heartsuit}(\mathbb{A})}(\delta_{P}^{\frac{1}{2}+s}\cdot\sigma\boxtimes\chi).

More precisely, the representation space IKling(σ,χ,s)I^{\mathrm{Kling}}(\sigma,\chi,s) is the set of smooth functions fσ,χ,sKling:G(𝔸)Vσf_{\sigma,\chi,s}^{\mathrm{Kling}}:G^{\heartsuit}(\mathbb{A})\rightarrow V_{\sigma} such that

  1. (1)

    For any 𝐦(g0,x)M\mathbf{m}(g_{0},x)\in M, nNn\in N and gG(𝔸)g\in G^{\heartsuit}(\mathbb{A}),

    fσ,χ,sKling(𝐦(g0,x)ng)=δP(𝐦(g0,x))12+sχ(x)σ(g0)fσ,χ,sKling(g),f_{\sigma,\chi,s}^{\mathrm{Kling}}(\mathbf{m}(g_{0},x)ng)=\delta_{P}(\mathbf{m}(g_{0},x))^{\frac{1}{2}+s}\chi(x)\sigma(g_{0})f_{\sigma,\chi,s}^{\mathrm{Kling}}(g),
  2. (2)

    fσ,χ,sKlingf_{\sigma,\chi,s}^{\mathrm{Kling}} is right KK-finite, with KK some maximal open compact subgroup of G(𝔸)G^{\heartsuit}(\mathbb{A}) (which may depends on fσ,χ,sKlingf_{\sigma,\chi,s}^{\mathrm{Kling}}).

Elements in this representation space are called a Klingen Eisenstein sections with respect to the datum (σ,χ,s)(\sigma,\chi,s).

We have a natural evaluation map

evg:𝒜cusp(H()\H(𝔸)),ΦΦ(g)\mathrm{ev}_{g}:\mathcal{A}_{\mathrm{cusp}}(H(\mathcal{F})\backslash H(\mathbb{A}))\rightarrow\mathbb{C},\quad\Phi\mapsto\Phi(g)

for any gH(𝔸)g\in H(\mathbb{A}). By our assumption, VσV_{\sigma} lies in the space of cuspidal automorphic forms, so for every Klingen section fσ,χ,sKlingf_{\sigma,\chi,s}^{\mathrm{Kling}}, we attach it with a scalar-valued section fs,χ,σKling,g:=evg(fσ,χ,sKling)f_{s,\chi,\sigma}^{\mathrm{Kling},g}:=\mathrm{ev}_{g}(f_{\sigma,\chi,s}^{\mathrm{Kling}}). Then we define the Klingen Eisenstein series

EKling(fσ,χ,sKling,g):=γP()\G()fs,χ,σKling,1(γg).E^{\mathrm{Kling}}(f_{\sigma,\chi,s}^{\mathrm{Kling}},g):=\sum_{\gamma\in P(\mathcal{F})\backslash G^{\heartsuit}(\mathcal{F})}f_{s,\chi,\sigma}^{\mathrm{Kling},1}(\gamma g).

It is well-known that it converges absolutely and uniformly for (s,g)(s,g) in compact subsets of {s:Re(s)>(m+n+1)/2}×G(𝔸)\{s\in\mathbb{C}:\operatorname{Re}(s)>(m+n+1)/2\}\times G^{\heartsuit}(\mathbb{A}).

2.2.2. Siegel Eisenstein series

As we shall see shortly, Klingen Eisenstein series are often constructed by pullbacks of certain Siegel Eisenstein series on the larger quasi-split unitary groups GG^{\blacklozenge}. We define the Siegel parabolic subgroup QQ of GG^{\blacklozenge} as the algebraic group QQ over \mathcal{F} such that

Q(R)={g=[AgBg0Dg]GL2N+2(R𝒦):Dg=Ag,Ag1BgHermN+1(R𝒦)}Q(R)=\left\{g=\begin{bmatrix}A_{g}&B_{g}\\ 0&D_{g}\end{bmatrix}\in\mathrm{GL}_{2N+2}(R\otimes_{\mathcal{F}}\mathcal{K}):D_{g}=A_{g}^{-\star},A_{g}^{-1}B_{g}\in\mathrm{Herm}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K})\right\}

for any \mathcal{F}-algebra RR. Here the block matrix is written with respect to the partition [N+1N+1][N+1\mid N+1]. It has a Levi decomposition Q=MQNQQ=M_{Q}N_{Q} where

MQ(R)\displaystyle M_{Q}(R) :={[Ag00Ag]:AgGLN+1(R𝒦)}GLN+1(R𝒦),\displaystyle:=\left\{\begin{bmatrix}A_{g}&0\\ 0&A_{g}^{-\star}\end{bmatrix}:A_{g}\in\mathrm{GL}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K})\right\}\simeq\mathrm{GL}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K}),
NQ(R)\displaystyle N_{Q}(R) :={[𝟏N+1Xg0𝟏N+1]:XgHermN+1(R𝒦)}HermN+1(R𝒦).\displaystyle:=\left\{\begin{bmatrix}\mathbf{1}_{N+1}&X_{g}\\ 0&\mathbf{1}_{N+1}\end{bmatrix}:X_{g}\in\mathrm{Herm}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K})\right\}\simeq\mathrm{Herm}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K}).

Given any gQ(R)g\in Q(R), we can decompose it into

g=[AgBg0Dg]=[Ag00Ag][𝟏N+1Xg0𝟏N+1]g=\begin{bmatrix}A_{g}&B_{g}\\ 0&D_{g}\end{bmatrix}=\begin{bmatrix}A_{g}&0\\ 0&A_{g}^{-\star}\end{bmatrix}\begin{bmatrix}\mathbf{1}_{N+1}&X_{g}\\ 0&\mathbf{1}_{N+1}\end{bmatrix}

with AgGLN+1(R𝒦)A_{g}\in\mathrm{GL}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K}) and Xg=Ag1BgHermN+1(R𝒦)X_{g}=A_{g}^{-1}B_{g}\in\mathrm{Herm}_{N+1}(R\otimes_{\mathcal{F}}\mathcal{K}).

Then for any character χ\chi of (R𝒦)×(R\otimes_{\mathcal{F}}\mathcal{K})^{\times}, we regard it as a character on the Levi subgroup MQM_{Q} via

χ:[Ag00Ag]χ(detAg).\chi:\begin{bmatrix}A_{g}&0\\ 0&A_{g}^{-\star}\end{bmatrix}\mapsto\chi(\det A_{g}).

and extends trivially on NQN_{Q} to get a character of QQ.

Let vv be any place of \mathcal{F}. For any character χv:𝒦v××\chi_{v}:\mathcal{K}_{v}^{\times}\rightarrow\mathbb{C}^{\times} and ss\in\mathbb{C}, we define

IvSieg(χv,s):=IndQ(v)G(v)(δQ12+sχv)I^{\mathrm{Sieg}}_{v}(\chi_{v},s):=\operatorname{Ind}_{Q(\mathcal{F}_{v})}^{G(\mathcal{F}_{v})}(\delta_{Q}^{\frac{1}{2}+s}\cdot\chi_{v})

as the space consisting of smooth functions fs,χvSieg:G(v)f_{s,\chi_{v}}^{\mathrm{Sieg}}:G(\mathcal{F}_{v})\rightarrow\mathbb{C} such that

  1. (1)

    For any gQ(v)g\in Q(\mathcal{F}_{v}) and hG(v)h\in G(\mathcal{F}_{v}),

    fs,χvSieg([AgBg0Dg]h)=δQ(g)12+sχ(detAg)fs,χSieg(h)=|detAgDg1|vs+n2χ(detAg)fs,χSieg(h),f_{s,\chi_{v}}^{\mathrm{Sieg}}\left(\begin{bmatrix}A_{g}&B_{g}\\ 0&D_{g}\end{bmatrix}h\right)=\delta_{Q}(g)^{\frac{1}{2}+s}\chi(\det A_{g})f_{s,\chi}^{\mathrm{Sieg}}(h)=\left|{\det A_{g}D_{g}^{-1}}\right|_{v}^{s+\frac{n}{2}}\chi(\det A_{g})f_{s,\chi}^{\mathrm{Sieg}}(h),
  2. (2)

    fs,χvSiegf_{s,\chi_{v}}^{\mathrm{Sieg}} is right G(𝒪v)G^{\blacklozenge}(\mathcal{O}_{\mathcal{F}_{v}})-finite.

Such an element is called a Siegel Eisenstein section at vv with respect to the datum (χv,s)(\chi_{v},s). In particular, when vv is a finite place of FF and χv\chi_{v} is an unramified character, then we define the spherical Siegel Eisenstein section fs,χvsphIvSieg(χv,s)f^{\mathrm{sph}}_{s,\chi_{v}}\in I^{\mathrm{Sieg}}_{v}(\chi_{v},s) to be the one such that fs,χvsph(G(𝒪v))=1f^{\mathrm{sph}}_{s,\chi_{v}}(G^{\blacklozenge}(\mathcal{O}_{\mathcal{F}_{v}}))=1.

Let χ:𝕂××\chi:\mathbb{K}^{\times}\rightarrow\mathbb{C}^{\times} be a unitary Hecke character with the tensor product decomposition χ=v𝒮χv\chi=\otimes_{v\in\mathscr{S}_{\mathcal{F}}}^{\prime}\chi_{v}. Consider the restricted tensor product ISieg(χ,s)=vIvSieg(χv,s)I^{\mathrm{Sieg}}(\chi,s)=\otimes_{v}^{\prime}I^{\mathrm{Sieg}}_{v}(\chi_{v},s) with respect to the spherical Siegel sections fs,χvsphf^{\mathrm{sph}}_{s,\chi_{v}} at finite places vv where χv\chi_{v} is unramified. Let fχ,sSiegISieg(χ,s)f_{\chi,s}^{\mathrm{Sieg}}\in I^{\mathrm{Sieg}}(\chi,s), the Siegel Eisenstein series attached to fs,χSiegf_{s,\chi}^{\mathrm{Sieg}} is defined as

ESieg(fs,χSieg,g):=γQ()\G()fs,χSieg(γg).E^{\mathrm{Sieg}}(f_{s,\chi}^{\mathrm{Sieg}},g):=\sum_{\gamma\in Q(\mathcal{F})\backslash G(\mathcal{F})}f_{s,\chi}^{\mathrm{Sieg}}(\gamma g).

It is well-known that it converges absolutely and uniformly for (s,g)(s,g) in compact subsets of {s:Re(s)>(m+n+1)/2}×G(𝔸)\{s\in\mathbb{C}:\operatorname{Re}(s)>(m+n+1)/2\}\times G^{\blacklozenge}(\mathbb{A}).

Remark 2.2.

We note that the notion of Siegel Eisenstein sections here slightly differs from [SU14, Wan15]. As explained in [SU14, Remark on page 170], their representation χ\chi on the Levi subgroup MQM_{Q} is defined by

χ:[Dg00Dg]χ(detDg).\chi:\begin{bmatrix}D_{g}^{-\star}&0\\ 0&D_{g}\end{bmatrix}\mapsto\chi(\det D_{g}).

So the induced representation I(χ)I(\chi) in loc.cit is actually ISieg((χc)1,s)I^{\mathrm{Sieg}}((\chi^{\mathrm{c}})^{-1},s) in our setup. Their convention is convenience when dealing with the functional equations of Eisenstein series.

2.3. On multiplicity one conditions

Before we start conducting automorphic computations, we record a result on the multiplicity one theorem of automorphic representation of unitary groups. Let π\pi be an automorphic representation of a unitary group U(m,n)\mathrm{U}(m,n) over \mathcal{F}, and suppose that

the functorial base change BC(π) of π to GLm+n(𝒦) is a cuspidal automorphic representation. \text{the functorial base change }\mathrm{BC}(\pi)\text{ of }\pi\text{ to }\mathrm{GL}_{m+n}(\mathcal{K})\text{ is a cuspidal automorphic representation. } (BC)

Then π\pi appears in the space of cuspidal automorphic forms over U(m,n)\mathrm{U}(m,n) of multiplicity one, as a consequence of [Mok15, KMSW14]. As a result, up to a complex scalar, there exists a unique U(m,n)(𝔸)\mathrm{U}(m,n)(\mathbb{A})-invariant pairing between π\pi and π\pi^{\vee}. Throughout this article, we assume (BC) for all automorphic representations appearing in this article.

2.4. Doubling method, à la Piatetski-Shapiro and Rallis

Here we briefly recall the doubling method à la Piatetski-Shapiro and Rallis, first introduced in [GPR87].

Let (π,Vπ)(\pi,V_{\pi}) be an irreducible tempered unitary cuspidal automorphic representation of GG and (π,Vπ)(\pi^{\vee},V_{\pi^{\vee}}) be its contragredient representation. We thus identify VπV_{\pi} as a subspace 𝒜cusp(G()\G(𝔸))\mathcal{A}_{\mathrm{cusp}}(G(\mathcal{F})\backslash G(\mathbb{A})). We define the global doubling integral à la Piatetski-Shapiro and Rallis as

Z(fs,χSieg,Ψ,Ψ):=[G]ESieg(fs,χSieg,ı(g,h))Ψ(g)Ψ(h)χ1(deth)dgdh.Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee}):=\int_{[G^{\diamondsuit}]}E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi},\imath^{\diamondsuit}(g,h))\Psi(g)\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}g\,\mathrm{d}h.

where ΨVπ\Psi\in V_{\pi} and ΨVπ\Psi^{\vee}\in V_{\pi^{\vee}}. It converges at wherever the Eisenstein series is defined, by the cuspidality of Φ\Phi and Φ\Phi^{\vee}.

2.4.1. Basic identity of Piatetski-Shapiro and Rallis

We put GG^{\diamondsuit} as the image of G×GG\times G via the canonical doubling embedding ι:G×GG\iota^{\diamondsuit}:G\times G\hookrightarrow G^{\blacklozenge} and GΔG^{\Delta} as the image of the diagonal embedding GG×GG\rightarrow G\times G composited with ι\iota^{\diamondsuit}.

The following fundamental result is well-known, which appears in the proof of [GPR87, “Basic Identity” on page 3], but the character χ\chi was absent. For the readers’ convenience, we roughly sketch the proof here, reproduced from the proof of [Eis24, Theorem 4.3.4] in the setup of unitary groups.

Theorem 2.3 (Basic identity of Piatetski-Shapiro and Rallis).
Z(fs,χSieg,Ψ,Ψ)=GΔ()\(G)(𝔸)fs,χSieg(ı(g,h))Ψ(g)Ψ(h)χ1(deth)dgdh.Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee})=\int_{G^{\Delta}(\mathcal{F})\backslash(G^{\diamondsuit})(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h))\Psi(g)\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}g\,\mathrm{d}h.
Proof.

The theorem follows from an analysis of the orbits of GG^{\diamondsuit} acting on 𝒳:=Q\G\mathcal{X}:=Q\backslash G^{\blacklozenge} by multiplication on the right. We write (G)γ(G^{\diamondsuit})^{\gamma} as the stabilizer of a point γ𝒳\gamma\in\mathcal{X}. Then we can rewrite the Siegel Eisenstein series ESieg(fs,χSieg)E^{\mathrm{Sieg}}(f_{s,\chi}^{\mathrm{Sieg}}) by grouping the summands by the orbits, as

ESieg(fs,χSieg)(h)=[γ]Q()\G()/G()([γ0](G)γ\G()fs,χSieg(γγ0h)).E^{\mathrm{Sieg}}(f_{s,\chi}^{\mathrm{Sieg}})(h)=\sum_{[\gamma]\in Q(\mathcal{F})\backslash G^{\blacklozenge}(\mathcal{F})/G^{\diamondsuit}(\mathcal{F})}\left(\sum_{[\gamma_{0}]\in(G^{\diamondsuit})^{\gamma}\backslash G^{\diamondsuit}(\mathcal{F})}f_{s,\chi}^{\mathrm{Sieg}}(\gamma\gamma_{0}h)\right).

Here [γ][\gamma] denotes the orbit of Q()γ𝒳()Q(\mathcal{F})\gamma\in\mathcal{X}(\mathcal{F}) under the right action of G()G^{\diamondsuit}(\mathcal{F}). Inserting this expression into the doubling integral, we have Z(fs,χSieg,Ψ,Ψ)Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee}) equals

[γ]Q()\G()/G()([γ0](G)γ\G()[G]fs,χSieg(γγ0ı(g,h))Ψ(g)Ψ(h)χ1(deth)dgdh)\displaystyle\sum_{[\gamma]\in Q(\mathcal{F})\backslash G^{\blacklozenge}(\mathcal{F})/G^{\diamondsuit}(\mathcal{F})}\left(\sum_{[\gamma_{0}]\in(G^{\diamondsuit})^{\gamma}\backslash G^{\diamondsuit}(\mathcal{F})}\int_{[G^{\diamondsuit}]}f^{\mathrm{Sieg}}_{s,\chi}(\gamma\gamma_{0}\imath^{\diamondsuit}(g,h))\Psi(g)\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}g\,\mathrm{d}h\right)
=[γ]Q()\G()/G()((G)γ\G(𝔸)fs,χSieg(γγ0ı(g,h))Ψ(g)Ψ(h)χ1(deth)dgdh)\displaystyle=\sum_{[\gamma]\in Q(\mathcal{F})\backslash G^{\blacklozenge}(\mathcal{F})/G^{\diamondsuit}(\mathcal{F})}\left(\int_{(G^{\diamondsuit})^{\gamma}\backslash G^{\diamondsuit}(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\gamma\gamma_{0}\imath^{\diamondsuit}(g,h))\Psi(g)\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}g\,\mathrm{d}h\right)

Temporarily denote the integral in the summand as I(γ)I(\gamma). Note that for each γG()\gamma\in G^{\blacklozenge}(\mathcal{F}),

(G)γ()\displaystyle(G^{\diamondsuit})^{\gamma}(\mathcal{F}) ={ı(g,h)G():Q()γı(g,h)=Q()γ}\displaystyle=\{\imath^{\diamondsuit}(g,h)\in G^{\diamondsuit}(\mathcal{F}):Q(\mathcal{F})\gamma\imath^{\diamondsuit}(g,h)=Q(\mathcal{F})\gamma\}
={ı(g,h)G():γı(g,h)γ1=Q()}.\displaystyle=\{\imath^{\diamondsuit}(g,h)\in G^{\diamondsuit}(\mathcal{F}):\gamma\imath^{\diamondsuit}(g,h)\gamma^{-1}=Q(\mathcal{F})\}.

We first deal with the orbit γ=1\gamma=1. In this case, the stabilizer is

(G)1()=Q()G(𝒦)={ı(g,g):gG()}=GΔ()(G^{\diamondsuit})^{1}(\mathcal{F})=Q(\mathcal{F})\cap G^{\diamondsuit}(\mathcal{K})=\{\imath^{\diamondsuit}(g,g):g\in G(\mathcal{F})\}=G^{\Delta}(\mathcal{F})

and

I(1)=(G)Δ\G(𝔸)fs,χSieg(γγ0ı(g,h))Ψ(g)Ψ(h)χ1(deth)dgdh.I(1)=\int_{(G^{\diamondsuit})^{\Delta}\backslash G^{\diamondsuit}(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\gamma\gamma_{0}\imath^{\diamondsuit}(g,h))\Psi(g)\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}g\,\mathrm{d}h.

The remaining orbits (that is, γ1\gamma\neq 1) are negligible in the sense of [GPR87, PartA, Chapter I], and I(γ)=0I(\gamma)=0 thereof. This vanishing result essentially follows from the cuspidality of Ψ\Psi and Ψ\Psi^{\vee}, and that (G)γ(G^{\diamondsuit})^{\gamma} contains the unipotent radical of a proper parabolic subgroup of G()G^{\diamondsuit}(\mathcal{F}) as a normal subgroup. Details on these negligible orbits can be found in [GPR87, PartA, Chapter I] or the proof of [Eis24, Theorem 4.3.4]. ∎

2.4.2. Partial doubling integrals

Following [SU14, page 174], we define the partial doubling integrals

Z,(fs,χSieg,Ψ;g):=[G]ESieg(fs,χSieg,ı(g,h))Ψ(h)χ1(deth)dh,Z^{\diamondsuit,\triangleleft}(f^{\mathrm{Sieg}}_{s,\chi},\Psi^{\vee};g):=\int_{[G]}E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi},\imath^{\diamondsuit}(g,h))\Psi^{\vee}(h)\chi^{-1}(\det h)\,\mathrm{d}h,

and

Z,(fs,χSieg,Ψ,h):=[G]ESieg(fs,χSieg,ı(g,h))Ψ(g)dg.Z^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,h):=\int_{[G]}E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi},\imath^{\diamondsuit}(g,h))\Psi(g)\,\mathrm{d}g.

They converges by the cuspidality of Ψ\Psi and Ψ\Psi^{\vee}. Then we see that

Z(fs,χSieg,Ψ,Ψ)=Ψ,Z,(fs,χSieg,Ψ;)Pet=Z,(fs,χSieg,Ψ,),Ψχ1(det)Pet.Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee})=\left\langle{\Psi,Z^{\diamondsuit,\triangleleft}(f^{\mathrm{Sieg}}_{s,\chi},\Psi^{\vee};-)}\right\rangle_{\mathrm{Pet}}=\left\langle{Z^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,-),\Psi^{\vee}\cdot\chi^{-1}(\det-)}\right\rangle_{\mathrm{Pet}}. (2.3)

We shall use the following corollary of the basic identity below.

Corollary 2.4.

Notations being as above.

  1. (1)

    Let g0G(𝔸)g_{0}\in G(\mathbb{A}), then

    Z,(fs,χSieg,Ψ;g)\displaystyle Z^{\diamondsuit,\triangleleft}(f^{\mathrm{Sieg}}_{s,\chi},\Psi^{\vee};g) =G(𝔸)fs,χSieg(ı(g,h))χ¯(deth)Ψ(h)dh\displaystyle=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h))\overline{\chi}(\det h)\Psi^{\vee}(h)\,\mathrm{d}h
    =G(𝔸)fs,χSieg(ı(g0,h))χ¯(deth)Ψ(gg01h)dh\displaystyle=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},h))\overline{\chi}(\det h)\Psi^{\vee}(gg_{0}^{-1}h)\,\mathrm{d}h
  2. (2)

    Let h0G(𝔸)h_{0}\in G(\mathbb{A}), then

    Z,(fs,χSieg,Ψ;h)\displaystyle Z^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi},\Psi;h) =G(𝔸)fs,χSieg(ı(g,h))Ψ(g)dg\displaystyle=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h))\Psi(g)\,\mathrm{d}g
    =χ(dethh01)G(𝔸)fs,χSieg(ı(g,h0))Ψ(hh01g)dg.\displaystyle=\chi(\det hh_{0}^{-1})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h_{0}))\Psi(hh_{0}^{-1}g)\,\mathrm{d}g.
  3. (3)

    As a result,

    Z(fs,χSieg,Ψ,Ψ)\displaystyle Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee}) =G(𝔸)fs,χSieg(ı(g0,h))Ψ,π(g01h)ΨPetdh\displaystyle=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},h))\left\langle{\Psi,\pi^{\vee}(g_{0}^{-1}h)\Psi^{\vee}}\right\rangle_{\mathrm{Pet}}\,\mathrm{d}h
    =χ¯(deth0)G(𝔸)fs,χSieg(ı(g,h0))π(h01g)Ψ,ΨPetdg\displaystyle=\overline{\chi}(\det h_{0})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h_{0}))\left\langle{\pi(h_{0}^{-1}g)\Psi,\Psi^{\vee}}\right\rangle_{\mathrm{Pet}}\,\mathrm{d}g
Proof.

We note that there are two ways of identifying GΔ()\(G×G)(𝔸)G^{\Delta}(\mathcal{F})\backslash(G\times G)(\mathbb{A}) and G(𝔸)×(G()\G(𝔸))G(\mathbb{A})\times(G(\mathcal{F})\backslash G(\mathbb{A})), by sending (g,h)(g,h) to either (g,h)(g,h) or (h,g)(h,g). Then Theorem 2.3, together with (2.3), gives the first equality of (1) and (2) accordingly, by noting that the Petersson pairing ,Pet\left\langle{-,-}\right\rangle_{\mathrm{Pet}} is perfect.

To deduce the second equality of (1), we note that

fs,χSieg(ı(g,h))=fs,χSieg(ı(gg01,g)ı(g0,g0g1h))=χ(detgg01)fs,χSieg(ı(g0,g0g1h)).f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h))=f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(gg_{0}^{-1},g)\imath^{\diamondsuit}(g_{0},g_{0}g^{-1}h))=\chi(\det gg_{0}^{-1})f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},g_{0}g^{-1}h)).

Putting into the integral on the right hand side of the first equality of (1), we see that

Z,(fs,χSieg,Ψ;g)\displaystyle Z^{\diamondsuit,\triangleleft}(f^{\mathrm{Sieg}}_{s,\chi},\Psi^{\vee};g) =χ(detgg01)G(𝔸)fs,χSieg(ı(g0,g0g1h))χ¯(deth)Ψ(h)dh\displaystyle=\chi(\det gg_{0}^{-1})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},g_{0}g^{-1}h))\overline{\chi}(\det h)\Psi^{\vee}(h)\,\mathrm{d}h
=χ(detgg01)G(𝔸)fs,χSieg(ı(g0,h))χ¯(detgg01h)Ψ(gg01h)dh\displaystyle=\chi(\det gg_{0}^{-1})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},h^{\prime}))\overline{\chi}(\det gg_{0}^{-1}h^{\prime})\Psi^{\vee}(gg_{0}^{-1}h^{\prime})\,\mathrm{d}h^{\prime}
=G(𝔸)fs,χSieg(ı(g0,h))χ¯(deth)Ψ(gg01h)dh\displaystyle=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{0},h^{\prime}))\overline{\chi}(\det h^{\prime})\Psi^{\vee}(gg_{0}^{-1}h^{\prime})\,\mathrm{d}h^{\prime}

by a change of variable h=g0g1hh^{\prime}=g_{0}g^{-1}h. This shows the second equality in (1).

The second equality of (2) is deduced in the same way. We note that

fs,χSieg(ı(g,h))=fs,χSieg(ı(hh01,hh01)ı(h0h1g,h0))=χ(dethh01)fs,χSieg(ı(h0h1g,h0)).f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,h))=f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(hh_{0}^{-1},hh_{0}^{-1})\imath^{\diamondsuit}(h_{0}h^{-1}g,h_{0}))=\chi(\det hh_{0}^{-1})f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(h_{0}h^{-1}g,h_{0})).

Putting into the integral on the right hand side of the first equality of (2), we see that

Z,(fs,χSieg,Ψ;h)\displaystyle Z^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi},\Psi;h) =χ(dethh01)G(𝔸)fs,χSieg(ı(h0h1g,h0))Ψ(g)dg\displaystyle=\chi(\det hh_{0}^{-1})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(h_{0}h^{-1}g,h_{0}))\Psi(g)\,\mathrm{d}g
=χ(dethh01)G(𝔸)fs,χSieg(ı(g,h0))Ψ(hh01g)dg\displaystyle=\chi(\det hh_{0}^{-1})\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g^{\prime},h_{0}))\Psi(hh_{0}^{-1}g^{\prime})\,\mathrm{d}g^{\prime}

by a change of variable g=h0h1gg^{\prime}=h_{0}h^{-1}g. This shows the second equality in (2). The equalities in (3) follows from the second equalities of (1) and (2) by (2.3). ∎

2.4.3. Local doubling integrals

We also consider the local counterparts of the doubling integrals. Let g0,h0G(v)g_{0},h_{0}\in G(\mathcal{F}_{v}). In the spirit of Corollary 2.4 (where gg and hh are set to 𝟏m+n+1\mathbf{1}_{m+n+1}), define

Zv,(fs,χ,vSieg,Ψv;gv):=G(v)fs,χ,vSieg(ı(g0,hv))χ¯(dethv)π(gvg01hv)ΨvdhvZ_{v}^{\diamondsuit,\triangleleft}(f^{\mathrm{Sieg}}_{s,\chi,v},\Psi^{\vee}_{v};g_{v}):=\int_{G(\mathcal{F}_{v})}f^{\mathrm{Sieg}}_{s,\chi,v}(\imath^{\diamondsuit}(g_{0},h_{v}))\overline{\chi}(\det h_{v})\pi^{\vee}(g_{v}g_{0}^{-1}h_{v})\Psi_{v}^{\vee}\,\,\mathrm{d}h_{v}

and

Zv,(fs,χ,vSieg,Ψv;hv):=χ¯v(deth0)G(v)fs,χ,vSieg(ı(gv,h0))π(hvh01gv)Ψdgv.Z_{v}^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi,v},\Psi_{v};h_{v}):=\overline{\chi}_{v}(\det h_{0})\int_{G(\mathcal{F}_{v})}f^{\mathrm{Sieg}}_{s,\chi,v}(\imath^{\diamondsuit}(g_{v},h_{0}))\pi(h_{v}h_{0}^{-1}g_{v})\Psi\,\,\mathrm{d}g_{v}.

Here, the integrals Zv,Z_{v}^{\diamondsuit,\triangleleft} and Zv,Z_{v}^{\diamondsuit,\triangleright} are understood as vector-valued integrals (see, for example, [Gar18, Chapter 14] for a precise definition).

By the uniqueness of GG-invariant pairings between π\pi and π\pi^{\vee}, as provided by (BC), and Item (3) of Corollary 2.4, we obtain the following result.

Corollary 2.5.

Under the assumptions above, We have

Z(fs,χSieg,Ψ,Ψ)=Ψ,Ψv𝒱Zv(fs,χ,vSieg,Ψv,Ψv)Ψv,Ψv,Z^{\diamondsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\Psi^{\vee})=\left\langle{\Psi,\Psi^{\vee}}\right\rangle\prod_{v\in\mathscr{V}_{\mathcal{F}}}\frac{Z^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{s,\chi,v},\Psi_{v},\Psi_{v}^{\vee})}{\left\langle{\Psi_{v},\Psi^{\vee}_{v}}\right\rangle},

with

Zv(fv,s,χSieg,Ψ,Ψ)\displaystyle Z^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\Psi,\Psi^{\vee}) =G(v)fv,s,χSieg(ı(g0,hv))Ψ,π(g01hv)ΨPetdhv\displaystyle=\int_{G(\mathcal{F}_{v})}f^{\mathrm{Sieg}}_{v,s,\chi}(\imath^{\diamondsuit}(g_{0},h_{v}))\left\langle{\Psi,\pi^{\vee}(g_{0}^{-1}h_{v})\Psi^{\vee}}\right\rangle_{\mathrm{Pet}}\,\,\mathrm{d}h_{v}
=χ¯(deth0)G(v)fs,χSieg(ı(gv,h0))π(h01gv)Ψ,ΨPetdgv;\displaystyle=\overline{\chi}(\det h_{0})\int_{G(\mathcal{F}_{v})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{v},h_{0}))\left\langle{\pi(h_{0}^{-1}g_{v})\Psi,\Psi^{\vee}}\right\rangle_{\mathrm{Pet}}\,\,\mathrm{d}g_{v};

We remark that g0g_{0} and h0h_{0} can certainly be 1G(v)1\in G(\mathcal{F}_{v}), and actually this is the only case we shall use. In other applications, a flexibility to choose g0,h0G(v)g_{0},h_{0}\in G(\mathcal{F}_{v}) may be convenient for computations. By the uniqueness of GG-invariant pairings between π\pi and π\pi^{\vee} granted by (BC), we see the local quotients is independent of the choice of local vectors Ψv\Psi_{v} and Ψv\Psi_{v}^{\vee}, but only depend on the local Siegel Eisenstein section fv,s,χSiegf^{\mathrm{Sieg}}_{v,s,\chi} and the local representation πv\pi_{v}. We therefore denote

𝒵v(fv,s,χSieg,πv):=Zv(fs,χ,vSieg,Ψv,Ψv)Ψv,Ψv\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}):=\frac{Z^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{s,\chi,v},\Psi_{v},\Psi_{v}^{\vee})}{\left\langle{\Psi_{v},\Psi^{\vee}_{v}}\right\rangle}

for simplicity.

2.5. Doubling method, à la Garrett

The primary method for explicitly constructing Klingen Eisenstein series is via pullbacks of Siegel Eisenstein series. This approach generalizes the doubling method à la Piatetski-Shapiro and Rallis, initiated by Garrett in [Gar84, Gar89] and later further developed by Shimura [Shi97].

We define the pullback integral formally as the vector-valued integral

F(fs,χSieg,Φ;g0):=H(𝔸)fs,χSieg(ı(g0,h))χ1(deth)π(h)Φdh,F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;g_{0}):=\int_{H(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\heartsuit}(g_{0},h))\chi^{-1}(\det h)\pi(h)\Phi\,\,\mathrm{d}h, (2.4)

with values in VπV_{\pi}, for any Siegel section fs,χSiegISieg(χ,s)f^{\mathrm{Sieg}}_{s,\chi}\in I^{\mathrm{Sieg}}(\chi,s) and any g0G(𝔸)g_{0}\in G^{\heartsuit}(\mathbb{A}). Composing this with ev1\mathrm{ev}_{1} (the evaluation map at 𝟏m+n+1\mathbf{1}_{m+n+1} from VπV_{\pi} to \mathbb{C}), we formally have

F,1(fs,χSieg,Φ;g0):=H(𝔸)fs,χSieg(ı(g0,h))χ1(deth)Φ(h)dh.F^{\heartsuit,1}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;g_{0}):=\int_{H(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\heartsuit}(g_{0},h))\chi^{-1}(\det h)\Phi(h)\,\,\mathrm{d}h.
Proposition 2.6.

With the above notations:

  1. (1)

    The vector F(fs,χSieg,Φ;)F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-) is a Klingen Eisenstein section whenever it exists. The integral F,1(fs,χSieg,Φ;)F^{\heartsuit,1}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-) converges for (s,g)(s,g) in compact subsets of {Re(s)>(N+1)/2}×G(𝔸)\{\operatorname{Re}(s)>(N+1)/2\}\times G^{\heartsuit}(\mathbb{A}). 666There appears to be a typographical error in the convergence range stated in [Wan15, Proposition 3.5 (ii)]. More precisely, {Re(z)>r+s+1/2}\{\operatorname{Re}(z)>r+s+1/2\} should be {Re(z)>(r+s+1)/2}\{\operatorname{Re}(z)>(r+s+1)/2\} with the notations in loc.cit..

  2. (2)

    Moreover,

    H(F)\H(𝔸)ESieg(fs,χSieg;ı(g0,h))χ1(deth)Φ(h)dh=EKling(F(fs,χSieg,Φ;);g0).\int_{H(F)\backslash H(\mathbb{A})}E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi};\imath^{\heartsuit}(g_{0},h))\chi^{-1}(\det h)\Phi(h)\,\,\mathrm{d}h=E^{\mathrm{Kling}}(F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-);g_{0}).
Proof.

This is [Wan15, Proposition 3.5]. The convergence issue is discussed in the proof there. The fact that F,1F^{\heartsuit,1} is a Klingen Eisenstein section is well-known and can be directly verified. The reader may refer to the proof of [Zha13, Theorem 2.6] for the case when H=U(2,0)H=\mathrm{U}(2,0). The computation there can be generalized to the broader case. ∎

3. The Gan-Gross-Prasad period integral

We inherit all notations and conventions from previous sections. Let

  • (π,Vπ)(\pi,V_{\pi}) be an irreducible unitary cuspidal automorphic representation of GG over \mathcal{F} and identify VπV_{\pi} as a subspace of the 𝒜cusp(G()\G(𝔸))\mathcal{A}_{\mathrm{cusp}}(G(\mathcal{F})\backslash G(\mathbb{A})), and

  • EKling(fσ,χ,sKling,)E^{\mathrm{Kling}}(f^{\mathrm{Kling}}_{\sigma,\chi,s},-) be a Klingen Eisenstein series on GG^{\heartsuit}, defined in Section 2.2.1.

Let ΨVπ\Psi\in V_{\pi}, we define the Gan-Gross-Prasad period integral (GGP period integral) of EKlingE^{\mathrm{Kling}} with the cusp form Ψ\Psi as the integral

𝒫(Ψ,EKling(fσ,χ,sKling,)):=G()\G(𝔸)EKling(fσ,χ,sKling,ȷ(g))Ψ(g)dg.\mathcal{P}(\Psi,E^{\mathrm{Kling}}(f^{\mathrm{Kling}}_{\sigma,\chi,s},-)):=\int_{G(\mathcal{F})\backslash G(\mathbb{A})}E^{\mathrm{Kling}}(f^{\mathrm{Kling}}_{\sigma,\chi,s},\jmath^{\flat}(g))\Psi(g)\,\mathrm{d}g. (3.5)

By the cuspidality of Ψ\Psi, this converges absolutely for those values of ss at which EKling(fσ,χ,sKling,)E^{\mathrm{Kling}}(f^{\mathrm{Kling}}_{\sigma,\chi,s},-) is defined. 777We thank Wen-Wei Li for his hint on this issue.

In this section, we consider in particular the Klingen Eisenstein series constructed by pulling back from Siegel Eisenstein series (see Section 2.5). Our plan is as follows.

  1. (1)

    We first unfold the GGP period integral (3.5) to reduce it to certain “cuspidal GGP period integral”. See Proposition 3.1.

  2. (2)

    Then we square the integral and use Ichino-Ikeda formula (Theorem 3.2) to decompose it into products of local integrals, involving local Ichino-Ikeda integrals and local doubling integrals. See Theorem 3.4.

  3. (3)

    We further invoke the unramified computations of such local integrals to see that the Rankin-Selberg local LL-factors and standard local LL-factors arise at “good” places (which covers all but finitely many places) of \mathcal{F}. See Theorem 3.7.

There are finitely many “bad” places remained, which we shall deal with in coming up sections.

3.1. Reduce to the cuspidal GGP period integral

We write

𝒫Kling(Φ,Ψ,χ,s):=𝒫(Ψ,EKling(F(fs,χSieg,Φ;)))\mathcal{P}^{\mathrm{Kling}}(\Phi,\Psi,\chi,s):=\mathcal{P}(\Psi,E^{\mathrm{Kling}}(F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-))) (3.6)

We write 𝒫Kling(Φ,Ψ,χ,s)\mathcal{P}^{\mathrm{Kling}}(\Phi,\Psi,\chi,s) as 𝒫Φ,ΨKling\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi} in this part for simplicity. By Proposition 2.6,

𝒫Φ,ΨKling=[G][H]Ψ(g)ESieg(fs,χSieg;ı(ȷ(g),h))χ1(deth)Φ(h)dhdg.\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}=\int_{[G]}\int_{[H]}\Psi(g)E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi};\imath^{\heartsuit}(\jmath^{\flat}(g),h))\chi^{-1}(\det h)\Phi(h)\,\mathrm{d}h\,\mathrm{d}g.

