This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

The flavor-dependent U(1)FU(1)_{F} model

Jin-Lei Yang1,2,3111[email protected],Hai-Bin Zhang1,2,3222[email protected],Tai-Fu Feng1,2,3333[email protected] Department of Physics, Hebei University, Baoding, 071002, China1
Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding, 071002, China2
Research Center for Computational Physics of Hebei Province, Baoding, 071002, China3
Abstract

A flavor-dependent model (FDM) is proposed in this work. The model extends the Standard Model by an extra U(1)FU(1)_{F} local gauge group, two scalar doublets, one scalar singlet and two right-handed neutrinos, where the additional U(1)FU(1)_{F} charges are related to the particles’ flavor. The new fermion sector in the FDM can explain the flavor mixings puzzle and the mass hierarchy puzzle simultaneously, and the nonzero Majorana neutrino masses can be obtained naturally by the Type I see-saw mechanism. In addition, the BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-}, the top quark rare decay processes tcht\to ch, tuht\to uh and the τ\tau lepton flavor violation processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu, μ3e\mu\to 3e predicted in the FDM are analyzed.

I Introduction

The Standard Model (SM) achieves great success in describing the interactions of fundamental particles, and most of the observations coincide well with the SM predictions. However, the Yukawa couplings in the SM are still enigmatic, because the flavor mixings of quarks described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix Cabibbo:1963yz ; Kobayashi:1973fv are not predicted from first principles in the SM, which is the so-called flavor puzzle. And the fermions of the three families have largely distinct masses

mtmc104,mcmu773,mbms51,msmd20,mτmμ17,mμme207.\displaystyle\frac{m_{t}}{m_{c}}\approx 104,\;\frac{m_{c}}{m_{u}}\approx 773,\;\frac{m_{b}}{m_{s}}\approx 51,\;\frac{m_{s}}{m_{d}}\approx 20,\;\frac{m_{\tau}}{m_{\mu}}\approx 17,\;\frac{m_{\mu}}{m_{e}}\approx 207. (1)

It exhibits the large hierarchical structure of masses across the three families while they share common SM gauge group quantum numbers, which is the so-called mass hierarchy puzzle. Meanwhile, the nonzero neutrino masses and mixings observed at the neutrino oscillation experiments ParticleDataGroup:2022pth make the so-called flavor puzzle in the SM more acutely. All of these indicate that explaining the observed fermionic mass spectrum and mixings is one of the most enigmatic questions in particle physics, which may help understand the flavor nature and seek possible new physics (NP).

In literatures, there are some attempts to explain the fermionic mass hierarchies and flavor mixings. For example, the authors of Refs. Froggatt:1978nt ; Koide:1982ax ; Leurer:1992wg ; Ibanez:1994ig ; Babu:1995hr try to explain the fermionic flavor mixings by imposing the family symmetries, some proposals to explain the fermionic mass hierarchies can be found in Refs. Berezhiani:1990wn ; Berezhiani:1990jj ; Sakharov:1994pr ; Randall:1999ee ; Kaplan:2001ga ; Chen:2008tc ; Buras:2011ph ; King:2013eh ; King:2014nza ; King:2015aea ; King:2017guk ; Weinberg:2020zba ; Feruglio:2019ybq ; Abbas:2018lga ; Mohanta:2022seo ; Mohanta:2023soi ; Abbas:2022zfb . The three-Higgs doublet model is motivated to account for the flavor structure with three generations of fermions Weinberg:1976hu ; Lavoura:2007dw ; Ivanov:2012ry ; GonzalezFelipe:2013xok ; GonzalezFelipe:2013yhh ; Keus:2013hya ; Ivanov:2014doa ; Buskin:2021eig ; Izawa:2022viu , in which the number of Higgs doublets is three and has a flavor symmetry. A flavor-dependent U(1)U(1) extension of the SM is proposed in Ref. VanLoi:2023utt , the authors explained the small mixing at quark sector by introducing a NP cut-off scale parameter. Weinberg proposed a new mechanism in which only the third generation of quarks and leptons achieve the masses at the tree level, while the masses for the second and first generations are produced by one-loop and two-loop radiative corrections respectively Weinberg:2020zba . However, his analysis indicated that the ratios of the masses of the second and third generations fermions are independent of various masses of the third generation, i.e.

mcmt=msmb=mμmτormcmt3=msmb3=mμmτ3,\frac{m_{c}}{m_{t}}=\frac{m_{s}}{m_{b}}=\frac{m_{\mu}}{m_{\tau}}\;\;{\rm or}\;\;\frac{m_{c}}{m_{t}^{3}}=\frac{m_{s}}{m_{b}^{3}}=\frac{m_{\mu}}{m_{\tau}^{3}},\\

which is not true of observed masses as shown in Eq. (1). Hence, he pointed out in his work that “this kind of NP models are not realistic for some reasons” Weinberg:2020zba . In addition, Weinberg was the first to propose the Type I see-saw mechanism to give the tiny neutrino masses naturally Weinberg:1979sa , which provides one of the most popular mechanisms so far to give the tiny Majorana neutrino masses.

In this work, we adopt the Weinberg’s idea “only the third generation of fermions achieve the masses at the tree level”, but abandon “the masses for the second and first generations are produced by one-loop and two-loop radiative corrections respectively”. Instead, we propose to obtain the masses for the second and first generations by the “see-saw mechanism” (which is proposed by Weinberg to give the tiny Majorana neutrino masses as mentioned above), i.e. the masses for the second and first generations are produced by mixing with the third generation. In this case, the ratios of the masses of the second and third generations fermions depend on the tree-level mixing parameters of fermions, and we propose a flavor-dependent model (FDM) to realize this mechanism. The model extends the SM by an extra U(1)FU(1)_{F} local gauge group which relates to the particles’ flavor, two scalar doublets, one scalar singlet and two right-handed neutrinos. The new fermion sector in the FDM relates the fermionic flavor mixings to the fermionic mass hierarchies, which provides a new understanding about the mass hierarchy puzzle and the flavor mixing puzzle. In addition, the nonzero neutrino masses can be obtained naturally in the FDM by the Type I see-saw mechanism.

The paper is organized as follows: The structure of the FDM including particle content, scalar sector, fermion masses and gauge sector are collected in Sec. II. The numerical results of CKM matrix and Higgs masses predicted in the FDM are presented in Sec. III. The processes mediated by the flavor changed neutral currents (FCNCs) in the FDM are analyzed in Sec. IV. The summary is made in Sec. V.

II The flavor-dependent model

Multiplets SU(3)CSU(3)_{C} SU(2)LSU(2)_{L} U(1)YU(1)_{Y} U(1)FU(1)_{F}
l1=(ν1L,e1L)Tl_{1}=(\nu_{1L},e_{1L})^{T} 1 2 12-\frac{1}{2} zz
l2=(ν2L,e2L)Tl_{2}=(\nu_{2L},e_{2L})^{T} 1 2 12-\frac{1}{2} z-z
l3=(ν3L,e3L)Tl_{3}=(\nu_{3L},e_{3L})^{T} 1 2 12-\frac{1}{2} 0
ν1R\nu_{1R} 1 1 0 z-z
ν2R\nu_{2R} 1 1 0 zz
e1Re_{1R} 1 1 1-1 z-z
e2Re_{2R} 1 1 1-1 zz
e3Re_{3R} 1 1 1-1 0
q1=(u1L,d1L)Tq_{1}=(u_{1L},d_{1L})^{T} 3 2 16\frac{1}{6} zz
q2=(u2L,d2L)Tq_{2}=(u_{2L},d_{2L})^{T} 3 2 16\frac{1}{6} z-z
q3=(u3L,d3L)Tq_{3}=(u_{3L},d_{3L})^{T} 3 2 16\frac{1}{6} 0
d1Rd_{1R} 3 1 -13\frac{1}{3} z-z
d2Rd_{2R} 3 1 -13\frac{1}{3} zz
d3Rd_{3R} 3 1 -13\frac{1}{3} 0
u1Ru_{1R} 3 1 23\frac{2}{3} z-z
u2Ru_{2R} 3 1 23\frac{2}{3} zz
u3Ru_{3R} 3 1 23\frac{2}{3} 0
Φ1=(ϕ1+,ϕ10)T\Phi_{1}=(\phi_{1}^{+},\phi_{1}^{0})^{T} 1 2 12\frac{1}{2} zz
Φ2=(ϕ2+,ϕ20)T\Phi_{2}=(\phi_{2}^{+},\phi_{2}^{0})^{T} 1 2 12\frac{1}{2} z-z
Φ3=(ϕ3+,ϕ30)T\Phi_{3}=(\phi_{3}^{+},\phi_{3}^{0})^{T} 1 2 12\frac{1}{2} 0
χ\chi 1 1 0 2z2z
Table 1: Matter content in the FDM, where the nonzero constant zz denotes the extra U(1)FU(1)_{F} charge.

The gauge group of the FDM is SU(3)CSU(2)LU(1)YU(1)FSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{F}, where the extra U(1)FU(1)_{F} local gauge group is related to the particles’ flavor. In the FDM, the third generation of fermions obtain masses through the tree-level couplings with the SM scalar doublet, and the first two generations of fermions achieve masses through the tree-level mixings with the third generation as mentioned above. Hence, two additional scalar doublets are introduced in the FDM to realize the tree-level mixings of the first two generations and the third generation. In addition, to coincide with the observed neutrino oscillations, two right-handed neutrinos and one scalar singlet are introduced. Then the right-handed neutrinos obtain large Majorana masses after the scalar singlet achieving large vacuum expectation value (VEV), and the tiny neutrino masses and neutrino flavor mixings can be obtained by the Type I see-saw mechanism.

All fields in the FDM and the corresponding gauge symmetry charges are presented in Tab. 1, where Φ3\Phi_{3} corresponds to the SM Higgs doublet, the nonzero constant zz denotes the extra U(1)FU(1)_{F} charge. It can be noted in Tab. 1 that there are only two generations of right-handed neutrinos in the FDM, because both U(1)FU(1)_{F} and U(1)YU(1)_{Y} charges of the third generation of right-handed neutrinos νR3\nu_{R_{3}} are zero, which is trivial. In addition, it is obvious that the chiral anomaly cancellation can be guaranteed for the fermionic charges presented in Tab. 1.

II.1 The scalar sector of the FDM

The scalar potential in the FDM can be written as

V=MΦ12Φ1Φ1MΦ22Φ2Φ2MΦ32Φ3Φ3Mχ2χχ+λχ(χχ)2+λ1(Φ1Φ1)2\displaystyle V=-M_{\Phi_{1}}^{2}\Phi_{1}^{\dagger}\Phi_{1}-M_{\Phi_{2}}^{2}\Phi_{2}^{\dagger}\Phi_{2}-M_{\Phi_{3}}^{2}\Phi_{3}^{\dagger}\Phi_{3}-M_{\chi}^{2}\chi^{*}\chi+\lambda_{\chi}(\chi^{*}\chi)^{2}+\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2}
+λ2(Φ2Φ2)2+λ3(Φ3Φ3)2+λ4(Φ1Φ1)(Φ2Φ2)+λ4′′(Φ1Φ2)(Φ2Φ1)\displaystyle\qquad+\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2}+\lambda_{3}(\Phi_{3}^{\dagger}\Phi_{3})^{2}+\lambda^{\prime}_{4}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2})+\lambda_{4}^{\prime\prime}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})
+λ5(Φ1Φ1)(Φ3Φ3)+λ5′′(Φ1Φ3)(Φ3Φ1)+λ6(Φ2Φ2)(Φ3Φ3)+λ6′′(Φ2Φ3)(Φ3Φ2)\displaystyle\qquad+\lambda_{5}^{\prime}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{3}^{\dagger}\Phi_{3})+\lambda_{5}^{\prime\prime}(\Phi_{1}^{\dagger}\Phi_{3})(\Phi_{3}^{\dagger}\Phi_{1})+\lambda_{6}^{\prime}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{3}^{\dagger}\Phi_{3})+\lambda_{6}^{\prime\prime}(\Phi_{2}^{\dagger}\Phi_{3})(\Phi_{3}^{\dagger}\Phi_{2})
+λ7(Φ1Φ1)(χχ)+λ8(Φ2Φ2)(χχ)+λ9(Φ3Φ3)(χχ)+[λ10(Φ3Φ1)(Φ3Φ2)\displaystyle\qquad+\lambda_{7}(\Phi_{1}^{\dagger}\Phi_{1})(\chi^{*}\chi)+\lambda_{8}(\Phi_{2}^{\dagger}\Phi_{2})(\chi^{*}\chi)+\lambda_{9}(\Phi_{3}^{\dagger}\Phi_{3})(\chi^{*}\chi)+[\lambda_{10}(\Phi_{3}^{\dagger}\Phi_{1})(\Phi_{3}^{\dagger}\Phi_{2})
+κ(Φ1Φ2)χ+h.c.],\displaystyle\qquad+\kappa(\Phi_{1}^{\dagger}\Phi_{2})\chi+h.c.], (2)

where

Φ1=(ϕ1+12(iA1+S1+v1)),Φ2=(ϕ2+12(iA2+S2+v2)),Φ3=(ϕ3+12(iA3+S3+v3)),\displaystyle\Phi_{1}=\left(\begin{array}[]{c}\phi_{1}^{+}\\ \frac{1}{\sqrt{2}}(iA_{1}+S_{1}+v_{1})\end{array}\right),\Phi_{2}=\left(\begin{array}[]{c}\phi_{2}^{+}\\ \frac{1}{\sqrt{2}}(iA_{2}+S_{2}+v_{2})\end{array}\right),\Phi_{3}=\left(\begin{array}[]{c}\phi_{3}^{+}\\ \frac{1}{\sqrt{2}}(iA_{3}+S_{3}+v_{3})\end{array}\right), (9)
χ=12(iAχ+Sχ+vχ),\displaystyle\chi=\frac{1}{\sqrt{2}}(iA_{\chi}+S_{\chi}+v_{\chi}), (10)

and vi(i=1, 2, 3),vχv_{i}\;(i=1,\;2,\;3),\;v_{\chi} are the VEVs of Φi,χ\Phi_{i},\;\chi respectively.

Based on the scalar potential in Eq. (2), the tadpole equations in the FDM can be written as444Calculating the exact vacuum stability conditions for any new physics model is difficult generally, and the obtained tadpole equations can be used to calculate the stationary points. In this case, we apply tadpole equations in the calculations, and guarantee the stability of vacuum numerically by keeping the scalar potential at the input v1,v2,v3,vχv_{1},\;v_{2},\;v_{3},\;v_{\chi} are smaller than all the other stationary points.

