This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The first moment of quadratic twists of modular LL-functions

Quanli Shen SDU-ANU Joint Science College
Shandong University
Weihai 264209, China
[email protected]
Abstract.

We obtain an asymptotic formula with an error term O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) for the smoothed first moment of quadratic twists of modular LL-functions. We also give a similar result for the smoothed first moment of the first derivative of quadratic twists of modular LL-functions. The argument is largely based on Young’s works (Acta Arith 138(1):73–99, 2009 and Selecta Math 19(2):509–543, 2013).

Key words and phrases:
moments of LL-functions, modular LL-functions, recursive method
2020 Mathematics Subject Classification:
Primary 11M06; Secondary 11F67

1. Introduction

The study of moments of LL-functions is of much interest to researchers in number theory due to its fruitful applications. One example is that Bump-Friedberg-Hoffstein [5] and Murty-Murty [14] independently proved L(12,Eχd)0L^{\prime}(\frac{1}{2},E\otimes\chi_{d})\neq 0 for infinitely many fundamental discriminants dd with d<0d<0, where EE is a modular elliptic curve with root number 11 over \mathbb{Q} and χd():=(d)\chi_{d}(\cdot):=\left(\frac{d}{\cdot}\right) denotes the Kronecker symbol. The method of their works is to investigate moments of the derivative of quadratic twists of modular LL-functions. Their celebrated results successfully verify the assumption in Kolyvagin’s theorem [11] on the Birch-Swinnerton-Dyer conjecture, where it was proven that if the Hasse-Weil LL-function L(s,E)L(s,E) does not vanish at the central point s=12s=\frac{1}{2}, then the group of rational points of EE is finite, provided that there exists a quadratic character χd\chi_{d} with d<0d<0 such that L(s,Eχd)L(s,E\otimes\chi_{d}) has a simple zero at the central point and such that χd(p)=1\chi_{d}(p)=1 for every pp that divides the conductor of EE.

In particular, Murty-Murty [14] proved an asymptotic formula for the first moment of the derivative of quadratic twists of modular LL-functions with an error term O(X(logX)1ρ)O(X(\log X)^{1-\rho}), where ρ\rho is an explicit positive real number. It was later improved by Iwaniec [9] to a power savings O(X1314+ε)O(X^{\frac{13}{14}+\varepsilon}) for a smoothed version. In [4] Bump-Friedberg-Hoffstein claimed the error term O(X35+ε)O(X^{\frac{3}{5}+\varepsilon}) without proof. Note that in [9, 14] they considered quadratic twists of elliptic curve LL-functions, but it is no doubt that the methods there will extend to all modular newforms. The goal of this paper is to obtain an error term of the size O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) for a smoothed version. The improvement is mainly due to a recursive method developed by Heath-Brown [8] and Young [21, 22]. The argument of this paper also allows us to obtain an error term of the same size O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) for the first moment of quadratic twists of modular LL-functions, which improves the error term O(X1314+ε)O(X^{\frac{13}{14}+\varepsilon}) of Stefanicki [20, Theorem 3] and Luo-Ramakrishnan [13, Proposition 3.6] and O(X78+ε)O(X^{\frac{7}{8}+\varepsilon}) of Radziwiłł-Soundararajan [16, Proposition 2]. Also, with slightly more effort, one can obtain similar results for the first moment of higher derivatives of twisted modular LL-functions.

To precisely state our result, we shall introduce some notation. Let ff be a modular form of weight κ\kappa for the full modular group SL2()SL_{2}(\mathbb{Z}). (Our argument may extend to congruent subgroups.) We assume ff is an eigenfunction of all Hecke operators. The Fourier expansion of ff at infinity is

f(z)=n=1λf(n)nκ12e(nz),f(z)=\sum_{n=1}^{\infty}{\lambda}_{f}(n)n^{\frac{\kappa-1}{2}}e(nz),

where λf(1)=1{\lambda}_{f}(1)=1 and |λf(n)|τ(n)|{\lambda}_{f}(n)|\leq\tau(n) for n1n\geq 1. Here e(z):=e2πize(z):=e^{2\pi iz}, and τ(n)\tau(n) is the number of divisors of nn. The twisted modular LL-function is defined by

L(s,fχd)\displaystyle L(s,f\otimes\chi_{d}) :=n=1λf(n)χd(n)ns=pd(1λf(p)χd(p)ps+1p2s)1\displaystyle:=\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n)\chi_{d}(n)}{n^{s}}=\prod_{p\nmid d}\left(1-\frac{{\lambda}_{f}(p)\chi_{d}(p)}{p^{s}}+\frac{1}{p^{2s}}\right)^{-1}

for Re(s)>1{\operatorname{Re}}(s)>1, and it extends to the entire complex plane. The completed LL-function is defined by

Λ(s,fχd):=(|d|2π)sΓ(s+κ12)L(s,fχd).\displaystyle\Lambda(s,f\otimes\chi_{d}):=\left(\frac{|d|}{2\pi}\right)^{s}\Gamma(s+\tfrac{\kappa-1}{2})L(s,f\otimes\chi_{d}).

It satisfies the functional equation

(1.1) Λ(s,fχd)=iκϵ(d)Λ(1s,fχd),\displaystyle\Lambda(s,f\otimes\chi_{d})=i^{\kappa}\epsilon(d)\Lambda(1-s,f\otimes\chi_{d}),

where ϵ(d)=1\epsilon(d)=1 if dd is positive, and ϵ(d)=1\epsilon(d)=-1 if dd is negative. In this paper, we consider the case d>0d>0, so ϵ=1\epsilon=1. The case d<0d<0 can be done similarly. We prove the following assertions.

Theorem 1.1.

Let κ0(mod4)\kappa\equiv 0\,(\operatorname{mod}4) and κ0\kappa\neq 0. Let Φ(x):(0,)\Phi(x):(0,\infty)\rightarrow\mathbb{R} be a smooth, compactly supported function. We have

(d,2)=1L(12,fχ8d)Φ(dX)=8Φ~(1)π2L(1,sym2f)Z(0)X+O(X12+ε).\displaystyle\sideset{}{{}^{*}}{\sum}_{(d,2)=1}L(\tfrac{1}{2},f\otimes\chi_{8d})\Phi(\tfrac{d}{X})=\frac{8\tilde{\Phi}(1)}{\pi^{2}}L(1,\operatorname{sym}^{2}f)Z^{*}(0)X+O(X^{\frac{1}{2}+\varepsilon}).

Here \sideset{}{{}^{*}}{\sum} denotes the summation over square-free integers, ZZ^{*} is defined in (1.4) and (1.8), and Φ~\tilde{\Phi} is the Mellin transform of Φ\Phi defined by

Φ~(s):=0Φ(x)xs1𝑑x.\tilde{\Phi}(s):=\int_{0}^{\infty}\Phi(x)x^{s-1}dx.
Theorem 1.2.

Let κ2(mod4)\kappa\equiv 2\,(\operatorname{mod}4). Let Φ(x):(0,)\Phi(x):(0,\infty)\rightarrow\mathbb{R} be a smooth, compactly supported function. We have

(d,2)=1L(12,fχ8d)Φ(dX)\displaystyle\sideset{}{{}^{*}}{\sum}_{(d,2)=1}L^{\prime}(\tfrac{1}{2},f\otimes\chi_{8d})\Phi(\tfrac{d}{X})
=8Φ~(1)π2L(1,sym2f)Z(0)X[logX+2L(1,sym2f)L(1,sym2f)+Z(0)Z(0)\displaystyle=\frac{8\tilde{\Phi}(1)}{\pi^{2}}L(1,\operatorname{sym}^{2}f)Z^{*}(0)X\Bigg{[}\log X+2\frac{L^{\prime}(1,\operatorname{sym}^{2}f)}{L(1,\operatorname{sym}^{2}f)}+\frac{{Z^{*}}^{\prime}(0)}{Z^{*}(0)}
+log82π+Γ(κ2)Γ(κ2)+Φ~(1)Φ~(1)]+O(X12+ε).\displaystyle+\log\frac{8}{2\pi}+\frac{\Gamma^{\prime}(\frac{\kappa}{2})}{\Gamma(\frac{\kappa}{2})}+\frac{\tilde{\Phi}^{\prime}(1)}{\tilde{\Phi}(1)}\Bigg{]}+O(X^{\frac{1}{2}+\varepsilon}).

In the above, the symmetric square LL-function is defined by

L(s,sym2f)\displaystyle L(s,\operatorname{sym}^{2}f) :=ζ(2s)n=1λf(n2)ns\displaystyle:=\zeta(2s)\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n^{2})}{n^{s}}
=p(1αf(p)2ps)1(1αf(p)βf(p)ps)1(1βf(p)2ps)1,\displaystyle=\prod_{p}\left(1-\frac{\alpha_{f}(p)^{2}}{p^{s}}\right)^{-1}\left(1-\frac{\alpha_{f}(p)\beta_{f}(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{f}(p)^{2}}{p^{s}}\right)^{-1},

where Re(s)>1{\operatorname{Re}}(s)>1, αf(p)+βf(p)=λf(p)\alpha_{f}(p)+\beta_{f}(p)={\lambda}_{f}(p) and αf(p)βf(p)=1\alpha_{f}(p)\beta_{f}(p)=1. We see that the main term in Theorem 1.2 coincides with [15, Theorem 2.3]. Note that in [15, Theorem 2.3] the form of the moment and the definition of ZZ^{*} is slightly different from ours.

It is worth mentioning that recently Bui–Florea–Keating–Roditty-Gershon [3] obtained the error term of the same size O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) for the function field analogue. The second moment, expected to be much more difficult, was computed asymptotically by Soundararajan and Young [19] under the generalized Riemann hypothesis. Their method was also used by Petrow [15] for studying moments of derivatives of twisted modular LL-functions. The computation of asymptotic formulas for higher moments is believed beyond current techniques, whereas we do have beautiful conjectures due to Keating-Snaith [10] and Conrey-Farmer-Keating-Rubinstein-Snaith [6].

The moments of quadratic twists of modular LL-functions are comparable to the moments of quadratic Dirichlet LL-functions. An iterative method, pioneered by Heath-Brown [8] to study mean values of real characters, was further developed by Young [21] to obtain an error term O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) in an asymptotic formula for the first moment of quadratic Dirichlet LL-functions. The error term O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) was also essentially implicit in Goldfeld-Hoffstein’s work [7]. In addition, by using the recursive method, the third moment of quadratic Dirichlet LL-functions was improved to O(X34+ε)O(X^{\frac{3}{4}+\varepsilon}) by Young [22], and recently the second moment was improved to O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) by Sono [17]. The moment in Theorem 1.1 is analogous to the second moment of quadratic Dirichlet LL-functions, so it should not be a coincidence that Sono’s work [17] and Theorem 1.1 have the same error term O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}). The conjectured error term for the second moment of quadratic Dirichlet LL-functions is O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) (see Alderson-Rubinstein [2]), so it may be hard to improve Theorems 1.1 and 1.2. On a more fundamental level, it is because we do not know how to obtain an error term better than O(X12+o(1))O(X^{\frac{1}{2}+o(1)}) unconditionally in the problem of counting square-free integers with a smooth weight.

The proof for Theorems 1.1 and 1.2 is similar to [17, 21, 22]. To adapt to the recursive method, we consider the shifted first moment twisted by a quadratic character as follows:

(1.2) M(α,):=(d,2)=1χ8d()L(12+α,fχ8d)Φ(dX),\displaystyle M(\alpha,\ell):=\sideset{}{{}^{*}}{\sum}_{(d,2)=1}\chi_{8d}(\ell)L(\tfrac{1}{2}+\alpha,f\otimes\chi_{8d})\Phi(\tfrac{d}{X}),

where {\ell} is a positive, odd integer. Write =122{\ell}={\ell}_{1}{\ell}_{2}^{2}, where 1{\ell}_{1} is square-free. We may make the following conjecture.

Conjecture 1.3.

Let h12h\geq\frac{1}{2}. Let Φ(x):(0,)\Phi(x):(0,\infty)\rightarrow\mathbb{C} be a smooth, compactly supported function. Assume |Re(α)|1logX|{\operatorname{Re}}(\alpha)|\ll\frac{1}{\log X} and |Im(α)|(logX)2|{\operatorname{Im}}(\alpha)|\ll(\log X)^{2}. Then for any ε>0\varepsilon>0, we have

(1.3) M(α,)=4XΦ~(1)π2112+αL(1+2α,sym2f)Z(12+α,)+iκ4γαX12αΦ~(12α)π2112αL(12α,sym2f)Z(12α,)+O(12+εXh+ε).\begin{split}&M(\alpha,\ell)\\ &=\frac{4X\tilde{\Phi}(1)}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}L(1+2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha,{\ell})\\ &+i^{\kappa}\frac{4\gamma_{\alpha}X^{1-2\alpha}\tilde{\Phi}(1-2\alpha)}{\pi^{2}{\ell}_{1}^{\frac{1}{2}-\alpha}}L(1-2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}-\alpha,{\ell})+O({\ell}^{\frac{1}{2}+\varepsilon}X^{h+\varepsilon}).\end{split}

Here the big OO is depending on ε,h\varepsilon,h and Φ\Phi. The symbol γα\gamma_{\alpha} is defined in (3.1). For Re(γ)>0{\operatorname{Re}}(\gamma)>0,

(1.4) L(1+2γ,sym2f)Z(12+γ,):=(p,2)=1Zp(12+γ,),\displaystyle L(1+2\gamma,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\gamma,{\ell}):=\prod_{(p,2)=1}Z_{p}(\tfrac{1}{2}+\gamma,{\ell}),

where for p|1p|{\ell}_{1},

(1.5) Zp(12+γ,):=p12+γ(pp+1)[12(1λf(p)p12+γ+1p1+2γ)112(1+λf(p)p12+γ+1p1+2γ)1],\begin{split}&Z_{p}(\tfrac{1}{2}+\gamma,{\ell}):=\\ &p^{\frac{1}{2}+\gamma}\left(\frac{p}{p+1}\right)\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}-\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\right],\end{split}

for p1,p|2p\nmid{\ell}_{1},p|{\ell}_{2},

(1.6) Zp(12+γ,):=pp+1[12(1λf(p)p12+γ+1p1+2γ)1+12(1+λf(p)p12+γ+1p1+2γ)1],\begin{split}&Z_{p}(\tfrac{1}{2}+\gamma,{\ell})\\ &:=\frac{p}{p+1}\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}+\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\right],\end{split}

and for (p,2)=1(p,2{\ell})=1,

(1.7) Zp(12+γ,):=1+pp+1[12(1λf(p)p12+γ+1p1+2γ)1+12(1+λf(p)p12+γ+1p1+2γ)11].\begin{split}&Z_{p}(\tfrac{1}{2}+\gamma,{\ell}):=\\ &1+\frac{p}{p+1}\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}+\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}-1\right].\end{split}

The function Z(12+γ,)Z(\tfrac{1}{2}+\gamma,{\ell}) is analytic and absolutely convergent in the region Re(γ)>14{\operatorname{Re}}(\gamma)>-\frac{1}{4}.

