This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The First Insight-HXMT Gamma-Ray Burst Catalog: The First Four Years

Xin-Ying Song Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Shao-Lin Xiong Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Shuang-Nan Zhang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Cheng-Kui Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Xiao-Bo Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Yue Huang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Cristiano Guidorzi Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy INFN - Sezione di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy Filippo Frontera Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy Cong-Zhan Liu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Xu-Fang Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Gang Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Jin-Yuan Liao Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Ce Cai Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Qi Luo Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Shuo Xiao Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Qi-Bin Yi Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Department of Physics, Xiangtan University, Xiangtan, Hunan Province 411105, China Yao-Guang Zheng Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China College of physics Sciences & Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province 071002, China Deng-Ke Zhou Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Jia-Cong Liu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Wang-Chen Xue Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Yan-Qiu Zhang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Chao Zheng Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Zhi Chang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Zheng-Wei Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Xue-Feng Lu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Ai-Mei Zhang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Yi-Fei Zhang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Yong-Jie Jin Department of Engineering Physics, Tsinghua University, Beijing 100084, China Ti-Pei Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Department of Engineering Physics, Tsinghua University, Beijing 100084, China Fang-Jun Lu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Li-Ming Song Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China Mei Wu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Yu-Peng Xu Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Xiang Ma Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Ming-Yu Ge Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Shu-Mei Jia Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Bing Li Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Jian-Yin Nie Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Ling-Jun Wang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Juan Zhang Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Shi-Jie Zheng Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Xue-Juan Yang Department of Physics, Xiangtan University, Xiangtan, Hunan Province 411105, China Rong-Jia Yang College of physics Sciences & Technology, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province 071002, China
Abstract

The Hard X-ray Modulation Telescope (Insight-HXMT), is China’s first X-ray astronomy satellite launched on June 15, 2017. The anti-coincidence CsI detectors of the High Energy X-ray telescope (HE) onboard Insight-HXMT could serve as an all-sky gamma-ray monitor in about 0.2-3 MeV. In its first four years of operation, Insight-HXMT has detected 322 Gamma-Ray Bursts (GRBs) by offline search pipeline including blind search and targeted search. For the GOLDEN sample of Insight-HXMT GRBs, joint analyses were performed with other GRB missions, including Fermi Gamma-ray Burst Monitor (Fermi/GBM), Swift Burst Alert Telescope (Swift/BAT) and Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). It shows that Insight-HXMT can provide better constraint on GRB spectrum at higher energy band. The properties of Insight-HXMT GRBs are reported in detail, including their trigger time, duration, spectral parameters, peak fluxes of different time scales and fluence. This catalog is an official product of the Insight-HXMT GRB team.

catalogs – gamma-ray burst: general

1 Introduction

The Hard X-ray Modulation Telescope (HXMT), dubbed Insight-HXMT, launched on June 15, 2017, is China’s first X-ray astronomy satellite devoted to broad band observations in the 1-250 keV band. Insight-HXMT consists of three collimator-based telescopes: the High Energy X-ray Telescope (HE, Liu et al., 2020), the Medium Energy X-ray Telescope (ME, Cao et al., 2020) and the Low Energy X-ray Telescope (LE, Chen et al., 2020). Insight-HXMT/HE adopts an array of 18 NaI(Tl)/CsI(Na) phoswich detectors as the main detector plane, with a total geometric area of about 5100 cm2 and a combined Field of View (FOV) of about 5.7×5.75.7^{\circ}\times 5.7^{\circ} (FWHM)(HE, Liu et al., 2020). The CsI(Na) (CsI for brevity) in the phoswich detector of HE can be also used as an all-sky gamma-ray monitor in 0.2-3 MeV, since gamma-rays in this energy range can penetrate the spacecraft and deposit energy in the CsI detecor. Thus HE could play an important role in monitoring gamma-ray bursts (GRBs), MeV pulsars, Solar Flares (SFL), Terrestrial Gamma-ray Flashes (TGF) and other gamma-ray sources. The measured energy range (deposited energy) of CsI is about 40-800 keV in the normal gain (NG) mode and about 200 keV- 3 MeV in low gain (LG) mode. The NG and LG modes are achieved by adjusting the high voltage of the PMTs which readout the NaI(Tl)/CsI(Na) phoswich detectors.

There is neither on-board GRB trigger system nor prompt data telemetry for Insight-HXMT, thus GRBs are unveiled on-ground using two pipelines: the blind search is performed on all data acquired by Insight-HXMT/HE CsI detector; in addition, for each GRB detected by other astronomical satellites or instruments (called external triggers hereafter, in contrast to the internal triggers produced by Insight-HXMT itself) reported through the Gamma-ray Coordinates Network (GCN), the targeted search pipeline would be launched to search CsI data around the trigger time of external triggers.

From June 26th in 2017 to June 30th 2021, GRBs and others bursts including terrestrial gamma-ray flash (TGF), solar flares (SFL, Zhang et al., 2021) have been detected by Insight-HXMT, the gamma-ray counterparts of Gravitational Wave (GW) events (Li et al., 2018a; Zhang et al., 2018; Li et al., 2017); Fast radio bursts (FRB, Guidorzi et al., 2020) ) and High Energy Neutrino (HEN, e.g. Zheng et al., 2020), have been monitored as well. During the first four years of observation data, 660 bursts are found, where 322 are classified as GRBs, 245 as TGFs, 4 as SFLs, 33 as charged particles and 56 as unclassified. Targeted search were implemented for external triggers of great importance, including 41 HENs, 48 GWs and 39 FRBs. For each GRB, the trigger time in Universal Time Coordinated (UTC) and Mission Elapsed Time (MET) are recorded and the event data is selected between T0100\rm T_{0}-100s and T0+300\rm T_{0}+300s in most cases, where T0\rm T_{0} is trigger time from GCN or blind search. In addition, quick-analysis tools for GRBs and joint spectral fitting with other missions are developed for this catalog analysis, which are introduced in the following sections.

We start with a brief description of the HXMT/CsI detectors and calibration in Section 2 and refer Luo et al. (2020) for a more thorough and complete description of the instrument and calibration respectively. This is followed, in Section 3 the burst-searching algorithm and its up-to-date ability is introduced in details. In Section 4, a description of the methodology used in the production of this catalog is presented, including detector selection, data types used, energy selection and background fitting, and the source selection. In Section 5, catalog analysis and results are presented. In Section 6, the distribution of duration, hardness are discussed and all the GRBs catalog results are summarized.

2 Instrument

The High Energy X-ray Telescope (HE, Liu et al., 2020) consists of the main detector (HED), high energy collimator (HEC), auto-gain control detector (HGC), anti-coincidence shield detector (HVT), particle monitor (HPM), data processing and control box (HEB) and power box (HEA). As the main detector of HE, HED is responsible for the observation of celestial sources. It consists of 18 NaI(Tl)/CsI(Na) phoswich detectors (labelled as HED-0, 1 … to 17), each with a diameter of 190 mm and a collimator made of lead and tantalum. The NaI detectors are sensitive to the hard X-rays in 20-250 keV, whereas the CsI acts as an anti-coincidence detector to reduce the background of NaI. The thickness of the NaI and CsI crystals are 3.5 mm and 40 mm, respectively. HGC provides the auto-gain control and energy calibration for HED. HVTs act as an active shielding system to reduce HED’s background caused by charged particles. HPMs monitor the flux of charged particles and send out an alert to switch off the high voltages of HEDs and HVTs in high flux regions to avoid potential damage to the PMTs of these detectors. The overview of all telescopes aboard Insight-HXMT is shown in Figure 1.

Insight-HXMT/HE can observe the high energy sky with two observation scenarios (Zhang et al., 2020) which can work simultaneously:

  • (1)

    Collimator-based (pointed or scan) observation: using NaI/CsI detectors, HE can detect hard X-ray emission in 20-250 keV from the celestial sources within the FOV defined by collimators. HE can do pointed observation to a specific source, or scan observation to a small sky area.

  • (2)

    Gamma-ray all-sky monitoring: Gamma-ray photons with energy higher than \sim200 keV from all directions can penetrate the spacecraft and be detected by the CsI detectors. CsI can monitor the gamma-ray all-sky with the only exception of the occulted region by the Earth. This gamma-ray all-sky monitoring is an extended capability for HE and inapplicable for ME or LE telescopes aboard Insight-HXMT.

The primary observation scenario of HE is the collimator-based observation consisting of pointed observation and scan observation, both of which use the NaI as the main detector and detect sources within the field of view (FOV) of collimator in 20-250 keV. The CsI detectors mainly act as the anti-coincidence and shielding to reduce the background of NaI. Due to the high thickness of the CsI(Na) crystals, high energy (greater than about 200 keV) gamma-ray photons can penetrate the spacecraft and be recorded by the CsI detectors, thus the GRBs unocculted by the Earth can be detected. For each NaI/CsI phoswich detector of HE, the event-by-event data (called EVT data hereafter) is recorded and we can use the pulse width information in the EVT data to distinguish between NaI events and CsI events. For this paper, we only select these events recorded by CsI detectors by screening events with pulse width greater than 75. The response and calibration of the CsI detectors are mainly described in Section 4.1.

Refer to caption
Figure 1: The illustration of the satellite platform and the payloads of Insight-HXMT. The coordinate system used in this study is shown on the upper-left. It is adapted from Fig. 1 in Luo et al. (2020).

The gain of NaI/CsI detector is mainly controlled by the High Voltage of the PMT which converts the scintillation light produced by NaI/CsI crystals to the electric signals. To meet various observation requirements, two gain modes are designed for the HE NaI/CsI detectors: normal gain (NG) mode and low gain (LG) mode. The measured energy ranges for CsI detector are listed as bellow: the NG mode in 4080040-800 keV and the LG mode in 200-3000 keV (both refer to the deposited energies). NG mode is the main working mode that the auto-gain control system can keep the full-energy-peak of the 59.5 keV photons (emitted from a radioactive source 241Am) in a fixed channel of the NaI detector. In LG mode, the high voltage of the each Insight-HXMT/HE detector is reduced and the auto-gain control system is disabled to achieve a higher energy range detection. As derived from the two-year observations since Insight-HXMT has operated in-orbit, the E-C relationships of each Insight-HXMT/CsI detector for both NG and LG modes vary over time, so calibration of the instrumental response is of great importance.

3 Search for Bursts

A pipeline is developed to search for GRBs for blind search and the coherent search method for targeted search (Cai et al., 2021). The blind search software continually monitors each group (18 CsI detectors are divided into 6 groups, 3 in each group) of detectors count rates, for which the reason is to reduce statistical fluctuations of one or a few detectors, one of the main causes of false trigger. The pipeline is triggered when counts rates in the EVT data of three or more groups of CsI detectors exceed the background counts rates, by 3σ\sigma on five timescales: 0.05s, 0.1s, 0.2s, 0.5s and 1s by calculating an average of the counts rates of  10 s of the previous data as background.

If a GRB detected by other external missions, falls in the field of view of HE, but did not trigger the bind search, targeted search in HE/CsI data would be launched. The targeted coherent search method is applied to the EVT data of HE CsI detectors, which can recover true astrophysical bursts that are too weak to trigger through blind search. This coherent method was originally developed by Blackburn et al. (2015), improved by Goldstein et al. (2016), Goldstein et al. (2019), and verified by Kocevski et al. (2018). From the statistics of searched GRBs, we find the fluence (from GBM Burst Catalog) of HE targeted search could reach 107\sim 10^{-7} erg\rm erg cm2\rm cm^{-2} (10 keV–1 MeV) in duration of 0.256 s. For this paper, 15 GRBs that are found from targeted search are included and labeled in Table 3, while the rest are from blind search. Details of burst search are presented in a separate paper (Cai et al., 2021).

4 Catalog Analysis

4.1 Instrument Response

There are two parts in the instrumental response of CsI detectors: the energy redistribution of the photons from incident energy to deposition energy that is determined by the property of the CsI crystal and the mass distribution of satellite; and the Energy-Channel (E-C) relationship that is determined by the detectors and electronic system of the instrument. For the photon energy redistribution, the reliability is mainly determined by the accuracy of the mass model of the satellite and the payloads (Agostinelli et al., 2003). Based on the initial mass model of the satellite platform (Xie et al., 2015), we calibrate the mass model with the Crab pulse radiation as a standard candle (Li et al., 2018b), to generate accurate instrumental response for the all sky gamma-ray monitoring.

The in-flight E-C relationship and energy resolution of the instrument can be obtained by analyzing the characteristic lines of the in-orbit observed and the on-ground simulated background spectra (Li et al., 2019). The E-C relationship varies over time, whereas the energy resolution remains stable (Li et al., 2020). Therefore, we update the E-C relationship every month, and take the average energy resolution of all calibration results to generate the instrumental response.

After the above calibration, a new response matrix library is established and a simulated spectral analysis is performed to test the HXMT/CsI spectroscopy capabilities. Calibration of the instrumental response to GRB is carried out with GRBs (Luo et al., 2020). In a GRB observation, the incident direction of the GRB photons is supposed to be arbitrary, however, only the instrumental response to several directions can be calibrated directly. A common method of the instrumental response testing is the cross-calibration with other instruments by comparing the energy spectrum of the simultaneously observed GRB (Sakamoto et al., 2011; Tsujimoto et al., 2011; Tierney et al., 2010; Ishida et al., 2014). The detection efficiency of HXMT/CsI is checked by the joint spectral analyses with Fermi/GBM, Swift/BAT and Konus-Wind, in which we find that HXMT/CsI can provide better constraint on GRB spectrum at higher energy band (Luo et al., 2020). The instrumental responses are mainly obtained by Monte Carlo simulation with the Geant4 tool and the mass model of both the satellite and all the payloads, which is updated and tested with the Crab pulse emission in various incident directions. Both the Energy-Channel relationship and the energy resolution are calibrated in two working modes (NG mode and LG mode) with the different detection energy ranges. The simulated spectral analyses show that HXMT/CsI can constrain the spectral parameters much better in the high energy band than that in the low energy band. As introduced in (Luo et al., 2020), the joint spectral analyses are performed to ten bright GRBs observed simultaneously with HXMT/CsI and other instruments (Fermi/GBM, Swift/BAT, Konus-Wind), and the results show that the GRB flux given by HXMT/CsI is systematically higher by 7.0±8.8%7.0\pm 8.8\% than those given by the other instruments. The HXMT/CsI-Fermi/GBM joint fittings also show that the high energy spectral parameter can be constrained much better as the HXMT/CsI data are used in the joint fittings.

In summary, the instrumental responses of the HXMT/CsI detectors of Insight-HXMT are well calibrated in aspects of mass model, E-C relationship and the energy resolutions for both the NG and LG modes. Thanks to the large effective area in the high-energy band, as shown in Figure 2, HXMT/CsI shows its advantages in constraining the GRB spectra in high energy band, together with other missions (such as Fermi/GBM) which provide observations at lower energies.

Refer to caption
Figure 2: Effective areas of HXMT/CsI, Fermi/LAT, Fermi/GBM, Konus-Wind, Swift/BAT, CALET/CGBM and AstroSat/CZTI. The effective area of Fermi/GBM (NaI) is the averaged over the unocculted sky. It is adapted from Fig. 13 in Luo et al. (2020).

Note that the the deposited energy range is usually very different from incident energy bands due to the responses of HXMT/CsI detectors. Three types of spectra are listed in Table 1, where the soft and middle spectra are with BAND model, the hard spectra is with CPL model, and they are representative of GRBs of different hardness; details of BAND and CPL model are clarified in Section 4.7.1. They are simulated with the same amplitude in each type of spectra (use fakeitfakeit in Xspec 12.11.0, with all the model normalization factors equal to 1), and convoluted with the total response of 18 HXMT/CsI detectors. The deposited energy spectra of incident angle theta from 00^{\circ} to 180180^{\circ} are shown in NG mode (Figure 3) and in LG mode (Figure 4) respectively, which shows the ranges of deposited energy. Considering the deposited spectra and effective area shown in Figure 2, the deposited energy range of HXMT/CsI data is determined to be about 150-800 keV for NG mode and about 200-3000 keV for LG mode in the following spectra analysis.

Table 1: Three types of spectra and parameters. The soft and middle spectra are with BAND model, and the hard spectra is with CPL model.
Types of spectra α\alpha β\beta EpeakE_{\rm peak}(keV)
SOFT -1.9 -3.7 70
MIDDLE -1.0 -2.0 230
HARD -0.5 - 1500
Refer to caption
Figure 3: The deposited energy spectra of three types of BAND with incident angle θ\theta of 00^{\circ} to 180180^{\circ} are shown in NG mode. The azimuthal angle ϕ\phi is 00^{\circ}. Here the incident angle θ\theta and the azimuthal angle ϕ\phi denote the direction of gamma rays in spherical coordinates of HE/CsI detector.
Refer to caption
Figure 4: The deposited energy spectra of three types of BAND with incident angle θ\theta of 00^{\circ} to 180180^{\circ} are shown in LG mode. The azimuthal angle ϕ\phi is 00^{\circ}. Here the incident angle θ\theta and the azimuthal angle ϕ\phi denote the direction of gamma rays in spherical coordinates of HE/CsI detector.

4.2 GRB Samples

In summary, we define three types of GRB samples as shown in Table 2. Only the ‘GOLDEN’ GRBs could be utilized in the joint analysis, which are required to be located well and detected without saturation in HXMT/CsI data. The ‘SILVER’ samples denote those which are detected by other external missions, but not located or lack of data for joint analysis. In this analysis, public data offered by Fermi/GBM, Swift/BAT or GECAM are utilized for joint analysis. The bursts which are only detected by HXMT are labeled as ‘BRONZE’. The HXMT/HE data files will not be used if there is saturation in electronics subsystem during the GRBs, or the data quality is not good (such as data loss). Saturation is defined when the two following criteria are matched simultaneously: firstly, total count rate of 18 CsI detectors exceeds 20000 counts/s, as evaluated over four different timescales: 0.1, 0.2, 0.5, and 1.0 s; secondly, in at least one of the three groups of 6 CsI detectors that share the same Analog-to-Digital Converter (ADC) (Liu et al., 2020), the total light curve has at least one 5-ms bin with zero counts. As shown in Table 2, this kind of GRB samples are labeled as ‘IRON’, which are not utilized in the following analysis.

Table 2: Classification of four kinds of Insight-HXMT GRB samples.
Type Location and data for joint analysis External detected Saturation in HXMT data Utilized or not Number
GOLDEN Yes Yes No Yes 202
SILVER No Yes No No 44
BRONZE No No No No 50
IRON Yes/No Yes/No Yes No 26

4.3 Suppression of Background From Charged Particles

Among the main detectors of the HE telescope, HVTs act as an active shielding system to reduce HED background caused by charged particles  (HE, Liu et al., 2020). In order to suppress the background from charged particles, events which are coincidence with signal in HVTs are removed since they are likely produced by charged particles rather than gamma-rays. Besides, those events which also have energy deposition in NaI (Tl) detectors are also eliminated, because the signals of NaI (Tl) are mainly from the target source when we perform pointed or scan observation. Response of 18 CsI detectors in HED according to Section 2 are different but the discrepancy between them are small (unlike the case in Fermi/GBM or GECAM where detectors have different orientations), therefore, all dat events in 18 CsI detectors are utilized in this study.

4.4 Dead Time Correction

Dead time of HED detectors is complicated. According to Xiao et al. (2020), every 6 detectors in 18 NaI (Tl)/CsI (Na) detectors in HE share one ADC read-out electronics, thus a signal in any detector will cause dead time not only to the incident detector itself, but also to the other 5 detectors of the same ADC. The dead time of one event is normally about 484\sim 8 μ\mus, but it will be longer for the signals generated by high energy charged particles. There is a dead time counter in HEB for each HED, and the information is recorded in the form of proportion of dead time. The proportion of dead time in a time interval is determined with the method established in Xiao et al. (2020). The correction factors on the light curves are determined by 11Pdt\frac{1}{1-P_{\rm dt}}, where PdtP_{\rm dt} is the proportion of dead time in every time bin with bin width of 10 ms. The light curves of each CsI detector are corrected by multiplying with series of dead-time correction factors before background fitting is performed. As shown in Figure 5, the comparison between light curves with and without dead-time correction of a short GRB is present, which shows that the dead-time correction is necessary for refined analysis.