MΦ12=λ1v12+12[(λ4+λ4′′)v22+(λ5+λ5′′)v32+v2v1v32Re(λ10)+2v2v1vχRe(κ)+λ7vχ2],\displaystyle M_{\Phi_{1}}^{2}=\lambda_{1}v_{1}^{2}+\frac{1}{2}\Big{[}(\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime})v_{2}^{2}+(\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime})v_{3}^{2}+\frac{v_{2}}{v_{1}}v_{3}^{2}{\rm Re}(\lambda_{10})+\sqrt{2}\frac{v_{2}}{v_{1}}v_{\chi}{\rm Re}(\kappa)+\lambda_{7}v_{\chi}^{2}\Big{]},
MΦ22=λ2v22+12[(λ4+λ4′′)v12+(λ6+λ6′′)v32+v1v2v32Re(λ10)+2v1v2vχRe(κ)+λ8vχ2],\displaystyle M_{\Phi_{2}}^{2}=\lambda_{2}v_{2}^{2}+\frac{1}{2}\Big{[}(\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime})v_{1}^{2}+(\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime})v_{3}^{2}+\frac{v_{1}}{v_{2}}v_{3}^{2}{\rm Re}(\lambda_{10})+\sqrt{2}\frac{v_{1}}{v_{2}}v_{\chi}{\rm Re}(\kappa)+\lambda_{8}v_{\chi}^{2}\Big{]},
MΦ32=λ3v32+Re(λ10)v1v2+12[(λ5+λ5′′)v12+(λ6+λ6′′)v22+λ9vc2],\displaystyle M_{\Phi_{3}}^{2}=\lambda_{3}v_{3}^{2}+{\rm Re}(\lambda_{10})v_{1}v_{2}+\frac{1}{2}[(\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime})v_{1}^{2}+(\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime})v_{2}^{2}+\lambda_{9}v_{c}^{2}],
Mχ2=λχvχ2+12[λ7v12+λ8v22+λ9v32+2v1v2vχRe(κ)].\displaystyle M_{\chi}^{2}=\lambda_{\chi}v_{\chi}^{2}+\frac{1}{2}\Big{[}\lambda_{7}v_{1}^{2}+\lambda_{8}v_{2}^{2}+\lambda_{9}v_{3}^{2}+\sqrt{2}\frac{v_{1}v_{2}}{v_{\chi}}{\rm Re}(\kappa)\Big{]}. (11)

On the basis (S1,S2,S3,Sχ)(S_{1},\;S_{2},\;S_{3},\;S_{\chi}), the CP-even Higgs squared mass matrix in the FDM is

Mh2=(Mh,112Mh,122Mh,132Mh,142Mh,122Mh,222Mh,232Mh,242Mh,132Mh,232Mh,332Mh,342Mh,142Mh,242Mh,342Mh,442),\displaystyle M_{h}^{2}=\left(\begin{array}[]{*{20}{cccc}}M_{h,11}^{2}&M_{h,12}^{2}&M_{h,13}^{2}&M_{h,14}^{2}\\[6.0pt] M_{h,12}^{2}&M_{h,22}^{2}&M_{h,23}^{2}&M_{h,24}^{2}\\[6.0pt] M_{h,13}^{2}&M_{h,23}^{2}&M_{h,33}^{2}&M_{h,34}^{2}\\[6.0pt] M_{h,14}^{2}&M_{h,24}^{2}&M_{h,34}^{2}&M_{h,44}^{2}\\[6.0pt] \end{array}\right), (16)

where

Mh,112=2λ1v12v22v1[v32Re(λ10)+2vχRe(κ)],\displaystyle M_{h,11}^{2}=2\lambda_{1}v_{1}^{2}-\frac{v_{2}}{2v_{1}}\Big{[}v_{3}^{2}{\rm Re}(\lambda_{10})+\sqrt{2}v_{\chi}{\rm Re}(\kappa)\Big{]},
Mh,222=2λ2v22v12v2[v32Re(λ10)+2vχRe(κ)],\displaystyle M_{h,22}^{2}=2\lambda_{2}v_{2}^{2}-\frac{v_{1}}{2v_{2}}\Big{[}v_{3}^{2}{\rm Re}(\lambda_{10})+\sqrt{2}v_{\chi}{\rm Re}(\kappa)\Big{]},
Mh,332=2λ3v32,Mh,442=2λχvχ22v1v22vχRe(κ),\displaystyle M_{h,33}^{2}=2\lambda_{3}v_{3}^{2},\;\;M_{h,44}^{2}=2\lambda_{\chi}v_{\chi}^{2}-\frac{\sqrt{2}v_{1}v_{2}}{2v_{\chi}}{\rm Re}(\kappa),
Mh,122=(λ4+λ4′′)v1v2+12Re(λ10)v32+22Re(κ)vχ,\displaystyle M_{h,12}^{2}=(\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime})v_{1}v_{2}+\frac{1}{2}{\rm Re}(\lambda_{10})v_{3}^{2}+\frac{\sqrt{2}}{2}{\rm Re}(\kappa)v_{\chi},
Mh,132=(λ5+λ5′′)v1v3+Re(λ10)v2v3,Mh,142=λ7v1vχ+22Re(κ)v2,\displaystyle M_{h,13}^{2}=(\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime})v_{1}v_{3}+{\rm Re}(\lambda_{10})v_{2}v_{3},\;\;M_{h,14}^{2}=\lambda_{7}v_{1}v_{\chi}+\frac{\sqrt{2}}{2}{\rm Re}(\kappa)v_{2},
Mh,232=(λ6+λ6′′)v2v3+Re(λ10)v1v3,Mh,242=λ8v2vχ+22Re(κ)v1,\displaystyle M_{h,23}^{2}=(\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime})v_{2}v_{3}+{\rm Re}(\lambda_{10})v_{1}v_{3},\;\;M_{h,24}^{2}=\lambda_{8}v_{2}v_{\chi}+\frac{\sqrt{2}}{2}{\rm Re}(\kappa)v_{1},
Mh,342=λ9v3vχ.\displaystyle M_{h,34}^{2}=\lambda_{9}v_{3}v_{\chi}. (17)

The tadpole equations in Eq. (11) are used to obtain the matrix elements above.

Then, on the basis (A1,A2,A3,Aχ)(A_{1},\;A_{2},\;A_{3},\;A_{\chi}), the squared mass matrix of CP-odd Higgs in the FDM can be written as

MA2=(MA,112MA,122MA,132MA,142MA,122MA,222MA,232MA,242MA,132MA,232MA,332MA,342MA,142MA,242MA,342MA,442),\displaystyle M_{A}^{2}=\left(\begin{array}[]{*{20}{cccc}}M_{A,11}^{2}&M_{A,12}^{2}&M_{A,13}^{2}&M_{A,14}^{2}\\[6.0pt] M_{A,12}^{2}&M_{A,22}^{2}&M_{A,23}^{2}&M_{A,24}^{2}\\[6.0pt] M_{A,13}^{2}&M_{A,23}^{2}&M_{A,33}^{2}&M_{A,34}^{2}\\[6.0pt] M_{A,14}^{2}&M_{A,24}^{2}&M_{A,34}^{2}&M_{A,44}^{2}\\[6.0pt] \end{array}\right), (22)

where

MA,112=v22v1[Re(λ10)v32+2vχRe(κ)],MA,332=2Re(λ10)v1v2,\displaystyle M_{A,11}^{2}=-\frac{v_{2}}{2v_{1}}[{\rm Re}(\lambda_{10})v_{3}^{2}+\sqrt{2}v_{\chi}{\rm Re}(\kappa)],\;\;M_{A,33}^{2}=-2{\rm Re}(\lambda_{10})v_{1}v_{2},
MA,222=v12v2[Re(λ10)v32+2vχRe(κ)],MA,442=2v1v22vχRe(κ),\displaystyle M_{A,22}^{2}=-\frac{v_{1}}{2v_{2}}[{\rm Re}(\lambda_{10})v_{3}^{2}+\sqrt{2}v_{\chi}{\rm Re}(\kappa)],\;\;M_{A,44}^{2}=-\frac{\sqrt{2}v_{1}v_{2}}{2v_{\chi}}{\rm Re}(\kappa),
MA,122=22vχRe(κ)12Re(λ10)v32,MA,132=Re(λ10)v2v3,\displaystyle M_{A,12}^{2}=\frac{\sqrt{2}}{2}v_{\chi}{\rm Re}(\kappa)-\frac{1}{2}{\rm Re}(\lambda_{10})v_{3}^{2},\;\;M_{A,13}^{2}={\rm Re}(\lambda_{10})v_{2}v_{3},
MA,142=22v2Re(κ),MA,232=Re(λ10)v1v3,MA,242=22v1Re(κ),\displaystyle M_{A,14}^{2}=\frac{\sqrt{2}}{2}v_{2}{\rm Re}(\kappa),\;\;M_{A,23}^{2}={\rm Re}(\lambda_{10})v_{1}v_{3},\;\;M_{A,24}^{2}=-\frac{\sqrt{2}}{2}v_{1}{\rm Re}(\kappa),
MA,342=0.\displaystyle M_{A,34}^{2}=0. (23)

On the basis (ϕ1+,ϕ2+,ϕ3+)(\phi_{1}^{+},\;\phi_{2}^{+},\;\phi_{3}^{+}) and (ϕ1,ϕ2,ϕ3)T(\phi_{1}^{-},\;\phi_{2}^{-},\;\phi_{3}^{-})^{T}, the squared mass matrix of singly charged Higgs in the FDM can be written as

MH±2=(MH±,112MH±,122MH±,132(MH±,122)MH±,222MH±,232(MH±,132)(MH±,232)MH±,332),\displaystyle M_{H^{\pm}}^{2}=\left(\begin{array}[]{*{20}{ccc}}M_{H^{\pm},11}^{2}&M_{H^{\pm},12}^{2}&M_{H^{\pm},13}^{2}\\[6.0pt] (M_{H^{\pm},12}^{2})^{*}&M_{H^{\pm},22}^{2}&M_{H^{\pm},23}^{2}\\[6.0pt] (M_{H^{\pm},13}^{2})^{*}&(M_{H^{\pm},23}^{2})^{*}&M_{H^{\pm},33}^{2}\\[6.0pt] \end{array}\right), (27)

where

MH±,112=v22v1[Re(λ10)v32+2vχRe(κ)]12(λ4′′v22+λ5′′v32),\displaystyle M_{H^{\pm},11}^{2}=-\frac{v_{2}}{2v_{1}}[{\rm Re}(\lambda_{10})v_{3}^{2}+\sqrt{2}v_{\chi}{\rm Re}(\kappa)]-\frac{1}{2}(\lambda_{4}^{\prime\prime}v_{2}^{2}+\lambda_{5}^{\prime\prime}v_{3}^{2}),
MH±,222=v12v2[Re(λ10)v32+2vχRe(κ)]12(λ4′′v12+λ6′′v32),\displaystyle M_{H^{\pm},22}^{2}=-\frac{v_{1}}{2v_{2}}[{\rm Re}(\lambda_{10})v_{3}^{2}+\sqrt{2}v_{\chi}{\rm Re}(\kappa)]-\frac{1}{2}(\lambda_{4}^{\prime\prime}v_{1}^{2}+\lambda_{6}^{\prime\prime}v_{3}^{2}),
MH±,332=Re(λ10)v1v212(λ5′′v12+λ6′′v22),\displaystyle M_{H^{\pm},33}^{2}=-{\rm Re}(\lambda_{10})v_{1}v_{2}-\frac{1}{2}(\lambda_{5}^{\prime\prime}v_{1}^{2}+\lambda_{6}^{\prime\prime}v_{2}^{2}),
MH±,122=22vχκ+12λ4′′v1v2,MH±,132=12v3(λ5′′v1+λ10v2),\displaystyle M_{H^{\pm},12}^{2}=\frac{\sqrt{2}}{2}v_{\chi}\kappa+\frac{1}{2}\lambda_{4}^{\prime\prime}v_{1}v_{2},\;\;M_{H^{\pm},13}^{2}=\frac{1}{2}v_{3}(\lambda_{5}^{\prime\prime}v_{1}+\lambda_{10}^{*}v_{2}),
MH±,232=12v3(λ6′′v2+λ10v1).\displaystyle M_{H^{\pm},23}^{2}=\frac{1}{2}v_{3}(\lambda_{6}^{\prime\prime}v_{2}+\lambda_{10}^{*}v_{1}). (28)

It is easy to verify that there are two neutral Goldstones and one singly charged Goldstone in the FDM.

II.2 The fermion masses in the FDM

Based on the matter content listed in Tab. 1, the Yukawa couplings in the FDM can be written as

Y=Yu33q¯3Φ~3uR3+Yd33q¯3Φ3dR3+Yu32q¯3Φ~1uR2+Yu23q¯2Φ~1uR3+Yd32q¯3Φ2dR2\displaystyle\mathcal{L}_{Y}=Y_{u}^{33}\bar{q}_{3}\tilde{\Phi}_{3}u_{R_{3}}+Y_{d}^{33}\bar{q}_{3}\Phi_{3}d_{R_{3}}+Y_{u}^{32}\bar{q}_{3}\tilde{\Phi}_{1}u_{R_{2}}+Y_{u}^{23}\bar{q}_{2}\tilde{\Phi}_{1}u_{R_{3}}+Y_{d}^{32}\bar{q}_{3}\Phi_{2}d_{R_{2}}
+Yd23q¯2Φ2dR3+Yu21q¯2Φ~3uR1+Yu12q¯1Φ~3uR2+Yd21q¯2Φ3dR1+Yd12q¯1Φ3dR2\displaystyle\qquad\;+Y_{d}^{23}\bar{q}_{2}\Phi_{2}d_{R_{3}}+Y_{u}^{21}\bar{q}_{2}\tilde{\Phi}_{3}u_{R_{1}}+Y_{u}^{12}\bar{q}_{1}\tilde{\Phi}_{3}u_{R_{2}}+Y_{d}^{21}\bar{q}_{2}\Phi_{3}d_{R_{1}}+Y_{d}^{12}\bar{q}_{1}\Phi_{3}d_{R_{2}}
+Yu31q¯3Φ~2uR1+Yu13q¯1Φ~2uR3+Yd31q¯3Φ1dR1+Yd13q¯1Φ1dR3\displaystyle\qquad\;+Y_{u}^{31}\bar{q}_{3}\tilde{\Phi}_{2}u_{R_{1}}+Y_{u}^{13}\bar{q}_{1}\tilde{\Phi}_{2}u_{R_{3}}+Y_{d}^{31}\bar{q}_{3}\Phi_{1}d_{R_{1}}+Y_{d}^{13}\bar{q}_{1}\Phi_{1}d_{R_{3}}
+Ye33l¯3Φ3eR3+Ye32l¯3Φ2eR2+Ye23l¯2Φ2eR3+Ye21l¯2Φ3eR1+Ye12l¯1Φ3eR2\displaystyle\qquad\;+Y_{e}^{33}\bar{l}_{3}\Phi_{3}e_{R_{3}}+Y_{e}^{32}\bar{l}_{3}\Phi_{2}e_{R_{2}}+Y_{e}^{23}\bar{l}_{2}\Phi_{2}e_{R_{3}}+Y_{e}^{21}\bar{l}_{2}\Phi_{3}e_{R_{1}}+Y_{e}^{12}\bar{l}_{1}\Phi_{3}e_{R_{2}}
+Ye31l¯3Φ1eR1+Ye13l¯1Φ1eR3+YR11ν¯R1cνR1χ+YR22ν¯R2cνR2χ+YD21l¯2Φ~3νR1\displaystyle\qquad\;+Y_{e}^{31}\bar{l}_{3}\Phi_{1}e_{R_{1}}+Y_{e}^{13}\bar{l}_{1}\Phi_{1}e_{R_{3}}+Y_{R}^{11}\bar{\nu}^{c}_{R_{1}}\nu_{R_{1}}\chi+Y_{R}^{22}\bar{\nu}^{c}_{R_{2}}\nu_{R_{2}}\chi^{*}+Y_{D}^{21}\bar{l}_{2}\tilde{\Phi}_{3}\nu_{R_{1}}
+YD12l¯1Φ~3νR2+YD31l¯3Φ~2νR1+YD32l¯3Φ~1νR2+h.c.,\displaystyle\qquad\;+Y_{D}^{12}\bar{l}_{1}\tilde{\Phi}_{3}\nu_{R_{2}}+Y_{D}^{31}\bar{l}_{3}\tilde{\Phi}_{2}\nu_{R_{1}}+Y_{D}^{32}\bar{l}_{3}\tilde{\Phi}_{1}\nu_{R_{2}}+h.c., (29)