Interchanging the two integrals, we isolate

𝒫Φ,ΨKling=[H]([G]Ψ(g)ESieg(fs,χSieg;ı(ȷ(g),h))dg)χ1(deth)Φ(h)dh.\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}=\int_{[H]}\left(\int_{[G]}\Psi(g)E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi};\imath^{\heartsuit}(\jmath^{\flat}(g),h))\,\mathrm{d}g\right)\chi^{-1}(\det h)\Phi(h)\,\mathrm{d}h.

By the observation (2.2),

𝒫Φ,ΨKling=[H]([G]Ψ(g)ESieg(fs,χSieg;ı(g,ȷ(h))dg)χ1(deth)Φ(h)dh.\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}=\int_{[H]}\left(\int_{[G]}\Psi(g)E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s,\chi};\imath^{\diamondsuit}(g,\jmath^{\sharp}(h))\,\mathrm{d}g\right)\chi^{-1}(\det h)\Phi(h)\,\mathrm{d}h.

The inner integral is nothing but Z,(fs,χSieg,Ψ,ȷ(h))Z^{\diamondsuit,\triangleright}(f^{\mathrm{Sieg}}_{s,\chi},\Psi,\jmath^{\sharp}(h)). By Corollary 2.4 (2), putting h0=1h_{0}=1 there, we obtain

𝒫Φ,ΨKling\displaystyle\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi} =[H](χ(detȷ(h))G(𝔸)fs,χSieg(ı(g,1))Ψ(ȷ(h)g)dg)χ1(deth)Φ(h)dh\displaystyle=\int_{[H]}\left(\chi(\det\jmath^{\sharp}(h))\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,1))\Psi(\jmath^{\sharp}(h)g)\,\mathrm{d}g\right)\chi^{-1}(\det h)\Phi(h)\,\mathrm{d}h
=[H]G(𝔸)fs,χSieg(ı(g,1))Ψ(ȷ(h)g)Φ(h)dgdh\displaystyle=\int_{[H]}\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,1))\Psi(\jmath^{\sharp}(h)g)\Phi(h)\,\mathrm{d}g\,\mathrm{d}h

Then we interchange the two integrals back, it yields

𝒫Φ,ΨKling=G(𝔸)fs,χSieg(ı(g,1))([H]Φ(h)(π(g)Ψ)(ȷ(h))dh)dg.\displaystyle\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,1))\left(\int_{[H]}\Phi(h)\cdot(\pi(g)\Psi)(\jmath^{\sharp}(h))\,\mathrm{d}h\right)\,\mathrm{d}g.

The inner integral is a cuspidal GGP period integral. In general, for Φσ\Phi\in\sigma and Ψπ\Psi\in\pi, we define the cuspidal GGP period integral of Ψ\Psi with Φ\Phi as

𝒫(Φ,Ψ):=[H]Φ(h)Ψ(ȷ(h))dh,\mathcal{P}^{\sharp}(\Phi,\Psi):=\int_{[H]}\Phi(h)\Psi(\jmath^{\sharp}(h))\,\mathrm{d}h,

which converges by the cuspidality of Φ\Phi and Ψ\Psi. To sum up, we have proved the following result.

Proposition 3.1.

Let 𝒫Φ,ΨKling\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi} be the GGP period integral defined in (3.6), then

𝒫Φ,ΨKling=G(𝔸)fs,χSieg(ı(g,1))𝒫(Φ,π(g)Ψ)dg.\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}=\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g,1))\mathcal{P}^{\sharp}(\Phi,\pi(g)\Psi)\,\mathrm{d}g.

3.2. Break into local integrals

Before conducting concrete computations, we make some preparations.

3.2.1. Contragredient, conjugation and MVW involutions

Given an irreducible cuspidal automorphic representation π𝒜0(G()\G(𝔸))\pi\subseteq\mathcal{A}_{0}(G(\mathcal{F})\backslash G(\mathbb{A})) and its complex conjugation π¯𝒜0(G()\G(𝔸))\overline{\pi}\subseteq\mathcal{A}_{0}(G(\mathcal{F})\backslash G(\mathbb{A})), which is isomorphic to the contragredient of π\pi 888See, for example, [GH11a, Proposition 8.9.6] for the case of GL2(𝔸)\mathrm{GL}_{2}(\mathbb{A}_{\mathbb{Q}}). The proof goes the same for any reductive group., we fix factorizations

facπ:πv𝒱πv,facπ¯:π¯v𝒱πv\mathrm{fac}_{\pi}:\pi\cong\otimes^{\prime}_{v\in\mathscr{V}_{\mathcal{F}}}\pi_{v},\quad\mathrm{fac}_{\overline{\pi}}:\overline{\pi}\cong\otimes^{\prime}_{v\in\mathscr{V}_{\mathcal{F}}}\pi^{\vee}_{v}

with the restricted tensor product is taken with respect to spherical elements Ψv\Psi_{v}^{\circ} and Ψv,\Psi_{v}^{\vee,\circ} at the places vv of \mathcal{F} where πv\pi_{v} is unramified.

Besides the complex conjugation, another model for the contragredient representation π\pi^{\vee} is established by Moeglin, Vignéras and Waldspurger in [MVW87]. Consider in general a unitary group U(V,ϕ)\mathrm{U}(V,\phi). By [MVW87, page 74], there exists a (unique) element δAut𝒦(V)\delta\in\operatorname{Aut}_{\mathcal{K}}(V) such that ϕ(δv,δw)=ϕ(w,v)\phi(\delta v,\delta w)=\phi(w,v) for any v,wVv,w\in V. Conjugation by δ\delta gives an automorphism of the group U(V,ϕ)\mathrm{U}(V,\phi):

():gδgδ1.(-)^{\ast}:g\mapsto\delta g\delta^{-1}.

This is called the MVW involution on U(V,ϕ)\mathrm{U}(V,\phi).

We fix an MVW involution \ast on 𝐆\mathbf{G} that stabilizes HH. For every v𝒱splv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{spl}}, we fix a standard isomorphism

𝐆(v)GLn(v)×GLn+1(v),\mathbf{G}(\mathcal{F}_{v})\cong\mathrm{GL}_{n}(\mathcal{F}_{v})\times\mathrm{GL}_{n+1}(\mathcal{F}_{v}),

under which the MVW involution \ast coincide with the transpose-inverse. For every element Ψ=vΨvπ\Psi=\otimes_{v}^{\prime}\Psi_{v}\in\pi written through facπ\mathrm{fac}_{\pi}, we have the function Ψ\Psi^{\ast} defined by the formula Ψ(g):=Ψ(g)\Psi^{\ast}(g):=\Psi(g^{\ast}). Then Ψ=vΨv\Psi^{\ast}=\otimes^{\prime}_{v}\Psi^{\ast}_{v} is again decomposable and belongs to π\pi^{\vee}, where each Ψvπv\Psi^{\ast}_{v}\in\pi_{v}^{\vee}. By a change of variables, we see immediately that

𝒫(Φ,Ψ)=𝒫(Φ,Ψ),\mathcal{P}^{\sharp}(\Phi^{\ast},\Psi^{\ast})=\mathcal{P}^{\sharp}(\Phi,\Psi), (3.7)

which turns out to be an advantage for the MVW involution in the computation.

3.2.2. Ichino-Ikeda formula

Recall 𝐆=H×G\mathbf{G}=H\times G. Let Π=σπ\Pi=\sigma\boxtimes\pi be the cuspidal representation of 𝐆(𝔸)\mathbf{G}(\mathbb{A}).

The product LL-series associated to σ\sigma and π\pi is defined as

L(s,σ×π):=LJPSS(s,BC(σ)×BC(π)),L(s,\sigma\times\pi):=L^{\mathrm{JPSS}}(s,\mathrm{BC}(\sigma)\times\mathrm{BC}(\pi)),

where BC(σ)\mathrm{BC}(\sigma) (resp. BC(π)\mathrm{BC}(\pi)) is the functorial lift of σ\sigma (resp. π\pi) to an automorphic representation of GLm+n(𝕂)\mathrm{GL}_{m+n}(\mathbb{K}) (resp. GLm+n+1(𝕂)\mathrm{GL}_{m+n+1}(\mathbb{K})). The right hand side is the LL-factor defined by Jacquet, Piateski-Shapiro and Shalika in [JPS83]. Let L(s,σ,Ad)L(s,\sigma,\operatorname{Ad}) denote the adjoint LL-series for σ\sigma.

Assume that both σ\sigma and π\pi is tempered, then we put

(σ×π)=L(12,σ×π)L(1,σ,Ad)L(1,π,Ad)i=1m+n+1L(i,ϵ𝒦/i)\mathscr{L}(\sigma\times\pi)=\dfrac{L(\frac{1}{2},\sigma\times\pi)}{L(1,\sigma,\operatorname{Ad})L(1,\pi,\operatorname{Ad})}\prod_{i=1}^{m+n+1}L(i,\epsilon_{\mathcal{K}/\mathcal{F}}^{i})

and

(σv×πv)=L(12,σv×πv)L(1,σv,Ad)L(1,πv,Ad)i=1m+n+1L(i,ϵ𝒦v/vi)\mathscr{L}(\sigma_{v}\times\pi_{v})=\dfrac{L(\frac{1}{2},\sigma_{v}\times\pi_{v})}{L(1,\sigma_{v},\operatorname{Ad})L(1,\pi_{v},\operatorname{Ad})}\prod_{i=1}^{m+n+1}L(i,\epsilon_{\mathcal{K}_{v}/\mathcal{F}_{v}}^{i})

for any v𝒱v\in\mathscr{V}_{\mathcal{F}}.

Let Ξ\Xi be a cusp form on 𝐆\mathbf{G}, we define the integral

𝒫(Ξ):=[H]Ξ(Δ(h))dh.\mathcal{P}(\Xi):=\int_{[H]}\Xi(\Delta^{\sharp}(h))\,\mathrm{d}h.

where Δ:H𝐆\Delta^{\sharp}:H\rightarrow\mathbf{G} is defined by h(ȷ(h),h)h\mapsto(\jmath^{\sharp}(h),h). If Ξ=vΞvΠ\Xi=\otimes^{\prime}_{v}\Xi_{v}\in\Pi and Ξ=vΞvΠ\Xi^{\prime}=\otimes^{\prime}_{v}\Xi^{\prime}_{v}\in\Pi^{\vee} are factorizable, we define the local Ichino-Ikeda integral

I(Ξv,Ξv):=H(Fv)Πv(Δ(hv))Ξv,ΞvΠvdhv.I(\Xi_{v},\Xi_{v}^{\prime}):=\int_{H(F_{v})}\left\langle{\Pi_{v}(\Delta^{\sharp}(h_{v}))\Xi_{v},\Xi^{\prime}_{v}}\right\rangle_{\Pi_{v}}\,\mathrm{d}h_{v}.

It is convergent if Πv\Pi_{v} is tempered. Actually 𝒫(ΨΦ)=𝒫(Φ,Ψ)\mathcal{P}(\Psi\boxtimes\Phi)=\mathcal{P}^{\sharp}(\Phi,\Psi).

Recently, there has been great progress on the global Gan-Gross-Prasad conjecture for unitary groups, for example, [II10, Har14, BLZZ21, BCZ22]. We take a version reinterpreted in [HY23, Theorem 4.2] 999Following our convention in Section 1.4.4, the constant CHC_{H} in [HY23, Theorem 4.2] is 11 in our article..

Theorem 3.2 (Ichino-Ikeda formula).

Let Π\Pi be an irreducible tempered cuspidal automorphic representation of 𝐆(𝔸)\mathbf{G}(\mathbb{A}). If Ξ=vΞvΠ\Xi=\otimes^{\prime}_{v}\Xi_{v}\in\Pi and Ξ=vΞvΠ\Xi^{\prime}=\otimes^{\prime}_{v}\Xi^{\prime}_{v}\in\Pi^{\vee} are factorizable, then

𝒫(Ξ)𝒫(Ξ)(Ξ,Ξ)Pet=(σ×π)2ϰσ+ϰπv𝒱I(Ξv,Ξv)(σv×πv)Ξv,ΞvΠv,\dfrac{\mathcal{P}(\Xi)\mathcal{P}(\Xi^{\prime})}{(\Xi,\Xi^{\prime})_{\mathrm{Pet}}}=\dfrac{\mathscr{L}(\sigma\times\pi)}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\prod_{v\in\mathscr{V}_{\mathcal{F}}}\dfrac{I(\Xi_{v},\Xi_{v}^{\prime})}{\mathscr{L}(\sigma_{v}\times\pi_{v})\left\langle{\Xi_{v},\Xi_{v}^{\prime}}\right\rangle_{\Pi_{v}}},

where 2ϰπ2^{\varkappa_{\pi}} (resp. 2ϰσ2^{\varkappa_{\sigma}}) is the order of the component group associated to the LL-parameter of π\pi (resp. σ\sigma).

3.2.3. Reduce to local Ichino-Ikeda integrals

We square the GGP period integral, using Proposition 3.1, to get

(𝒫Φ,ΨKling)2\displaystyle(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2} =G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)dg1dg2\displaystyle=\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi,\pi(g_{2})\Psi)\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}
=G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))𝒫(Φ,π(g1)Ψ)𝒫(Φ,(π(g2)Ψ))dg1dg2\displaystyle=\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi^{\ast},(\pi(g_{2})\Psi)^{\ast})\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}
=G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)dg1dg2\displaystyle=\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi^{\ast},\pi^{\vee}(g_{2})\Psi^{\ast})\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}

Here in the second equality, we use (3.7) and the third equality follows from the definition of the MVW involution on Ψ\Psi.

Remark 3.3 (On complex conjugation).

We also have the naive approach by taking complex conjugation. Then we see

|𝒫Φ,ΨKling|2\displaystyle\left|{\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}}\right|^{2} =𝒫Φ,ΨKling(𝒫Φ,ΨKling)c\displaystyle=\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi}\cdot(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{\mathrm{c}}
=G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))¯𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)¯dg1dg2\displaystyle=\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))\overline{f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))}\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\overline{\mathcal{P}^{\sharp}(\Phi,\pi(g_{2})\Psi)}\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}
=G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))¯𝒫(Φ,π(g1)Ψ)𝒫(Φ¯,π(g2)Ψ¯)dg1dg2\displaystyle=\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))\overline{f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))}\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\overline{\Phi},\pi^{\vee}(g_{2})\overline{\Psi})\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}

This is acceptable by purely automorphic computation, but seems useless for pp-adic interpolations and further applications.

In this subsection, our main focus is on the part 𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi^{\ast},\pi^{\vee}(g_{2})\Psi^{\ast}). Such a product can be handled by Theorem 3.2: putting

Ξ:=Φπ(g1)Ψ,Ξ:=Φπ(g2)Ψ,\Xi:=\Phi\boxtimes\pi(g_{1})\Psi,\quad\Xi^{\prime}:=\Phi^{\ast}\boxtimes\pi^{\vee}(g_{2})\Psi^{\ast},

we see that

𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)ΦPet2(π(g1)Ψ,π(g2)Ψ)π,Pet=(σ×π)2σ+πv𝒱I(Φvπ(g1)Ψv,Φvπ(g2)Ψv)(σv×πv)Φvπ(g1)Ψv,Φvπ(g2)ΨvΠv.\dfrac{\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi^{\ast},\pi^{\vee}(g_{2})\Psi^{\ast})}{\left|\left|{\Phi}\right|\right|_{\mathrm{Pet}}^{2}(\pi(g_{1})\Psi,\pi^{\vee}(g_{2})\Psi^{\ast})_{\pi,\mathrm{Pet}}}\\ =\dfrac{\mathscr{L}(\sigma\times\pi)}{2^{\aleph_{\sigma}+\aleph_{\pi}}}\prod_{v\in\mathscr{V}_{\mathcal{F}}}\dfrac{I(\Phi_{v}\boxtimes\pi(g_{1})\Psi_{v},\Phi_{v}^{\ast}\boxtimes\pi^{\vee}(g_{2})\Psi^{\ast}_{v})}{\mathscr{L}(\sigma_{v}\times\pi_{v})\left\langle{\Phi_{v}\boxtimes\pi(g_{1})\Psi_{v},\Phi^{\ast}_{v}\boxtimes\pi^{\vee}(g_{2})\Psi^{\ast}_{v}}\right\rangle_{\Pi_{v}}}. (3.8)

Here and afterwards, we denote ΦPet2:=Φ,ΦPet\left|\left|{\Phi}\right|\right|_{\mathrm{Pet}}^{2}:=\left\langle{\Phi,\Phi^{\ast}}\right\rangle_{\mathrm{Pet}} and similarly for Ψ\Psi.

By the uniqueness (up to scalar) of the 𝐆\mathbf{G}-invariant pairings Π×Π\Pi\times\Pi^{\vee}\rightarrow\mathbb{C}, granted by (BC), we see that

v(σv,πv):=I(Φvπ(g1)Ψv,Φvπ(g2)Ψv)Φvπ(g1)Ψv,Φvπ(g2)ΨvΠv=I(Φv,0Ψv,0,Φv,0Ψv,0)Φv,0Ψv,0,Φv,0Ψv,0Πv\mathscr{I}_{v}(\sigma_{v},\pi_{v}):=\dfrac{I(\Phi_{v}\boxtimes\pi(g_{1})\Psi_{v},\Phi_{v}^{\ast}\boxtimes\pi^{\vee}(g_{2})\Psi^{\ast}_{v})}{\left\langle{\Phi_{v}\boxtimes\pi(g_{1})\Psi_{v},\Phi^{\ast}_{v}\boxtimes\pi^{\vee}(g_{2})\Psi^{\ast}_{v}}\right\rangle_{\Pi_{v}}}=\dfrac{I(\Phi_{v,0}\boxtimes\Psi_{v,0},\Phi_{v,0}^{\vee}\boxtimes\Psi^{\vee}_{v,0})}{\left\langle{\Phi_{v,0}\boxtimes\Psi_{v,0},\Phi^{\vee}_{v,0}\boxtimes\Psi^{\vee}_{v,0}}\right\rangle_{\Pi_{v}}} (3.9)

for any Φv,0,Ψv,0,Φv,0,Ψv,0\Phi_{v,0},\Psi_{v,0},\Phi_{v,0}^{\vee},\Psi_{v,0}^{\vee} in corresponding spaces, hence (3.9) depends only on the local representation Πv\Pi_{v}, not on the particular vectors in Πv\Pi_{v}. Rewriting (3.8), we have

𝒫(Φ,π(g1)Ψ)𝒫(Φ,π(g2)Ψ)ΦPet2(π(g1)Ψ,π(g2)Ψ)π,Pet=CH(σ×π)2σ+πv𝒱(σv×πv)1v(σv,πv).\dfrac{\mathcal{P}^{\sharp}(\Phi,\pi(g_{1})\Psi)\mathcal{P}^{\sharp}(\Phi^{\ast},\pi^{\vee}(g_{2})\Psi^{\ast})}{\left|\left|{\Phi}\right|\right|_{\mathrm{Pet}}^{2}(\pi(g_{1})\Psi,\pi^{\vee}(g_{2})\Psi^{\ast})_{\pi,\mathrm{Pet}}}=C_{H}\dfrac{\mathscr{L}(\sigma\times\pi)}{2^{\aleph_{\sigma}+\aleph_{\pi}}}\prod_{v\in\mathscr{V}_{\mathcal{F}}}\mathscr{L}(\sigma_{v}\times\pi_{v})^{-1}\mathscr{I}_{v}(\sigma_{v},\pi_{v}). (3.10)
3.2.4. Reduce to the doubling integrals

To ease the notation in this subsection, we denote the right hand side of (3.10) simply by ()(\star). We have seen that it is independent of g1g_{1} and g2g_{2}. So in (𝒫Φ,ΨKling)2(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}, we drag it out of the integrals and obtain

(𝒫Φ,ΨKling)2\displaystyle(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2} =()Φσ,Pet2G(𝔸)×G(𝔸)fs,χSieg(ı(g1,1))fs,χSieg(ı(g2,1))π(g1)Ψ,π(g2)Ψπ,Petdg1dg2\displaystyle=(\star)\cdot\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\int_{G(\mathbb{A})\times G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\left\langle{\pi(g_{1})\Psi,\pi^{\vee}(g_{2})\Psi^{\ast}}\right\rangle_{\pi,\mathrm{Pet}}\,\mathrm{d}g_{1}\,\mathrm{d}g_{2}
=()Φσ,Pet2G(𝔸)(G(𝔸)fs,χSieg(ı(g1,1))π(g1)Ψ,π(g2)Ψπ,Petdg1)fs,χSieg(ı(g2,1))dg2.\displaystyle=(\star)\cdot\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\int_{G(\mathbb{A})}\left(\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{1},1))\left\langle{\pi(g_{1})\Psi,\pi^{\vee}(g_{2})\Psi^{\ast}}\right\rangle_{\pi,\mathrm{Pet}}\,\mathrm{d}g_{1}\right)f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\,\mathrm{d}g_{2}.

The main focus of this subsection is to deal with such integrals. One notes that the integral in the parentheses is just Z(Ψ,π(g2)Ψ,fs,χSieg)Z^{\diamondsuit}(\Psi,\pi^{\vee}(g_{2})\Psi^{\ast},f^{\mathrm{Sieg}}_{s,\chi}) by Corollary 2.4 (3) (putting h0=1h_{0}=1). Breaking it into local doubling integrals by Corollary 2.5 (1), we have

(𝒫Φ,ΨKling)2=()Φσ,Pet2v𝒱𝒵v(fv,s,χSieg,πv)G(𝔸)fs,χSieg(ı(g2,1))Ψ,π(g2)Ψπ,Petdg2.(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}=(\star)\cdot\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\cdot\prod_{v\in\mathscr{V}_{\mathcal{F}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\cdot\int_{G(\mathbb{A})}f^{\mathrm{Sieg}}_{s,\chi}(\imath^{\diamondsuit}(g_{2},1))\left\langle{\Psi,\pi^{\vee}(g_{2})\Psi^{\ast}}\right\rangle_{\pi,\mathrm{Pet}}\,\mathrm{d}g_{2}.

Observe that Ψ,π(g2)Ψπ,Pet=π(g2)Ψ,Ψπ,Pet\left\langle{\Psi,\pi^{\vee}(g_{2})\Psi^{\ast}}\right\rangle_{\pi,\mathrm{Pet}}=\left\langle{\pi^{\vee}(g_{2})\Psi^{\ast},\Psi}\right\rangle_{\pi^{\vee},\mathrm{Pet}} by identifying (π)(\pi^{\vee})^{\vee} with π\pi, the remaining integral is just Z(Ψ,Ψ,fs,χSieg)Z^{\diamondsuit}(\Psi^{\ast},\Psi,f^{\mathrm{Sieg}}_{s,\chi}) by Corollary 2.4 (3) (putting h0=1h_{0}=1). Again break it into local doubling integrals by Corollary 2.5 (1), we obtain

(𝒫Φ,ΨKling)2=()Φσ,Pet2Ψπ,Pet2v𝒱𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv).(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}=(\star)\cdot\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}\cdot\prod_{v\in\mathscr{V}_{\mathcal{F}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee}).

To conclude, we have finally obtain the following result.

Theorem 3.4.

Notations being as above, we have

(𝒫Φ,ΨKling)2Φσ,Pet2Ψπ,Pet2=(σ×π)2ϰσ+ϰπv𝒱v(σv,πv)𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv)(σv×πv).\dfrac{(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}}{\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}}=\dfrac{\mathscr{L}(\sigma\times\pi)}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\prod_{v\in\mathscr{V}_{\mathcal{F}}}\dfrac{\mathscr{I}_{v}(\sigma_{v},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee})}{\mathscr{L}(\sigma_{v}\times\pi_{v})}. (3.11)

3.3. Unramified Computations

We have the following standard results relating local integrals to local LL-factors at unramified places.

Theorem 3.5 ([Har14, Theorem 2.12]).

Let v𝒱urv\in\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}, then v(σv,πv)=v(σv×πv)\mathscr{I}_{v}(\sigma_{v},\pi_{v})=\mathscr{L}_{v}(\sigma_{v}\times\pi_{v}).

Theorem 3.6 ([EHLS20, Section 4.2.1]).

Let v𝒮urv\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}, then

𝒵v(fv,s,χSieg,sph,πv)=dN+1,v(s,χv)1Lv(s+12,πv,χv),\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg},\mathrm{sph}}_{v,s,\chi},\pi_{v})=d_{N+1,v}(s,\chi_{v})^{-1}\cdot L_{v}\left(s+\dfrac{1}{2},\pi_{v},\chi_{v}\right),

where

  • dn,v(s,χv):=j=1nLv(2s+j,χϵ𝒦/nj)d_{n,v}(s,\chi_{v}):=\prod_{j=1}^{n}L_{v}(2s+j,\chi^{\mathcal{F}}\cdot\epsilon_{\mathcal{K}/\mathcal{F}}^{n-j}) is the product of loca LL-factors for Hecke characters over \mathcal{F},

  • Lv(s+12,πv,χv)=Lv(s,BC(πv)χvdet)L_{v}(s+\dfrac{1}{2},\pi_{v},\chi_{v})=L_{v}(s,\mathrm{BC}(\pi_{v})\otimes\chi_{v}\circ\det), where the right hand side is the standard local Godement-Jacquet LL-factor and BC(πv)\mathrm{BC}(\pi_{v}) is the local base change from G(v)G(\mathcal{F}_{v}) to GLN+1(𝒦v)\mathrm{GL}_{N+1}(\mathcal{K}_{v}).

Combining Theorem 3.4, 3.5 and 3.6, we have the following result.

Theorem 3.7.

We assume Assumption (BC). We choose Siegel Eisenstein sections at v𝒮urv\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} as spherical sections fv,s,χSieg,sphf^{\mathrm{Sieg},\mathrm{sph}}_{v,s,\chi} in the construction of the Klingen Eisenstein series. Then

(𝒫Φ,ΨKling)2Φσ,Pet2Ψπ,Pet2=12ϰσ+ϰπ𝒱ur(σ×π)L𝒮ur(s+12,πv,χv)L𝒮ur(s+12,πv,χv)×v𝒱badv(σv,πv)v𝒮urdN+1,v(s,χv)1v𝒮bad𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv),\dfrac{(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}}{\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}}=\dfrac{1}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\cdot\mathscr{L}_{\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}}(\sigma\times\pi)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v},\chi_{v}\right)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v}^{\vee},\chi_{v}\right)\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{I}_{v}(\sigma_{v},\pi_{v})\prod_{v\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}d_{N+1,v}(s,\chi_{v})^{-1}\prod_{v\in\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee}),

where 𝒱ur()\mathscr{L}_{\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}}(\cdots) and L𝒮ur()L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}(\cdots) is the product of local LL-factors v()\mathscr{L}_{v}(\cdots) and Lv()L_{v}(\cdots) for vv running through 𝒱ur\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}} or 𝒮ur\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}} respectively.

3.4. Further assumptions

In what follows, we shall

  1. (1)

    compute the local Ichino-Ikeda integrals at bad places v𝒱badv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{bad}}, from Section 4 to 5.

  2. (2)

    choose Siegel Eisenstein sections carefully at bad places v𝒮badv\in\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}} such that the resulting Siegel Eisenstein series has pp-adic interpolatable qq-expansions, and therefore Siegel Eisenstein series, together with the Klingen Eisenstein series via pullback, can be interpolated into pp-adic families (see Section 8).

For the convenience in step (1), we put more assumptions on the cuspidal representations σ\sigma and π\pi and their “relative position”.

Assumption 3.8 (Weight interlacing assumption).

We assume that for any v𝒱v\in\mathscr{V}_{\mathcal{F}}^{\infty}, representations σv\sigma_{v}^{\vee} and πv\pi_{v} of real Lie groups Um,n\mathrm{U}_{m,n} and Um,n+1\mathrm{U}_{m,n+1} are irreducible discrete series representation and satisfy the “Gan-Gross-Prasad weight interlacing property”. We shall recall it in Section 4.

Assumption 3.9 (Unramified assumption).

We assume that 𝒦/\mathcal{K}/\mathcal{F} is unramified at any finite places of \mathcal{F}.

Assumption 3.10 (Splitting assumption).

We assume that every v𝒱ramv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}} splits in 𝒦\mathcal{K}.

Assumption 3.11 (Disjointly ramified assumption).

We assume that every v𝒱ramv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}}, one of πv\pi_{v} and σv\sigma_{v} is unramified, i.e. they cannot be both ramified.

Very roughly speaking, Assumption 3.11 is some kind of “Heegner hypothesis”, and it is known that there are infinitely many imaginary quadratic extensions 𝒦\mathcal{K} of \mathcal{F} such that this assumption is satisfied. When understanding σ\sigma and π\pi as automorphic representations “generated” by “modular forms” of “tame levels” NσN_{\sigma} and NπN_{\pi}, Assumption 3.11 is requiring NσN_{\sigma} and NπN_{\pi} be coprime.

Assumption 3.9 may be awkward. This is because the computation of local Ichino-Ikeda integrals at places where 𝒦/\mathcal{K}/\mathcal{F} is ramified with both πv\pi_{v} and σv\sigma_{v} unramified is still out of reach for us, for general signatures. It is proved that

v(σv,πv)=v(σv×πv).\mathscr{I}_{v}(\sigma_{v},\pi_{v})=\mathscr{L}_{v}(\sigma_{v}\times\pi_{v}).

in the case H=U(2,0)H=\mathrm{U}(2,0) and G=U(3,0)G=\mathrm{U}(3,0) in [HY23, Appendix B]. It is believed that their method can be generalized to arbitrary signature case, by combinatorial brute force. We shall pursue this in future works. In particular, we note that this assumption exclude the case where 𝒦/\mathcal{K}/\mathcal{F} is an imaginary quadratic extension of \mathbb{Q}.

For simplicity, for any place vv of \mathcal{F}, when it is clear from the context, we shall write

  • H:=H(v)H:=H(\mathcal{F}_{v}), G:=G(v)G:=G(\mathcal{F}_{v}) and similarly for other groups,

  • σ:=σv\sigma:=\sigma_{v}, π:=πv\pi:=\pi_{v} and similarly for other local representations, and

  • extension of local fields 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} will be written as K/FK/F if this will not cause any confusion. In this case, we write 𝔬,𝔭,ϖ\mathfrak{o},\mathfrak{p},\varpi for the ring of integers, the maximal ideal, and a fixed choice of uniformizer of FF respectively, and let qq be the cardinality of the residue field 𝔬/𝔭\mathfrak{o}/\mathfrak{p} of FF. The absolute value ||\left|{-}\right| on FF is normalized via |ϖ|=q1\left|{\varpi}\right|=q^{-1} and the corresponding valuation on FF is denoted by vv.

4. Local Ichino-Ikeda integrals at archimedean places

In this section, we consider v𝒱v\in\mathscr{V}_{\mathcal{F}}^{\infty}, an archimedean place of \mathcal{F}.

4.1. Weight interlacing property

As promised, we shall first introduce the weight interlacing assumption (Assumption 3.8). The primary reference is [He17].

Let σ\sigma be a discrete series representation of Um,n\mathrm{U}_{m,n}. It is known that discrete series of Um,n\mathrm{U}_{m,n} are parameterized by Harish-Chandra parameters (ξ,z)(\xi,z), where ξm+n\xi\in\mathbb{R}^{m+n} is a sequence of distinct integers or half-integers and z{+,}m+nz\in\{+,-\}^{m+n} is a sequence of ++ and - corresponding to each entry in ξ\xi, such that the total number of ++’s must be mm and the total number of -’s must be nn. We denote such a discrete series as 𝒟(ξ,z)\mathcal{D}(\xi,z).

Let σ=𝒟(χ,z)\sigma=\mathcal{D}(\chi,z) be a discrete series of Um,n\mathrm{U}_{m,n} and π=𝒟(η,t)\pi=\mathcal{D}(\eta,t) be a discrete series of Um+1,n\mathrm{U}_{m+1,n}. Here we represent the +,+,- in tt by ,\oplus,\ominus. We say σ\sigma and π\pi satisfies the Gan-Gross-Prasad weight interlacing relation if one can line up ξ\xi and η\eta in the descending ordering such that the corresponding sequence of signs from zz and tt only has the following eight adjacent pairs

(,+),(+,),(,),(,),(+,),(,+),(,),(,).(\oplus,+),(+,\oplus),(-,\ominus),(\ominus,-),(+,-),(-,+),(\oplus,\ominus),(\ominus,\oplus).

The local Gan-Gross-Prasad conjecture at archimedean places for discrete series, now being a theorem of He [He17, Theorem 1.1], is the following result.

Theorem 4.1.

The discrete series 𝒟(η,t)\mathcal{D}(\eta,t) of Um,n\mathrm{U}_{m,n} appears as a subrepresentation of the restriction 𝒟(ξ,z)|Um,n\mathcal{D}(\xi,z)|_{\mathrm{U}_{m,n}} if and only if 𝒟(η,t)\mathcal{D}(\eta,t) and 𝒟(ξ,z)\mathcal{D}(\xi,z) satisfy the Gan-Gross-Prasad weight interlacing property.

4.2. Local Ichino-Ikeda integral

By adjointness of corresponding functors, we have

HomH(Π,)=HomH(π|Hσ,)=HomH(π|H,HomH(σ,))=HomH(π|H,σ)\operatorname{Hom}_{H}(\Pi,\mathbb{C})=\operatorname{Hom}_{H}\left(\pi|_{H}\boxtimes\sigma,\mathbb{C}\right)=\operatorname{Hom}_{H}(\pi|_{H},\operatorname{Hom}_{H}(\sigma,\mathbb{C}))=\operatorname{Hom}_{H}(\pi|_{H},\sigma^{\vee})

Note that since σ\sigma is an irreducible admissible representation of HH, so does its contragredient σ\sigma^{\vee}. By Schur’s lemma, we see that HomH(Π,)\operatorname{Hom}_{H}(\Pi,\mathbb{C}) is nonzero if and only if σ\sigma^{\vee} is a subrepresentation of π|H\pi|_{H}, hence if and only if σ\sigma^{\vee} and π\pi satisfy the GGP weight interlacing property by Theorem 4.1.

One further notes that the condition “HomH(Π,){0}\operatorname{Hom}_{H}(\Pi,\mathbb{C})\neq\{0\}” says that there are nontrivial HH-invariant vectors ΞΠ\Xi^{\circ}\in\Pi. Therefore, it follows directly from the definition that

I(Ξ,Ξ):=HΠ(Δ(h))Ξ,ΞΠdh=Ξ,ΞI(\Xi^{\circ},\Xi^{\vee}):=\int_{H}\left\langle{\Pi(\Delta^{\sharp}(h))\Xi^{\circ},\Xi^{\vee}}\right\rangle_{\Pi}\,\mathrm{d}h=\left\langle{\Xi^{\circ},\Xi^{\vee}}\right\rangle

for any ΞΠ\Xi^{\vee}\in\Pi^{\vee}. Therefore, we have the following proposition.

Proposition 4.2.

Under Assumption 3.8, for any v𝒱v\in\mathscr{V}_{\mathcal{F}}^{\infty}, v(σv,πv)=1\mathscr{I}_{v}(\sigma_{v},\pi_{v})=1.

We remark that the weight interlacing assumption (i.e. Assumption 3.8) guarantees that the local Ichino-Ikeda integral is nonzero.

5. Local Ichino-Ikeda integrals at split primes

In this section, we deal with the local Ichino-Ikeda integrals at places v𝒱splv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{spl}}, i.e. finite places of \mathcal{F} that splits in 𝒦\mathcal{K}. It includes places of \mathcal{F} above pp.

In Section 2.1.1, we have seen that there are isomorphisms

ϱw,m,n:HGLm+n(F),ϱw,m,n+1:GGLm+n+1(F)\varrho_{w,m,n}:H\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{GL}_{m+n}(F),\quad\varrho_{w,m,n+1}:G\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{GL}_{m+n+1}(F)

To make it more convenience when dealing with local Ichino-Ikeda integrals, we adjust the isomorphisms ϱw,n\varrho_{w,n} and ϱw,n+1\varrho_{w,n+1} such that the diagram

H{{H}}G{{G}}GLm+n(F){{\mathrm{GL}_{m+n}(F)}}GLm+n+1(F){{\mathrm{GL}_{m+n+1}(F)}}ȷ\scriptstyle{\jmath^{\sharp}}ϱw,m,n\scriptstyle{\varrho_{w,m,n}}ϱw,m,n+1\scriptstyle{\varrho_{w,m,n+1}}ȷGL\scriptstyle{\jmath^{\mathrm{GL}}}

commutes, with

ȷGL:GLm+n(v)GLm+n+1(v),gdiag[g,1]\jmath^{\mathrm{GL}}:\mathrm{GL}_{m+n}(\mathcal{F}_{v})\hookrightarrow\mathrm{GL}_{m+n+1}(\mathcal{F}_{v}),\quad g\mapsto\operatorname{diag}[g,1]

Under isomorphisms ϱw,m+n\varrho_{w,m+n} and ϱw,m+n+1\varrho_{w,m+n+1}, we regard σ\sigma and π\pi as representations of GLm+n(F)\mathrm{GL}_{m+n}(F) and GLm+n+1(F)\mathrm{GL}_{m+n+1}(F) respectively.

5.1. Basic representation theory of GLn(F)\mathrm{GL}_{n}(F)

In this subsection, we briefly review some basic representation theory of GLn(F)\mathrm{GL}_{n}(F). Solely in this subsection, we let m,n,lm,n,l be a general positive integers (that are not related to the unitary groups before).

We fix an additive character 𝝍:F×\boldsymbol{\psi}:F\rightarrow\mathbb{C}^{\times} which is trivial on 𝔬\mathfrak{o} and nontrivial on 𝔭1\mathfrak{p}^{-1}. We write 𝒮(F)\mathscr{S}(F) for the space of locally constant compactly supported functions on FF. The Fourier transform of ϕ𝒮(F)\phi\in\mathscr{S}(F) is defined by

ϕ^(y)=Fϕ(x)𝝍(xy)dx.\widehat{\phi}(y)=\int_{F}\phi(x)\boldsymbol{\psi}(-xy)\,\mathrm{d}x.