The main term in (1.3) can be conjectured by heuristically following this paper’s argument or using the recipe method in [6]. To obtain Theorems 1.1 and 1.2, it suffices to prove the following theorem.

Theorem 1.4.

If Conjecture 1.3 is true for some h12h\geq\frac{1}{2}, then it is true for 4h14h\frac{4h-1}{4h} replacing hh.

Proof of Theorems 1.1 and 1.2.

We see Conjecture 1.3 is true for h=1h=1 by Lemma 2.5 in the next section. By Theorem 1.4 we can reduce it to h=1,34,23,h=1,\frac{3}{4},\frac{2}{3},\cdots, which tends to h=12h=\frac{1}{2}. Set =1{\ell}=1 and write

(1.8) Z(α):=Z(12+α,1).\displaystyle Z^{*}(\alpha):=Z(\tfrac{1}{2}+\alpha,1).

Then Theorem 1.1 follows by letting α0\alpha\rightarrow 0 in (1.3). We can differentiate both sides of (1.3) in terms of α\alpha. Note that the error term in (1.3) is holomorphic on the disc centred at (0,0)(0,0) with radius 1logX\ll\frac{1}{\log X}. Hence the size of the derivative of the error term is still O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}) by Cauchy’s integral formula. This gives Theorem 1.2 by letting α0\alpha\rightarrow 0. Note that we can compute asymptotic formulas for the first moment of higher derivatives of twisted modular LL-functions in a similar way. ∎

The rest of the paper will focus on proving Theorem 1.4. The idea is as follows. We first apply the approximate functional equation in the twisted LL-function in (1.2). Then the Möbius inversion is used to remove the square-free condition where the new parameter aa is introduced. We split the summation over aa into two pieces. For large aa, the Poisson summation formula is employed to separate the summation into diagonal terms and non-diagonal terms (see their definitions below (3.3)). On the other hand, for small aa, we convert the summation back to that with the square-free condition, where we will use the induction hypothesis (1.3). We obtain partial main terms and error terms there. These partial main terms can be perfectly combined with the diagonal terms after some simplification, finally leading to the main term in (1.3). We remark that there is perfect cancellation between various subsidiary terms in the moments of quadratic Dirichlet LL-functions (see [21, 22, 17]). Note that it is hard to estimate these terms individually with an error better than O(X34+ε)O(X^{\frac{3}{4}+\varepsilon}). In our paper, we do not find this cancellation. Fortunately, the subsidiary terms in this paper can be bounded by O(X12+ε)O(X^{\frac{1}{2}+\varepsilon}), which is small enough for our purpose.

2. Preliminary lemmas

Lemma 2.1.

Let G(s)G(s) be an even, entire function with G(0)=1G(0)=1, bounded in any fixed strip |Re(s)|A|{\operatorname{Re}}(s)|\leq A, and decaying rapidly as |Im(s)||{\operatorname{Im}}(s)|\rightarrow\infty. Let

ωα(ξ)\displaystyle\omega_{\alpha}(\xi) :=12πi(1)G(s)sgα(s)ξs𝑑s,\displaystyle:=\frac{1}{2\pi i}\int_{(1)}\frac{G(s)}{s}g_{\alpha}(s)\xi^{-s}ds,

where

gα(s)\displaystyle g_{\alpha}(s) :=(2π)sΓ(κ2+α+s)Γ(κ2+α),\displaystyle:=(2\pi)^{-s}\frac{\Gamma(\frac{\kappa}{2}+\alpha+s)}{\Gamma(\frac{\kappa}{2}+\alpha)},

and (c)\int_{(c)} denotes the contour integral cic+i\int_{c-i\infty}^{c+i\infty}. Set

Xα,d\displaystyle X_{\alpha,d} :=(|d|2π)2αΓ(κ2α)Γ(κ2+α).\displaystyle:=\left(\frac{|d|}{2\pi}\right)^{-2\alpha}\frac{\Gamma(\frac{\kappa}{2}-\alpha)}{\Gamma(\frac{\kappa}{2}+\alpha)}.

Then we have

L(12+α,fχd)\displaystyle L(\tfrac{1}{2}+\alpha,f\otimes\chi_{d})
=n=1λf(n)χd(n)n12+αωα(n|d|)+iκϵ(d)Xα,dn=1λf(n)χd(n)n12αωα(n|d|).\displaystyle=\sum_{n=1}^{\infty}\frac{\lambda_{f}(n)\chi_{d}(n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{|d|}\right)+i^{\kappa}\epsilon(d)X_{\alpha,d}\sum_{n=1}^{\infty}\frac{\lambda_{f}(n)\chi_{d}(n)}{n^{\frac{1}{2}-\alpha}}\omega_{-\alpha}\left(\frac{n}{|d|}\right).
Proof.

Set

(2.1) I:=12πi(1)(|d|2π)sΓ(κ2+α+s)Γ(κ2+α)L(12+α+s,fχd)G(s)s𝑑s=12πi(1)Λ(12+α+s)Γ(κ2+α)G(s)s(d2π)12α𝑑s.\begin{split}I&:=\frac{1}{2\pi i}\int_{(1)}\left(\frac{|d|}{2\pi}\right)^{s}\frac{\Gamma(\frac{\kappa}{2}+\alpha+s)}{\Gamma(\frac{\kappa}{2}+\alpha)}L(\tfrac{1}{2}+\alpha+s,f\otimes\chi_{d})\frac{G(s)}{s}ds\\ &=\frac{1}{2\pi i}\int_{(1)}\frac{\Lambda(\frac{1}{2}+\alpha+s)}{\Gamma(\frac{\kappa}{2}+\alpha)}\frac{G(s)}{s}\left(\frac{d}{2\pi}\right)^{-\frac{1}{2}-\alpha}ds.\end{split}

Move the line of integration to Re(s)=1{\operatorname{Re}}(s)=-1. The residue theorem gives

(2.2) L(12+α,fχd)=II,\displaystyle L(\tfrac{1}{2}+\alpha,f\otimes\chi_{d})=I-I^{\prime},

where

I:=12πi(1)Λ(12+α+s)Γ(κ2+α)G(s)s(d2π)12α𝑑s.\displaystyle I^{\prime}:=\frac{1}{2\pi i}\int_{(-1)}\frac{\Lambda(\frac{1}{2}+\alpha+s)}{\Gamma(\frac{\kappa}{2}+\alpha)}\frac{G(s)}{s}\left(\frac{d}{2\pi}\right)^{-\frac{1}{2}-\alpha}ds.

By changing the variable sss\rightarrow-s and the functional equation (1.1),

(2.3) I=iκϵ(d)12πi(1)Λ(12α+s)Γ(κ2+α)G(s)s(|d|2π)12α𝑑s=iκϵ(d)Xα,d12πi(1)(|d|2π)sΓ(κ2α+s)Γ(κ2α)L(12α+s,fχd)G(s)s𝑑s.\begin{split}I^{\prime}&=-i^{\kappa}\epsilon(d)\frac{1}{2\pi i}\int_{(1)}\frac{\Lambda(\frac{1}{2}-\alpha+s)}{\Gamma(\frac{\kappa}{2}+\alpha)}\frac{G(s)}{s}\left(\frac{|d|}{2\pi}\right)^{-\frac{1}{2}-\alpha}ds\\ &=-i^{\kappa}\epsilon(d)X_{\alpha,d}\frac{1}{2\pi i}\int_{(1)}\left(\frac{|d|}{2\pi}\right)^{s}\frac{\Gamma(\frac{\kappa}{2}-\alpha+s)}{\Gamma(\frac{\kappa}{2}-\alpha)}L(\tfrac{1}{2}-\alpha+s,f\otimes\chi_{d})\frac{G(s)}{s}ds.\end{split}

Insert (2.1) and (2.3) back into (2.2) and write L(12±α+s,fχd)L(\tfrac{1}{2}\pm\alpha+s,f\otimes\chi_{d}) as their Dirichlet series. This completes the proof. ∎

Remark 2.2.

Write

𝒵(α,s):=ζ(2+4α+4s)(1+4α+4s)(14α4s).\displaystyle\mathcal{Z}(\alpha,s):=\zeta(2+4\alpha+4s)(1+4\alpha+4s)(1-4\alpha-4s).

We can take

G(s)=es2𝒵(α,s)𝒵(α,s)𝒵(α,s)𝒵(α,s)𝒵(α,0)2𝒵(α,0)2.\begin{split}G(s)&=e^{s^{2}}\frac{\mathcal{Z}(\alpha,s)\mathcal{Z}(\alpha,-s)\cdot\mathcal{Z}(-\alpha,s)\mathcal{Z}(-\alpha,-s)}{\mathcal{Z}(\alpha,0)^{2}\mathcal{Z}(-\alpha,0)^{2}}.\end{split}

The purpose of adding some zeta factors into G(s)G(s) is that they cancel out certain terms in Z(12±α±s)Z(\frac{1}{2}\pm\alpha\pm s). See Lemma 2.6 and (7.2) for an example.

The following lemma is a generalized version of Poisson summation formula established by Soundararajan [18, Lemma 2.6] (also see [19, Lemma 2.2]).

Lemma 2.3.

Let Φ\Phi be a smooth function with compact support on the positive real numbers, and suppose that nn is an odd integer. Then

(d,2)=1(dn)Φ(dZ)=Z2n(2n)k(1)kGk(n)Φ^(kZ2n),\sum_{(d,2)=1}\left(\frac{d}{n}\right)\Phi\left(\frac{d}{Z}\right)=\frac{Z}{2n}\left(\frac{2}{n}\right)\sum_{k\in\mathbb{Z}}(-1)^{k}G_{k}(n)\hat{\Phi}\left(\frac{kZ}{2n}\right),

where

Gk(n):=(1i2+(1n)1+i2)a(modn)(an)e(akn),\displaystyle G_{k}(n):=\left(\frac{1-i}{2}+\left(\frac{-1}{n}\right)\frac{1+i}{2}\right)\sum_{a\,(\operatorname{mod}{n})}\left(\frac{a}{n}\right)e\left(\frac{ak}{n}\right),

and

Φ^(y):=(cos(2πxy)+sin(2πxy))Φ(x)𝑑x\hat{\Phi}(y):=\int_{-\infty}^{\infty}\left(\cos(2\pi xy)+\sin(2\pi xy)\right)\Phi(x)dx

is a Fourier-type transform of Φ\Phi.

The Gauss-type sum Gk(n)G_{k}(n) above can be explicitly computed in the following lemma (see [18, Lemma 2.3]).

Lemma 2.4.

If mm and nn are relatively prime odd integers, then Gk(mn)=Gk(m)Gk(n)G_{k}(mn)=G_{k}(m)G_{k}(n). Moreover, if pαp^{\alpha} is the largest power of pp dividing kk (setting α=\alpha=\infty if k=0k=0), then

Gk(pβ)={0if βα is odd,ϕ(pβ)if βα is even,pαif β=α+1 is even,(kpαp)pαpif β=α+1 is odd,0if βα+2.\displaystyle G_{k}(p^{\beta})=\left\{\begin{array}[c]{ll}0&\text{if }\beta\leq\alpha\text{ is odd},\\ \phi(p^{\beta})&\text{if }\beta\leq\alpha\text{ is even},\\ -p^{\alpha}&\text{if }\beta=\alpha+1\text{ is even},\\ \left(\frac{kp^{-\alpha}}{p}\right)p^{\alpha}\sqrt{p}&\text{if }\beta=\alpha+1\text{ is odd},\\ 0&\text{if }\beta\geq\alpha+2.\end{array}\right.

Here ϕ\phi is the Euler totient function.

We need the following upper bound for the first moment of twisted modular LL-functions. It is analogous to [8, Theorem 2] of Heath-Brown.

Lemma 2.5.

For σ12\sigma\geq\frac{1}{2}, we have

|d|X|L(σ+it,fχd)|εX1+ε(1+|t|)12+ε,\sideset{}{{}^{\flat}}{\sum}_{|d|\leq X}|L(\sigma+it,f\otimes\chi_{d})|\ll_{\varepsilon}X^{1+\varepsilon}(1+|t|)^{\frac{1}{2}+\varepsilon},

where \sideset{}{{}^{\flat}}{\sum} denotes the summation over fundamental discriminants.