Then the mass matrices of quarks and leptons can be written as

mq=(0mq,12mq,13mq,120mq,23mq,13mq,23mq,33),me=(0me,12me,13me,120me,23me,13me,23me,33),mν=(0MDTMDMR),\displaystyle m_{q}=\left(\begin{array}[]{ccc}0&m_{q,12}&m_{q,13}\\ m_{q,12}^{*}&0&m_{q,23}\\ m_{q,13}^{*}&m_{q,23}^{*}&m_{q,33}\end{array}\right),m_{e}=\left(\begin{array}[]{ccc}0&m_{e,12}&m_{e,13}\\ m_{e,12}^{*}&0&m_{e,23}\\ m_{e,13}^{*}&m_{e,23}^{*}&m_{e,33}\end{array}\right),m_{\nu}=\left(\begin{array}[]{cc}0&M_{D}^{T}\\ M_{D}&M_{R}\end{array}\right), (38)

where q=u,dq=u,d, the parameters mq,33m_{q,33} and me,33m_{e,33} are real, MDM_{D} is 2×32\times 3 Dirac mass matrix and MRM_{R} is 2×22\times 2 Majorana mass matrix (the nonzero neutrino masses are obtained by the Type I see-saw mechanism). The elements of the matrices in Eq. (38) are

mu,11=mu,22=0,mu,33=12Yu33v3,mu,12=12Yu12v3,mu,13=12Yu13v1,\displaystyle m_{u,11}=m_{u,22}=0,\;m_{u,33}=\frac{1}{\sqrt{2}}Y_{u}^{33}v_{3},\;m_{u,12}=\frac{1}{\sqrt{2}}Y_{u}^{12}v_{3},\;m_{u,13}=\frac{1}{\sqrt{2}}Y_{u}^{13}v_{1},
mu,23=12Yu23v2,\displaystyle m_{u,23}=\frac{1}{\sqrt{2}}Y_{u}^{23}v_{2}, (39)
md,11=md,22=0,md,33=12Yd33v3,md,12=12Yd12v3,md,13=12Yd13v1,\displaystyle m_{d,11}=m_{d,22}=0,\;m_{d,33}=\frac{1}{\sqrt{2}}Y_{d}^{33}v_{3},\;m_{d,12}=\frac{1}{\sqrt{2}}Y_{d}^{12}v_{3},\;m_{d,13}=\frac{1}{\sqrt{2}}Y_{d}^{13}v_{1},
md,23=12Yd23v2,\displaystyle m_{d,23}=\frac{1}{\sqrt{2}}Y_{d}^{23}v_{2}, (40)
me,11=me,22=0,me,33=12Ye33v3,me,12=12Ye12v3,me,13=12Ye13v1,\displaystyle m_{e,11}=m_{e,22}=0,\;m_{e,33}=\frac{1}{\sqrt{2}}Y_{e}^{33}v_{3},\;m_{e,12}=\frac{1}{\sqrt{2}}Y_{e}^{12}v_{3},\;m_{e,13}=\frac{1}{\sqrt{2}}Y_{e}^{13}v_{1},
me,23=12Ye23v2,\displaystyle m_{e,23}=\frac{1}{\sqrt{2}}Y_{e}^{23}v_{2}, (41)
MD,11=MD,22=0,MD,12=12YD12v3,MD,31=12YD31v1,\displaystyle M_{D,11}=M_{D,22}=0,\;\;M_{D,12}=\frac{1}{\sqrt{2}}Y_{D}^{12}v_{3},\;M_{D,31}=\frac{1}{\sqrt{2}}Y_{D}^{31}v_{1},
MD,32=12YD32v2,MR,12=MR,21=0,MR,11=12YR11vχ,MR,22=12YR22vχ.\displaystyle M_{D,32}=\frac{1}{\sqrt{2}}Y_{D}^{32}v_{2},\;M_{R,12}=M_{R,21}=0,\;M_{R,11}=\frac{1}{\sqrt{2}}Y_{R}^{11}v_{\chi},\;M_{R,22}=\frac{1}{\sqrt{2}}Y_{R}^{22}v_{\chi}. (42)

II.3 The gauge sector of the FDM

Due to the introducing of an extra U(1)FU(1)_{F} local gauge group in the FDM, the covariant derivative corresponding to SU(2)LU(1)YU(1)FSU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{F} is defined as

Dμ=μ+ig2TjAjμ+ig1YBμ+igFFBμ+igYFYBμ,(j=1, 2, 3),\displaystyle D_{\mu}=\partial_{\mu}+ig_{2}T_{j}A_{j\mu}+ig_{1}YB_{\mu}+ig_{{}_{F}}FB^{\prime}_{\mu}+ig_{{}_{YF}}YB^{\prime}_{\mu},\;(j=1,\;2,\;3), (43)

where (g2,g1,gF)(g_{2},\;g_{1},\;g_{{}_{F}}), (Tj,Y,F)(T_{j},\;Y,\;F), (Ajμ,Bμ,Bμ)(A_{j\mu},\;B_{\mu},\;B^{\prime}_{\mu}) denote the gauge coupling constants, generators and gauge bosons of groups (SU(2)L,U(1)Y,U(1)F)(SU(2)_{L},\;U(1)_{Y},\;U(1)_{F}) respectively, gYFg_{{}_{YF}} is the gauge coupling constant arises from the gauge kinetic mixing effect which presents in the models with two Abelian groups. Then the WW boson mass can be written as

MW=12g2(v12+v22+v32)1/2,\displaystyle M_{W}=\frac{1}{2}g_{2}(v_{1}^{2}+v_{2}^{2}+v_{3}^{2})^{1/2}, (44)

where (v12+v22+v32)1/2=v246GeV(v_{1}^{2}+v_{2}^{2}+v_{3}^{2})^{1/2}=v\approx 246\;{\rm GeV} and we have v1,v2<v3v_{1},\;v_{2}<v_{3} in the FDM. The γ\gamma, ZZ and ZZ^{\prime} boson masses in the FDM can be written as

Mγ=0,MZ12(g12+g22)1/2v,MZ2|zgF|vχ,\displaystyle M_{\gamma}=0,\;M_{Z}\approx\frac{1}{2}(g_{1}^{2}+g_{2}^{2})^{1/2}v,\;M_{Z^{\prime}}\approx 2|zg_{{}_{F}}|v_{\chi}, (45)

and

γ=cWB+sWA3,Z=sWB+cWA3+sWB,Z=sW(sWBcWA3)+cWB,\displaystyle\gamma=c_{W}B+s_{W}A_{3},\;Z=-s_{W}B+c_{W}A_{3}+s^{\prime}_{W}B^{\prime},\;Z^{\prime}=s_{W}^{\prime}(s_{W}B-c_{W}A_{3})+c^{\prime}_{W}B^{\prime}, (46)

where γ,Z,Z\gamma,\;Z,\;Z^{\prime} are the mass eigenstates, cWcosθW,sWsinθWc_{W}\equiv\cos\theta_{W},\;s_{W}\equiv\sin\theta_{W} with θW\theta_{W} denoting the Weinberg angle, sWsinθWs_{W}^{\prime}\equiv\sin\theta^{\prime}_{W}, cWcosθWc_{W}^{\prime}\equiv\cos\theta^{\prime}_{W} with θW\theta_{W}^{\prime} representing the ZZZ-Z^{\prime} mixing effect.

III CKM matrix and Higgs masses in the FDM

The quark sector in the FDM are redefined and the additional two scalar doublets, one scalar singlet modify the scalar potential of the model, hence we focus on the quark sector and scalar sector of the model in this section.

III.1 CKM matrix

The analysis in our previous work Yang:2024kfs shows that the quark mass matrices obtained in the FDM can fit the measured CKM matrix well. In this work, we perform a χ2\chi^{2} test to explore the best fit describing the quark masses and CKM matrix in the model. Generally, the χ2\chi^{2} function can be constructed as

χ2=1(OithOiexpσiexp)2,\displaystyle\chi^{2}=\sum_{1}\Big{(}\frac{O_{i}^{\rm th}-O_{i}^{\rm exp}}{\sigma_{i}^{\rm exp}}\Big{)}^{2}, (47)

where OithO_{i}^{\rm th} denotes the ii-th observable computed theoretically, OiexpO_{i}^{\rm exp} is the corresponding experimental value and σiexp\sigma_{i}^{\rm exp} is the uncertainty in OiexpO_{i}^{\rm exp}. Taking into account 1010 observables including 66 quark masses, 33 mixing angles and a phase in the CKM matrix, we scan the parameter space

|mu,13|=(0.01.0)GeV,|md,13|=(0.00.1)GeV,θq,ij=(π,π)\displaystyle|m_{u,13}|=(0.0\sim 1.0)\;{\rm GeV},\;|m_{d,13}|=(0.0\sim 0.1)\;{\rm GeV},\;\theta_{q,ij}=(-\pi,\pi) (48)

with mq,ij=|mq,ij|eiθq,ijm_{q,ij}=|m_{q,ij}|e^{i\theta_{q,ij}}, q=u,dq=u,d, ij=12,13,23ij=12,13,23. Then we obtain the best fit solution corresponding to χ2=0.0072\chi^{2}=0.0072, the results of this fit are listed in Tab. 2 where various OiexpO_{i}^{\rm exp} we use are listed in the third column and σiexp\sigma_{i}^{\rm exp} are take from PDG ParticleDataGroup:2022pth .

Observables OithO_{i}^{\rm th} OiexpO_{i}^{\rm exp} Deviations in %\%
mum_{u}[MeV] 2.15 2.16 0.47
mcm_{c}[GeV] 1.67 1.67 0
mtm_{t}[GeV] 172.5 172.5 0
mdm_{d}[MeV] 4.67 4.67 0
msm_{s}[MeV] 93.4 93.4 0
mbm_{b}[GeV] 4.78 4.78 0
|vus||v_{us}| 0.2253 0.2253 0
|vub||v_{ub}| 0.3616 0.003616 0
|vcb||v_{cb}| 0.4149 0.04149 0
Table 2: The results obtained for the best fit corresponding to χ2=0.0072\chi^{2}=\mathbf{0.0072}.

The parameters for the best fit listed in Tab. 2 are

|mu,13|=0.3152GeV,θu,12=0.8248π,θu,13=0.1231π,θu,23=0.1129π,\displaystyle|m_{u,13}|=0.3152\;{\rm GeV},\;\theta_{u,12}=-0.8248\pi,\;\theta_{u,13}=0.1231\pi,\;\theta_{u,23}=-0.1129\pi,
|md,13|=7.235MeV,θd,12=0.6705π,θd,13=0.3622π,θd,23=0.06389π,\displaystyle|m_{d,13}|=7.235\;{\rm MeV},\;\theta_{d,12}=0.6705\pi,\;\theta_{d,13}=-0.3622\pi,\;\theta_{d,23}=-0.06389\pi, (49)

and |mq,12|,|mq,23|,mq,33(q=u,d)|m_{q,12}|,\;|m_{q,23}|,\;m_{q,33}\;(q=u,\;d) can be obtained by555Eq. (50) is obtained with the approximation |mq,12|,|mq,13|,|mq,23|mq,33|m_{q,12}|,\;|m_{q,13}|,\;|m_{q,23}|\ll m_{q,33}, and the terms of 𝒪(mq,ij/mq,33)3\mathcal{O}(m_{q,ij}/m_{q,33})^{3} are neglected. For down type quark, higher order corrections to Eq. (50) are also important, we calculated them numerically and the corrections to mq,33m_{q,33}, |mq,23||m_{q,23}|, |mq,12||m_{q,12}| are 9.329.32 MeV, 27.03-27.03 MeV, 0.1960.196 MeV respectively.

mq,33=mq3mq1mq2,\displaystyle m_{q,33}=m_{q_{3}}-m_{q_{1}}-m_{q_{2}},
|mq,23|=[(mq1+mq2)mq,33|mq,13|2]1/2,\displaystyle|m_{q,23}|=[(m_{q_{1}}+m_{q_{2}})m_{q,33}-|m_{q,13}|^{2}]^{1/2},
|mq,12|=|mq,13||mq,23||mq,33|cos(θq,12+θq,23θq,13)\displaystyle|m_{q,12}|=\frac{|m_{q,13}||m_{q,23}|}{|m_{q,33}|}\cos(\theta_{q,12}+\theta_{q,23}-\theta_{q,13})
+{[|mq,13||mq,23||mq,33|2cos(θq,12+θq,23θq,13)]2+mq1mq2|mq,33|2}1/2|mq,33|,\displaystyle\qquad\qquad+\Big{\{}[\frac{|m_{q,13}||m_{q,23}|}{|m_{q,33}|^{2}}\cos(\theta_{q,12}+\theta_{q,23}-\theta_{q,13})]^{2}+\frac{m_{q_{1}}m_{q_{2}}}{|m_{q,33}|^{2}}\Big{\}}^{1/2}|m_{q,33}|, (50)

with mqkm_{q_{k}} being the kk-generation quark qq mass.