The measure dx\,\mathrm{d}x is chosen so that ϕ^^(x)=ϕ(x)\widehat{\widehat{\phi}}(x)=\phi(-x).

Put τ:F××\tau:F^{\times}\rightarrow\mathbb{C}^{\times} an arbitrary multiplicative character of F×F^{\times}, we define 𝔤(τ,𝝍,y)\mathfrak{g}(\tau,\boldsymbol{\psi},y) denotes the Gauss sum

𝔤(τ,𝝍,y):=𝔬×τ(z)𝝍(yz)d×z\mathfrak{g}(\tau,\boldsymbol{\psi},y):=\int_{\mathfrak{o}^{\times}}\tau(z)\boldsymbol{\psi}(yz)\,\mathrm{d}^{\times}z

for yFy\in F. When y=1y=1 and 𝝍\boldsymbol{\psi} is clear from contexts, we shall simply write 𝔤(τ)\mathfrak{g}(\tau) for short.

5.1.1. Whittaker models

Extend 𝝍\boldsymbol{\psi} to Un(F)U_{n}(F) by the rule

𝝍(u):=i=1n1𝝍(ui,i+1),u=(ui,j)Un(F).\boldsymbol{\psi}(u):=\prod_{i=1}^{n-1}\boldsymbol{\psi}(u_{i,i+1}),\,u=(u_{i,j})\in U_{n}(F).

This is a generic character. Note that it is trivial on Un(𝔬)U_{n}(\mathfrak{o}).

Let π\pi be an irreducible admissible representation of GLn(F)\mathrm{GL}_{n}(F). It is called generic if

HomGLn(F)(π,IndUn(F)GLn(F)𝝍)0.\operatorname{Hom}_{\mathrm{GL}_{n}(F)}(\pi,\operatorname{Ind}_{U_{n}(F)}^{\mathrm{GL}_{n}(F)}\boldsymbol{\psi})\neq 0.

It is known that tempered representations are always generic. By Frobenius reciprocity, this means that there exists a nonzero linear form λ:Vπ\lambda:V_{\pi}\rightarrow\mathbb{C} such that

λ(π(u)v)=𝝍(u)λ(v),vVπ,uUn(F).\lambda(\pi(u)v)=\boldsymbol{\psi}(u)\lambda(v),\quad v\in V_{\pi},u\in U_{n}(F).

It is known that for a generic π\pi, HomGLn(F)(π,IndUn(F)GLn(F)𝝍)\operatorname{Hom}_{\mathrm{GL}_{n}(F)}(\pi,\operatorname{Ind}_{U_{n}(F)}^{\mathrm{GL}_{n}(F)}\boldsymbol{\psi}) is of dimension one. The Whittaker model 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi) of π\pi with respect to 𝝍\boldsymbol{\psi} is defined as

𝒲𝝍(π):={Wv:GLn(F):Wv(g)=λ(π(g)v),vVπ}.\mathcal{W}_{\boldsymbol{\psi}}(\pi):=\{W_{v}:\mathrm{GL}_{n}(F)\rightarrow\mathbb{C}:W_{v}(g)=\lambda(\pi(g)v),v\in V_{\pi}\}.

Then 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi) is independent of the choice of λ\lambda, and for uUn(F)u\in U_{n}(F), gGLn(F)g\in\mathrm{GL}_{n}(F),

Wv(ug)=𝝍(u)Wv(g),Wv(g)=Wπ(g)v(𝟏n).W_{v}(ug)=\boldsymbol{\psi}(u)W_{v}(g),\,W_{v}(g)=W_{\pi(g)v}(\mathbf{1}_{n}).

Then the map vWvv\mapsto W_{v} gives an isomorphism 𝖶π:Vπ𝒲𝝍(π)\mathsf{W}_{\pi}:V_{\pi}\rightarrow\mathcal{W}_{\boldsymbol{\psi}}(\pi). One can define an invariant perfect pairing

,:𝒲𝝍(π)𝒲𝝍1(π)\left\langle{-,-}\right\rangle:\mathcal{W}_{\boldsymbol{\psi}}(\pi)\otimes\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\pi^{\vee})\rightarrow\mathbb{C}

such that ϕ,ϕ=𝖶π(ϕ),𝖶π(ϕ)\left\langle{\phi,\phi^{\vee}}\right\rangle=\left\langle{\mathsf{W}_{\pi}(\phi),\mathsf{W}_{\pi^{\vee}}(\phi^{\vee})}\right\rangle, where the pairing ,\left\langle{-,-}\right\rangle on the left is the canonical pairing between π\pi and π\pi^{\vee}.

Given W𝒲𝝍(π)W\in\mathcal{W}_{\boldsymbol{\psi}}(\pi), we define W~𝒲𝝍1(π)\widetilde{W}\in\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\pi^{\vee}) by W~(g)=W(wngt)\widetilde{W}(g)=W(w_{n}g^{-\mathrm{t}}), where wn:=[111]w_{n}:=\begin{bmatrix}&&&1\\ &&1&\\ &\iddots&&\\ 1&&&\end{bmatrix} is the longest Weyl element.

5.1.2. The JPSS integrals and local JPSS LL-factors

Now let π\pi be an irreducible admissible generic representation of GLm+1(F)\mathrm{GL}_{m+1}(F). Let nn be a positive integer which is equal or less than mm. Put l=mnl=m-n. Let σ\sigma be an irreducible admissible generic representation of GLn(F)\mathrm{GL}_{n}(F) whose central character is ωσ\omega_{\sigma}. We associate to Whittaker functions W𝒲𝝍(π)W\in\mathcal{W}_{\boldsymbol{\psi}}(\pi) and W𝒲𝝍1(σ)W^{\prime}\in\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\sigma) the local zeta integrals 101010There appears to be a typographical error on [HY23, page 37] where it was written that W𝒲𝝍(σ)W^{\prime}\in\mathcal{W}_{\boldsymbol{\psi}}(\sigma).

Z(s,W,W)\displaystyle Z(s,W,W^{\prime}) =Un(F)\GLn(F)W([h𝟏l+1])W(h)|deth|sl+12dh,\displaystyle=\int_{U_{n}(F)\backslash\mathrm{GL}_{n}(F)}W\left(\begin{bmatrix}h&\\ &\mathbf{1}_{l+1}\end{bmatrix}\right)W^{\prime}(h)\left|{\det h}\right|^{s-\frac{l+1}{2}}\,\mathrm{d}h,
Z~(s,W~,W~)\displaystyle\widetilde{Z}(s,\widetilde{W},\widetilde{W^{\prime}}) =Un(F)\GLn(F)Ml×n(F)W~([hx𝟏l1])W~(h)|deth|sl+12dxdh,\displaystyle=\int_{U_{n}(F)\backslash\mathrm{GL}_{n}(F)}\int_{\mathrm{M}_{l\times n}(F)}\widetilde{W}\left(\begin{bmatrix}h&&\\ x&\mathbf{1}_{l}&\\ &&1\end{bmatrix}\right)\widetilde{W^{\prime}}(h)\left|{\det h}\right|^{s-\frac{l+1}{2}}\,\mathrm{d}x\,\mathrm{d}h,

which converge absolutely for Res0\operatorname{Re}s\gg 0, where dh\,\mathrm{d}h is the Haar measure on GLn(F)\mathrm{GL}_{n}(F) giving GLn(𝔬)\mathrm{GL}_{n}(\mathfrak{o}) volume 11.

We write LJPSS(s,π×σ)L^{\mathrm{JPSS}}(s,\pi\times\sigma), εJPSS(s,π×σ,𝝍)\varepsilon^{\mathrm{JPSS}}(s,\pi\times\sigma,\boldsymbol{\psi}) and γJPSS(s,π×σ,𝝍)\gamma^{\mathrm{JPSS}}(s,\pi\times\sigma,\boldsymbol{\psi}) for the LL, epsilon and gamma factors associated to π\pi and σ\sigma. These local factors are studied extensively in [JPS83]. The gamma factor is defined as the proportionality constant of the functional equation

Z(1s,π(wm+1,n)W~,W~)=ωσ(1)mγJPSS(s,π×σ,𝝍)Z~(s,W,W),Z(1-s,\pi^{\vee}(w_{m+1,n})\widetilde{W},\widetilde{W^{\prime}})=\omega_{\sigma}(-1)^{m}\gamma^{\mathrm{JPSS}}(s,\pi\times\sigma,\boldsymbol{\psi})\widetilde{Z}(s,W,W^{\prime}), (5.12)

where

wm+1,n=[𝟏nwmn+1].w_{m+1,n}=\begin{bmatrix}\mathbf{1}_{n}&\\ &w_{m-n+1}\end{bmatrix}.
Remark 5.1.

We are only interested in the case n=mn=m (so l=0l=0). By a change of variables, we see that

Z(s,W,σ(h0)W)=|deth0|12sZ(s,π(ȷGL(h01))W,W)Z(s,W,\sigma(h_{0})W^{\prime})=\left|{\det h_{0}}\right|^{\frac{1}{2}-s}Z(s,\pi(\jmath^{\mathrm{GL}}(h_{0}^{-1}))W,W^{\prime}) (5.13)

for any h0GLn(F)h_{0}\in\mathrm{GL}_{n}(F). This property is called the invariance of JPSS integrals.

When we view π\pi and σ\sigma are representations of unitary groups over the split quadratic algebra K=FFK=F\oplus F,

L(s,π×σ)=LJPSS(s,π×σ)LJPSS(s,π×σ).L(s,\pi\times\sigma)=L^{\mathrm{JPSS}}(s,\pi\times\sigma)L^{\mathrm{JPSS}}(s,\pi^{\vee}\times\sigma^{\vee}). (5.14)

When n=1n=1 and χ\chi is a character of F×F^{\times}, we have

LGJ(s,πχ)=LJPSS(s,π×χ),L^{\mathrm{GJ}}(s,\pi\otimes\chi)=L^{\mathrm{JPSS}}(s,\pi\times\chi), (5.15a)
εGJ(s,πχ,𝝍)=εJPSS(s,π×χ,𝝍),\varepsilon^{\mathrm{GJ}}(s,\pi\otimes\chi,\boldsymbol{\psi})=\varepsilon^{\mathrm{JPSS}}(s,\pi\times\chi,\boldsymbol{\psi}), (5.15b)
γGJ(s,πχ,𝝍)=γJPSS(s,π×χ,𝝍),\gamma^{\mathrm{GJ}}(s,\pi\otimes\chi,\boldsymbol{\psi})=\gamma^{\mathrm{JPSS}}(s,\pi\times\chi,\boldsymbol{\psi}), (5.15c)

where the local LL-factors are the Godement-Jacquet LL-factors studied extensively in [GJ72]. Moreover, recall that

L(s,π,Ad)=LJPSS(s,π×π),L(s,σ,Ad)=LJPSS(s,σ×σ),L(s,\pi,\operatorname{Ad})=L^{\mathrm{JPSS}}(s,\pi\times\pi^{\vee}),\quad L(s,\sigma,\operatorname{Ad})=L^{\mathrm{JPSS}}(s,\sigma\times\sigma^{\vee}), (5.16)

where we regard π\pi and σ\sigma as representation of unitary groups on the left hand side and representations of general linear groups on the right hand side. Combining (5.14) and (5.16), we obtain

(π×σ)=LJPSS(12,π×σ)LJPSS(12,π×σ)LJPSS(12,π×π)LJPSS(12,σ×σ).\mathscr{L}(\pi\times\sigma)=\dfrac{L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\pi\times\sigma\right)L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\pi^{\vee}\times\sigma^{\vee}\right)}{L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\pi\times\pi^{\vee}\right)L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\sigma\times\sigma^{\vee}\right)}. (5.17)
5.1.3. The naive local Rankin-Selberg LL-factor

We keep the notations and conventions of previous section, and consider the special case n=mn=m (so l=0l=0). By definition, the local Godement-Jacquet LL-function LGJ(s,σ)L^{\mathrm{GJ}}(s,\sigma) is of the form Pσ(qs)1P_{\sigma}(q^{-s})^{-1}, where Pσ[X]P_{\sigma}\in\mathbb{C}[X] has degree at most nn and satisfies Pσ(0)=1P_{\sigma}(0)=1, We may then find nn complex numbers {αi}i=1n\{\alpha_{i}\}_{i=1}^{n} (some of them may be zero) such that

LGJ(s,σ)=i=1n(1αiqs)1.L^{\mathrm{GJ}}(s,\sigma)=\prod_{i=1}^{n}(1-\alpha_{i}q^{-s})^{-1}.

We call the set {αi}\{\alpha_{i}\} the Langlands parameter of σ\sigma. Let {γi}j=1n+1\{\gamma_{i}\}_{j=1}^{n+1} be the Langlands parameter of π\pi. Then we define

LRS(s,π×σ):=i=1nj=1n+1(1αiγjqs)1,L^{\mathrm{RS}}(s,\pi\times\sigma):=\prod_{i=1}^{n}\prod_{j=1}^{n+1}(1-\alpha_{i}\gamma_{j}q^{-s})^{-1},

to be the naive local Rankin-Selberg LL-factor. We shall compare it with the local JPSS LL-factor. Morally speaking, LRS(s,π×σ)L^{\mathrm{RS}}(s,\pi\times\sigma) sees the “unramified part” of LJPSS(s,π×σ)L^{\mathrm{JPSS}}(s,\pi\times\sigma).

We need Bernstein-Zelevinsky’s classification theorm of irreducible admissible representations of GLn(F)\mathrm{GL}_{n}(F). For our purpose, we restrict us to the classification of tempered ones 111111See, for example, [GH11b, Theorem 14.6.4-14.6.5] for the case GLn(p)\mathrm{GL}_{n}(\mathbb{Q}_{p}). There are two phrases.

  • Discrete series. Let r,dr,d be two positive integers such that rd=nrd=n and let η\eta be an irreducible supercuspidal representation of GLr(F)\mathrm{GL}_{r}(F) with unitary central character. Then

    IndP[r,,r]GLn(F)(η,𝜶F(1d)/2η,,𝜶F(d1)/2η)\operatorname{Ind}_{P[r,\ldots,r]}^{\mathrm{GL}_{n}(F)}(\eta,\boldsymbol{\alpha}_{F}^{(1-d)/2}\eta,\ldots,\boldsymbol{\alpha}_{F}^{(d-1)/2}\eta)

    has a unique irreducible quotient, denoted by BZ(η,d)\mathrm{BZ}(\eta,d). Every discrete series representation of GLn(F)\mathrm{GL}_{n}(F) is isomorphic to some BZ(η,d)\mathrm{BZ}(\eta,d).

  • Tempered representations. Let n=r1++rsn=r_{1}+\cdots+r_{s} be a partition of nn and τi\tau_{i} be discrete series of GLri(F)\mathrm{GL}_{r_{i}}(F) for i=1,,si=1,\ldots,s. Then

    τ1τs:=IndP[r1,,rs]GLn(F)(τ1,,τs)\tau_{1}\boxplus\cdots\boxplus\tau_{s}:=\operatorname{Ind}_{P[r_{1},\ldots,r_{s}]}^{\mathrm{GL}_{n}(F)}(\tau_{1},\ldots,\tau_{s})

    is irreducible and tempered. Every tempered representation is isomorphic to this form. The operation “\boxplus” is called the isobaric sum.

Let σ=τ1τs\sigma=\tau_{1}\boxplus\cdots\boxplus\tau_{s} be a tempered representation of GLn(F)\mathrm{GL}_{n}(F). Let (τj1,,τjr)(\tau_{j_{1}},\ldots,\tau_{j_{r}}) be the tuple of unramified isobaric summands of σ\sigma with increasing jkj_{k}’s. We define the unramified socle of σ\sigma as the isobaric sum σur:=k=1rτjk\sigma_{{\mathrm{ur}}}:=\boxplus_{k=1}^{r}\tau_{j_{k}} as an unramified tempered representation of GLrj1+rjr(F)\mathrm{GL}_{r_{j_{1}}+\cdots r_{j_{r}}}(F). Obviously if σ\sigma itself is unramified, then σur=σ\sigma_{{\mathrm{ur}}}=\sigma.

Proposition 5.2.

With conventions and notations above, we have:

  1. (1)

    The local LL-factors LRS(s,×)L^{\mathrm{RS}}(s,-\times-) and LJPSS(s,×)L^{\mathrm{JPSS}}(s,-\times-) are bi-additive under the isobaric sum, i.e.

    L(s,π×(σσ))\displaystyle L^{\bullet}(s,\pi\times(\sigma\boxplus\sigma^{\prime})) =L(s,π×σ)L(s,π×σ),\displaystyle=L^{\bullet}(s,\pi\times\sigma)L^{\bullet}(s,\pi\times\sigma^{\prime}),
    L(s,(ππ),σ)\displaystyle L^{\bullet}(s,(\pi\boxplus\pi^{\prime}),\sigma) =L(s,π×σ)L(s,π×σ),\displaystyle=L^{\bullet}(s,\pi\times\sigma)L^{\bullet}(s,\pi^{\prime}\times\sigma),

    for {RS,JPSS}\bullet\in\{\mathrm{RS},\mathrm{JPSS}\} and all irreducible admissible representations π,π,σ,σ\pi,\pi^{\prime},\sigma,\sigma^{\prime} of general linear groups.

  2. (2)

    If both σ\sigma and π\pi are unramified irreducible admissible representations of GLn(F)\mathrm{GL}_{n}(F) and GLn+1(F)\mathrm{GL}_{n+1}(F) respectively, then LRS(s,π×σ)=LJPSS(s,π×σ)L^{\mathrm{RS}}(s,\pi\times\sigma)=L^{\mathrm{JPSS}}(s,\pi\times\sigma).

  3. (3)

    If either σ\sigma or π\pi is ramified discrete series representations of GLn(F)\mathrm{GL}_{n}(F) and GLn+1(F)\mathrm{GL}_{n+1}(F) respectively, then LRS(s,π×σ)=1L^{\mathrm{RS}}(s,\pi\times\sigma)=1.

Therefore, we have LRS(s,π×σ)=LJPSS(s,π×σur)=LJPSS(s,πur×σ)L^{\mathrm{RS}}(s,\pi\times\sigma)=L^{\mathrm{JPSS}}(s,\pi\times\sigma_{{\mathrm{ur}}})=L^{\mathrm{JPSS}}(s,\pi_{{\mathrm{ur}}}\times\sigma).

Proof.

The bi-additive property of LRSL^{\mathrm{RS}} follows easily from the definition, and that of LJPSSL^{\mathrm{JPSS}} is [JPS83, Section 9.5, Theorem]. The result in (2) is stated in [JPS83, Equation (14) on page 371]. For (3), it follows from the definition of LRSL^{\mathrm{RS}} that it suffices to show the following claim: let τ\tau be a ramified discrete series of GLn(F)\mathrm{GL}_{n}(F), then LGJ(s,τ)=1L^{\mathrm{GJ}}(s,\tau)=1. (Clearly, this is equivalent to that all Langlands parameters of τ\tau are zero.) To show this claim, by Bernstein-Zelevinsky’s classification, τ=BZ(η,d)\tau=\mathrm{BZ}(\eta,d). Then we know

LGJ(s,τ)={L(s,𝜶F1nη),d=n,1,dn,L^{\mathrm{GJ}}(s,\tau)=\begin{cases}L(s,\boldsymbol{\alpha}_{F}^{1-n}\eta),&\quad d=n,\\ 1,&\quad d\neq n,\end{cases}

where the LL-factor on the first line is the local Hecke LL-factor for Hecke LL-functions. When dnd\neq n, the claim follows from this fact. When d=nd=n, if τ\tau is ramified, η\eta is then ramified and hence L(s,𝜶F1nη)=1L(s,\boldsymbol{\alpha}_{F}^{1-n}\eta)=1 as well. So the claim is proved. The final equalities in the proposition follows directly from (1) to (3), and the definition of unramified socles. ∎

5.1.4. Essential Whittaker vectors

Now we review the theory of the essential Whittaker vector associated to an irreducible admissible generic representation π\pi of GLn(F)\mathrm{GL}_{n}(F). Given an open compact subgroup Γ\Gamma of GLn(F)\mathrm{GL}_{n}(F) and its character 𝒳:Γ×\mathcal{X}:\Gamma\rightarrow\mathbb{C}^{\times}, we put

𝒲𝝍(π,Γ,𝒳)={W𝒲ψ(π):π(γ)W=𝒳(γ)W for γΓ}.\mathcal{W}_{\boldsymbol{\psi}}(\pi,\Gamma,\mathcal{X})=\{W\in\mathcal{W}_{\psi}(\pi):\pi(\gamma)W=\mathcal{X}(\gamma)W\text{ for }\gamma\in\Gamma\}.

For any integer f0f\geq 0, we consider the following two compact open subgroups of GLn(F)\mathrm{GL}_{n}(F):

K1(𝔭f)\displaystyle K_{1}(\mathfrak{p}^{f}) :={gGLn(𝔬):g[01×(n1)𝟏1](mod𝔭f)},\displaystyle:=\left\{g\in\mathrm{GL}_{n}(\mathfrak{o}):g\equiv\begin{bmatrix}\ast&\ast\\ 0_{1\times(n-1)}&\mathbf{1}_{1}\end{bmatrix}\pmod{\mathfrak{p}^{f}}\right\},
K0(𝔭f)\displaystyle K_{0}(\mathfrak{p}^{f}) :={gGLn(𝔬):g[01×(n1)](mod𝔭f)},\displaystyle:=\left\{g\in\mathrm{GL}_{n}(\mathfrak{o}):g\equiv\begin{bmatrix}\ast&\ast\\ 0_{1\times(n-1)}&\ast\end{bmatrix}\pmod{\mathfrak{p}^{f}}\right\},

so that K1(𝔭f)K_{1}(\mathfrak{p}^{f}) is a normal subgroup of K0(𝔭f)K_{0}(\mathfrak{p}^{f}), with quotient K0(𝔭f)/K1(𝔭f)(𝔬/𝔭f)×K_{0}(\mathfrak{p}^{f})/K_{1}(\mathfrak{p}^{f})\cong(\mathfrak{o}/\mathfrak{p}^{f})^{\times}.

Let c(π)c(\pi) be the exponent of the conductor of π\pi, i.e. the epsilon factor of π\pi satisfies

ε(s+12,π,𝝍)=qc(π)sε(12,π,𝝍).\varepsilon\left(s+\dfrac{1}{2},\pi,\boldsymbol{\psi}\right)=q^{-c(\pi)s}\varepsilon\left(\dfrac{1}{2},\pi,\boldsymbol{\psi}\right).

According to [JPS81, Jac12],

dim𝒲𝝍(π,K1(𝔭c(π)),𝟏)=1.\dim_{\mathbb{C}}\mathcal{W}_{\boldsymbol{\psi}}(\pi,K_{1}(\mathfrak{p}^{c(\pi)}),\mathbf{1})=1.

This subspace of 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi) is called the essential line of 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi), and we define the normalized essential Whittaker vector of π\pi with respect to 𝝍\boldsymbol{\psi} to be Wπ,𝝍ess𝒲𝝍(π,K1(𝔭c(π)),𝟏)W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}}\in\mathcal{W}_{\boldsymbol{\psi}}(\pi,K_{1}(\mathfrak{p}^{c(\pi)}),\mathbf{1}) satisfying

Wπ,𝝍ess([gh1])=Wπ,𝝍ess([g1]) for all hGLn1(𝔬).W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}}\left(\begin{bmatrix}gh&\\ &1\end{bmatrix}\right)=W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}}\left(\begin{bmatrix}g&\\ &1\end{bmatrix}\right)\,\text{ for all }h\in\mathrm{GL}_{n-1}(\mathfrak{o}).
Remark 5.3.
  1. (1)

    If π\pi is unramified, then c(π)=0c(\pi)=0 and by the uniqueness of the essential vectors, Wπ,𝝍essW_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}} is nothing but the normalized spherical function.

  2. (2)

    The larger compact group K0(𝔭c(π))K_{0}(\mathfrak{p}^{c(\pi)}) acts on the essential line via the central character ωπ\omega_{\pi} of π\pi. Precisely, for g=(gi,j)K0(𝔭c(π))g=(g_{i,j})\in K_{0}(\mathfrak{p}^{c(\pi)}), define

    ωπ(g)={1, if c(π)=0,ωπ(gn,n), if c(π)>0.\omega_{\pi}^{\downarrow}(g)=\begin{cases}1,&\quad\text{ if }c(\pi)=0,\\ \omega_{\pi}(g_{n,n}),&\quad\text{ if }c(\pi)>0.\end{cases}

    Then clearly ωπ\omega_{\pi}^{\downarrow} is a character of K0(𝔭c(π))K_{0}(\mathfrak{p}^{c(\pi)}) trivial on K1(𝔭c(π))K_{1}(\mathfrak{p}^{c(\pi)}) and

    π(g)Wπess=ωπ(g)Wπess for all gK0(𝔭c(π)).\pi(g)W_{\pi}^{\mathrm{ess}}=\omega_{\pi}^{\downarrow}(g)W_{\pi}^{\mathrm{ess}}\,\text{ for all }g\in K_{0}(\mathfrak{p}^{c(\pi)}).
  3. (3)

    We recall the definition of conductor of a multiplicative character χ\chi of F×F^{\times}, denoted by c(χ)c(\chi). If χ\chi is trivial, then the conductor of χ\chi is 𝔬\mathfrak{o}, otherwise c(χ)=𝔭nc(\chi)=\mathfrak{p}^{n}, where n1n\geq 1 is the least integer such that χ\chi is trivial on 1+𝔭n1+\mathfrak{p}^{n}.

5.1.5. Test vector problem

Let σ\sigma and π\pi be irreducible admissible tempered representation of GLn(F)\mathrm{GL}_{n}(F) and GLn+1(F)\mathrm{GL}_{n+1}(F) respectively. Previously we have defined the JPSS integrals Z(s,W,W)Z(s,W,W^{\prime}) for Whittaker functions W𝒲𝝍(π)W\in\mathcal{W}_{\boldsymbol{\psi}}(\pi) and W𝒲𝝍(σ)W^{\prime}\in\mathcal{W}_{\boldsymbol{\psi}}(\sigma). The test vector problem is to find Whittaker functions W𝒲𝝍(π)W^{\circ}\in\mathcal{W}_{\boldsymbol{\psi}}(\pi) and W,𝒲𝝍(σ)W^{\prime,\circ}\in\mathcal{W}_{\boldsymbol{\psi}}(\sigma) such that

Z(s,W,W,)=LJPSS(s,π×σ).Z(s,W^{\circ},W^{\prime,\circ})=L^{\mathrm{JPSS}}(s,\pi\times\sigma).

In this section we introduce two partial results on this problem, which are sufficient to compute the local Ichino-Ikeda integral under Assumption 3.11.

Theorem 5.4 ([JPS81, Théorème on page 208]).

Suppose σ\sigma is unramified, then

Z(12,Wπ,𝝍ess,Wσ,𝝍1ess)=LJPSS(12,π×σ).Z\left(\dfrac{1}{2},W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}}\right)=L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\pi\times\sigma\right).

The case when σ\sigma is ramified is more complicated. In this case, Booker, Krishmanrthy and Lee [BKL20] modified Wπ,ψessW_{\pi,\psi}^{\mathrm{ess}} through a process of unipotent averaging. This method dates back to [Sch93], etc..

Let 𝔫\mathfrak{n}, 𝔮\mathfrak{q}, 𝔠\mathfrak{c} denote the conductor of π\pi, σ\sigma and ωσ\omega_{\sigma} (the central character of σ\sigma), respectively. Consider β=(β1,,βn)Fn\beta=(\beta_{1},\ldots,\beta_{n})\in F^{n} with βi𝔮1\beta_{i}\in\mathfrak{q}^{-1} for i=1,,ni=1,\ldots,n. Let 𝐮(β)=(ui,j)\mathbf{u}(\beta)=(u_{i,j}) denote the matrix

𝐮(β)=[1β11β21βn1]Un+1(F).\mathbf{u}(\beta)=\begin{bmatrix}1&&&&\beta_{1}\\ &1&&&\beta_{2}\\ &&\ddots&&\vdots\\ &&&1&\beta_{n}\\ &&&&1\end{bmatrix}\in U_{n+1}(F).

We define for any W𝒲𝝍(π)W\in\mathcal{W}_{\boldsymbol{\psi}}(\pi) the unipotent averaging operator

ΘW:=1[𝔬:𝔮]n1(β1,,βn1)(𝔮1/𝔬)n1π(𝐮(β1,,βn1,ϖc(ωσ)))W𝒲𝝍(π).\Theta W:=\dfrac{1}{[\mathfrak{o}:\mathfrak{q}]^{n-1}}\sum_{(\beta_{1},\ldots,\beta_{n-1})\in(\mathfrak{q}^{-1}/\mathfrak{o})^{n-1}}\pi(\mathbf{u}(\beta_{1},\ldots,\beta_{n-1},\varpi^{-c(\omega_{\sigma})}))W\in\mathcal{W}_{\boldsymbol{\psi}}(\pi).

(When n=1n=1, we understand there to be one summand, so that ΘW=π(ϖc(ωσ))W\Theta W=\pi(\varpi^{-c(\omega_{\sigma})})W).

Then we have the following theorem.

Theorem 5.5.

Notations and conventions as above. Under Assumption 3.11, when σv\sigma_{v} is ramified, we have

Z(12,ΘWπ,𝝍ess,Wσ,𝝍1ess)=Cσ,𝝍LJPSS(12,π×σ),Z\left(\dfrac{1}{2},\Theta W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}}\right)=C_{\sigma,\boldsymbol{\psi}}\cdot L^{\mathrm{JPSS}}\left(\dfrac{1}{2},\pi\times\sigma\right),

where Cσ,𝛙C_{\sigma,\boldsymbol{\psi}} is an explicit nonzero number

Cσ,𝝍:=𝔤(ωσ,𝝍,ϖv(𝔠))[GLn(𝔬):K0(𝔮)]0.C_{\sigma,\boldsymbol{\psi}}:=\dfrac{\mathfrak{g}(\omega_{\sigma},\boldsymbol{\psi},\varpi^{-v(\mathfrak{c})})}{[\mathrm{GL}_{n}(\mathfrak{o}):K_{0}(\mathfrak{q})]}\neq 0.
Proof.

The main theorem of [BKL20] is that

Z(s,ΘWπ,𝝍ess,Wσ,𝝍1ess)=Cσ,𝝍LRS(s,π×σ),Z\left(s,\Theta W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}}\right)=C_{\sigma,\boldsymbol{\psi}}\cdot L^{\mathrm{RS}}\left(s,\pi\times\sigma\right),

with the constant Cσ,𝝍C_{\sigma,\boldsymbol{\psi}} hidden on [BKL20, page 46]. Under Assumption 3.11, when σv\sigma_{v} is ramified, πv\pi_{v} is then unramified. Therefore by Proposition 5.2, we see LRS(s,π×σ)=LJPSS(s,πur×σ)=LJPSS(s,π×σ)L^{\mathrm{RS}}(s,\pi\times\sigma)=L^{\mathrm{JPSS}}(s,\pi_{{\mathrm{ur}}}\times\sigma)=L^{\mathrm{JPSS}}(s,\pi\times\sigma). Taking s=1/2s=1/2 gives the result. ∎

5.2. The splitting lemma

Finally we finshed the preparations on local representation theory of general linear groups. We go back to the computation of local Ichino-Ikeda integrals.

Let π\pi be an irreducible admissible tempered representation of GLm+n+1(F)\mathrm{GL}_{m+n+1}(F) and σ\sigma that of GLm+n(F)\mathrm{GL}_{m+n}(F). We consider the integral

J(W1,W2,W1,W2):=GLm+n(F)π(ȷGL(h))W1,W2πσ(h)W1,W2σdh.J(W_{1},W_{2},W_{1}^{\prime},W_{2}^{\prime}):=\int_{\mathrm{GL}_{m+n}(F)}\left\langle{\pi(\jmath^{\mathrm{GL}}(h))W_{1},W_{2}}\right\rangle_{\pi}\left\langle{\sigma(h)W_{1}^{\prime},W_{2}^{\prime}}\right\rangle_{\sigma}\,\mathrm{d}h.

where

W1𝒲𝝍(π),W2𝒲𝝍1(π),W1𝒲𝝍1(σ),W2𝒲𝝍(σ).W_{1}\in\mathcal{W}_{\boldsymbol{\psi}}(\pi),\,W_{2}\in\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\pi^{\vee}),\,W_{1}^{\prime}\in\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\sigma),\,W_{2}^{\prime}\in\mathcal{W}_{\boldsymbol{\psi}}(\sigma^{\vee}).

This integral converges.

An essential tool is the splitting lemma of Wei Zhang 121212Note that [Zha14], Zhang used unnormalized local Haar measures while here we are using normalized ones, reformulated as [HY23, Lemma 5.2]. Interested readers can turn to [HY23, Remark 5.3] for some familiar special cases of this lemma, as follows.

Theorem 5.6 (Splitting lemma, [Zha14, Proposition 4.10]).

Notations being as above, we have

J(W1,W2,W1,W2)=Z(12,W1,W1)Z(12,W2,W2)i=1m+n1ζF(i).J(W_{1},W_{2},W_{1}^{\prime},W_{2}^{\prime})=Z\left(\dfrac{1}{2},W_{1},W_{1}^{\prime}\right)Z\left(\dfrac{1}{2},W_{2},W_{2}^{\prime}\right)\prod_{i=1}^{m+n-1}\zeta_{F}(i).

Therefore, the computation of local Ichino-Ikeda integrals reduces to that of local JPSS integrals. Indeed, under the identifications of unitary groups and general linear groups via ϱw,m,n\varrho_{w,m,n} and ϱw,m,n+1\varrho_{w,m,n+1}, and local Whittaker models, we have the following corollary.

Corollary 5.7.

Notations being as above, we have

(σ,π)=J(W1,W2,W1,W2)W1,W2W1,W2=Z(1/2,W1,W1)Z(1/2,W2,W2)W1,W2W1,W2i=1m+n1ζF(i).\mathscr{I}(\sigma,\pi)=\dfrac{J(W_{1},W_{2},W_{1}^{\prime},W_{2}^{\prime})}{\left\langle{W_{1},W_{2}}\right\rangle\left\langle{W_{1}^{\prime},W_{2}^{\prime}}\right\rangle}=\dfrac{Z\left(1/2,W_{1},W_{1}^{\prime}\right)Z\left(1/2,W_{2},W_{2}^{\prime}\right)}{\left\langle{W_{1},W_{2}}\right\rangle\left\langle{W_{1}^{\prime},W_{2}^{\prime}}\right\rangle}\prod_{i=1}^{m+n-1}\zeta_{F}(i).

5.3. Local Ichino-Ikeda integrals at 𝒱ram\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}}

Taking

π(W1,W2):=W1,W2LJPSS(1/2,π×π),σ(W1,W2):=W1,W2LJPSS(1/2,σ×σ)\mathcal{B}_{\pi}(W_{1},W_{2}):=\dfrac{\left\langle{W_{1},W_{2}}\right\rangle}{L^{\mathrm{JPSS}}(1/2,\pi\times\pi^{\vee})},\quad\mathcal{B}_{\sigma}(W_{1}^{\prime},W_{2}^{\prime}):=\dfrac{\left\langle{W_{1}^{\prime},W_{2}^{\prime}}\right\rangle}{L^{\mathrm{JPSS}}(1/2,\sigma\times\sigma^{\vee})}

and further write 131313We note that this is a little bit different from the definition of πl\mathcal{B}_{\pi_{l}} and σl\mathcal{B}_{\sigma_{l}} in [HY23, Sect. 4.7].

πess:=π(Wπ,𝝍ess,Wπ,𝝍1ess),σess:=σ(Wσ,𝝍1ess,Wσ,𝝍ess).\mathcal{B}_{\pi}^{\mathrm{ess}}:=\mathcal{B}_{\pi}(W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},W_{\pi^{\vee},\boldsymbol{\psi}^{-1}}^{\mathrm{ess}}),\quad\mathcal{B}_{\sigma}^{\mathrm{ess}}:=\mathcal{B}_{\sigma}(W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}},W_{\sigma,\boldsymbol{\psi}}^{\mathrm{ess}}).

They can be regarded as certain invariant of the local representations π\pi and σ\sigma.

5.3.1. The case when σ\sigma is unramified

We first consider the case when σ\sigma is unramified. We take

W1=Wπ,𝝍ess,W1=Wσ,𝝍1ess,W2=Wπ,𝝍1ess,W2=Wσ,𝝍essW_{1}=W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},\quad W_{1}^{\prime}=W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}},\quad W_{2}=W_{\pi^{\vee},\boldsymbol{\psi}^{-1}}^{\mathrm{ess}},\quad W_{2}^{\prime}=W_{\sigma^{\vee},\boldsymbol{\psi}}^{\mathrm{ess}}

in Corollary 5.7 and apply Theorem 5.4, together with (5.17), to obtain the following proposition.

Proposition 5.8.

Notations being as above, let v𝒱ramv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}} such that σv\sigma_{v} is unramified, then

(σ,π)=(π×σ)πessσessi=1m+n1ζF(i).\mathscr{I}(\sigma,\pi)=\mathscr{L}(\pi\times\sigma)\cdot\mathcal{B}_{\pi}^{\mathrm{ess}}\mathcal{B}_{\sigma}^{\mathrm{ess}}\cdot\prod_{i=1}^{m+n-1}\zeta_{F}(i).
5.3.2. The case when σ\sigma is ramified

We take

W1=ΘWπ,𝝍ess,W1=Wσ,𝝍1ess,W2=ΘWπ,𝝍1ess,W2=Wσ,𝝍essW_{1}=\Theta W_{\pi,\boldsymbol{\psi}}^{\mathrm{ess}},\quad W_{1}^{\prime}=W_{\sigma,\boldsymbol{\psi}^{-1}}^{\mathrm{ess}},\quad W_{2}=\Theta W_{\pi^{\vee},\boldsymbol{\psi}^{-1}}^{\mathrm{ess}},\quad W_{2}^{\prime}=W_{\sigma^{\vee},\boldsymbol{\psi}}^{\mathrm{ess}}

in Corollary 5.7 and apply Theorem 5.5, together with (5.17), to obtain the following proposition.

Proposition 5.9.