Refer to caption
Figure 5: A comparison between light curves with and without dead-time correction of a short GRB triggered at 2019-11-05T06:11:08.65 UTC. The histogram of red lines and error bars denote the light curve without dead-time correction, while the black with dead-time correction. Here MET means the mission elapsed time of HXMT.

4.5 Background Fitting

After the data have been selected for a given GRB, a background model in the form of polynomial function with time, is computed separately for each detector, based on user-selected time intervals for background region. Here we use a pre-burst interval and a post-burst interval as user-selected background regions. The order of polynomial is determined by the best goodness of fits with polynomials of different orders, where the order could be 0, 1, 2 respectively. For each detector, background fitting is carried out for each energy channel, and the background fit determined from pre-burst and post-burst intervals are used to estimate the background counts in the signal region of the burst. The net counts number of GRB in each channel is obtained by subtracting the counts of background from the total counts number. Background fitting is performed in each detector channel by channel in deposited energy spectrum, until the net counts and background counts of all channels for the given GRB are determined. Statistical errors of net counts are determined by the root of the sum of squares of the statistical errors of background estimation and Poisson errors of total counts (i.e. classical error propagation). Note that all light curves for each energy channel in each detector have been corrected with dead-time correction factors. The source time intervals for all detectors are chosen to be same for the GRB data analysis, thus data of all detectors could be added up to reduce the statistical uncertainties.

4.6 Source Time Interval Selection

Source time interval selection may be different when we perform different analyses. For the computation of duration, peak fluxes and fluence, the source interval is loosely selected, by starting from several seconds before the burst begins and ending at several seconds after the burst ends, and may have overlaps with pre-burst and post-burst intervals for background selection. If there exists difference of start- and end-time of a GRB between HXMT/CsI and other missions due to the energy detection range, the loosest source interval is applied for the joint data analysis of these missions. For the analysis of time-average spectra, the source time interval is usually selected to be narrower. The events in T90T_{\rm 90} or the whole duration in some cases based on deposited photon counts are selected for the time-averaged energy spectra.

In the case of joint analyses with other missions, the time delay due to the different arrival times of two spacecrafts is considered. The method mentioned in Hurley et al. (1999) is utilized to determine the time delay between HXMT and other missions. Figure 6 shows the time delays of other missions relative to HXMT for ‘GOLDEN’ GRB samples. The red histograms denote the time delays of Fermi/GBM, while the blue ones denote those of Swift/BAT and the green ones for those of GECAM. The negative values represent that GRBs arrived at other missions earlier than HXMT, while the positive numbers means that the GRB arrival time of HXMT is earlier. Some time delays reach up to tens of milliseconds and must be considered, because the time scale (64 ms) of deconvolved photon spectra is in the same order of magnitude.

Refer to caption
Figure 6: The distribution from ‘GOLDEN’ GRB samples of time delays of Fermi/GBM (dashed), Swift/BAT (dotted), and GECAM (dot-dashed) relative to HXMT are shown.

4.7 Duration, Fluence and Peak Flux

In order to take advantages of different missions and to reduce uncertainties in determination of the parameters of GRBs, joint spectral analyses between HXMT and Fermi/GBM, Swift/BAT and GECAM are applied on all ‘GOLDEN’ GRBs. This paper reports various measures of the duration, peak fluxes and fluence of each burst. We take GRB 200125B (HEB200125863), GRB 210121A (HEB2101210779) and GRB 210112A (HEB210112068) as samples to show the procedures performed on all GRBs in Appendix A. The fits to time-averaged and time-resolved spectra are all performed with Xspec 12.11.0.

4.7.1 Time-Average Spectrum

The time-averaged energy spectra are obtained from HXMT/CsI together with other instruments. For example, from Fermi/GBM, the spectra from two NaI(Tl) scintillation detectors working at 8 keV - 1 MeV and one BGO scintillation detectors at 200\sim 200 keV to 4\sim 4 MeV are selected according to the statistics of GRB signal. A joint fit with time-averaged energy spectra from HXMT/CsI and three (two NaI and one BGO) spectra from Fermi/GBM are performed, where the parameters of GRB spectral shape are shared but the amplitudes are set to be float for these four sets of data, to compensate the possible lack information either in the adopted spectrum model or the understanding of the instruments response. In most cases, the amplitudes of fitted spectra are consistent well with each other within one standard deviation.

To perform the joint fit, 6 models are chosen including a single power law (PL), Band’s GRB function (BAND, Band et al. (1993)), an exponential cut-off power law (CPL, also called Comptonized Model) and plus a component of black body function (BB) of float amplitudes. The PL model is represented with Equation 1 with two free parameters, where A denotes amplitude and α\alpha is the spectral index.

NPL(E)=AEα.N_{\rm PL}(E)=AE^{\alpha}. (1)

The BAND function has four free parameters: low and high energy spectral indices, denoted as α\alpha and β\beta respectively, the peak energy of νFν\nu F_{\nu} spectrum, denoted as EpeakE_{peak}, and amplitude, as shown in Equation 2.

NBAND(E)=A{(E100keV)αexp[(α+2)EEpeak],E(αβ)Epeakα+2(E100keV)βexp(βα)[(αβ)Epeak100keV(α+2)]αβ,E<(αβ)Epeakα+2.\begin{split}&N_{\rm BAND}(E)=\\ &A\begin{cases}\biggl{(}\frac{E}{100\ \rm keV}\biggr{)}^{\alpha}\exp\biggl{[}-\frac{(\alpha+2)E}{E_{\rm peak}}\biggr{]},\ E\geq\frac{(\alpha-\beta)\ E_{\rm peak}}{\alpha+2}\\ \biggl{(}\frac{E}{100\ \rm keV}\biggr{)}^{\beta}\exp(\beta-\alpha)\biggl{[}\frac{(\alpha-\beta)E_{\rm peak}}{100\ \rm keV\ (\alpha+2)}\biggr{]}^{\alpha-\beta},\\ E<\frac{(\alpha-\beta)\ E_{\rm peak}}{\alpha+2}.\end{cases}\end{split} (2)

CPL model is a subset of BAND model if β\beta is very small and the part of E<(αβ)Epeakα+2E<\frac{(\alpha-\beta)\ E_{\rm peak}}{\alpha+2} of BAND model is ignored. There are three parameters in CPL model: the amplitude A, the lower energy index α\alpha, and the νFν\nu F_{\nu} peak energy, EpeakE_{\rm peak}, as shown in Equation 3.

NCOMP(E)=A(EEpiv)αexp[(α+2)EEpeak].N_{\rm COMP}(E)=A\ \Bigl{(}\frac{E}{E_{\rm piv}}\Bigr{)}^{\alpha}\exp\Biggl{[}-\frac{(\alpha+2)\ E}{E_{\rm peak}}\Biggr{]}. (3)

The Equation 4 for the photon spectrum of a black body usually used in the spectral fitting, where K=L39/DL,10kpc2K=L_{\rm 39}/D^{2}_{\rm L,10kpc} is defined by the blackbody luminosity L in units of 103910^{39} erg s-1 in the GRB host galaxy frame and the luminosity distance DLD_{\rm L} in units of 10 kpc.

NBB(E)=K×8.0525E2(kT)4[exp(E/kT)1].N_{\rm BB}(E)=\frac{K\times 8.0525E^{2}}{(kT)^{4}[\exp(E/kT)-1]}. (4)

All models are formulated in units of photon flux with energy (E) in keV and multiplied by a normalization constant A (ph s-1 cm-2 keV-1), and kTkT and EE are measured in the observer’s frame. We determine the best spectral parameters by optimizing the Castor C statistic value. Castor Cstat (henceforth Cstat, Cash, 1979) is a likelihood technique modified for a particular data set to converge to a χ2\chi^{2} with an increase of the signal. χ2\chi^{2} is evaluated for each spectral fit that is performed through minimizing C-Stat. Among these 6 models, the best model is determined when a single additional parameter changes in χ2\chi^{2} by at least 6 since the probability for achieving this difference is 0.01 as suggested by Goldstein et al. (2012), which is a conservative threshold to avoid the false positive rates of the extra component.

As shown in Figure 18 in Appendix A, for GRB 200125B (HEB200125863), joint spectra fit with BAND model is the best model, with a reduced χ2\chi^{2} of 1.14. A BAND model of low energy spectral index α=0.78±0.01\alpha=-0.78\pm 0.01, high energy spectral index β=2.70±0.03\beta=-2.70\pm 0.03, and the νFν\nu F_{\nu} peak energy, Epeak=200.8±7.7E_{peak}=200.8\pm 7.7 keV, is determined. GRB 210121A is observed by HXMT/CsI, Fermi/GBM and GECAM, and joint analysis with the other two missions is shown in Figure 21. α=0.64±0.01\alpha=-0.64\pm 0.01, β=2.49±0.03\beta=-2.49\pm 0.03 and Epeak=932.4±23.8E_{peak}=932.4\pm 23.8 keV are determined with a BAND model. Figure 22 shows the spectrum of GRB 210112A detected by Swift/BAT and HXMT/CsI. The best model is determined to be CPL, with α=1.27±0.03\alpha=-1.27\pm 0.03, and Epeak=347.7±49.7E_{peak}=347.7\pm 49.7 keV for the CPL component. In the case of utilizing data of Swift/BAT only, PL model is determined and the EpeakE_{peak} is not measured due to lack of information from higher energy band.

The distribution of energy spectra parameter of ‘GOLDEN’ GRBs are shown in Figures 7,  8,  9. Up to 29% low energy spectral indices of the ‘GOLDEN’ samples violate -2/3 synchrotron “line-of-death” (Preece et al., 1998), while an additional 6% of the indices violate the -3/2 synchrotron cooling limit. The distribution of high-energy indices in Figure 9 peaks at a slope slightly steeper than -2 and have a extension toward steeper values. The EpeakE_{peak} distribution generally peaks around 200 keV, and spans over two orders of magnitude.

Refer to caption
Figure 7: The distribution of low energy spectral index α\alpha of ‘GOLDEN’ GRBs from time-averaged spectral fits are shown. The blue solid lines denote the total distribution of α\alpha from BAND model (red dashed lines), CPL model (green dotted lines) and PL (orange dot-dashed lines).
Refer to caption
Figure 8: The distribution of νFν\nu F_{\nu} peak energy EpeakE_{peak} of ‘GOLDEN’ GRBs from time-averaged spectral fits are shown. The blue solid lines denote the total distribution of EpeakE_{peak} from BAND model (red dashed lines), CPL model (green dotted lines).
Refer to caption
Figure 9: The distribution of high energy spectral index β\beta of ‘GOLDEN’ GRBs from time-averaged spectral fits are shown.

4.7.2 Duration and Fluence

For ‘SILVER’ and ‘BRONZE’ samples, the burst durations are determined by integrating the signal counts from GRBs with deposited energy in ranges of 40-800 keV in NG mode and 200-3000 keV in LG mode, respectively. The duration T50T_{\rm 50} and T90T_{\rm 90} are determined from the interval between the times where the burst has reached 25% (5%) and 75% (95%) of its maximum counts. The method developed for BATSE (Koshut et al., 1996) are used to determine the systematic error. Table 5 shows the values of durations of ‘SILVER’ and ‘BRONZE’ samples.

For ‘GOLDEN’ samples, the burst durations T50T_{\rm 50} and T90T_{\rm 90} are computed in the 10-2000 keV energy range. They are determined using a method similar to that developed for BATSE (Koshut et al., 1996), the counts spectra of HXMT/CsI and the other missions in each time bin 64 ms are deconvolved and the durations are computed from the time history of fitted photon spectra, as shown in Figure 19 and 20. Peak fluxes of different time scales are naturally obtained in the same analysis, and the fluence is obtained by integrating the deconvolved flux history.

It is worth noting that, to avoid the failure of fit to each time bin, the parameters of GRB shape are fixed to the best model determined in joint fit to the time-averaged spectrum, while the amplitudes are set to be float. Therefore, in addition to the systematic effects mentioned in Koshut et al. (1996), an extra systematic error is introduced by fixed parameters. To estimate the uncertainty from the fixed parameters, we simulate tens of sets of parameters of the best GRB model by smearing the mean values with covariance matrix within one standard deviation. Then the same procedures are applied to calculate tens of sets of duration values. The maximum changes from the duration values with the mean value are taken to be the systematic error from fixed GRB parameters. The systematic uncertainties of peak fluxes and fluences from the same source are also estimated in the same way. Note that in most cases of spectral parameters that are well determined, the system uncertainties of this kind are less than or numerically comparable with the the systematic effects, which could be ignored. As a sample of GRB 200125B, the total fluence (10-2000 keV) is 5.92e-05±\pm4.54e-07 erg\rm erg cm2\rm cm^{-2}, the peak flux (ph\rm ph cm2\rm cm^{-2} s-1) in 10-2000 keV of timescales of 64 ms, 256 ms, 1024 ms is 175.35±\pm9.57, 149.25±\pm3.78, 110.27±\pm1.63 respectively.

5 CATALOG RESULTS

Table 3 lists the 322 searched bursts that are classified as GRBs. In the last column of Table 3, abbreviation of GRBs types are given. Among 322 searched bursts files, 202 ‘GOLDEN’ samples are analyzed and collected in all. 44 ‘SILVER’ , 50 ‘BRONZE’ and 26 ‘IRON’ samples are also listed in Table 2.

The results of the duration of GRBs are derived from joint analyses of HXMT with Fermi/GBM, Swift/BAT or GECAM discussed in 4.7, and shown in Table 4. The values of T50T_{\rm 50} and T90T_{\rm 90} in 10-2000 keV energy range are listed along with their respective statistical error estimates and start times relative to the trigger time of HXMT. As part of the duration analysis, peak fluxes and fluence are computed. Table 6 shows the total fluence and peak fluxes of different time scales in 10-2000 keV. Table 5 lists the durations of ‘SILVER’ and ‘GOLDEN’ samples, which obtained from HXMT/CsI GRBs signal counts.

6 DISCUSSION and SUMMARY

Histograms of the T50T_{\rm 50} and T90T_{\rm 90} distributions are shown in 10-2000 keV energy range in Figure 10. Using the conventional division between the short and long GRB classes (T90T_{\rm 90}=2 s), we find 35 (17%) of the 202 ‘GOLDEN’ GRBs to be in the short regime. Within the quoted duration errors, the number of short GRB events ranges from 28 (14%) to 39 (19%). It is consistent with the results from Fermi/GBM GRB catalogs covering ten years (von Kienlin et al., 2020), which has 395 (17%) short GRBs from statistics in 10-1000 keV. Due to the limited statistic of GRB numbers, we do not perform lognormal fits to the distribution of durations.

Figure 16 shows the comparison of durations (T90T_{\rm 90}) from joint analyses with other missions and those from HXMT/CsI GRBs data, where the red line denotes the case of these two are equivalent to each other. Most GRBs are below the red line, because energy range of HXMT/CsI is higher than those of other missions, such as Fermi/GBM and that GRBs tend to be shorter at higher energy. Therefore, joint analysis is necessary for the measurement of duration in 10-2000 keV.

Despite of the limited statistic of ‘GOLDEN’ GRBs, as shown in Figure 11, anti-correlation of spectral hardness with duration is confirmed by the relationship between the hardness and duration, where the hardness is calculated as the ratio of the flux density from spectral parameters determined from time-averaged spectral fits in 50-300 keV to that in 10-50 keV. We note that, here the durations are those from joint analyses in energy range of 10-2000 keV, which also illustrates the anti-correlation between the hardness of GRBs spectra and duration.

Distributions of GRBs fluence are shown in Figure 15. Peak fluxes on timescales of 64 ms, 256 ms, 1024 ms are shown in Figure 12, Figure 13 and Figure 14 respectively. These distributions are not consistent with those from von Kienlin et al. (2020). The contributions are very small both below 10-7 erg\rm erg cm2\rm cm^{-2} and 1 ph\rm ph cm2\rm cm^{-2} s-1 in distributions of fluence and peak fluxes. It could be explained by the sharply fall of effective area below 100 keV. Weak short GRBs cannot cause enough statistics in HXMT/CsI, and thus cannot be detected significantly. Extremely bright GRBs would not be included in ‘GOLDEN’ samples because they are very likely to cause data saturation in HXMT and be labeled as ‘IRON’ samples.