It is obvious that there are additional CP phases in the obtained CKM matrix by taking the parameters in Eq. (49) as inputs, but we do not list the observed CP phase in the CKM matrix in Tab. 2. Because the CKM matrix is defined as

VCKM=(ULuULd),\displaystyle V_{\rm CKM}=(U_{L}^{u}U_{L}^{d\dagger})^{*}, (51)

where ULuU_{L}^{u}, ULdU_{L}^{d} are the unitary matrices which diagonalize the quark matrices in Eq. (38)

mudiag=ULumuURu,mddiag=ULdmdURd.\displaystyle m_{u}^{\rm diag}=U_{L}^{u*}m_{u}U_{R}^{u\dagger},\;m_{d}^{\rm diag}=U_{L}^{d*}m_{d}U_{R}^{d\dagger}. (52)

Eq. (52) is invariant under

ULudiag(eiθu,eiθc,eiθt)ULu,URudiag(eiθu,eiθc,eiθt)URu,\displaystyle U_{L}^{u}\to{\rm diag}(e^{-i\theta_{u}},e^{-i\theta_{c}},e^{-i\theta_{t}})\cdot U_{L}^{u},\;U_{R}^{u}\to{\rm diag}(e^{i\theta_{u}},e^{i\theta_{c}},e^{i\theta_{t}})\cdot U_{R}^{u},
ULddiag(eiθd,eiθs,eiθb)ULd,URddiag(eiθd,eiθs,eiθb)URd,\displaystyle U_{L}^{d}\to{\rm diag}(e^{i\theta_{d}},e^{i\theta_{s}},e^{i\theta_{b}})\cdot U_{L}^{d},\;U_{R}^{d}\to{\rm diag}(e^{-i\theta_{d}},e^{-i\theta_{s}},e^{-i\theta_{b}})\cdot U_{R}^{d}, (53)

so there are six free parameters θu,θc,θt,θd,θs,θb\theta_{u},\;\theta_{c},\;\theta_{t},\;\theta_{d},\;\theta_{s},\;\theta_{b} which can absorb the extra CP phases in the obtained CKM matrix, these parameters are not observable. As a result, the observed CP phase in the CKM matrix can be obtained by defining appropriate θu,θc,θt,θd,θs,θb\theta_{u},\;\theta_{c},\;\theta_{t},\;\theta_{d},\;\theta_{s},\;\theta_{b}. This fact is always valid because there are also six possible CP violation parameters at the quark sector in the model.

III.2 Perturbative unitary bounds

The scalar sector of the FDM is extended by two scalar doublets and one scalar singlet, additional new couplings are also introduced correspondingly. Therefore, the tree-level perturbative unitary should be applied to the scalar elastic scattering processes in this model Lee:1977eg . The zero partial wave amplitude

a0=132π4pfCMpiCMs1+1T22dcosθ\displaystyle a_{0}=\frac{1}{32\pi}\sqrt{\frac{4p_{f}^{\rm CM}p_{i}^{\rm CM}}{s}}\int_{-1}^{+1}T_{2\to 2}d\cos\theta (54)

must satisfy the condition |Re(a0)|12|{\rm Re}(a_{0})|\leq\frac{1}{2}, where ss is the centre of mass (CM) energy, T22T_{2\to 2} denotes the matrix element for 222\to 2 processes, θ\theta is the incident angle between two incoming particles, piCMp_{i}^{\rm CM} and pfCMp_{f}^{\rm CM} are the initial and final momenta in the CM system respectively.

The possible two particle states of 222\to 2 scattering processes at the scalar sector in the FDM are S1S1S_{1}S_{1}, S2S2S_{2}S_{2}, S3S3S_{3}S_{3}, SχSχS_{\chi}S_{\chi}, S1S2S_{1}S_{2}, S1S3S_{1}S_{3}, S1SχS_{1}S_{\chi}, S2S3S_{2}S_{3}, S2SχS_{2}S_{\chi}, S3SχS_{3}S_{\chi}. Considering the limit sMS12,MS22,MS32,MSχ2s\gg M_{S_{1}}^{2},\;M_{S_{2}}^{2},\;M_{S_{3}}^{2},\;M_{S_{\chi}}^{2}, we have

a0S1S1S1S1116π(6λ1),a0S2S2S2S2116π(6λ2),\displaystyle a_{0}^{S_{1}S_{1}\to S_{1}S_{1}}\approx\frac{1}{16\pi}(6\lambda_{1}),\;a_{0}^{S_{2}S_{2}\to S_{2}S_{2}}\approx\frac{1}{16\pi}(6\lambda_{2}),
a0S3S3S3S3116π(6λ3),a0SχSχSχSχ116π(6λχ),\displaystyle a_{0}^{S_{3}S_{3}\to S_{3}S_{3}}\approx\frac{1}{16\pi}(6\lambda_{3}),\;a_{0}^{S_{\chi}S_{\chi}\to S_{\chi}S_{\chi}}\approx\frac{1}{16\pi}(6\lambda_{\chi}),
a0S1S1S2S2116π(λ4+λ4′′),a0S1S2S1S2116π(λ4+λ4′′),\displaystyle a_{0}^{S_{1}S_{1}\to S_{2}S_{2}}\approx\frac{1}{16\pi}(\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime}),\;a_{0}^{S_{1}S_{2}\to S_{1}S_{2}}\approx\frac{1}{16\pi}(\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime}),
a0S1S1S3S3116π(λ5+λ5′′),a0S1S3S1S3116π(λ5+λ5′′),\displaystyle a_{0}^{S_{1}S_{1}\to S_{3}S_{3}}\approx\frac{1}{16\pi}(\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime}),\;a_{0}^{S_{1}S_{3}\to S_{1}S_{3}}\approx\frac{1}{16\pi}(\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime}),
a0S2S2S3S3116π(λ6+λ6′′),a0S2S3S2S3116π(λ6+λ6′′),\displaystyle a_{0}^{S_{2}S_{2}\to S_{3}S_{3}}\approx\frac{1}{16\pi}(\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime}),\;a_{0}^{S_{2}S_{3}\to S_{2}S_{3}}\approx\frac{1}{16\pi}(\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime}),
a0S1S1SχSχ116π(λ7),a0S1SχS1Sχ116π(λ7),\displaystyle a_{0}^{S_{1}S_{1}\to S_{\chi}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{7}),\;a_{0}^{S_{1}S_{\chi}\to S_{1}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{7}),
a0S2S2SχSχ116π(λ8),a0S2SχS2Sχ116π(λ8),\displaystyle a_{0}^{S_{2}S_{2}\to S_{\chi}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{8}),\;a_{0}^{S_{2}S_{\chi}\to S_{2}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{8}),
a0S3S3SχSχ116π(λ9),a0S3SχS3Sχ116π(λ9),\displaystyle a_{0}^{S_{3}S_{3}\to S_{\chi}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{9}),\;a_{0}^{S_{3}S_{\chi}\to S_{3}S_{\chi}}\approx\frac{1}{16\pi}(\lambda_{9}),
a0S3S3S1S2116π[2Re(λ10)],a0S1S3S2S3116π[2Re(λ10)].\displaystyle a_{0}^{S_{3}S_{3}\to S_{1}S_{2}}\approx\frac{1}{16\pi}[2{\rm Re}(\lambda_{10})],\;a_{0}^{S_{1}S_{3}\to S_{2}S_{3}}\approx\frac{1}{16\pi}[2{\rm Re}(\lambda_{10})]. (55)

Requiring |Re(a0)|12|{\rm Re}(a_{0})|\leq\frac{1}{2} for each individual process, we have

|λ1|,|λ2|,|λ3|,|λχ|4π3,|Re(λ10)|4π,\displaystyle|\lambda_{1}|,\;|\lambda_{2}|,\;|\lambda_{3}|,\;|\lambda_{\chi}|\leq\frac{4\pi}{3},\;|{\rm Re}(\lambda_{10})|\leq 4\pi,
|λ4+λ4′′|,|λ5+λ5′′|,|λ6+λ6′′|,|λ7|,|λ8|,|λ9|8π.\displaystyle|\lambda_{4}^{\prime}+\lambda_{4}^{\prime\prime}|,\;|\lambda_{5}^{\prime}+\lambda_{5}^{\prime\prime}|,\;|\lambda_{6}^{\prime}+\lambda_{6}^{\prime\prime}|,\;|\lambda_{7}|,\;|\lambda_{8}|,\;|\lambda_{9}|\leq 8\pi. (56)

III.3 Higgs masses in the FDM

For the free parameters in the scalar sector of the FDM, we take v1=v2v_{1}=v_{2}, λ4=λ4′′=λ4/2\lambda_{4}^{\prime}=\lambda_{4}^{\prime\prime}=\lambda_{4}/2, λ5=λ5′′=λ5/2\lambda_{5}^{\prime}=\lambda_{5}^{\prime\prime}=\lambda_{5}/2, λ6=λ6′′=λ6/2\lambda_{6}^{\prime}=\lambda_{6}^{\prime\prime}=\lambda_{6}/2 and all parameters to be real for simplicity. In addition, vχv_{\chi} is limited by the new ZZ^{\prime} boson mass as shown in Eq. (45), hence we take vχ5TeVv_{\chi}\geq 5\;{\rm TeV} in the following analysis. Considering the perturbative unitary bounds presented in Eq. (56), we scan the following parameter space

v1=(0, 40)GeV,λi=(0, 4)with(i=1,,9,χ),λ10=(4, 0),\displaystyle v_{1}=(0,\;40)\;{\rm GeV},\;\lambda_{i}=(0,\;4)\;\;{\rm with}\;\;(i=1,...,9,\chi),\;\lambda_{10}=(-4,\;0),
vχ=(5, 40)TeV,κ=(3,0.1)TeV,\displaystyle v_{\chi}=(5,\;40)\;{\rm TeV},\;\kappa=(-3,\;-0.1)\;{\rm TeV}, (57)

to explore the Higgs mass spectrum in the FDM. In the scanning, we keep the next-to-lightest CP-even Higgs mass MH2M_{H_{2}} in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV} and the scalar potential at the input v1,v2,v3,vχv_{1},\;v_{2},\;v_{3},\;v_{\chi} are smaller than all the other stationary points to guarantee the stability of vacuum.

III.3.1 CP-even Higgs masses

Refer to caption
Refer to caption
Refer to caption
Figure 1: The results of CP-even Higgs masses MH1M_{H_{1}} (a), MH3M_{H_{3}} (b), MH4M_{H_{4}} (c) versus v1v_{1}, κ\kappa, vχv_{\chi} are plotted respectively by scanning the parameter space in Eq. (57).

The results of CP-even Higgs masses MH1M_{H_{1}} versus v1v_{1}, MH3M_{H_{3}} versus κ\kappa, MH4M_{H_{4}} versus vχv_{\chi} are plotted in Fig. 1 (a), Fig. 1 (b), Fig. 1 (c) respectively. We do not present the results of the next-to-lightest CP-even Higgs mass MH2M_{H_{2}} in Fig. 1 because MH2M_{H_{2}} is limited in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV} in the plotting. Fig. 1 (a) shows that the lightest Higgs mass MH1M_{H_{1}} in the FDM mainly depends on the chosen value of v1v_{1}, and MH1M_{H_{1}} can reach 95GeV95\;{\rm GeV} for v130GeVv_{1}\gtrsim 30\;{\rm GeV} which will be explored in detail in our next work. As shown in Fig. 1 (b) and (c), MH3M_{H_{3}}, MH4M_{H_{4}} are dominated by κ\kappa, vχv_{\chi}, where MH4M_{H_{4}} is about 110TeV110\;{\rm TeV} for large vχv_{\chi} while MH3M_{H_{3}} is about 13TeV13\;{\rm TeV} for large |κ||\kappa|.

Refer to caption
Refer to caption
Figure 2: The results of MH2M_{H_{2}} versus λ3\lambda_{3} (a), λ9\lambda_{9} (b), where the solid, dashed, dotted curves denotes the results for λχ=2, 3, 4\lambda_{\chi}=2,\;3,\;4 respectively, and the gray areas denote the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV}.

As mentioned above, Φ3\Phi_{3} corresponds to the SM Higgs doublet, hence λ3\lambda_{3} may affect the 125GeV125\;{\rm GeV} Higgs boson mass MH2M_{H_{2}} significantly. In addition, Eq. (17) shows that there are large mixing effects between S3S_{3} and SχS_{\chi}, it indicates λ9\lambda_{9}, λχ\lambda_{\chi} can also affect MH2M_{H_{2}}. And to verify numerically that MH2M_{H_{2}} is mainly affected by λ3\lambda_{3}, λ9\lambda_{9}, λχ\lambda_{\chi}, we take v1=20GeV,λ1=λ2=λ4=λ5=λ6=λ7=λ8=2,λ10=2,vχ=10TeV,κ=1TeVv_{1}=20\;{\rm GeV},\;\lambda_{1}=\lambda_{2}=\lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{8}=2,\;\lambda_{10}=-2,\;v_{\chi}=10\;{\rm TeV},\;\kappa=-1\;{\rm TeV} to explore the effects of λ3\lambda_{3}, λ9\lambda_{9}, λχ\lambda_{\chi} on MH2M_{H_{2}}. Then MH2M_{H_{2}} versus λ3\lambda_{3}, λ9\lambda_{9} are plotted in Fig. 2 (a) and Fig. 2 (b) respectively, where the solid, dashed, dotted curves denotes the results for λχ=2, 3, 4\lambda_{\chi}=2,\;3,\;4 respectively, and the gray areas denote the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV}. The picture shows MH2M_{H_{2}} increases with increasing λ3\lambda_{3}, λχ\lambda_{\chi} and decreases with increasing λ9\lambda_{9}, and λ3\lambda_{3}, λ9\lambda_{9}, λχ\lambda_{\chi} affect the theoretical predictions on MH2M_{H_{2}} significantly.

III.3.2 CP-odd Higgs masses

Refer to caption
Refer to caption
Refer to caption
Figure 3: The results of CP-even Higgs masses MA1M_{A_{1}} (a), MA2M_{A_{2}} (b), MA2M_{A_{2}} (c) versus λ10\lambda_{10}, κ\kappa, vχv_{\chi} are plotted respectively by scanning the parameter space in Eq. (57).

There are two physical CP-odd Higgs in the FDM, and the results of CP-odd Higgs masses MA1M_{A_{1}} versus λ10\lambda_{10}, MA2M_{A_{2}} versus κ\kappa, MA2M_{A_{2}} versus vχv_{\chi} are plotted in Fig. 3 (a), Fig. 3 (b), Fig. 3 (c) respectively. It is obvious in Fig. 3 (a) that MA1M_{A_{1}} is dominated by the value of λ10\lambda_{10} completely, and MA1M_{A_{1}} increases with increasing |λ10||\lambda_{10}|. In addition, MA2M_{A_{2}} is dominated by κ\kappa, vχv_{\chi} as shown in Fig. 3 (b) and Fig. 3 (c), where MA2M_{A_{2}} can be large when |κ||\kappa| and vχv_{\chi} are large.

III.3.3 Charged Higgs masses

Refer to caption
Refer to caption
Refer to caption
Figure 4: The results of charged Higgs masses MH1±M_{H^{\pm}_{1}} (a), MH2±M_{H^{\pm}_{2}} (b), MH2±M_{H^{\pm}_{2}} (c) versus λ10\lambda_{10}, κ\kappa, vχv_{\chi} are plotted respectively by scanning the parameter space in Eq. (57).