Notations being as above, let v𝒱ramv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}} such that σv\sigma_{v} is ramified, then under Assumption 3.11, we have

(σ,π)=(π×σ)Cσ,𝝍Cσ,𝝍1πessσessi=1m+n1ζF(i).\mathscr{I}(\sigma,\pi)=\mathscr{L}(\pi\times\sigma)\cdot C_{\sigma,\boldsymbol{\psi}}C_{\sigma^{\vee},\boldsymbol{\psi}^{-1}}\cdot\mathcal{B}_{\pi}^{\mathrm{ess}}\mathcal{B}_{\sigma}^{\mathrm{ess}}\cdot\prod_{i=1}^{m+n-1}\zeta_{F}(i).

5.4. Further representation theory of GLn(F)\mathrm{GL}_{n}(F): ordinary condition

To handle the local Ichino-Ikeda integrals at places vv of FF above pp, we introduce the background on the ordinary condition on irreducible admissible representations of GLn(F)\mathrm{GL}_{n}(F). Again solely in this subsection, we let m,nm,n be a general positive integers (that are not related to the unitary groups before).

Recall that at the very beginning of this article, we have fixed an identification ιp:¯p×\iota_{p}:\mathbb{C}\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\overline{\mathbb{Q}}_{p}^{\times}. Through ιp\iota_{p}, we regard characters of FF as valued in ¯p\overline{\mathbb{Q}}_{p} and every irreducible admissible representations π\pi of GLn(F)\mathrm{GL}_{n}(F) has coefficient ¯p\overline{\mathbb{Q}}_{p}.

5.4.1. Ordinary line

Let μ¯=(μ1,,μn)\underline{\mu}=(\mu_{1},\ldots,\mu_{n}) be a tuple of characters Fׯp×F^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times}, which naturally gives a character μ\mu of Tn(F)T_{n}(F). We have an induced character μ\mu^{\natural} of Tn(F)T_{n}(F) given by

μ:diag[x1,,xn]i=1n|xi|niμi(xi).\mu^{\natural}:\operatorname{diag}[x_{1},\ldots,x_{n}]\mapsto\prod_{i=1}^{n}\left|{x_{i}}\right|^{n-i}\mu_{i}(x_{i}).

hence a character of Bn(F)B_{n}(F) by inflation. Then define an algebraically induced principal series representation 141414The representation |det()|1n2IBnGLn(μ)\left|{\det(-)}\right|^{\frac{1-n}{2}}\otimes I_{B_{n}}^{\mathrm{GL}_{n}}(\mu) agrees with the normalized induction of μ\mu from Bn(F)B_{n}(F) to GLn(F)\mathrm{GL}_{n}(F).

IBnGLn(μ):={f:GLn(F)¯p× locally constant:f(bg)=μ(b)f(g), for all bBn(F),gGLn(F)}I_{B_{n}}^{\mathrm{GL}_{n}}(\mu):=\{f:\mathrm{GL}_{n}(F)\rightarrow\overline{\mathbb{Q}}_{p}^{\times}\text{ locally constant}:f(bg)=\mu^{\natural}(b)f(g),\text{ for all }b\in B_{n}(F),g\in\mathrm{GL}_{n}(F)\}

as an admissible representation of GLn(F)\mathrm{GL}_{n}(F) via the right translation.

Definition 5.10.

Let π\pi be an irreducible admissible representation of GLn(F)\mathrm{GL}_{n}(F).

  1. (1)

    We say π\pi is ordinary if there exists a (unique) tuple μ¯\underline{\mu} of admissible characters satisfying |x|i1μn+1i(x)\left|{x}\right|^{i-1}\mu_{n+1-i}(x) are pp-adic units for 1in1\leq i\leq n and every xF×x\in F^{\times}, such that π\pi is isomorphic to IBnGLn(μ)I_{B_{n}}^{\mathrm{GL}_{n}}(\mu).

  2. (2)

    We say π\pi is semi-stably ordinary if furthermore μi\mu_{i} are all unramified.

  3. (3)

    We say π\pi is regularly ordinary if π\pi is ordinary and the pp-adic valuations of μi(ϖ)\mu_{i}(\varpi) are all distinct. We say π\pi is regularly semi-stably ordinary if it is regularly ordinary and semi-stably ordinary.

Remark 5.11.

Note that if π\pi satisfies the properties in Definition above, then so does π\pi^{\vee} with respect to the tuple μ¯ˇ:=(𝜶F1nμn1,,𝜶F1nμ11)\check{\underline{\mu}}:=(\boldsymbol{\alpha}_{F}^{1-n}\mu_{n}^{-1},\ldots,\boldsymbol{\alpha}_{F}^{1-n}\mu_{1}^{-1}).

Definition 5.12.

Let x𝔬F×x\in\mathfrak{o}\cap F^{\times} and put 𝐝(x):=diag[xn1,,x,1]GLn(F)\mathbf{d}(x):=\operatorname{diag}[x^{n-1},\ldots,x,1]\in\mathrm{GL}_{n}(F), we define an operator 𝕍nx\mathbb{V}_{n}^{x} on πUn(𝔬)\pi^{U_{n}(\mathfrak{o})} as

𝕍nx:=uUn(𝔬)/(Un(𝔬)𝐝(x)Un(𝔬)𝐝(x)1)π(u𝐝(x)).\mathbb{V}_{n}^{x}:=\sum_{u\in U_{n}(\mathfrak{o})/(U_{n}(\mathfrak{o})\,\cap\,\mathbf{d}(x)U_{n}(\mathfrak{o})\mathbf{d}(x)^{-1})}\pi(u\mathbf{d}(x)).

We remark that when taking x=ϖx=\varpi, the operator 𝕍nϖ\mathbb{V}_{n}^{\varpi} is the 𝕌𝔭\mathbb{U}_{\mathfrak{p}}-operator (see, for example, [Jan24, Section 1.4]).

Then we have the following proposition, proved in [Liu23, Lemma 4.4]151515We remark that in the statement of [Liu23, Lemma 4.4], the eigenvalue is (m=1n1i=1m|x|i1μi(x)),\left(\prod_{m=1}^{n-1}\prod_{i=1}^{m}\left|{x}\right|^{i-1}\mu_{i}(x)\right), reordering (μ1,,μn)(\mu_{1},\ldots,\mu_{n}) into (μn,μn1,,μ1)(\mu_{n},\mu_{n-1},\ldots,\mu_{1}). The ordinary condition we defined in Definition 5.10 is adjusted accordingly, which is different from loc.cit. Since we have required π\pi to be irreducible, the ordering of μi\mu_{i}’s does not harm. The case where IndBnGLn(μ)\operatorname{Ind}^{\mathrm{GL}_{n}}_{B_{n}}(\mu) being reducible is more subtle. For example when n=2n=2, that means μ1/μ2=||±1\mu_{1}/\mu_{2}=\left|{-}\right|^{\pm 1}. Whether the Steinberg representation is a subrepresentation or a quotient representation of IndBnGLn(μ)\operatorname{Ind}^{\mathrm{GL}_{n}}_{B_{n}}(\mu) does depend on the ordering of μ1\mu_{1} and μ2\mu_{2}. Note that the definition in [Liu23] insists on requiring π\pi to be a subrepresentation of IndBnGLn(μ)\operatorname{Ind}^{\mathrm{GL}_{n}}_{B_{n}}(\mu), our adjustment in Definition 5.10 is just replacing “subrepresentation” by “quotient representation”. We thank Yifeng Liu for his guidance on this issue..

Proposition 5.13.

Suppose that π\pi is regularly ordinary, then there exists a unique up to scalar nonzero element fπordπUn(𝔬)f^{\operatorname{ord}}_{\pi}\in\pi^{U_{n}(\mathfrak{o})} satisfying that

𝕍nxfπord=(m=1n1i=1m|x|i1μn+1i(x))fπord(g)\mathbb{V}_{n}^{x}\cdot f^{\operatorname{ord}}_{\pi}=\left(\prod_{m=1}^{n-1}\prod_{i=1}^{m}\left|{x}\right|^{i-1}\mu_{n+1-i}(x)\right)f^{\operatorname{ord}}_{\pi}(g)

holds for every x𝔬F×x\in\mathfrak{o}\cap F^{\times}. In particular, the 𝕍nx\mathbb{V}_{n}^{x}-eigenvalue is a pp-adic unit.

We call the one-dimensional ¯p\overline{\mathbb{Q}}_{p}-subspace of πUn(𝔬)\pi^{U_{n}(\mathfrak{o})} generated by fπordf^{\operatorname{ord}}_{\pi} the ordinary line of π\pi, denoted by πord\pi^{\operatorname{ord}} and a nonzero element of it an ordinary vector. Let 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi) be the Whittaker model of π\pi with respect to 𝝍\boldsymbol{\psi}. For every fVπf\in V_{\pi} supported on Bn(F)wnBn(F)B_{n}(F)w_{n}B_{n}(F) and gBn(F)wnBn(F)g\in B_{n}(F)w_{n}B_{n}(F), consider for the normalized Haar measure du\,\mathrm{d}u on Un(F)U_{n}(F) the integral

Wf(g):=Un(F)f(wnug)𝝍¯(u)du.W_{f}(g):=\int_{U_{n}(F)}f(w_{n}ug)\overline{\boldsymbol{\psi}}(u)\,\mathrm{d}u.

By a well-known result of Rodier, this integral converges and extends uniquely to an intertwining operator

𝖶:IBnGLn(μ)IndUn(F)GLn(F)𝝍.\mathsf{W}:I_{B_{n}}^{\mathrm{GL}_{n}}(\mu)\rightarrow\operatorname{Ind}_{U_{n}(F)}^{\mathrm{GL}_{n}(F)}\boldsymbol{\psi}.

See [CS80, Corollary 1.8] for details. By the uniqueness of Whittaker models for IBnGLn(μ)I_{B_{n}}^{\mathrm{GL}_{n}}(\mu), we have that WW gives the Whittaker model of π\pi, i.e.

𝖶π:IBnGLn(μ)𝒲𝝍(π)IndUn(F)GLn(F)𝝍.\mathsf{W}_{\pi}:I_{B_{n}}^{\mathrm{GL}_{n}}(\mu)\rightarrow\mathcal{W}_{\boldsymbol{\psi}}(\pi)\hookrightarrow\operatorname{Ind}_{U_{n}(F)}^{\mathrm{GL}_{n}(F)}\boldsymbol{\psi}.

The image of the ordinary line πord\pi^{\operatorname{ord}} in 𝒲𝝍(π)\mathcal{W}_{\boldsymbol{\psi}}(\pi) is denoted by 𝒲𝝍ord(π)\mathcal{W}^{\operatorname{ord}}_{\boldsymbol{\psi}}(\pi).

Actually we can explicitly construct a canonical ordinary vector. We define a big-cell section 161616It is called the big cell section since it is supported on the big cell of the Bruhat decomposition, i.e. the cell of longest Weyl element. We use the notation “\dagger” to denote such sections. fπ:GLn(F)¯p×f^{\dagger}_{\pi}:\mathrm{GL}_{n}(F)\rightarrow\overline{\mathbb{Q}}_{p}^{\times} as

fπ:g{μ(b), if g=bwnr, with bBn(F),rUn(𝔬),0, otherwise.f^{\dagger}_{\pi}:g\mapsto\begin{cases}\mu^{\natural}(b),&\quad\text{ if }g=bw_{n}r,\text{ with }b\in B_{n}(F),\,r\in U_{n}(\mathfrak{o}),\\ 0,&\quad\text{ otherwise}.\end{cases}

Let WπW_{\pi}^{\dagger} be the corresponding Whittaker vector of fπf^{\dagger}_{\pi}. Here are some basic properties of fπf^{\dagger}_{\pi}.

Proposition 5.14.

Notations being as above, we have

  1. (1)

    fπf^{\dagger}_{\pi} is an ordinary vector.

  2. (2)

    Wπ(𝟏n)=vol(Un(𝔬))0W^{\dagger}_{\pi}(\mathbf{1}_{n})=\operatorname{vol}(U_{n}(\mathfrak{o}))\neq 0.

Proof.

It is immediate to see fππUn(𝔬)f_{\pi}^{\dagger}\in\pi^{U_{n}(\mathfrak{o})}. We fix x𝔬F×x\in\mathfrak{o}\cap F^{\times}. Let gGLn(F)g\in\mathrm{GL}_{n}(F) such that 𝕍nxfπ(g)0\mathbb{V}_{n}^{x}f_{\pi}^{\dagger}(g)\neq 0. Then by the definition of 𝕍nx\mathbb{V}_{n}^{x}, there exists uUn(𝔬)u\in U_{n}(\mathfrak{o}) such that fπ(gu𝐝(x))0f_{\pi}^{\dagger}(gu\mathbf{d}(x))\neq 0. We have gu𝐝(x)Bn(F)wnUn(𝔬)gu\mathbf{d}(x)\in B_{n}(F)w_{n}U_{n}(\mathfrak{o}). One verifies for any u=(ui,j)Un(𝔬)u=(u_{i,j})\in U_{n}(\mathfrak{o}),

𝐝(x)u𝐝(x)1=[1xu1,2x2u2,3xn1u1,n1xu2,3xn2u2,n1xun1,n1]Un(𝔬)\mathbf{d}(x)u\mathbf{d}(x)^{-1}=\begin{bmatrix}1&xu_{1,2}&x^{2}u_{2,3}&\cdots&x^{n-1}u_{1,n}\\ &1&xu_{2,3}&\cdots&x^{n-2}u_{2,n}\\ &&\ddots&\vdots&\vdots\\ &&&1&xu_{n-1,n}\\ &&&&1\end{bmatrix}\in U_{n}(\mathfrak{o}) (5.18a)
and
𝐝(x)1u𝐝(x)=[1x1u1,2x2u2,3x1nu1,n1x1u2,3x2nu2n1x1un1,n1]Un(𝔭nv(x)𝔬).\mathbf{d}(x)^{-1}u\mathbf{d}(x)=\begin{bmatrix}1&x^{-1}u_{1,2}&x^{-2}u_{2,3}&\cdots&x^{1-n}u_{1,n}\\ &1&x^{-1}u_{2,3}&\cdots&x^{2-n}u_{2n}\\ &&\ddots&\vdots&\vdots\\ &&&1&x^{-1}u_{n-1,n}\\ &&&&1\end{bmatrix}\in U_{n}\left(\mathfrak{p}^{-nv(x)}\mathfrak{o}\right). (5.18b)

Then we get gBn(F)wnUn(𝔬)g\in B_{n}(F)w_{n}U_{n}(\mathfrak{o}). Therefore, it reduces to compute 𝕍nxfπ(g)\mathbb{V}_{n}^{x}f^{\dagger}_{\pi}(g) for gBn(F)wnUn(𝔬)g\in B_{n}(F)w_{n}U_{n}(\mathfrak{o}). Moreover, since 𝕍nxfπ\mathbb{V}_{n}^{x}f^{\dagger}_{\pi} is Un(𝔬)U_{n}(\mathfrak{o})-invariant, we may assume gBn(F)wng\in B_{n}(F)w_{n}.

By (5.18a), we see that the quotient Un(𝔬)/(𝐝(x)u𝐝(x)1)U_{n}(\mathfrak{o})/(\mathbf{d}(x)u\mathbf{d}(x)^{-1}) has a finite set of complete representative elements

Un(𝔬)/(𝐝(x)u𝐝(x)1)1:1[1𝔬/𝔭v(x)𝔬/𝔭2v(x)𝔬/𝔭(n1)v(x)1𝔬/𝔭v(x)𝔬/𝔭(n2)v(x)1𝔬/𝔭v(x)1].U_{n}(\mathfrak{o})/(\mathbf{d}(x)u\mathbf{d}(x)^{-1})\mathrel{\leavevmode\hbox to21.17pt{\vbox to18.24pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-6.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{}{}{{{}{}}}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.4pt}{0.0pt}\pgfsys@lineto{20.09987pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.2pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.29987pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.24992pt}{-3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle 1:1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\begin{bmatrix}1&\mathfrak{o}/\mathfrak{p}^{v(x)}&\mathfrak{o}/\mathfrak{p}^{2v(x)}&\cdots&\mathfrak{o}/\mathfrak{p}^{(n-1)v(x)}\\ &1&\mathfrak{o}/\mathfrak{p}^{v(x)}&\cdots&\mathfrak{o}/\mathfrak{p}^{(n-2)v(x)}\\ &&\ddots&\vdots&\vdots\\ &&&1&\mathfrak{o}/\mathfrak{p}^{v(x)}\\ &&&&1\end{bmatrix}. (5.19)

Here we denote for any positive integer tt,

𝔬/𝔭t:={k=0t1skϖk:sk=0,,q1}.\mathfrak{o}/\mathfrak{p}^{t}:=\left\{\sum_{k=0}^{t-1}s_{k}\varpi^{k}:s_{k}=0,\ldots,q-1\right\}.

So it suffices to compute π(u𝐝(x))fπ(g)\pi(u\mathbf{d}(x))f^{\dagger}_{\pi}(g) for g=bwnBn(F)wng=bw_{n}\in B_{n}(F)w_{n} and uu in the right hand side of (5.19). We have

π(u𝐝(x))fπ(g)\displaystyle\pi(u\mathbf{d}(x))f^{\dagger}_{\pi}(g) =fπ(bwnu𝐝(x))\displaystyle=f^{\dagger}_{\pi}(bw_{n}u\mathbf{d}(x))
=fπ(b(wn𝐝(x)wn1)wn(𝐝(x)1u𝐝(x)))\displaystyle=f^{\dagger}_{\pi}(b(w_{n}\mathbf{d}(x)w_{n}^{-1})w_{n}(\mathbf{d}(x)^{-1}u\mathbf{d}(x)))

By (5.18b) and the definition of fπf_{\pi}^{\dagger}, we see that 𝐝(x)1u𝐝(x)Un(𝔬)\mathbf{d}(x)^{-1}u\mathbf{d}(x)\in U_{n}(\mathfrak{o}) if and only if u=1u=1. Moreover,

wn𝐝(x)wn1=diag[1,x,x2,,xn1].w_{n}\mathbf{d}(x)w_{n}^{-1}=\operatorname{diag}[1,x,x^{2},\ldots,x^{n-1}].

With these observations, we obtain 171717The trick of getting the third equality is to write the factors in the following table, then take products of nonzero entries column by column: (1μn(x)μn(x)μn(x)1|x|μn1(x)|x|μn1(x)1|x|n3μ3(x)|x|n3μ3(x)1|x|n2μ2(x)1),\begin{pmatrix}1&\mu_{n}(x)&\mu_{n}(x)&\cdots&\cdots&\mu_{n}(x)\\ &1&\left|{x}\right|\mu_{n-1}(x)&\cdots&\cdots&\left|{x}\right|\mu_{n-1}(x)\\ &&\ddots&\vdots&\vdots&\vdots\\ &&&1&\left|{x}\right|^{n-3}\mu_{3}(x)&\left|{x}\right|^{n-3}\mu_{3}(x)\\ &&&&1&\left|{x}\right|^{n-2}\mu_{2}(x)\\ &&&&&1\end{pmatrix}, with rows indexed by i=1,,ni=1,\ldots,n and columns indexed by m=0,1,,n1m=0,1,\ldots,n-1.

𝕍nxfπ(g)\displaystyle\mathbb{V}_{n}^{x}f^{\dagger}_{\pi}(g) =μ(diag[1,x,x2,,xn1])fπ(g)\displaystyle=\mu^{\natural}(\operatorname{diag}[1,x,x^{2},\ldots,x^{n-1}])f^{\dagger}_{\pi}(g)
=i=1n(|x|niμi(x))i1fπ(g)=(m=1n1i=1m|x|i1μn+1i(x))fπ(g).\displaystyle=\prod_{i=1}^{n}\left(\left|{x}\right|^{n-i}\mu_{i}(x)\right)^{i-1}f^{\dagger}_{\pi}(g)=\left(\prod_{m=1}^{n-1}\prod_{i=1}^{m}\left|{x}\right|^{i-1}\mu_{n+1-i}(x)\right)f^{\dagger}_{\pi}(g).

This verifies (1). For (2),

Wπ=𝖶π(fπ):gUn(F)fπ(wnug)𝝍¯(u)du.W_{\pi}^{\dagger}=\mathsf{W}_{\pi}(f^{\dagger}_{\pi}):\,g\mapsto\int_{U_{n}(F)}f_{\pi}^{\dagger}(w_{n}ug)\overline{\boldsymbol{\psi}}(u)\,\mathrm{d}u.

It evaluates at 𝟏n\mathbf{1}_{n} to

Wπ(𝟏n)=Un(F)fπ(wnu)𝝍¯(u)du=Un(𝔬)du=vol(Un(𝔬))0W_{\pi}^{\dagger}(\mathbf{1}_{n})=\int_{U_{n}(F)}f_{\pi}^{\dagger}(w_{n}u)\overline{\boldsymbol{\psi}}(u)\,\mathrm{d}u=\int_{U_{n}(\mathfrak{o})}\,\mathrm{d}u=\operatorname{vol}(U_{n}(\mathfrak{o}))\neq 0

because the integrand vanishes for uUn(𝔬)u\not\in U_{n}(\mathfrak{o}) and fπ(wnu)=1f_{\pi}^{\dagger}(w_{n}u)=1 for uUn(𝔬)u\in U_{n}(\mathfrak{o}). ∎

5.4.2. Iwahori type

For any integer α0\alpha\geq 0, we define the Iwahori subgroup of level α\alpha, denoted by Iwα\mathrm{Iw}_{\alpha}, to be the subgroup of matrices in GLn(𝔬)\mathrm{GL}_{n}(\mathfrak{o}) that become upper triangular modulo ϖα\varpi^{\alpha}.

One checks that Iwα\mathrm{Iw}_{\alpha} acts on 𝒲𝝍(π)Un(𝔬)\mathcal{W}_{\boldsymbol{\psi}}(\pi)^{U_{n}(\mathfrak{o})} naturally. Since 𝒲𝝍ord(π)\mathcal{W}^{\operatorname{ord}}_{\boldsymbol{\psi}}(\pi) is one- dimensional, there exists a character ϑ:Iwα×\vartheta:\mathrm{Iw}_{\alpha}\rightarrow\mathbb{C}^{\times} such that

W(gr)=ϑ(r)W(g),gGLn(F),rIwα.W(gr)=\vartheta(r)W(g),\quad\forall g\in\mathrm{GL}_{n}(F),r\in\mathrm{Iw}_{\alpha}.

It is called the Iwahori type of π\pi. Moreover, we have the decomposition

Iwα=[Iwα,Iwα]Tn(𝔬),\mathrm{Iw}_{\alpha}=[\mathrm{Iw}_{\alpha},\mathrm{Iw}_{\alpha}]\cdot T_{n}(\mathfrak{o}),

where [Iwα,Iwα][\mathrm{Iw}_{\alpha},\mathrm{Iw}_{\alpha}] is the derived subgroup of Iwα\mathrm{Iw}_{\alpha}, consisting of matrices in GLn(𝔬)\mathrm{GL}_{n}(\mathfrak{o}) that becomes strictly upper triangular when reduced modulo ϖα\varpi^{\alpha}. Hence ϑ\vartheta arise from the subtorus of Iwα\mathrm{Iw}_{\alpha}, i.e. there exist characters θ1,,θn:F××\theta_{1},\ldots,\theta_{n}:F^{\times}\rightarrow\mathbb{C}^{\times} such that

ϑ((rij)i,j)=i=1nθi(rii).\vartheta((r_{ij})_{i,j})=\prod_{i=1}^{n}\theta_{i}(r_{ii}).

The following lemma characterizes the Iwahori type of π\pi. 181818We appreciate the helpful guidance of Loren Spice on understanding this part.

Proposition 5.15.

Let π=IBnGLn(μ)\pi=I_{B_{n}}^{\mathrm{GL}_{n}}(\mu) be a regularly ordinary representation of GLn(F)\mathrm{GL}_{n}(F), then the Iwahori type of π\pi is (μ˘)(\breve{\mu})^{\natural}, where for μ¯=(μ1,,μn)\underline{\mu}=(\mu_{1},\ldots,\mu_{n}), we denote μ¯˘:=(μn,μn1,,μ1)\breve{\underline{\mu}}:=(\mu_{n},\mu_{n-1},\ldots,\mu_{1}).

Proof.

Since Wπ(𝟏n)W_{\pi}^{\dagger}(\mathbf{1}_{n}) equals vol(Un(𝔬))\operatorname{vol}(U_{n}(\mathfrak{o})), we have that for all rIwαTn(F)=Tn(𝔬)r\in\mathrm{Iw}_{\alpha}\cap T_{n}(F)=T_{n}(\mathfrak{o}), Wπ(r)W_{\pi}^{\dagger}(r) equals

Un(F)fπ(wnur)𝝍¯(u)du\displaystyle\int_{U_{n}(F)}f_{\pi}^{\dagger}(w_{n}ur)\overline{\boldsymbol{\psi}}(u)\,\mathrm{d}u =Un(F)fπ((wnrwn1)wn(r1ur))𝝍¯(u)du\displaystyle=\int_{U_{n}(F)}f_{\pi}^{\dagger}((w_{n}rw_{n}^{-1})w_{n}(r^{-1}ur))\overline{\boldsymbol{\psi}}(u)\,\mathrm{d}u
=μ(wnrwn1)Un(F)fπ(wnu)𝝍¯(u)du\displaystyle=\mu^{\natural}(w_{n}rw_{n}^{-1})\int_{U_{n}(F)}f_{\pi}^{\dagger}(w_{n}u^{\prime})\overline{\boldsymbol{\psi}}(u^{\prime})\,\mathrm{d}u^{\prime}
=(μ˘)(r)vol(Un(𝔬))\displaystyle=(\breve{\mu})^{\natural}(r)\operatorname{vol}(U_{n}(\mathfrak{o}))
=(μ˘)(r)Wπ(𝟏n)\displaystyle=(\breve{\mu})^{\natural}(r)W^{\dagger}_{\pi}(\mathbf{1}_{n})

Here the second equality follows from that rr normalises Un(𝔬)U_{n}(\mathfrak{o}). The third equality follows from the calculation

wndiag[r1,,rn]wn1=diag[rn,rn1,,r1].w_{n}\operatorname{diag}[r_{1},\ldots,r_{n}]w_{n}^{-1}=\operatorname{diag}[r_{n},r_{n-1},\ldots,r_{1}].

The last equality is Proposition 5.14 (2). Hence rr acts by multiplication by (μ˘)(r)(\breve{\mu})^{\natural}(r). ∎

Remark 5.16.

In particular, when π\pi is furthermore regularly semi-stably ordinary, that is, all μi\mu_{i}’s are unramified characters, we see that μ(𝔬×)=1\mu(\mathfrak{o}^{\times})=1, hence the Iwahori subgroup Iwα\mathrm{Iw}_{\alpha} acts trivially on the ordinary line by Proposition 5.15. This recovers [Liu23, Lemma 4.8]. Another explanation using LL-functions can be found in [Jan24, Remark 1.4].

5.4.3. Test vector problem: Januszewski’s generalization of local Birch lemma

The main input is Januszewski’s generalization of local Birch lemma, which we shall first introduce.

Solely in this subsection, let σ=IBnGLn(μ¯)\sigma=I_{B_{n}}^{\mathrm{GL}_{n}}(\underline{\mu}^{\prime}) and π=IBn+1GLn+1(μ¯)\pi=I_{B_{n+1}}^{\mathrm{GL}_{n+1}}(\underline{\mu}) be regularly ordinary representations of GLn(F)\mathrm{GL}_{n}(F) and GLn+1(F)\mathrm{GL}_{n+1}(F) respectively.

We choose an auxiliary local character κ:Fׯp×\kappa:F^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} of conductor ϖα\varpi^{\alpha}, and require it to satisfy the constant conductor condition: for all 1in+11\leq i\leq n+1 and all 1jn1\leq j\leq n, the conductors of κμiμj\kappa\mu_{i}\mu_{j}^{\prime} are all nontrivial, all agree and are generated by ϖβ\varpi^{\beta}. Moreover, we require κ(ϖ)=1\kappa(\varpi)=1. Such an character κ\kappa exists since any character of sufficiently large conductor could be made to satisfy this condition.

Then what follows is the local Birch lemma, generalized by F. Januszewski [Jan24, Theorem 2.8]. Here we state a simplified version. Let

hn:=[wn11],𝐭(x):=diag[xn,xn1,,x]GLn(F)h_{n}:=\begin{bmatrix}w_{n}&1\\ &1\end{bmatrix},\quad\mathbf{t}(x):=\operatorname{diag}[x^{n},x^{n-1},\ldots,x]\in\mathrm{GL}_{n}(F)

for xF×x\in F^{\times}. We write hn(x):=(ȷGL(𝐭(x)))1hnȷGL(𝐭(x))h_{n}^{(x)}:=(\jmath^{\mathrm{GL}}(\mathbf{t}(x)))^{-1}h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}(x)).

Theorem 5.17 (Local Birch lemma).

Notations being as above. Let Wπ𝒲𝛙(π)W_{\pi}\in\mathcal{W}_{\boldsymbol{\psi}}(\pi) and Wσ𝒲𝛙1(σ)W_{\sigma}\in\mathcal{W}_{\boldsymbol{\psi}^{-1}}(\sigma) be Whittaker vectors of Iwahori type μ\mu and λ\lambda respectively, then,

Z(12,π(hn(ϖα))Wπ,Wσ)=Δβ𝔊(κ,μ¯,λ¯)Wπ(ȷGL(𝐭(ϖαβ)))Wσ(𝐭(ϖαβ)),Z\left(\frac{1}{2},\pi(h_{n}^{\left(-\varpi^{\alpha}\right)})W_{\pi},W_{\sigma}\right)=\Delta_{\beta}\mathfrak{G}(\kappa,\underline{\mu},\underline{\lambda})W_{\pi}(\jmath^{\mathrm{GL}}(\mathbf{t}(\varpi^{\alpha-\beta})))W_{\sigma}(\mathbf{t}(\varpi^{\alpha-\beta})),

where

Δβ:=j=1n(1qj)q(n+2)(n+1)nβ6,𝔊(κ,μ¯,λ¯):=j=1ni=1jμj+1iμi(ϖβ)𝔤(κμj+1iλi).\Delta_{\beta}:=\prod_{j=1}^{n}(1-q^{-j})q^{-\frac{(n+2)(n+1)n\beta}{6}},\quad\mathfrak{G}(\kappa,\underline{\mu},\underline{\lambda}):=\prod_{j=1}^{n}\prod_{i=1}^{j}\mu_{j+1-i}\mu_{i}^{\prime}(\varpi^{\beta})\mathfrak{g}(\kappa\mu_{j+1-i}\lambda_{i}).
Proof.

This is a modification of Januszewski’s generalization of local Birch lemma, i.e. [Jan24, Theorem 2.8], which gives

Un(F)\GLn(F)π(hnȷGL(𝐭(ϖα)))W(ȷGL(g))σ(𝐭(ϖα))Wσ(g)κ(detg)dg=Δβ𝔊(κ,μ¯,λ¯)Wπ(ȷGL(𝐭(ϖαβ)))Wσ(𝐭(ϖαβ)).\int_{U_{n}(F)\backslash\mathrm{GL}_{n}(F)}\pi(h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}(-\varpi^{\alpha})))W(\jmath^{\mathrm{GL}}(g))\cdot\sigma(\mathbf{t}(-\varpi^{\alpha}))W_{\sigma}(g)\cdot\kappa(\det g)\,\mathrm{d}g\\ =\Delta_{\beta}\mathfrak{G}(\kappa,\underline{\mu},\underline{\lambda})W_{\pi}(\jmath^{\mathrm{GL}}(\mathbf{t}(\varpi^{\alpha-\beta})))W_{\sigma}(\mathbf{t}(\varpi^{\alpha-\beta})).

We put for l0l\geq 0, 𝐬(l):=diag[1+ϖl,1,,1]GLn(F)\mathbf{s}(l):=\operatorname{diag}[1+\varpi^{l},1,\ldots,1]\in\mathrm{GL}_{n}(F) as an adjusting matrix. It is defined to satisfy that for any gGLn(F)g\in\mathrm{GL}_{n}(F) and lαl\geq\alpha, κ(detg𝐬(l))=1\kappa(\det g\mathbf{s}(l))=1. Taking the change of variable g=g𝐬(l)g=g^{\prime}\mathbf{s}(l) for lαl\geq\alpha, then we see that

Un(F)\GLn(F)π(hnȷGL(𝐭(ϖα)))Wπ(ȷGL(g𝐬(l)))σ(𝐭(ϖα))Wσ(g𝐬l)dg=Δβ𝔊(κ,μ¯,λ¯)Wπ(ȷGL(𝐭(ϖαβ)))Wσ(𝐭(ϖαβ))\int_{U_{n}(F)\backslash\mathrm{GL}_{n}(F)}\pi(h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}(-\varpi^{\alpha})))W_{\pi}(\jmath^{\mathrm{GL}}(g^{\prime}\mathbf{s}(l)))\cdot\sigma(\mathbf{t}(-\varpi^{\alpha}))W_{\sigma}(g^{\prime}\mathbf{s}_{l})\,\mathrm{d}g^{\prime}\\ =\Delta_{\beta}\mathfrak{G}(\kappa,\underline{\mu},\underline{\lambda})W_{\pi}(\jmath^{\mathrm{GL}}(\mathbf{t}(\varpi^{\alpha-\beta})))W_{\sigma}(\mathbf{t}(\varpi^{\alpha-\beta}))

The left hand side integral is then nothing but

Z(12,π(ȷGL(𝐬(l))hnȷGL(𝐭(ϖα)))Wπ,σ(𝐬(l)𝐭(ϖα))Wσ)\displaystyle Z\left(\frac{1}{2},\pi(\jmath^{\mathrm{GL}}(\mathbf{s}(l))h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}(-\varpi^{\alpha})))W_{\pi},\sigma(\mathbf{s}(l)\mathbf{t}(-\varpi^{\alpha}))W_{\sigma}\right)
=Z(12,π(ȷGL(𝐬(l)𝐭(ϖα))1)π(ȷGL(𝐬l)hnȷGL(𝐭ϖα))Wπ,Wσ)\displaystyle=Z\left(\frac{1}{2},\pi(\jmath^{\mathrm{GL}}(\mathbf{s}(l)\mathbf{t}(-\varpi^{\alpha}))^{-1})\pi(\jmath^{\mathrm{GL}}(\mathbf{s}_{l})h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}_{-\varpi^{\alpha}}))W_{\pi},W_{\sigma}\right)
=Z(12,π(ȷGL(𝐭(ϖα))1hnȷGL(𝐭(ϖα)))Wπ,Wσ)\displaystyle=Z\left(\frac{1}{2},\pi(\jmath^{\mathrm{GL}}(\mathbf{t}(-\varpi^{\alpha}))^{-1}h_{n}\jmath^{\mathrm{GL}}(\mathbf{t}(-\varpi^{\alpha})))W_{\pi},W_{\sigma}\right)
=Z(12,π(hn(ϖα))Wπ,Wσ)\displaystyle=Z\left(\frac{1}{2},\pi(h_{n}^{\left(-\varpi^{\alpha}\right)})W_{\pi},W_{\sigma}\right)

Here in the first equality, we used the invariance of JPSS integrals (5.13). ∎

5.5. Local Ichino-Ikeda integrals at 𝒱F(p)\mathscr{V}_{F}^{(p)}

We go back to the context of local Ichino-Ikeda integrals. Let σ=IBm+nGLm+n(λ¯)\sigma=I_{B_{m+n}}^{\mathrm{GL}_{m+n}}(\underline{\lambda}) and π=IBm+n+1GLm+n+1(μ¯)\pi=I_{B_{m+n+1}}^{\mathrm{GL}_{m+n+1}}(\underline{\mu}) be regularly ordinary representations of GLm+n(F)\mathrm{GL}_{m+n}(F) and GLm+n+1(F)\mathrm{GL}_{m+n+1}(F) respectively.

We take

W1=π(hm+n(ϖα))Wπ,W1=Wσ,W2=π(hm+n(ϖα))Wπ,W2=WσW_{1}=\pi(h_{m+n}^{(-\varpi^{\alpha})})W_{\pi}^{\dagger},\quad W_{1}^{\prime}=W_{\sigma}^{\dagger},\quad W_{2}=\pi^{\vee}(h_{m+n}^{(-\varpi^{\alpha})})W_{\pi^{\vee}}^{\dagger},\quad W_{2}^{\prime}=W_{\sigma^{\vee}}^{\dagger}

in Corollary 5.7. Then by Theorem 5.17, with Remark 5.11 and Proposition 5.15, we obtain the following result.

Proposition 5.18.

Notations and conventions being as above, with κ:Fׯp×\kappa:F^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} a sufficiently ramified character with κ(ϖ)=1\kappa(\varpi)=1, then

(σ,π)=Δβ2𝔊(κ,μ¯˘,λ¯˘)𝔊(κ,μ¯ˇ˘,λ¯ˇ˘)𝒞σord𝒞πordi=1m+n1ζF(i),\mathscr{I}(\sigma,\pi)=\Delta_{\beta}^{2}\cdot\mathfrak{G}(\kappa,\breve{\underline{\mu}},\breve{\underline{\lambda}})\mathfrak{G}(\kappa,\breve{\check{\underline{\mu}}},\breve{\check{\underline{\lambda}}})\cdot\mathcal{C}_{\sigma}^{\operatorname{ord}}\mathcal{C}_{\pi}^{\operatorname{ord}}\cdot\prod_{i=1}^{m+n-1}\zeta_{F}(i),

where

𝒞πord:=Wπ(ȷGL(𝐭(ϖαβ)))Wπ(ȷGL(𝐭(ϖαβ)))Wπ,Wπ and 𝒞σord:=Wσ(𝐭(ϖαβ))Wσ(𝐭(ϖαβ))Wσ,Wσ.\mathcal{C}_{\pi}^{\operatorname{ord}}:=\dfrac{W_{\pi}^{\dagger}(\jmath^{\mathrm{GL}}(\mathbf{t}(\varpi^{\alpha-\beta})))W_{\pi}^{\dagger}(\jmath^{\mathrm{GL}}(\mathbf{t}(\varpi^{\alpha-\beta})))}{\left\langle{W_{\pi}^{\dagger},W_{\pi^{\vee}}^{\dagger}}\right\rangle}\text{ and }\mathcal{C}_{\sigma}^{\operatorname{ord}}:=\dfrac{W_{\sigma}^{\dagger}(\mathbf{t}(\varpi^{\alpha-\beta}))W_{\sigma}^{\dagger}(\mathbf{t}(\varpi^{\alpha-\beta}))}{\left\langle{W_{\sigma}^{\dagger},W_{\sigma}^{\dagger}}\right\rangle}.