Refer to caption
Refer to caption
Figure 10: Distributions of ‘GOLDEN’ GRB durations in the 10-2000 keV energy range are shown. The upper plot shows T50T_{\rm 50} and the lower plot shows T90T_{\rm 90}.
Refer to caption
Refer to caption
Figure 11: Scatter plots of spectral hardness vs. duration are shown for the two duration measures T50T_{\rm 50} (upper plot) and T90T_{\rm 90} (lower plot) as shown in Figure 10. The hardness is calculated as the ratio of the flux density from spectral parameters determined from time-averaged spectral fits in 50-300 keV to that in 10-50 keV. For clarity, the estimated errors are not shown but can be quite large for the weak events. Nevertheless, the anti-correlation of spectral hardness with burst duration is evident.
Refer to caption
Figure 12: Distribution of ‘GOLDEN’ GRBs peak flux on the 0.064 s timescale is shown in energy range of 10-2000 keV.
Refer to caption
Figure 13: Distribution of ‘GOLDEN’ GRBs peak flux on the 0.256 s timescale is shown in energy range of 10-2000 keV.
Refer to caption
Figure 14: Distribution of ‘GOLDEN’ GRBs peak flux on 1.024 s timescale is shown in energy range of 10-2000 keV.
Refer to caption
Figure 15: Distribution of ‘GOLDEN’ GRBs fluence is shown in energy range of 10-2000 keV.
Refer to caption
Figure 16: A comparison between the durations (T90T_{\rm 90}) of ‘GOLDEN’ GRBs from joint analysis and those obtained from HXMT/CsI GRBs counts are shown. The red line denotes the case of these two are equal to each other.
This work made use of the data from the Insight-HXMT mission, a project funded by China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS). The authors thank supports from the National Program on Key Research and Development Project (Grants No. 2016YFA0400801, 2021YFA0718500), the National Natural Science Foundation of China under Grants No. U1838113, and the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (Grant No. XDB23040400, XDA15052700). The authors are very grateful to the public data of Fermi/GBM, Swift/BAT and GECAM.
Table 3: GRB Triggers: Locations and Trigger Characteristics.
Trigger IDaaThe trigger ID starts with a ‘HEB’ label which means ‘HE-detected Burst’. GRB Name Trigger Time (UTC) Search MethodbbAs clarified in Sec 3, BLIND: blind search, TARGETED: targeted search. Gain Mode RA(°) DEC(°) err(°) location sourceccThe uncertainties of the locations from Swift/BAT are 90% containment, including systematic uncertainty, while those from Fermi/GBM and other detections are 1σ\sigma containment, statistical only. If the location source is from interplanetary network (IPN) triangulation, the error is determined to be the maximum dimension of error box area. Instrument detections are defined as: Fermi/LAT: Large Area Telescope, IBIS: Imager on Board Integral Satellite in INTEGRAL. Kinds of GRB samplesddAs shown in Table 2, G: GOLDEN, S: SILVER, B: BRONZE, I: IRON.
HEB170626040 GRB 170626B 2017-06-26T00:57:55.80 BLIND NG 289.8 -19.2 5.0 IPN S
HEB170626400 GRB 170626A 2017-06-26T09:37:22.32 BLIND NG 165.4 56.5 1.0 Fermi/GBM G
HEB170705115 GRB 170705A 2017-07-05T02:45:59.00 BLIND NG 191.7 18.3 0.1 Swift G
HEB170708045 GRB 170708A 2017-07-08T01:06:11.25 BLIND LG 335.8 19.8 4.6 IPN S
HEB170712139 GRB 170712A 2017-07-12T03:20:30.00 BLIND LG - - - - B
HEB170714049 GRB 170714B 2017-07-14T01:10:51.10 BLIND NG 18.2 29.5 - Fermi/GBM G
HEB170718152 - 2017-07-18T03:39:30.00 TARGETED NG 102.3 -35.0 - Fermi/GBM G
HEB170726248 GRB 170726B 2017-07-26T05:58:15.42 BLIND NG 166.4 -34.0 2.8 Fermi/GBM G
HEB170726793 GRB 170726A 2017-07-26T19:02:59.51 BLIND NG 297.8 6.6 - Fermi/GBM G
HEB170728960 GRB 170728B 2017-07-28T23:03:19.00 BLIND NG 238.0 70.1 - Fermi/GBM G
HEB170731751 - 2017-07-31T18:01:39.75 BLIND NG 245.2 64.3 6.3 Fermi/GBM G
HEB170801208 GRB 170801A 2017-08-01T04:59:55.25 BLIND NG - - - - B
HEB170802637 GRB 170802A 2017-08-02T15:18:26.00 BLIND NG 52.3 -39.2 2.1 Fermi/GBM G
HEB170803917 GRB 170803B 2017-08-03T22:00:31.00 BLIND NG - - - - S
HEB170805596 GRB 170805B 2017-08-05T14:18:49.50 BLIND NG 137.3 69.6 1.3 IPN S
HEB170805610 GRB 170805A 2017-08-05T14:38:34.00 BLIND NG 269.2 -18.3 4.6 IPN S
HEB170817908 GRB 170817B 2017-08-17T21:47:34.00 BLIND NG 83.0 50.1 3.7 Fermi/GBM G
HEB170825306 - 2017-08-25T07:22:03.00 BLIND NG 274.4 -26.2 3.2 Fermi/GBM G
HEB170826818 GRB 170826B 2017-08-26T19:38:58.00 BLIND NG 327.7 -31.8 1.0 Fermi/GBM G
HEB170829270 GRB 170829A 2017-08-29T06:29:39.90 BLIND NG - - - - S
HEB170901499 GRB 170901B 2017-09-01T11:59:56.50 BLIND NG - - - - B
HEB170903534 GRB 170903A 2017-09-03T12:49:11.00 BLIND NG 254.5 35.0 1.3 Fermi/GBM G
HEB170904406 GRB 170904A 2017-09-04T09:46.00.62 BLIND NG 35.4 -32.5 3.2 IPN S
HEB170904884 - 2017-09-04T21:13:07.10 BLIND NG - - - - B
HEB170906029 GRB 170906A 2017-09-06T00:43:06.00 BLIND LG 198.6 -53.5 12.2 Fermi/GBM G
HEB170912984 GRB 170912C 2017-09-12T23:38:12.60 BLIND NG 83.6 7.2 - Fermi/GBM G
HEB170918905 GRB 170918A 2017-09-18T21:43:35.40 BLIND NG - - - - B
HEB170921030 GRB 170921C 2017-09-21T00:43:37.00 BLIND NG - - - - B
HEB170923188 GRB 170923A 2017-09-23T04:31:05.44 BLIND NG 221.5 81.2 5.0 Fermi/GBM G
HEB170926340 GRB 170926A 2017-09-26T08:10:39.80 BLIND NG - - - - B
HEB171007498 GRB 171007A 2017-10-07T11:57:38.27 BLIND NG 135.6 42.8 0.1 Swift I
HEB171008079 GRB 171008A 2017-10-08T01:54:38.50 BLIND NG 232.6 24.0 - Fermi/GBM G
HEB171011045 GRB 171011B 2017-10-11T01:05:36.00 BLIND NG 158.9 1.6 8.1 IPN I
HEB171013350 GRB 171013B 2017-10-13T08:24:42.11 TARGETED NG 145.1 -32.6 30.3 Fermi/GBM G
HEB171020963 GRB 171020A 2017-10-20T23:07:10.75 BLIND NG 39.2 15.2 0.1 Swift G
HEB171030728 GRB 171030A 2017-10-30T17:29:45.00 BLIND NG 74.1 -19.5 23.4 IPN G
HEB171102106 GRB 171102A 2017-11-02T02:33:35.99 BLIND NG 188.8 54.3 11.5 IPN S
HEB171103965 GRB 171103A 2017-11-03T23:10:30.04 BLIND NG 249.5 -10.2 3.0 Fermi/GBM G
HEB171108279 GRB 171108B 2017-11-08T06:42:24.00 BLIND NG - - - - B
HEB171115217 GRB 171115B 2017-11-15T05:13:14.70 BLIND NG - - - - B
HEB171120555 GRB 171120A 2017-11-20T13:20:02.00 BLIND NG 163.8 22.5 0.1 Swift G
HEB171124234 GRB 171124A 2017-11-24T05:38:03.00 BLIND NG 333.9 35.1 1.6 Fermi/GBM G
HEB171207054 - 2017-12-07T01:18:42.45 TARGETED NG 314.4 51.7 9.5 Fermi/GBM G
HEB171209615 GRB 171209A 2017-12-09T14:46:16.22 BLIND NG 139.4 -30.5 0.1 Swift G
HEB171210492 GRB 171210A 2017-12-10T11:49:16.00 BLIND NG 338.0 27.5 1.0 Fermi/GBM G
HEB171215705 GRB 171215A 2017-12-15T16:55:26.57 BLIND NG 19.7 34.7 4.7 Fermi/GBM G
HEB171223818 GRB 171223A 2017-12-23T19:38:15.00 BLIND NG 115.8 -33.5 6.6 Fermi/GBM G
HEB171230955 GRB 171230B 2017-12-30T22:55:34.00 BLIND NG 89.5 -27.8 1.1 Fermi/GBM G
HEB180103047 GRB 180103A 2018-01-03T01:08:40.00 BLIND NG 159.6 -53.5 0.1 Swift S
HEB180103949 - 2018-01-03T22:47:12.00 BLIND NG - - - - B
HEB180110608 - 2018-01-10T14:35:59.22 BLIND NG 126.3 51.3 30.1 Fermi/GBM G
HEB180111695 GRB 180111A 2018-01-11T16:42:06.38 BLIND LG 149.8 48.2 0.1 Swift G
HEB180112687 GRB 180112A 2018-01-12T16:30:38.00 BLIND LG - - - - S
HEB180113011 GRB 180113B 2018-01-13T00:16:00.00 BLIND NG 354.0 13.5 1.2 Fermi/GBM I
HEB180113418 GRB 180113C 2018-01-13T10:02:07.50 BLIND NG 174.6 -64.7 1.0 Fermi/GBM I
HEB180119836 - 2018-01-19T20:04:49.78 BLIND NG 348.7 -15.0 2.5 Fermi/GBM G
HEB180127049 - 2018-01-27T01:11:12.91 BLIND NG 20.5 25.8 5.0 Fermi/GBM G
HEB180130744 - 2018-01-30T17:51:26.79 TARGETED NG 136.8 52.7 68.1 Fermi/GBM G
HEB180202211 GRB 180202A 2018-02-02T05:04:28.00 BLIND NG - - - - S
HEB180208764 - 2018-02-08T18:20:50.30 TARGETED NG 196.6 8.2 5.1 Fermi/GBM G
HEB180210517 GRB 180210A 2018-02-10T12:24:44.00 BLIND NG 3.3 21.0 1.5 Fermi/GBM G
HEB180210728 - 2018-02-10T17:29:06.00 BLIND NG - - - - B
HEB180218634 GRB 180218A 2018-02-18T15:14:05.49 BLIND NG 47.2 46.6 4.4 Fermi/GBM I
HEB180219482 GRB 180219A 2018-02-19T11:34:39.00 BLIND NG 86.2 32.3 1.0 Fermi/GBM I
HEB180221520 GRB 180221B 2018-02-21T12:30:01.00 BLIND NG - - - - S
HEB180226392 - 2018-02-26T09:24:58.73 BLIND NG - - - - S
HEB180305393 GRB 180305A 2018-03-05T09:26:08.66 BLIND NG 45.9 31.2 1.6 Fermi/GBM G
HEB180306972 - 2018-03-06T23:20:33.93 TARGETED NG 196.8 -32.2 14.8 Fermi/GBM G
HEB180309321 - 2018-03-09T07:43:10.62 TARGETED NG 186.1 34.5 2.1 Fermi/GBM G
HEB180313977 GRB 180313A 2018-03-13T23:28:17.53 BLIND NG 317.5 -26.5 5.7 Fermi/GBM G
HEB180326143 GRB 180326A 2018-03-26T03:26:07.06 BLIND NG 291.7 -13.5 3.1 IPN S
HEB180330891 - 2018-03-30T21:23:15.52 BLIND NG 164.2 83.9 3.7 Fermi/GBM G
HEB180331177 GRB 180331A 2018-03-31T04:14:55.70 BLIND NG 66.0 13.4 0.1 Swift G
HEB180401279 - 2018-04-01T06:42:43.78 BLIND NG 126.7 7.0 1.6 Fermi/GBM G
HEB180402406 GRB 180402A 2018-04-02T09:44:59.37 BLIND NG 251.9 -14.9 0.1 Swift G
HEB180404091 GRB 180404B 2018-04-04T02:11:38.64 BLIND NG 53.0 -49.3 1.2 Fermi/GBM G
HEB180405168 - 2018-04-05T04:02:53.06 BLIND NG 123.6 -33.5 2.2 Fermi/GBM S
HEB180409346 GRB 180409A 2018-04-09T08:18:18.67 BLIND LG 178.2 36.0 1.0 Fermi/GBM G
HEB180411359 GRB 180411B 2018-04-11T08:37:29.76 BLIND NG - - - - B
HEB180413117 - 2018-04-13T02:49:43.23 BLIND NG 168.2 -31.6 1.2 Fermi/GBM G
HEB180416923 GRB 180416B 2018-04-16T22:10:11.00 BLIND NG 353.5 74.6 2.1 Fermi/GBM G
HEB180427442 GRB 180427A 2018-04-27T10:37:03.00 BLIND NG 283.3 46.6 1.0 Fermi/GBM G
HEB180505539 GRB 180505A 2018-05-05T12:57:30.00 BLIND LG 4.5 -59.9 1.2 Fermi/GBM G
HEB180506902 - 2018-05-06T21:38:58.00 BLIND NG 61.2 -0.9 6.7 Fermi/GBM G
HEB180510808 GRB 180510A 2018-05-10T19:24:39.00 BLIND NG 276.3 -31.9 1.0 Swift G
HEB180523782 - 2018-05-23T18:46:28.00 BLIND LG 168.4 49.4 12.9 Fermi/GBM G
HEB180525151 - 2018-05-25T03:37:59.05 BLIND NG 103.3 19.9 14.9 Fermi/GBM G
HEB180603235 - 2018-06-03T05:39:50.00 BLIND LG - - - - S
HEB180605457 GRB 180605A 2018-06-05T10:59:25.00 BLIND LG 50.0 -50.4 1.0 Fermi/GBM G
HEB180615462 - 2018-06-15T11:05:56.00 BLIND NG 55.8 78.3 1.0 Fermi/GBM I
HEB180617871 - 2018-06-17T20:55:23.60 BLIND NG - - - - B
HEB180618030 GRB 180618A 2018-06-18T00:43:13.00 BLIND NG 169.9 73.8 0.1 Swift G
HEB180623696 GRB 180623A 2018-06-23T16:42:21.00 BLIND NG 214.5 -60.3 0.1 Swift G
HEB180625940 - 2018-06-25T22:34:41.50 BLIND NG 39.1 -62.3 6.4 Fermi/GBM G
HEB180626260 GRB 180626D 2018-06-26T06:15:14.00 BLIND NG - - - - B
HEB180626391 GRB 180626C 2018-06-26T09:23:50.95 BLIND NG 285.1 44.8 8.2 Fermi/GBM G
HEB180704233 GRB 180704A 2018-07-04T05:36:43.00 BLIND NG 32.6 70.0 0.1 Swift G
HEB180704525 GRB 180704B 2018-07-04T12:36:33.00 BLIND NG - - - Fermi/GBM S
HEB180715754 GRB 180715A 2018-07-15T18:07:05.00 BLIND NG 231.8 -4.4 4.8 Fermi/GBM G
HEB180718762 GRB 180718B 2018-07-18T18:18:24.00 BLIND NG 44.7 -31.5 0.6 Fermi/LAT G
HEB180720598 GRB 180720B 2018-07-20T14:21:39.65 BLIND LG 0.5 -2.9 1.2 Fermi/GBM I
HEB180722992 GRB 180722B 2018-07-22T23:49:13.00 BLIND NG 55.3 41.7 3.5 Fermi/GBM G
HEB180724807 GRB 180724A 2018-07-24T19:22:31.00 BLIND LG 285.2 -33.7 1.0 Fermi/GBM G
HEB180730017 - 2018-07-30T00:25:40.00 BLIND NG 98.0 44.5 8.3 Fermi/GBM G
HEB180801275 - 2018-08-01T06:37:03.51 TARGETED NG 240.9 -11.4 8.8 Fermi/GBM G
HEB180803590 - 2018-08-03T14:09:49.73 BLIND LG 71.6 57.6 17.4 Fermi/GBM G
HEB180804554 - 2018-08-04T13:17:48.00 BLIND NG - - - - B
HEB180804930 - 2018-08-04T22:20:38.28 BLIND NG 109.4 -69.3 1.8 Fermi/GBM G
HEB180816088 - 2018-08-16T02:07:18.91 TARGETED NG 126.2 -36.7 1.9 Fermi/GBM G
HEB180822561 - 2018-08-22T13:28:34.05 TARGETED NG 185.2 -61.5 2.2 Fermi/GBM G
HEB180828789 GRB 180828A 2018-08-28T18:57:26.58 BLIND NG 270.7 -23.9 1.2 Fermi/GBM G
HEB180912273 - 2018-09-12T06:34:15.40 BLIND NG 202.0 -26.2 2.1 Fermi/GBM I
HEB180914765 GRB 180914B 2018-09-14T18:22:48.00 BLIND NG 332.4 24.9 0.3 Fermi/LAT I
HEB180922461 - 2018-09-22T11:03:52.02 TARGETED NG 19.2 -0.1 4.4 Fermi/GBM I
HEB180925407 - 2018-09-25T09:46:30.54 TARGETED NG 181.9 -25.4 9.3 Fermi/GBM G
HEB180925609 GRB 180925A 2018-09-25T14:37:27.90 BLIND NG 315.2 -64.4 0.1 Swift G
HEB180927992 - 2018-09-27T23:49:20.19 BLIND NG 236.0 -1.7 5.7 Fermi/GBM G
HEB180929453 - 2018-09-29T10:52:33.92 BLIND NG 244.7 -8.9 8.4 Fermi/GBM G
HEB181008269 - 2018-10-08T06:28:13.50 BLIND NG 57.5 7.2 14.4 Fermi/GBM G
HEB181011181 - 2018-10-11T04:21:12.00 BLIND LG - - - - S
HEB181014479 - 2018-10-14T11:30:23.00 BLIND NG 228.9 16.5 1.3 Fermi/GBM G
HEB181028590 GRB 181028A 2018-10-28T14:09:43.00 BLIND LG 88.9 -21.2 2.5 IPN G
HEB181112582 - 2018-11-12T13:58:51.00 BLIND NG - - - - I
HEB181119605 GRB 181119A 2018-11-19T14:32:17.13 BLIND NG 86.4 37.1 1.8 Fermi/GBM G
HEB181121306 - 2018-11-21T07:21:29.27 BLIND NG 130.9 31.5 18.3 Fermi/GBM G
HEB181122381 - 2018-11-22T09:09:03.06 BLIND LG 93.7 34.4 4.2 Fermi/GBM G
HEB181123231 GRB 181123B 2018-11-23T05:33:03.09 BLIND NG 184.3 14.6 0.1 Swift G
HEB181201111 GRB 181201A 2018-12-01T02:39:53.00 BLIND NG 319.3 -12.6 0.1 IBIS S
HEB181212692 GRB 181212A 2018-12-12T16:37:45.50 BLIND NG 298.4 -3.7 2.3 Fermi/GBM G
HEB181213540 GRB 181213A 2018-12-13T12:57:38.00 BLIND NG 248.3 78.5 0.1 Swift G
HEB181217664 GRB 181217A 2018-12-17T15:56:57.00 BLIND NG 332.2 29.9 - Fermi/GBM G
HEB181222841 GRB 181222B 2018-12-22T20:11:37.00 BLIND NG 311.1 22.9 1.6 Fermi/GBM I
HEB181225489 GRB 181225A 2018-12-25T11:44:10.00 BLIND LG 348.1 -9.5 - Fermi/GBM G
HEB190102652 - 2019-01-02T15:40:17.27 BLIND NG - - - - S
HEB190103695 GRB 190103A 2019-01-03T16:41:52.64 BLIND NG 251.4 17.4 2.7 IPN I
HEB190103877 GRB 190103B 2019-01-03T21:03:50.00 BLIND NG 212.6 35.3 0.1 Swift G
HEB190110725 GRB 190110A 2019-01-10T17:24:53.00 BLIND NG 277.0 -49.2 2.2 Fermi/GBM G
HEB190114872 GRB 190114C 2019-01-14T20:57:02.00 BLIND LG 56.2 -31.8 3.3 Fermi/GBM I
HEB190117608 GRB 190117A 2019-01-17T14:36:47.00 BLIND NG - - - - S
HEB190131964 GRB 190131A 2019-01-31T23:08:35.00 BLIND NG 42.3 35.5 2.2 Fermi/GBM G
HEB190203655 - 2019-02-03T15:44:09.00 BLIND NG - - - - B
HEB190212129 GRB 190212A 2019-02-12T03:06:06.20 BLIND NG - - - - S
HEB190215771 GRB 190215A 2019-02-15T18:31:22.48 BLIND NG 342.3 36.2 1.0 Fermi/GBM G
HEB190218810 - 2019-02-18T19:27:40.00 BLIND NG - - - - B
HEB190222537 - 2019-02-22T12:53:27.15 BLIND NG 147.3 60.9 1.5 Fermi/GBM G
HEB190226515 GRB 190226A 2019-02-26T12:21:45.50 BLIND NG 224.4 -8.6 - Fermi/GBM G
HEB190305545 GRB 190305A 2019-03-05T13:05:19.00 BLIND NG - - - - I