Proof.

It follows from [19, Corollary 2.5] and the Cauchy-Schwarz inequality. ∎

Lemma 2.6.

Let Re(γ)>0{\operatorname{Re}}(\gamma)>0. Then for any integer N0N\geq 0, we have

L(1+2γ,sym2f)Z(12+γ,)\displaystyle L(1+2\gamma,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\gamma,{\ell})
=L(1+2γ,sym2f)ζ(2N+1+2N+2γ)ζ(2+4γ)ZN(12+γ,).\displaystyle=L(1+2\gamma,\operatorname{sym}^{2}f)\frac{\zeta(2^{N+1}+2^{N+2}\gamma)}{\zeta(2+4\gamma)}Z^{N}(\tfrac{1}{2}+\gamma,{\ell}).

Here ZN(12+γ,)Z^{N}(\tfrac{1}{2}+\gamma,{\ell}) is analytic and is bounded by ε{\ell}^{\varepsilon} in the region Re(γ)>max(12+ε,12+12N+2+ε2N+2){\operatorname{Re}}(\gamma)>\max(-\frac{1}{2}+\varepsilon,-\frac{1}{2}+\frac{1}{2^{N+2}}+\frac{\varepsilon}{2^{N+2}}). Note Z0=ZZ^{0}=Z.

Proof.

Recall the definition of L(1+2γ,sym2f)Z(12+γ,)L(1+2\gamma,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\gamma,{\ell}) in (1.4) and the expression of Zp(12+γ,)Z_{p}(\tfrac{1}{2}+\gamma,{\ell}) in (1.5)–(1.7). It is clear that in the region Re(γ)>0{\operatorname{Re}}(\gamma)>0, for (p,2)=1(p,2{\ell})=1,

(2.4) Zp(12+γ,)=(1λf(p)p12+γ+1p1+2γ)1(1+λf(p)p12+γ+1p1+2γ)1×(1+1p1+2γ+P(p,γ)),\begin{split}Z_{p}(\tfrac{1}{2}+\gamma,{\ell})&=\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\\ &\times\left(1+\frac{1}{p^{1+2\gamma}}+P(p,\gamma)\right),\end{split}

where

P(p,γ)\displaystyle P(p,\gamma)
=1p+1[1+1p1+2γ(1λf(p)p12+γ+1p1+2γ)(1+λf(p)p12+γ+1p1+2γ)].\displaystyle=-\frac{1}{p+1}\left[1+\frac{1}{p^{1+2\gamma}}-\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)\right].

We see that P(p,γ)=O(1p1+ε)P(p,\gamma)=O(\frac{1}{p^{1+\varepsilon}}) when Re(γ)>12+ε{\operatorname{Re}}(\gamma)>-\frac{1}{2}+\varepsilon. We then factor out 1+1p1+2γ1+\frac{1}{p^{1+2\gamma}} from the last brackets of (2.4). It gives

(2.5) 1+1p1+2γ+P(p,γ)=111p1+2γ(11p1+2γ)(1+1p1+2γ+P(p,γ))=111p1+2γ(11p2+22γ+P(p,γ)1p1+2γP(p,γ)).\begin{split}1+\frac{1}{p^{1+2\gamma}}+P(p,\gamma)&=\frac{1}{1-\frac{1}{p^{1+2\gamma}}}\left(1-\frac{1}{p^{1+2\gamma}}\right)\left(1+\frac{1}{p^{1+2\gamma}}+P(p,\gamma)\right)\\ &=\frac{1}{1-\frac{1}{p^{1+2\gamma}}}\left(1-\frac{1}{p^{2+2^{2}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)\right).\end{split}

Note that P(p,γ)1p1+2γP(p,γ)=O(1p1+ε)P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)=O(\frac{1}{p^{1+\varepsilon}}) when Re(γ)>12+ε{\operatorname{Re}}(\gamma)>-\frac{1}{2}+\varepsilon. One can check that the expressions 11p2+22γ+P(p,γ)1p1+2γP(p,γ)1-\frac{1}{p^{2+2^{2}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma) are exactly the Euler factors of Z(12+γ,)Z(\tfrac{1}{2}+\gamma,{\ell}) in the cases of (p,2)=1(p,2{\ell})=1.

Factoring out 11p2+22γ1-\frac{1}{p^{2+2^{2}\gamma}} from (2.5), we obtain

11p2+22γ+P(p,γ)1p1+2γP(p,γ)\displaystyle 1-\frac{1}{p^{2+2^{2}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)
=11+1p2+22γ(1+1p2+22γ)(11p2+22γ+P(p,γ)1p1+2γP(p,γ))\displaystyle=\frac{1}{1+\frac{1}{p^{2+2^{2}\gamma}}}\left(1+\frac{1}{p^{2+2^{2}\gamma}}\right)\left(1-\frac{1}{p^{2+2^{2}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)\right)
=11+1p2+22γ(11p22+23γ+P(p,γ)1p1+2γP(p,γ)+1p2+2γP(p,γ)\displaystyle=\frac{1}{1+\frac{1}{p^{2+2^{2}\gamma}}}\left(1-\frac{1}{p^{2^{2}+2^{3}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)+\frac{1}{p^{2+2\gamma}}P(p,\gamma)\right.
1p3+6γP(p,γ)).\displaystyle\left.-\frac{1}{p^{3+6\gamma}}P(p,\gamma)\right).

Note that those terms involving P(p,γ)P(p,\gamma) above are O(1p1+ε)O(\frac{1}{p^{1+\varepsilon}}) when Re(γ)>12+ε{\operatorname{Re}}(\gamma)>-\frac{1}{2}+\varepsilon. Repeating the above process continuously we can get for N1N\geq 1,

11+1p2+22γ\displaystyle\frac{1}{1+\frac{1}{p^{2+2^{2}\gamma}}}
×(11p22+23γ+P(p,γ)1p1+2γP(p,γ)+1p2+2γP(p,γ)1p3+6γP(p,γ))\displaystyle\times\left(1-\frac{1}{p^{2^{2}+2^{3}\gamma}}+P(p,\gamma)-\frac{1}{p^{1+2\gamma}}P(p,\gamma)+\frac{1}{p^{2+2\gamma}}P(p,\gamma)-\frac{1}{p^{3+6\gamma}}P(p,\gamma)\right)
=m=1N11+1p2m+2m+1γ(11p2N+1+2N+2γ+Q(p,γ))\displaystyle=\prod_{m=1}^{N}\frac{1}{1+\frac{1}{p^{2^{m}+2^{m+1}\gamma}}}\left(1-\frac{1}{p^{2^{N+1}+2^{N+2}\gamma}}+Q(p,\gamma)\right)
=11p2+4γ11p2N+1+2N+2γ(11p2N+1+2N+2γ+Q(p,γ)),\displaystyle=\frac{1-\frac{1}{p^{2+4\gamma}}}{1-\frac{1}{p^{2^{N+1}+2^{N+2}\gamma}}}\left(1-\frac{1}{p^{2^{N+1}+2^{N+2}\gamma}}+Q(p,\gamma)\right),

where Q(p,γ)Q(p,\gamma) can be written explicitly which satisfies Q(p,γ)=ON,ε(1p1+ε)Q(p,\gamma)=O_{N,\varepsilon}(\frac{1}{p^{1+\varepsilon}}) when Re(γ)>12+ε{\operatorname{Re}}(\gamma)>-\frac{1}{2}+\varepsilon. The last equation is obtained via multiplying by 11p2+22γ11p2+22γ\frac{1-\frac{1}{p^{2+2^{2}\gamma}}}{1-\frac{1}{p^{2+2^{2}\gamma}}}.

Note the expressions 11p2N+1+2N+2γ+Q(p,γ)1-\frac{1}{p^{2^{N+1}+2^{N+2}\gamma}}+Q(p,\gamma) are exactly the Euler factors of ZN(12+γ,)Z^{N}(\tfrac{1}{2}+\gamma,{\ell}) when (p,2)=1(p,2{\ell})=1. For Re(γ)>max(12+ε,12+12N+2+ε2N+2){\operatorname{Re}}(\gamma)>\max(-\frac{1}{2}+\varepsilon,-\frac{1}{2}+\frac{1}{2^{N+2}}+\frac{\varepsilon}{2^{N+2}}), we have

(p,2)=1(11p2N+1+2N+2γ+Q(p,γ))1.\prod_{(p,2{\ell})=1}\left(1-\frac{1}{p^{2^{N+1}+2^{N+2}\gamma}}+Q(p,\gamma)\right)\ll 1.

In addition, it is easy to derive the Euler factors of ZN(12+γ,)Z^{N}(\tfrac{1}{2}+\gamma,{\ell}) corresponding to p|2p|2{\ell} and prove that they contribute ε\ll{\ell}^{\varepsilon}, as desired. ∎

3. Setup of the problem

By (1.2) and Lemma 2.1, we get

M(α,)=M+(α,)+M(α,),\displaystyle M(\alpha,{\ell})=M^{+}(\alpha,{\ell})+M^{-}(\alpha,{\ell}),

where

M+(α,)\displaystyle M^{+}(\alpha,{\ell}) :=(d,2)=1Φ(dX)n=1λf(n)χ8d(n)n12+αωα(n8d),\displaystyle:=\sideset{}{{}^{*}}{\sum}_{(d,2)=1}\Phi\left(\frac{d}{X}\right)\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{8d}\right),
M(α,)\displaystyle M^{-}(\alpha,{\ell}) :=iκ(d,2)=1Φ(dX)Xα,8dn=1λf(n)χ8d(n)n12αωα(n8d).\displaystyle:=i^{\kappa}\sideset{}{{}^{*}}{\sum}_{(d,2)=1}\Phi\left(\frac{d}{X}\right)X_{\alpha,8d}\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}-\alpha}}\omega_{-\alpha}\left(\frac{n}{8d}\right).
Remark 3.1.

Define Φz(x):=xzΦ(x)\Phi_{z}(x):=x^{z}\Phi(x). We then can write

M(α,)=iκγαX2α(d,2)=1Φ2α(dX)n=1λf(n)χ8d(n)n12αωα(n8d),M^{-}(\alpha,{\ell})=i^{\kappa}\gamma_{\alpha}X^{-2\alpha}\sideset{}{{}^{*}}{\sum}_{(d,2)=1}\Phi_{-2\alpha}\left(\frac{d}{X}\right)\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}-\alpha}}\omega_{-\alpha}\left(\frac{n}{8d}\right),

where

(3.1) γα:=(82π)2αΓ(κ2α)Γ(κ2+α).\displaystyle\gamma_{\alpha}:=\left(\frac{8}{2\pi}\right)^{-2\alpha}\frac{\Gamma(\frac{\kappa}{2}-\alpha)}{\Gamma(\frac{\kappa}{2}+\alpha)}.

Notice that M(α,)M^{-}(\alpha,{\ell}) is equal to iκγαX2αM+(α,)i^{\kappa}\gamma_{\alpha}X^{-2\alpha}M^{+}(-\alpha,{\ell}) with Φ2α\Phi_{-2\alpha} in place of Φ\Phi. Thus we just need to evaluate M+(α,)M^{+}(\alpha,{\ell}), and the results for M(α,)M^{-}(\alpha,{\ell}) can be obtained immediately.

The square-free condition in M+(α,)M^{+}(\alpha,{\ell}) can be removed by using Möbius inversion. This gives

(3.2) M+(α,)=(d,2)=1a2|dμ(a)Φ(dX)n=1λf(n)χ8d(n)n12+αωα(n8d)=(a,2)=1μ(a)(d,2)=1(n,a)=1λf(n)χ8d(n)n12+αωα(n8a2d)Φ(a2dX)=:MN+(α,)+MR+(α,),\begin{split}M^{+}(\alpha,{\ell})&=\sum_{(d,2)=1}\sum_{a^{2}|d}\mu(a)\Phi\left(\frac{d}{X}\right)\sum_{n=1}^{\infty}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{8d}\right)\\ &=\sum_{(a,2{\ell})=1}\mu(a)\sum_{(d,2)=1}\sum_{(n,a)=1}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{8a^{2}d}\right)\Phi\left(\frac{a^{2}d}{X}\right)\\ &=:M_{N}^{+}(\alpha,{\ell})+M_{R}^{+}(\alpha,{\ell}),\end{split}

where MN+(α,)M_{N}^{+}(\alpha,{\ell}) and MR+(α,)M_{R}^{+}(\alpha,{\ell}) denote the sums over aYa\leq Y and a>Ya>Y, respectively. Here Y(X)Y(\leq X) is a parameter chosen later.

We use the Poisson summation formula to split MN+(α,)M_{N}^{+}(\alpha,{\ell}). Using Lemma 2.3 on the summation over dd in MN+(α,)M_{N}^{+}(\alpha,{\ell}), we derive

(3.3) MN+(α,)=X2(a,2)=1aYμ(a)a2(n,2a)=1λf(n)n12+αk(1)kGk(n)n×(cos+sin)(2πkxX2na2)ωα(n8xX)Φ(x)dx.\begin{split}M_{N}^{+}(\alpha,{\ell})&=\frac{X}{2}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{(n,2a)=1}\frac{{\lambda}_{f}(n)}{n^{\frac{1}{2}+\alpha}}\sum_{k\in\mathbb{Z}}(-1)^{k}\frac{G_{k}({\ell}n)}{{\ell}n}\\ &\times\int_{-\infty}^{\infty}(\cos+\sin)\left(\frac{2\pi kxX}{2n{\ell}a^{2}}\right)\omega_{\alpha}\left(\frac{n}{8xX}\right)\Phi(x)dx.\end{split}

Let MN+(α,,k=0)M_{N}^{+}(\alpha,{\ell},k=0) denote the term k=0k=0 above, and let MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0) denote the remaining terms. We call MN+(α,,k=0)M_{N}^{+}(\alpha,{\ell},k=0) diagonal terms and MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0) off-diagonal terms.