Similar to the case of CP-odd Higgs, there are also two physical charged Higgs in the FDM. The results of charged Higgs masses MH1±M_{H^{\pm}_{1}} versus λ10\lambda_{10}, MH2±M_{H^{\pm}_{2}} versus κ\kappa, MH2±M_{H^{\pm}_{2}} versus vχv_{\chi} are plotted in Fig. 4 (a), Fig. 4 (b), Fig. 4 (c) respectively. Fig. 4 (a) indicates that MH1±M_{H^{\pm}_{1}} is mainly affected by λ10\lambda_{10}, but the other scanning parameter can also influence the predicted MH1±M_{H^{\pm}_{1}} especially for small |λ10||\lambda_{10}|. Similar to the case of MA2M_{A_{2}}, Fig. 4 (b) and Fig. 4 (c) show that MH2±M_{H^{\pm}_{2}} is also dominated by κ\kappa, vχv_{\chi}.

IV The flavor changed neutral currents in the FDM

As shown in Eq. (29), the different generations of fermions couple to different Higgs bosons while Φ3\Phi_{3} corresponding to the SM-like Higgs, which are quite different from the ones in the SM. In addition, the new defined ZZ and ZZ^{\prime} gauge bosons can also mediate the FCNCs. Hence, observing the FCNCs in the FDM may be effective to test the model. In this section, we focus on the BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-}, the top quark rare decay processes tcht\to ch, tuht\to uh and the charged lepton flavor violation processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu, μ3e\mu\to 3e predicted in the FDM. And for simplicity, we take the nonzero UF(1)U_{F}(1) charge z=1z=1 in the following analysis.

IV.1 BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma and Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} in the FDM

The BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} are related closely to the NP contributions, and the average experimental data on the branching ratios of B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} are ParticleDataGroup:2022pth

Br(B¯Xsγ)=(3.49±0.19)×104,\displaystyle{\rm Br}(\bar{B}\to X_{s}\gamma)=(3.49\pm 0.19)\times 10^{-4},
Br(Bs0μ+μ)=(3.01±0.35)×109.\displaystyle{\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-})=(3.01\pm 0.35)\times 10^{-9}. (58)

The newly introduced scalars in the FDM including CP-even Higgs, CP-odd Higgs and charged Higgs can make contributions to these two processes, the analytical calculations of the contributions are collected in the appendix Yang:2018fvw .

Scanning the parameter spaces in Eq. (48), Eq. (57) and the parameters |me,13||m_{e,13}|, θe,ij,(ij=12, 13, 23)\theta_{e,ij},\;(ij=12,\;13,\;23) in the following range

|me,13|=(0.00.3)GeV,θe,ij=(ππ),\displaystyle|m_{e,13}|=(0.0\sim 0.3)\;{\rm GeV},\;\theta_{e,ij}=(-\pi\sim\pi), (59)

keeping 0.2243<|Vus|<0.22630.2243<|V_{us}|<0.2263, 0.003516<|Vub|<0.0037160.003516<|V_{ub}|<0.003716, 0.4139<|Vcb|<0.41590.4139<|V_{cb}|<0.4159 and MH2M_{H_{2}} in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV}, we plot MH1±MA1M_{H^{\pm}_{1}}-M_{A_{1}}, v1λ10v_{1}-\lambda_{10} in Fig. 5 (a), Fig. 5 (b) respectively, where the black points, green points denote the results for Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma) and Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) in the experimental 2σ2\sigma, 1σ1\sigma intervals respectively, the ‘red star’ denotes the best fit with the B meson rare decay branching ratios in Eq. (58) corresponding to χ2=0.022\chi^{2}=0.022. The results of this best fit are listed in Tab. 3.

Refer to caption
Refer to caption
Figure 5: Scanning the parameter spaces in Eq. (48), Eq. (57), Eq. (59) and keeping 0.2243<|Vus|<0.22630.2243<|V_{us}|<0.2263, 0.003516<|Vub|<0.0037160.003516<|V_{ub}|<0.003716, 0.4139<|Vcb|<0.41590.4139<|V_{cb}|<0.4159, MH2M_{H_{2}} in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV}, the allowed ranges of MH1±MA1M_{H^{\pm}_{1}}-M_{A_{1}} (a) and v1λ10v_{1}-\lambda_{10} (b) are plotted, where the black points, green points denote the results for Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma) and Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) in the experimental 2σ2\sigma, 1σ1\sigma intervals respectively, the ‘red star’ denotes the best fit with the B meson rare decay branching ratios in Eq. (58) corresponding to χ2=0.022\chi^{2}=\mathbf{0.022}.
Observables OithO_{i}^{\rm th} OiexpO_{i}^{\rm exp} Deviations in %\%
mum_{u}[MeV] 2.154 2.16 0.28
mcm_{c}[GeV] 1.658 1.67 0.72
mtm_{t}[GeV] 172.5 172.5 0
mdm_{d}[MeV] 4.67 4.67 0
msm_{s}[MeV] 93.4 93.4 0
mbm_{b}[GeV] 4.78 4.78 0
|vus||v_{us}| 0.2252 0.2253 0.044
|vub||v_{ub}| 0.003617 0.003616 0.028
|vcb||v_{cb}| 0.4138 0.04149 0
Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma) 3.49×1043.49\times 10^{-4} 3.49×1043.49\times 10^{-4} 0
Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) 3.03×1093.03\times 10^{-9} 3.01×1093.01\times 10^{-9} 0.66
Table 3: Fit with the B meson rare decays: the results obtained for the best fit corresponding to χ2=0.022\chi^{2}=\mathbf{0.022}.

For the parameters not shown in Fig. 5 such as λ1,λ2,\lambda_{1},\;\lambda_{2},..., they affect the predicted Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma) and Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) mildly. The results presented in Fig. 5 (a) indicate that MH1±M_{H^{\pm}_{1}} is correlated strongly to MA1M_{A_{1}} because both of them mainly depend on λ10\lambda_{10} as shown in Fig. 3 (a) and Fig. 4 (a). Eq. (39) and Eq. (40) show that the Yukawa couplings increase with decreasing v1v_{1}, i.e. the scalars in the FDM can make significant contributions to the BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} for small v1v_{1}, which leads to the experimental observations of Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma) and Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) prefer large v1v_{1}, and Fig. 5 (b) shows that v1v_{1} is limited in the range v115GeVv_{1}\gtrsim 15\;{\rm GeV}.

IV.2 top quark rare decay processes tcht\to ch and tuht\to uh

The branching ratios of the top quark rare decay processes tcht\to ch and tuht\to uh can be written as YANG2018

Br(tquh)=|tquh|2((mt+mh)2mqu2)((mtmh)2mqu2)32πmt3Γtotalt,\displaystyle{\rm Br}(t\rightarrow q_{u}h)=\frac{|\mathcal{M}_{tq_{u}h}|^{2}\sqrt{((m_{t}+m_{h})^{2}-m_{q_{u}}^{2})((m_{t}-m_{h})^{2}-m_{q_{u}}^{2})}}{32\pi m_{t}^{3}\Gamma^{t}_{{\rm total}}}, (60)

where qu=u,cq_{u}=u,\;c, the amplitude tquh\mathcal{M}_{tq_{u}h} can be read directly from the Yukawa couplings in Eq. (29), and Γtotalt=1.42\Gamma^{t}_{{\rm total}}=1.42\;GeV ParticleDataGroup:2022pth is the total decay width of top quark. The measured quark masses, CKM matrix and BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} should be considered in the calculations of top quark rare decay processes tcht\to ch and tuht\to uh, hence we take the points obtained in Fig. 5 as inputs.

Refer to caption
Refer to caption
Refer to caption
Figure 6: Taking the points obtained in Fig. 5 as inputs, the results of Br(tch){\rm Br}(t\to ch) versus |mu,13||m_{u,13}| (a), θu,12\theta_{u,12} (b) and the results of Br(tuh){\rm Br}(t\to uh) versus |mu,13||m_{u,13}| (c), θu,12\theta_{u,12} (d) are plotted, where red and blue lines denote the upper bounds on Br(tch){\rm Br}(t\to ch) and Br(tuh){\rm Br}(t\to uh) from Particle Data Group ParticleDataGroup:2022pth respectively.

Then we plot the results of Br(tch){\rm Br}(t\to ch) versus v1v_{1} in Fig. 6 (a), Br(tuh){\rm Br}(t\to uh) versus v1v_{1} in Fig. 6 (b), and Br(tch){\rm Br}(t\to ch) versus Br(tuh){\rm Br}(t\to uh) in Fig. 6 (c). The red and blue lines in Fig. 6 denote the upper bounds on Br(tch){\rm Br}(t\to ch) and Br(tuh){\rm Br}(t\to uh) from Particle Data Group ParticleDataGroup:2022pth respectively. The picture illustrates that the results of Br(tch){\rm Br}(t\to ch), Br(tuh){\rm Br}(t\to uh) obtained in the FDM can be large, which indicates that the processes tcht\to ch, tuht\to uh have great opportunities to be observed experimentally. In addition, the parameter space of the model suffers constraints from the experimental upper bounds on Br(tch){\rm Br}(t\to ch) and Br(tuh){\rm Br}(t\to uh).

IV.3 Lepton flavor violation processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu and μ3e\mu\to 3e

Finally, we focus on the lepton flavor violation processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu, μ3e\mu\to 3e predicted in the FDM. The corresponding amplitude can be written as Hisano:1995cp

(ejeieie¯i)=C1Lu¯ei(p2)γμPLuej(p1)uei(p3)γμPLνei(p4)\displaystyle\mathcal{M}(e_{j}\rightarrow e_{i}e_{i}\bar{e}_{i})=C_{1}^{L}\bar{u}_{e_{i}}(p_{2})\gamma_{\mu}P_{L}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})\gamma^{\mu}P_{L}\nu_{e_{i}}(p_{4})
+C1Ru¯ei(p2)γμPRuej(p1)uei(p3)γμPRνei(p4)\displaystyle\qquad\quad+C_{1}^{R}\bar{u}_{e_{i}}(p_{2})\gamma_{\mu}P_{R}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})\gamma^{\mu}P_{R}\nu_{e_{i}}(p_{4})
+[C2Lu¯ei(p2)γμPLuej(p1)uei(p3)γμPRνei(p4)\displaystyle\qquad\quad+[C_{2}^{L}\bar{u}_{e_{i}}(p_{2})\gamma_{\mu}P_{L}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})\gamma^{\mu}P_{R}\nu_{e_{i}}(p_{4})
+C2Ru¯ei(p2)γμPRuej(p1)uei(p3)γμPLνei(p4)(p2p3)]\displaystyle\qquad\quad+C_{2}^{R}\bar{u}_{e_{i}}(p_{2})\gamma_{\mu}P_{R}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})\gamma^{\mu}P_{L}\nu_{e_{i}}(p_{4})-(p_{2}\leftrightarrow p_{3})]
+[C3Lu¯ei(p2)PLuej(p1)uei(p3)PLνei(p4)\displaystyle\qquad\quad+[C_{3}^{L}\bar{u}_{e_{i}}(p_{2})P_{L}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})P_{L}\nu_{e_{i}}(p_{4})
+C3Ru¯ei(p2)PRuej(p1)uei(p3)PRνei(p4)(p2p3)],\displaystyle\qquad\quad+C_{3}^{R}\bar{u}_{e_{i}}(p_{2})P_{R}u_{e_{j}}(p_{1})u_{e_{i}}(p_{3})P_{R}\nu_{e_{i}}(p_{4})-(p_{2}\leftrightarrow p_{3})], (61)

where i=1, 2i=1,\;2 for j=3j=3, i=1i=1 for j=2j=2, ueiu_{e_{i}} denotes the spinor of lepton, νei\nu_{e_{i}} denotes the spinor of antilepton, PL=(1γ5)/2P_{L}=(1-\gamma_{5})/2, PR=(1+γ5)/2P_{R}=(1+\gamma_{5})/2, and pkp_{k} denotes the momentum of charged lepton with k=1,2,3,4k=1,2,3,4. The coefficients C1,2,3L,RC_{1,2,3}^{L,R} from the contributions of Higgs bosons and Z,ZZ,\;Z^{\prime} gauge bosons, can be obtained through the Yukawa couplings in Eq. (29) and the definition of covariant derivative in Eq. (43). Then we can calculate the decay rate Hisano:1995cp

Γ(ejeieie¯i)=mej51536π3[12(|C1L|2+|C1R|2)+|C2L|2+|C2R|2+18(|C3L|2+|C3R|2)].\displaystyle\Gamma(e_{j}\rightarrow e_{i}e_{i}\bar{e}_{i})=\frac{m_{e_{j}}^{5}}{1536\pi^{3}}\Big{[}\frac{1}{2}(|C_{1}^{L}|^{2}+|C_{1}^{R}|^{2})+|C_{2}^{L}|^{2}+|C_{2}^{R}|^{2}+\frac{1}{8}(|C_{3}^{L}|^{2}+|C_{3}^{R}|^{2})\Big{]}. (62)

The total decay widthes of μ,τ\mu,\;\tau are taken as Γtotalμ=2.996×1019\Gamma^{\mu}_{{\rm total}}=2.996\times 10^{-19}\;GeV, Γtotalτ=2.265×1012\Gamma^{\tau}_{{\rm total}}=2.265\times 10^{-12}\;GeV ParticleDataGroup:2022pth .