6. A summary of automorphic computations

In this section, we introduce the choice of appropriate local Siegel sections fs,χ,vSiegf_{s,\chi,v}^{\mathrm{Sieg}}, and sum up the results we have obtained so far.

6.1. The choice of Siegel Eisenstein sections

Though it has been expected by experts that the Klingen Eisenstein series (via pullback from Siegel Eisenstein series) can be defined in full generalities, due to the lack of references, we restrict us to the Klingen Eisenstein series (and their pp-adic family) constructed in [Wan15], where additional assumptions are needed in the automorphic computations.

Assumption 6.1 (Scalar weight assumption).

We assume that σv\sigma_{v} is a holomorphic discrete series representation associated to the scalar weight (0,0,,κ,,κ)(0,0,\ldots,\kappa,\ldots,\kappa) with mm zeroes and ss kappas, for any v𝒮v\in\mathscr{S}_{\mathcal{F}}^{\infty}.

Assumption 6.2 (Sufficiently ramified assumption).

We assume that (σv,χv)(\sigma_{v},\chi_{v}) is “generic” in the sense of [Wan15, Definition 4.42] for any v𝒮(p)v\in\mathscr{S}_{\mathcal{F}}^{(p)}. Basically this puts restrictions on the ramification of the π\pi at primes dividing pp, requiring it to be sufficiently ramified. 191919This is the reason why we are not satisfied with restricting ourselves in the “semi-stably ordinary” case as in [Liu23].

Here we briefly recall the choice of Siegel Eisenstein sections fv,s,χSiegf^{\mathrm{Sieg}}_{v,s,\chi} for places vv of \mathcal{F} in [Wan15, Chapter 4]. We bring in a new partition of 𝒱\mathscr{V}_{\mathcal{F}} as follows.

  • Let 𝒯ur\mathscr{T}_{\mathcal{F}}^{{\mathrm{ur}}} be the set of finite places of \mathcal{F} away from 𝒱(p)\mathscr{V}_{\mathcal{F}}^{(p)} such that σv\sigma_{v}, χv\chi_{v} and 𝒦v/v\mathcal{K}_{v}/\mathcal{F}_{v} are all unramified. Note that 𝒯ur𝒱ur=𝒮ur\mathscr{T}_{\mathcal{F}}^{{\mathrm{ur}}}\cap\mathscr{V}_{\mathcal{F}}^{{\mathrm{ur}}}=\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}.

  • Let 𝒯bad\mathscr{T}_{\mathcal{F}}^{\mathrm{bad}} be complement of 𝒯ur\mathscr{T}_{\mathcal{F}}^{{\mathrm{ur}}} in 𝒱\mathscr{V}_{\mathcal{F}}, with elements called “bad places” for Siegel Eisenstein sections.

  • Let 𝒯ram\mathscr{T}_{\mathcal{F}}^{\mathrm{ram}} be the subset of 𝒯bad\mathscr{T}_{\mathcal{F}}^{\mathrm{bad}} removing all places of FF above pp and archimedean places.

6.1.1. Archimedean places

Let v𝒮v\in\mathscr{S}_{\mathcal{F}}^{\infty} be an archimedean place of \mathcal{F}. Following [Wan15, Section 4A2], let

𝐢:=diag[12i𝟏n,i,12ϑ,12i𝟏n]\mathbf{i}:=\operatorname{diag}\left[\dfrac{1}{2}\mathrm{i}\mathbf{1}_{n},\mathrm{i},\dfrac{1}{2}\vartheta,\dfrac{1}{2}\mathrm{i}\mathbf{1}_{n}\right]

be the distinguished point in the (unbounded realization of the) symmetric domain for GU(m+n+1,m+n+1){\mathrm{GU}}(m+n+1,m+n+1). We define the Siegel Eisenstein section as

fv,s,χSieg(g=[AgBgCgDg])=det(Cg𝐢+Dg)κ|det(Cg𝐢+Dg)|κ2s(m+n),gG(v).f^{\mathrm{Sieg}}_{v,s,\chi}\left(g=\begin{bmatrix}A_{g}&B_{g}\\ C_{g}&D_{g}\end{bmatrix}\right)=\det(C_{g}\mathbf{i}+D_{g})^{-\kappa}\left|{\det(C_{g}\mathbf{i}+D_{g})}\right|^{\kappa-2s-(m+n)},\,g\in G^{\blacklozenge}(\mathcal{F}_{v}).

which depends on κ\kappa.

6.1.2. Unramified places

Let v𝒯urv\in\mathscr{T}_{\mathcal{F}}^{{\mathrm{ur}}}, we choose fv,s,χSiegf_{v,s,\chi}^{\mathrm{Sieg}} to be the spherical section fv,s,χSieg,sphf_{v,s,\chi}^{\mathrm{Sieg},\mathrm{sph}}.

6.1.3. Ramified places away from places above pp

At the ramified places v𝒯ramv\in\mathscr{T}_{\mathcal{F}}^{\mathrm{ram}}, we let fs,χ,vf_{s,\chi,v}^{\dagger} be the big-cell section defined as the Siegel section supported on the big-cell Q(v)wN+1NQ(𝒪v)Q(\mathcal{F}_{v})w_{N+1}N_{Q}(\mathcal{O}_{\mathcal{F}_{v}}) and that fs,χ,v(wN+1NQ(𝒪v))=1f_{s,\chi,v}^{\dagger}(w_{N+1}N_{Q}(\mathcal{O}_{\mathcal{F}_{v}}))=1. We put

γv:=[𝟏N+1γvupperright0𝟏N+1,],γvupperright:=[000x1𝟏n000000(yy¯)1𝟏mn0x¯1𝟏n000],\gamma_{v}:=\begin{bmatrix}\mathbf{1}_{N+1}&\gamma_{v}^{\mathrm{upper-right}}\\ 0&\mathbf{1}_{N+1},\end{bmatrix},\quad\gamma_{v}^{\mathrm{upper-right}}:=\begin{bmatrix}0&0&0&x^{-1}\mathbf{1}_{n}\\ 0&0&0&0\\ 0&0&(y\overline{y})^{-1}\mathbf{1}_{m-n}&0\\ \overline{x}^{-1}\mathbf{1}_{n}&0&0&0\end{bmatrix},

where xx and yy are fixed constants in 𝒦\mathcal{K} which are divisible by some high power of ϖ𝒦v\varpi_{\mathcal{K}_{v}}. Then we define the Siegel section to be fs,χ,vSieg()=fv,s,χ(γv)f_{s,\chi,v}^{\mathrm{Sieg}}(-)=f_{v,s,\chi}^{\dagger}(-\cdot\gamma_{v}).

6.1.4. Places above pp

Let v𝒮(p)v\in\mathscr{S}_{\mathcal{F}}^{(p)}. We remark that in [Wan15, Section 4D], pp is assumed to be split completely in 𝒦\mathcal{K}, while here we only assume that pp is unramified in \mathcal{F} and every places of \mathcal{F} above pp splits in 𝒦\mathcal{K}. The stronger assumption of Wan is just in the purpose of easing the notational issues, and can be generalized to our setup by bookkeeping.

Recall that we have started with a Hecke character χ\chi of 𝒦\mathcal{K}, which decomposes as χ=w𝒮𝒦χw\chi=\otimes_{w\in\mathscr{S}_{\mathcal{K}}}\chi_{w}. For v𝒮(p)v\in\mathscr{S}_{\mathcal{F}}^{(p)} that splits as v=ww¯v=w\overline{w} in 𝒦\mathcal{K}, we put

χ1:=χw,χ2:=χw¯1,\chi_{1}:=\chi_{w},\quad\chi_{2}:=\chi_{\overline{w}}^{-1},

where we identify 𝒦w=𝒦w¯=v\mathcal{K}_{w}=\mathcal{K}_{\overline{w}}=\mathcal{F}_{v}. Then the two local characters determines a character

χw,s:B2(N+1)(𝒦w)×,[AB0D]χ1(detD)χ2(detA)|detAD1|ws.\chi_{w,s}:B_{2(N+1)}(\mathcal{K}_{w})\rightarrow\mathbb{C}^{\times},\quad\begin{bmatrix}A&B\\ 0&D\end{bmatrix}\mapsto\chi_{1}(\det D)\chi_{2}(\det A)\left|{\det AD^{-1}}\right|_{w}^{s}.

Here the matrix is participated as [N+1N+1][N+1\mid N+1]. Here one checks that for each

fw,sIndB2(N+1)(𝒦w)GL2(N+1)(𝒦w)(χw,s),f_{w,s}\in\operatorname{Ind}_{B_{2(N+1)}(\mathcal{K}_{w})}^{\mathrm{GL}_{2(N+1)(\mathcal{K}_{w})}}(\chi_{w,s}), (6.20)

we have fv,s(gv):=fw,s(gw)IvSieg((χ1,χ2),s)f_{v,s}(g_{v}):=f_{w,s}(g_{w})\in I_{v}^{\mathrm{Sieg}}((\chi_{1},\chi_{2}),s), where gwg_{w} is the projection of gvg_{v} under ϱw,N+1,N+1\varrho_{w,N+1,N+1}. This process reduces us to the construction of sections in (6.20), over GL2(N+1)(𝒦w)\mathrm{GL}_{2(N+1)}(\mathcal{K}_{w}), which could be simpler. Additionally, we have the local representation σv=IBNGLN(λ¯)\sigma_{v}=I_{B_{N}}^{\mathrm{GL}_{N}}(\underline{\lambda}), with the conductors of λ¯\underline{\lambda} being ϖvt1,,ϖvtm+n\varpi_{v}^{t_{1}},\ldots,\varpi_{v}^{t_{m+n}}. We write

ξi:={λiχ11,1im,1i=m+1,λi11χ2,m+2im+n+1.\xi_{i}:=\begin{cases}\lambda_{i}\chi_{1}^{-1},&\quad 1\leq i\leq m,\\ 1&\quad i=m+1,\\ \lambda_{i-1}^{-1}\chi_{2},&\quad m+2\leq i\leq m+n+1.\end{cases}

We define the big-cell section f~v,s,χ\tilde{f}_{v,s,\chi}^{\dagger} to be the Siegel Eisenstein section such that

  • it is supported on the big-cell Q(v)wN+1KQ(pt)Q(\mathcal{F}_{v})w_{N+1}K_{Q}(p^{t}), with KQ(pt)K_{Q}(p^{t}) be the subgroup of GL2(N+1)(𝒪v)\mathrm{GL}_{2(N+1)}(\mathcal{O}_{\mathcal{F}_{v}}) consisting of matrices which are blockwise upper triangular under the partition [N+1N+1][N+1\mid N+1] modulo ptp^{t}, and tt is such that the conductor of (χ)v(\chi^{\mathcal{F}})_{v} is ϖvt\varpi_{v}^{t}, and

  • f~v,s,χ(wN+1[ABCD])=χv(detD)\tilde{f}_{v,s,\chi}^{\dagger}\left(w_{N+1}\begin{bmatrix}A&B\\ C&D\end{bmatrix}\right)=\chi_{v}(\det D) for [ABCD]KQ(pt)\begin{bmatrix}A&B\\ C&D\end{bmatrix}\in K_{Q}(p^{t}).

We define, following [Wan15, Section 4D4], the Siegel Eisenstein section 202020There are subtle differences between the Siegel Eisenstein series we write here and the one in [Wan15, Section 4D4]. Following [Wan19, Section 4.7], we decide to add the factor (𝔤(χ¯𝖯,v)m+n+1cm+n+1(χ𝖯,v,s𝖯))1\left(\mathfrak{g}(\overline{\chi}_{\mathsf{P},v})^{m+n+1}c_{m+n+1}(\chi_{\mathsf{P},v},-s_{\mathsf{P}})\right)^{-1} here in the Siegel Eisenstein section, instead of in the normalization factor B𝒟B_{\mathscr{D}} at the beginning of [Wan15, Section 5C1].

fv,s,χ:=pi=1mitii=1nitm+ii=1m𝔤(ξi)ξi(1)i=1n𝔤(ξm+1+i)ξm+1+i(1)×A,B,C,D,Ei=1mnξ¯i(detAidetAi1pti)i=1nξ¯mn+i(detDidetDi1ptmn+i)i=1nξ¯m+1+i(detEidetEi1ptm+1+i)×(𝔤((χ¯)v)m+n+1cm+n+1((χ)v,s))1f~v,s,χ(gwBorel1[𝟏N+10𝟏N+1]wBorel),f_{v,s,\chi}^{\dagger}:=p^{-\sum_{i=1}^{m}it_{i}-\sum_{i=1}^{n}it_{m+i}}\prod_{i=1}^{m}\mathfrak{g}(\xi_{i})\xi_{i}(-1)\prod_{i=1}^{n}\mathfrak{g}(\xi_{m+1+i})\xi_{m+1+i}(-1)\\ \times\sum_{A,B,C,D,E}\prod_{i=1}^{m-n}\overline{\xi}_{i}\left(\dfrac{\det A_{i}}{\det A_{i-1}}p^{t_{i}}\right)\prod_{i=1}^{n}\overline{\xi}_{m-n+i}\left(\dfrac{\det D_{i}}{\det D_{i-1}}p^{t_{m-n+i}}\right)\prod_{i=1}^{n}\overline{\xi}_{m+1+i}\left(\dfrac{\det E_{i}}{\det E_{i-1}}p^{t_{m+1+i}}\right)\\ \times\left(\mathfrak{g}((\overline{\chi}^{\mathcal{F}})_{v})^{m+n+1}c_{m+n+1}((\chi^{\mathcal{F}})_{v},-s)\right)^{-1}\tilde{f}^{\dagger}_{v,s,\chi}\left(gw_{\mathrm{Borel}}^{-1}\begin{bmatrix}\mathbf{1}_{N+1}&\circledast\\ 0&\mathbf{1}_{N+1}\end{bmatrix}w_{\mathrm{Borel}}\right),

where

:=[CDABE],\circledast:=\begin{bmatrix}&&C&D\\ &&&\\ &&A&B\\ E&&&\end{bmatrix},

under the partition [n1mnn][n\mid 1\mid m-n\mid n] with A,B,C,D,EA,B,C,D,E run over the set defined in [Wan15, Lemma 4.29], with AiA_{i} being the ii-th upper-left minor of AA, DiD_{i} being the (mn)(m-n)-th upper-left minor of [ABCD]\begin{bmatrix}A&B\\ C&D\end{bmatrix} and EiE_{i} is the ii-th upper-left minor of EE. The wBorelw_{\mathrm{Borel}} is the element in G(v)G^{\blacklozenge}(\mathcal{F}_{v}) such that its projection via ϱw,N+1,N+1\varrho_{w,N+1,N+1} is the Weyl element diag[wm,1]GL2(N+1)(𝒦w)\operatorname{diag}[w_{m},1]\in\mathrm{GL}_{2(N+1)}(\mathcal{K}_{w}). The factor cm+n+1()c_{m+n+1}(-) is defined in [Wan15, (13)].

Finally we define our Siegel Eisenstein section as

fv,s,χSieg(g):=𝖬v(s,fv,s,χ¯c)(g),f_{v,s,\chi}^{\mathrm{Sieg}}(g):=\mathsf{M}_{v}(-s,f^{\dagger}_{v,s,\overline{\chi}^{\mathrm{c}}})(g),

with the intertwining operator defined as

𝖬v(s,f)IvSieg(χ¯vc,s):gNQ(v)f(wnrg)dr\mathsf{M}_{v}(s,f)\in I_{v}^{\mathrm{Sieg}}(\overline{\chi}_{v}^{\mathrm{c}},-s):\quad g\mapsto\int_{N_{Q}(\mathcal{F}_{v})}f(w_{n}rg)\,\mathrm{d}r

for fIvSieg(χv,s)f\in I_{v}^{\mathrm{Sieg}}(\chi_{v},s).

6.2. Summary of automorphic computations

Put all the calculations in this part together, we have the following main theorem.

Theorem 6.3.

Notations being as above and assume (BC), Assumption 3.8, 3.10, 3.11 and Assumption 6.1, 6.2. Suppose σ\sigma and π\pi are both regularly ordinary at any places vv above pp. Then

(𝒫Φ,ΨKling)2Φσ,Pet2Ψπ,Pet2=12ϰσ+ϰπ𝒱(p)(σ×π)L𝒮ur(s+12,πv,χv)L𝒮ur(s+12,πv,χv)×v𝒱ramζvCσv,𝝍vCσv,𝝍v1πvessσvessv𝒱(p)ζvΔβ2𝔊(κ,μ¯˘,λ¯˘)𝔊(κ,μ¯ˇ˘,λ¯ˇ˘)𝒞σord𝒞πord×v𝒮urdN+1,v(s,χv)1v𝒮bad𝒵v(fv,s,χSieg,πv)𝒵v(fv,s,χSieg,πv).\dfrac{(\mathcal{P}^{\mathrm{Kling}}_{\Phi,\Psi})^{2}}{\left|\left|{\Phi}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\Psi}\right|\right|_{\pi,\mathrm{Pet}}^{2}}=\dfrac{1}{2^{\varkappa_{\sigma}+\varkappa_{\pi}}}\cdot\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma\times\pi)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v},\chi_{v}\right)L_{\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}\left(s+\dfrac{1}{2},\pi_{v}^{\vee},\chi_{v}\right)\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}}}\zeta_{v}C_{\sigma_{v},\boldsymbol{\psi}_{v}}C_{\sigma_{v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}\mathcal{B}_{\pi_{v}}^{\mathrm{ess}}\mathcal{B}_{\sigma_{v}}^{\mathrm{ess}}\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\zeta_{v}\Delta_{\beta}^{2}\cdot\mathfrak{G}(\kappa,\breve{\underline{\mu}},\breve{\underline{\lambda}})\mathfrak{G}(\kappa,\breve{\check{\underline{\mu}}},\breve{\check{\underline{\lambda}}})\mathcal{C}_{\sigma}^{\operatorname{ord}}\mathcal{C}_{\pi}^{\operatorname{ord}}\\ \times\prod_{v\in\mathscr{S}_{\mathcal{F}}^{{\mathrm{ur}}}}d_{N+1,v}(s,\chi_{v})^{-1}\prod_{v\in\mathscr{S}_{\mathcal{F}}^{\mathrm{bad}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{v}^{\vee}).

Here for v𝒱ramv\in\mathscr{V}_{\mathcal{F}}^{\mathrm{ram}} such that σv\sigma_{v} is unramified, we set Cσv,𝛙v=Cσv,𝛙v1=1C_{\sigma_{v},\boldsymbol{\psi}_{v}}=C_{\sigma_{v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}=1, and write ζv:=i=1m+n+1ζv(i)\zeta_{v}:=\prod_{i=1}^{m+n+1}\zeta_{\mathcal{F}_{v}}(i).

Part II pp-adic Interpolation

In this part, we pp-adically interpolate the (square of) the Gan-Gross-Prasad period integral of the Klingen Eisenstein series with a cusp form.

7. Modular forms over unitary groups

In this section, we recall the geometric backgrounds of modular forms over unitary groups, their pp-adic analogues and pp-adic families. We try to put ourselves in the most general setup. The materials are largely taken from [EHLS20, Hsi14].

7.1. Generalities on PEL datums and unitary Shimura datums

7.1.1. PEL-type Shimura datums
Definition 7.1.

By a PEL-type Shimura datum, we mean a tuple 𝒫=(B,,V,ψV,h)\mathscr{P}=(B,\ast,V,\psi_{V},h), where

  • BB is a finite semisimple \mathbb{Q}-algebra with a positive involution \ast,

  • VV is a symplectic (B,)(B,\ast)-module, that is, a BB-module VV with a skew-symmetric nondegenerate \mathbb{Q}-bilinear form ψV:V×V\psi_{V}:V\times V\rightarrow\mathbb{Q} such that ψV(bu,v)=ψV(u,bv)\psi_{V}(b^{\ast}u,v)=\psi_{V}(u,bv) for any u,vVu,v\in V and bBb\in B.

  • Let 𝒞:=EndB(V)\mathcal{C}:=\operatorname{End}_{B}(V). It carries an adjoint involution defined by, for αEndB(V)\alpha\in\operatorname{End}_{B}(V), the α𝒞\alpha^{\ast}\in\mathcal{C} such that

    ψV(αv,w)=ψV(v,αw), for all v,wV.\psi_{V}(\alpha^{\ast}v,w)=\psi_{V}(v,\alpha w),\quad\text{ for all }v,w\in V.

    Then hh is defined to be an \mathbb{R}-algebra map h:𝒞h:\mathbb{C}\rightarrow\mathcal{C}_{\mathbb{R}} such that

    • h(z¯)=h(z)h(\overline{z})=h(z)^{\ast}, where the \ast on the right-hand-side is the adjoint involution on EndB(V)\operatorname{End}_{B}(V)_{\mathbb{R}},

    • (u,v)ψV(u,h(i)v)(u,v)\mapsto\psi_{V}(u,h(\mathrm{i})v) is positive-definite and symmetric.

We say 𝒫\mathscr{P} is a simple PEL-type Shimura datum if BB is a simple \mathbb{Q}-algebra. Given a PEL-type Shimura datum 𝒫\mathscr{P}, we associate it with

  • the field FF, defined to be the center of BB,

  • the field F0:={bF:b=b}F_{0}:=\{b\in F:b^{\ast}=b\}, i.e. the subalgebra of \ast-invariants in FF, and

  • two algebraic groups over \mathbb{Q}, defined as

    G(R):={gGLBR(VR):ψV(gu,gv)=ν(g)ψV(u,v),u,vVR,ν(g)R×}G(R):=\{g\in\mathrm{GL}_{B\otimes_{\mathbb{Q}}R}(V\otimes_{\mathbb{Q}}R):\psi_{V}(gu,gv)=\nu(g)\psi_{V}(u,v),\,u,v\in V\otimes_{\mathbb{Q}}R,\,\nu(g)\in R^{\times}\}

    and

    G1(R):={gGLBR(VR):ψV(gu,gv)=ν(g)ψV(u,v),u,vVR,ν(g)(F0R)×}G_{1}(R):=\{g\in\mathrm{GL}_{B\otimes_{\mathbb{Q}}R}(V\otimes_{\mathbb{Q}}R):\psi_{V}(gu,gv)=\nu(g)\psi_{V}(u,v),\,u,v\in V\otimes_{\mathbb{Q}}R,\,\nu(g)\in(F_{0}\otimes_{\mathbb{Q}}R)^{\times}\}

    for any \mathbb{Q}-algebra RR. Clearly, GG is a subgroup of G1G_{1}.

Let XX be the G()G(\mathbb{R})-conjugacy class of h1:×Gh^{-1}:\mathbb{C}^{\times}\rightarrow G_{\mathbb{R}}, then (G,X)(G,X) is a Shimura datum à la Deligne. For each neat compact open subgroup KK of G(𝔸,f)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}), by the result of Deligne, there is an algebraic variety ShK(G,X)\mathrm{Sh}_{K}(G,X) over the reflex field EE of the PEL Shimura datum 𝒫\mathscr{P} such that

ShK(G,X)()=G()\X×G(𝔸,f)/K.\mathrm{Sh}_{K}(G,X)(\mathbb{C})=G(\mathbb{Q})\backslash X\times G(\mathbb{A}_{\mathbb{Q},\mathrm{f}})/K.

Under certain conditions, this model is actually unique. We call it the Shimura variety of the Shimura datum (G,X)(G,X), or the Shimura variety of the PEL Shimura datum 𝒫\mathscr{P}.

Let pp be a prime number. We hope to construct an integral model of the Shimura variety ShK(G,X)\mathrm{Sh}_{K}(G,X) at pp, that is, a smooth model over the ring 𝒪E(p)\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)}. For this purpose, we need some extra data and assumptions.

Definition 7.2.

By an integral PEL-type Shimura datum, we mean a tuple (𝒫,𝒪B,L)(\mathscr{P},\mathcal{O}_{B},L), where

  • 𝒫=(B,,V,ψV,h)\mathscr{P}=(B,\ast,V,\psi_{V},h) is a PEL-type Shimura datum,

  • 𝒪B\mathcal{O}_{B} is a (p)\mathbb{Z}_{(p)}-order in BB which is stable under the involution \ast on BB, and 𝒪B(p)p\mathcal{O}_{B}\otimes_{\mathbb{Z}_{(p)}}\mathbb{Z}_{p} is a maximal order in BB. We require BB is unramified at pp, which means that BpB_{\mathbb{Q}_{p}} is isomorphic to a product of matrix algebras over unramified extensions of p\mathbb{Q}_{p}.

  • LL is a p\mathbb{Z}_{p}-lattice in VpV_{\mathbb{Q}_{p}} such that LL is stable under 𝒪B\mathcal{O}_{B} and LL is self-dual with respect to the pairing ψV\psi_{V}.

Given an integral PEL-type Shimura datum with the extra unramified condition of BB at pp, GpG_{\mathbb{Q}_{p}} is unramified. Indeed, let

Kp0:={gG(p):gLL},K_{p}^{0}:=\{g\in G(\mathbb{Q}_{p}):g\cdot L\subseteq L\},

i.e. the subgroup of G(p)G(\mathbb{Q}_{p}) that stablizes the lattice LL, then Kp0K_{p}^{0} is the hyperspecial subgroup of the p\mathbb{Z}_{p}-point of the smooth reductive model 𝒢\mathcal{G} of GpG_{\mathbb{Q}_{p}} over p\mathbb{Z}_{p}.

7.1.2. Unitary Shimura datums
Definition 7.3.

We consider a special integral PEL-type Shimura datum (𝒫=(B,,V,ψV,h),𝒪B,L)(\mathscr{P}=(B,\ast,V,\psi_{V},h),\mathcal{O}_{B},L), where

  • B=𝒦mB=\mathcal{K}^{m}, the product of mm copies of 𝒦\mathcal{K},

  • \ast is the complex conjugation on each factor 𝒦\mathcal{K} of BB,

  • For 1im1\leq i\leq m, let ViV_{i} be a finite dimensional 𝒦\mathcal{K}-vector space of dimension nin_{i}, equipped with an Hermitian form ,Vi:V×V𝒦\left\langle{-,-}\right\rangle_{V_{i}}:V\times V\rightarrow\mathcal{K} relative to 𝒦/\mathcal{K}/\mathcal{F}. Let δ𝒪𝒦\delta\in\mathcal{O}_{\mathcal{K}} be a totally imaginary element that is prime to pp. We then put ψVi:=Tr𝒦/δ,Vi\psi_{V_{i}}:=\operatorname{Tr}_{\mathcal{K}/\mathbb{Q}}\delta\left\langle{-,-}\right\rangle_{V_{i}}. Then VV is taken to be V1××VmV_{1}\times\cdots\times V_{m}, and ψV:=ψV1×ψVm\psi_{V}:=\psi_{V_{1}}\times\cdots\psi_{V_{m}}.

  • For each σ𝒱𝒦\sigma\in\mathscr{V}_{\mathcal{K}}^{\infty}, Vi,σ:=Vi𝒦,σV_{i,\sigma}:=V_{i}\otimes_{\mathcal{K},\sigma}\mathbb{C} has a \mathbb{C}-basis with respect to which ψVi\psi_{V_{i}} is given by a matrix of the form diag[𝟏ri,σ,𝟏si,σ]\operatorname{diag}[\mathbf{1}_{r_{i},\sigma},-\mathbf{1}_{{s_{i}},\sigma}]. Fixing such a basis, let hi,σ:End(Vi,σ)h_{i,\sigma}:\mathbb{C}\rightarrow\operatorname{End}_{\mathbb{R}}(V_{i,\sigma}) be zdiag[z𝟏ri,σ,z¯𝟏si,σ]z\mapsto\operatorname{diag}[z\mathbf{1}_{r_{i},\sigma},\overline{z}\mathbf{1}_{{s_{i}},\sigma}]. Let hi:=σΣ𝒦hi,σh_{i}:=\prod_{\sigma\in\Sigma_{\mathcal{K}}}h_{i,\sigma} and h:=i=1mhih:=\prod_{i=1}^{m}h_{i}.

  • 𝒪B=𝒪Km\mathcal{O}_{B}=\mathcal{O}_{K}^{m}.

  • Let LiViL_{i}\subset V_{i} be a free 𝒪𝒦\mathcal{O}_{\mathcal{K}}-module of rank dim𝒦V\dim_{\mathcal{K}}V, such that L,L\left\langle{L,L}\right\rangle_{\mathbb{Q}}\subset\mathbb{Z} and ψVi\psi_{V_{i}} is a perfect pairing on LpL\otimes\mathbb{Z}_{p}.

We say the PEL-type Shimura datum as a unitary Shimura datum. It is called a simple unitary Shimura datum if m=1m=1.

Given such a unitary Shimura datum, the corresponding objects are as follows.

  • the field F=𝒦mF=\mathcal{K}^{m},

  • the field F0=mF_{0}=\mathcal{F}^{m},

  • the group G1=Res(i=1mGU(Vi,Vi))G_{1}=\operatorname{Res}^{\mathcal{F}}_{\mathbb{Q}}\left(\prod_{i=1}^{m}{\mathrm{GU}}(V_{i},\left\langle{-}\right\rangle_{V_{i}})\right), where for 1im1\leq i\leq m, GU(Vi){\mathrm{GU}}(V_{i}) is the general unitary group over \mathcal{F} attached to the Hermitian space ViV_{i}, defined in Part 1.

  • the group GG is the subgroup of G1G_{1} with rational silimitudes.

So in particular when =\mathcal{F}=\mathbb{Q} and m=1m=1, then G1=GG_{1}=G is the general unitary group defined in Definition 2.1.

7.1.3. Hodge structures, lattices and level subgroups at pp

Now we concentrate on the case of unitary Shimura datum. For each 1im1\leq i\leq m and σ𝒱𝒦\sigma\in\mathscr{V}_{\mathcal{K}}^{\infty}, hi,σh_{i,\sigma} determines a pure Hodge structure of weight 1-1 on Vi,σ:=Li𝒪𝒦,σV_{i,\sigma}:=L_{i}\otimes_{\mathcal{O}_{\mathcal{K}},\sigma}\mathbb{C}. Let Vi,σ0V_{i,\sigma}^{0} be the degree zero piece of the Hodge filtration. This is an 𝒪𝒦σ\mathcal{O}_{\mathcal{K}}\otimes_{\sigma}\mathbb{C}-submodule of VV. For each σ𝒱𝒦\sigma\in\mathscr{V}_{\mathcal{K}}^{\infty}, let aσ,i=dim(Vi,σ0𝒪𝒦σ)a_{\sigma,i}=\dim_{\mathbb{C}}(V_{i,\sigma}^{0}\otimes_{\mathcal{O}_{\mathcal{K}}\otimes_{\sigma}\mathbb{C}}\mathbb{C}) and bi,σ:=niaσ,ib_{i,\sigma}:=n_{i}-a_{\sigma,i}. We note that for σ𝒱𝒦\sigma\in\mathscr{V}_{\mathcal{K}}^{\infty},

(aσ,i,bσ,i)=(b𝖼σ,i,a𝖼σ,i)=(ri,σ,si,σ).(a_{\sigma,i},b_{\sigma,i})=(b_{\mathsf{c}\sigma,i},a_{\mathsf{c}\sigma,i})=(r_{i,\sigma},s_{i,\sigma}).

We assume throughout the following fundamental hypothesis, called the ordinary hypothesis

vσ=vσrσ,i=rσ,i,i=1,,mv_{\sigma}=v_{\sigma^{\prime}}\Rightarrow r_{\sigma,i}=r_{\sigma^{\prime},i},\quad i=1,\ldots,m (ord)

for any σ,σ𝒱𝒦\sigma,\sigma^{\prime}\in\mathscr{V}_{\mathcal{K}}^{\infty} with vσv_{\sigma} and vσv_{\sigma^{\prime}} the corresponding pp-adic places of them given by the embedding ιp\iota_{p}.

Then for each place ww of 𝒦\mathcal{K} above pp, we can then define (aw,i,bw,i)=(aσ,i,bσ,i)(a_{w,i},b_{w,i})=(a_{\sigma,i},b_{\sigma,i}) for any σΣ𝒦\sigma\in\Sigma_{\mathcal{K}} corresponding to ww. Let Li,w:=L𝒪𝒦𝒪𝒦,wL_{i,w}:=L\otimes_{\mathcal{O}_{\mathcal{K}}}\mathcal{O}_{\mathcal{K},w}. For each 1im1\leq i\leq m, we fix an 𝒪𝒦p\mathcal{O}_{\mathcal{K}}\otimes\mathbb{Z}_{p}-decomposition Lip=Li+LiL_{i}\otimes\mathbb{Z}_{p}=L_{i}^{+}\oplus L_{i}^{-} such that

  • Li+L_{i}^{+} is an 𝒪K,w\mathcal{O}_{K,w}-module with rank𝒪𝒦,wLi+=aw,i\operatorname{rank}_{\mathcal{O}_{\mathcal{K},w}}L_{i}^{+}=a_{w,i}. So Li+L_{i}^{+} is an 𝒪K,w\mathcal{O}_{K,w}-module with rank𝒪𝒦,wLi=bw,i\operatorname{rank}_{\mathcal{O}_{\mathcal{K},w}}L_{i}^{-}=b_{w,i} and Li,w=Li,w+Li,wL_{i,w}=L_{i,w}^{+}\oplus L_{i,w}^{-}.

  • Li,w±L_{i,w}^{\pm} is the annihilator of Li,w¯±L_{i,\overline{w}}^{\pm} for the perfect pairing ψV:Li,w×Li,w¯p(1)\psi_{V}:L_{i,w}\times L_{i,\overline{w}}\rightarrow\mathbb{Z}_{p}(1).

For each ii and ww, we fix a basis of Li,w+L_{i,w}^{+} to regard it as a direct sum of copies of 𝒪𝒦,w\mathcal{O}_{\mathcal{K},w}. 212121In [Hsi14, Section 1.8], Hsieh very carefully chose the precise basis of Li,w+L_{i,w}^{+}. Here we only roughly speak of such a basis without explicitly specifying it. Taking p\mathbb{Z}_{p}-duals via ψV\psi_{V} yields a decomposition of Li,wL_{i,w}^{-} as a direct sum of copies of 𝒪𝒦,w¯\mathcal{O}_{\mathcal{K},\overline{w}}. The choices of these decompositions determines isomorphisms

GL𝒪𝒦,w(Li,w+)GLaw,i(𝒪𝒦,w)\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w}^{+})\simeq\mathrm{GL}_{a_{w,i}}(\mathcal{O}_{\mathcal{K},w})
GL𝒪𝒦,w(Li,w)GLbw,i(𝒪𝒦,w)\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w}^{-})\simeq\mathrm{GL}_{b_{w,i}}(\mathcal{O}_{\mathcal{K},w})
GL𝒪𝒦,w(Li,w)GLni(𝒪𝒦,w)\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w})\simeq\mathrm{GL}_{n_{i}}(\mathcal{O}_{\mathcal{K},w})

and the embedding

GL𝒪𝒦,w(Li,w+)×GL𝒪𝒦,w(Li,w)GL𝒪𝒦,w(Li,w)\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w}^{+})\times\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w}^{-})\hookrightarrow\mathrm{GL}_{\mathcal{O}_{\mathcal{K},w}}(L_{i,w})

is given by (A,B)diag[A,B](A,B)\mapsto\operatorname{diag}[A,B].

To define appropriate level subgroups at pp, we start with defining

H𝒫=GL𝒪Bp(L+)wpi=1mGLaw,i(𝒪𝒦,w).H_{\mathscr{P}}=\mathrm{GL}_{\mathcal{O}_{B}\otimes\mathbb{Z}_{p}}(L^{+})\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\prod_{w\mid p}\prod_{i=1}^{m}\mathrm{GL}_{a_{w,i}}(\mathcal{O}_{\mathcal{K},w}).

Let B𝒫H𝒫B_{\mathscr{P}}\subset H_{\mathscr{P}} be the Borel subgroup corresponds via this isomorphism with the product of the upper-triangular Borel subgroups of general linear groups. Let N𝒫N_{\mathscr{P}} be its unipotent radical. Let T𝒫:=B𝒫/N𝒫T_{\mathscr{P}}:=B_{\mathscr{P}}/N_{\mathscr{P}}, this is identified by the isomorphism with diagonal matrices. Let B𝒫+GpB^{+}_{\mathscr{P}}\subset G_{\mathbb{Z}_{p}} be the Borel subgroup that stablizes L+L^{+} and such that

B𝒫+𝔾m×B𝒫𝔾m×H𝒫,B^{+}_{\mathscr{P}}\twoheadrightarrow\mathbb{G}_{\mathrm{m}}\times B_{\mathscr{P}}\subset\mathbb{G}_{\mathrm{m}}\times H_{\mathscr{P}}, (7.21)

where the map to the first factor is the silimitude character ν\nu and the second projection is the projection to H𝒫H_{\mathscr{P}}. Let N𝒫+N_{\mathscr{P}}^{+} be its unipotent radical. Under the identification,

B𝒫+𝔾m×w𝒱𝒦(p)i=1m{[AB0D]GLni(𝒪𝒦,w):ABaw,i(𝒪𝒦,w),DBbw,i(𝒪𝒦,w)}.B^{+}_{\mathscr{P}}\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathbb{G}_{\mathrm{m}}\times\prod_{w\in\mathscr{V}_{\mathcal{K}}^{(p)}}\prod_{i=1}^{m}\left\{\begin{bmatrix}A&B\\ 0&D\end{bmatrix}\in\mathrm{GL}_{n_{i}}(\mathcal{O}_{\mathcal{K},w}):A\in B_{a_{w,i}}(\mathcal{O}_{\mathcal{K},w}),D\in B^{-}_{b_{w,i}}(\mathcal{O}_{\mathcal{K},w})\right\}. (7.22)

Then we define the following level subgroups at pp. They are all defined under the chosen basis of LL^{\bullet} above.

  • We have the hyperspecial subgroup Kp0=𝔾m×H𝒫K_{p}^{0}=\mathbb{G}_{\mathrm{m}}\times H_{\mathscr{P}}, where 𝔾m\mathbb{G}_{\mathrm{m}} is the similitude factor part.

  • We have the congruence level subgroup Kp,r0G(p)K_{p,r}^{0}\subset G(\mathbb{Z}_{p}) consists of those gg such that gmodprB𝒫+(/pr)g\mod p^{r}\in B_{\mathscr{P}}^{+}(\mathbb{Z}/p^{r}).