On the other hand, we convert MR+(α,)M_{R}^{+}(\alpha,{\ell}) in (3.2) back to the summation over square-free integers, and then appeal to the induction hypothesis (1.3). To see this, recall that

MR+(α,)=(a,2)=1a>Yμ(a)(d,2)=1(n,a)=1λf(n)χ8d(n)n12+αωα(n8a2d)Φ(a2dX).\displaystyle M_{R}^{+}(\alpha,{\ell})=\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a>Y\end{subarray}}\mu(a)\sum_{(d,2)=1}\sum_{(n,a)=1}\frac{{\lambda}_{f}(n)\chi_{8d}({\ell}n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{8a^{2}d}\right)\Phi\left(\frac{a^{2}d}{X}\right).

Write d=eb2d=eb^{2}, where ee is square-free and bb is positive. Group terms according to c=abc=ab. It follows that

(3.4) MR+(α,)=(c,2)=1a>Ya|cμ(a)(e,2)=1(n,2c)=1λf(n)χ8e(n)n12+αωα(n8c2e)Φ(c2eX)=(c,2)=1a>Ya|cμ(a)12πi(1)(e,2)=1χ8e()Φs(eX)×Lc(12+α+s,fχ8e)Xs8sgα(s)G(s)sds,\begin{split}M_{R}^{+}(\alpha,{\ell})&=\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\sideset{}{{}^{*}}{\sum}_{(e,2)=1}\sum_{(n,2c)=1}\frac{{\lambda}_{f}(n)\chi_{8e}({\ell}n)}{n^{\frac{1}{2}+\alpha}}\omega_{\alpha}\left(\frac{n}{8c^{2}e}\right)\Phi\left(\frac{c^{2}e}{X}\right)\\ &=\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\frac{1}{2\pi i}\int_{(1)}\sideset{}{{}^{*}}{\sum}_{(e,2)=1}\chi_{8e}({\ell})\Phi_{s}\left(\frac{e}{X^{\prime}}\right)\\ &\times L_{c}(\tfrac{1}{2}+\alpha+s,f\otimes\chi_{8e})X^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds,\end{split}

where X:=Xc2X^{\prime}:=\frac{X}{c^{2}}. Here Lc(s,fχ8e),Re(s)>1L_{c}(s,f\otimes\chi_{8e}),\ {\operatorname{Re}}(s)>1 is given by the Euler product of L(s,fχ8e)L(s,f\otimes\chi_{8e}) with omitting all prime factors of cc. In the first equation above, the condition (c,)=1(c,{\ell})=1 is due to χ8ed2()=0\chi_{8ed^{2}}({\ell})=0 when (d,)1(d,{\ell})\neq 1. We use the following lemma to change Lc(12+α+s,fχ8e)L_{c}(\tfrac{1}{2}+\alpha+s,f\otimes\chi_{8e}) back to the form of L(12+α+s,fχ8e)L(\tfrac{1}{2}+\alpha+s,f\otimes\chi_{8e}). It is similar to [12, Lemma 9] of Kowalski and Michel.

Lemma 3.2.

Let dd be a fundamental discriminant. Then

(3.5) p|c(1λf(p)χd(p)ps+χd(p2)p2s)=m|cn|cμ(m)μ(mn)2λf(m)χd(m)χd(n2)1ms1n2s.\begin{split}&\prod_{p|c}\left(1-\frac{{\lambda}_{f}(p)\chi_{d}(p)}{p^{s}}+\frac{\chi_{d}(p^{2})}{p^{2s}}\right)\\ &=\sum_{m|c}\sum_{n|c}\mu(m)\mu(mn)^{2}{\lambda}_{f}(m)\chi_{d}(m)\chi_{d}(n^{2})\frac{1}{m^{s}}\frac{1}{n^{2s}}.\end{split}
Proof.

Note that the summand on the right-hand side of (3.5) is jointly multiplicative. Thus

m|cn|cμ(m)μ(mn)2λf(m)χd(m)χd(n2)1ms1n2s\displaystyle\sum_{m|c}\sum_{n|c}\mu(m)\mu(mn)^{2}{\lambda}_{f}(m)\chi_{d}(m)\chi_{d}(n^{2})\frac{1}{m^{s}}\frac{1}{n^{2s}}
=p|c0r1,r2orderp(c)μ(pr1)μ(pr1+r2)2λf(pr1)χd(pr1)χd(p2r2)1pr1s1p2r2s\displaystyle=\prod_{p|c}\sum_{0\leq r_{1},r_{2}\leq\operatorname{order}_{p}(c)}\mu(p^{r_{1}})\mu(p^{r_{1}+r_{2}})^{2}{\lambda}_{f}(p^{r_{1}})\chi_{d}(p^{r_{1}})\chi_{d}(p^{2r_{2}})\frac{1}{p^{r_{1}s}}\frac{1}{p^{2r_{2}s}}
=p|c(1λf(p)χd(p)ps+χd(p2)p2s),\displaystyle=\prod_{p|c}\left(1-\frac{{\lambda}_{f}(p)\chi_{d}(p)}{p^{s}}+\frac{\chi_{d}(p^{2})}{p^{2s}}\right),

as desired. ∎

It follows from (3.4) and Lemma 3.2 that

MR+(α,)\displaystyle M_{R}^{+}(\alpha,{\ell}) =(c,2)=1a>Ya|cμ(a)r1|cμ(r1)λf(r1)r112+αr2|cμ(r1r2)2r21+2α\displaystyle=\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\sum_{r_{1}|c}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{\frac{1}{2}+\alpha}}\sum_{r_{2}|c}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}
×12πi(1logX)(e,2)=1χ8e(1r122r22)Φs(eX)L(12+α+s,fχ8e)\displaystyle\times\frac{1}{2\pi i}\int_{(\frac{1}{\log X})}\sideset{}{{}^{*}}{\sum}_{(e,2)=1}\chi_{8e}({\ell}_{1}r_{1}{\ell}_{2}^{2}r_{2}^{2})\Phi_{s}\left(\frac{e}{X^{\prime}}\right)L(\tfrac{1}{2}+\alpha+s,f\otimes\chi_{8e})
×1r1sr22sXs8sgα(s)G(s)sds.\displaystyle\times\frac{1}{r_{1}^{s}r_{2}^{2s}}X^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.

We can truncate the above integral for |Im(s)|(logX)2|{\operatorname{Im}}(s)|\ll(\log X)^{2} with an error O(1)O(1) by the rapid decay of |G(s)||G(s)| as |Im(s)||{\operatorname{Im}}(s)|\rightarrow\infty. For |Im(s)|(logX)2|{\operatorname{Im}}(s)|\ll(\log X)^{2}, we are allowed to employ the inductive hypothesis (1.3). Hence we have

MR+(α,)=MR,1+(α,)+MR,2+(α,)+MR,3+(α,)+O(1),\displaystyle M_{R}^{+}(\alpha,{\ell})=M_{R,1}^{+}(\alpha,{\ell})+M_{R,2}^{+}(\alpha,{\ell})+M_{R,3}^{+}(\alpha,{\ell})+O(1),

where

MR,1+(α,)\displaystyle M_{R,1}^{+}(\alpha,{\ell}) :=1112+α(c,2)=1a>Ya|cμ(a)r1|cμ(r1)λf(r1)r11+2αr2|cμ(r1r2)2r21+2α12πi(1logX)\displaystyle:=\frac{1}{{\ell}_{1}^{\frac{1}{2}+\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\sum_{r_{1}|c}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{1+2\alpha}}\sum_{r_{2}|c}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}\frac{1}{2\pi i}\int_{(\frac{1}{\log X})}
×4X1+sΦ~(1+s)π2c2L(1+2α+2s,sym2f)Z(12+α+s,r1r22)\displaystyle\times\frac{4X^{1+s}\tilde{\Phi}(1+s)}{\pi^{2}c^{2}}L(1+2\alpha+2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha+s,{\ell}r_{1}r_{2}^{2})
(3.6) ×8s1sr12sr22sgα(s)G(s)sds,\displaystyle\times\frac{8^{s}}{{\ell}_{1}^{s}r_{1}^{2s}r_{2}^{2s}}g_{\alpha}(s)\frac{G(s)}{s}ds,
MR,2+(α,)\displaystyle M_{R,2}^{+}(\alpha,{\ell}) :=iκ112α(c,2)=1a>Ya|cμ(a)r1|cμ(r1)λf(r1)r1r2|cμ(r1r2)2r21+2α\displaystyle:=\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\sum_{r_{1}|c}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}}\sum_{r_{2}|c}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}
×12πi(1logX)4X12αsγα+sπ2c24α4sΦ~(12αs)\displaystyle\times\frac{1}{2\pi i}\int_{(\frac{1}{\log X})}\frac{4X^{1-2\alpha-s}\gamma_{\alpha+s}}{\pi^{2}c^{2-4\alpha-4s}}\tilde{\Phi}(1-2\alpha-s)
(3.7) ×L(12α2s,sym2f)Z(12αs,r1r22)1s8sr22sgα(s)G(s)sds,\displaystyle\times L(1-2\alpha-2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}-\alpha-s,{\ell}r_{1}r_{2}^{2})\frac{{\ell}_{1}^{s}8^{s}}{r_{2}^{2s}}g_{\alpha}(s)\frac{G(s)}{s}ds,
MR,3+(α,)\displaystyle M_{R,3}^{+}(\alpha,{\ell}) :=(c,2)=1a>Ya|cμ(a)r1|cμ(r1)λf(r1)r112+αr2|cμ(r1r2)2r21+2α12πis=1logX+it|t|(logX)2\displaystyle:=\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)\sum_{r_{1}|c}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{\frac{1}{2}+\alpha}}\sum_{r_{2}|c}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}\frac{1}{2\pi i}\int_{\begin{subarray}{c}s=\frac{1}{\log X}+it\\ |t|\ll(\log X)^{2}\end{subarray}}
(3.8) ×O((r1r22)12+ε100Xh+ε)1r1sr22sXs8sgα(s)G(s)sds.\displaystyle\times O\left(({\ell}r_{1}r_{2}^{2})^{\frac{1}{2}+\frac{\varepsilon}{100}}X^{\prime h+\varepsilon}\right)\frac{1}{r_{1}^{s}r_{2}^{2s}}X^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.

Note that in (3.6) and (3.7) we have extended the range of integrals from |Im(s)|(logX)2|{\operatorname{Im}}(s)|\ll(\log X)^{2} to the vertical line Re(s)=1logX{\operatorname{Re}}(s)=\frac{1}{\log X} with an error O(1)O(1).

Now we have separated M+(α,)M^{+}(\alpha,{\ell}) into several parts. In summary, we have obtained

(3.9) M(α,)=M+(α,)+M(α,),\displaystyle M(\alpha,{\ell})=M^{+}(\alpha,{\ell})+M^{-}(\alpha,{\ell}),

and

(3.10) M+(α,)=MN+(α,)+MR+(α,),MN+(α,)=MN+(α,,k=0)+MN+(α,,k0),MR+(α,)=MR,1+(α,)+MR,2+(α,)+MR,3+(α,)+O(1).\begin{split}M^{+}(\alpha,{\ell})&=M_{N}^{+}(\alpha,{\ell})+M_{R}^{+}(\alpha,{\ell}),\\ M_{N}^{+}(\alpha,{\ell})&=M_{N}^{+}(\alpha,{\ell},k=0)+M_{N}^{+}(\alpha,{\ell},k\neq 0),\\ M_{R}^{+}(\alpha,{\ell})&=M_{R,1}^{+}(\alpha,{\ell})+M_{R,2}^{+}(\alpha,{\ell})+M_{R,3}^{+}(\alpha,{\ell})+O(1).\end{split}

We can also split M(α,)M^{-}(\alpha,{\ell}) similarly using Remark 3.1. We will evaluate MN+(α,,k=0)M_{N}^{+}(\alpha,{\ell},k=0), MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0), respectively, in Sections 4 and 5. The analysis for MR,1+(α,)M_{R,1}^{+}(\alpha,{\ell}), MR,2+(α,)M_{R,2}^{+}(\alpha,{\ell}) and MR,3+(α,)M_{R,3}^{+}(\alpha,{\ell}) will be done in Section 6. We complete the proof of Theorem 1.4 in Section 7.