HEB190306467 GRB 190306B 2019-03-06T11:13:27.95 BLIND NG - - - - B
HEB190310398 GRB 190310A 2019-03-10T09:33:25.00 BLIND NG 349.3 12.1 1.2 Fermi/GBM G
HEB190321931 GRB 190321A 2019-03-21T22:21:21.00 BLIND NG - - - - S
HEB190323878 GRB 190323D 2019-03-23T21:05:24.00 BLIND NG 34.7 10.3 1.1 Fermi/GBM S
HEB190324348 GRB 190324B 2019-03-24T08:21:21.00 BLIND NG 81.0 12.0 1.0 Fermi/GBM G
HEB190324947 GRB 190324A 2019-03-24T22:44:20.50 BLIND NG 49.6 -47.2 0.1 Swift G
HEB190326313 GRB 190326B 2019-03-26T07:31:47.00 BLIND NG 264.2 68.3 1.3 Fermi/GBM G
HEB190326316 GRB 190326A 2019-03-26T07:35:28.90 BLIND NG 341.6 39.9 0.1 Swift G
HEB190330207 - 2019-03-30T04:59:27.70 BLIND NG - - - - B
HEB190330694 GRB 190330A 2019-03-30T16:39:32.00 BLIND LG 86.9 22.6 2.1 Fermi/GBM G
HEB190331093 GRB 190331A 2019-03-31T02:14:38.00 BLIND NG 28.6 27.6 0.1 Swift G
HEB190331841 GRB 190331C 2019-03-31T20:12:00.10 BLIND NG - - - - S
HEB190401139 GRB 190401A 2019-04-01T03:20:21.00 BLIND NG 280.0 39.0 5.7 Fermi/GBM G
HEB190407671 GRB 190407A 2019-04-07T16:07:26.49 TARGETED NG 181.8 40.6 4.5 Fermi/GBM G
HEB190411406 GRB 190411A 2019-04-11T09:45:46.00 BLIND NG 286.0 -36.3 4.8 Fermi/GBM I
HEB190415173 GRB 190415A 2019-04-15T04:09:49.90 BLIND NG 26.9 13.9 6.6 Fermi/GBM I
HEB190422283 - 2019-04-22T06:48:17.50 BLIND NG 306.7 -73.0 1.8 Fermi/GBM G
HEB190424417 GRB 190424A 2019-04-24T10:00:42.00 BLIND NG 48.7 20.2 0.1 Swift G
HEB190507269 GRB 190507A 2019-05-07T06:28:23.00 BLIND NG 156.0 -12.8 4.8 Fermi/GBM G
HEB190510119 GRB 190510B 2019-05-10T02:52:13.23 TARGETED NG 124.5 -53.1 1.2 Fermi/GBM S
HEB190515189 GRB 190515A 2019-05-15T04:33:03.00 BLIND NG 137.2 39.3 5.0 Fermi/GBM G
HEB190525031 GRB 190525A 2019-05-25T00:45:47.65 TARGETED NG 338.0 5.4 4.0 Fermi/GBM G
HEB190530429 GRB 190530A 2019-05-30T10:19:08.90 BLIND NG 120.5 35.5 1.0 Fermi/GBM I
HEB190531840 GRB 190531B 2019-05-31T20:10:12.00 BLIND NG 24.3 -42.0 1.0 Fermi/GBM G
HEB190604446 GRB 190604A 2019-06-04T10:42:37.05 BLIND NG 342.5 46.4 1.0 Fermi/GBM G
HEB190605110 GRB 190605B 2019-06-05T02:39:08.00 BLIND NG - - - - B
HEB190606079 GRB 190606A 2019-06-06T01:55:07.78 BLIND NG 76.6 -0.6 6.0 IPN I
HEB190610477 GRB 190610A 2019-06-10T11:27:45.00 BLIND NG 46.2 -7.7 0.1 Swift S
HEB190613449 GRB 190613B 2019-06-13T10:47:00.00 BLIND NG 305.4 -4.6 0.1 Swift G
HEB190615612 GRB 190615B 2019-06-15T14:42:22.00 BLIND NG - - - - B
HEB190615636 GRB 190615A 2019-06-15T15:16:27.00 BLIND NG 191.4 49.4 2.3 Fermi/GBM G
HEB190619594 GRB 190619B 2019-06-19T14:16:37.00 BLIND NG 291.1 20.2 1.8 Fermi/GBM G
HEB190620507 GRB 190620A 2019-06-20T12:10:19.50 BLIND NG 166.2 26.8 4.4 Fermi/GBM G
HEB190706571 GRB 190706C 2019-07-06T13:42:25.95 BLIND NG 351.7 24.7 2.6 IPN I
HEB190706710 GRB 190706D 2019-07-06T17:03:05.40 BLIND NG 324.6 9.9 21.9 IPN S
HEB190719113 GRB 190719A 2019-07-19T02:44:08.00 BLIND NG 123.9 -30.8 5.2 Fermi/GBM B
HEB190720964 GRB 190720B 2019-07-20T23:08:39.50 BLIND NG 138.9 -55.6 2.3 Fermi/GBM G
HEB190723308 GRB 190723A 2019-07-23T07:24:16.00 BLIND NG 289.5 25.2 10.5 Fermi/GBM G
HEB190724030 GRB 190724A 2019-07-24T00:43:56.75 BLIND NG 170.3 15.1 13.6 Fermi/GBM G
HEB190726642 GRB 190726A 2019-07-26T15:24:59.20 BLIND NG 310.3 34.3 1.2 Fermi/GBM G
HEB190806675 GRB 190806A 2019-08-06T16:12:33.32 BLIND NG 121.1 -75.4 4.3 Fermi/GBM G
HEB190813520 GRB 190813A 2019-08-13T12:29:09.94 BLIND NG 106.4 -23.3 10.4 Fermi/GBM G
HEB190814837 GRB 190814A 2019-08-14T20:05:21.00 BLIND NG 60.4 -60.3 30.2 Fermi/GBM G
HEB190825878 GRB 190825B 2019-08-25T21:04:54.50 BLIND NG - - - - B
HEB190828783 GRB 190828D 2019-08-28T18:48:33.70 BLIND NG 251.9 -24.5 2.5 IBIS S
HEB190831271 - 2019-08-31T06:30:27.11 BLIND NG - - - - S
HEB190901890 GRB 190901A 2019-09-01T21:21:57.80 BLIND NG 230.6 -3.0 18.8 Fermi/GBM G
HEB190903721 GRB 190903A 2019-09-03T17:19:36.26 BLIND NG 70.5 -49.0 6.4 Fermi/GBM G
HEB190906045 GRB 190906A 2019-09-06T01:04:50.90 BLIND NG 267.6 -11.9 6.0 IPN S
HEB190906767 GRB 190906B 2019-09-06T18:25:09.29 BLIND NG 171.8 -71.6 3.5 Fermi/GBM G
HEB190915239 GRB 190915A 2019-09-15T05:44:58.40 BLIND NG 48.3 4.0 4.3 Fermi/GBM G
HEB190927106 - 2019-09-27T02:33:50.30 BLIND NG - - - - B
HEB190928550 GRB 190928A 2019-09-28T13:12:14.00 BLIND NG 36.6 29.5 18.4 IPN S
HEB190928551 GRB 190928A 2019-09-28T13:13:48.40 BLIND NG 36.6 29.5 18.4 IPN S
HEB190929884 - 2019-09-29T21:13:49.66 BLIND NG - - - - B
HEB191009297 GRB 191009A 2019-10-09T07:08:56.77 BLIND NG 29.4 63.4 9.1 Fermi/GBM G
HEB191019970 GRB 191019B 2019-10-19T23:17:13.35 BLIND NG 216.3 -40.6 1.0 Fermi/GBM G
HEB191021831 - 2019-10-21T19:57:29.00 BLIND NG - - - - B
HEB191025779 GRB 191025B 2019-10-25T18:42:09.10 BLIND NG 60.1 56.5 3.9 IPN I
HEB191031182 - 2019-10-31T04:23:11.36 BLIND NG - - - - S
HEB191031318 GRB 191031E 2019-10-31T07:38:55.54 BLIND NG - - - - S
HEB191031780 GRB 191031C 2019-10-31T18:43:16.00 BLIND NG 115.9 -62.3 1.3 Fermi/GBM G
HEB191105257 - 2019-11-05T06:11:08.65 BLIND NG 297.3 24.6 3.3 Fermi/GBM G
HEB191108003 GRB 191108A 2019-11-08T00:04:37.60 BLIND NG 232.9 10.8 17.3 Fermi/GBM G
HEB191111364 GRB 191111A 2019-11-11T08:44:29.95 BLIND NG 197.2 -23.2 13.4 Fermi/GBM G
HEB191113578 GRB 191113A 2019-11-13T13:52:44.52 BLIND NG 298.1 20.9 5.8 Fermi/GBM G
HEB191118925 GRB 191118A 2019-11-18T22:12:01.82 BLIND NG 219.8 -58.7 26.8 Fermi/GBM G
HEB191119445 - 2019-11-19T10:41:07.00 BLIND NG - - - - B
HEB191130506 - 2019-11-30T12:09:34.90 BLIND NG 345.5 -4.4 14.2 Fermi/GBM G
HEB191202378 - 2019-12-02T09:05:40.50 BLIND NG - - - - B
HEB191202867 GRB 191202A 2019-12-02T20:48:59.55 BLIND NG 246.4 17.1 1.8 Fermi/GBM G
HEB191203289 GRB 191203A 2019-12-03T06:57:19.08 BLIND NG 332.4 51.8 34.3 Fermi/GBM G
HEB191205740 GRB 191205A 2019-12-05T17:46:20.44 BLIND NG 14.0 -34.1 21.4 Fermi/GBM G
HEB191218112 GRB 191218A 2019-12-18T02:42:43.20 BLIND NG 301.1 -40.3 0.1 Swift G
HEB191221860 GRB 191221B 2019-12-21T20:39:10.70 BLIND NG 154.8 -38.1 0.1 Swift G
HEB191224829 - 2019-12-24T19:55:07.00 BLIND NG - - - - B
HEB191227069 GRB 191227A 2019-12-27T01:39:34.40 BLIND NG 319.2 -16.7 0.1 Swift G
HEB191227723 GRB 191227B 2019-12-27T17:21:44.10 BLIND NG 258.2 -26.0 2.4 Fermi/GBM I
HEB200109073 GRB 200109A 2020-01-09T01:45:51.89 BLIND NG 307.1 53.0 0.1 Swift G
HEB200111632 GRB 200111A 2020-01-11T15:11:07.61 BLIND NG 104.5 31.7 3.5 Fermi/GBM G
HEB200114153 GRB 200114A 2020-01-14T03:40:45.50 BLIND NG 199.4 -0.3 2.6 Fermi/GBM G
HEB200120961 GRB 200120A 2020-01-20T23:04:58.60 BLIND NG 139.4 -70.7 1.0 Fermi/GBM G
HEB200125863 GRB 200125B 2020-01-25T20:43:31.90 BLIND NG 7.5 64.7 1.0 Fermi/GBM G
HEB200211193 - 2020-02-11T04:38:56.10 BLIND NG - - - - B
HEB200219998 GRB 200219C 2020-02-19T23:57:12.05 BLIND NG 264.5 8.4 1.0 Fermi/GBM G
HEB200221161 GRB 200221A 2020-02-21T03:52:58.71 BLIND NG 157.1 33.1 5.0 Fermi/GBM G
HEB200227305 GRB 200227A 2020-02-27T07:20:16.15 BLIND NG 56.4 9.5 0.1 Swift G
HEB200313878 - 2020-03-13T21:04:58.00 BLIND NG - - - - B
HEB200323782 GRB 200323A 2020-03-23T18:46:32.80 BLIND NG 156.5 -55.5 1.5 Fermi/GBM G
HEB200325137 GRB 200325A 2020-03-25T03:18:31.70 BLIND NG 22.1 -29.1 4.2 Fermi/GBM G
HEB200326421 - 2020-03-26T10:07:36.86 BLIND NG - - - - S
HEB200326517 GRB 200326A 2020-03-26T12:24:47.90 BLIND NG 245.3 -21.1 6.9 Fermi/GBM G
HEB200412381 GRB 200412B 2020-04-12T09:08:45.80 BLIND NG 279.8 64.1 1.0 Fermi/GBM G
HEB200413712 - 2020-04-13T17:06:38.00 BLIND NG - - - - S
HEB200413743 - 2020-04-13T17:50:06.00 BLIND LG - - - - B
HEB200415366 GRB 200415A 2020-04-15T08:48:05.55 BLIND NG 6.1 -32.0 2.0 Fermi/GBM I
HEB200416295 GRB 200416A 2020-04-16T07:05:17.17 BLIND NG 335.7 -7.5 0.1 Swift G
HEB200418864 - 2020-04-18T20:45:00.28 BLIND NG 72.6 -1.0 - Fermi/GBM G
HEB200519472 GRB 200519A 2020-05-19T11:20:23.73 BLIND NG 255.3 -30.4 0.1 Swift G
HEB200521511 GRB 200521A 2020-05-21T12:16:41.26 BLIND NG 169.5 7.2 4.3 IPN S
HEB200526628 - 2020-05-26T15:04:48.31 BLIND NG - - - - B
HEB200601097 GRB 200601A 2020-06-01T02:19:56.50 BLIND NG 36.7 33.5 1.7 Fermi/GBM G
HEB200609379 GRB 200609A 2020-06-09T09:06:48.05 BLIND LG 16.3 67.4 1.5 Fermi/GBM G
HEB200617679 GRB 200617A 2020-06-17T16:18:05.80 BLIND NG 359.1 -59.8 - Fermi/GBM G
HEB200619108 GRB 200619A 2020-06-19T02:36:11.60 BLIND NG 101.3 56.7 4.0 Fermi/GBM G
HEB200707072 GRB 200707A 2020-07-07T01:44:02.54 BLIND NG 80.8 -14.9 3.1 Fermi/GBM G
HEB200711461 GRB 200711A 2020-07-11T11:04:32.93 BLIND NG 292.1 1.2 5.6 Fermi/GBM G
HEB200716315 GRB 200716B 2020-07-16T07:34:29.50 BLIND LG 350.7 -21.8 13.8 Fermi/GBM G
HEB200716956 GRB 200716C 2020-07-16T22:57:41.18 BLIND NG 195.6 25.1 3.5 Fermi/GBM G
HEB200801352 GRB 200801A 2020-08-01T08:27:14.08 BLIND NG 321.1 85.3 11.3 Fermi/GBM G
HEB200806645 GRB 200806A 2020-08-06T15:28:49.91 BLIND LG 52.9 37.1 0.1 Swift G
HEB200809653 GRB 200809B 2020-08-09T15:41:27.00 BLIND LG 359.8 -76.9 3.4 Fermi/GBM G
HEB200824594 GRB 200824A 2020-08-24T14:15:38.82 BLIND NG 117.7 10.5 15.4 Fermi/GBM G
HEB200903112 GRB 200903B 2020-09-03T02:42:40.87 BLIND NG 60.1 -13.8 14.6 Fermi/GBM G
HEB200919964 GRB 200919C 2020-09-19T23:08:22.64 BLIND LG 280.1 -23.7 16.8 Fermi/GBM G
HEB200922504 GRB 200922A 2020-09-22T12:06:46.00 BLIND NG 296.9 -55.2 0.1 Swift G
HEB200928551 GRB 200928B 2020-09-28T13:14:44.75 BLIND NG 85.7 2.3 17.8 Fermi/GBM G
HEB201013157 GRB 201013A 2020-10-13T03:46:30.20 BLIND NG 107.4 57.0 0.1 Swift G
HEB201016019 GRB 201016A 2020-10-16T00:27:49.50 BLIND NG 167.4 4.5 5.0 Fermi/GBM I
HEB201105229 GRB 201105A 2020-11-05T05:31:07.76 BLIND LG 244.5 16.0 1.0 Fermi/GBM G
HEB201122355 GRB 201122A 2020-11-22T08:32:01.00 BLIND NG - - - - S
HEB201209239 GRB 201209A 2020-12-09T05:44:52.53 BLIND NG 23.1 -1.7 0.1 Swift G
HEB201221591 GRB 201221B 2020-12-21T14:11:43.00 BLIND NG 110.6 32.0 4.1 Fermi/GBM G
HEB201226553 GRB 201226A 2020-12-26T13:16:26.60 BLIND NG 173.1 -6.0 - Fermi/GBM G
HEB201227634 GRB 201227A 2020-12-27T15:14:07.40 BLIND NG 170.1 -73.6 1.5 IPN I
HEB210112068 GRB 210112A 2021-01-12T01:38:06.55 BLIND NG 219.0 33.1 0.1 Swift G
HEB210119120 GRB 210119A 2021-01-19T02:54:09.82 BLIND NG 285.8 -63.1 7.8 Fermi/GBM G
HEB210121779 GRB 210121A 2021-01-21T18:41:48.75 BLIND LG 17.0 -46.4 0.6 IPN G
HEB210123304 GRB 210123A 2021-01-23T07:19:10.35 BLIND LG 345.1 -56.9 1.1 Fermi/GBM G
HEB210124558 GRB 210124B 2021-01-24T13:23:48.40 BLIND LG 274.3 -0.4 0.4 IPN S
HEB210129908 - 2021-01-29T21:48:56.90 BLIND NG - - - - B
HEB210207911 GRB 210207B 2021-02-07T21:52:49.60 BLIND LG 270.6 53.7 0.1 Swift G
HEB210208564 GRB 210208A 2021-02-08T13:32:25.63 BLIND NG 260.2 -12.7 0.1 IBIS S
HEB210213286 GRB 210213B 2021-02-13T06:52:27.18 BLIND NG - - - - S
HEB210225217 GRB 210225A 2021-02-25T05:13:36.00 BLIND NG 333.4 28.4 3.4 Fermi/GBM G
HEB210227114 - 2021-02-27T02:45:09.42 BLIND NG 115.8 61.1 - Fermi/GBM G
HEB210228057 GRB 210228B 2021-02-28T01:22:53.90 BLIND NG 283.5 -43.1 - Fermi/GBM G
HEB210306320 - 2021-03-06T07:41:07.50 BLIND NG - - - - B
HEB210306879 - 2021-03-06T21:07:09.56 BLIND NG - - - - B
HEB210307247 GRB 210307B 2021-03-07T05:56:37.94 BLIND LG 125.6 17.5 7.3 GECAM G
HEB210323918 GRB 210323A 2021-03-23T22:02:18.40 BLIND NG 317.9 25.4 0.1 Swift G
HEB210324468 - 2021-03-24T11:14:28.21 BLIND NG 148.5 37.2 - Fermi/GBM G
HEB210326057 GRB 210326A 2021-03-26T01:22:24.93 BLIND NG 58.0 15.1 39.2 Fermi/GBM G
HEB210326890 - 2021-03-26T21:22:24.93 BLIND NG - - - - B
HEB210328396 - 2021-03-28T09:30:52.77 BLIND NG - - - - B
HEB210405507 - 2021-04-05T12:11:26.68 BLIND NG - - - - B
HEB210406716 GRB 210406A 2021-04-06T17:11:28.92 BLIND NG 132.5 76.5 0.1 IBIS S
HEB210409894 GRB 210409A 2021-04-09T21:28:26.86 BLIND NG 70.9 -58.3 2.9 GECAM G
HEB210411147 GRB 210411A 2021-04-11T03:31:41.10 BLIND NG 259.4 -27.4 3.0 Fermi/GBM G
HEB210421454 GRB 210421B 2021-04-21T10:54:44.81 BLIND NG 272.1 57.2 2.1 Fermi/GBM G
HEB210422572 GRB 210422B 2021-04-22T13:44:37.13 BLIND NG 116.6 24.7 2.1 Fermi/GBM G
HEB210427206 GRB 210427A 2021-04-27T04:57:12.99 BLIND NG 177.3 -53.4 1.1 Fermi/GBM G
HEB210429071 - 2021-04-29T01:43:11.33 BLIND NG - - - - B
HEB210502295 - 2021-05-02T07:05:16.38 BLIND NG - - - - B
HEB210504958 - 2021-05-04T23:00:47.17 BLIND NG - - - - B
HEB210506027 GRB 210506A 2021-05-06T00:39:48.54 BLIND LG 224.2 -32.7 43.0 IPN B
HEB210511476 GRB 210511B 2021-05-11T11:26:39.26 BLIND NG 316.2 61.7 1.0 Fermi/GBM G
HEB210511647 - 2021-05-11T15:32:56.10 BLIND NG - - - - B
HEB210515546 GRB 210515A 2021-05-15T13:06:45.70 BLIND NG 117.1 77.3 14.6 Fermi/GBM G
HEB210516982 GRB 210516A 2021-05-16T23:34:45.86 BLIND NG 22.1 74.9 9.5 Fermi/GBM G
HEB210518544 GRB 210518A 2021-05-18T13:04:09.64 BLIND NG 270.0 49.6 1.8 Fermi/GBM G
HEB210520796 GRB 210520A 2021-05-20T19:07:02.00 BLIND NG 147.9 -67.0 3.7 Fermi/GBM G
HEB210602502 GRB 210602A 2021-06-02T12:04:01.32 BLIND LG 44.6 -2.7 0.2 MAXI/GSC S
HEB210605214 GRB 210605A 2021-06-05T05:08:58.39 BLIND NG 21.7 -41.5 2.0 Fermi/GBM G
HEB210606120 - 2021-06-06T02:53:02.89 BLIND NG - - - - B
HEB210606945 GRB 210606B 2021-06-06T22:41:05.24 BLIND NG 87.5 -18.4 1.2 Fermi/GBM G
HEB210607775 GRB 210607B 2021-06-07T18:37:17.80 BLIND NG - - - - B
HEB210607902 GRB 210607C 2021-06-07T21:39:20.72 BLIND NG - - - - B
HEB210610827 GRB 210610B 2021-06-10T19:51:05.05 BLIND NG 243.9 14.4 0.1 Swift G
HEB210615891 - 2021-06-15T21:23:51.50 BLIND NG - - - - B
HEB210615981 GRB 210615A 2021-06-15T23:33:53.60 BLIND NG 342.9 62.2 7.5 Fermi/GBM G
HEB210622064 GRB 210622A 2021-06-22T01:32:35.94 BLIND NG 242.1 -14.1 6.1 Fermi/GBM G
HEB210622339 - 2021-06-22T08:09:30.61 BLIND NG - - - - B
HEB210627311 GRB 210627A 2021-06-27T07:29:15.68 BLIND NG 148.3 44.5 10.7 Fermi/GBM G
HEB210627813 - 2021-06-27T19:31:37.68 BLIND NG - - - - B
Table 4: Durations (10-2000 keV) from joint analyses with ‘GOLDEN’ GRB samples.
Trigger Detectors T50T_{\rm 50} T50T_{\rm 50} start T90T_{\rm 90} T90T_{\rm 90} start T90T_{\rm 90} only with HXMT/CsI counts
ID Used (s) (s) (s) (s) (s)
HEB170626400 HXMT/CsI, Fermi-GBM (n0, n1, n2, b0) 7.040±\pm0.264 1.248 12.416±\pm0.202 0.224 12.690±\pm0.081
HEB170705115 HXMT/CsI, Fermi-GBM (n8, nb, b1) 33.792±\pm3.714 0.496 68.672±\pm1.601 -6.416 18.460±\pm6.340
HEB170714049 HXMT/CsI, Fermi-GBM (n3, n7, b0, b1) 0.128±\pm0.064 -0.156 0.448±\pm0.143 -0.412 0.835±\pm0.220
HEB170718152 HXMT/CsI, Fermi-GBM (n3, n4, b0) 10.624±\pm1.943 -7.144 24.768±\pm3.562 -13.352 24.160±\pm3.322