  • We define the principal level subgroup Kp,r1K_{p,r}^{1} as the subgroup of Kp,r0K_{p,r}^{0} consists of those gg projecting under the surjection (7.21) to an element in (/pr)××N𝒫+(/pr)(\mathbb{Z}/p^{r})^{\times}\times N_{\mathscr{P}}^{+}(\mathbb{Z}/p^{r}).

Then it follows that Kp,r0/Kp,r1T𝒫(/pr)K_{p,r}^{0}/K_{p,r}^{1}\simeq T_{\mathscr{P}}(\mathbb{Z}/p^{r}).

7.2. Moduli problems

In this subsection, we start with an integral PEL-type Shimura datum (𝒫=(B,,V,ψV,h),𝒪B,L)(\mathscr{P}=(B,\ast,V,\psi_{V},h),\mathcal{O}_{B},L), and omit it from the following-up notations.

Let \square be a finite set of primes, which is usually taken to be the empty set or {p}\{p\}. Let SS be a locally noetherian connected 𝒪E×()\mathcal{O}_{E}\times\mathbb{Z}_{(\square)}-scheme.

Definition 7.4.

We say that a tuple A¯=(A,λ,ι)\underline{A}=(A,\lambda,\iota) is a ()\mathbb{Z}_{(\square)}-polarized abelian scheme with an action of 𝒪B\mathcal{O}_{B} if

  • AA is an abelian scheme over SS,

  • λ\lambda is a prime-to-\square polarization of AA over SS.

  • ι:𝒪BEndSA()\iota:\mathcal{O}_{B}\hookrightarrow\operatorname{End}_{S}A\otimes_{\mathbb{Z}}\mathbb{Z}_{(\square)} which respects involutions on both sides: the involution \ast on the left and the Rosati involution coming from λ\lambda on the right.

Let KK be a compact open subgroup of G(𝔸,f)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}), we define a KK^{\square}-level structure η¯()=η()K\overline{\eta}^{(\square)}=\eta^{(\square)}K of A¯\underline{A} to be a π1(S,s¯)\pi_{1}(S,\overline{s})-invariant KK-orbit of the isomorphism of 𝒪B𝔸,f\mathcal{O}_{B}\otimes\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{\square}-modules

η():L𝔸,fH1(At,𝔸,f),\eta^{(\square)}:L\otimes\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{\square}\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathrm{H}_{1}(A_{t},\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{\square}),

which identify ψV\psi_{V} with a 𝔸,f,×\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{\square,\times}-multiple of the symplectic pairing on the Tate module H1(At,𝔸,f)\mathrm{H}_{1}(A_{t},\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{\square}) defined by λ\lambda and the Weil pairing.

Let KK be a compact open subgroup of G(𝔸,f)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}).

Definition 7.5.

Let 𝔐K\mathfrak{M}_{K}^{\square} be the following category fibered in groupoids over the category of 𝒪E()\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{(\square)}:

  • The objects over a scheme SS are quadruples (A¯,η¯)(\underline{A},\overline{\eta}^{\square}), where A¯\underline{A} is a ()\mathbb{Z}_{(\square)}-polarized abelian scheme with an action of 𝒪B\mathcal{O}_{B}, and η¯()\overline{\eta}^{(\square)} is a KK^{\square}-level structure, such that LieSA\operatorname{Lie}_{S}A satisfies the Kotwitz determinant condition defined by (L,ψV,h)(L\otimes\mathbb{R},\psi_{V},h) 222222The requirements on the dimension of the abelian scheme AA and the information on the signature of the Hermitian spaces ViV_{i} in the case of unitary Shimura datums, are encoded in this Kotwitz determinant condition. So here the definition coincide with our usual definition, for example, in [Hsi14, Section 2.1].

  • The morphisms from (A¯,η¯)(\underline{A},\overline{\eta}^{\square}) to (A¯,η¯,)(\underline{A}^{\prime},\overline{\eta}^{\square,\prime}) are given by a ()\mathbb{Z}_{(\square)}-isogeny f:AAf:A\rightarrow A^{\prime} that is compatible with the action of 𝒪B\mathcal{O}_{B} and the level structures.

We have the following well-known representability theorems in the case when \square is the empty set or {p}\{p\}.

Theorem 7.6 (Degline-Kotwitz).

When \square is the empty set and KK is neat, 𝔐K\mathfrak{M}_{K}^{\emptyset} is representable by a scheme 𝒮G(K)\mathcal{S}_{G}(K). Moreover, in the case when 𝒫\mathscr{P} is a unitary Shimura datum, we have

𝒮G(K)=Gker1(,G)ShK(G,X),\mathcal{S}_{G}(K)=\sqcup_{G^{\prime}\in\ker^{1}(\mathbb{Q},G)}\mathrm{Sh}_{K}(G,X),

where ker1(,G)\ker^{1}(\mathbb{Q},G) the set of locally trivial elements of H1(,G)\mathrm{H}^{1}(\mathbb{Q},G).

More precisely, the elements of ker1(,G)\ker^{1}(\mathbb{Q},G) classify isomorphism classes of Hermitian tuples (Vj,,Vj)1jm(V_{j}^{\prime},\left\langle{-,-}\right\rangle_{V_{j}^{\prime}})_{1\leq j\leq m} that are locally isomorphic to (Vj,,Vj)1jm(V_{j},\left\langle{-,-}\right\rangle_{V_{j}})_{1\leq j\leq m}. Then 𝒮G(K)\mathcal{S}_{G}(K) is a disjoint union of copies of ShK(G,X)\mathrm{Sh}_{K}(G,X). This will not cause too much trouble since for applications to automorphic forms, and we only need one copy of them. See [EHLS20, Section 2.3] for details.

Theorem 7.7.

When ={p}\square=\{p\}, the category 𝔐Kp\mathfrak{M}_{K}^{p} is a smooth Deligne-Mumford stack. When KpK^{p} is neat, it is representable by a quasi-projective scheme 𝒮G(Kp)\mathcal{S}_{G}(K^{p}). Moreover, in the case when 𝒫\mathscr{P} is a unitary Shimura datum, we have

𝒮G(Kp)×𝒪E(p)SpecE𝒮G(KpKp0).\mathcal{S}_{G}(K^{p})\times_{\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)}}\operatorname{Spec}E\mathrel{\leavevmode\hbox to14.89pt{\vbox to14.3pt{\pgfpicture\makeatletter\hbox{\hskip 0.33301pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{13.82219pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.02219pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.11108pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\sim$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathcal{S}_{G}(K^{p}K_{p}^{0}).

In the case when 𝒫\mathscr{P} is a simple unitary Shimura datum given by an Hermitian 𝒦\mathcal{K}-vector space VV, by abuse of notation, we call 𝒮G(K)\mathcal{S}_{G}(K) (resp. 𝒮G(Kp)\mathcal{S}_{G}(K^{p})) the (unitary) Shimura variety attached to GU(V){\mathrm{GU}}(V). The geometric theory of modular forms and their pp-adic theory over GU(V){\mathrm{GU}}(V) are build up over 𝒮G(K)\mathcal{S}_{G}(K) and 𝒮G(Kp)\mathcal{S}_{G}(K^{p}).

In the following-up sections, we concentrate on the case of simple unitary PEL datums.

7.3. Compactifications

The theory of toroidal compactification of unitary Shimura varieties are done in [Lan13]. Fixing certain smooth projective polyhedral cone decomposition (which we do not make precise here), one can attach the toroidal compactification 𝒮Ktor\mathcal{S}_{K^{\square}}^{\mathrm{tor}} of 𝒮K\mathcal{S}_{K^{\square}}. We focus on the case ={p}\square=\{p\}. Then we know:

  • The toroidal compactification 𝒮Gtor(Kp)\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}) contains 𝒮G(Kp)\mathcal{S}_{G}(K^{p}) as an open dense subscheme. The complement of 𝒮G(Kp)\mathcal{S}_{G}(K^{p}) is a relative Cartier divisor with normal crossings. We denote by 𝒮Gtor(Kp)\mathscr{I}_{\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})} the ideal sheaf of the boundary of 𝒮Gtor(Kp)\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}).

  • There is a quadruple 𝒢¯:=(𝒢,λ,ι,η)\underline{\mathscr{G}}:=(\mathscr{G},\lambda,\iota,\eta) over 𝒮Gtor(Kp)\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}), where 𝒢\mathscr{G} is a semi-abelian scheme with an 𝒪𝒦\mathcal{O}_{\mathcal{K}}-action by ι\iota and a homomorphism λ:𝒢𝒢\lambda:\mathscr{G}\rightarrow\mathscr{G}^{\vee}, such that 𝒢¯|𝒮G(Kp)=𝒜¯\underline{\mathscr{G}}|_{\mathcal{S}_{G}(K^{p})}=\underline{\mathscr{A}}, the universal quadruple over 𝒮G(Kp)\mathcal{S}_{G}(K^{p}), and η\eta is the level structure in the quadruple 𝒜¯\underline{\mathscr{A}}.

Let ω¯:=eΩ𝒢/𝒮Gtor(Kp)1\underline{\omega}:=e^{\ast}\Omega_{\mathscr{G}/\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})}^{1}, where e:𝒮Gtor(Kp)𝒢e:\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})\rightarrow\mathscr{G} is the zero section of the semiabelian scheme 𝒢\mathscr{G} over 𝒮Gtor(Kp)\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}). Then ω¯\underline{\omega} is a locally free coherent 𝒪𝒮Gtor(Kp)\mathscr{O}_{\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})}-module. The minimal compactification of 𝒮G(Kp)\mathcal{S}_{G}(K^{p}) is defined to be

𝒮Gmin(Kp):=Proj(k=0H0(𝒮Gtor(Kp),detω¯k)).\mathcal{S}^{\min}_{G}(K^{p}):=\mathrm{Proj}\left(\bigoplus_{k=0}^{\infty}\mathrm{H}^{0}(\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}),\det\underline{\omega}^{k})\right).

Let π:𝒮Gtor(Kp)𝒮Gmin(Kp)\pi:\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})\rightarrow\mathcal{S}^{\min}_{G}(K^{p}) be the natural projection.

7.4. Igusa schemes

In the following, by abuse of notations, we also denote 𝒮Gtor(Kp)\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}) and 𝒮Gmin(Kp)\mathcal{S}_{G}^{\min}(K^{p}) by their base change to p\mathbb{Z}_{p} via the map 𝒪𝒦,(p)p\mathcal{O}_{\mathcal{K},(p)}\rightarrow\mathbb{Z}_{p} induced by our fixed embedding ιp\iota_{p}, and let 𝒮G/𝔽ptor(Kp)\mathcal{S}_{G/\mathbb{F}_{p}}^{\mathrm{tor}}(K^{p}) and 𝒮G/𝔽pmin(Kp)\mathcal{S}_{G/\mathbb{F}_{p}}^{\min}(K^{p}) be their special fibers correspondingly.

7.4.1. Hasse invariants

Let HaH0(𝒮G,/𝔽ptor(Kp),(detω¯)p1)\mathrm{Ha}\in\mathrm{H}^{0}(\mathcal{S}_{G,/\mathbb{F}_{p}}^{\mathrm{tor}}(K^{p}),(\det\underline{\omega})^{p-1}) be the Hasse invariant defined in [Lan18, Section 6.3.1]. In particular, for each geometric point s¯\overline{s} of 𝒮G/𝔽ptor(Kp)\mathcal{S}_{G/\mathbb{F}_{p}}^{\mathrm{tor}}(K^{p}), the Hasse invariant of the corresponding semiabelian scheme 𝒢s¯\mathscr{G}_{\overline{s}} is nonzero if and only if the abelian part of 𝒢s¯\mathscr{G}_{\overline{s}} is ordinary. Because πω\pi_{\ast}\omega is ample, for some tE>0t_{E}>0, there exists an element in H0(𝒮Gmin(Kp),(πω)tE(p1))\mathrm{H}^{0}(\mathcal{S}_{G}^{\min}(K^{p}),(\pi_{\ast}\omega)^{t_{E}(p-1)}) lifting the tEt_{E}-th power of the push-forward of Ha\mathrm{Ha}. We denote by EE the pullback under π\pi of any such lift, which (because ππωω\pi^{\ast}\pi_{\ast}\omega\simeq\omega) defines an element EH0(𝒮Gtor(Kp),(detω¯)tE(p1))E\in\mathrm{H}^{0}(\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}),(\det\underline{\omega})^{t_{E}(p-1)}).

7.4.2. Ordinary locus and the Igusa tower

Consider the following moduli problem.

Definition 7.8.

Let KpKp,n1\mathfrak{I}_{K^{p}K_{p,n}^{1}} be the following category fibered in groupoids over the category of 𝒪E(p)\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)}:

  • The objects over a scheme SS are quadruples (A¯,η¯p,jn)(\underline{A},\overline{\eta}^{p},j_{n}), where (A¯,η¯p)𝔐p(S)(\underline{A},\overline{\eta}^{p})\in\mathfrak{M}^{p}(S) and jnj_{n} is a level Kp,n1K_{p,n}^{1}-structure, defined as a Kp,n1K_{p,n}^{1}-orbit of monomorphisms as 𝒪𝒦\mathcal{O}_{\mathcal{K}}-schemes over SS:

    jpn:𝝁pnL+A[pn].j_{p^{n}}:\boldsymbol{\mu}_{p^{n}}\otimes_{\mathbb{Z}}L^{+}\hookrightarrow A[p^{n}].
  • The morphisms from (A¯,η¯p,jn)(\underline{A},\overline{\eta}^{p},j_{n}) to (A¯,η¯p,,jn)(\underline{A}^{\prime},\overline{\eta}^{p,\prime},j_{n}^{\prime}) are given by an element

    fHom𝔐p((A¯,η¯p),(A¯,η¯p,))f\in\operatorname{Hom}_{\mathfrak{M}^{p}}((\underline{A},\overline{\eta}^{p}),(\underline{A}^{\prime},\overline{\eta}^{p,\prime}))

    that is compatible with the level-pnp^{n} structures of AA and AA^{\prime}.

Theorem 7.9.

The moduli problem KpKp,n1\mathfrak{I}_{K^{p}K_{p,n}^{1}} is relatively representable over 𝒮G(Kp)\mathcal{S}_{G}(K^{p}), and thus it is represented by a scheme G(KpKp,n1)\mathcal{I}_{G}(K^{p}K_{p,n}^{1}) over the scheme 𝒮G(Kp)\mathcal{S}_{G}(K^{p}). The scheme G(KpKp,n1)\mathcal{I}_{G}(K^{p}K_{p,n}^{1}) is called the ordinary locus of level Kp,n1K_{p,n}^{1}.

We sometimes write G(KpKp,n1)\mathcal{I}_{G}(K^{p}K_{p,n}^{1}) simply as G(Kp,n1)\mathcal{I}_{G}(K_{p,n}^{1}) or even n\mathcal{I}_{n} for short if it does not cause any confusion.

Let Gtor(KpKp,n1)\mathcal{I}_{G}^{\mathrm{tor}}(K^{p}K_{p,n}^{1}) be the partial toroidal compactification of the ordinary locus G(KpKp,n1)\mathcal{I}_{G}(K^{p}K_{p,n}^{1}) ([Lan18, Theorem 5.2.1.1]). It is obtained by gluing to G(KpKp,n1)\mathcal{I}_{G}(K^{p}K_{p,n}^{1}) the toroidal boundary charts parameterizing degenerating families defined in [Lan18, Definition 3.4.2.0].

Let G,mtor(KpKp,n1)\mathcal{I}_{G,m}^{\mathrm{tor}}(K^{p}K_{p,n}^{1}) be the base change of Gtor(KpKp,n)\mathcal{I}_{G}^{\mathrm{tor}}(K^{p}K_{p,n}) to /pm\mathbb{Z}/p^{m}\mathbb{Z}. By [Lan18, Lemma 6.3.2.7], 𝒮G,mtor(Kp)[1/E]\mathcal{S}_{G,m}^{\mathrm{tor}}(K^{p})[1/E] agrees with the ordinary locus in [Lan18, Theorem 5.2.1.1] for the hyperspecial level at pp, and by [Lan18, Corollary 5.2.2.3], the map

πm,n:G,mtor(KpKp,n1)𝒮G,mtor(Kp)[1/E]\pi_{m,n}:\mathcal{I}_{G,m}^{\mathrm{tor}}(K^{p}K_{p,n}^{1})\rightarrow\mathcal{S}_{G,m}^{\mathrm{tor}}(K^{p})[1/E]

forgetting the level Kp,n1K_{p,n}^{1}-level structure is finite étale.

We gather the above objects into the following diagram, broadly speaking as the diagram of Igusa towers.

{\vdots}{\vdots}{\cdots}G,m+1tor(KpKp,n+11){{\mathcal{I}_{G,m+1}^{\mathrm{tor}}(K^{p}K_{p,n+1}^{1})}}G,mtor(KpKp,n+11){{\mathcal{I}_{G,m}^{\mathrm{tor}}(K^{p}K_{p,n+1}^{1})}}{\cdots}G,m+1tor(KpKp,n1){{\mathcal{I}_{G,m+1}^{\mathrm{tor}}(K^{p}K_{p,n}^{1})}}G,mtor(KpKp,n1){{\mathcal{I}_{G,m}^{\mathrm{tor}}(K^{p}K_{p,n}^{1})}}{\cdots}𝒮G,m+1tor[1/E]{{\mathcal{S}_{G,m+1}^{\mathrm{tor}}[1/E]}}𝒮G,mtor[1/E]{{\mathcal{S}_{G,m}^{\mathrm{tor}}[1/E]}}𝒮Gtor[1/E]{{\mathcal{S}_{G}^{\mathrm{tor}}[1/E]}}{\cdots}Spec/pm+1{{\operatorname{Spec}\mathbb{Z}/p^{m+1}}}Spec/pm{{\operatorname{Spec}\mathbb{Z}/p^{m}}}Specp{{\operatorname{Spec}\mathbb{Z}_{p}}}πm+1,n\scriptstyle{\pi_{m+1,n}}πm,n\scriptstyle{\pi_{m,n}}modp\scriptstyle{\mod p}

To simplify the notation, when the level group KpK^{p} away from pp is clear or fixed in the context, we simply write m,ntor\mathcal{I}_{m,n}^{\mathrm{tor}} for G,m(KpKp,n1)\mathcal{I}_{G,m}(K^{p}K_{p,n}^{1}) for simplicity.

7.5. Modular forms on unitary groups

7.5.1. pp-adic modular forms

We define the space of mod pmp^{m} automorphic forms on GG of level nn by

VG,m,n:=H0(m,ntor,𝒪m,ntor).V_{G,m,n}:=\mathrm{H}^{0}(\mathcal{I}_{m,n}^{\mathrm{tor}},\mathscr{O}_{\mathcal{I}_{m,n}^{\mathrm{tor}}}).

We let m,ntor:=πm,n𝒮mtor\mathscr{I}_{\mathcal{I}_{m,n}^{\mathrm{tor}}}:=\pi_{m,n}^{\ast}\mathscr{I}_{\mathcal{S}_{m}^{\mathrm{tor}}}, and similarly define the space of mod pmp^{m} cuspidal automorphic forms on GG of level nn by

VG,m,n0:=H0(m,ntor,m,ntor).V^{0}_{G,m,n}:=\mathrm{H}^{0}(\mathcal{I}_{m,n}^{\mathrm{tor}},\mathscr{I}_{m,n}^{\mathrm{tor}}).

Then we define pp-adic automorphic forms by passing to the limit.

Definition 7.10.

We define the space of pp-adic automorphic forms (resp. cuspidal automorphic forms) with torsion coefficient as

𝒱G:=limmlimnVG,n,m(resp. 𝒱G0:=limmlimnVG,n,m0).\mathcal{V}_{G}:=\varinjlim_{m}\varinjlim_{n}V_{G,n,m}\quad(\text{resp. }\mathcal{V}^{0}_{G}:=\varinjlim_{m}\varinjlim_{n}V_{G,n,m}^{0}).

We define the space of pp-adic automorphic forms (resp. cuspidal automorphic forms) with integral coefficient as

VG:=limmlimnVG,n,m(resp. VG0:=limmlimnVG,n,m0).V_{G}:=\varprojlim_{m}\varinjlim_{n}V_{G,n,m}\quad(\text{resp. }V^{0}_{G}:=\varprojlim_{m}\varinjlim_{n}V_{G,n,m}^{0}).

For any pp-adic ring RR, i.e. RR satisfies RlimnR/pnRR\simeq\varprojlim_{n}R/p^{n}R, we have pp-adic automorphic forms (resp. cuspidal automorphic forms) with coefficient ring RR defined by base change to RR, denoted by VG(R)V_{G}(R) and VG0(R)V_{G}^{0}(R) respectively.

Recall we defined several algebraic groups H𝒫H_{\mathscr{P}}, B𝒫B_{\mathscr{P}} and T𝒫T_{\mathscr{P}} attached to a unitary Shimura datum previously.

Definition 7.11.

For any sufficiently large finite extension L/pL/\mathbb{Q}_{p}, we define the weight algebra with coefficient field LL of the unitary Shimura datum 𝒫\mathscr{P} as the completed group algebra Λ𝒫:=𝒪LT𝒫(p)\Lambda_{\mathscr{P}}:=\mathcal{O}_{L}\llbracket{T_{\mathscr{P}}(\mathbb{Z}_{p})}\rrbracket.

The space of pp-adic automorphic forms carries many actions.

  • Recall T𝒫(/pn)T_{\mathscr{P}}(\mathbb{Z}/p^{n}) naturally identifies Kp,n0/Kp,n1K_{p,n}^{0}/K_{p,n}^{1}. Hence the group T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}) actually acts on 𝒱G,𝒱G0,VG(R)\mathcal{V}_{G},\mathcal{V}^{0}_{G},V_{G}(R), VG0(R)V_{G}^{0}(R), making these spaces into Λ𝒫\Lambda_{\mathscr{P}}-modules.

  • The action of G(𝔸,fp)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}) on the Igusa tower gives an action of G(𝔸,fp)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}) on the space of pp-adic automorphic forms. Let KpK^{p} be an open compact subgroup of G(𝔸,fp)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}), the submodules fixed by KpK^{p}, denoted by VG(Kp,R),VG0(Kp,R)V_{G}(K^{p},R),V_{G}^{0}(K^{p},R) and so on. These pp-adic automorphic forms are said to be of tame level KpK^{p}.

Definition 7.12.

We define a pp-adic weight τ\tau as a ¯p\overline{\mathbb{Q}}_{p}-valued character of Λ𝒫\Lambda_{\mathscr{P}}. In other words, under the isomorphism T𝒫(p)v𝒱(p)GLrv+sv(𝒪,v)T_{\mathscr{P}}(\mathbb{Z}_{p})\simeq\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\mathrm{GL}_{r_{v}+s_{v}}(\mathcal{O}_{\mathcal{F},v}), a pp-adic weight τ\tau is a collection {τv}v𝒱(p)\{\tau_{v}\}_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}} with each τv\tau_{v} given by

τv:Trv+sv(𝒪,v)\displaystyle\tau_{v}:T_{r_{v}+s_{v}}(\mathcal{O}_{\mathcal{F},v}) ¯p×,\displaystyle\rightarrow\overline{\mathbb{Q}}_{p}^{\times},
diag[a1,,am+n]\displaystyle\operatorname{diag}[a_{1},\ldots,a_{m+n}] τ1,v+(a1)τrv,v+(arv)τ1,v(arv+1)τsv,v(arv+sv),\displaystyle\mapsto\tau_{1,v}^{+}(a_{1})\cdots\tau_{r_{v},v}^{+}(a_{r_{v}})\tau_{1,v}^{-}(a_{r_{v}+1})\cdots\tau_{s_{v},v}^{-}(a_{r_{v}+s_{v}}),

where τi,v±:𝒪,vׯp×\tau_{i,v}^{\pm}:\mathcal{O}_{\mathcal{F},v}^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} are continuous characters. We say a pp-adic weight τ\tau is arithmetic, if for each v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}, τi,v±:𝒪,vׯp×\tau_{i,v}^{\pm}:\mathcal{O}_{\mathcal{F},v}^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} is given by a product of an algebraic character and a finite order character, i.e. τi,v±(a)=ϵi,τ,v±(a)ati,τ,v±\tau_{i,v}^{\pm}(a)=\epsilon^{\pm}_{i,\tau,v}(a)a^{t_{i,\tau,v}^{\pm}} for finite order characters ϵi,τ,v±:𝒪,vׯp×\epsilon_{i,\tau,v}^{\pm}:\mathcal{O}_{\mathcal{F},v}^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} and ti,τ,v±t_{i,\tau,v}^{\pm}\in\mathbb{Z}.

Given a pp-adic weight τ\tau, we denote p(τ)\mathbb{Q}_{p}(\tau) the finite field extension of p\mathbb{Q}_{p} generated by the image of τ\tau. We put Vm,n[τ]V_{m,n}[\tau] as the subspace of Vm,np𝒪p(τ)V_{m,n}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{\mathbb{Q}_{p}(\tau)} on which Λ𝒫\Lambda_{\mathscr{P}} acts by inverse of the character τ\tau. Similarly, we define the spaces Vm,n0[τ]V_{m,n}^{0}[\tau], 𝒱[τ]\mathcal{V}[\tau] and 𝒱0[τ]\mathcal{V}^{0}[\tau]. These pp-adic automorphic forms are said to have weight τ\tau.

7.5.2. Classical automorphic forms

Though we are free to use the space of pp-adic modular forms, which is larger than the space of classical automorphic forms, automorphic computations are more frequently done in the classical way. In this subsection, we consider the classical automorphic forms over unitary groups.

Let t¯:=(t1+,,tr+,t1,,ts)r+s\underline{t}:=(t_{1}^{+},\ldots,t_{r}^{+},t_{1}^{-},\ldots,t_{s}^{-})\in\mathbb{Z}^{r+s} be any (r+s)(r+s)-tuple. We define for any algebra RR, the space

Wt¯(R):={fR[GLr×GLs]:f(tn+g)=k1(t)f(g),tTr×Ts,n+Ur×Us},W_{\underline{t}}(R):=\{f\in R[\mathrm{GL}_{r}\times\mathrm{GL}_{s}]:f(tn_{+}g)=k^{-1}(t)f(g),t\in T_{r}\times T_{s},n_{+}\in U_{r}\times U_{s}^{-}\},

where R[GLr×GLs]R[\mathrm{GL}_{r}\times\mathrm{GL}_{s}] denotes the polynomial functions on GLr×GLs\mathrm{GL}_{r}\times\mathrm{GL}_{s} with coefficients in RR and kk is regarded as an algebraic character on Tr×TsT_{r}\times T_{s} defined by

k(diag[a1,,ar],diag[ar+1,,ar+s])=a1t1+artr+ar+1t1ar+sts.k(\operatorname{diag}[a_{1},\ldots,a_{r}],\operatorname{diag}[a_{r+1},\ldots,a_{r+s}])=a_{1}^{t_{1}^{+}}\cdots a_{r}^{t_{r}^{+}}a_{r+1}^{t_{1}^{-}}\cdots a_{r+s}^{t_{s}^{-}}.

Then Wt¯W_{\underline{t}} is a free RR-module and is the algebraic representation of GLr(R)×GLs(R)\mathrm{GL}_{r}(R)\times\mathrm{GL}_{s}(R) with minimal weight k-k with respect to Ur×UsU_{r}\times U_{s}^{-}. We regard it as

Wt¯=Wt¯+Wt¯W_{\underline{t}}=W_{\underline{t}}^{+}\boxtimes W_{\underline{t}}^{-}

as an algebraic representation of GLr×GLs\mathrm{GL}_{r}\times\mathrm{GL}_{s}.

Recall ω¯:=eΩ𝒢/𝒮Gtor(Kp)1\underline{\omega}:=e^{\ast}\Omega_{\mathscr{G}/\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})}^{1} with decomposition ω¯+\underline{\omega}^{+} (resp ω¯\underline{\omega}^{-}) be the subsheaf of ω¯\underline{\omega} on which i(b)i(b) acts by bb (resp. b¯\overline{b}) for all b𝒪𝒦b\in\mathcal{O}_{\mathcal{K}}. Because pp is unramified in 𝒦\mathcal{K}, ω¯+\underline{\omega}^{+} (resp ω¯\underline{\omega}^{-}) is locally free of rank rr (resp. ss) and ω¯=ω¯+ω¯\underline{\omega}=\underline{\omega}^{+}\oplus\underline{\omega}^{-}. Set

ωt¯+=Isom¯𝒮Gtor(𝒪𝒮Gtorr,ω¯+)×GLrWt¯+,ωt¯=Isom¯𝒮Gtor(𝒪𝒮Gtors,ω¯)×GLsWt¯,\omega_{\underline{t}}^{+}=\underline{\mathrm{Isom}}_{\mathcal{S}^{\mathrm{tor}}_{G}}(\mathscr{O}_{\mathcal{S}^{\mathrm{tor}}_{G}}^{\oplus r},\underline{\omega}^{+})\times^{\mathrm{GL}_{r}}W_{\underline{t}}^{+},\quad\omega_{\underline{t}}^{-}=\underline{\mathrm{Isom}}_{\mathcal{S}^{\mathrm{tor}}_{G}}(\mathscr{O}_{\mathcal{S}^{\mathrm{tor}}_{G}}^{\oplus s},\underline{\omega}^{-})\times^{\mathrm{GL}_{s}}W_{\underline{t}}^{-},

and put ωt¯=ωt¯+ωt¯\omega_{\underline{t}}=\omega_{\underline{t}}^{+}\otimes\omega_{\underline{t}}^{-}.

Suppose for each v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}, we are given a (rv+sv)(r_{v}+s_{v})-tuple t¯v\underline{t}_{v} as above and, by abuse of notation, let t¯={t¯v}𝒱(p)\underline{t}=\{\underline{t}_{v}\}_{\mathscr{V}_{\mathcal{F}}^{(p)}}. Then following the above process, we have well-defined ωt¯\omega_{\underline{t}} provided t¯\underline{t} is a parallel weight.

Let v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)} and ϵ¯v:=(ϵ1,v+,,ϵr,v+,ϵ1,v,,ϵs,v)\underline{\epsilon}_{v}:=(\epsilon_{1,v}^{+},\ldots,\epsilon_{r,v}^{+},\epsilon_{1,v}^{-},\ldots,\epsilon_{s,v}^{-}) be an (r+s)(r+s)-tuple of finite order characters 𝒪vׯp×\mathcal{O}_{\mathcal{F}_{v}}^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} and let ϵ¯={ϵ¯v}v𝒱(p)\underline{\epsilon}=\{\underline{\epsilon}_{v}\}_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}. Let F/pF/\mathbb{Q}_{p} be a finite extension containing the values of all ϵi±\epsilon_{i}^{\pm}.

Definition 7.13.

We define the space of classical automorphic forms on GG of weight t¯\underline{t}, level KpKp,n1K^{p}K_{p,n}^{1} and nebentypus ϵ¯\underline{\epsilon} as elements in the space

Mt¯(KpKp,n1;ϵ¯;F):=H0(𝒮Gtor(KpKp,n1),ωt¯)𝒦F)[ϵ¯].M_{\underline{t}}(K^{p}K_{p,n}^{1};\underline{\epsilon};F):=\mathrm{H}^{0}(\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}K_{p,n}^{1}),\omega_{\underline{t}})\otimes_{\mathcal{K}}F)[\underline{\epsilon}].

Similarly we have the space of classical cuspidal automorphic forms

Mt¯0(KpKp,n1;ϵ¯;F):=H0(𝒮Gtor(KpKp,n1),ωt¯𝒮Gtor(Kp))𝒦F)[ϵ¯].M_{\underline{t}}^{0}(K^{p}K_{p,n}^{1};\underline{\epsilon};F):=\mathrm{H}^{0}(\mathcal{S}_{G}^{\mathrm{tor}}(K^{p}K_{p,n}^{1}),\omega_{\underline{t}}\otimes\mathscr{I}_{\mathcal{S}_{G}^{\mathrm{tor}}(K^{p})})\otimes_{\mathcal{K}}F)[\underline{\epsilon}].

One has embeddings (see, for example, [Hsi14, Section 3.3])

Mt¯(KpKp,n1;ϵ¯;F)VG(K,F)[τt¯,ϵ¯]M_{\underline{t}}(K^{p}K_{p,n}^{1};\underline{\epsilon};F)\hookrightarrow V_{G}(K,F)[\tau_{\underline{t},\underline{\epsilon}}] (7.23a)
and
Mt¯0(KpKp,n1;ϵ¯;F)VG0(K,F)[τt¯,ϵ¯],M_{\underline{t}}^{0}(K^{p}K_{p,n}^{1};\underline{\epsilon};F)\hookrightarrow V_{G}^{0}(K,F)[\tau_{\underline{t},\underline{\epsilon}}], (7.23b)

where τt¯,ϵ¯\tau_{\underline{t},\underline{\epsilon}} is the pp-adic weight given by t¯\underline{t} and ϵ¯\underline{\epsilon} following the notations in Definition 7.12.

7.6. Hecke operators on modular forms

One can turn to [Hsi14, Section 3.7] for carefully presented details. Here we only give a rush sketch. Let KjpK_{j}^{p} be open compact subgroups of G(𝔸,fp)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}) for j=1,2j=1,2, such that KjpG(p)K_{j}^{p}\cdot G(\mathbb{Z}_{p}) are neat.

7.6.1. Hecke operators away from pp

Let gG(𝔸,fp)g\in G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}), we define the double coset operator

[K2pgK1p]:VG(K1p)[τ]VG(K2p)[τ][K_{2}^{p}gK_{1}^{p}]:V_{G}(K_{1}^{p})[\tau]\rightarrow V_{G}(K_{2}^{p})[\tau]

through the action of G(𝔸,fp)G(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}) on the space of modular forms

[K2pgK1p]f=gj[gj]f,where K2pgK1p=gjgjK1p.[K_{2}^{p}gK_{1}^{p}]f=\sum_{g_{j}}[g_{j}]^{\ast}f,\quad\text{where }K_{2}^{p}gK_{1}^{p}=\bigsqcup_{g_{j}}g_{j}K_{1}^{p}.

Similarly, for neat open compact subgroups KjpKp,r1K_{j}^{p}\cdot K_{p,r}^{1}, we can define the corresponding double coset operators in the same way and denote them as [K2,rpgK1,rp][K_{2,r}^{p}gK_{1,r}^{p}]. When K1p=K2pK_{1}^{p}=K_{2}^{p} is understood, we write T(g)T(g) instead of [K1gK1][K_{1}gK_{1}] and Tr(g)T_{r}(g) instead of [K1,rgK1,r][K_{1,r}gK_{1,r}].

7.6.2. Hida’s operators at pp

We define some particular elements tjt_{j} in B𝒫+(p)B_{\mathscr{P}}^{+}(\mathbb{Q}_{p}) as tj:=(1,(tw,j))t_{j}:=(1,(t_{w,j})) under the isomorphism (7.22), for 1jr+s1\leq j\leq r+s, as

tw,j:={diag[p𝟏j,𝟏r+sj],jawdiag[p𝟏aw,𝟏r+sj,p𝟏jaw],j>aw.t_{w,j}:=\begin{cases}\operatorname{diag}[p\mathbf{1}_{j},\mathbf{1}_{r+s-j}],&\quad j\leq a_{w}\\ \operatorname{diag}[p\mathbf{1}_{a_{w}},\mathbf{1}_{r+s-j},p\mathbf{1}_{j-a_{w}}],&\quad j>a_{w}\end{cases}.

In [Hida04, Section 8.3.1], Hida has defined has defined an action of the double cosets uw,j=B𝒫(p)tw,jB𝒫(p)u_{w,j}=B_{\mathscr{P}}^{-}(\mathbb{Z}_{p})t_{w,j}B_{\mathscr{P}}(\mathbb{Z}_{p}) on the modules of pp-adic modular forms and cuspforms, via correspondences on the Igusa tower. We put for any v𝒱pv\in\mathscr{V}_{\mathcal{F}}^{p},

𝕌v=w𝒱𝒦(v)j=1r+suw,j,and 𝕌p=v𝒱(p)𝕌v.\mathbb{U}_{v}^{\prime}=\prod_{w\in\mathscr{V}_{\mathcal{K}}^{(v)}}\prod_{j=1}^{r+s}u_{w,j},\quad\text{and }\mathbb{U}_{p}^{\prime}=\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\mathbb{U}_{v}^{\prime}.
Definition 7.14.

We define a projector 𝕖:=limn(𝕌p)n!\mathbb{e}:=\varinjlim_{n}(\mathbb{U}_{p}^{\prime})^{n!}, called Hida’s ordinary projector. For any pp-adic ring RR, we define the submodule of ordinary pp-adic automorphic forms (resp. ordinary pp-adic cuspidal automorphic forms) over RR as

VGord(Kp,R):=𝕖VG(Kp,R),(resp. VG0,ord(Kp,R):=𝕖VG0(Kp,R)).V_{G}^{\operatorname{ord}}(K^{p},R):=\mathbb{e}V_{G}(K^{p},R),\quad(\text{resp. }V_{G}^{0,\operatorname{ord}}(K^{p},R):=\mathbb{e}V_{G}^{0}(K^{p},R)).

We can further define ordinary pp-adic automorphic forms of weights τ\tau for a pp-adic weight τ\tau, and adding decorations on the notations, which we shall not bother to list.

7.7. Interlude: Review on pp-adic measures

Next we shall introduce pp-adic families of (pp-adic) automorphic forms. We prefer to use the setup of pp-adic measures, among various different but essentially equivalent perspectives. Here we briefly review the basis notions of pp-adic measures.

  • Let RR be a pp-adic ring. This will act as the base coefficient ring.

  • Let MM be a pp-adically complete RR-module.

  • Let YY be a compact abelian group with totally disconnected topology, i.e. YY is a profinite abelian group.

Then we denote 𝒞(Y,R)\mathscr{C}(Y,R) as the RR-algebra of continuous RR-valued functions on YY. It is equipped with the topology of uniform convergence. An MM-valued pp-adic measure on YY is a continuous RR-linear map

μ:𝒞(Y,R)M,fμ(f):=Yfdμ.\mu:\mathscr{C}(Y,R)\rightarrow M,\quad f\mapsto\mu(f):=\int_{Y}f\,\mathrm{d}\mu.

The set of MM-valued pp-adic measures on YY is a pp-adically complete RR-module and is denoted as MeasR(Y,M)\mathrm{Meas}_{R}(Y,M). We often omit the coefficient ring RR in the notation.

Here are some operations on pp-adic measures.