4. Evaluation of MN+(α,,k=0)M_{N}^{+}(\alpha,{\ell},k=0)

Recall MN+(α,,k=0)M_{N}^{+}(\alpha,{\ell},k=0) in (3.3). By the definition of Gk(n)G_{k}(n) in Lemma 2.3, we know G0(n)=ϕ(n)G_{0}(n)=\phi(n) if n=n=\Box, and G0(n)=0G_{0}(n)=0 otherwise. Here n=n=\Box means nn is a square number. Hence

(4.1) MN+(α,,k=0)=X2(a,2)=1aYμ(a)a2(n,2a)=1n=λf(n)n12+αϕ(n)nωα(n8xX)Φ(x)𝑑x=X2(a,2)=1aYμ(a)a212πi(1)Φ~(s+1)Z1(12+α+s,a,)8sXsgα(s)G(s)s𝑑s,\begin{split}&M_{N}^{+}(\alpha,{\ell},k=0)\\ &=\frac{X}{2}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{\begin{subarray}{c}(n,2a)=1\\ {\ell}n=\Box\end{subarray}}\frac{{\lambda}_{f}(n)}{n^{\frac{1}{2}+\alpha}}\frac{\phi({\ell}n)}{{\ell}n}\int_{-\infty}^{\infty}\omega_{\alpha}\left(\frac{n}{8xX}\right)\Phi(x)dx\\ &=\frac{X}{2}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(s+1)Z_{1}(\tfrac{1}{2}+\alpha+s,a,{\ell})8^{s}X^{s}g_{\alpha}(s)\frac{G(s)}{s}ds,\end{split}

where

Z1(12+γ,a,):=(n,2a)=1n=λf(n)n12+γϕ(n)n.Z_{1}(\tfrac{1}{2}+\gamma,a,{\ell}):=\sum_{\begin{subarray}{c}(n,2a)=1\\ {\ell}n=\Box\end{subarray}}\frac{{\lambda}_{f}(n)}{n^{\frac{1}{2}+\gamma}}\frac{\phi({\ell}n)}{{\ell}n}.

For simplicity we use E1(γ;p),E2(γ;p),E3(γ;p)E_{1}(\gamma;p),E_{2}(\gamma;p),E_{3}(\gamma;p) to denote the three Euler factors in (1.5), (1.6), (1.7), respectively. For Re(γ)>0{\operatorname{Re}}(\gamma)>0, write

(4.2) 𝒜(γ,a,):=p|1E1(γ;p)p1p|2E2(γ;p)(p,2a)=1(E3(γ;p)+1p21).\displaystyle\mathcal{A}(\gamma,a,{\ell}):=\prod_{p|{\ell}_{1}}E_{1}(\gamma;p)\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}\\ p|{\ell}_{2}\end{subarray}}E_{2}(\gamma;p)\prod_{(p,2a{\ell})=1}\left(E_{3}(\gamma;p)+\frac{1}{p^{2}-1}\right).
Lemma 4.1.

For Re(γ)>0{\operatorname{Re}}(\gamma)>0, we have

Z1(12+γ,a,)=1112+γζ2a(2)𝒜(γ,a,).\displaystyle Z_{1}(\tfrac{1}{2}+\gamma,a,{\ell})=\frac{1}{{\ell}_{1}^{\frac{1}{2}+\gamma}\zeta_{2a}(2)}\mathcal{A}(\gamma,a,{\ell}).
Proof.

For each prime, let b1,b2b_{1},b_{2} be integers such that pb1||1p^{b_{1}}||{\ell}_{1} and pb2||2p^{b_{2}}||{\ell}_{2}. Change the variable n1n2n\rightarrow{\ell}_{1}n^{2}. We can do this because n={\ell}n=\Box implies 1n={\ell}_{1}n=\Box. It gives

Z1(12+γ,a,)\displaystyle Z_{1}(\tfrac{1}{2}+\gamma,a,{\ell}) =1112+γ(n,2a)=1λf(1n2)n1+2γp|12n(11p)\displaystyle=\frac{1}{{\ell}_{1}^{\frac{1}{2}+\gamma}}\sum_{(n,2a)=1}\frac{{\lambda}_{f}({\ell}_{1}n^{2})}{n^{1+2\gamma}}\prod_{p|{\ell}_{1}{\ell}_{2}n}\left(1-\frac{1}{p}\right)
=1112+γ(p,2a)=1r=0λf(pb1+2r)p(1+2γ)rq|pb1+b2+r(11q).\displaystyle=\frac{1}{{\ell}_{1}^{\frac{1}{2}+\gamma}}\prod_{(p,2a)=1}\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{b_{1}+2r})}{p^{(1+2\gamma)r}}\prod_{q|p^{b_{1}+b_{2}+r}}\left(1-\frac{1}{q}\right).

In the following, we consider three cases for the sum over rr above.

If (p,2a)=1(p,2a{\ell})=1, then b1=b2=0b_{1}=b_{2}=0. Thus

(4.3) r=0λf(p2r)p(1+2γ)rq|pr(11q)=1+(11p)r=1λf(p2r)p(12+γ)2r=1+(11p)×[12(1λf(p)p12+γ+1p1+2γ)1+12(1+λf(p)p12+γ+1p1+2γ)11].\begin{split}&\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{2r})}{p^{(1+2\gamma)r}}\prod_{q|p^{r}}\left(1-\frac{1}{q}\right)\\ &=1+\left(1-\frac{1}{p}\right)\sum_{r=1}^{\infty}\frac{{\lambda}_{f}(p^{2r})}{p^{(\frac{1}{2}+\gamma)2r}}\\ &=1+\left(1-\frac{1}{p}\right)\\ &\times\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}+\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}-1\right].\end{split}

If (p,2a)=1,p|1(p,2a)=1,p|{\ell}_{1}, then b1=1b_{1}=1 since 1{\ell}_{1} is square-free. Hence

(4.4) r=0λf(p1+2r)p(1+2γ)r(11p)=p12+γ(11p)r=0λf(p1+2r)p(12+γ)(1+2r)=p12+γ(11p)×[12(1λf(p)p12+γ+1p1+2γ)112(1+λf(p)p12+γ+1p1+2γ)1].\begin{split}&\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{1+2r})}{p^{(1+2\gamma)r}}\left(1-\frac{1}{p}\right)\\ &=p^{\frac{1}{2}+\gamma}\left(1-\frac{1}{p}\right)\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{1+2r})}{p^{(\frac{1}{2}+\gamma)(1+2r)}}\\ &=p^{\frac{1}{2}+\gamma}\left(1-\frac{1}{p}\right)\\ &\times\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}-\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\right].\end{split}

If (p,2a)=1,p1,p|2(p,2a)=1,p\nmid{\ell}_{1},p|{\ell}_{2}, then b1=0,b21b_{1}=0,b_{2}\geq 1. This gives

(4.5) r=0λf(p2r)p(1+2γ)r(11p)=(11p)[12(1λf(p)p12+γ+1p1+2γ)1+12(1+λf(p)p12+γ+1p1+2γ)1].\begin{split}&\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{2r})}{p^{(1+2\gamma)r}}\left(1-\frac{1}{p}\right)\\ &=\left(1-\frac{1}{p}\right)\left[\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}+\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\right].\end{split}

We then complete the proof by taking out the factor 11p21-\frac{1}{p^{2}} from (4.3), (4.4) and (4.5), and recalling the definition of 𝒜(γ,a,)\mathcal{A}(\gamma,a,{\ell}) in (4.2). ∎

It follows from (4.1) and Lemma 4.1 that

Lemma 4.2.

We have

MN+(α,,k=0)\displaystyle M_{N}^{+}(\alpha,{\ell},k=0)
=4Xπ2112+α(a,2)=1aYμ(a)a2p|a111p212πi(1)Φ~(s+1)𝒜(s+α,a,)11s8sXs\displaystyle=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(s+1)\mathcal{A}(s+\alpha,a,{\ell})\frac{1}{{\ell}_{1}^{s}}8^{s}X^{s}
×gα(s)G(s)sds.\displaystyle\times g_{\alpha}(s)\frac{G(s)}{s}ds.

5. Upper bound for MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0)

We shall prove an upper bound for MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0) in this section. Recall in (3.3) that

(5.1) MN+(α,,k0)=X2(a,2)=1aYμ(a)a2(n,2a)=1λf(n)n12+αk0(1)kGk(n)n×(cos+sin)(2πkxX2na2)ωα(n8xX)Φ(x)dx.\begin{split}M_{N}^{+}(\alpha,{\ell},k\neq 0)&=\frac{X}{2}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{(n,2a)=1}\frac{{\lambda}_{f}(n)}{n^{\frac{1}{2}+\alpha}}\sum_{k\neq 0}(-1)^{k}\frac{G_{k}({\ell}n)}{{\ell}n}\\ &\times\int_{-\infty}^{\infty}(\cos+\sin)\left(\frac{2\pi kxX}{2n{\ell}a^{2}}\right)\omega_{\alpha}\left(\frac{n}{8xX}\right)\Phi(x)dx.\end{split}
Lemma 5.1.

Let f(x)f(x) be a smooth function on >0\mathbb{R}_{>0}. Suppose ff decays rapidly as xx\rightarrow\infty, and f(n)(x)f^{(n)}(x) converges as x0+x\rightarrow 0^{+} for every n0n\in\mathbb{Z}_{\geq 0}. Then we have

(5.2) 0f(x)cos(2πxy)𝑑x=12πi(12)f~(1u)Γ(u)cos(sgn(y)πu2)(2π|y|)u𝑑u.\int_{0}^{\infty}f(x)\cos(2\pi xy)dx=\frac{1}{2\pi i}\int_{(\frac{1}{2})}\tilde{f}(1-u)\Gamma(u)\cos\left(\frac{\operatorname{sgn}(y)\pi u}{2}\right)(2\pi|y|)^{-u}du.

In addition, the equation (5.2) is also valid when cos\cos is replaced by sin\sin.

Proof.

See [19, Section 3.3]. ∎

By Lemma 5.1, the integral in (5.1) is

12πi(12)XuΓ(u)(cos+sgn(k)sin)(πu2)(na2π|k|)u\displaystyle\frac{1}{2\pi i}\int_{(\frac{1}{2})}X^{-u}\Gamma(u)(\cos+\operatorname{sgn}(k)\sin)\left(\frac{\pi u}{2}\right)\left(\frac{{\ell}na^{2}}{\pi|k|}\right)^{u}
×0Φ(x)xuωα(n8xX)dxdu\displaystyle\times\int_{0}^{\infty}\Phi(x)x^{-u}\omega_{\alpha}\left(\frac{n}{8xX}\right)dxdu
=1(2πi)2(12)(1)Φ~(1+su)Xu+sΓ(u)(cos+sgn(k)sin)(πu2)(a2π|k|)u\displaystyle=\frac{1}{(2\pi i)^{2}}\int_{(\frac{1}{2})}\int_{(1)}\tilde{\Phi}(1+s-u)X^{-u+s}\Gamma(u)(\cos+\operatorname{sgn}(k)\sin)\left(\frac{\pi u}{2}\right)\left(\frac{{\ell}a^{2}}{\pi|k|}\right)^{u}
×8s1nsugα(s)G(s)sdsdu.\displaystyle\times{8^{s}}\frac{1}{n^{s-u}}g_{\alpha}(s)\frac{G(s)}{s}dsdu.

Move the contour of the above integral to Re(u)=12+ε,Re(s)=12+2ε{\operatorname{Re}}(u)=\frac{1}{2}+\varepsilon,{\operatorname{Re}}(s)=\frac{1}{2}+2\varepsilon, and change the variable s=sus^{\prime}=s-u. This implies

1(2πi)2(12+ε)(ε)Φ~(1+s)XsΓ(u)(cos+sgn(k)sin)(πu2)(a2π|k|)u\displaystyle\frac{1}{(2\pi i)^{2}}\int_{(\frac{1}{2}+\varepsilon)}\int_{(\varepsilon)}\tilde{\Phi}(1+s)X^{s}\Gamma(u)(\cos+\operatorname{sgn}(k)\sin)\left(\frac{\pi u}{2}\right)\left(\frac{{\ell}a^{2}}{\pi|k|}\right)^{u}
×8s+u1nsgα(s+u)G(s+u)s+udsdu.\displaystyle\times{8^{s+u}}\frac{1}{n^{s}}g_{\alpha}(s+u)\frac{G(s+u)}{s+u}dsdu.

Together with (5.1), it follows that

(5.3) MN+(α,,k0)=X2(a,2)=1aYμ(a)a2k0(1)k1(2πi)2(12+ε)(ε)Φ~(1+s)XsΓ(u)×(cos+sgn(k)sin)(πu2)(a2π|k|)u× 8s+ugα(s+u)G(s+u)s+uZ2(12+α+s,a,k,)dsdu,\begin{split}&M_{N}^{+}(\alpha,{\ell},k\neq 0)\\ &=\frac{X}{2{\ell}}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{k\neq 0}(-1)^{k}\frac{1}{(2\pi i)^{2}}\int_{(\frac{1}{2}+\varepsilon)}\int_{(\varepsilon)}\tilde{\Phi}(1+s)X^{s}\Gamma(u)\\ &\times(\cos+\operatorname{sgn}(k)\sin)\left(\frac{\pi u}{2}\right)\left(\frac{{\ell}a^{2}}{\pi|k|}\right)^{u}\\ &\times\ {8^{s+u}}g_{\alpha}(s+u)\frac{G(s+u)}{s+u}Z_{2}(\tfrac{1}{2}+\alpha+s,a,k,{\ell})dsdu,\end{split}

where

Z2(γ,a,k,):=(n,2a)=1λf(n)nγGk(n)n.\displaystyle Z_{2}(\gamma,a,k,{\ell}):=\sum_{(n,2a)=1}\frac{{\lambda}_{f}(n)}{n^{\gamma}}\frac{G_{k}({\ell}n)}{n}.
Lemma 5.2.

Write 4k=k1k224k=k_{1}k_{2}^{2}, where k1k_{1} is a fundamental discriminant (possibly k1=1k_{1}=1) and k2k_{2} is positive. Then for Re(γ)>12{\operatorname{Re}}(\gamma)>\frac{1}{2}, we have

(5.4) Z2(γ,a,k,)=L(12+γ,fχk1)Z3(γ,a,k,).\displaystyle Z_{2}(\gamma,a,k,{\ell})=L(\tfrac{1}{2}+\gamma,f\otimes\chi_{k_{1}})Z_{3}(\gamma,a,k,{\ell}).