HEB170726248 HXMT/CsI, Fermi-GBM (n9, n7) 1.344±\pm0.143 -0.232 5.824±\pm1.537 -1.704 2.580±\pm0.061
HEB170726793 HXMT/CsI, Fermi-GBM (n8, n7, b1) 10.432±\pm0.272 1.364 26.240±\pm2.689 -5.612 22.871±\pm0.901
HEB170728960 HXMT/CsI, Fermi-GBM (n6, n9, b1) 12.864±\pm0.202 0.684 19.840±\pm0.962 0.364 16.860±\pm2.371
HEB170731751 HXMT/CsI, Fermi-GBM (n0, n3, b0) 41.664±\pm1.604 4.336 59.584±\pm3.623 -2.768 28.141±\pm6.360
HEB170802637 HXMT/CsI, Fermi-GBM (n6, n8, b1) 0.192±\pm0.091 0.696 2.176±\pm1.793 -1.288 0.820±\pm0.014
HEB170817908 HXMT/CsI, Fermi-GBM (n0, n1, n2, n5, b0) 1.472±\pm0.143 0.544 2.688±\pm0.202 0.288 2.620±\pm0.081
HEB170825306 HXMT/CsI, Fermi-GBM (n3, n7, b0, b1) 3.328±\pm0.181 -0.713 11.712±\pm2.244 -2.441 7.340±\pm1.872
HEB170826818 HXMT/CsI, Fermi-GBM (na, nb, b1) 5.952±\pm0.091 1.424 11.392±\pm0.264 -0.432 9.537±\pm0.161
HEB170903534 HXMT/CsI, Fermi-GBM (n4, n8, b0, b1) 11.328±\pm1.414 -2.502 26.048±\pm1.414 -6.022 19.050±\pm3.960
HEB170906029 HXMT/CsI, Fermi-GBM (n4, n3, b0) 38.912±\pm0.466 31.724 93.120±\pm1.294 8.556 63.610±\pm2.140
HEB170912984 HXMT/CsI, Fermi-GBM (n7, n8, b1) 1.728±\pm1.154 -1.680 2.880±\pm0.834 -2.256 4.005±\pm0.708
HEB170923188 HXMT/CsI, Fermi-GBM (n4, n7, b0) 12.672±\pm2.636 9.533 32.960±\pm2.561 -0.451 25.660±\pm1.310
HEB171008079 HXMT/CsI, Fermi-GBM (n4, n8, b0, b1) 5.248±\pm0.326 0.352 12.672±\pm3.721 -2.976 1.169±\pm1.819
HEB171013350 HXMT/CsI, Fermi-GBM (n2, n3, b0) 13.312±\pm0.345 6.296 32.000±\pm0.771 -2.920 22.710±\pm5.620
HEB171020963 HXMT/CsI, Swift/BAT 6.400±\pm1.231 -2.416 10.176±\pm0.091 -5.040 9.620±\pm2.070
HEB171030728 HXMT/CsI, Fermi-GBM (n7, n8, b1) 0.320±\pm0.453 0.052 1.344±\pm0.643 -0.716 0.475±\pm1.481
HEB171103965 HXMT/CsI, Swift/BAT 0.064±\pm0.091 2.032 0.192±\pm0.091 1.968 0.197±\pm0.022
HEB171120555 HXMT/CsI, Fermi-GBM (n0, n3, b0) 39.488±\pm0.143 1.312 52.160±\pm1.601 0.480 43.461±\pm9.610
HEB171124234 HXMT/CsI, Fermi-GBM (n0, n3, b0) 5.312±\pm0.362 -3.608 18.112±\pm0.653 -6.424 6.197±\pm0.490
HEB171207054 HXMT/CsI, Fermi-GBM (n0, n1, b0) 0.192±\pm0.091 -0.104 4.864±\pm2.625 -1.320 3.010±\pm0.358
HEB171209615 HXMT/CsI, Swift/BAT 61.376±\pm1.358 11.792 93.696±\pm2.567 -0.944 84.781±\pm10.092
HEB171210492 HXMT/CsI, Fermi-GBM (n9, n1, b0, b1) 48.128±\pm1.414 7.544 108.224±\pm3.137 1.592 15.950±\pm1.773
HEB171215705 HXMT/CsI, Fermi-GBM (n8, nb, b1) 13.696±\pm1.096 0.672 34.496±\pm8.192 -4.576 32.016±\pm8.414
HEB171223818 HXMT/CsI, Fermi-GBM (n7, n6, b1) 1.088±\pm0.219 0.632 1.216±\pm0.219 0.632 0.160±\pm0.014
HEB171230955 HXMT/CsI, Fermi-GBM (n7, n8, b1) 24.768±\pm1.105 6.056 77.440±\pm4.636 -1.368 20.050±\pm2.241
HEB180110608 HXMT/CsI, Fermi-GBM (n7, n9, b1) 7.488±\pm3.393 -0.712 13.952±\pm0.580 -4.424 14.290±\pm2.930
HEB180111695 HXMT/CsI, Swift/BAT 9.920±\pm0.091 2.604 27.008±\pm3.073 0.108 21.040±\pm6.820
HEB180119836 HXMT/CsI, Fermi-GBM (n0, n1, b0) 2.112±\pm0.202 2.800 6.144±\pm1.802 0.176 9.380±\pm3.110
HEB180127049 HXMT/CsI, Fermi-GBM (n3, n7, b0, b1) 7.744±\pm0.345 2.400 21.312±\pm1.541 -2.400 22.669±\pm1.377
HEB180130744 HXMT/CsI, Fermi-GBM (n6, n8, b1) 0.064±\pm0.264 -0.148 1.280±\pm1.154 -0.148 1.997±\pm0.516
HEB180208764 HXMT/CsI, Fermi-GBM (na, nb, b1) 4.544±\pm0.547 -1.896 27.328±\pm1.856 -15.976 5.603±\pm0.283
HEB180210517 HXMT/CsI, Fermi-GBM (n0, n1, b0) 16.704±\pm0.181 6.104 40.448±\pm0.707 -1.384 17.028±\pm1.415
HEB180305393 HXMT/CsI, Fermi-GBM (n9, na, b1) 4.096±\pm0.091 3.768 10.944±\pm0.453 1.464 4.002±\pm0.283
HEB180306972 HXMT/CsI, Fermi-GBM (n3, n5, b0) 9.984±\pm1.431 0.928 33.856±\pm9.605 -3.232 26.303±\pm12.649
HEB180309321 HXMT/CsI, Fermi-GBM (n7, n8, b1) 16.832±\pm1.694 5.344 44.608±\pm2.248 -1.504 50.456±\pm5.352
HEB180313977 HXMT/CsI, Fermi-GBM (n0, n1, b0) 0.064±\pm0.389 -0.008 0.832±\pm0.453 -0.008 1.201±\pm0.283
HEB180330891 HXMT/CsI, Fermi-GBM (n1, n3, b0) 4.800±\pm0.580 1.168 15.168±\pm1.282 0.144 5.860±\pm1.180
HEB180331177 HXMT/CsI, Swift/BAT 16.320±\pm1.350 1.232 29.568±\pm2.499 -4.272 35.780±\pm9.670
HEB180401279 HXMT/CsI, Fermi-GBM (n2, na, b0, b1) 6.208±\pm0.231 2.112 13.952±\pm0.462 -1.600 6.003±\pm0.283
HEB180402406 HXMT/CsI, Fermi-GBM (n6, n8, b1) 0.128±\pm0.091 -0.048 0.384±\pm0.326 -0.304 0.411±\pm0.007
HEB180404091 HXMT/CsI, Fermi-GBM (n3, n4, b0) 17.088±\pm1.421 7.119 59.904±\pm3.267 0.783 53.141±\pm8.120
HEB180409346 HXMT/CsI, Fermi-GBM (n9, b1) 6.912±\pm0.091 4.616 12.864±\pm0.264 1.288 11.510±\pm0.530
HEB180413117 HXMT/CsI, Fermi-GBM (n6, n7, b1) 21.760±\pm1.002 0.304 84.352±\pm7.059 -25.296 21.010±\pm5.206
HEB180416923 HXMT/CsI, Fermi-GBM (n4, n7, b0, b1) 28.352±\pm1.860 3.896 74.816±\pm1.473 0.376 27.250±\pm2.330
HEB180427442 HXMT/CsI, Fermi-GBM (n6, n4, b0, b1) 9.280±\pm0.202 3.952 29.824±\pm1.218 0.816 7.240±\pm0.311
HEB180505539 HXMT/CsI, Fermi-GBM (n8, n4, b0, b1) 4.224±\pm0.091 -3.032 28.096±\pm1.159 -20.376 27.751±\pm9.580
HEB180506902 HXMT/CsI, Fermi-GBM (n2, n5, b0, b1) 13.888±\pm0.528 1.504 21.760±\pm0.905 -2.720 17.409±\pm6.280
HEB180510808 HXMT/CsI, Swift/BAT 2.752±\pm0.091 0.688 39.744±\pm4.224 -9.296 20.526±\pm8.569
HEB180523782 HXMT/CsI, Fermi-GBM (n0, n1, b0) 1.728±\pm0.547 -0.968 7.936±\pm1.118 -3.720 6.702±\pm4.189
HEB180525151 HXMT/CsI, Fermi-GBM (n4, n5, b0, b1) 0.064±\pm0.091 0.012 0.320±\pm0.264 -0.052 0.361±\pm0.076
HEB180605457 HXMT/CsI, Fermi-GBM (n0, n2, b0) 9.408±\pm0.202 4.256 22.784±\pm1.601 0.736 17.670±\pm0.670
HEB180618030 HXMT/CsI, Fermi-GBM (n4, n5, b0, b1) 0.576±\pm0.143 -0.288 5.056±\pm0.716 -3.488 3.501±\pm0.855
HEB180623696 HXMT/CsI, Swift/BAT 18.624±\pm2.057 -6.976 64.768±\pm0.453 -24.960 64.811±\pm3.820
HEB180625940 HXMT/CsI, Fermi-GBM (n4, n8, b0) 0.256±\pm0.091 0.120 2.048±\pm0.962 -0.776 0.310±\pm0.071
HEB180626391 HXMT/CsI, Fermi-GBM (n9, na, b1) 0.320±\pm0.091 -0.340 0.768±\pm0.453 -0.340 0.770±\pm0.070
HEB180704233 HXMT/CsI, Swift/BAT 18.368±\pm0.320 -18.880 32.384±\pm1.833 -28.992 20.030±\pm1.414
HEB180715754 HXMT/CsI, Fermi-GBM (n9, na, b1) 0.448±\pm0.091 -0.004 1.280±\pm0.870 -0.580 0.640±\pm0.175
HEB180718762 HXMT/CsI, Fermi-GBM (n0, n2, b0) 23.232±\pm1.231 6.312 59.776±\pm3.142 1.512 21.550±\pm0.500
HEB180722992 HXMT/CsI, Fermi-GBM (n2, n1, b0) 41.920±\pm0.975 13.312 116.800±\pm4.740 1.024 90.122±\pm0.689
HEB180724807 HXMT/CsI, Fermi-GBM (na, nb, b1) 17.792±\pm0.590 6.584 52.224±\pm1.921 1.400 53.066±\pm14.026
HEB180730017 HXMT/CsI, Fermi-GBM (n4, n5, b0) 0.000±\pm0.962 0.312 1.664±\pm1.601 0.248 0.100±\pm1.561
HEB180801275 HXMT/CsI, Fermi-GBM (n6, n7, b1) 0.192±\pm0.091 -0.008 0.704±\pm0.264 -0.456 0.550±\pm0.114
HEB180803590 HXMT/CsI, Fermi-GBM (n3, n4, b0) 0.128±\pm0.091 -0.240 0.256±\pm0.516 -0.304 0.350±\pm0.071
HEB180804930 HXMT/CsI, Fermi-GBM (n8, nb, b1) 5.824±\pm0.771 0.496 23.040±\pm1.802 -3.472 4.620±\pm0.240
HEB180816088 HXMT/CsI, Fermi-GBM (n2, n1, b0) 15.040±\pm0.320 9.015 39.168±\pm2.180 -0.137 59.074±\pm5.031
HEB180822561 HXMT/CsI, Fermi-GBM (n0, n1, b0) 2.816±\pm0.286 -0.344 13.568±\pm2.463 -3.480 4.506±\pm1.119
HEB180828789 HXMT/CsI, Fermi-GBM (n9, na, b1) 4.032±\pm0.091 4.512 8.448±\pm0.143 1.440 7.750±\pm0.122
HEB180925407 HXMT/CsI, Fermi-GBM (n4, n5, b0) 2.496±\pm0.405 -2.952 5.440±\pm2.308 -4.808 5.601±\pm1.360
HEB180925609 HXMT/CsI, Swift/BAT 13.312±\pm0.286 3.304 33.664±\pm1.484 -5.080 10.640±\pm0.940
HEB180927992 HXMT/CsI, Fermi-GBM (n1, n5, b0) 3.392±\pm0.590 -0.264 11.584±\pm2.753 -2.568 3.380±\pm0.256
HEB180929453 HXMT/CsI, Fermi-GBM (n1, n2, b0) 2.368±\pm0.091 -0.008 3.008±\pm0.143 -0.264 2.850±\pm0.190
HEB181008269 HXMT/CsI, Fermi-GBM (n9, na, b1) 11.264±\pm0.362 -3.384 49.920±\pm3.014 -24.312 31.039±\pm1.583
HEB181014479 HXMT/CsI, Fermi-GBM (n1, n4, b0) 8.128±\pm0.405 -4.248 25.728±\pm2.755 -9.432 23.507±\pm3.042
HEB181028590 HXMT/CsI, Fermi-GBM (n7, n8, b1) 14.784±\pm0.429 9.360 33.088±\pm1.358 1.040 29.061±\pm3.021
HEB181119605 HXMT/CsI, Fermi-GBM (n7, n9, b1) 8.960±\pm0.181 5.714 18.432±\pm0.389 0.146 15.090±\pm0.871
HEB181121306 HXMT/CsI, Fermi-GBM (n8, b1) 0.384±\pm0.326 -0.240 0.576±\pm0.143 -0.304 0.621±\pm0.822
HEB181122381 HXMT/CsI, Fermi-GBM (n7, n8, b1) 15.232±\pm1.645 4.872 40.768±\pm7.040 0.136 21.491±\pm5.498
HEB181123231 HXMT/CsI, Swift/BAT 0.128±\pm0.090 0.090 0.256±\pm0.090 0.024 0.370±\pm0.330
HEB181212692 HXMT/CsI, Fermi-GBM (n2, n5, b0) 8.768±\pm1.218 2.512 58.752±\pm3.585 0.848 47.059±\pm7.509
HEB181213540 HXMT/CsI, Swift/BAT 11.392±\pm0.905 2.592 22.720±\pm2.177 0.480 21.527±\pm3.540
HEB181217664 HXMT/CsI, Fermi-GBM (n2, na, b0) 8.256±\pm0.389 11.440 33.088±\pm4.100 2.736 25.630±\pm2.580
HEB181225489 HXMT/CsI, Fermi-GBM (n3, n7, b0) 9.344±\pm0.264 1.312 35.776±\pm2.817 0.672 10.110±\pm0.440
HEB190103877 HXMT/CsI, Swift/BAT 9.856±\pm0.345 1.440 24.448±\pm3.216 -7.776 10.202±\pm0.224
HEB190110725 HXMT/CsI, Fermi-GBM (n3, n5, b0, b1) 3.456±\pm0.181 -2.536 11.904±\pm2.244 -5.096 6.838±\pm1.085
HEB190131964 HXMT/CsI, Fermi-GBM (n9, na, b1) 12.800±\pm0.859 4.136 36.544±\pm5.824 0.744 23.620±\pm1.290
HEB190215771 HXMT/CsI, Fermi-GBM (n1, n3, b0) 8.064±\pm0.326 3.896 25.216±\pm2.369 0.760 15.010±\pm2.470
HEB190222537 HXMT/CsI, Fermi-GBM (n9, nb, b1) 6.208±\pm0.516 1.448 28.992±\pm3.009 -0.088 4.802±\pm0.633
HEB190226515 HXMT/CsI, Fermi-GBM (n9, na, b1) 0.064±\pm0.091 0.160 0.192±\pm0.389 0.096 0.470±\pm0.125
HEB190310398 HXMT/CsI, Fermi-GBM (n3, n5, b0, b1) 6.720±\pm0.143 -1.696 75.072±\pm1.537 -51.680 64.080±\pm27.038
HEB190324348 HXMT/CsI, Fermi-GBM (n1, na, b0, b1) 16.896±\pm1.541 3.456 51.136±\pm1.569 -1.152 49.562±\pm4.036
HEB190324947 HXMT/CsI, Fermi-GBM (n6, n7, b1) 5.056±\pm0.202 1.664 12.736±\pm0.580 -0.256 6.700±\pm0.501
HEB190326313 HXMT/CsI, Fermi-GBM (n0, n3, b0) 25.792±\pm4.740 22.749 68.160±\pm5.874 -5.283 60.111±\pm12.830
HEB190326316 HXMT/CsI, Swift/BAT 0.064±\pm0.389 -0.040 0.576±\pm0.429 -0.232 0.325±\pm0.011
HEB190330694 HXMT/CsI, Fermi-GBM (n1, n9, b0) 23.808±\pm1.409 1.648 45.760±\pm2.113 0.432 8.080±\pm0.860
HEB190331093 HXMT/CsI, Fermi-GBM (n0, n3) 18.176±\pm2.147 -15.728 35.008±\pm2.947 -24.496 18.022±\pm1.805
HEB190401139 HXMT/CsI, Fermi-GBM (n6, n7, b1) 10.944±\pm0.326 3.568 31.104±\pm1.154 0.112 21.020±\pm3.900
HEB190407671 HXMT/CsI, Fermi-GBM (n8, n9, b1) 6.848±\pm0.264 1.136 14.400±\pm0.643 -1.808 4.506±\pm0.707
HEB190422283 HXMT/CsI, Fermi-GBM (n4, n8, b0) 61.312±\pm0.590 13.288 86.976±\pm1.620 -1.624 64.321±\pm6.352
HEB190424417 HXMT/CsI, Swift/BAT 12.928±\pm0.405 1.000 31.040±\pm2.180 -2.904 23.410±\pm4.840
HEB190507269 HXMT/CsI, Fermi-GBM (n9, na, b1) 7.488±\pm0.716 0.761 18.560±\pm1.282 -1.159 12.180±\pm3.861
HEB190515189 HXMT/CsI, Fermi-GBM (n6, n9, b1) 0.192±\pm0.091 0.160 0.448±\pm0.091 0.032 0.400±\pm0.087
HEB190525031 HXMT/CsI, Fermi-GBM (na, n9, b1) 0.512±\pm0.091 0.064 1.344±\pm0.516 -0.064 1.750±\pm0.757
HEB190531840 HXMT/CsI, Fermi-GBM (n0, n3, b0) 13.632±\pm0.091 18.360 37.248±\pm4.224 7.544 29.390±\pm1.400
HEB190604446 HXMT/CsI, Fermi-GBM (n4, n3, b0) 4.480±\pm0.143 3.052 13.184±\pm0.834 0.044 9.902±\pm2.721
HEB190613449 HXMT/CsI, Fermi-GBM (n7, n8, b1) 1.408±\pm0.143 0.880 2.816±\pm0.264 0.112 2.340±\pm0.022
HEB190615636 HXMT/CsI, Fermi-GBM (nb, n8, b1) 8.256±\pm0.373 0.736 21.888±\pm1.132 -8.480 8.820±\pm0.780
HEB190619594 HXMT/CsI, Fermi-GBM (nb, n7, b1) 70.080±\pm1.874 4.768 136.128±\pm5.089 -8.736 131.664±\pm22.033
HEB190620507 HXMT/CsI, Fermi-GBM (n3, n4, b0) 16.320±\pm0.834 3.824 55.936±\pm1.275 -2.896 54.568±\pm1.805
HEB190720964 HXMT/CsI, Fermi-GBM (n3, n4, b0) 3.264±\pm0.326 0.173 11.520±\pm2.305 -1.171 7.509±\pm1.583
HEB190723308 HXMT/CsI, Fermi-GBM (n7, n8, b1) 16.640±\pm0.643 0.848 27.136±\pm3.841 -4.144 18.022±\pm2.064
HEB190724030 HXMT/CsI, Fermi-GBM (n0, n5, b1) 0.064±\pm0.091 -0.004 0.192±\pm0.143 -0.132 0.430±\pm0.032
HEB190726642 HXMT/CsI, Fermi-GBM (n9, na, b1) 4.096±\pm0.202 -1.576 17.472±\pm1.958 -7.144 4.570±\pm0.530
HEB190806675 HXMT/CsI, Fermi-GBM (n0, n1, b0) 8.960±\pm0.429 2.241 24.384±\pm3.585 -0.063 16.020±\pm0.708
HEB190813520 HXMT/CsI, Fermi-GBM (n2, n9, b0) 0.064±\pm0.143 -0.072 0.640±\pm0.771 -0.072 1.200±\pm0.022
HEB190814837 HXMT/CsI, Fermi-GBM (nb, n9, b1) 4.928±\pm0.653 0.485 13.184±\pm3.009 -3.035 5.910±\pm0.430
HEB190901890 HXMT/CsI, Fermi-GBM (n3, n4, b0) 7.872±\pm0.202 0.656 23.360±\pm1.096 -5.808 16.620±\pm3.221
HEB190903721 HXMT/CsI, Fermi-GBM (n7, n8, b1) 0.192±\pm0.091 -0.212 0.320±\pm0.389 -0.276 0.450±\pm0.461
HEB190906767 HXMT/CsI, Fermi-GBM (n4, n8, b0) 23.424±\pm0.643 0.440 38.336±\pm2.497 -0.072 16.710±\pm4.870
HEB190915239 HXMT/CsI, Fermi-GBM (nb, n8, b1) 6.656±\pm0.590 1.064 15.488±\pm0.854 -1.432 7.230±\pm0.830
HEB191009297 HXMT/CsI, Fermi-GBM (n9, b1) 48.192±\pm6.977 7.400 88.128±\pm3.992 0.424 53.566±\pm18.050
HEB191019970 HXMT/CsI, Fermi-GBM (n0, n5, b0, b1) 104.256±\pm0.692 22.991 142.976±\pm2.636 7.311 136.833±\pm16.050
HEB191031780 HXMT/CsI, Fermi-GBM (n0, n6, b0, b1) 21.952±\pm0.516 26.159 75.264±\pm6.849 0.623 49.951±\pm4.510
HEB191105257 HXMT/CsI, Fermi-GBM (n4, n8) 0.064±\pm0.091 0.024 0.192±\pm0.091 -0.040 0.145±\pm0.007
HEB191108003 HXMT/CsI, Fermi-GBM (n0, n1, b0) 94.784±\pm2.273 19.596 164.736±\pm7.700 -3.572 116.579±\pm16.204
HEB191111364 HXMT/CsI, Fermi-GBM (n4, b0) 33.216±\pm0.659 26.808 99.264±\pm0.668 -6.280 96.016±\pm17.567
HEB191113578 HXMT/CsI, Fermi-GBM (n4, n8, b0) 10.432±\pm3.521 0.672 19.008±\pm0.834 0.160 24.530±\pm4.615
HEB191118925 HXMT/CsI, Fermi-GBM (n2, n5, b0) 13.824±\pm1.793 6.520 75.968±\pm7.745 1.080 15.390±\pm1.760
HEB191130506 HXMT/CsI, Fermi-GBM (n0, n9, b0, b1) 17.024±\pm0.854 3.304 46.720±\pm5.422 -0.664 46.057±\pm10.025
HEB191202867 HXMT/CsI, Fermi-GBM (n0, n3, b0) 6.656±\pm0.462 -2.008 33.408±\pm2.499 -7.768 4.180±\pm1.145
HEB191203289 HXMT/CsI, Fermi-GBM (n0, n1, b0) 0.192±\pm0.091 -0.338 0.448±\pm0.516 -0.466 0.695±\pm0.276
HEB191205740 HXMT/CsI, Fermi-GBM (n3, n4, b0) 2.496±\pm0.466 -3.892 3.840±\pm0.962 -4.084 3.920±\pm0.581
HEB191218112 HXMT/CsI, Swift/BAT 41.664±\pm0.345 3.112 53.824±\pm2.689 -0.216 49.811±\pm1.240
HEB191221860 HXMT/CsI, Swift/BAT 4.096±\pm0.091 1.944 13.632±\pm0.962 -1.960 13.016±\pm1.119
HEB191227069 HXMT/CsI, Fermi-GBM (n2, n1, b0) 8.256±\pm0.202 0.808 28.032±\pm1.562 -6.872 24.030±\pm1.583