  • Base change: Let RR^{\prime} be an RR-algebra, which is also pp-adically complete, since 𝒞(Y,R)=𝒞(Y,R)^R\mathscr{C}(Y,R^{\prime})=\mathscr{C}(Y,R)\widehat{\otimes}R^{\prime}, there is a natural map MeasR(Y,R)MeasR(Y,M^R)\mathrm{Meas}_{R}(Y,R)\rightarrow\mathrm{Meas}_{R^{\prime}}(Y,M\widehat{\otimes}R^{\prime}). If the structure map RRR\rightarrow R^{\prime} is injective, then we view MeasR(Y,R)\mathrm{Meas}_{R}(Y,R) as a subset of MeasR(Y,M^R)\mathrm{Meas}_{R^{\prime}}(Y,M\widehat{\otimes}R^{\prime}).

  • Dirac measures: Given a yYy\in Y, we define δy:ff(y)\delta_{y}:f\mapsto f(y) being a pp-adic measure in Meas(Y,R)\mathrm{Meas}(Y,R).

  • Action of continuous functions: Let h𝒞(Y,R)h\in\mathscr{C}(Y,R). For μMeas(Y,M)\mu\in\mathrm{Meas}(Y,M), we define

    hμ:fYfhdμ.h\ast\mu:f\mapsto\int_{Y}fh\,\mathrm{d}\mu.
  • Convolution: If we further assume YY is equipped with the structure of an abelian group written multiplicatively, then we can define the convolution on Meas(Y,R)\mathrm{Meas}(Y,R) as

    μ1μ2:fYYf(yz)dμ1(y)dμ2(z).\mu_{1}\ast\mu_{2}:f\mapsto\int_{Y}\int_{Y}f(yz)\,\mathrm{d}\mu_{1}(y)\,\mathrm{d}\mu_{2}(z).

    If f:YR×f:Y\rightarrow R^{\times} is a continuous multiplicative character, then we have

    Yfd(μ1μ2)=(Yfdμ1)(Yfdμ2).\int_{Y}f\,\mathrm{d}(\mu_{1}\ast\mu_{2})=\left(\int_{Y}f\,\mathrm{d}\mu_{1}\right)\left(\int_{Y}f\,\mathrm{d}\mu_{2}\right).

    We can define the convolution of measures in Meas(Y,M)\mathrm{Meas}(Y,M) in the same way whenever there is an appropriate “product” on MM.

  • Product of the test space: Y=Y1×Y2Y=Y_{1}\times Y_{2} is a product of profinite abelian groups, then there is a natural isomorphism

    Meas(Y,M)Meas(Y1,Meas(Y2,M)).\mathrm{Meas}(Y,M)\simeq\mathrm{Meas}(Y_{1},\mathrm{Meas}(Y_{2},M)).

Moreover, we note that Meas(Y,R)\mathrm{Meas}(Y,R) can be identified with the completed group algebra RYR\llbracket{Y}\rrbracket. In practice, we often encounter the case where

  • YY is a product of finite abelian group Δ\Delta with finite copies of p\mathbb{Z}_{p}. For example, YY could be Γ𝒦\Gamma_{\mathcal{K}}, U𝒦,p(r):=1+pr𝒪K,pU_{\mathcal{K},p}^{(r)}:=1+p^{r}\mathcal{O}_{K,p} for r1r\geq 1, or the torus Tn(p)T_{n}(\mathbb{Z}_{p}) for some positive integer nn.

  • RR is often the the ring of integers 𝒪L\mathcal{O}_{L} for an algebraic extension L/pL/\mathbb{Q}_{p}.

  • MM is often taken to be RR, or the space of pp-adic modular forms over certain reductive groups.

7.8. Hida families on unitary groups

Recall 𝒫\mathscr{P} is a simple unitary PEL datum given by a Hermitian space VV. Let RR be a pp-adic ring.

Definition 7.15.

We define a pp-adic family of automorphic forms over GG of level KpK^{p} over RR to be a pp-adic measure 𝐟\mathbf{f} in

MeasR(T𝒫(p),VG(Kp,R))\mathrm{Meas}_{R}(T_{\mathscr{P}}(\mathbb{Z}_{p}),V_{G}(K^{p},R))

such that

T𝒫(p)tϕd𝐟=tT𝒫(p)ϕd𝐟\int_{T_{\mathscr{P}}(\mathbb{Z}_{p})}t\cdot\phi\,\mathrm{d}\mathbf{f}=t\cdot\int_{T_{\mathscr{P}}(\mathbb{Z}_{p})}\phi\,\mathrm{d}\mathbf{f} (7.24)

for any ϕ𝒞(T𝒫(p),R)\phi\in\mathscr{C}(T_{\mathscr{P}}(\mathbb{Z}_{p}),R) and tT𝒫(p)t\in T_{\mathscr{P}}(\mathbb{Z}_{p}). A pp-adic family of cuspidal automorphic forms (resp.Hida family, cuspidal Hida family) over GG of level KpK^{p} over RR is a pp-adic family of automorphic forms taking value in

VG0(Kp,R)(resp. VGord(Kp,R),VG0,ord(Kp,R)).V_{G}^{0}(K^{p},R)\quad(\text{resp. }V_{G}^{\operatorname{ord}}(K^{p},R),\quad V_{G}^{0,\operatorname{ord}}(K^{p},R)).

We denote the space of such families as G(Kp,R)\mathcal{M}^{\bullet}_{G}(K^{p},R) with decorations {,0,ord}\bullet\in\{\emptyset,0,\operatorname{ord}\}.

In particular, let τ\tau be a pp-adic weight and RR contains all the values of τ\tau, then for 𝐟G(Kp,R)\mathbf{f}\in\mathcal{M}_{G}(K^{p},R),

𝐟τ:=T𝒫(p)τd𝐟VG(Kp,R)[τ].\mathbf{f}_{\tau}:=\int_{T_{\mathscr{P}}(\mathbb{Z}_{p})}\tau\,\mathrm{d}\mathbf{f}\in V_{G}(K^{p},R)[\tau].

This is called the specialization of 𝐟\mathbf{f} at τ\tau. We remark that G(Kp,R)\mathcal{M}^{\bullet}_{G}(K^{p},R) becomes a Λ𝒫\Lambda_{\mathscr{P}}-algebra by either the action of T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}) induced by left multiplication on T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}) or its action on VG(Kp,R)V_{G}(K^{p},R). This is well-defined by the requirement (7.24).

Recall we have a decomposition of p\mathbb{Z}_{p} as p=𝝁p(p)×(1+pp)\mathbb{Z}_{p}=\boldsymbol{\mu}_{p}(\mathbb{Z}_{p})\times(1+p\mathbb{Z}_{p}),232323Recall that we have always been assuming p2p\neq 2. where Δ\Delta is the group of roots of unity in p\mathbb{Z}_{p}, a finite cyclic group of order p1p-1. Then we have the corresponding decomposition of T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}) into

T𝒫(p)=Δ×T𝒫T_{\mathscr{P}}(\mathbb{Z}_{p})=\Delta\times T^{\circ}_{\mathscr{P}}

where Δ=T𝒫(𝝁p(p))\Delta=T_{\mathscr{P}}(\boldsymbol{\mu}_{p}(\mathbb{Z}_{p})) is the torsion subgroup of T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}) and T𝒫:=T𝒫(1+pp)T^{\circ}_{\mathscr{P}}:=T_{\mathscr{P}}(1+p\mathbb{Z}_{p}) is the identity component of T𝒫(p)T_{\mathscr{P}}(\mathbb{Z}_{p}). Regarding the decomposition above, we rewrite Λ𝒫=𝒪L[Δ]T𝒫\Lambda_{\mathscr{P}}=\mathcal{O}_{L}[\Delta]\llbracket{T_{\mathscr{P}}^{\circ}}\rrbracket. Since Δ\Delta is of order prime to pp, the spaces G(Kp,R)\mathcal{M}^{\bullet}_{G}(K^{p},R) can be decomposed into a direct sum of isotypical pieces for the 𝒪L\mathcal{O}_{L}-characters η\eta of Δ\Delta as

G(Kp,R)=ηΔ^G(Kp,R,η).\mathcal{M}^{\bullet}_{G}(K^{p},R)=\oplus_{\eta\in\widehat{\Delta}}\mathcal{M}^{\bullet}_{G}(K^{p},R,\eta).

Characters η\eta are called branching characters. Each G(Kp,R,η)\mathcal{M}^{\bullet}_{G}(K^{p},R,\eta) is a Λ𝒫:=𝒪LT𝒫\Lambda_{\mathscr{P}}^{\circ}:=\mathcal{O}_{L}\llbracket{T_{\mathscr{P}}^{\circ}}\rrbracket-module.

Let 𝕀\mathbb{I} be a normal domain over Λ𝒫\Lambda_{\mathscr{P}} (resp. Λ𝒫\Lambda_{\mathscr{P}}^{\circ}) which is also a finite algebra over Λ𝒫\Lambda_{\mathscr{P}} (resp. Λ𝒫\Lambda_{\mathscr{P}}^{\circ}). Then we can base change the Λ𝒫\Lambda_{\mathscr{P}}-module (resp. Λ𝒫\Lambda_{\mathscr{P}}^{\circ}-module)

G(Kp,R)(resp. G(Kp,R,η))\mathcal{M}^{\bullet}_{G}(K^{p},R)\quad(\text{resp. }\mathcal{M}^{\bullet}_{G}(K^{p},R,\eta))

to 𝕀\mathbb{I}. These elements are called 𝕀\mathbb{I}-adic Hida families, forming the spaces G(Kp,R;𝕀)\mathcal{M}^{\bullet}_{G}(K^{p},R;\mathbb{I}) and G(Kp,R,η;𝕀)\mathcal{M}^{\bullet}_{G}(K^{p},R,\eta;\mathbb{I}) respectively.

We can also define Hecke operators on the space of pp-adic families of modular forms, induced from those defined in Section 7.6. Let 𝒮\mathscr{S} be a finite set of places of \mathcal{F} such that KpK^{p} is maximal outside of 𝒮\mathscr{S}. Let AA be any finite torsion-free Λ𝒫\Lambda_{\mathscr{P}}^{\circ}-algebra, we define the unramified ordinary cuspidal Hecke algebra 𝐡0,ord,𝒮(A)\mathbf{h}^{0,\operatorname{ord},\mathscr{S}}(A) be the AA-subalgebra of EndA(G0,ord(Kp,A))\operatorname{End}_{A}(\mathcal{M}^{0,\operatorname{ord}}_{G}(K^{p},A)) generated by Hecke operators away from 𝒱(p)𝒮\mathscr{V}_{\mathcal{F}}^{(p)}\cup\mathscr{S} and 𝐔v\mathbf{U}^{\prime}_{v}-operators at places v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}.

Remark 7.16 (Other pp-adic families of automorphic forms).

Hida families defined in Definition 7.15 are possibly the easiest classes of pp-adic families of automorphic forms. There are ways of generalizing it.

  • Allowing general parabolics. Here Hida’s ordinary projector 𝕖\mathbb{e} is constructed via Borel double cosets. In [Hid98], Hida introduced the notion of PP-ordinary modular forms on a reductive group FF with parabolic subgroup PP of GG, generalizing the case P=BP=B in this article. A pp-adic automorphic form can be PP-ordinary without being BB-ordinary. There are works on this aspects, for example [EM21]. The deep work [CLW22] built up the “noncuspidal Hida theory for semiordinary modular forms” and proved the Iwasawa main conjecture of such pp-adic families.

  • Allowing general pp-slopes. Here the ordinary pp-adic automorphic forms are defined to be of pp-slope zero. There are generalizations to the pp-adic family of automorphic forms of finite pp-slope, as Coleman families.

8. The pp-adic family of Eisenstein series

Let VV be an NN-dimensional vector space over 𝒦\mathcal{K}, equipped with a non-degenerate skew-Hermitian form ϕ\phi. Then 𝗂ϕ\mathsf{i}\phi is an Hermitian form on VV. We regard VV as an Hermitian space over 𝒦\mathcal{K}. In Part I, we considered spaces VV^{\sharp}, VV^{\heartsuit} and VV^{\blacklozenge}. We let 𝒫,𝒫,𝒫\mathscr{P},\mathscr{P}^{\sharp},\mathscr{P}^{\heartsuit} and 𝒫\mathscr{P}^{\blacklozenge} be the simple unitary Shimura datum attached to these Hermitian spaces, and H,G,G,GH,G,G^{\heartsuit},G^{\blacklozenge} be the unitary groups attached to them repsectively. We keep the assumptions (sgn) and (QS) in Section 2.1.1. We have algebraic groups H,B,B+H_{\bullet},B_{\bullet},B^{+}_{\bullet} and TT_{\bullet} for \bullet being these unitary Shimura datums. We denote them as Hr,s,Br,s,Br,s+H_{r,s},B_{r,s},B^{+}_{r,s} and Tr,sT_{r,s} if the corresponding unitary group has signature (r,s)(r,s), and similarly adopt obvious notations as such.

Remark 8.1 (On unitary groups, [Wan15, Remark 2.1]).

As recalled in Section 7, in order to have Shimura varieties for doing pp-adic automorphic forms and Galois representations, we need to use the general unitary groups GG defined over \mathbb{Q}, which is smaller than the general unitary group we defined in Definition 2.1. However, this group is not convenient for local automorphic computations since we cannot treat each primes of \mathcal{F} independently. So what we do implicitly is that for automorphic computations, we write down the automorphic forms on the larger general unitary groups as in Definition 2.1, and then restrict to the smaller one. For the algebraic construction, we only do the pullbacks for unitary groups instead of general unitary groups.

8.1. Setups for pp-adic interpolations

Following [Wan15, Definition 3.2], we define Eisenstein datums as follows.

Definition 8.2.

We define an Eisenstein datum 𝒟\mathscr{D} as a triple 𝒟:=(σ,χ,𝒮)\mathscr{D}:=(\sigma,\chi,\mathscr{S}), where

  • σ\sigma is an irreducible unitary tempered cuspidal automorphic representation of HH,

  • χ\chi is a Hecke character K×\𝕂××K^{\times}\backslash\mathbb{K}^{\times}\rightarrow\mathbb{C}^{\times}.

  • 𝒮\mathscr{S} is a finite set of primes of \mathcal{F} contaning all the infinite places, primes above pp and places where either σ\sigma or χ\chi is ramified.

Given an Eisenstein datum, if they satisfy Assumptions 6.1 and 6.2, then we can define local Siegel Eisenstein sections fv,s,χSiegf_{v,s,\chi}^{\mathrm{Sieg}} as in Section 6, and hence define the Siegel Eisenstein series E𝒟Sieg(fv,s,χSieg,)E^{\mathrm{Sieg}}_{\mathscr{D}}(f_{v,s,\chi}^{\mathrm{Sieg}},-) with these Siegel Eisenstein sections. Under the pullback formula, we obtain a Klingen Eisenstein series EKling(F(fs,χSieg,Φ;),)E^{\mathrm{Kling}}(F^{\heartsuit}(f^{\mathrm{Sieg}}_{s,\chi},\Phi;-),-) for cuspidal automorphic forms Φσ\Phi\in\sigma.

Definition 8.3.

A pp-adic family of Eisenstein datums is a tuple 𝐃=(L,𝕀,𝐟,χ0,η0)\mathbf{D}=(L,\mathbb{I},\mathbf{f},\chi_{0},\eta_{0}), where

  • L/pL/\mathbb{Q}_{p} is a finite extension.

  • 𝕀\mathbb{I} is a normal domain over Λm,n\Lambda_{m,n}^{\circ}, which is also a finite Λm,n\Lambda_{m,n}^{\circ}-algebra.

  • χ0\chi_{0} is a finite order Hecke character 𝒦×\𝕂××\mathcal{K}^{\times}\backslash\mathbb{K}^{\times}\rightarrow\mathbb{C}^{\times} whose conductors at primes above pp divides (p)(p).

  • η0\eta_{0} is a branching character, i.e. a finite order character of Δ\Delta, the torsion part of Tm,n(p)T_{m,n}(\mathbb{Z}_{p}).

  • 𝐟\mathbf{f} is an 𝕀\mathbb{I}-adic Hida family of tempered cuspidal ordinary eigenforms on HH, of tame level group KHpH(𝔸fp)K_{H}^{p}\leq H(\mathbb{A}_{\mathrm{f}}^{p}) and branching character η0\eta_{0}. 242424In [Wan15], the tempered condition is included in the assumption (TEMPERED) in [Wan15, Section 5B2]. Here we include this assumption in the definition of pp-adic family of Eisenstein datums.

Denote 𝕀ur\mathbb{I}^{{\mathrm{ur}}} be the normalization of an irreducible component of 𝕀^𝒪L𝒪Lur\mathbb{I}\widehat{\otimes}_{\mathcal{O}_{L}}\mathcal{O}_{L}^{{\mathrm{ur}}}252525More precisely, there is a bijection { minimal primes of 𝕀^𝒪L𝒪Lur}{ irreducible components of Spec𝕀^𝒪L𝒪Lur}.\{\text{ minimal primes of }\mathbb{I}\widehat{\otimes}_{\mathcal{O}_{L}}\mathcal{O}_{L}^{{\mathrm{ur}}}\}\rightarrow\{\text{ irreducible components of }\operatorname{Spec}\mathbb{I}\widehat{\otimes}_{\mathcal{O}_{L}}\mathcal{O}_{L}^{{\mathrm{ur}}}\}. Let 𝔓\mathfrak{P} be a mininal prime ideal of 𝕀^𝒪L𝒪Lur\mathbb{I}\widehat{\otimes}_{\mathcal{O}_{L}}\mathcal{O}_{L}^{{\mathrm{ur}}}, then the corresponding irreducible component is isomorphic to Spec(𝕀^𝒪L𝒪Lur/𝔓)\operatorname{Spec}(\mathbb{I}\widehat{\otimes}_{\mathcal{O}_{L}}\mathcal{O}_{L}^{{\mathrm{ur}}}/\mathfrak{P}). The later quotient ring is an integral domain, and we take its integral closure (in its fractional field), this is the 𝕀ur\mathbb{I}^{{\mathrm{ur}}} in the text. As remarked in [Wan15, page 1957], for each such irreducible component we can make the following-up construction.. Given a pp-adic family of Eisenstein datum 𝐃\mathbf{D}, we define the corresponding Iwasawa algebra as Λ𝐃:=𝕀urΓ𝒦\Lambda_{\mathbf{D}}:=\mathbb{I}^{{\mathrm{ur}}}\llbracket{\Gamma_{\mathcal{K}}}\rrbracket. It is an Λm,n\Lambda_{m,n}^{\circ}-algebra. We also define the universal character attached to χ0\chi_{0} as the product 𝝌0:=χ0Ψ𝒦\boldsymbol{\chi}_{0}:=\chi_{0}\Psi_{\mathcal{K}}, where Ψ𝒦:𝒦×\𝕂×Γ𝒦Λ𝐃×\Psi_{\mathcal{K}}:\mathcal{K}^{\times}\backslash\mathbb{K}^{\times}\rightarrow\Gamma_{\mathcal{K}}\hookrightarrow\Lambda_{\mathbf{D}}^{\times} is the tautological character induced from the reciprocity law in class field theory under geometric normalization.

The Iwasawa algebra Λ𝐃\Lambda_{\mathbf{D}} will be used as the weight space for pp-adic interpolations. We define

𝒳𝔻:=Homcts(Λ𝐃,¯p×)=SpecΛ𝐃(¯p×)\mathcal{X}_{\mathbb{D}}:=\operatorname{Hom}_{\mathrm{cts}}(\Lambda_{\mathbf{D}},\overline{\mathbb{Q}}_{p}^{\times})=\operatorname{Spec}\Lambda_{\mathbf{D}}(\overline{\mathbb{Q}}_{p}^{\times})

consisting of continuous ¯p\overline{\mathbb{Q}}_{p}-valued charcters of Λ𝐃\Lambda_{\mathbf{D}}.

Definition 8.4.

Let 𝖯𝒳𝐃\mathsf{P}\in\mathcal{X}_{\mathbf{D}}.

  1. (1)

    We call 𝖯\mathsf{P} an arithmetic point, if it satisfies the following conditions.

    • Let τ𝖯\tau_{\mathsf{P}} be the pullback of 𝒫\mathscr{P} on Λm,n\Lambda_{m,n}^{\circ} along canonical maps Λm,n𝕀𝕀𝒪Lur𝕀ur\Lambda_{m,n}^{\circ}\hookrightarrow\mathbb{I}\rightarrow\mathbb{I}\otimes\mathcal{O}_{L}^{{\mathrm{ur}}}\rightarrow\mathbb{I}^{{\mathrm{ur}}}, then it is a pp-adic weight in the sense of Definition 7.12, with

      (t1,τ𝖯,v+,,tm,τ𝖯,v+;t1,τ𝖯,v,tn,τ𝖯,v)=(0,,0;κ𝖯,,κ𝖯)(t_{1,\tau_{\mathsf{P}},v}^{+},\ldots,t_{m,\tau_{\mathsf{P}},v}^{+};t_{1,\tau_{\mathsf{P}},v}^{-},t_{n,\tau_{\mathsf{P}},v}^{-})=(0,\ldots,0;\kappa_{\mathsf{P}},\ldots,\kappa_{\mathsf{P}})

      for any v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}, for some integer κ𝖯m+n+2\kappa_{\mathsf{P}}\geq m+n+2.

    • Let χ𝖯:=𝖯𝝌0\chi_{\mathsf{P}}:=\mathsf{P}\circ\boldsymbol{\chi}_{0} is the composition of 𝖯\mathsf{P} with the universal character 𝝌0\boldsymbol{\chi}_{0}, i.e.

      𝒦×\𝕂×𝝌0Λ𝐃𝖯¯p×.\mathcal{K}^{\times}\backslash\mathbb{K}^{\times}\mathrel{\leavevmode\hbox to13.05pt{\vbox to16.11pt{\pgfpicture\makeatletter\hbox{\hskip 0.333pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{11.97986pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.17986pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.18993pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.00002pt}{4.89409pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\boldsymbol{\chi}_{0}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\Lambda_{\mathbf{D}}\mathrel{\leavevmode\hbox to11.43pt{\vbox to16.52pt{\pgfpicture\makeatletter\hbox{\hskip 0.333pt\lower-4.86601pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{10.36392pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.56392pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.38196pt}{-1.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.00002pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\hbox{$\scriptstyle\mathsf{P}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\overline{\mathbb{Q}}_{p}^{\times}.

      Then χ𝖯\chi_{\mathsf{P}} is a Hecke character of infinite type (κ𝖯/2,κ𝖯/2)(-\kappa_{\mathsf{P}}/2,\kappa_{\mathsf{P}}/2).

  2. (2)

    We call 𝖯\mathsf{P} a classical arithmetic point, if 𝖯\mathsf{P} is an arithmetic point and the specialization 𝐟𝖯:=𝐟τ𝖯VH0,ord[τ𝖯]\mathbf{f}_{\mathsf{P}}:=\mathbf{f}_{\tau_{\mathsf{P}}}\in V_{H}^{0,\operatorname{ord}}[\tau_{\mathsf{P}}] is a classical automorphic form under (7.23) such that it generates an irreducible tempered unitary cuspidal automorphic representation σ𝐟𝖯\sigma_{\mathbf{f}_{\mathsf{P}}} of HH. 262626By the requirement κ𝖯m+n+2\kappa_{\mathsf{P}}\geq m+n+2, the archimedean part σ𝐟𝖯,\sigma_{\mathbf{f}_{\mathsf{P}},\infty} is indeed a holomorphic discrete series.

  3. (3)

    We call 𝖯\mathsf{P} a generic classical arithmetic point, if 𝖯\mathsf{P} is a classical arithmetic point such that (σ𝐟𝖯,χ𝖯)(\sigma_{\mathbf{f}_{\mathsf{P}}},\chi_{\mathsf{P}}) satisfies the generic condition [Wan15, Definition 4.42].

We denote the set of such points as 𝒳𝐃ari,𝒳𝐃cls\mathcal{X}_{\mathbf{D}}^{\mathrm{ari}},\mathcal{X}_{\mathbf{D}}^{\mathrm{cls}} and 𝒳𝐃gen\mathcal{X}_{\mathbf{D}}^{\mathrm{gen}} respectively. We know that these are all Zariski dense in 𝒳𝐃\mathcal{X}_{\mathbf{D}} 272727This is not quite trivial, which depends on the classicality theorem in Hida theory. See [Wan15, Remark 5.2] for the justifications..

Let 𝒮𝐟\mathscr{S}_{\mathbf{f}} (resp.𝒮χ0\mathscr{S}_{\chi_{0}}) be the set of finite places vv of \mathcal{F} away from pp such that KH,vH(v)K_{H,v}\neq H(\mathcal{F}_{v}) (resp. χ0\chi_{0} is ramified). We put 𝒮𝐃:=𝒮𝐟𝒮χ0𝒮(p)\mathscr{S}_{\mathbf{D}}:=\mathscr{S}_{\mathbf{f}}\cup\mathscr{S}_{\chi_{0}}\cup\mathscr{S}_{\mathcal{F}}^{(p\infty)}. This is the set of “bad places” of the datum 𝐃\mathbf{D}. Given a point 𝖯𝒳cls\mathsf{P}\in\mathcal{X}_{\mathrm{cls}}, we have the specialization of the pp-adic family of Eisenstein datum 𝐃𝖯=(σ𝐟𝖯,χ𝖯,𝒮𝐃)\mathbf{D}_{\mathsf{P}}=(\sigma_{\mathbf{f}_{\mathsf{P}}},\chi_{\mathsf{P}},\mathscr{S}_{\mathbf{D}}), We write s𝖯:=(κ𝖯(m+n+1))/2s_{\mathsf{P}}:=(\kappa_{\mathsf{P}}-(m+n+1))/2.

8.2. The pp-adic family of Eisenstein series

In this subsection, we recall the results on the existence of pp-adic families of Siegel Eisenstein series and Klingen Eisenstein series.

8.2.1. The Siegel Eisenstein family

We recall the pp-adic family of Siegel Eisenstein series. To do the pp-adic interpolation, we need a renormalization of Siegel Eisenstein series.

Let 𝖯𝒳𝐃cls\mathsf{P}\in\mathcal{X}_{\mathbf{D}}^{\mathrm{cls}} and 𝐃𝖯=(σ𝐟𝖯,χ𝖯,𝒮𝖯)\mathbf{D}_{\mathsf{P}}=(\sigma_{\mathbf{f}_{\mathsf{P}}},\chi_{\mathsf{P}},\mathscr{S}_{\mathsf{P}}) be the specialized Eisenstein datum. We define the normalization factor

B(s𝖯,χ𝖯):=Ω𝖯((2)n(2πi)nκ𝖯(2/π)n(n1)/2j=0n1Γ(κ𝖯j))dv𝒱𝒮𝖯dm+n+1,v(s𝖯,χ𝖯),B(s_{\mathsf{P}},\chi_{\mathsf{P}}):=\Omega_{\mathsf{P}}\left(\dfrac{(-2)^{-n}(2\pi\mathrm{i})^{n\kappa_{\mathsf{P}}}(2/\pi)^{n(n-1)/2}}{\prod_{j=0}^{n-1}\Gamma(\kappa_{\mathsf{P}}-j)}\right)^{-d}\cdot\prod_{v\in\mathscr{V}_{\mathcal{F}}\setminus\mathscr{S}_{\mathsf{P}}}d_{m+n+1,v}(s_{\mathsf{P}},\chi_{\mathsf{P}}), (8.25)

where

Ω𝖯={(Ωp/Ω)mκ𝖯,n0,1,n=0,\Omega_{\mathsf{P}}=\begin{cases}(\Omega_{p}^{\infty}/\Omega_{\infty}^{\infty})^{m\kappa_{\mathsf{P}}},&\quad n\neq 0,\\ 1,&\quad n=0,\end{cases}

with Ωp(pur)𝒱\Omega_{p}\in(\mathbb{Z}_{p}^{{\mathrm{ur}}})^{\mathscr{V}_{\mathcal{F}}^{\infty}} the pp-adic period and Ω𝒱\Omega_{\infty}\in\mathbb{C}^{\mathscr{V}_{\mathcal{F}}^{\infty}} the CM period, and put Ω\Omega_{\infty}^{\infty} for the product of dd elements of Ω\Omega_{\infty} and define Ωp\Omega_{p}^{\infty} similarly. 282828We refer to [Hid04] for precise definitions. We define the normalized Siegel Eisenstein series as

Eχ𝖯Sieg()=B(s𝖯,χ𝖯)ESieg(fs𝖯,χ𝖯Sieg,).E^{\mathrm{Sieg}}_{\chi_{\mathsf{P}}}(-)=B(s_{\mathsf{P}},\chi_{\mathsf{P}})\cdot E^{\mathrm{Sieg}}(f^{\mathrm{Sieg}}_{s_{\mathsf{P}},\chi_{\mathsf{P}}},-).

and the normalized Klingen Eisenstein series as

E𝐃𝖯Kling()=B(s𝖯,χ𝖯)EKling(F(fs𝖯,χ𝖯Sieg,𝐟𝖯;),).E^{\mathrm{Kling}}_{\mathbf{D}_{\mathsf{P}}}(-)=B(s_{\mathsf{P}},\chi_{\mathsf{P}})\cdot E^{\mathrm{Kling}}(F^{\heartsuit}(f^{\mathrm{Sieg}}_{s_{\mathsf{P}},\chi_{\mathsf{P}}},\mathbf{f}_{\mathsf{P}};-),-).

Then we have the following result.

Theorem 8.5 ([Wan15, Lemma 5.7]).

Attached to the pp-adic family of Eisenstein datum 𝐃\mathbf{D}, there exists a pp-adic measure

𝐄χ0SiegMeas(Γ𝒦×Tm,n,VG)\mathbf{E}^{\mathrm{Sieg}}_{\chi_{0}}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G^{\blacklozenge}})

such that for any generic classical arithmetic point 𝖯𝒳gen\mathsf{P}\in\mathcal{X}^{\mathrm{gen}}, we have

Γ𝒦×Tm,n𝖯d𝐄χ0Sieg=Eχ𝖯Sieg.\int_{\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ}}\mathsf{P}\,\mathrm{d}\mathbf{E}^{\mathrm{Sieg}}_{\chi_{0}}=E^{\mathrm{Sieg}}_{\chi_{\mathsf{P}}}.

The construction is by first interpolating the Fourier coefficients of the Siegel Eisenstein series and apply the qq-expansion principle. The normalization factor B(s𝖯,χ𝖯)B(s_{\mathsf{P}},\chi_{\mathsf{P}}) is essential, guaranteeing that these Fourier coefficients are integral and pp-adically interpolatable after normalization.

8.2.2. Hecke projectors

To construct the pp-adic family of Klingen Eisenstein series, we recall the notion of Hecke projectors, attached to the pp-adic family of Eisenstein datum 𝐃\mathbf{D}, following [Wan15, Section 5B].

Definition 8.6 (Dual Hida family).

We first define an 𝒪L\mathcal{O}_{L}-involution :Λm,nΛm,n\ddagger:\Lambda_{m,n}^{\circ}\rightarrow\Lambda_{m,n}^{\circ} sending any diag[a1,,an]\operatorname{diag}[a_{1},\ldots,a_{n}] to diag[an1,,a11]\operatorname{diag}[a_{n}^{-1},\ldots,a_{1}^{-1}]. We define 𝕀\mathbb{I}^{\ddagger} to be the ring 𝕀\mathbb{I} but with the Λm,n\Lambda_{m,n}^{\circ}-algebra structure given by composing the involution \ddagger with the original structure map Λm,n𝕀\Lambda_{m,n}^{\circ}\rightarrow\mathbb{I}. We say an 𝕀\mathbb{I}^{\ddagger}-adic cuspidal Hida family 𝐟\mathbf{f}^{\ddagger} is a dual Hida family of 𝐟\mathbf{f}, if for all the generic classical arithmetic point 𝖯𝒳𝐃gen\mathsf{P}\in\mathcal{X}_{\mathbf{D}}^{\mathrm{gen}}, we have (𝐟)𝖯σ𝐟𝖯(\mathbf{f}^{\ddagger})_{\mathsf{P}}\in\sigma_{\mathbf{f}_{\mathsf{P}}}^{\vee}.

Definition 8.7 (Hecke projectors).

Let 𝐟\mathbf{f} be an 𝕀\mathbb{I}-adic Hida family over HH. We define a Hecke operator 𝟙𝐟\mathbbm{1}_{\mathbf{f}} in the Hecke algebra 𝐡0,ord,𝒮𝐃(Frac(𝕀))\mathbf{h}^{0,\operatorname{ord},\mathscr{S}_{\mathbf{D}}}(\operatorname{Frac}(\mathbb{I})) as a Hecke projector of 𝐟\mathbf{f}, if for any 𝖯𝒳𝐃gen\mathsf{P}\in\mathcal{X}_{\mathbf{D}}^{\mathrm{gen}} and any 𝕀\mathbb{I}-adic family of automorphic forms 𝐟\mathbf{f}^{\prime}, the specialization of (𝟙𝐟𝕖)𝐟(\mathbbm{1}_{\mathbf{f}}\circ\mathbb{e})\mathbf{f}^{\prime} at 𝖯\mathsf{P} is the projection (under the Petersson inner product) of 𝐟𝖯\mathbf{f}^{\prime}_{\mathsf{P}} to the one-dimensional line inside Vσ𝐟V_{\sigma_{\mathbf{f}}} spanned by 𝐟𝖯\mathbf{f}_{\mathsf{P}}. The scalar (Proj𝐟)𝖯(𝐟)(\mathrm{Proj}_{\mathbf{f}})_{\mathsf{P}}(\mathbf{f}^{\prime}) is defined to satisfy

((𝟙𝐟𝕖)𝐟)𝖯=(Proj𝐟)𝖯(𝐟)𝐟𝖯.((\mathbbm{1}_{\mathbf{f}}\circ\mathbb{e})\mathbf{f}^{\prime})_{\mathsf{P}}=(\mathrm{Proj}_{\mathbf{f}})_{\mathsf{P}}(\mathbf{f}^{\prime})\cdot\mathbf{f}_{\mathsf{P}}.

In this way, we have a well-defined map

Proj𝐟:H(KHp,𝕀)Frac(𝕀).\mathrm{Proj}_{\mathbf{f}}:\mathcal{M}_{H}(K^{p}_{H},\mathbb{I})\rightarrow\operatorname{Frac}(\mathbb{I}).
Theorem 8.8 (Wan).

Notations being as above, let 𝐃\mathbf{D} be a pp-adic family of Eisenstein datum, then the dual Hida family 𝐟\mathbf{f}^{\ddagger} and the Hecke projector 𝟙𝐟\mathbbm{1}_{\mathbf{f}} exist.

This is proved in [Wan19, Chapter 6]. More specifically, the Hecke projector is constructed as [Wan19, Equation (28)] and the dual Hida family is constructed in the proof of [Wan19, Theorem 6.8]. We remark that such existences are well-known in lower rank cases U(1,1)\mathrm{U}(1,1) and U(2,0)\mathrm{U}(2,0) in the classical theory before Wan’s general construction. One refers to, for example, [Wan15, Remark 5.6] for justifications.

8.2.3. The Klingen Eisenstein family

Following the recipe of the pullback formula (Proposition 2.6) and the pp-adic interpolation construction in [Wan15, Section 5C], we first restrict the Siegel Eisenstein family on G×HG^{\heartsuit}\times H as

𝐄χSieg|G×HMeas(Γ𝒦×Tm,n,VGVH).\mathbf{E}^{\mathrm{Sieg}}_{\chi}|_{G^{\heartsuit}\times H}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G^{\heartsuit}}\otimes V_{H}).

We fix any point A¯\underline{A}_{\heartsuit} on the Igusa tower of GG^{\heartsuit}, we have

𝐄χSieg|G×H(A¯,)Meas(Γ𝒦×Tm,n,VH)=Meas(Γ𝒦,H(KHp,)).\mathbf{E}^{\mathrm{Sieg}}_{\chi}|_{G^{\heartsuit}\times H}(\underline{A}_{\heartsuit},-)\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{H})=\mathrm{Meas}(\Gamma_{\mathcal{K}},\mathcal{M}_{H}(K^{p,\prime}_{H})).

We shrink KHpK^{p}_{H} to be contained in KHp,K_{H}^{p,\prime} if necessary, then 𝐟H0,ord(KHp,)\mathbf{f}\in\mathcal{M}^{0,\operatorname{ord}}_{H}(K_{H}^{p,\prime}). As shrinking, the set 𝒮𝐟\mathscr{S}_{\mathbf{f}} may become larger. By abuse of notation, we still denote by KHpK_{H}^{p} the shrinked tame level group and 𝒮𝐟\mathscr{S}_{\mathbf{f}} the set associated to KHpK_{H}^{p}.

Then the assignment

𝖯[A¯Proj𝐟(𝐄χSieg|G×H(A¯,))Frac(𝕀ur)]\mathsf{P}\longmapsto\left[\underline{A}_{\heartsuit}\longmapsto\mathrm{Proj}_{\mathbf{f}^{\ddagger}}(\mathbf{E}^{\mathrm{Sieg}}_{\chi}|_{G^{\heartsuit}\times H}(\underline{A}_{\heartsuit},-))\in\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\right] (8.26)

gives a pp-adic measure

𝐄𝐃KlingMeas(Γ𝒦×Tm,n,VG)Frac(𝕀ur).\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G^{\heartsuit}})\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}).

This is the Klingen Eisenstein family associated to the pp-adic family of Eisenstein datum 𝐃\mathbf{D}, satisfying that for any generic classical arithmetic points 𝖯𝒳gen\mathsf{P}\in\mathcal{X}^{\mathrm{gen}}, we have

Γ𝒦×Tm,n𝖯d𝐄𝐃Kling=Eχ𝖯Kling.\int_{\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ}}\mathsf{P}\,\mathrm{d}\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}=E^{\mathrm{Kling}}_{\chi_{\mathsf{P}}}.

In the case when HH is a definite unitary group, that is, H=U(m,0)H=\mathrm{U}(m,0), there is another approach without using Hecke projectors, but instead using the pp-adic interpolation of the Petersson inner product. This approach takes the advantage that the Shimura variety of U(m,0)\mathrm{U}(m,0) is a finite set (see, for example, [Wan15, Definition 5.1 (ii)]). This trick was invented in [Hsi14] in the case of U(2,0)\mathrm{U}(2,0) and was generalized to the case U(m,0)\mathrm{U}(m,0) in [Wan15, Section 5C3].