Scanning the free parameter space in Eq. (57), Eq. (59) and

gF=(0, 0.8),gF=(0.8, 0.8),\displaystyle g_{F}=(0,\;0.8),\;g_{F}=(-0.8,\;0.8), (63)

we plot the results of Br(τ3e){\rm Br}(\tau\to 3e) versus |me,13||m_{e,13}|, Br(τ3μ){\rm Br}(\tau\to 3\mu) versus θe,23\theta_{e,23}, Br(μ3e){\rm Br}(\mu\to 3e) versus θe,12\theta_{e,12} in Fig. 7 (a), (b), (c) respectively by keeping MH2M_{H_{2}} in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV} and Br(τ3e)<107{\rm Br}(\tau\to 3e)<10^{-7}, Br(τ3μ)<107{\rm Br}(\tau\to 3\mu)<10^{-7}, Br(μ3e)<2×1012{\rm Br}(\mu\to 3e)<2\times 10^{-12}, then the allowed ranges of vχv1v_{\chi}-v_{1}, gFgYFg_{F}-g_{YF}, MZgFM_{Z^{\prime}}-g_{F} are plotted in Fig. 7 (d), (e), (f) respectively. The gray points in Fig. 7 are excluded by the present limits, and the green points denote the results which can reach future experimental sensitivities, where the present limits and future sensitivities for the branching ratios of these LFV processes are listed in Tab. 4.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Scanning the parameter space Eq. (57), Eq. (59), Eq. (63) and keeping MH2M_{H_{2}} in the range 124GeV<MH2<126GeV124\;{\rm GeV}<M_{H_{2}}<126\;{\rm GeV} and Br(τ3e)<107{\rm Br}(\tau\to 3e)<10^{-7}, Br(τ3μ)<107{\rm Br}(\tau\to 3\mu)<10^{-7}, Br(μ3e)<2×1012{\rm Br}(\mu\to 3e)<2\times 10^{-12}, the results of Br(τ3e){\rm Br}(\tau\to 3e) versus |me,13||m_{e,13}| (a), Br(τ3μ){\rm Br}(\tau\to 3\mu) versus θe,23\theta_{e,23} (b), Br(μ3e){\rm Br}(\mu\to 3e) versus θe,12\theta_{e,12} (c) and the allowed ranges of vχv1v_{\chi}-v_{1} (d), gFgYFg_{F}-g_{YF} (e), MZgFM_{Z^{\prime}}-g_{F} (f) are plotted, where the gray points are excluded by the present limits, the green points denote the results which can reach future experimental sensitivities.
Branching ratios Present limit Future sensitivity
Br(τ3e){\rm Br}(\tau\to 3e) <2.7×108<2.7\times 10^{-8} 1010\sim 10^{-10}
Br(τ3μ){\rm Br}(\tau\to 3\mu) <2.1×108<2.1\times 10^{-8} 1010\sim 10^{-10}
Br(μ3e){\rm Br}(\mu\to 3e) <1012<10^{-12} 1016\sim 10^{-16}
Table 4: Present limits and future sensitivities for the branching ratios for the LFV processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu and μ3e\mu\to 3e ParticleDataGroup:2022pth ; Blondel:2013ia ; Hayasaka:2013dsa .

Fig. 7 (a), (b), (c) show that the experimental upper bounds on Br(τ3μ){\rm Br}(\tau\to 3\mu), Br(μ3e){\rm Br}(\mu\to 3e) limit the parameter space strictly while the predicted Br(τ3e){\rm Br}(\tau\to 3e) is less than about 101210^{-12} which is hard to be observed in near future. In addition, the model predicts Br(τ3μ)2×1010{\rm Br}(\tau\to 3\mu)\gtrsim 2\times 10^{-10}, Br(μ3e)5×1014{\rm Br}(\mu\to 3e)\gtrsim 5\times 10^{-14}, which indicates observing the LFV processes τ3μ\tau\to 3\mu and μ3e\mu\to 3e is also effective to test the FDM. It is obvious in Fig. 7 (d) that the experimental upper bounds on the branching ratios of these LFV processes limit v123GeVv_{1}\gtrsim 23\;{\rm GeV}, vχ20TeVv_{\chi}\gtrsim 20\;{\rm TeV}. Fig. 7 (e) indicates experimental constraints prefer 0.2gYF0.2-0.2\lesssim g_{YF}\lesssim 0.2 and gYF0.2g_{YF}\lesssim-0.2 is excluded completely. From Fig. 7 (f), it can be seen explicitly that the allowed range of MZM_{Z^{\prime}} is related closely with the chosen value of gFg_{F} and MZ5TeVM_{Z^{\prime}}\gtrsim 5\;{\rm TeV}.

V Summary

Motivated by the hierarchical structure of fermionic masses puzzle and fermionic flavor mixings puzzle, we propose a flavor-dependent model (FDM) to relate these two puzzles, i.e. the proposed FDM can explain the flavor mixings puzzle and mass hierarchy puzzle simultaneously. The model extends the SM by an extra U(1)FU(1)_{F} local gauge group, two scalar doublets, one scalar singlet and two right-handed neutrinos, where the new U(1)FU(1)_{F} charges are related to the particles’ flavor. In the FDM, only the third generation of quarks and charged leptons achieve the masses at the tree level, the first two generations achieve masses through the mixings with the third generation, and the neutrinos obtain tiny Majorana masses through the so-called Type I see-saw mechanism. In addition, the BB meson rare decay processes B¯Xsγ\bar{B}\to X_{s}\gamma, Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-}, the top quark rare decay processes tcht\to ch, tuht\to uh and the τ\tau LFV processes τ3e\tau\to 3e, τ3μ\tau\to 3\mu, μ3e\mu\to 3e predicted in the FDM are analyzed. It is found that observing the top quark rare decay processes tcht\to ch, tuht\to uh and the τ\tau LFV decays τ3μ\tau\to 3\mu, μ3e\mu\to 3e is effective to test the FDM, while τ\tau LFV decay τ3e\tau\to 3e is hard to be observed experimentally. In addition, the model can fit the observed quark masses, CKM matrix, Br(B¯Xsγ){\rm Br}(\bar{B}\to X_{s}\gamma), Br(Bs0μ+μ){\rm Br}(B_{s}^{0}\to\mu^{+}\mu^{-}) well, and the VEVs of the two extra scalar doublets are limited to be larger than about 23GeV23\;{\rm GeV}, new ZZ^{\prime} gauge boson is heavier than about 5TeV5\;{\rm TeV} and gauge kinetic mixing constant gYFg_{YF} is lager than 0.2-0.2 by considering the experimental upper bounds on the branching ratios of LFV decays τ3μ\tau\to 3\mu, μ3e\mu\to 3e.

Appendix A Contributions to B¯Xsγ\bar{B}\to X_{s}\gamma and Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} in the FDM.

Generally, the effective Hamilton for the transition bsb\rightarrow s at hadronic scale can be written as

Heff=4GF2VtsVtb[C1𝒪1c+C2𝒪2c+i=36𝒪i+i=710(Ci𝒪i+Ci𝒪i)\displaystyle H_{eff}=-\frac{4G_{F}}{\sqrt{2}}V_{ts}^{\ast}V_{tb}\Big{[}C_{1}\mathcal{O}^{c}_{1}+C_{2}\mathcal{O}_{2}^{c}+\sum_{i=3}^{6}\mathcal{O}_{i}+\sum_{i=7}^{10}(C_{i}\mathcal{O}_{i}+C^{\prime}_{i}\mathcal{O}^{\prime}_{i})
+i=S,P(Ci𝒪i+Ci𝒪i)],\displaystyle\qquad\;\quad\;+\sum_{i=S,P}(C_{i}\mathcal{O}_{i}+C^{\prime}_{i}\mathcal{O}^{\prime}_{i})\Big{]}, (64)

where O1 ; O2 ; Altmannshofer:2008dz ; O3 ; O4 ; O6

𝒪1u=(s¯LγμTauL)(u¯LγμTabL),𝒪2u=(s¯LγμuL)(u¯LγμbL),\displaystyle{\cal O}_{{}_{1}}^{u}=(\bar{s}_{{}_{L}}\gamma_{\mu}T^{a}u_{{}_{L}})(\bar{u}_{{}_{L}}\gamma^{\mu}T^{a}b_{{}_{L}})\;,\;\;{\cal O}_{{}_{2}}^{u}=(\bar{s}_{{}_{L}}\gamma_{\mu}u_{{}_{L}})(\bar{u}_{{}_{L}}\gamma^{\mu}b_{{}_{L}})\;,
𝒪3=(s¯LγμbL)q(q¯γμq),𝒪4=(s¯LγμTabL)q(q¯γμTaq),\displaystyle{\cal O}_{{}_{3}}=(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}q)\;,\;\;{\cal O}_{{}_{4}}=(\bar{s}_{{}_{L}}\gamma_{\mu}T^{a}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}T^{a}q)\;,
𝒪5=(s¯LγμγνγρbL)q(q¯γμγνγρq),𝒪6=(s¯LγμγνγρTabL)q(q¯γμγνγρTaq),\displaystyle{\cal O}_{{}_{5}}=(\bar{s}_{{}_{L}}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}q)\;,\;\;{\cal O}_{{}_{6}}=(\bar{s}_{{}_{L}}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}T^{a}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}T^{a}q)\;,
𝒪7=e16π2mb(s¯LσμνbR)Fμν,𝒪7=e16π2mb(s¯RσμνbL)Fμν,\displaystyle{\cal O}_{{}_{7}}={e\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}\sigma_{{}_{\mu\nu}}b_{{}_{R}})F^{\mu\nu}\;,\;\;{\cal O}_{{}_{7}}^{\prime}={e\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}\sigma_{{}_{\mu\nu}}b_{{}_{L}})F^{\mu\nu}\;,\;\;
𝒪8=gs16π2mb(s¯LσμνTabR)Ga,μν,𝒪8=gs16π2mb(s¯RσμνTabL)Ga,μν,\displaystyle{\cal O}_{{}_{8}}={g_{{}_{s}}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}\sigma_{{}_{\mu\nu}}T^{a}b_{{}_{R}})G^{a,\mu\nu}\;,\;\;{\cal O}_{{}_{8}}^{\prime}={g_{{}_{s}}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}\sigma_{{}_{\mu\nu}}T^{a}b_{{}_{L}})G^{a,\mu\nu}\;,\;\;
𝒪9=e2gs2(s¯LγμbL)l¯γμl,𝒪9=e2gs2(s¯RγμbR)l¯γμl,\displaystyle{\cal O}_{{}_{9}}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\bar{l}\gamma^{\mu}l\;,\;\;{\cal O}_{{}_{9}}^{\prime}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{R}}\gamma_{\mu}b_{{}_{R}})\bar{l}\gamma^{\mu}l\;,\;\;
𝒪10=e2gs2(s¯LγμbL)l¯γμγ5l,𝒪10=e2gs2(s¯RγμbR)l¯γμγ5l,\displaystyle{\cal O}_{{}_{10}}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\bar{l}\gamma^{\mu}\gamma_{5}l\;,\;\;{\cal O}_{{}_{10}}^{\prime}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{R}}\gamma_{\mu}b_{{}_{R}})\bar{l}\gamma^{\mu}\gamma_{5}l\;,\;\;
𝒪S=e216π2mb(s¯LbR)l¯l,𝒪S=e216π2mb(s¯RbL)l¯l,\displaystyle{\cal O}_{{}_{S}}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}b_{{}_{R}})\bar{l}l\;,\;\;{\cal O}_{{}_{S}}^{\prime}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}b_{{}_{L}})\bar{l}l\;,\;\;
𝒪P=e216π2mb(s¯LbR)l¯γ5l,𝒪P=e216π2mb(s¯RbL)l¯γ5l.\displaystyle{\cal O}_{{}_{P}}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}b_{{}_{R}})\bar{l}\gamma_{5}l\;,\;\;{\cal O}_{{}_{P}}^{\prime}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}b_{{}_{L}})\bar{l}\gamma_{5}l. (65)

In the definitions above, gsg_{s} is the strong coupling constant, Ta(a=1,,8)T^{a}\,(a=1,...,8) are SU(3)SU(3) generators, FμνF^{\mu\nu} and GμνG^{\mu\nu} are the electromagnetic and gluon field strength tensors respectively.

Refer to caption
Figure 8: The one loop Feynman diagrams contributing to B¯Xsγ\bar{B}\rightarrow X_{s}\gamma from charged Higgs in the FDM.

The dominant contributions to bsγb\rightarrow s\gamma come from the charged Higgs in the FDM, and the leading-order Feynman diagrams are plotted in Fig. 8. Then the branching ratio of B¯Xsγ\bar{B}\rightarrow X_{s}\gamma can be written as

Br(B¯Xsγ)=R(|C7γ(μb)|2+N(Eγ)),\displaystyle Br(\bar{B}\rightarrow X_{s}\gamma)=R\Big{(}|C_{7\gamma}(\mu_{b})|^{2}+N(E_{\gamma})\Big{)}\;, (66)

where the overall factor R=2.47×103R=2.47\times 10^{-3}, and the nonperturbative contribution N(Eγ)=(3.6±0.6)×103N(E_{\gamma})=(3.6\pm 0.6)\times 10^{-3}H5 . C7γ(μb)C_{7\gamma}(\mu_{b}) can be written as

C7γ(μb)=C7γ,SM(μb)+C7,NP(μb),\displaystyle C_{7\gamma}(\mu_{b})=C_{7\gamma,SM}(\mu_{b})+C_{7,NP}(\mu_{b}), (67)

where the hadron scale μb=2.5\mu_{b}=2.5 GeV and C7γ,SM(μb)=0.3689C_{7\gamma,SM}(\mu_{b})=-0.3689 for the SM contribution at NNLO level H5 ; H6 ; H7 ; H8 . In new physics models, the corresponding Wilson coefficients at the bottom quark scale are H9 ; H10

C7,NP(μb)0.5696C7,NP(μEW)+0.1107C8,NP(μEW),\displaystyle C_{7,NP}(\mu_{b})\approx 0.5696C_{7,NP}(\mu_{EW})+0.1107C_{8,NP}(\mu_{EW}), (68)

where

C7,NPNP(μEW)=C7,NP(1)(μEW)+C7,NP(2)(μEW)+C7,NP(1)(μEW)+C7,NP(2)(μEW),\displaystyle C_{7,NP}^{NP}(\mu_{EW})=C_{7,NP}^{(1)}(\mu_{EW})+C_{7,NP}^{(2)}(\mu_{EW})+C_{7,NP}^{\prime(1)}(\mu_{EW})+C_{7,NP}^{\prime(2)}(\mu_{EW}),
C8,NP(μEW)=C8g,NP(μEW)+C8g,NP(μEW),\displaystyle C_{8,NP}(\mu_{EW})=C_{8g,NP}(\mu_{EW})+C_{8g,NP}^{\prime}(\mu_{EW}), (69)

The coefficients C7,NP(1,2)(μEW)C_{7,NP}^{(1,2)}(\mu_{EW}) are Wilson coefficients of the process bsγb\rightarrow s\gamma and can be calculated from the diagrams in Fig. 8 (1), (2) respectively, the results read