HEB200109073 HXMT/CsI, Fermi-GBM (n5, n2, b0) 24.704±\pm1.489 2.720 40.256±\pm1.869 -4.512 25.540±\pm5.260
HEB200111632 HXMT/CsI, Fermi-GBM (n9, na, b1) 5.184±\pm0.091 0.760 10.240±\pm1.665 -3.528 11.500±\pm2.501
HEB200114153 HXMT/CsI, Fermi-GBM (n2, na, b0, b1) 26.048±\pm0.590 0.304 42.496±\pm6.529 -2.512 28.035±\pm5.105
HEB200120961 HXMT/CsI, Fermi-GBM (n6, na, b1) 4.160±\pm0.231 -2.700 14.400±\pm2.369 -6.732 14.660±\pm1.354
HEB200125863 HXMT/CsI, Fermi-GBM (n0, n1, b0, b1) 2.624±\pm0.091 0.888 6.400±\pm0.202 -0.072 4.240±\pm0.330
HEB200219998 HXMT/CsI, Fermi-GBM (n0, n1, b0) 9.920±\pm0.707 0.744 22.784±\pm0.580 -0.920 3.760±\pm3.660
HEB200221161 HXMT/CsI, Fermi-GBM (n8, nb, b1) 0.512±\pm0.143 -0.264 8.128±\pm0.771 -4.616 1.460±\pm0.121
HEB200227305 HXMT/CsI, Fermi-GBM (n0, n1, b0) 7.936±\pm0.286 -1.072 23.488±\pm2.627 -7.536 19.450±\pm2.240
HEB200323782 HXMT/CsI, Fermi-GBM (n7, n9, b1) 0.768±\pm0.091 0.440 1.664±\pm0.264 0.056 1.601±\pm0.141
HEB200325137 HXMT/CsI, Fermi-GBM (n3, n5, b0) 0.576±\pm0.143 0.120 1.728±\pm1.154 -0.008 1.210±\pm0.014
HEB200326517 HXMT/CsI, Fermi-GBM (n9, nb, b1) 1.728±\pm0.405 -0.636 2.816±\pm1.032 -1.020 2.410±\pm1.131
HEB200412381 HXMT/CsI, Fermi-GBM (n6, n8, b1) 1.920±\pm0.091 2.820 7.616±\pm0.389 -0.444 6.360±\pm0.139
HEB200416295 HXMT/CsI, Fermi-GBM (n2, n5) 3.328±\pm0.264 0.160 7.616±\pm1.473 -1.888 6.310±\pm2.181
HEB200418864 HXMT/CsI, Fermi-GBM (n3, n4, b0) 15.360±\pm4.420 5.736 38.080±\pm3.905 0.680 12.900±\pm8.113
HEB200519472 HXMT/CsI, Swift/BAT 5.760±\pm0.604 21.168 32.832±\pm2.052 8.560 30.890±\pm2.520
HEB200601097 HXMT/CsI, Fermi-GBM (n1, n5, b0) 119.296±\pm0.716 12.512 158.144±\pm4.612 -3.104 10.570±\pm8.741
HEB200609379 HXMT/CsI, Fermi-GBM (n0, n4, b0) 27.584±\pm1.319 2.576 93.248±\pm3.912 -44.400 88.071±\pm8.960
HEB200617679 HXMT/CsI, Fermi-GBM (n8, n4, b0) 0.192±\pm0.091 -0.136 1.024±\pm1.729 -0.776 0.910±\pm0.028
HEB200619108 HXMT/CsI, Fermi-GBM (n5, n4, b0) 8.640±\pm0.607 1.532 28.672±\pm6.528 0.188 27.534±\pm7.027
HEB200707072 HXMT/CsI, Fermi-GBM (n3, n1) 7.360±\pm1.368 3.128 20.224±\pm2.191 -0.776 16.521±\pm6.028
HEB200711461 HXMT/CsI, Fermi-GBM (n7, n9, b1) 14.720±\pm0.580 3.560 29.376±\pm1.478 0.488 12.190±\pm6.180
HEB200716315 HXMT/CsI, Fermi-GBM (n6, n7, b1) 22.528±\pm0.968 2.000 43.968±\pm2.241 -0.624 42.053±\pm13.026
HEB200716956 HXMT/CsI, Fermi-GBM (n0, n1, b0) 1.920±\pm0.091 0.320 4.416±\pm0.707 0.192 2.140±\pm0.014
HEB200801352 HXMT/CsI, Fermi-GBM (n6, n8) 16.320±\pm2.360 -3.288 34.240±\pm4.394 -10.072 24.470±\pm4.150
HEB200806645 HXMT/CsI, Swift/BAT 10.816±\pm0.429 15.312 37.376±\pm5.130 0.848 33.050±\pm2.060
HEB200809653 HXMT/CsI, Fermi-GBM (n7, n8, b1) 5.120±\pm0.707 0.280 14.656±\pm3.334 -1.000 17.522±\pm2.553
HEB200824594 HXMT/CsI, Fermi-GBM (n0, n3) 0.320±\pm0.834 -0.456 1.664±\pm0.707 -0.840 0.850±\pm0.112
HEB200903112 HXMT/CsI, Fermi-GBM (n7, b1) 38.528±\pm2.589 4.056 89.152±\pm3.917 -16.424 40.026±\pm2.809
HEB200919964 HXMT/CsI, Fermi-GBM (n7, n8, b1) 36.224±\pm0.716 11.152 57.280±\pm1.444 1.680 58.261±\pm7.300
HEB200922504 HXMT/CsI, Swift/BAT 7.552±\pm1.096 0.504 16.512±\pm1.118 -2.760 4.440±\pm1.192
HEB200928551 HXMT/CsI, Fermi-GBM (n9, na, b1) 7.872±\pm0.231 -2.720 19.584±\pm2.627 -6.112 15.160±\pm1.990
HEB201013157 HXMT/CsI, Swift/BAT 1.856±\pm0.326 0.560 6.912±\pm0.202 0.048 2.010±\pm0.022
HEB201105229 HXMT/CsI, Fermi-GBM (n3, n5, b0) 5.184±\pm0.202 2.744 16.384±\pm1.282 0.952 12.010±\pm0.960
HEB201209239 HXMT/CsI, Swift/BAT 14.976±\pm2.988 -7.104 45.632±\pm1.843 -24.064 12.370±\pm0.466
HEB201221591 HXMT/CsI, Fermi-GBM (na, nb) 0.010±\pm0.014 0.048 0.050±\pm0.045 0.038 0.035±\pm0.007
HEB201226553 HXMT/CsI, Fermi-GBM (n2, na) 52.544±\pm1.088 8.464 71.360±\pm0.842 -1.584 71.022±\pm5.270
HEB210112068 HXMT/CsI, Swift/BAT 6.784±\pm0.143 1.792 96.512±\pm0.771 -58.496 12.500±\pm2.060
HEB210119120 HXMT/CsI, Fermi-GBM (n1, n3, b0) 0.032±\pm0.091 -0.032 0.064±\pm0.091 -0.032 0.060±\pm0.061
HEB210121779 HXMT/CsI, Fermi-GBM (n0, n3, b0) 7.040±\pm0.453 1.528 15.424±\pm0.643 0.312 13.980±\pm0.170
HEB210123304 HXMT/CsI, Fermi-GBM (n2, n5, b0) 5.888±\pm0.231 -2.928 15.488±\pm1.282 -6.896 12.330±\pm0.990
HEB210207911 HXMT/CsI, Swift/BAT 27.968±\pm0.202 -26.192 43.584±\pm0.389 -40.400 42.501±\pm0.631
HEB210225217 HXMT/CsI, Fermi-GBM (n1, n5, b0) 6.720±\pm0.286 1.432 19.392±\pm4.615 -1.000 10.100±\pm3.340
HEB210227114 HXMT/CsI, Fermi-GBM (n9, n6, b1) 10.880±\pm1.833 4.664 25.088±\pm1.409 1.272 10.704±\pm1.903
HEB210228057 HXMT/CsI, Fermi-GBM (n4, n5, b0) 0.640±\pm0.091 0.056 1.408±\pm0.516 -0.200 1.620±\pm0.370
HEB210307247 HXMT/CsI, GECAM 0.896±\pm0.091 0.216 1.216±\pm0.771 -0.040 0.190±\pm0.014
HEB210323918 HXMT/CsI, Fermi-GBM (n0, n1, n2, n5, b0) 0.128±\pm0.091 -0.008 0.832±\pm0.453 -0.392 1.240±\pm0.990
HEB210324468 HXMT/CsI, Fermi-GBM (n7, n8, b1) 16.768±\pm0.362 4.448 34.432±\pm1.282 -3.808 33.109±\pm10.330
HEB210326057 HXMT/CsI, Fermi-GBM (n4, n5, b0) 0.128±\pm0.143 -0.080 1.024±\pm0.923 -0.656 0.900±\pm0.412
HEB210409894 HXMT/CsI, GECAM 13.248±\pm2.503 1.496 38.336±\pm4.162 -0.936 13.022±\pm4.535
HEB210411147 HXMT/CsI, Fermi-GBM (n8, n7) 36.672±\pm0.345 -36.736 52.480±\pm6.503 -44.160 4.507±\pm1.120
HEB210421454 HXMT/CsI, Fermi-GBM (n3, n6, b0) 6.336±\pm1.843 -3.816 29.568±\pm5.257 -22.184 8.820±\pm0.292
HEB210422572 HXMT/CsI, Fermi-GBM (n0, n1, b0) 6.528±\pm1.180 3.040 38.464±\pm6.728 -14.944 32.053±\pm4.789
HEB210427206 HXMT/CsI, Fermi-GBM (n8, nb, b1) 8.064±\pm0.264 1.752 32.000±\pm3.019 -5.032 10.067±\pm2.838
HEB210511476 HXMT/CsI, Fermi-GBM (n3, n5, b0) 1.792±\pm0.091 3.176 5.824±\pm0.580 1.064 5.008±\pm0.708
HEB210515546 HXMT/CsI, Fermi-GBM (n9, na, b1) 0.960±\pm0.286 -0.984 5.632±\pm4.800 -1.176 10.017±\pm4.480
HEB210516982 HXMT/CsI, Fermi-GBM (n2, na, b0) 2.816±\pm0.453 5.308 7.872±\pm0.389 4.924 7.012±\pm2.065
HEB210518544 HXMT/CsI, Fermi-GBM (n8, nb, b1) 3.968±\pm0.143 1.384 9.856±\pm0.604 -2.264 12.521±\pm5.394
HEB210520796 HXMT/CsI, Fermi-GBM (n0, n3, b0) 34.752±\pm3.223 3.752 67.200±\pm15.169 0.616 67.522±\pm36.412
HEB210605214 HXMT/CsI, Fermi-GBM (n7, n8, b1) 0.192±\pm0.091 -0.008 1.984±\pm1.218 -0.072 0.200±\pm0.014
HEB210606945 HXMT/CsI, Fermi-GBM (n3, n5, b0) 199.616±\pm2.561 8.888 246.848±\pm1.601 3.896 22.537±\pm3.046
HEB210610827 HXMT/CsI, Fermi-GBM (n6, nb, b1) 17.344±\pm0.202 5.264 67.392±\pm3.917 -6.512 33.556±\pm3.541
HEB210615981 HXMT/CsI, Fermi-GBM (n0, n3, b0) 0.832±\pm0.143 -1.040 4.864±\pm2.497 -3.920 5.008±\pm1.120
HEB210622064 HXMT/CsI, Fermi-GBM (na, n8, b1) 27.456±\pm5.588 1.072 48.256±\pm5.824 -0.208 48.078±\pm5.033
HEB210627311 HXMT/CsI, Fermi-GBM (n4, n5) 3.776±\pm0.326 -0.216 9.024±\pm0.516 -3.352 8.303±\pm2.609
\startlongtable
Table 5: Durations (40-800 keV for NG mode, 200-3000 keV for LG mode) of ‘SILVER’ and ‘BRONZE’ GRB samples
Trigger Detectors T50T_{\rm 50} T50T_{\rm 50} start T90T_{\rm 90} T90T_{\rm 90} start
ID Used (s) (s) (s) (s)
HEB170626040 HXMT/CsI 2.504±\pm0.707 3.840 6.511±\pm1.120 1.836
HEB170708045 HXMT/CsI 0.050±\pm0.014 -0.004 0.200±\pm0.022 -0.034
HEB170712139 HXMT/CsI 3.504±\pm0.708 -2.628 8.511±\pm1.119 -5.631
HEB170801208 HXMT/CsI 0.020±\pm0.014 0.009 0.460±\pm0.750 -0.421
HEB170803917 HXMT/CsI 0.160±\pm0.014 0.837 0.260±\pm0.014 0.787
HEB170805596 HXMT/CsI 0.040±\pm0.032 0.192 0.270±\pm0.487 -0.028
HEB170805610 HXMT/CsI 0.300±\pm0.141 0.476 2.000±\pm0.141 -1.024
HEB170829270 HXMT/CsI 2.002±\pm0.707 0.374 5.507±\pm2.696 -0.627
HEB170901499 HXMT/CsI 8.020±\pm2.832 3.274 46.118±\pm28.143 -0.736
HEB170904406 HXMT/CsI 5.901±\pm0.224 2.475 11.403±\pm0.608 0.175
HEB170904884 HXMT/CsI 2.002±\pm0.707 10.888 10.012±\pm3.645 7.384
HEB170918905 HXMT/CsI 0.540±\pm0.033 0.312 1.929±\pm0.310 0.162
HEB170921030 HXMT/CsI 0.500±\pm0.071 -0.012 1.150±\pm0.112 -0.312
HEB170926340 HXMT/CsI 89.223±\pm5.111 0.750 108.270±\pm18.073 -0.252
HEB171102106 HXMT/CsI 25.532±\pm3.540 8.387 50.563±\pm10.025 1.379
HEB171108279 HXMT/CsI 1.000±\pm0.707 1.154 2.501±\pm0.707 0.154
HEB171115217 HXMT/CsI 22.532±\pm16.030 0.891 47.066±\pm9.027 -14.130
HEB180103047 HXMT/CsI 43.310±\pm33.511 -7.728 55.813±\pm3.516 -16.630
HEB180103949 HXMT/CsI 0.160±\pm0.014 0.928 0.430±\pm0.149 0.888
HEB180112687 HXMT/CsI 138.168±\pm1.119 1.380 158.193±\pm26.537 -4.127
HEB180202211 HXMT/CsI 2.503±\pm0.708 2.378 8.511±\pm1.119 -0.125
HEB180210728 HXMT/CsI 4.005±\pm2.064 0.876 14.018±\pm4.036 -0.125
HEB180221520 HXMT/CsI 11.503±\pm2.802 7.277 32.208±\pm6.902 1.776
HEB180226392 HXMT/CsI 0.200±\pm0.141 0.476 1.400±\pm0.412 0.376
HEB180326143 HXMT/CsI 7.017±\pm2.242 3.759 14.035±\pm1.414 2.757
HEB180405168 HXMT/CsI 9.011±\pm2.064 6.382 22.528±\pm3.540 0.875
HEB180411359 HXMT/CsI 47.559±\pm2.239 39.928 94.617±\pm5.529 6.386
HEB180603235 HXMT/CsI 0.200±\pm0.071 0.088 0.450±\pm0.461 -0.012
HEB180617871 HXMT/CsI 0.200±\pm0.141 -0.131 1.200±\pm0.141 -1.031
HEB180626260 HXMT/CsI 19.048±\pm1.416 0.751 25.063±\pm8.267 -2.256
HEB180704525 HXMT/CsI 5.012±\pm1.416 1.752 13.032±\pm4.133 -1.256
HEB180804554 HXMT/CsI 10.025±\pm1.416 0.751 27.067±\pm3.169 -9.273
HEB181011181 HXMT/CsI 4.010±\pm1.416 1.753 8.020±\pm1.416 0.750
HEB181201111 HXMT/CsI 5.401±\pm0.141 4.177 20.605±\pm1.118 -1.324
HEB190102652 HXMT/CsI 1.898±\pm0.122 4.059 2.918±\pm0.349 3.449
HEB190117608 HXMT/CsI 15.704±\pm0.412 2.176 21.805±\pm1.504 0.375
HEB190203655 HXMT/CsI 25.062±\pm2.241 -22.307 60.149±\pm14.071 -42.357
HEB190212129 HXMT/CsI 0.045±\pm0.090 -0.007 0.180±\pm0.335 -0.027
HEB190218810 HXMT/CsI 16.704±\pm6.802 6.177 29.807±\pm7.803 0.175
HEB190306467 HXMT/CsI 19.048±\pm2.241 0.751 29.073±\pm7.635 -4.261
HEB190321931 HXMT/CsI 4.506±\pm0.707 0.877 8.511±\pm1.119 0.377
HEB190323878 HXMT/CsI 14.017±\pm0.708 1.878 25.031±\pm3.206 -3.629
HEB190330207 HXMT/CsI 0.520±\pm0.360 -0.473 3.400±\pm1.840 -1.453
HEB190331841 HXMT/CsI 0.050±\pm0.071 0.039 0.850±\pm0.255 -0.761
HEB190510119 HXMT/CsI 47.117±\pm9.078 11.780 76.190±\pm11.073 0.752
HEB190605110 HXMT/CsI 6.402±\pm0.707 2.676 15.704±\pm2.702 0.275
HEB190610477 HXMT/CsI 0.200±\pm0.141 1.075 0.500±\pm0.141 0.975
HEB190615612 HXMT/CsI 20.050±\pm1.416 1.753 29.072±\pm4.133 0.751
HEB190706710 HXMT/CsI 1.502±\pm0.708 -0.125 2.503±\pm0.707 -0.125
HEB190719113 HXMT/CsI 6.007±\pm3.645 -6.131 10.513±\pm2.239 -7.132
HEB190825878 HXMT/CsI 14.035±\pm1.416 2.757 28.070±\pm5.111 -0.251
HEB190828783 HXMT/CsI 3.004±\pm0.707 0.375 5.006±\pm0.708 -0.125
HEB190831271 HXMT/CsI 0.400±\pm0.141 1.077 2.601±\pm0.141 -1.024
HEB190906045 HXMT/CsI 0.030±\pm0.014 0.019 0.060±\pm0.014 -0.001
HEB190927106 HXMT/CsI 20.050±\pm2.241 5.765 34.085±\pm6.340 1.755
HEB190928550 HXMT/CsI 5.012±\pm1.416 97.993 27.067±\pm2.242 81.953
HEB190928551 HXMT/CsI 5.006±\pm0.707 3.881 21.026±\pm0.708 -7.133
HEB190929884 HXMT/CsI 16.040±\pm1.418 -2.256 43.108±\pm3.170 -23.309
HEB191021831 HXMT/CsI 2.503±\pm0.708 0.375 9.011±\pm0.708 -5.131
HEB191031182 HXMT/CsI 3.101±\pm0.316 1.876 9.502±\pm0.447 0.275
HEB191031318 HXMT/CsI 3.007±\pm1.418 4.761 9.022±\pm1.416 0.751
HEB191119445 HXMT/CsI 0.040±\pm0.007 0.019 0.095±\pm0.007 0.004
HEB191202378 HXMT/CsI 3.008±\pm1.414 -3.259 3.008±\pm1.414 -3.259
HEB191224829 HXMT/CsI 1.700±\pm0.224 0.476 2.901±\pm0.922 -0.524
HEB200211193 HXMT/CsI 0.000±\pm2.242 -0.249 3.007±\pm1.416 -2.254
HEB200313878 HXMT/CsI 1.850±\pm0.212 0.238 3.300±\pm0.552 -0.112
HEB200326421 HXMT/CsI 77.628±\pm9.070 9.350 97.160±\pm16.034 1.838
HEB200413712 HXMT/CsI 0.900±\pm0.224 0.075 2.201±\pm0.316 -0.125
HEB200413743 HXMT/CsI 2.501±\pm0.825 -0.124 8.702±\pm0.721 -2.224
HEB200521511 HXMT/CsI 0.150±\pm0.014 -0.587 0.590±\pm0.041 -0.647
HEB200526628 HXMT/CsI 7.017±\pm1.418 62.907 73.182±\pm12.072 3.759
HEB201122355 HXMT/CsI 6.511±\pm0.708 1.338 9.516±\pm2.554 0.837
HEB210124558 HXMT/CsI 0.020±\pm0.014 3.069 0.500±\pm0.114 2.769
HEB210129908 HXMT/CsI 2.401±\pm0.224 0.667 18.606±\pm4.806 -0.433
HEB210208564 HXMT/CsI 24.216±\pm1.020 0.738 25.216±\pm1.078 0.337
HEB210213286 HXMT/CsI 10.934±\pm1.729 3.182 18.886±\pm2.225 1.194
HEB210306320 HXMT/CsI 8.027±\pm2.242 5.685 29.097±\pm1.417 1.671
HEB210306879 HXMT/CsI 3.010±\pm1.414 1.673 8.027±\pm1.417 -0.334
HEB210326890 HXMT/CsI 11.037±\pm2.838 -4.349 13.043±\pm3.173 -5.353
HEB210328396 HXMT/CsI 3.101±\pm2.885 -1.934 5.002±\pm0.671 -2.235
HEB210405507 HXMT/CsI 2.000±\pm0.071 -1.267 7.051±\pm1.801 -3.017
HEB210406716 HXMT/CsI 8.504±\pm1.119 3.776 17.008±\pm3.537 0.774
HEB210429071 HXMT/CsI 10.517±\pm1.584 1.840 34.056±\pm9.529 -9.679
HEB210502295 HXMT/CsI 2.003±\pm1.120 1.838 8.013±\pm0.708 1.337
HEB210504958 HXMT/CsI 14.023±\pm7.529 2.337 54.090±\pm14.104 -9.182
HEB210506027 HXMT/CsI 0.400±\pm0.453 -0.415 1.200±\pm0.255 -1.215
HEB210511647 HXMT/CsI 10.033±\pm6.103 6.688 45.150±\pm9.085 0.668
HEB210602502 HXMT/CsI 0.501±\pm0.707 1.335 2.003±\pm0.707 0.834
HEB210606120 HXMT/CsI 2.200±\pm0.071 1.784 4.951±\pm0.255 0.834
HEB210607775 HXMT/CsI 9.030±\pm3.172 0.667 15.050±\pm5.676 -0.336
HEB210607902 HXMT/CsI 7.202±\pm0.224 0.370 16.705±\pm2.603 -2.831
HEB210615891 HXMT/CsI 13.043±\pm6.103 -0.335 24.080±\pm6.731 -1.338
HEB210622339 HXMT/CsI 2.001±\pm0.224 3.068 6.402±\pm1.265 0.367
HEB210627813 HXMT/CsI 79.264±\pm26.106 3.678 104.347±\pm11.218 -8.362
\startlongtable
Table 6: Fluence and Peak Flux (10–2000 keV) from joint analyses with ‘GOLDEN’ GRB samples.
Trigger Fluence PF64 PF256 PF1024
ID (erg\rm erg cm2\rm cm^{-2}) (ph\rm ph cm2\rm cm^{-2} s1\rm s^{-1}) (ph\rm ph cm2\rm cm^{-2} s1\rm s^{-1}) (ph\rm ph cm2\rm cm^{-2} s1\rm s^{-1})
HEB170626400 1.54e-05±\pm1.43e-07 41.78±\pm3.65 38.89±\pm1.64 32.66±\pm0.68
HEB170705115 2.03e-05±\pm6.04e-07 40.64±\pm7.53 32.12±\pm3.08 21.31±\pm1.22
HEB170714049 2.31e-07±\pm2.72e-08 6.08±\pm1.26 2.52±\pm0.38 0.85±\pm0.11
HEB170718152 2.29e-06±\pm5.94e-08 3.50±\pm0.75 2.21±\pm0.31 1.57±\pm0.12
HEB170726248 1.50e-06±\pm1.01e-07 4.55±\pm0.92 3.07±\pm0.43 2.19±\pm0.18
HEB170726793 8.23e-06±\pm1.08e-07 11.03±\pm1.07 7.71±\pm0.43 3.79±\pm0.16
HEB170728960 4.36e-06±\pm9.99e-08 24.14±\pm2.25 21.56±\pm1.09 11.19±\pm0.38
HEB170731751 3.07e-06±\pm9.91e-07 1.89±\pm0.51 1.10±\pm0.21 0.75±\pm0.08
HEB170802637 3.13e-06±\pm1.78e-07 36.30±\pm3.41 26.20±\pm1.38 8.57±\pm0.39
HEB170817908 5.50e-06±\pm9.30e-08 14.55±\pm0.86 10.09±\pm0.42 6.79±\pm0.17
HEB170825306 7.82e-06±\pm1.68e-07 9.55±\pm1.40 7.81±\pm0.62 6.60±\pm0.29