Proposition 8.9 ([Wan15, Proposition 5.9]).

Let KpK^{p} be a neat tame level group in H(𝔸,fp)H(\mathbb{A}_{\mathbb{Q},\mathrm{f}}^{p}). Then there exists a Λ𝐃\Lambda_{\mathbf{D}}-linear pairing

𝐁Kp:H(Kp;𝕀)×H(Kp;𝕀)𝕀\mathbf{B}_{K^{p}}:\mathcal{M}_{H}(K^{p};\mathbb{I})\times\mathcal{M}_{H}(K^{p};\mathbb{I}^{\ddagger})\rightarrow\mathbb{I}

such that for any 𝖯𝒳𝐃g\mathsf{P}\in\mathcal{X}_{\mathbf{D}}^{g}, we have 𝐁Kp(𝐟,𝐟)=𝐟𝖯,𝐟𝖯σ𝐟𝖯,Pet\mathbf{B}_{K^{p}}(\mathbf{f},\mathbf{f}^{\prime})=\left\langle{\mathbf{f}_{\mathsf{P}},\mathbf{f}^{\prime}_{\mathsf{P}}}\right\rangle_{\sigma_{\mathbf{f}_{\mathsf{P}}},\mathrm{Pet}} for any 𝐟H(Kp;𝕀)\mathbf{f}\in\mathcal{M}_{H}(K^{p};\mathbb{I}) and 𝐟H(Kp;𝕀)\mathbf{f}^{\prime}\in\mathcal{M}_{H}(K^{p};\mathbb{I}^{\circ}).

Then in this case, only granting the existence of the dual Hida family 𝐟\mathbf{f}^{\ddagger}, the Klingen Eisenstein family can be defined by replacing (8.26) with the assignment

𝖯[A¯𝐁KHp(𝐄χSieg|G×H(A¯,),𝐟)𝕀].\mathsf{P}\longmapsto\left[\underline{A}_{\heartsuit}\longmapsto\mathbf{B}_{K^{p}_{H}}(\mathbf{E}^{\mathrm{Sieg}}_{\chi}|_{G^{\heartsuit}\times H}(\underline{A}_{\heartsuit},-),\mathbf{f}^{\ddagger})\in\mathbb{I}\right].

Here we identified

𝐄χSieg|G×H(A¯,)Meas(Γ𝒦×Tm,n,VH)=Meas(Γ𝒦,H(KHp))\mathbf{E}^{\mathrm{Sieg}}_{\chi}|_{G^{\heartsuit}\times H}(\underline{A}_{\heartsuit},-)\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{H})=\mathrm{Meas}(\Gamma_{\mathcal{K}},\mathcal{M}_{H}(K^{p}_{H}))

so as to apply 𝐁KHp(,𝐟)\mathbf{B}_{K^{p}_{H}}(-,\mathbf{f}^{\ddagger}). One note that in this definite case, we get an “𝕀\mathbb{I}-integral Klingen Eisenstein family”, that is,

𝐄𝐃KlingMeas(Γ𝒦×Tm,n,VG)𝕀.\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G^{\heartsuit}})\otimes\mathbb{I}.

9. The pp-adic interpolation of the Gan-Gross-Prasad period integral

9.1. Setups for the pp-adic interpolation

We define the following datum for the pp-adic interpolation of the Gan-Gross-Prasad period integral.

Definition 9.1.

A pp-adic family of Gan-Gross-Prasad datums is a tuple 𝐆=(L,𝕀,𝕁,𝐟,𝐠,χ0,η0)\mathbf{G}=(L,\mathbb{I},\mathbb{J},\mathbf{f},\mathbf{g},\chi_{0},\eta_{0}), where

  • the tuple 𝐃:=(L,𝕀,𝐟,χ0,η0)\mathbf{D}:=(L,\mathbb{I},\mathbf{f},\chi_{0},\eta_{0}) is a pp-adic family of Eisenstein datum, in the sense of Definition 8.3,

  • 𝕁\mathbb{J} is a normal domain over Λm+1,n\Lambda_{m+1,n}^{\circ}, which is also a finite Λm+1,n\Lambda_{m+1,n}^{\circ}-algebra, and

  • 𝐠\mathbf{g} is an 𝕁\mathbb{J}-adic Hida family of tempered cuspidal eigenform on GG, of tame level group KGpK_{G}^{p} and branching character η0\eta_{0},

Let 𝒮𝐠\mathscr{S}_{\mathbf{g}} be the set of finite places vv of \mathcal{F} away from pp such that KG,vG(v)K_{G,v}\neq G(\mathcal{F}_{v}). Given a pp-adic family of Gan-Gross-Prasad datums is a tuple, we realize that 𝐃:=(L,𝕁,𝐠,χ0,η0)\mathbf{D}^{\prime}:=(L,\mathbb{J},\mathbf{g},\chi_{0},\eta_{0}) is also a pp-adic family of Eisenstein datum, over the group GG. We put 𝒱𝐆:=𝒮𝐃𝒮𝐃\mathscr{V}_{\mathbf{G}}:=\mathscr{S}_{\mathbf{D}}\cup\mathscr{S}_{\mathbf{D}^{\prime}}, called the “bad places” of the datum 𝐆\mathbf{G}.

We define the weight space 𝒴𝐆\mathcal{Y}_{\mathbf{G}} as

𝒴𝐆:=Homcts(𝕁,¯p×)=Spec𝕁(¯p×)\mathcal{Y}_{\mathbf{G}}:=\operatorname{Hom}_{\mathrm{cts}}(\mathbb{J},\overline{\mathbb{Q}}_{p}^{\times})=\operatorname{Spec}\mathbb{J}(\overline{\mathbb{Q}}_{p}^{\times})

consisting of continuous ¯p\overline{\mathbb{Q}}_{p}-valued characters of 𝕁\mathbb{J}. We define the weight space of the pp-adic family of GGP datums 𝐆\mathbf{G} as the product space 𝒳𝐆:=𝒳𝐃×𝒴𝐆\mathcal{X}_{\mathbf{G}}:=\mathcal{X}_{\mathbf{D}}\times\mathcal{Y}_{\mathbf{G}}.

Definition 9.2.

Let 𝖰𝒴𝐆\mathsf{Q}\in\mathcal{Y}_{\mathbf{G}}.

  1. (1)

    We call 𝖰\mathsf{Q} an arithmetic point if the pullback τ𝖰\tau_{\mathsf{Q}} on Λm+1,n\Lambda_{m+1,n} along the structure map Λm+1,n\Lambda_{m+1,n}^{\circ} is an arithmetic pp-adic weight in the sense of Definition 7.12 with

    t1,τ𝖰,v+tm,τ𝖰,v+tm+1,τ𝖰,v+t1,τ𝖰,vtn,τ𝖰,v,tm+1,τ𝖰,v+t1,τ𝖰,v+(m+n+1)t_{1,\tau_{\mathsf{Q}},v}^{+}\geq\ldots\geq t_{m,\tau_{\mathsf{Q}},v}^{+}\geq t_{m+1,\tau_{\mathsf{Q}},v}^{+}\geq-t_{1,\tau_{\mathsf{Q}},v}^{-}\geq-t_{n,\tau_{\mathsf{Q}},v}^{-},\quad t_{m+1,\tau_{\mathsf{Q}},v}^{+}\geq-t_{1,\tau_{\mathsf{Q}},v}^{-}+(m+n+1) (9.27)

    for any v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}.

  2. (2)

    We call 𝖰\mathsf{Q} a classical arithmetic point if 𝖰\mathsf{Q} is an arithmetic point and the specialization 𝐠𝖰:=𝐠τ𝖰VG[τ𝖰]\mathbf{g}_{\mathsf{Q}}:=\mathbf{g}_{\tau_{\mathsf{Q}}}\in V_{G}[\tau_{\mathsf{Q}}] is a classical automorphic form under (7.23) such that it generates an irreducible tempered unitary cuspidal automorphic representation π𝐠𝖰\pi_{\mathbf{g}_{\mathsf{Q}}} of GG. 292929By the latter assumption in (9.27), the archimedean part π𝐠𝖰,\pi_{\mathbf{g}_{\mathsf{Q}},\infty} is a holomorphic discrete series.

We denote the set of such points as 𝒴𝐆ari\mathcal{Y}_{\mathbf{G}}^{\mathrm{ari}} and 𝒴𝐆cls\mathcal{Y}_{\mathbf{G}}^{\mathrm{cls}} respectively. Let 𝖯×𝖰𝒳𝐆\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}.

  1. (1)

    We call 𝖯×𝖰\mathsf{P}\times\mathsf{Q} an admissible point if 𝖯\mathsf{P} and 𝖰\mathsf{Q} are classical arithmetic points and σ𝐟𝖯,\sigma_{\mathbf{f}_{\mathsf{P}},\infty} and π𝐠𝖰,\pi_{\mathbf{g}_{\mathsf{Q}},\infty} satisfies the weight interlacing assumption (Assumption 3.8).

  2. (2)

    We call 𝖯×𝖰\mathsf{P}\times\mathsf{Q} a generic admissible point if it is a classical admissible point and 𝖯𝒳𝐃gen\mathsf{P}\in\mathcal{X}_{\mathbf{D}}^{\mathrm{gen}}.

We denote the set of such points as 𝒳𝐆adm\mathcal{X}_{\mathbf{G}}^{\mathrm{adm}} and 𝒳𝐆gen\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}} respectively. We know that these are all Zariski dense in 𝒴𝐆\mathcal{Y}_{\mathbf{G}} and 𝒳𝐆\mathcal{X}_{\mathbf{G}} accordingly.

9.2. The pp-adic interpolation of GGP period integral

We use appropriate Hecke projectors to pp-adically interpolate the GGP period integral, and get the following theorem.

Theorem 9.3.

There exists an element

𝐏𝐆(Λ𝐃Frac(𝕀ur))Frac(𝕁ur),\mathbf{P}_{\mathbf{G}}\in(\Lambda_{\mathbf{D}}\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}))\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}),

such that for any 𝖯×𝖰𝒳𝐆gen\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}},

(𝖯×𝖰)(𝐏𝐆)=B(s𝖯,χ𝖯)𝒫Kling(𝐟𝖯,𝐠𝖰,χ𝖯,s𝖯),(\mathsf{P}\times\mathsf{Q})(\mathbf{P}_{\mathbf{G}})=B(s_{\mathsf{P}},\chi_{\mathsf{P}})\mathcal{P}^{\mathrm{Kling}}(\mathbf{f}_{\mathsf{P}},\mathbf{g}_{\mathsf{Q}},\chi_{\mathsf{P}},s_{\mathsf{P}}),

with right-hand-side the GGP period integral of Klingen Eisenstein series with a cuspidal automorphic form, defined in (3.6), normalized by the factor defined in (8.25). When n=0n=0, we have 𝐏𝐆Λ𝐃𝕁\mathbf{P}_{\mathbf{G}}\in\Lambda_{\mathbf{D}}\otimes\mathbb{J}.

Proof.

Recall we have the Klingen Eisenstein family

𝐄𝐃KlingMeas(Γ𝒦×Tm,n,VG)Frac(𝕀ur).\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G^{\heartsuit}})\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}).

We restrict it on GG, obtain

𝐄𝐃Kling|GMeas(Γ𝒦×Tm,n,VG)Frac(𝕀ur)=Meas(Γ𝒦,G(KGp,))Frac(𝕀ur).\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}|_{G}\in\mathrm{Meas}(\Gamma_{\mathcal{K}}\times T_{m,n}^{\circ},V_{G})\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})=\mathrm{Meas}(\Gamma_{\mathcal{K}},\mathcal{M}_{G}(K^{p,\prime}_{G}))\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}).

Here similar to the construction of Klingen Eisenstein family, we shrink KGpK_{G}^{p} to be contained in KGp,K_{G}^{p,\prime} if necessary, then 𝐠G0(KGp,)\mathbf{g}\in\mathcal{M}_{G}^{0}(K_{G}^{p,\prime}). As shrinking, 𝒮𝐠\mathscr{S}_{\mathbf{g}} may become larger. By abuse of notation, we still denote by KHpK^{p}_{H} the shrinked tame level group and the set 𝒮𝐠\mathscr{S}_{\mathbf{g}} associated to KGpK_{G}^{p}, and keep assuming that 𝒮𝐟\mathscr{S}_{\mathbf{f}} and 𝒮𝐠\mathscr{S}_{\mathbf{g}} are disjoint with every element splits in 𝒦\mathcal{K}. We then apply the Hecke operator 𝟏𝐠\mathbf{1}_{\mathbf{g}} to get

Proj𝐠(𝐄𝐃Kling|G)Meas(Γ𝒦,Frac(𝕁ur))=Frac(𝕁)Γ𝒦Frac(𝕀ur)=(Λ𝐃Frac(𝕀ur))Frac(𝕁ur).\mathrm{Proj}_{\mathbf{g}}(\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}|_{G})\in\mathrm{Meas}(\Gamma_{\mathcal{K}},\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}))=\operatorname{Frac}(\mathbb{J})\llbracket{\Gamma_{\mathcal{K}}}\rrbracket\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})=(\Lambda_{\mathbf{D}}\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}))\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}). (9.28)

This element is the desired 𝐏𝐃\mathbf{P}_{\mathbf{D}}, satisfying the interpolation property in the statement. When n=0n=0, instead of using the Hecke projector Proj𝐠\mathrm{Proj}_{\mathbf{g}}, we apply 𝐁KGp(,𝐠)\mathbf{B}_{K_{G}^{p}}(-,\mathbf{g}) and obtain

𝐁KGp(𝐄𝐃Kling|G,𝐠)Meas(Γ𝒦,𝕁)=𝕁Γ𝒦𝕀=Λ𝐃𝕁,\mathbf{B}_{K^{p}_{G}}(\mathbf{E}^{\mathrm{Kling}}_{\mathbf{D}}|_{G},\mathbf{g})\in\mathrm{Meas}(\Gamma_{\mathcal{K}},\mathbb{J})=\mathbb{J}\llbracket{\Gamma_{\mathcal{K}}}\rrbracket\otimes\mathbb{I}=\Lambda_{\mathbf{D}}\otimes\mathbb{J},

as desired. ∎

To obtain a precise interpolation formula, we put the following “pp-adically automorphic assumptions”.

Assumption 9.4 (Automorphic assumptions).

We assume that the sets 𝒮𝐟\mathscr{S}_{\mathbf{f}} and 𝒮𝐠\mathscr{S}_{\mathbf{g}} are disjoint and every place in 𝒮𝐟𝒮𝐠\mathscr{S}_{\mathbf{f}}\cup\mathscr{S}_{\mathbf{g}} split in 𝒦\mathcal{K}. We assume that there is a Zariski dense subset 𝒳𝐆mul\mathcal{X}_{\mathbf{G}}^{\mathrm{mul}} of 𝒳𝐆gen\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}}, such that for every 𝖯×𝖰𝒳𝐆mul\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{mul}}, the cuspidal automorphic representations σ𝐟𝖯\sigma_{\mathbf{f}_{\mathsf{P}}} and σ𝐠𝖰\sigma_{\mathbf{g}_{\mathsf{Q}}} satisfy (BC) respectively, and hence the corresponding multiplicity one theorems.

In Part I, we have related the period integral 𝒫Kling(𝐟𝖯,𝐠𝖰,χ𝖯,s𝖯)\mathcal{P}^{\mathrm{Kling}}(\mathbf{f}_{\mathsf{P}},\mathbf{g}_{\mathsf{Q}},\chi_{\mathsf{P}},s_{\mathsf{P}}) with certain LL-values with explicit local factors at bad places. Combining Theorem 9.3 and Theorem 6.3, we have the following theorem.

Theorem 9.5.

Notations being as above. We assume Assumption 9.4. Then for any 𝖯×𝖰𝒳𝐆mul\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{mul}}, we have (𝖯×𝖰)(𝐏𝐆)2(\mathsf{P}\times\mathsf{Q})(\mathbf{P}_{\mathbf{G}})^{2} equals

12ϰσ𝐟𝖯+ϰπ𝐠𝖰𝒱(p)(σ𝐟𝖯×π𝐠𝖰)L𝒮𝐃𝒮𝐠(s𝖯+12,π𝐠𝖰,v,χ𝖯,v)L𝒮𝐃𝒮𝐠(s𝖯+12,π𝐠𝖰,v,χ𝖯,v)×Ω𝖯2((2)n(2πi)nκ𝖯(2/π)n(n1)/2j=0n1Γ(κ𝖯j))2dv𝒮𝐟𝒮𝐠ζvCσ𝐟𝖯,v,𝝍vCσ𝐟𝖯,v,𝝍v1π𝐠𝖰,vessσ𝐟𝖯,vess×v𝒱(p)ζvΔv,βv2𝔊(κv,μ¯v,𝖯˘,λ¯v,𝖰˘)𝔊(κv,μ¯v,𝖯ˇ˘,λ¯v,𝖰ˇ˘)𝒞σ𝐟𝖯ord𝒞π𝐠𝖰ordv𝒮𝐠dm+n+1,v(s𝖯,χ𝖯)2×𝐟𝖯σ,Pet2𝐠𝖰𝐠𝖰,Pet2v𝒮𝐃𝒮𝐠𝒵v(fv,s,χSieg,π𝐠𝖰,v)𝒵v(fv,s,χSieg,π𝐠𝖰,v).\dfrac{1}{2^{\varkappa_{\sigma_{\mathbf{f}_{\mathsf{P}}}}+\varkappa_{\pi_{\mathbf{g}_{\mathsf{Q}}}}}}\cdot\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma_{\mathbf{f}_{\mathsf{P}}}\times\pi_{\mathbf{g}_{\mathsf{Q}}})L^{\mathscr{S}_{\mathbf{D}}\cup\mathscr{S}_{\mathbf{g}}}\left(s_{\mathsf{P}}+\dfrac{1}{2},\pi_{\mathbf{g}_{\mathsf{Q}},v},\chi_{\mathsf{P},v}\right)L^{\mathscr{S}_{\mathbf{D}}\cup\mathscr{S}_{\mathbf{g}}}\left(s_{\mathsf{P}}+\dfrac{1}{2},\pi_{\mathbf{g}_{\mathsf{Q}},v}^{\vee},\chi_{\mathsf{P},v}\right)\\ \times\Omega_{\mathsf{P}}^{2}\left(\dfrac{(-2)^{-n}(2\pi\mathrm{i})^{n\kappa_{\mathsf{P}}}(2/\pi)^{n(n-1)/2}}{\prod_{j=0}^{n-1}\Gamma(\kappa_{\mathsf{P}}-j)}\right)^{-2d}\prod_{v\in\mathscr{S}_{\mathbf{f}}\cup\mathscr{S}_{\mathbf{g}}}\zeta_{v}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v},\boldsymbol{\psi}_{v}}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}\mathcal{B}_{\pi_{\mathbf{g}_{\mathsf{Q}},v}}^{\mathrm{ess}}\mathcal{B}_{\sigma_{\mathbf{f}_{\mathsf{P}},v}}^{\mathrm{ess}}\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\zeta_{v}\Delta_{v,\beta_{v}}^{2}\cdot\mathfrak{G}(\kappa_{v},\breve{\underline{\mu}_{v,\mathsf{P}}},\breve{\underline{\lambda}_{v,\mathsf{Q}}})\mathfrak{G}(\kappa_{v},\breve{\check{\underline{\mu}_{v,\mathsf{P}}}},\breve{\check{\underline{\lambda}_{v,\mathsf{Q}}}})\mathcal{C}_{\sigma_{\mathbf{f}_{\mathsf{P}}}}^{\operatorname{ord}}\mathcal{C}_{\pi_{\mathbf{g}_{\mathsf{Q}}}}^{\operatorname{ord}}\prod_{v\in\mathscr{S}_{\mathbf{g}}}d_{m+n+1,v}(s_{\mathsf{P}},\chi_{\mathsf{P}})^{2}\\ \times\left|\left|{\mathbf{f}_{\mathsf{P}}}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\mathbf{g}_{\mathsf{Q}}}\right|\right|_{\mathbf{g}_{\mathsf{Q}},\mathrm{Pet}}^{2}\prod_{v\in\mathscr{S}_{\mathbf{D}}\cup\mathscr{S}_{\mathbf{g}}}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{\mathbf{g}_{\mathsf{Q}},v})\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{\mathbf{g}_{\mathsf{Q}},v}^{\vee}).

Here μ¯v,𝖯\underline{\mu}_{v,\mathsf{P}} is the tuple appearing in the local representation σ𝐟P,v\sigma_{\mathbf{f}_{P},v} and similarly for other notations, and κv\kappa_{v} are auxiliary characters vׯp×\mathcal{F}_{v}^{\times}\rightarrow\overline{\mathbb{Q}}_{p}^{\times} that are sufficiently ramified for v𝒱(p)v\in\mathscr{V}_{\mathcal{F}}^{(p)}.

Proof.

This is a simple combination of Theorem 9.3 and 6.3, with the definition of the normalization factor in (8.25). Note that the assumptions in the automorphic computations (i.e. Assumption 3.8, 3.10, 3.11, 6.1 and 6.2) are made to be satisfied in the definition of pp-adic families of Eisenstein datums and GGP datums (i.e. Definition 8.3 and 9.1). ∎

9.3. pp-adic LL-function of the Rankin-Selberg product of Hida families

In [Wan15], Wan constructed not only the Klingen Eisenstein families, but also pp-adic LL-functions of Hida families over unitary groups. We record his construction in our notations as follows. 303030There are some typographical errors in [Wan15, Theorem 1.1 (1)]. It has been corrected in [Wan19, Theorem 6.8]. We also remark here that recently, David Marcil [Mar24] constructed the pp-adic LL-function for PP-ordinary Hida families over unitary groups, which is more general than Wan’s construction here.

Theorem 9.6 ([Wan15, Theorem 1.1 (1)]).

Let 𝐠\mathbf{g} be the Hida family of automorphic forms in the pp-adic family of GGP datum 𝐆\mathbf{G}. Then there exists an element

𝐋𝐠,χ0Λ𝐃Frac(𝕁ur),\mathbf{L}_{\mathbf{g},\chi_{0}}\in\Lambda_{\mathbf{D}^{\prime}}\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}),

such that for any 𝖱𝒳𝐃gen\mathsf{R}\in\mathcal{X}_{\mathbf{D}^{\prime}}^{\mathrm{gen}}, we have

𝖱(𝐋𝐠,χ0)=((2)n(2πi)nκ𝖯(2/π)n(n1)/2j=0n1Γ(κ𝖯j))dC𝐠𝖱Ω𝖱L𝒮𝐃(s𝖱+12,π𝐠𝖱,v,χ𝖱,v),\mathsf{R}(\mathbf{L}_{\mathbf{g},\chi_{0}})=\left(\dfrac{(-2)^{-n}(2\pi\mathrm{i})^{n\kappa_{\mathsf{P}}}(2/\pi)^{n(n-1)/2}}{\prod_{j=0}^{n-1}\Gamma(\kappa_{\mathsf{P}}-j)}\right)^{-d}C_{\mathbf{g}_{\mathsf{R}}}\cdot\Omega_{\mathsf{R}}L^{\mathscr{S}_{\mathbf{D}^{\prime}}}\left(s_{\mathsf{R}}+\dfrac{1}{2},\pi_{\mathbf{g}_{\mathsf{R}},v},\chi_{\mathsf{R},v}\right),

with C𝐠𝖱C_{\mathbf{g}_{\mathsf{R}}} the product of remaining local factors in [Wan15, Theorem 1.1 (1)] which we shall not recall. When n=0n=0, 𝐋𝐠,χ0Λ𝐃\mathbf{L}_{\mathbf{g},\chi_{0}}\in\Lambda_{\mathbf{D}^{\prime}}.

We renormalize 𝐋𝐠,χ0\mathbf{L}_{\mathbf{g},\chi_{0}} as

𝐋𝐠,χ0:=(v𝒮(𝒮𝐃𝒮𝐠)𝒵v(fv,s,χSieg,π𝐠𝖰,v))1v𝒮𝐠dm+n+1,v(s𝖯,χ𝖯)1C𝐠𝖱1𝐋𝐠,χ0.\mathbf{L}_{\mathbf{g},\chi_{0}}^{\circ}:=\left(\prod_{v\in\mathscr{S}_{\mathcal{F}}\smallsetminus(\mathscr{S}_{\mathbf{D}}\smallsetminus\mathscr{S}_{\mathbf{g}})}\mathscr{Z}^{\diamondsuit}_{v}(f^{\mathrm{Sieg}}_{v,s,\chi},\pi_{\mathbf{g}_{\mathsf{Q}},v})\right)^{-1}\prod_{v\in\mathscr{S}_{\mathbf{g}}}d_{m+n+1,v}(s_{\mathsf{P}},\chi_{\mathsf{P}})^{-1}C_{\mathbf{g}_{\mathsf{R}}}^{-1}\cdot\mathbf{L}_{\mathbf{g},\chi_{0}}. (9.29)

Then comparing with the interpolation formula in Theorem 9.5, we have the following result, as another main result of this article.

Theorem 9.7.

Notations being as above. We assume Assumption 9.4, then there exists an element

𝐋𝐟,𝐠Frac(𝕀ur)Frac(𝕁ur)\mathbf{L}_{\mathbf{f},\mathbf{g}}\in\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}})

such that for any 𝖯×𝖰𝒳𝐆gen\mathsf{P}\times\mathsf{Q}\in\mathcal{X}_{\mathbf{G}}^{\mathrm{gen}}, we have (𝖯×𝖰)(𝐋𝐟,𝐠)(\mathsf{P}\times\mathsf{Q})(\mathbf{L}_{\mathbf{f},\mathbf{g}}) equals

12ϰσ𝐟𝖯+ϰπ𝐠𝖰×𝐟𝖯σ,Pet2𝐠𝖰𝐠𝖰,Pet2v𝒮𝐟𝒮𝐠ζvCσ𝐟𝖯,v,𝝍vCσ𝐟𝖯,v,𝝍v1π𝐠𝖰,vessσ𝐟𝖯,vess×v𝒱(p)ζvΔv,βv2𝔊(κv,μ¯v,𝖯˘,λ¯v,𝖰˘)𝔊(κv,μ¯v,𝖯ˇ˘,λ¯v,𝖰ˇ˘)𝒞σ𝐟𝖯ord𝒞π𝐠𝖰ord𝒱(p)(σ𝐟𝖯×π𝐠𝖰).\dfrac{1}{2^{\varkappa_{\sigma_{\mathbf{f}_{\mathsf{P}}}}+\varkappa_{\pi_{\mathbf{g}_{\mathsf{Q}}}}}}\times\left|\left|{\mathbf{f}_{\mathsf{P}}}\right|\right|_{\sigma,\mathrm{Pet}}^{2}\left|\left|{\mathbf{g}_{\mathsf{Q}}}\right|\right|_{\mathbf{g}_{\mathsf{Q}},\mathrm{Pet}}^{2}\cdot\prod_{v\in\mathscr{S}_{\mathbf{f}}\cup\mathscr{S}_{\mathbf{g}}}\zeta_{v}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v},\boldsymbol{\psi}_{v}}C_{\sigma_{\mathbf{f}_{\mathsf{P}},v}^{\vee},\boldsymbol{\psi}_{v}^{-1}}\mathcal{B}_{\pi_{\mathbf{g}_{\mathsf{Q}},v}}^{\mathrm{ess}}\mathcal{B}_{\sigma_{\mathbf{f}_{\mathsf{P}},v}}^{\mathrm{ess}}\\ \times\prod_{v\in\mathscr{V}_{\mathcal{F}}^{(p)}}\zeta_{v}\Delta_{v,\beta_{v}}^{2}\cdot\mathfrak{G}(\kappa_{v},\breve{\underline{\mu}_{v,\mathsf{P}}},\breve{\underline{\lambda}_{v,\mathsf{Q}}})\mathfrak{G}(\kappa_{v},\breve{\check{\underline{\mu}_{v,\mathsf{P}}}},\breve{\check{\underline{\lambda}_{v,\mathsf{Q}}}})\mathcal{C}_{\sigma_{\mathbf{f}_{\mathsf{P}}}}^{\operatorname{ord}}\mathcal{C}_{\pi_{\mathbf{g}_{\mathsf{Q}}}}^{\operatorname{ord}}\cdot\mathscr{L}^{\mathscr{V}_{\mathcal{F}}^{(p)}}(\sigma_{\mathbf{f}_{\mathsf{P}}}\times\pi_{\mathbf{g}_{\mathsf{Q}}}).
Proof.

Recall (9.28) in the construction of 𝐏𝐆\mathbf{P}_{\mathbf{G}}, we identify

𝐏𝐆(Λ𝐃Frac(𝕀ur))Frac(𝕁ur)=Frac(𝕀ur)(Λ𝐃Frac(𝕁ur)).\mathbf{P}_{\mathbf{G}}\in(\Lambda_{\mathbf{D}}\otimes\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}}))\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}})=\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\otimes(\Lambda_{\mathbf{D}^{\prime}}\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}})).

Then we define

𝐋𝐟,𝐠:=𝐏𝐆2𝐋𝐠,χ0𝐋𝐠,χ0Frac(𝕀ur)(Λ𝐃Frac(𝕁ur)).\mathbf{L}_{\mathbf{f},\mathbf{g}}:=\dfrac{\mathbf{P}_{\mathbf{G}}^{2}}{\mathbf{L}_{\mathbf{g},\chi_{0}}^{\circ}\mathbf{L}_{\mathbf{g}^{\ddagger},\chi_{0}}^{\circ}}\in\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\otimes(\Lambda_{\mathbf{D}^{\prime}}\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}})).

with the same interpolating formula as in the statement. Moreover, we note that the specializations along the p\mathbb{Z}_{p}-extension line are trivial (that is to say, no χ𝖯\chi_{\mathsf{P}} appears in the interpolation formula), this is the purpose of renormalization (9.29). It follows that 𝐋𝐟,𝐠Frac(𝕀ur)Frac(𝕁ur)\mathbf{L}_{\mathbf{f},\mathbf{g}}\in\operatorname{Frac}(\mathbb{I}^{{\mathrm{ur}}})\otimes\operatorname{Frac}(\mathbb{J}^{{\mathrm{ur}}}), as desired. ∎

The element 𝐋𝐟,𝐠\mathbf{L}_{\mathbf{f},\mathbf{g}} can be regarded as a pp-adic LL-function of the Rankin-Selberg product of Hida families 𝐟\mathbf{f} over H=U(m,n)H=\mathrm{U}(m,n) and 𝐠\mathbf{g} over G=U(m+1,n)G=\mathrm{U}(m+1,n). We note that there are similar recent works on this aspects in various generalizations, for instance [Liu23, HY23, Dim24].

References

  • [BCZ22] Raphaël Beuzart-Plessis, Pierre-Henri Chaudouard, and Michał Zydor. The global Gan-Gross-Prasad conjecture for unitary groups: The endoscopic case. Publ. Math. Inst. Hautes Études Sci., 135:183–336, 2022.
  • [BKL20] Andrew R. Booker, M. Krishnamurthy, and Min Lee. Test vectors for Rankin-Selberg L-functions. Journal of Number Theory, 209:37–48, 2020.
  • [BLZZ21] Raphaël Beuzart-Plessis, Yifeng Liu, Wei Zhang, and Xinwen Zhu. Isolation of cuspidal spectrum, with application to the Gan-Gross-Prasad conjecture. Annals of Mathematics, 194(2):519–584, 2021.
  • [CLW22] Francesc Castella, Zheng Liu, and Xin Wan. Iwasawa-Greenberg main conjecture for nonordinary modular forms and Eisenstein congruences on GU(3,1). Forum of Mathematics. Sigma, 10:Paper No. e110, 90, 2022.
  • [CS80] W. Casselman and J. Shalika. The unramified principal series of p-adic groups. II. The Whittaker function. Compositio Mathematica, 41(2):207–231, 1980.
  • [Dim24] Xenia Dimitrakopoulou. Anticyclotomic p-adic L-functions for coleman families of Un×+1{}_{+1}\timesUn, 2024.
  • [EHLS20] Ellen Eischen, Michael Harris, Jianshu Li, and Christopher Skinner. p-adic L-functions for unitary groups. Forum of Mathematics. Pi, 8:e9, 160, 2020.
  • [Eis24] E. E. Eischen. Automorphic forms on unitary groups. In Automorphic Forms beyond GL2, volume 279 of Math. Surveys Monogr., pages 1–58. Amer. Math. Soc., Providence, RI, [2024] ©2024.
  • [EM21] E. Eischen and E. Mantovan. p-adic families of automorphic forms in the μ\mu-ordinary setting. American Journal of Mathematics, 143(1):1–52, 2021.
  • [Gar84] Paul B. Garrett. Pullbacks of Eisenstein series; applications. In Automorphic Forms of Several Variables (Katata, 1983), volume 46 of Progr. Math., pages 114–137. Birkhäuser Boston, Boston, MA, 1984.
  • [Gar89] Paul B. Garrett. Integral representations of Eisenstein series and L-functions. In Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), pages 241–264. Academic Press, Boston, MA, 1989.
  • [Gar18] Paul Garrett. Modern Analysis of Automorphic Forms by Example. Vol. 2, volume 174 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2018.
  • [GH11a] Dorian Goldfeld and Joseph Hundley. Automorphic Representations and L-functions for the General Linear Group. Volume I, volume 129 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011.
  • [GH11b] Dorian Goldfeld and Joseph Hundley. Automorphic Representations and L-functions for the General Linear Group. Volume II, volume 130 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011.
  • [GJ72] Roger Godement and Hervé Jacquet. Zeta Functions of Simple Algebras, volume Vol. 260 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972.
  • [GPR87] Stephen Gelbart, Ilya Piatetski-Shapiro, and Stephen Rallis. Explicit Constructions of Automorphic L-functions, volume 1254 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
  • [Har14] R. Neal Harris. The refined Gross-Prasad conjecture for unitary groups. International Mathematics Research Notices. IMRN, (2):303–389, 2014.
  • [He17] Hongyu He. On the Gan-Gross-Prasad conjecture for U(p,q). Inventiones Mathematicae, 209(3):837–884, 2017.
  • [Hid85] Haruzo Hida. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I. Inventiones Mathematicae, 79(1):159–195, 1985.
  • [Hid88] Haruzo Hida. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Universite de Grenoble. Annales de l’Institut Fourier, 38(3):1–83, 1988.
  • [Hid91] Haruzo Hida. On p-adic L-functions of GL(2)×GL(2) over totally real fields. Universite de Grenoble. Annales de l’Institut Fourier, 41(2):311–391, 1991.
  • [Hid98] Haruzo Hida. Automorphic induction and Leopoldt type conjectures for GL(n). In Asian Journal of Mathematics, volume 2, pages 667–710. 1998.
  • [Hid04] Haruzo Hida. Non-vanishing modulo p of Hecke L-values. In Geometric Aspects of Dwork Theory. Vol. I, II, pages 735–784. Walter de Gruyter, Berlin, 2004.
  • [Hsi14] Ming-Lun Hsieh. Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields. Journal of the American Mathematical Society, 27(3):753–862, 2014.
  • [HY23] Ming-Lun Hsieh and Shunsuke Yamana. Five-variable p-adic L-functions for U(3)×U(2), 2023.
  • [II10] Atsushi Ichino and Tamutsu Ikeda. On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geometric and Functional Analysis, 19(5):1378–1425, 2010.
  • [Jac12] Hervé Jacquet. A correction to Conducteur des représentations du groupe linéaire [MR620708]. Pacific Journal of Mathematics, 260(2):515–525, 2012.
  • [Jan24] Fabian Januszewski. Non-abelian p-adic Rankin-Selberg L-functions and non-vanishing of central L-values. American Journal of Mathematics, 146(2):495–578, 2024.
  • [JPS81] Hervé Jacquet, Ilja Piatetski-Shapiro, and Joseph Shalika. Conducteur des représentations génériques du groupe linéaire. C. R. Acad. Sci. Paris Sér. I Math., 292(13):611–616, 1981.
  • [JPS83] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika. Rankin-Selberg convolutions. American Journal of Mathematics, 105(2):367–464, 1983.
  • [KMSW14] Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White. Endoscopic classification of representations: Inner forms of unitary groups, 2014.
  • [Lan13] Kai-Wen Lan. Arithmetic Compactifications of PEL-type Shimura Varieties, volume 36 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2013.
  • [Lan18] Kai-Wen Lan. Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
  • [Liu23] Yifeng Liu. Anticyclotomic p-adic L-functions for rankin–selberg product, 2023.
  • [LR20] Zheng Liu and Giovanni Rosso. Non-cuspidal Hida theory for Siegel modular forms and trivial zeros of p-adic L-functions. Mathematische Annalen, 378(1-2):153–231, 2020.
  • [Mar24] David Marcil. P-adic L-functions for P-ordinary Hida families on unitary groups, September 2024.
  • [Mok15] Chung Pang Mok. Endoscopic classification of representations of quasi-split unitary groups. Memoirs of the American Mathematical Society, 235(1108):vi+248, 2015.
  • [MVW87] Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger. Correspondances de Howe Sur Un Corps p-Adique, volume 1291 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
  • [Sch93] Claus-G. Schmidt. Relative modular symbols and p-adic Rankin-Selberg convolutions. Inventiones Mathematicae, 112(1):31–76, 1993.
  • [Shi97] Goro Shimura. Euler Products and Eisenstein Series, volume 93 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.
  • [SU14] Christopher Skinner and Eric Urban. The Iwasawa main conjectures for GL_2. Inventiones Mathematicae, 195(1):1–277, 2014.
  • [Wan15] Xin Wan. Families of nearly ordinary Eisenstein series on unitary groups. Algebra & Number Theory, 9(9):1955–2054, 2015.
  • [Wan19] Xin Wan. Iwasawa theory for U(r,s), bloch-kato conjecture and functional equation, 2019.
  • [Wan20] Xin Wan. Iwasawa main conjecture for Rankin-Selberg p-adic L-functions. Algebra & Number Theory, 14(2):383–483, 2020.
  • [Wil90] A. Wiles. The Iwasawa conjecture for totally real fields. Annals of Mathematics, 131(3):493–540, 1990.
  • [Zha13] Bei Zhang. Fourier-Jacobi coefficients of Eisenstein series on unitary groups. Algebra & Number Theory, 7(2):283–337, 2013.
  • [Zha14] Wei Zhang. Automorphic period and the central value of Rankin-Selberg L-function. Journal of the American Mathematical Society, 27(2):541–612, 2014.