C7,NP(1)(μEW)=Hi,ujsW22e2VtsVtb{12CHis¯ujRCHibu¯jL[I3(xuj,xHi)+I4(xuj,xHi)]+\displaystyle C_{7,NP}^{(1)}(\mu_{EW})=\sum_{H^{-}_{i},u_{j}}\frac{s_{W}^{2}}{2e^{2}V^{*}_{ts}V_{tb}}\Big{\{}\frac{1}{2}C_{H^{-}_{i}\bar{s}u_{j}}^{R}C_{H^{-}_{i}b\bar{u}_{j}}^{L}[-I_{3}(x_{u_{j}},x_{H^{-}_{i}})+I_{4}(x_{u_{j}},x_{H^{-}_{i}})]+
mujmbCHis¯ujLCHibu¯jL[I1(xuj,xHi)+I3(xuj,xHi)]},\displaystyle\qquad\qquad\qquad\quad\frac{m_{u_{j}}}{m_{b}}C_{H^{-}_{i}\bar{s}u_{j}}^{L}C_{H^{-}_{i}b\bar{u}_{j}}^{L}[-I_{1}(x_{u_{j}},x_{H^{-}_{i}})+I_{3}(x_{u_{j}},x_{H^{-}_{i}})]\Big{\}},
C7,NP(2)(μEW)=Hj,uisW23e2VtsVtb{12CHjs¯uiRCHjbu¯iL[I1(xui,xHj)+2I3(xui,xHj)\displaystyle C_{7,NP}^{(2)}(\mu_{EW})=\sum_{H^{-}_{j},u_{i}}\frac{s_{W}^{2}}{3e^{2}V^{*}_{ts}V_{tb}}\Big{\{}\frac{1}{2}C_{H^{-}_{j}\bar{s}u_{i}}^{R}C_{H^{-}_{j}b\bar{u}_{i}}^{L}[-I_{1}(x_{u_{i}},x_{H^{-}_{j}})+2I_{3}(x_{u_{i}},x_{H^{-}_{j}})
I4(xui,xHj)]+muimbCHjs¯uiLCHjbu¯iL[I1(xui,xHj)I2(xui,xHj)\displaystyle\qquad\qquad\qquad\quad-I_{4}(x_{u_{i}},x_{H^{-}_{j}})]+\frac{m_{u_{i}}}{m_{b}}C_{H^{-}_{j}\bar{s}u_{i}}^{L}C_{H^{-}_{j}b\bar{u}_{i}}^{L}[I_{1}(x_{u_{i}},x_{H^{-}_{j}})-I_{2}(x_{u_{i}},x_{H^{-}_{j}})
I3(xui,xHj)]},\displaystyle\qquad\qquad\qquad\quad-I_{3}(x_{u_{i}},x_{H^{-}_{j}})]\Big{\}},
C7NP(a)(μEW)=C7NP(a)(μEW)(LR),(a=1,2),\displaystyle C_{7}^{\prime NP(a)}(\mu_{EW})=C_{7}^{\prime NP(a)}(\mu_{EW})(L\leftrightarrow R),(a=1,2), (70)

where xi=mi2mW2x_{i}=\frac{m_{i}^{2}}{m_{W}^{2}}, CabcL,RC_{abc}^{L,R} denotes the scalar parts of the interaction vertex about abcabc with a,b,ca,b,c denoting the interactional particles, and the loop integral functions I1,,4I_{1,...,4} can be found in our previous work Yang:2018fvw . In addition, C8g,NP(μEW)C_{8g,NP}(\mu_{EW}) and C8g,NP(μEW)C_{8g,NP}^{\prime}(\mu_{EW}) at electroweak scale are

C8g,NP(μEW)=[C7,NP(2)(μEW)+C7,NP(3)(μEW)]/Qu,\displaystyle C_{8g,NP}(\mu_{EW})=[C_{7,NP}^{(2)}(\mu_{EW})+C_{7,NP}^{(3)}(\mu_{EW})]/Q_{u},
C8g,NP(μEW)=C8g,NP(μEW)(LR),\displaystyle C_{8g,NP}^{\prime}(\mu_{EW})=C_{8g,NP}(\mu_{EW})(L\leftrightarrow R), (71)

where Qu=2/3Q_{u}=2/3.

The main Feynman diagrams contributing to Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} are plotted in Fig. 9.

Refer to caption
Figure 9: The Feynman diagrams contributing to the decay Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in the B-LSSM

At the electroweak energy scale μEW\mu_{EW}, the corresponding Wilson coefficients can be written as

CS,NP(μEW)=2sWcW4mbe3VtsVtb[CS,NP(1)(μEW)+CS,NP(2)(μEW)+CS,NP(3)(μEW)+CS,NP(4)(μEW)\displaystyle C_{{}_{S,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}}{4m_{b}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{S,NP}}^{(1)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(2)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(3)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})
+CS,NP(6)(μEW)],\displaystyle\qquad\;\qquad\;\qquad+C_{{}_{S,NP}}^{(6)}(\mu_{{}_{\rm EW}})\Big{]},
CS,NP(μEW)=CS,NP(μEW)(LR),\displaystyle C_{{}_{S,NP}}^{\prime}(\mu_{{}_{\rm EW}})=C_{{}_{S,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
CP,NP(μEW)=2sWcW4mbe3VtsVtb[CP,NP(1)(μEW)+CP,NP(2)(μEW)+CP,NP(3)(μEW)+CP,NP(4)(μEW)\displaystyle C_{{}_{P,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}}{4m_{b}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{P,NP}}^{(1)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(2)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(3)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(4)}(\mu_{{}_{\rm EW}})
+CP,NP(6)(μEW)],\displaystyle\qquad\;\qquad\;\qquad+C_{{}_{P,NP}}^{(6)}(\mu_{{}_{\rm EW}})\Big{]},
CP,NP(μEW)=CP,NP(μEW)(LR),\displaystyle C_{{}_{P,NP}}^{\prime}(\mu_{{}_{\rm EW}})=-C_{{}_{P,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
C9,NP(μEW)=2sWcWgs264π2e3VtsVtb[C9,NP(5)(μEW)+C9,NP(6)(μEW)+C9,NP(7)(μEW)+C9,NP(8)(μEW)],\displaystyle C_{{}_{9,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}g_{{}_{s}}^{2}}{64\pi^{2}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{9,NP}}^{(5)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(7)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(8)}(\mu_{{}_{\rm EW}})\Big{]}\;,
C9,NP(μEW)=C9,NP(μEW)(LR),\displaystyle C_{{}_{9,NP}}^{\prime}(\mu_{{}_{\rm EW}})=C_{{}_{9,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
C10,NP(μEW)=2sWcWgs264π2e3VtsVtb[C10,NP(5)(μEW)+C10,NP(6)(μEW)+C10,NP(7)(μEW)+C10,NP(8)(μEW)],\displaystyle C_{{}_{10,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}g_{{}_{s}}^{2}}{64\pi^{2}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{10,NP}}^{(5)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(7)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(8)}(\mu_{{}_{\rm EW}})\Big{]}\;,
C10,NP(μEW)=C10,NP(μEW)(LR).\displaystyle C_{{}_{10,NP}}^{\prime}(\mu_{{}_{\rm EW}})=-C_{{}_{10,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R). (72)

The superscripts (1,,8)(1,...,8) corresponding to the contributions in Fig. 9 (1,…,8) respectively and the results can be written as

CS,NP(1)(μEW)=Hi,uj,ukS=Hl,AlCμ¯SμL+Cμ¯SμR2(mb2mS2)[CHis¯ujRCu¯jSukLCu¯kbHiRG2(xH~i±,xuj,xuk)\displaystyle C_{{}_{S,NP}}^{(1)}(\mu_{{}_{\rm EW}})=\sum_{H^{-}_{i},u_{j},u_{k}}^{S=H_{l},A_{l}}\frac{C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}}{2(m_{b}^{2}-m_{S}^{2})}\Big{[}C_{H^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Su_{k}}^{L}C_{\bar{u}_{k}bH^{-}_{i}}^{R}G_{2}(x_{\tilde{H}^{\pm}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCHis¯ujRCu¯jSukRCu¯kbHiRG1(xH~i±,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{H^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Su_{k}}^{R}C_{\bar{u}_{k}bH^{-}_{i}}^{R}G_{1}(x_{\tilde{H}^{\pm}_{i}},x_{u_{j}},x_{u_{k}})\Big{]},
CP,NP(1)(μEW)=Hi,uj,ukS=Hl,AlCμ¯SμL+Cμ¯SμR2(mb2mS2)[CHis¯ujRCu¯jSukLCu¯kbHiRG2(xH~i±,xuj,xuk)\displaystyle C_{{}_{P,NP}}^{(1)}(\mu_{{}_{\rm EW}})=\sum_{H^{-}_{i},u_{j},u_{k}}^{S=H_{l},A_{l}}\frac{-C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}}{2(m_{b}^{2}-m_{S}^{2})}\Big{[}C_{H^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Su_{k}}^{L}C_{\bar{u}_{k}bH^{-}_{i}}^{R}G_{2}(x_{\tilde{H}^{\pm}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCHis¯ujRCu¯jSukRCu¯kbHiRG1(xH~i±,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{H^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Su_{k}}^{R}C_{\bar{u}_{k}bH^{-}_{i}}^{R}G_{1}(x_{\tilde{H}^{\pm}_{i}},x_{u_{j}},x_{u_{k}})\Big{]}, (73)
CS,NP(2)(μEW)=ui,Hj±,Hk±S=Hl,Al12(mb2mS2)muiCs¯uiHj±RCu¯ibHk±RCSHj±Hk±G1(xui,xHj±,xHk±)\displaystyle C_{{}_{S,NP}}^{(2)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{S=H_{l},A_{l}}\frac{1}{2(m_{b}^{2}-m_{S}^{2})}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{R}C_{SH^{\pm}_{j}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}})
×(Cμ¯SμL+Cμ¯SμR),\displaystyle\qquad\qquad\qquad\times(C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}),
Cp,NP(2)(μEW)=ui,Hj±,Hk±S=Hl,Al12(mb2mS2)muiCs¯uiHj±RCu¯ibHk±RCSHj±Hk±G1(xui,xHj±,xHk±)\displaystyle C_{{}_{p,NP}}^{(2)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{S=H_{l},A_{l}}\frac{1}{2(m_{b}^{2}-m_{S}^{2})}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{R}C_{SH^{\pm}_{j}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}})
×(Cμ¯SμL+Cμ¯SμR),\displaystyle\qquad\qquad\qquad\times(-C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}), (74)
CS,NP(3)(μEW)=ui,Hk±S=Hl,AlCW±SHk±2(mb2mS2)[Cs¯W±uiLCu¯iHk±bRG2(xui,1,xHk±)2mbmuiCs¯W±uiL\displaystyle C_{{}_{S,NP}}^{(3)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{k}}^{S=H_{l},A_{l}}\frac{-C_{W^{\pm}SH^{\pm}_{k}}}{2(m_{b}^{2}-m_{S}^{2})}\Big{[}C_{\bar{s}W^{\pm}u_{i}}^{L}C_{\bar{u}_{i}H^{\pm}_{k}b}^{R}G_{2}(x_{u_{i}},1,x_{H^{\pm}_{k}})-2m_{b}m_{u_{i}}C_{\bar{s}W^{\pm}u_{i}}^{L}
×Cu¯iHk±bLG1(xui,1,xHk±)](Cμ¯SμL+Cμ¯SμR),\displaystyle\qquad\qquad\qquad\times C_{\bar{u}_{i}H^{\pm}_{k}b}^{L}G_{1}(x_{u_{i}},1,x_{H^{\pm}_{k}})\Big{]}(C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}),
CP,NP(3)(μEW)=ui,Hk±S=Hl,AlCW±SHk±2(mb2mS2)[Cs¯W±uiLCu¯iHk±bRG2(xui,1,xHk±)2mbmuiCs¯W±uiL\displaystyle C_{{}_{P,NP}}^{(3)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{k}}^{S=H_{l},A_{l}}\frac{-C_{W^{\pm}SH^{\pm}_{k}}}{2(m_{b}^{2}-m_{S}^{2})}\Big{[}C_{\bar{s}W^{\pm}u_{i}}^{L}C_{\bar{u}_{i}H^{\pm}_{k}b}^{R}G_{2}(x_{u_{i}},1,x_{H^{\pm}_{k}})-2m_{b}m_{u_{i}}C_{\bar{s}W^{\pm}u_{i}}^{L}
×Cu¯iHk±bLG1(xui,1,xHk±)](Cμ¯SμL+Cμ¯SμR),\displaystyle\qquad\qquad\qquad\times C_{\bar{u}_{i}H^{\pm}_{k}b}^{L}G_{1}(x_{u_{i}},1,x_{H^{\pm}_{k}})\Big{]}(-C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}), (75)
CS,NP(4)(μEW)=ui,Hj±S=Hl,AlCW±SHj±2(mb2mS2)Cs¯Hj±uiRCu¯iW±bRG2(xui,xHj±,1)(Cμ¯SμL+Cμ¯SμR),\displaystyle C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j}}^{S=H_{l},A_{l}}\frac{-C_{W^{\pm}SH^{\pm}_{j}}}{2(m_{b}^{2}-m_{S}^{2})}C_{\bar{s}H^{\pm}_{j}u_{i}}^{R}C_{\bar{u}_{i}W^{\pm}b}^{R}G_{2}(x_{u_{i}},x_{H^{\pm}_{j}},1)(C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}),
CS,NP(4)(μEW)=ui,Hj±S=Hl,AlCW±SHj±2(mb2mS2)Cs¯Hj±uiRCu¯iW±bRG2(xui,xHj±,1)(Cμ¯SμL+Cμ¯SμR),\displaystyle C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j}}^{S=H_{l},A_{l}}\frac{-C_{W^{\pm}SH^{\pm}_{j}}}{2(m_{b}^{2}-m_{S}^{2})}C_{\bar{s}H^{\pm}_{j}u_{i}}^{R}C_{\bar{u}_{i}W^{\pm}b}^{R}G_{2}(x_{u_{i}},x_{H^{\pm}_{j}},1)(-C_{\bar{\mu}S\mu}^{L}+C_{\bar{\mu}S\mu}^{R}),
C9,NP(5)(μEW)=H~i±,uj,ukVCμ¯VμL+Cμ¯VμR2(mb2mV2)[12CHi±s¯ujRCu¯jVukRCuksHi±LG2(xHi±,xuj,xuk)\displaystyle C_{{}_{9,NP}}^{(5)}(\mu_{{}_{\rm EW}})=\sum_{\tilde{H}^{\pm}_{i},u_{j},u_{k}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{H^{\pm}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{R}C_{u_{k}sH^{\pm}_{i}}^{L}G_{2}(x_{H^{\pm}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCHi±s¯ujRCu¯jVukLCu¯ksHi±LG1(xHi±,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{H^{\pm}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{L}C_{\bar{u}_{k}sH^{\pm}_{i}}^{L}G_{1}(x_{H^{\pm}_{i}},x_{u_{j}},x_{u_{k}})\Big{]},
C10,NP(5)(μEW)=H~i±,uj,ukVCμ¯VμL+Cμ¯VμR2(mb2mV2)[12CHi±s¯ujRCu¯jVukRCuksHi±LG2(xHi±,xuj,xuk)\displaystyle C_{{}_{10,NP}}^{(5)}(\mu_{{}_{\rm EW}})=\sum_{\tilde{H}^{\pm}_{i},u_{j},u_{k}}^{V}\frac{-C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{H^{\pm}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{R}C_{u_{k}sH^{\pm}_{i}}^{L}G_{2}(x_{H^{\pm}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCHi±s¯ujRCu¯jVukLCu¯ksHi±LG1(xHi±,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{H^{\pm}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{L}C_{\bar{u}_{k}sH^{\pm}_{i}}^{L}G_{1}(x_{H^{\pm}_{i}},x_{u_{j}},x_{u_{k}})\Big{]}, (77)
C9,NP(6)(μEW)=ui,Hj±,Hk±VCμ¯VμL+Cμ¯VμR4(mb2mV2)Cs¯uiHj±RCu¯ibHk±LCVHj±Hk±G2(xui,xHj±,xHk±),\displaystyle C_{{}_{9,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{L}C_{VH^{\pm}_{j}H^{\pm}_{k}}G_{2}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}}),
C10,NP(6)(μEW)=ui,Hj±,Hk±VCμ¯VμL+Cμ¯VμR4(mb2mV2)Cs¯uiHj±RCu¯ibHk±LCVHj±Hk±G2(xui,xHj±,xHk±),\displaystyle C_{{}_{10,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{V}\frac{-C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{L}C_{VH^{\pm}_{j}H^{\pm}_{k}}G_{2}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}}),
CS,NP(6)(μEW)=ui,Hj±,Hk±VCμ¯VμL+Cμ¯VμR2(mb2mV2)mbmuiCs¯uiHj±RCu¯ibHk±RCVHj±Hk±G1(xui,xHj±,xHk±),\displaystyle C_{{}_{S,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{R}C_{VH^{\pm}_{j}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}}),
CP,NP(6)(μEW)=ui,Hj±,Hk±VCμ¯VμLCμ¯VμR2(mb2mV2)mbmuiCs¯uiHj±RCu¯ibHk±RCVHj±Hk±G1(xui,xHj±,xHk±),\displaystyle C_{{}_{P,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j},H^{\pm}_{k}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}-C_{\bar{\mu}V\mu}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bH^{\pm}_{k}}^{R}C_{VH^{\pm}_{j}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{H^{\pm}_{k}}),
C9,NP(7)(μEW)=ui,Hk±VCμ¯VμL+Cμ¯VμR2(mb2mV2)muiCs¯uiW±LCu¯ibHk±LCVW±Hk±G1(xui,xW,xHk±),\displaystyle C_{{}_{9,NP}}^{(7)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{k}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}W^{\pm}}^{L}C_{\bar{u}_{i}bH^{\pm}_{k}}^{L}C_{VW^{\pm}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{W},x_{H^{\pm}_{k}}),
C10,NP(7)(μEW)=ui,Hk±VCμ¯VμL+Cμ¯VμR2(mb2mV2)muiCs¯uiW±LCu¯ibHk±LCVW±Hk±G1(xui,xW,xHk±),\displaystyle C_{{}_{10,NP}}^{(7)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{k}}^{V}\frac{-C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}W^{\pm}}^{L}C_{\bar{u}_{i}bH^{\pm}_{k}}^{L}C_{VW^{\pm}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{W},x_{H^{\pm}_{k}}),
C9,NP(8)(μEW)=ui,Hj±VCμ¯VμL+Cμ¯VμR2(mb2mV2)muiCs¯uiHj±RCu¯ibW±LCVW±Hk±G1(xui,xHj±,xW),\displaystyle C_{{}_{9,NP}}^{(8)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j}}^{V}\frac{C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bW^{\pm}}^{L}C_{VW^{\pm}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{W}),
C10,NP(8)(μEW)=ui,Hj±VCμ¯VμL+Cμ¯VμR2(mb2mV2)muiCs¯uiHj±RCu¯ibW±LCVW±Hk±G1(xui,xHj±,xW),\displaystyle C_{{}_{10,NP}}^{(8)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},H^{\pm}_{j}}^{V}\frac{-C_{\bar{\mu}V\mu}^{L}+C_{\bar{\mu}V\mu}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}H^{\pm}_{j}}^{R}C_{\bar{u}_{i}bW^{\pm}}^{L}C_{VW^{\pm}H^{\pm}_{k}}G_{1}(x_{u_{i}},x_{H^{\pm}_{j}},x_{W}),