Here

Z3(γ,a,k,):=pZ3,p(γ,a,k,),Z_{3}(\gamma,a,k,{\ell}):=\prod_{p}Z_{3,p}(\gamma,a,k,{\ell}),

where

Z3,p(γ,a,k,):=1λf(p)χk1(p)p12+γ+χk1(p)2p1+2γif p|2a,and\displaystyle Z_{3,p}(\gamma,a,k,{\ell}):=1-\frac{{\lambda}_{f}(p)\chi_{k_{1}}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{\chi_{k_{1}}(p)^{2}}{p^{1+2\gamma}}\quad\text{if }p|2a,\quad\text{and}
Z3,p(γ,a,k,)\displaystyle Z_{3,p}(\gamma,a,k,{\ell})
:=(1λf(p)χk1(p)p12+γ+χk1(p)2p1+2γ)r=0λf(pr)prγGk(pr+ordp())prif p2a.\displaystyle:=\left(1-\frac{{\lambda}_{f}(p)\chi_{k_{1}}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{\chi_{k_{1}}(p)^{2}}{p^{1+2\gamma}}\right)\sum_{r=0}^{\infty}\frac{{\lambda}_{f}(p^{r})}{p^{r\gamma}}\frac{G_{k}(p^{r+\operatorname{ord}_{p}({\ell})})}{p^{r}}\quad\text{if }p\nmid 2a.

Moreover, Z3(γ,a,k,)Z_{3}(\gamma,a,k,{\ell}) is analytic in the region Re(γ)>0{\operatorname{Re}}(\gamma)>0 and is uniformly bounded by aε|k|ε12+ε(,k22)12a^{\varepsilon}|k|^{\varepsilon}{\ell}^{\frac{1}{2}+\varepsilon}({\ell},k_{2}^{2})^{\frac{1}{2}} in the region Re(γ)>ε2{\operatorname{Re}}(\gamma)>\frac{\varepsilon}{2}.

Proof.

The proof is similar to [18, Lemma 5.3]. Note that Gk(n)G_{k}(n) is multiplicative. Hence

Z2(γ,a,k,)=(p,2a)=1r=0λf(pr)prγGk(pr+ordp())pr.Z_{2}(\gamma,a,k,{\ell})=\prod_{(p,2a)=1}\sum_{r=0}\frac{{\lambda}_{f}(p^{r})}{p^{r\gamma}}\frac{G_{k}(p^{r+\operatorname{ord}_{p}({\ell})})}{p^{r}}.

Then the identity (5.4) follows directly from a comparison of both sides.

When p2akp\nmid 2ak{\ell}, by the definition of Z3,p(γ,a,k,)Z_{3,p}(\gamma,a,k,{\ell}) and Lemma 2.4, we know

(5.5) Z3,p(γ,a,k,)=(1λf(p)χk1(p)p12+γ+χk1(p)2p1+2γ)(1+λf(p)χk1(p)p12+γ)=1+χk1(p)2p1+2γλf(p)2χk1(p)2p1+2γ+λf(p)χk1(p)3p32+3γ.\begin{split}Z_{3,p}(\gamma,a,k,{\ell})&=\left(1-\frac{{\lambda}_{f}(p)\chi_{k_{1}}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{\chi_{k_{1}}(p)^{2}}{p^{1+2\gamma}}\right)\left(1+\frac{{\lambda}_{f}(p)\chi_{k_{1}}(p)}{p^{\frac{1}{2}+\gamma}}\right)\\ &=1+\frac{\chi_{k_{1}}(p)^{2}}{p^{1+2\gamma}}-\frac{{\lambda}_{f}(p)^{2}\chi_{k_{1}}(p)^{2}}{p^{1+2\gamma}}+\frac{{\lambda}_{f}(p)\chi_{k_{1}}(p)^{3}}{p^{\frac{3}{2}+3\gamma}}.\end{split}

Hence Z3(γ,a,k,)Z_{3}(\gamma,a,k,{\ell}) is analytic in the region Re(γ)>0{\operatorname{Re}}(\gamma)>0.

It remains to prove the upper bound of Z3(γ,a,k,)Z_{3}(\gamma,a,k,{\ell}). For p2akp\nmid 2ak{\ell}, by (5.5) and the fact |λf(n)|τ(n)|{\lambda}_{f}(n)|\leq\tau(n), we get

(5.6) (p,2ak)=1Z3,p(γ,a,k,)1.\displaystyle\prod_{(p,2ak{\ell})=1}Z_{3,p}(\gamma,a,k,{\ell})\ll 1.

For p|2ap|2a, we have

(5.7) p|2aZ3,p(γ,a,k,)aε.\displaystyle\prod_{p|2a}Z_{3,p}(\gamma,a,k,{\ell})\ll a^{\varepsilon}.

For p2a,p|kp\nmid 2a,p|k{\ell}, we let pb1||k,pb2||p^{b_{1}}||k,p^{b_{2}}||{\ell}. We can assume b2b1+1b_{2}\leq b_{1}+1 since Gk(pr+b2)=0G_{k}(p^{r+b_{2}})=0 otherwise (by Lemma 2.4). We claim Z3,p(γ,a,k,)(1+b1+b2)2pmin(b2,b12+b22)Z_{3,p}(\gamma,a,k,{\ell})\ll(1+b_{1}+b_{2})^{2}p^{\min(b_{2},\lfloor\frac{b_{1}}{2}\rfloor+\frac{b_{2}}{2})}. In fact, the trivial bound Gk(pn)pnG_{k}(p^{n})\leq p^{n} gives Z3,p(γ,a,k,)(1+b1+b2)2pb2Z_{3,p}(\gamma,a,\allowbreak k,{\ell})\ll(1+b_{1}+b_{2})^{2}p^{b_{2}}, which proves the case b2b12+b22b_{2}\leq\lfloor\frac{b_{1}}{2}\rfloor+\frac{b_{2}}{2}. The remaining cases include: b1b_{1} even and b2=b1+1b_{2}=b_{1}+1, or b1b_{1} odd and b2=b1b_{2}=b_{1}, or b1b_{1} odd and b2=b1+1b_{2}=b_{1}+1. For b1b_{1} even and b2=b1+1b_{2}=b_{1}+1, by Lemma 2.4, we know Z3,p(γ,a,k,)pb1p=pb12+b22Z_{3,p}(\gamma,a,k,{\ell})\ll p^{b_{1}}\sqrt{p}=p^{\lfloor\frac{b_{1}}{2}\rfloor+\frac{b_{2}}{2}}. The other two cases can be done similarly. This combined with (5.6) and (5.7) gives the upper bound for Z3(γ,a,k,)Z_{3}(\gamma,a,k,{\ell}). ∎

By (5.3) and Lemma 5.2, we have

MN+(α,,k0)\displaystyle M_{N}^{+}(\alpha,{\ell},k\neq 0)
=X2(a,2)=1aYμ(a)a2k0(1)k1(2πi)2(12+ε)(ε)Φ~(1+s)XsΓ(u)\displaystyle=\frac{X}{2{\ell}}\sum_{\begin{subarray}{c}(a,2{\ell})=1\\ a\leq Y\end{subarray}}\frac{\mu(a)}{a^{2}}\sum_{k\neq 0}(-1)^{k}\frac{1}{(2\pi i)^{2}}\int_{(\frac{1}{2}+\varepsilon)}\int_{(\varepsilon)}\tilde{\Phi}(1+s)X^{s}\Gamma(u)
×(cos+sgn(k)sin)(πu2)(a2π|k|)u\displaystyle\times(\cos+\operatorname{sgn}(k)\sin)\left(\frac{\pi u}{2}\right)\left(\frac{{\ell}a^{2}}{\pi|k|}\right)^{u}
×8s+ugα(s+u)G(s+u)s+uL(1+α+s,fχk1)Z3(12+α+s,a,k,)dsdu.\displaystyle\times{8^{s+u}}g_{\alpha}(s+u)\frac{G(s+u)}{s+u}L(1+\alpha+s,f\otimes\chi_{k_{1}})Z_{3}(\tfrac{1}{2}+\alpha+s,a,k,{\ell})dsdu.

Move the lines of the integral to Re(s)=12α+ε{\operatorname{Re}}(s)=-\frac{1}{2}-\alpha+\varepsilon, Re(u)=1+ε{\operatorname{Re}}(u)=1+\varepsilon without encountering any poles. Together with Lemma 2.5 and Lemma 5.2, it follows that

Lemma 5.3.

We have

MN+(α,,k0)12+εX12+εY.\displaystyle M_{N}^{+}(\alpha,{\ell},k\neq 0)\ll{\ell}^{\frac{1}{2}+\varepsilon}X^{\frac{1}{2}+\varepsilon}Y.

6. Evaluation of MR+(α,)M_{R}^{+}(\alpha,{\ell})

In this section we shall simplify MR,1+(α,)M_{R,1}^{+}(\alpha,{\ell}), and derive upper bounds for MR,2+(α,),MR,3+(α,)M_{R,2}^{+}(\alpha,{\ell}),M_{R,3}^{+}(\alpha,{\ell}) by proving the follow lemma.

Lemma 6.1.

We have

MR,1+(α,)\displaystyle M_{R,1}^{+}(\alpha,{\ell}) =4Xπ2112+αa>Y(a,2)=1μ(a)a2p|a111p212πi(1)Φ~(1+s)𝒜(α+s,a,)\displaystyle=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\sum_{\begin{subarray}{c}a>Y\\ (a,2{\ell})=1\end{subarray}}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(1+s)\mathcal{A}(\alpha+s,a,{\ell})
(6.1) ×11sXs8sgα(s)G(s)sds,\displaystyle\times\frac{1}{{\ell}_{1}^{s}}X^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds,
(6.2) MR,2+(α,)\displaystyle M_{R,2}^{+}(\alpha,{\ell}) εX12+εY,\displaystyle\ll{\ell}^{\varepsilon}X^{\frac{1}{2}+\varepsilon}Y,
(6.3) MR,3+(α,)\displaystyle M_{R,3}^{+}(\alpha,{\ell}) 12+εXh+εY2h1.\displaystyle\ll{\ell}^{\frac{1}{2}+\varepsilon}\frac{X^{h+\varepsilon}}{Y^{2h-1}}.

We give a proof for the above lemma in the rest of the section. Recall MR,1+(α,)M_{R,1}^{+}(\alpha,{\ell}) in (3.6). By interchanging summations and integrals, we know

(6.4) MR,1+(α,)=4Xπ2112+αa>Y(a,2)=1μ(a)12πi(1)Φ~(1+s)(r1,2)=1μ(r1)λf(r1)r11+2α+2s(r2,2)=1μ(r1r2)2r21+2α+2s×L(1+2α+2s,sym2f)Z(12+α+s,r1r22)(c,2)=1a,r1,r2|c1c211sXs8sgα(s)G(s)sds.\begin{split}&M_{R,1}^{+}(\alpha,{\ell})\\ &=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\sum_{\begin{subarray}{c}a>Y\\ (a,2{\ell})=1\end{subarray}}\mu(a)\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(1+s)\sum_{(r_{1},2{\ell})=1}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{1+2\alpha+2s}}\sum_{(r_{2},2{\ell})=1}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha+2s}}\\ &\times L(1+2\alpha+2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha+s,{\ell}r_{1}r_{2}^{2})\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2}}\frac{1}{{\ell}_{1}^{s}}X^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.\end{split}
Lemma 6.2.

For Re(γ)>0{\operatorname{Re}}(\gamma)>0,

(6.5) (r1,2)=1μ(r1)λf(r1)r11+2γ(r2,2)=1μ(r1r2)2r21+2γ×(c,2)=1a,r1,r2|c1c2L(1+2γ,sym2f)Z(12+γ,r1r22)=1a2p|a111p2𝒜(γ,a,).\begin{split}&\sum_{(r_{1},2{\ell})=1}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{1+2\gamma}}\sum_{(r_{2},2{\ell})=1}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\gamma}}\\ &\times\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2}}L(1+2\gamma,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\gamma,{\ell}r_{1}r_{2}^{2})\\ &=\frac{1}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}\mathcal{A}(\gamma,a,{\ell}).\end{split}
Proof.

The left-hand side of (6.5) is

(6.6) (r1,2)=1μ(r1)λf(r1)r11+2γ(r2,2)=1μ(r1r2)2r21+2γ(c,2)=1a,r1,r2|c1c2p|1r1E1(γ;p)×p1r1p|2r2E2(γ;p)(p,2r1r2)=1E3(γ;p).\begin{split}&\sum_{(r_{1},2{\ell})=1}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{1+2\gamma}}\sum_{(r_{2},2{\ell})=1}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\gamma}}\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2}}\prod_{p|{\ell}_{1}r_{1}}E_{1}(\gamma;p)\\ &\times\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}r_{1}\\ p|{\ell}_{2}r_{2}\end{subarray}}E_{2}(\gamma;p)\prod_{(p,2{\ell}r_{1}r_{2})=1}E_{3}(\gamma;p).\end{split}

Note

(6.7) (c,2)=1a,r1,r2|c1c2=[r1,r2,a]|c(c,2)=11c2=1[r1,r2,a]2(c,2)=11c2=1a2([r1,r2],a)2[r1,r2]2ζ2(2).\displaystyle\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2}}=\sum_{\begin{subarray}{c}[r_{1},r_{2},a]|c\\ (c,2{\ell})=1\end{subarray}}\frac{1}{c^{2}}=\frac{1}{[r_{1},r_{2},a]^{2}}\sum_{(c,2{\ell})=1}\frac{1}{c^{2}}=\frac{1}{a^{2}}\frac{([r_{1},r_{2}],a)^{2}}{[r_{1},r_{2}]^{2}}\zeta_{2{\ell}}(2).