HEB170826818 3.90e-05±\pm3.48e-07 47.94±\pm3.55 40.70±\pm1.58 28.39±\pm0.65
HEB170903534 5.70e-06±\pm9.44e-08 4.55±\pm0.31 3.25±\pm0.15 2.72±\pm0.07
HEB170906029 1.46e-04±\pm7.09e-07 32.61±\pm3.52 30.36±\pm1.50 24.44±\pm0.66
HEB170912984 1.68e-06±\pm2.14e-07 4.44±\pm0.78 2.12±\pm0.30 0.65±\pm0.09
HEB170923188 4.86e-06±\pm1.20e-07 7.19±\pm0.38 4.95±\pm0.16 3.68±\pm0.08
HEB171008079 1.60e-06±\pm9.14e-08 4.53±\pm0.71 3.85±\pm0.33 1.59±\pm0.11
HEB171013350 2.19e-05±\pm2.65e-07 11.40±\pm2.10 8.70±\pm0.91 7.67±\pm0.43
HEB171020963 3.75e-06±\pm1.39e-07 21.76±\pm2.22 10.98±\pm0.84 4.78±\pm0.32
HEB171030728 1.92e-07±\pm2.22e-08 8.26±\pm1.05 4.17±\pm0.38 1.08±\pm0.09
HEB171103965 2.82e-06±\pm8.49e-08 14.01±\pm0.83 10.49±\pm0.41 3.16±\pm0.11
HEB171120555 2.95e-05±\pm3.04e-07 87.57±\pm6.19 78.60±\pm2.98 45.05±\pm1.02
HEB171124234 2.06e-05±\pm4.72e-07 4.21±\pm0.60 3.30±\pm0.25 2.39±\pm0.10
HEB171207054 6.60e-07±\pm5.57e-08 5.78±\pm0.53 4.00±\pm0.27 1.25±\pm0.08
HEB171209615 9.77e-06±\pm2.53e-07 5.03±\pm0.56 3.34±\pm0.23 1.73±\pm0.16
HEB171210492 1.24e-04±\pm6.12e-07 15.06±\pm1.96 13.21±\pm0.81 12.68±\pm0.37
HEB171215705 7.76e-06±\pm1.35e-07 3.55±\pm0.64 2.50±\pm0.23 2.11±\pm0.11
HEB171223818 1.33e-08±\pm7.50e-09 1.26±\pm0.46 0.76±\pm0.20 0.09±\pm0.07
HEB171230955 2.39e-05±\pm2.82e-07 8.74±\pm1.50 6.85±\pm0.77 5.85±\pm0.34
HEB180110608 2.01e-06±\pm1.16e-07 3.57±\pm0.81 2.83±\pm0.37 1.70±\pm0.14
HEB180111695 6.22e-05±\pm1.10e-06 56.11±\pm9.30 42.25±\pm3.60 33.46±\pm1.63
HEB180119836 2.86e-06±\pm8.67e-08 6.98±\pm0.58 5.77±\pm0.25 4.56±\pm0.11
HEB180127049 5.47e-06±\pm1.60e-07 4.19±\pm0.41 2.79±\pm0.29 2.36±\pm0.16
HEB180130744 1.62e-07±\pm2.19e-08 4.36±\pm0.55 2.54±\pm0.22 0.75±\pm0.06
HEB180208764 4.91e-06±\pm3.92e-07 4.06±\pm0.58 2.95±\pm0.82 2.26±\pm0.33
HEB180210517 5.60e-05±\pm4.09e-07 28.01±\pm3.27 24.69±\pm1.41 18.70±\pm0.66
HEB180305393 8.20e-05±\pm8.81e-07 44.44±\pm4.73 42.08±\pm2.29 36.97±\pm1.07
HEB180306972 2.85e-06±\pm8.88e-08 1.87±\pm0.40 1.18±\pm0.15 0.78±\pm0.06
HEB180309321 9.51e-06±\pm1.64e-07 5.73±\pm1.66 4.24±\pm0.60 3.43±\pm0.27
HEB180313977 6.39e-07±\pm1.10e-07 14.12±\pm2.27 4.34±\pm0.66 1.20±\pm0.18
HEB180330891 8.47e-06±\pm1.93e-07 11.90±\pm1.31 10.72±\pm0.54 9.88±\pm0.26
HEB180331177 2.08e-06±\pm7.76e-08 1.51±\pm0.27 0.76±\pm0.10 0.33±\pm0.04
HEB180401279 8.81e-06±\pm2.53e-07 7.06±\pm1.31 6.50±\pm0.81 4.07±\pm0.32
HEB180402406 8.02e-07±\pm5.41e-08 7.83±\pm0.98 4.43±\pm0.33 1.22±\pm0.08
HEB180404091 2.11e-05±\pm1.47e-07 5.83±\pm0.64 4.99±\pm0.31 4.24±\pm0.14
HEB180409346 3.32e-05±\pm4.14e-07 118.01±\pm11.41 91.04±\pm4.74 56.26±\pm1.78
HEB180413117 7.18e-06±\pm1.97e-06 4.29±\pm0.92 3.34±\pm0.44 2.70±\pm0.19
HEB180416923 3.45e-05±\pm4.21e-07 9.31±\pm1.22 8.26±\pm0.57 5.88±\pm0.26
HEB180427442 5.67e-05±\pm6.24e-07 41.34±\pm6.21 38.76±\pm3.33 35.75±\pm1.50
HEB180505539 2.68e-05±\pm1.76e-07 53.94±\pm1.88 49.43±\pm1.14 37.11±\pm0.49
HEB180506902 3.38e-06±\pm6.13e-08 4.08±\pm0.68 2.85±\pm0.29 2.52±\pm0.13
HEB180510808 7.00e-06±\pm4.98e-07 19.59±\pm3.94 18.01±\pm2.18 12.69±\pm0.81
HEB180523782 1.57e-06±\pm5.40e-08 7.06±\pm0.80 4.52±\pm0.33 2.55±\pm0.13
HEB180525151 4.32e-07±\pm3.67e-08 8.90±\pm1.18 4.10±\pm0.39 1.18±\pm0.10
HEB180605457 2.37e-05±\pm2.79e-07 16.99±\pm1.36 12.39±\pm0.66 6.48±\pm0.25
HEB180618030 3.23e-06±\pm9.93e-08 15.00±\pm0.83 12.74±\pm0.33 4.52±\pm0.15
HEB180623696 2.28e-05±\pm5.31e-07 10.11±\pm1.79 7.95±\pm0.96 6.53±\pm0.43
HEB180625940 1.36e-06±\pm1.66e-07 5.32±\pm2.01 4.31±\pm0.79 1.95±\pm0.25
HEB180626391 6.60e-07±\pm4.14e-08 16.39±\pm1.84 4.88±\pm0.50 2.67±\pm0.19
HEB180704233 1.28e-05±\pm1.88e-07 5.25±\pm0.78 4.14±\pm0.36 3.30±\pm0.16
HEB180715754 1.49e-06±\pm7.43e-08 5.00±\pm0.86 4.07±\pm0.39 2.18±\pm0.13
HEB180718762 2.73e-05±\pm1.82e-06 5.34±\pm1.00 4.31±\pm0.54 3.71±\pm0.25
HEB180722992 2.93e-05±\pm1.84e-07 10.41±\pm1.43 8.89±\pm0.61 8.26±\pm0.30
HEB180724807 5.73e-05±\pm4.46e-07 16.05±\pm1.84 13.90±\pm0.87 12.89±\pm0.45
HEB180730017 2.32e-07±\pm9.46e-08 11.60±\pm1.08 5.39±\pm0.54 1.19±\pm0.19
HEB180801275 9.74e-07±\pm6.16e-08 6.67±\pm0.80 4.36±\pm0.34 1.85±\pm0.11
HEB180803590 1.82e-07±\pm1.93e-08 3.25±\pm0.57 2.02±\pm0.23 0.61±\pm0.06
HEB180804930 7.25e-06±\pm1.19e-07 10.53±\pm1.21 9.99±\pm0.61 7.34±\pm0.24
HEB180816088 2.21e-05±\pm2.07e-07 21.94±\pm2.73 18.92±\pm1.30 15.40±\pm0.57
HEB180822561 3.65e-06±\pm9.97e-08 4.75±\pm0.96 3.98±\pm0.42 3.30±\pm0.18
HEB180828789 3.41e-05±\pm3.65e-07 48.57±\pm4.57 39.89±\pm1.88 34.42±\pm0.84
HEB180925407 7.12e-07±\pm3.94e-08 3.10±\pm0.46 1.91±\pm0.17 0.75±\pm0.06
HEB180925609 1.42e-05±\pm2.73e-07 27.34±\pm3.14 23.90±\pm1.48 12.13±\pm0.55
HEB180927992 2.54e-06±\pm9.05e-08 7.12±\pm0.95 5.84±\pm0.38 4.41±\pm0.18
HEB180929453 1.57e-06±\pm6.08e-08 6.47±\pm0.90 5.47±\pm0.38 3.14±\pm0.15
HEB181008269 1.63e-05±\pm1.30e-07 15.12±\pm1.65 13.21±\pm0.86 12.62±\pm0.40
HEB181014479 1.65e-05±\pm1.56e-07 6.50±\pm0.68 5.66±\pm0.36 5.05±\pm0.18
HEB181028590 2.76e-05±\pm1.98e-07 13.74±\pm1.11 11.80±\pm0.59 9.63±\pm0.27
HEB181119605 2.05e-05±\pm2.16e-07 39.74±\pm3.90 33.25±\pm1.96 21.97±\pm0.67
HEB181121306 6.90e-07±\pm1.17e-07 3.83±\pm1.15 3.02±\pm0.67 1.10±\pm0.19
HEB181122381 8.18e-06±\pm2.08e-07 10.88±\pm1.59 8.80±\pm0.68 4.15±\pm0.21
HEB181123231 6.71e-07±\pm4.43e-08 6.41±\pm0.32 5.00±\pm0.40 1.64±\pm0.11
HEB181212692 2.24e-05±\pm1.82e-07 61.54±\pm3.12 59.15±\pm1.56 52.87±\pm0.81
HEB181213540 7.43e-06±\pm2.70e-07 7.95±\pm1.62 3.43±\pm0.53 2.24±\pm0.21
HEB181217664 1.31e-05±\pm2.38e-07 18.60±\pm2.40 7.81±\pm0.73 6.69±\pm0.35
HEB181225489 1.12e-05±\pm3.06e-07 10.46±\pm1.55 8.99±\pm0.70 7.62±\pm0.29
HEB190103877 2.46e-05±\pm3.88e-07 2.77±\pm0.33 2.51±\pm0.19 2.25±\pm0.09
HEB190110725 4.38e-06±\pm7.96e-08 13.22±\pm1.22 12.17±\pm0.66 9.64±\pm0.32
HEB190131964 8.52e-06±\pm1.14e-07 1.72±\pm0.23 1.28±\pm0.11 1.05±\pm0.05
HEB190215771 1.59e-05±\pm1.30e-07 8.95±\pm0.82 8.53±\pm0.53 8.09±\pm0.24
HEB190222537 2.96e-05±\pm7.61e-07 23.19±\pm4.54 18.91±\pm2.11 16.31±\pm1.00
HEB190226515 1.26e-06±\pm1.09e-07 11.37±\pm1.73 8.92±\pm0.72 2.43±\pm0.19
HEB190310398 2.41e-05±\pm2.51e-07 28.43±\pm2.97 26.74±\pm1.43 25.69±\pm0.79
HEB190324348 2.44e-05±\pm1.78e-07 8.43±\pm0.81 7.53±\pm0.43 6.96±\pm0.20
HEB190324947 1.86e-05±\pm2.39e-07 28.98±\pm3.78 26.53±\pm1.57 22.22±\pm0.65
HEB190326313 1.39e-05±\pm1.35e-07 11.25±\pm1.03 9.30±\pm0.50 7.24±\pm0.23
HEB190326316 1.32e-07±\pm1.57e-08 2.21±\pm0.36 0.70±\pm0.10 0.22±\pm0.03
HEB190330694 1.09e-05±\pm1.63e-07 8.19±\pm1.24 7.42±\pm0.50 6.80±\pm0.24
HEB190331093 3.17e-06±\pm1.07e-07 2.15±\pm0.49 1.76±\pm0.23 1.01±\pm0.08
HEB190401139 1.94e-05±\pm1.73e-07 19.20±\pm1.93 16.36±\pm1.13 14.34±\pm0.51
HEB190407671 1.13e-05±\pm2.70e-07 23.27±\pm3.59 13.65±\pm1.32 11.23±\pm0.57
HEB190422283 3.09e-05±\pm1.94e-07 16.17±\pm1.77 15.35±\pm0.86 12.94±\pm0.39
HEB190424417 1.17e-05±\pm4.28e-07 22.26±\pm3.40 10.24±\pm1.46 6.58±\pm0.59
HEB190507269 3.31e-06±\pm6.19e-08 5.10±\pm0.87 3.94±\pm0.38 3.16±\pm0.16
HEB190515189 8.68e-07±\pm5.45e-08 4.59±\pm0.56 4.18±\pm0.35 1.56±\pm0.10
HEB190525031 1.93e-06±\pm8.58e-08 7.06±\pm0.94 5.41±\pm0.40 3.03±\pm0.14
HEB190531840 1.08e-04±\pm4.73e-07 51.13±\pm2.41 45.02±\pm1.14 39.16±\pm0.59
HEB190604446 2.26e-05±\pm2.77e-07 18.51±\pm2.13 17.25±\pm0.97 13.67±\pm0.46
HEB190613449 5.45e-06±\pm1.52e-07 3.01±\pm0.39 2.21±\pm0.17 1.74±\pm0.07
HEB190615636 1.20e-05±\pm3.67e-07 7.05±\pm1.45 5.41±\pm0.71 4.31±\pm0.36
HEB190619594 4.04e-05±\pm3.76e-07 20.59±\pm3.09 16.21±\pm1.14 14.13±\pm0.55
HEB190620507 5.95e-05±\pm2.93e-07 18.17±\pm1.30 16.91±\pm0.69 16.09±\pm0.35
HEB190720964 3.51e-06±\pm7.89e-08 5.61±\pm0.84 4.82±\pm0.42 4.52±\pm0.19
HEB190723308 3.29e-06±\pm9.60e-08 4.10±\pm0.75 3.46±\pm0.35 2.61±\pm0.16
HEB190724030 3.94e-07±\pm2.15e-08 9.93±\pm0.62 3.26±\pm0.19 0.84±\pm0.05
HEB190726642 1.73e-05±\pm2.36e-07 21.73±\pm3.33 20.74±\pm1.49 19.26±\pm0.67
HEB190806675 8.17e-06±\pm1.16e-07 4.31±\pm0.68 3.30±\pm0.24 2.54±\pm0.11
HEB190813520 3.99e-07±\pm6.00e-08 9.41±\pm2.10 3.58±\pm0.60 1.03±\pm0.16
HEB190814837 1.85e-06±\pm5.81e-08 1.62±\pm0.32 1.16±\pm0.13 0.97±\pm0.06
HEB190901890 4.38e-05±\pm3.68e-07 19.34±\pm1.86 16.48±\pm0.93 15.77±\pm0.45
HEB190903721 4.43e-07±\pm2.49e-08 2.99±\pm0.35 1.82±\pm0.13 0.67±\pm0.04
HEB190906767 4.91e-06±\pm3.40e-07 10.55±\pm1.01 8.50±\pm0.43 5.48±\pm0.20
HEB190915239 7.11e-06±\pm2.21e-07 6.74±\pm1.77 5.29±\pm0.67 4.46±\pm0.31
HEB191009297 1.90e-05±\pm5.31e-07 2.84±\pm0.74 2.05±\pm0.31 1.72±\pm0.15
HEB191019970 3.80e-05±\pm2.53e-07 7.56±\pm1.02 6.71±\pm0.50 6.15±\pm0.23
HEB191031780 1.14e-05±\pm1.34e-07 6.46±\pm1.03 4.64±\pm0.40 3.78±\pm0.18
HEB191105257 6.39e-06±\pm6.99e-08 60.97±\pm0.94 45.59±\pm0.38 11.92±\pm0.12
HEB191108003 2.28e-05±\pm3.92e-07 7.96±\pm2.45 5.64±\pm0.93 3.85±\pm0.40
HEB191111364 2.29e-05±\pm2.60e-07 28.32±\pm4.07 17.58±\pm1.57 12.28±\pm0.64
HEB191113578 1.06e-06±\pm6.93e-08 10.79±\pm1.97 6.66±\pm0.78 4.94±\pm0.33
HEB191118925 6.14e-06±\pm1.09e-07 4.39±\pm0.79 3.28±\pm0.31 2.94±\pm0.15
HEB191130506 9.57e-06±\pm1.51e-07 3.47±\pm0.56 2.34±\pm0.22 1.91±\pm0.10
HEB191202867 2.86e-05±\pm3.29e-07 42.80±\pm4.69 38.55±\pm2.02 28.30±\pm0.89
HEB191203289 3.68e-07±\pm4.30e-08 2.62±\pm0.74 1.99±\pm0.33 0.88±\pm0.10
HEB191205740 9.49e-07±\pm6.24e-08 4.73±\pm0.79 3.31±\pm0.34 1.59±\pm0.13
HEB191218112 2.70e-05±\pm2.27e-07 7.06±\pm0.92 6.30±\pm0.41 5.81±\pm0.20
HEB191221860 6.98e-05±\pm6.41e-07 48.23±\pm4.60 45.41±\pm2.25 35.96±\pm0.95
HEB191227069 6.11e-05±\pm2.67e-07 42.03±\pm1.88 37.79±\pm0.99 31.34±\pm0.46
HEB200109073 5.49e-06±\pm2.20e-07 2.50±\pm1.04 1.46±\pm0.36 1.09±\pm0.14
HEB200111632 6.22e-06±\pm1.71e-07 20.45±\pm2.09 17.01±\pm0.96 10.95±\pm0.39
HEB200114153 6.83e-06±\pm1.43e-07 2.43±\pm0.63 2.19±\pm0.28 1.84±\pm0.12
HEB200120961 1.24e-05±\pm2.82e-07 38.90±\pm6.14 25.40±\pm1.85 18.08±\pm0.83
HEB200125863 5.92e-05±\pm4.54e-07 175.35±\pm9.57 149.25±\pm3.78 110.27±\pm1.63
HEB200219998 3.21e-05±\pm3.67e-07 32.78±\pm2.79 29.51±\pm1.56 25.39±\pm0.73
HEB200221161 2.50e-06±\pm2.37e-07 6.13±\pm2.10 5.09±\pm0.93 2.78±\pm0.30
HEB200227305 1.26e-05±\pm1.20e-07 10.07±\pm1.10 7.57±\pm0.53 6.81±\pm0.24
HEB200323782 4.06e-06±\pm1.07e-07 37.44±\pm3.94 33.41±\pm1.97 26.08±\pm0.91
HEB200325137 2.92e-06±\pm1.06e-07 9.81±\pm1.00 7.43±\pm0.43 4.91±\pm0.17
HEB200326517 7.86e-07±\pm3.70e-08 0.98±\pm0.16 0.77±\pm0.08 0.46±\pm0.03
HEB200412381 8.70e-05±\pm5.97e-07 157.21±\pm8.23 155.41±\pm3.77 115.72±\pm1.58
HEB200416295 1.36e-06±\pm4.05e-08 5.44±\pm0.48 4.37±\pm0.22 3.28±\pm0.09
HEB200418864 1.85e-06±\pm1.10e-07 5.33±\pm1.44 3.39±\pm0.59 2.02±\pm0.23
HEB200519472 1.06e-05±\pm3.27e-07 9.88±\pm1.77 8.16±\pm0.90 7.09±\pm0.41
HEB200601097 5.41e-05±\pm5.02e-07 7.88±\pm1.82 5.44±\pm0.72 4.80±\pm0.31
HEB200609379 3.13e-05±\pm2.80e-07 4.49±\pm0.76 4.07±\pm0.32 3.28±\pm0.14
HEB200617679 1.81e-06±\pm2.20e-07 5.09±\pm1.10 4.06±\pm0.50 1.98±\pm0.20
HEB200619108 9.97e-06±\pm1.30e-07 4.48±\pm0.43 4.09±\pm0.23 3.62±\pm0.11
HEB200707072 4.18e-06±\pm1.11e-07 2.47±\pm0.58 1.88±\pm0.22 1.27±\pm0.09
HEB200711461 3.00e-05±\pm4.65e-07 28.38±\pm3.22 25.64±\pm1.56 19.43±\pm0.68
HEB200716315 4.07e-05±\pm4.25e-07 11.31±\pm1.48 9.04±\pm0.58 7.90±\pm0.27
HEB200716956 2.00e-05±\pm3.78e-07 34.45±\pm1.42 23.98±\pm0.63 7.99±\pm0.18
HEB200801352 4.38e-06±\pm8.90e-08 1.30±\pm0.28 0.83±\pm0.10 0.61±\pm0.04
HEB200806645 1.37e-05±\pm1.99e-07 11.20±\pm1.50 9.68±\pm0.62 6.39±\pm0.25
HEB200809653 3.77e-06±\pm8.93e-08 8.01±\pm0.74 5.73±\pm0.31 4.24±\pm0.14
HEB200824594 3.06e-07±\pm3.02e-08 1.62±\pm0.28 1.29±\pm0.15 0.77±\pm0.06
HEB200903112 1.15e-05±\pm2.16e-07 2.15±\pm0.62 1.78±\pm0.30 1.40±\pm0.13
HEB200919964 8.60e-05±\pm6.26e-07 24.42±\pm2.36 17.77±\pm0.98 14.62±\pm0.52
HEB200922504 2.58e-06±\pm9.06e-08 2.58±\pm0.50 1.91±\pm0.20 1.56±\pm0.10
HEB200928551 7.23e-06±\pm9.80e-08 8.70±\pm0.92 6.24±\pm0.37 4.09±\pm0.18
HEB201013157 1.56e-05±\pm1.72e-07 41.55±\pm2.06 40.47±\pm1.05 33.90±\pm0.54
HEB201105229 3.91e-05±\pm2.84e-07 28.91±\pm2.38 27.41±\pm1.08 25.41±\pm0.51
HEB201209239 1.60e-05±\pm5.13e-07 4.86±\pm1.15 3.29±\pm0.43 2.71±\pm0.19
HEB201221591 5.96e-07±\pm4.37e-08 45.36±\pm2.95 12.27±\pm0.93 3.77±\pm0.32
HEB201226553 8.34e-06±\pm1.24e-07 2.19±\pm0.43 1.81±\pm0.19 1.31±\pm0.08
HEB210112068 5.71e-05±\pm1.06e-06 85.78±\pm11.81 67.83±\pm5.27 40.40±\pm2.00
HEB210119120 2.37e-07±\pm3.17e-08 10.73±\pm1.43 2.85±\pm0.38 0.71±\pm0.10
HEB210121779 1.19e-04±\pm5.64e-07 32.48±\pm2.08 27.75±\pm0.82 25.45±\pm0.39
HEB210123304 2.22e-05±\pm2.21e-07 37.27±\pm3.04 29.43±\pm1.36 25.53±\pm0.68
HEB210207911 1.05e-04±\pm1.66e-06 120.06±\pm14.20 102.50±\pm7.03 74.98±\pm2.84
HEB210225217 6.73e-06±\pm1.04e-07 4.32±\pm0.80 3.72±\pm0.31 3.19±\pm0.15
HEB210227114 1.46e-05±\pm3.48e-07 2.09±\pm0.45 1.94±\pm0.20 1.40±\pm0.09
HEB210228057 4.76e-06±\pm1.30e-07 9.87±\pm1.08 7.77±\pm0.51 6.03±\pm0.22
HEB210307247 8.97e-07±\pm7.74e-08 5.94±\pm1.31 3.40±\pm0.52 1.36±\pm0.15
HEB210323918 2.08e-06±\pm4.48e-08 33.52±\pm0.93 20.39±\pm0.38 6.39±\pm0.14
HEB210324468 1.28e-05±\pm1.08e-07 10.31±\pm0.61 4.78±\pm0.22 3.82±\pm0.11
HEB210326057 4.51e-07±\pm4.08e-08 4.45±\pm0.92 2.79±\pm0.30 0.87±\pm0.08
HEB210409894 8.86e-06±\pm1.72e-07 2.99±\pm0.71 2.47±\pm0.36 2.22±\pm0.16
HEB210411147 7.29e-06±\pm1.47e-07 2.69±\pm0.48 2.47±\pm0.19 1.83±\pm0.09
HEB210421454 4.75e-06±\pm1.83e-07 2.84±\pm0.85 2.57±\pm0.33 2.15±\pm0.17
HEB210422572 4.65e-06±\pm1.17e-07 1.46±\pm0.32 1.19±\pm0.12 0.98±\pm0.06
HEB210427206 2.09e-05±\pm4.31e-07 17.65±\pm1.38 13.88±\pm0.61 10.90±\pm0.27
HEB210511476 1.18e-05±\pm1.96e-07 37.13±\pm4.20 34.30±\pm2.04 30.68±\pm0.96
HEB210515546 5.28e-07±\pm3.58e-08 1.30±\pm0.24 0.96±\pm0.12 0.66±\pm0.05
HEB210516982 2.90e-06±\pm7.91e-08 10.00±\pm0.84 8.76±\pm0.36 6.31±\pm0.16
HEB210518544 9.26e-06±\pm2.14e-07 24.45±\pm4.85 18.60±\pm1.71 16.11±\pm0.85
HEB210520796 7.88e-06±\pm1.53e-07 2.02±\pm0.39 1.68±\pm0.16 1.24±\pm0.07
HEB210605214 2.17e-06±\pm4.92e-08 17.98±\pm0.57 14.47±\pm0.26 5.10±\pm0.10
HEB210606945 5.53e-05±\pm5.01e-07 63.48±\pm1.48 48.28±\pm0.62 37.22±\pm0.27
HEB210610827 6.59e-05±\pm3.26e-07 22.63±\pm1.77 21.94±\pm0.84 19.24±\pm0.41
HEB210615981 9.91e-07±\pm5.46e-08 2.20±\pm0.44 1.55±\pm0.19 1.21±\pm0.08
HEB210622064 5.65e-06±\pm1.42e-07 3.68±\pm0.50 2.94±\pm0.23 2.06±\pm0.10
HEB210627311 1.28e-06±\pm7.19e-08 4.11±\pm1.32 2.83±\pm0.44 2.27±\pm0.20