where VV denotes the vector bosons γ\gamma, ZZ, ZZ^{\prime}, and CaVbC_{aVb} denote the scalar parts of the corresponding interaction vertex aVbaVb. The concrete expressions for loop integral Gk(k=1,,4)G_{k}(k=1,...,4) can be found in the Appendix B of our previous work Yang:2018fvw . The Wilson coefficients at hadronic energy scale from the SM to next-to-next-to-logarithmic accuracy are shown in Table I.

C7eff,SMC_{{}_{7}}^{eff,SM} C8eff,SMC_{{}_{8}}^{eff,SM} C9eff,SMC_{{}_{9}}^{eff,SM} C10eff,SMC_{{}_{10}}^{eff,SM}
0.304-0.304 0.167-0.167 4.2114.211 4.103-4.103
Table 5: At hadronic scale μ=mb\mu=m_{{}_{b}}, SM Wilson coefficients to next-to-next-to-logarithmic accuracy.

In addition, the Wilson coefficients in Eq. (72) should be evolved down to hadronic scale μmb\mu\sim m_{b} by the renormalization group equations:

CNP(μ)=U^(μ,μ0)CNP(μ0),\displaystyle\overrightarrow{C}_{{}_{NP}}(\mu)=\widehat{U}(\mu,\mu_{0})\overrightarrow{C}_{{}_{NP}}(\mu_{0})\;,
CNP(μ)=U^(μ,μ0)CNP(μ0)\displaystyle\overrightarrow{C^{\prime}}_{{}_{NP}}(\mu)=\widehat{U^{\prime}}(\mu,\mu_{0})\overrightarrow{C^{\prime}}_{{}_{NP}}(\mu_{0}) (81)

with

CNPT=(C1,NP,,C6,NP,C7,NPeff,C8,NPeff,C9,NPeffY(q2),C10,NPeff),\displaystyle\overrightarrow{C}_{{}_{NP}}^{T}=\Big{(}C_{{}_{1,NP}},\;\cdots,\;C_{{}_{6,NP}},C_{{}_{7,NP}}^{eff},\;C_{{}_{8,NP}}^{eff},\;C_{{}_{9,NP}}^{eff}-Y(q^{2}),\;C_{{}_{10,NP}}^{eff}\Big{)}\;,
CNP,T=(C7,NP,eff,C8,NP,eff,C9,NP,eff,C10,NP,eff).\displaystyle\overrightarrow{C}_{{}_{NP}}^{\prime,\;T}=\Big{(}C_{{}_{7,NP}}^{\prime,\;eff},\;C_{{}_{8,NP}}^{\prime,\;eff},\;C_{{}_{9,NP}}^{\prime,\;eff},\;C_{{}_{10,NP}}^{\prime,\;eff}\Big{)}\;. (82)

Correspondingly, the evolving matrices U^(μ,μ0),U^(μ,μ0)\widehat{U}(\mu,\mu_{0}),\;\widehat{U^{\prime}}(\mu,\mu_{0}) can be found in our previous work Yang:2018fvw .

Then, the squared amplitude can be written as

|s|2=16GF2|VtbVts|2MBs02[|FSs|2+|FPs+2mμFAs|2],\displaystyle|\mathcal{M}_{s}|^{2}=16G_{F}^{2}|V_{tb}V_{ts}^{*}|^{2}M_{B_{s}^{0}}^{2}\Big{[}|F_{S}^{s}|^{2}+|F_{P}^{s}+2m_{\mu}F_{A}^{s}|^{2}\Big{]}, (83)

and

FSs=αEW(μb)8πmbMBs02mb+msfBs0(CSCS),\displaystyle F_{S}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}\frac{m_{b}M_{B_{s}^{0}}^{2}}{m_{b}+m_{s}}f_{B_{s}^{0}}(C_{S}-C_{S}^{\prime}), (84)
FPs=αEW(μb)8πmbMBs02mb+msfBs0(CPCP),\displaystyle F_{P}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}\frac{m_{b}M_{B_{s}^{0}}^{2}}{m_{b}+m_{s}}f_{B_{s}^{0}}(C_{P}-C_{P}^{\prime}), (85)
FAs=αEW(μb)8πfBs0[C10eff(μb)C10eff(μb)],\displaystyle F_{A}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}f_{B_{s}^{0}}\Big{[}C_{10}^{eff}(\mu_{b})-C_{10}^{\prime eff}(\mu_{b})\Big{]}, (86)

where fBs0=(227±8)MeVf_{B_{s}^{0}}=(227\pm 8)\;{\rm MeV} denote the decay constants, MBs0=5.367GeVM_{B_{s}^{0}}=5.367\;{\rm GeV} denote the masses of neutral meson Bs0B_{s}^{0}. The branching ratio of Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} can be written as

Br(Bs0μ+μ)=τBs016π|s|2MBs014mμ2MBs02,\displaystyle Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-})=\frac{\tau_{B_{s}^{0}}}{16\pi}\frac{|\mathcal{M}_{s}|^{2}}{M_{B_{s}^{0}}}\sqrt{1-\frac{4m_{\mu}^{2}}{M_{B_{s}^{0}}^{2}}}, (87)

with τBs0=1.466(31)ps\tau_{B_{s}^{0}}=1.466(31)\;{\rm ps} denoting the life time of meson.

Acknowledgements.
The work has been supported by the National Natural Science Foundation of China (NNSFC) with Grants No. 12075074, No. 12235008, Hebei Natural Science Foundation with Grant No. A2022201017, No. A2023201041, Natural Science Foundation of Guangxi Autonomous Region with Grant No. 2022GXNSFDA035068, the youth top-notch talent support program of the Hebei Province.

References

  • (1) N. Cabibbo, Phys. Rev. Lett. 10, 531-533 (1963).
  • (2) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652-657 (1973).
  • (3) R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022).
  • (4) C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277-298 (1979).
  • (5) Y. Koide, Phys. Lett. B 120, 161-165 (1983).
  • (6) M. Leurer, Y. Nir and N. Seiberg, Nucl. Phys. B 398, 319-342 (1993).
  • (7) L. E. Ibanez and G. G. Ross, Phys. Lett. B 332, 100-110 (1994).
  • (8) K. S. Babu and S. M. Barr, Phys. Lett. B 381, 202-208 (1996).
  • (9) Z. G. Berezhiani and M. Y. Khlopov, Sov. J. Nucl. Phys. 51, 739-746 (1990)
  • (10) Z. G. Berezhiani and M. Y. Khlopov, Sov. J. Nucl. Phys. 51, 935-942 (1990)
  • (11) A. S. Sakharov and M. Y. Khlopov, Phys. Atom. Nucl. 57, 651-658 (1994)
  • (12) L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370-3373 (1999).
  • (13) D. E. Kaplan and T. M. P. Tait, JHEP 11, 051 (2001).
  • (14) M. C. Chen, D. R. T. Jones, A. Rajaraman and H. B. Yu, Phys. Rev. D 78, 015019 (2008).
  • (15) A. J. Buras, C. Grojean, S. Pokorski and R. Ziegler, JHEP 08, 028 (2011).
  • (16) S. F. King and C. Luhn, Rept. Prog. Phys. 76, 056201 (2013).
  • (17) S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018 (2014).
  • (18) S. F. King, J. Phys. G 42, 123001 (2015).
  • (19) S. F. King, Prog. Part. Nucl. Phys. 94, 217-256 (2017).
  • (20) S. Weinberg, Phys. Rev. D 101, no.3, 035020 (2020).
  • (21) F. Feruglio and A. Romanino, Rev. Mod. Phys. 93, no.1, 015007 (2021).
  • (22) G. Abbas, Int. J. Mod. Phys. A 36, no.18, 2150090 (2021).
  • (23) G. Mohanta and K. M. Patel, Phys. Rev. D 106, no.7, 075020 (2022).
  • (24) G. Mohanta and K. M. Patel, JHEP 10, 128 (2023).
  • (25) G. Abbas, V. Singh, N. Singh and R. Sain, Eur. Phys. J. C 83, no.4, 305 (2023).
  • (26) S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).
  • (27) L. Lavoura and H. Kuhbock, Eur. Phys. J. C 55, 303-308 (2008).
  • (28) I. P. Ivanov and E. Vdovin, Phys. Rev. D 86, 095030 (2012).
  • (29) R. González Felipe, H. Serôdio and J. P. Silva, Phys. Rev. D 87, 055010 (2013).
  • (30) R. Gonzalez Felipe, H. Serodio and J. P. Silva, Phys. Rev. D 88, 015015 (2013).
  • (31) V. Keus, S. F. King and S. Moretti, JHEP 01, 052 (2014).
  • (32) I. P. Ivanov and C. C. Nishi, JHEP 01, 021 (2015).
  • (33) N. Buskin and I. P. Ivanov, J. Phys. A 54, 325401 (2021).
  • (34) Y. Izawa, Y. Shimizu and H. Takei, PTEP 2023, 063B04 (2023).
  • (35) D. Van Loi and P. Van Dong, Eur. Phys. J. C 83, no.11, 1048 (2023).
  • (36) S. Weinberg, Phys. Rev. Lett. 43, 1566-1570 (1979).
  • (37) J. L. Yang, H. B. Zhang and T. F. Feng, Phys. Lett. B 853, 138677 (2024).
  • (38) B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D 16, 1519 (1977)
  • (39) J. L. Yang, T. F. Feng, S. M. Zhao, R. F. Zhu, X. Y. Yang and H. B. Zhang, Eur. Phys. J. C 78, 714 (2018).
  • (40) J. L. Yang, T. F. Feng, H. B. Zhang, G. Z. Ning and X. Y. Yang, Eur. Phys. J. C 78, 438 (2018).
  • (41) J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Phys. Rev. D 53, 2442-2459 (1996).
  • (42) A. Blondel, A. Bravar, M. Pohl, S. Bachmann, N. Berger, M. Kiehn, A. Schoning, D. Wiedner, B. Windelband and P. Eckert, et al. [arXiv:1301.6113 [physics.ins-det]].
  • (43) K. Hayasaka [Belle and Belle-II], J. Phys. Conf. Ser. 408, 012069 (2013).
  • (44) R.Grigjanis, P. J. O Donnell,M. Sutherland and H. Navelet, Phys. Rep. 22, 93 (1993).
  • (45) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
  • (46) W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 0901, 019 (2009) [arXiv:0811.1214 [hep-ph]].
  • (47) L. Lin, T. F. Feng and F. Sun, Mod. Phys. Lett. A 24, 2181-2186 (2009).
  • (48) X. Y. Yang and T. F. Feng, JHEP 1005, 059 (2010).
  • (49) P. Goertz and T. Pfoh, Phys. Rev. D 84, 095016 (2011).
  • (50) A. J. Buras, L. Merlo, E. Stamou, JHEP 1108 124 (2011).
  • (51) F. Goertz, T. Pfoh, Phys. Rev. D 84 095016 (2011).
  • (52) P. Gambino, M. Misiak, Nucl. Phys. B 611 338 (2001).
  • (53) M. Czakon, U. Haisch, M. Misiak, JHEP 0703 008 (2007).
  • (54) A.J. Buras, M. Misiak, M. Müunz and S. Pokorski, Nucl. Phys. B 424 374 (1994).
  • (55) T. J. Gao, T. F. Feng, J. B. Chen, Mod. Phys. Lett. A 7 1250011 (2012).