We also see that

(6.8) p1r1p|2r2E2(γ;p)=p|2r2E2(γ;p)p|(r1,r2)E2(γ;p)1p|(1,2)E2(γ;p)1.\displaystyle\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}r_{1}\\ p|{\ell}_{2}r_{2}\end{subarray}}E_{2}(\gamma;p)=\prod_{p|{\ell}_{2}r_{2}}E_{2}(\gamma;p)\prod_{p|(r_{1},r_{2})}E_{2}(\gamma;p)^{-1}\prod_{p|({\ell}_{1},{\ell}_{2})}E_{2}(\gamma;p)^{-1}.

Inserting (6.7) and (6.8) into (6.6), the expression (6.6) now is

(6.9) ζ2(2)a2p|1E1(γ;p)p|2p1E2(γ;p)(p,2)=1E3(γ;p)(r1,2)=1(r2,2)=1H(r1,r2),\displaystyle\frac{\zeta_{2{\ell}}(2)}{a^{2}}\prod_{p|{\ell}_{1}}E_{1}(\gamma;p)\prod_{\begin{subarray}{c}p|{\ell}_{2}\\ p\nmid{\ell}_{1}\end{subarray}}E_{2}(\gamma;p)\prod_{(p,2{\ell})=1}E_{3}(\gamma;p)\sum_{(r_{1},2{\ell})=1}\sum_{(r_{2},2{\ell})=1}H(r_{1},r_{2}),

where

H(r1,r2)\displaystyle H(r_{1},r_{2})
:=μ(r1)λf(r1)r11+2γμ(r1r2)2r21+2γ([r1,r2],a)2[r1,r2]2p|r1E1(γ;p)p|r2E2(γ;p)\displaystyle:=\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}^{1+2\gamma}}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\gamma}}\frac{([r_{1},r_{2}],a)^{2}}{[r_{1},r_{2}]^{2}}\prod_{p|r_{1}}E_{1}(\gamma;p)\prod_{p|r_{2}}E_{2}(\gamma;p)
×p|(r1,r2)E2(γ;p)1p|r1r2E3(γ;p)1.\displaystyle\times\prod_{p|(r_{1},r_{2})}E_{2}(\gamma;p)^{-1}\prod_{p|r_{1}r_{2}}E_{3}(\gamma;p)^{-1}.

Clearly H(r1,r2)H(r_{1},r_{2}) is joint multiplicative. Then

(r1,2)=1(r2,2)=1H(r1,r2)\displaystyle\sum_{(r_{1},2{\ell})=1}\sum_{(r_{2},2{\ell})=1}H(r_{1},r_{2})
=(p,2)=1(1λf(p)p1+2γ(p,a)2p2E1(γ;p)E3(γ;p)1\displaystyle=\prod_{(p,2{\ell})=1}\left(1-\frac{{\lambda}_{f}(p)}{p^{1+2\gamma}}\frac{(p,a)^{2}}{p^{2}}E_{1}(\gamma;p)E_{3}(\gamma;p)^{-1}\right.
+1p1+2γ(p,a)2p2E2(γ;p)E3(γ;p)1).\displaystyle+\left.\frac{1}{p^{1+2\gamma}}\frac{(p,a)^{2}}{p^{2}}E_{2}(\gamma;p)E_{3}(\gamma;p)^{-1}\right).

It follows that

(6.10) (p,2)=1E3(γ;p)(r1,2)=1(r2,2)=1H(r1,r2)=(p,2a)=1(E3(γ;p)λf(p)p3+2γE1(γ;p)+1p3+2γE2(γ;p))p|a1=(p,2a)=1{1+pp+112(1λf(p)p12+γ+1p1+2γ)1(1λf(p)p12+γ1p2+1p1+2γ1p2)+pp+112(1+λf(p)p12+γ+1p1+2γ)1(1+λf(p)p12+γ1p2+1p1+2γ1p2)pp+1}.\begin{split}&\prod_{(p,2{\ell})=1}E_{3}(\gamma;p)\cdot\sum_{(r_{1},2{\ell})=1}\sum_{(r_{2},2{\ell})=1}H(r_{1},r_{2})\\ &=\prod_{(p,2a{\ell})=1}\left(E_{3}(\gamma;p)-\frac{{\lambda}_{f}(p)}{p^{3+2\gamma}}E_{1}(\gamma;p)+\frac{1}{p^{3+2\gamma}}E_{2}(\gamma;p)\right)\prod_{p|a}1\\ &=\prod_{(p,2a{\ell})=1}\Bigg{\{}1+\frac{p}{p+1}\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}\frac{1}{p^{2}}+\frac{1}{p^{1+2\gamma}}\frac{1}{p^{2}}\right)\\ &+\frac{p}{p+1}\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}\frac{1}{p^{2}}+\frac{1}{p^{1+2\gamma}}\frac{1}{p^{2}}\right)-\frac{p}{p+1}\Bigg{\}}.\end{split}

The last identity above is obtained by grouping terms involving pp+112(1λf(p)p12+γ+1p1+2γ)1\frac{p}{p+1}\frac{1}{2}(1\mp\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}})^{-1}. Note that

1λf(p)p12+γ1p2+1p1+2γ1p2\displaystyle 1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}\frac{1}{p^{2}}+\frac{1}{p^{1+2\gamma}}\frac{1}{p^{2}} =11p2+1p2(1λf(p)p12+γ+1p1+2γ),\displaystyle=1-\frac{1}{p^{2}}+\frac{1}{p^{2}}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right),
1+λf(p)p12+γ1p2+1p1+2γ1p2\displaystyle 1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}\frac{1}{p^{2}}+\frac{1}{p^{1+2\gamma}}\frac{1}{p^{2}} =11p2+1p2(1+λf(p)p12+γ+1p1+2γ).\displaystyle=1-\frac{1}{p^{2}}+\frac{1}{p^{2}}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right).

Thus, (6.10) can be simplified to

(6.11) (p,2a)=1{1+pp+112(1λf(p)p12+γ+1p1+2γ)1(11p2)+pp+1121p2+pp+112(1+λf(p)p12+γ+1p1+2γ)1(11p2)+pp+1121p2pp+1}=(p,2a)=1(11p2)(E3(γ;p)+1p21).\begin{split}&\prod_{(p,2a{\ell})=1}\left\{1+\frac{p}{p+1}\frac{1}{2}\left(1-\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\left(1-\frac{1}{p^{2}}\right)+\frac{p}{p+1}\frac{1}{2}\frac{1}{p^{2}}\right.\\ &\left.+\frac{p}{p+1}\frac{1}{2}\left(1+\frac{{\lambda}_{f}(p)}{p^{\frac{1}{2}+\gamma}}+\frac{1}{p^{1+2\gamma}}\right)^{-1}\left(1-\frac{1}{p^{2}}\right)+\frac{p}{p+1}\frac{1}{2}\frac{1}{p^{2}}-\frac{p}{p+1}\right\}\\ &=\prod_{(p,2a{\ell})=1}\left(1-\frac{1}{p^{2}}\right)\left(E_{3}(\gamma;p)+\frac{1}{p^{2}-1}\right).\end{split}

Substituting (6.11) in (6.9) completes the proof of Lemma 6.2. ∎

We then can complete the proof for (6.1) by using (6.4) and Lemma 6.2.

Next recall MR,2+(α,)M_{R,2}^{+}(\alpha,{\ell}) in (3.7), which is of the form

MR,2+(α,)=iκ112α(c,2)=1a>Ya|cμ(a)T(c,α,).M_{R,2}^{+}(\alpha,{\ell})=\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\mu(a)T(c,\alpha,{\ell}).

We extend the sum over a>Ya>Y to that over all positive integers. Then

(6.12) MR,2+(α,)=iκ112α(c,2)=1a|cμ(a)T(c,α,)iκ112α(c,2)=1aYa|cμ(a)T(c,α,).\displaystyle M_{R,2}^{+}(\alpha,{\ell})=\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{a|c}\mu(a)T(c,\alpha,{\ell})-\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a\leq Y\\ a|c\end{subarray}}\mu(a)T(c,\alpha,{\ell}).

We know a|cμ(a)=1\sum_{a|c}\mu(a)=1 when c=1c=1, and is zero otherwise. Thus

iκ112α(c,2)=1a|cμ(a)T(c,α,)\displaystyle\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{a|c}\mu(a)T(c,\alpha,{\ell})
=iκ112α12πi(1logX)4X12αsγα+sΦ~(12αs)π2L(12α2s,sym2f)\displaystyle=\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\frac{1}{2\pi i}\int_{(\frac{1}{\log X})}\frac{4X^{1-2\alpha-s}\gamma_{\alpha+s}\tilde{\Phi}(1-2\alpha-s)}{\pi^{2}}L(1-2\alpha-2s,\operatorname{sym}^{2}f)
×Z(12αs,)1s8sgα(s)G(s)sds.\displaystyle\times Z(\tfrac{1}{2}-\alpha-s,{\ell}){\ell}_{1}^{s}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.

Move the line of the above integral from Re(s)=1logX{\operatorname{Re}}(s)=\frac{1}{\log X} to Re(s)=12ε{\operatorname{Re}}(s)=\frac{1}{2}-\varepsilon. We encounter no poles due to Lemma 2.6 and Remark 2.2. It follows that

(6.13) iκ112α(c,2)=1a|cμ(a)T(c,α,)εX12+ε.\displaystyle\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{a|c}\mu(a)T(c,\alpha,{\ell})\ll{\ell}^{\varepsilon}X^{\frac{1}{2}+\varepsilon}.

For the second term of (6.12), we move the contour of the integral in T(c,α,)T(c,\alpha,{\ell}) to Re(s)=110{\operatorname{Re}}(s)=\frac{1}{10} without encountering any poles. We have

iκ112α(c,2)=1aYa|cμ(a)T(c,α,)\displaystyle\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a\leq Y\\ a|c\end{subarray}}\mu(a)T(c,\alpha,{\ell})
=iκ112αaY(a,2)=1μ(a)(r1,2)=1μ(r1)λf(r1)r1(r2,2)=1μ(r1r2)2r21+2α\displaystyle=\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{\begin{subarray}{c}a\leq Y\\ (a,2{\ell})=1\end{subarray}}\mu(a)\sum_{(r_{1},2{\ell})=1}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}}\sum_{(r_{2},2{\ell})=1}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}
×12πi(110)4X12αsγα+sΦ~(12αs)π2(c,2)=1a,r1,r2|c1c24α4s\displaystyle\times\frac{1}{2\pi i}\int_{(\frac{1}{10})}\frac{4X^{1-2\alpha-s}\gamma_{\alpha+s}\tilde{\Phi}(1-2\alpha-s)}{\pi^{2}}\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2-4\alpha-4s}}
×L(12α2s,sym2f)Z(12αs,r1r22)1s8sr22sgα(s)G(s)sds.\displaystyle\times L(1-2\alpha-2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}-\alpha-s,{\ell}r_{1}r_{2}^{2})\frac{{\ell}_{1}^{s}8^{s}}{r_{2}^{2s}}g_{\alpha}(s)\frac{G(s)}{s}ds.

Treat (c,2)=1a,r1,r2|c1c24α4s\sum_{\begin{subarray}{c}(c,2{\ell})=1\\ a,r_{1},r_{2}|c\end{subarray}}\frac{1}{c^{2-4\alpha-4s}} as in (6.7). The above is

iκ112αaY(a,2)=1μ(a)(r1,2)=1μ(r1)λf(r1)r1(r2,2)=1μ(r1r2)2r21+2α\displaystyle\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{\begin{subarray}{c}a\leq Y\\ (a,2{\ell})=1\end{subarray}}\mu(a)\sum_{(r_{1},2{\ell})=1}\frac{\mu(r_{1}){\lambda}_{f}(r_{1})}{r_{1}}\sum_{(r_{2},2{\ell})=1}\frac{\mu(r_{1}r_{2})^{2}}{r_{2}^{1+2\alpha}}
×12πi(110)4X12αsγα+sΦ~(12αs)π2\displaystyle\times\frac{1}{2\pi i}\int_{(\frac{1}{10})}\frac{4X^{1-2\alpha-s}\gamma_{\alpha+s}\tilde{\Phi}(1-2\alpha-s)}{\pi^{2}}
×1a24α4s([r1,r2],a)24α4s[r1,r2]24α4sζ2(24α4s)L(12α2s,sym2f)\displaystyle\times\frac{1}{a^{2-4\alpha-4s}}\frac{([r_{1},r_{2}],a)^{2-4\alpha-4s}}{[r_{1},r_{2}]^{2-4\alpha-4s}}\zeta_{2{\ell}}(2-4\alpha-4s)L(1-2\alpha-2s,\operatorname{sym}^{2}f)
×Z(12αs,r1r22)1sr22s8sgα(s)G(s)sds.\displaystyle\times Z(\tfrac{1}{2}-\alpha-s,{\ell}r_{1}r_{2}^{2})\frac{{\ell}_{1}^{s}}{r_{2}^{2s}}8^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.

Move the contour of the integral above to Re(s)=12ε{\operatorname{Re}}(s)=\frac{1}{2}-\varepsilon without encountering any poles by Lemma 2.6 and Remark 2.2. In particular, the pole of ζ(24α4s)\zeta(2-4\alpha-4s) is canceled by the factor 14α4s1-4\alpha-4s in G(s)G(s). By the fact

|([r1,r2],a)24α4sa24α4s1[r1,r2]24α4s|1r1ε,\left|\frac{([r_{1},r_{2}],a)^{2-4\alpha-4s}}{a^{2-4\alpha-4s}}\frac{1}{[r_{1},r_{2}]^{2-4\alpha-4s}}\right|\leq\frac{1}{r_{1}^{\varepsilon}},

we obtain

(6.14) iκ112α(c,2)=1aYa|cμ(a)T(c,α,)εX12+εY.\displaystyle\frac{i^{\kappa}}{{\ell}_{1}^{\frac{1}{2}-\alpha}}\sum_{(c,2{\ell})=1}\sum_{\begin{subarray}{c}a\leq Y\\ a|c\end{subarray}}\mu(a)T(c,\alpha,{\ell})\ll{\ell}^{\varepsilon}X^{\frac{1}{2}+\varepsilon}Y.

Combining (6.12), (6.13) and (6.14) gives (6.2).

Finally, recall MR,3+(α,)M_{R,3}^{+}(\alpha,{\ell}) in (3.8). Note h12h\geq\frac{1}{2}. Then

MR,3+(α,)12+ε10(c,2)=1(Xc2)h+εa>Ya|cr1|cr2|c(r1r22)ε1012+εXh+εY2h1,\displaystyle M_{R,3}^{+}(\alpha,{\ell})\ll{\ell}^{\frac{1}{2}+\frac{\varepsilon}{10}}\sum_{(c,2{\ell})=1}\left(\frac{X}{c^{2}}\right)^{h+\varepsilon}\sum_{\begin{subarray}{c}a>Y\\ a|c\end{subarray}}\sum_{r_{1}|c}\sum_{r_{2}|c}(r_{1}r_{2}^{2})^{\frac{\varepsilon}{10}}\ll{\ell}^{\frac{1}{2}+\varepsilon}\frac{X^{h+\varepsilon}}{Y^{2h-1}},

which gives (6.3).

7. Proof of Theorem 1.4

By Lemmas 4.2 and 6.1,

(7.1) MR,1+(α,)+MN+(α,,k=0)=4Xπ2112+α(a,2)=1μ(a)a2p|a111p212πi(1)Φ~(s+1)𝒜(s+α,a,)11s×8sXsgα(s)G(s)sds,\begin{split}&M_{R,1}^{+}(\alpha,{\ell})+M_{N}^{+}(\alpha,{\ell},k=0)\\ &=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\sum_{(a,2{\ell})=1}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(s+1)\mathcal{A}(s+\alpha,a,{\ell})\frac{1}{{\ell}_{1}^{s}}\\ &\times 8^{s}X^{s}g_{\alpha}(s)\frac{G(s)}{s}ds,\end{split}

where 𝒜(s+α,a,)\mathcal{A}(s+\alpha,a,{\ell}) is defined in (4.2). It can be deduced that

(a,2)=1μ(a)a2p|a111p2𝒜(s+α,a,)\displaystyle\sum_{(a,2{\ell})=1}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}\mathcal{A}(s+\alpha,a,{\ell})
=p|1E1(s+α;p)p1p|2E2(s+α;p)(a,2)=1μ(a)a2p|a111p2\displaystyle=\prod_{p|{\ell}_{1}}E_{1}(s+\alpha;p)\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}\\ p|{\ell}_{2}\end{subarray}}E_{2}(s+\alpha;p)\sum_{(a,2{\ell})=1}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{1}{1-\frac{1}{p^{2}}}
×(p,2a)=1(E3(s+α;p)+1p21)\displaystyle\times\prod_{(p,2a{\ell})=1}\left(E_{3}(s+\alpha;p)+\frac{1}{p^{2}-1}\right)
=p|1E1(s+α;p)p1p|2E2(s+α;p)(p,2)=1(E3(s+α;p)+1p21)\displaystyle=\prod_{p|{\ell}_{1}}E_{1}(s+\alpha;p)\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}\\ p|{\ell}_{2}\end{subarray}}E_{2}(s+\alpha;p)\prod_{(p,2{\ell})=1}\left(E_{3}(s+\alpha;p)+\frac{1}{p^{2}-1}\right)
×(a,2)=1μ(a)a2p|a(E3(s+α;p)+1p21)1(11p2)\displaystyle\times\sum_{(a,2{\ell})=1}\frac{\mu(a)}{a^{2}}\prod_{p|a}\frac{(E_{3}(s+\alpha;p)+\frac{1}{p^{2}-1})^{-1}}{(1-\frac{1}{p^{2}})}
=p|1E1(α+s;p)p1p|2E2(α+s;p)(p,2)=1E3(α+s;p)\displaystyle=\prod_{p|{\ell}_{1}}E_{1}(\alpha+s;p)\prod_{\begin{subarray}{c}p\nmid{\ell}_{1}\\ p|{\ell}_{2}\end{subarray}}E_{2}(\alpha+s;p)\prod_{(p,2{\ell})=1}E_{3}(\alpha+s;p)
=L(1+2α+2s,sym2f)Z(12+α+s,).\displaystyle=L(1+2\alpha+2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha+s,{\ell}).

The second last equation is due to the multiplicity of the function μ(a)a2p|a\frac{\mu(a)}{a^{2}}\prod_{p|a}. This combined with (7.1) gives

(7.2) MR,1+(α,)+MN+(α,,k=0)=4Xπ2112+α12πi(1)Φ~(s+1)L(1+2α+2s,sym2f)Z(12+α+s,)11s×8sXsgα(s)G(s)sds.\begin{split}&M_{R,1}^{+}(\alpha,{\ell})+M_{N}^{+}(\alpha,{\ell},k=0)\\ &=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\frac{1}{2\pi i}\int_{(1)}\tilde{\Phi}(s+1)L(1+2\alpha+2s,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha+s,{\ell})\frac{1}{{\ell}_{1}^{s}}\\ &\times 8^{s}X^{s}g_{\alpha}(s)\frac{G(s)}{s}ds.\end{split}

Move the integration to the line Re(s)=12+ε{\operatorname{Re}}(s)=-\frac{1}{2}+\varepsilon with encountering one simple pole at s=0s=0 by Lemma 2.6 and Remark 2.2. This gives

(7.3) MR,1+(α,)+MN+(α,,k=0)=4Xπ2112+αΦ~(1)L(1+2α,sym2f)Z(12+α,)+O(X12+εε).\begin{split}&M_{R,1}^{+}(\alpha,{\ell})+M_{N}^{+}(\alpha,{\ell},k=0)\\ &=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\tilde{\Phi}(1)L(1+2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha,{\ell})+O(X^{\frac{1}{2}+\varepsilon}{\ell}^{\varepsilon}).\end{split}

By Remark 3.1, we know

(7.4) MR,1(α,)+MN(α,,k=0)=iκ4γαX12απ2112αΦ~(12α)L(12α,sym2f)Z(12α,)+O(X12+εε).\begin{split}&M_{R,1}^{-}(\alpha,{\ell})+M_{N}^{-}(\alpha,{\ell},k=0)\\ &=i^{\kappa}\frac{4\gamma_{\alpha}X^{1-2\alpha}}{\pi^{2}{\ell}_{1}^{\frac{1}{2}-\alpha}}\tilde{\Phi}(1-2\alpha)L(1-2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}-\alpha,{\ell})+O(X^{\frac{1}{2}+\varepsilon}{\ell}^{\varepsilon}).\end{split}

Similarly we can derive same upper bounds for MN(α,,k0)M_{N}^{-}(\alpha,{\ell},k\neq 0), MR,2(α,)M_{R,2}^{-}(\alpha,{\ell}) and MR,3(α,)M_{R,3}^{-}(\alpha,{\ell}) as those for MN+(α,,k0)M_{N}^{+}(\alpha,{\ell},k\neq 0), MR,2+(α,)M_{R,2}^{+}(\alpha,{\ell}) and MR,3+(α,)M_{R,3}^{+}(\alpha,{\ell}) in Lemmas 5.3 and 6.1. Therefore it follows from (3.9), (3.10), (7.3), (7.4), and Lemmas 5.3 and 6.1 that

M(α,)\displaystyle M(\alpha,{\ell}) =4Xπ2112+αΦ~(1)L(1+2α,sym2f)Z(12+α,)\displaystyle=\frac{4X}{\pi^{2}{\ell}_{1}^{\frac{1}{2}+\alpha}}\tilde{\Phi}(1)L(1+2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}+\alpha,{\ell})
+iκ4γαX12απ2112αΦ~(12α)L(12α,sym2f)Z(12α,)\displaystyle+i^{\kappa}\frac{4\gamma_{\alpha}X^{1-2\alpha}}{\pi^{2}{\ell}_{1}^{\frac{1}{2}-\alpha}}\tilde{\Phi}(1-2\alpha)L(1-2\alpha,\operatorname{sym}^{2}f)Z(\tfrac{1}{2}-\alpha,{\ell})
+O(12+εX12+εY)+O(12+εXh+εY2h1).\displaystyle+O({\ell}^{\frac{1}{2}+\varepsilon}X^{\frac{1}{2}+\varepsilon}Y)+O\left({\ell}^{\frac{1}{2}+\varepsilon}\frac{X^{h+\varepsilon}}{Y^{2h-1}}\right).

Taking Y=X2h14hY=X^{\frac{2h-1}{4h}} completes the proof of Theorem 1.4.

Acknowledgements

This paper is part of my Ph.D. thesis at the University of Lethbridge. I would like to thank my supervisors Habiba Kadiri and Nathan Ng for their constant encouragement and many discussions on this article. I am grateful to Amir Akbary, Andrew Fiori and Caroline Turnage-Butterbaugh for helpful suggestions, and to the referee for their valuable comments. This work was supported by the NSERC Discovery grants RGPIN-2020-06731 of Habiba Kadiri and RGPIN-2020-06032 of Nathan Ng.

References

  • [1]
  • [2] M. W. Alderson and M. O. Rubinstein. Conjectures and experiments concerning the moments of L(1/2,χd)L(1/2,\chi_{d}). Exp. Math., 21(3):307–328, 2012.
  • [3] H. M. Bui, A. Florea, J. P. Keating, and E. Roditty-Gershon. Moments of quadratic twists of elliptic curve LL-functions over function fields. Algebra Number Theory, 14(7):1853–1893, 2020.
  • [4] D. Bump, S. Friedberg, and J. Hoffstein. A nonvanishing theorem for derivatives of automorphic LL-functions with applications to elliptic curves. Bull. Amer. Math. Soc. (N.S.), 21(1):89–93, 1989.
  • [5] D. Bump, S. Friedberg, and J. Hoffstein. Nonvanishing theorems for LL-functions of modular forms and their derivatives. Invent. Math., 102(3):543–618, 1990.
  • [6] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith. Integral moments of LL-functions. Proc. London Math. Soc. (3), 91(1):33–104, 2005.
  • [7] D. Goldfeld and J. Hoffstein. Eisenstein series of 12{1\over 2}-integral weight and the mean value of real Dirichlet LL-series. Invent. Math., 80(2):185–208, 1985.
  • [8] D. R. Heath-Brown. A mean value estimate for real character sums. Acta Arith., 72(3):235–275, 1995.
  • [9] H. Iwaniec. On the order of vanishing of modular LL-functions at the critical point. Sém. Théor. Nombres Bordeaux (2), 2(2):365–376, 1990.
  • [10] J. P. Keating and N. C. Snaith. Random matrix theory and LL-functions at s=1/2s=1/2. Comm. Math. Phys., 214(1):91–110, 2000.
  • [11] V. A. Kolyvagin. Finiteness of E(𝐐)E({\bf Q}) and III(E,𝐐)(E,{\bf Q}) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3):522–540, 670–671, 1988.
  • [12] E. Kowalski and P. Michel. The analytic rank of J0(q)J_{0}(q) and zeros of automorphic LL-functions. Duke Math. J., 100(3):503–542, 1999.
  • [13] W. Luo and D. Ramakrishnan. Determination of modular forms by twists of critical LL-values. Invent. Math., 130(2):371–398, 1997.
  • [14] M. R. Murty and V. K. Murty. Mean values of derivatives of modular LL-series. Ann. of Math. (2), 133(3):447–475, 1991.
  • [15] I. Petrow. Moments of L(12)L^{\prime}(\frac{1}{2}) in the family of quadratic twists. Int. Math. Res. Not. IMRN, (6):1576–1612, 2014.
  • [16] M. Radziwiłł and K. Soundararajan. Moments and distribution of central LL-values of quadratic twists of elliptic curves. Invent. Math., 202(3):1029–1068, 2015.
  • [17] K. Sono. The second moment of quadratic Dirichlet LL-functions. J. Number Theory, 206:194–230, 2020.
  • [18] K. Soundararajan. Nonvanishing of quadratic Dirichlet LL-functions at s=12s=\frac{1}{2}. Ann. of Math. (2), 152(2):447–488, 2000.
  • [19] K. Soundararajan and M. P. Young. The second moment of quadratic twists of modular LL-functions. J. Eur. Math. Soc. (JEMS), 12(5):1097–1116, 2010.
  • [20] T. Stefanicki. Non-vanishing of L-functions attached to automorphic representations of GL(2). 1992. Thesis (Ph.D.)–McGill University (Canada).
  • [21] M. P. Young. The first moment of quadratic Dirichlet LL-functions. Acta Arith., 138(1):73–99, 2009.
  • [22] M. P. Young. The third moment of quadratic Dirichlet L-functions. Selecta Math. (N.S.), 19(2):509–543, 2013.