Appendix A light curves and spectra of GRB 200125B and GRB 210121A

Refer to caption
Figure 17: Light curve of GRB 200125B (HEB200125863) of 18 CsI detectors. Vertical lines indicate the regions selected for the fit to the time-averaged spectra. Green regions defines the background region. Here MET means the mission elapsed time of HXMT.
Refer to caption
Figure 18: Joint analysis of time-averaged spectrum of GRB 200125B (HEB200125863). Data from 18 HXMT/CsI detectors and Fermi/GBM NaI detector 0, 1, BGO detector 0 are utilized.
Refer to caption
Figure 19: Photon flux light curve for GRB 200125B (HEB200125863) produced by the duration analysis. Data from 18 HE/CsI detectors and Fermi/GBM NaI detector 0, 1, BGO detector 0 are used. Here MET means the mission elapsed time of HXMT.
Refer to caption
Figure 20: The duration plot for GRB 200125B (HEB200125863). Horizontal dashed lines in dark red are drawn at 5%5\% and 95%95\% of the total fluence, while those in dark blue at 25%25\% and 75%75\%. Vertical dotted lines are drawn at the times corresponding to those same fluences, thereby defining the T50T_{\rm 50} and T90T_{\rm 90} intervals. The green dotted horizontal lines are corresponding to the 0%0\% and 100%100\% of the total integration of the flux respectively. Here MET means the mission elapsed time of HXMT.
Refer to caption
Figure 21: Joint analysis of time-averaged spectrum of GRB 210121A (HEB210121779). Data from 18 HE/CsI detectors and Fermi/GBM NaI detector 0, 3, BGO detector 0 are utilized.
Refer to caption
Figure 22: Joint analysis of time-averaged spectrum of GRB 210112A (HEB210112068). Data from 18 HE/CsI detectors and Swift/BAT are utilized.

References

  • Agostinelli et al. (2003) Agostinelli, S., Allison, J., Amako, K., et al. 2003, Nuclear Instruments & Methods in Physics Research, 506, 250
  • Band et al. (1993) Band, D., Matteson, J., Ford, L., et al. 1993, ApJ, 413, 281
  • Blackburn et al. (2015) Blackburn, L., Briggs, M. S., Camp, J., et al. 2015, ApJS, 217, 8. https://doi.org/10.1088/0067-0049/217/1/8
  • Cai et al. (2021) Cai, C., Xiong, S. L., Li, C. K., et al. 2021, MNRAS, https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/stab2760/40440234/stab2760.pdf, stab2760. https://doi.org/10.1093/mnras/stab2760
  • Cao et al. (2020) Cao, X. L., Jiang, W. C., Meng, B., Zhang, W. C., & Luo, T. 2020, Sci. China-Phys. Mech. Astron., 63, arXiv:1910.04451
  • Cash (1979) Cash, W. 1979, ApJ, 228, 939
  • Chen et al. (2020) Chen, Y., Cui, W. W., Li, W., et al. 2020, Sci. China-Phys. Mech. Astron. 63, 249505, 63, arXiv:1910.08319
  • Goldstein et al. (2016) Goldstein, A., Burns, E., Hamburg, R., et al. 2016, arXiv e-prints, arXiv:1612.02395
  • Goldstein et al. (2012) Goldstein, A., Burgess, J. M., Preece, R. D., et al. 2012, ApJS, 199, 19. https://doi.org/10.1088/0067-0049/199/1/19
  • Goldstein et al. (2019) Goldstein, A., Hamburg, R., Wood, J., et al. 2019, arXiv e-prints, arXiv:1903.12597
  • Guidorzi et al. (2020) Guidorzi, C., Orlandini, M., Frontera, F., et al. 2020, A&A, 642, A160
  • Hurley et al. (1999) Hurley, K., Briggs, M. S., Kippen, R. M., et al. 1999, ApJS, 120, 399. https://doi.org/10.1086/313178
  • Ishida et al. (2014) Ishida, M., Tsujimoto, M., Kohmura, T., et al. 2014, Publications of the Astronomical Society of Japan, 63, S657
  • Kocevski et al. (2018) Kocevski, D., Burns, E., Goldstein, A., et al. 2018, ApJ, 862, 152. https://doi.org/10.3847/1538-4357/aacb7b
  • Koshut et al. (1996) Koshut, T. M., Paciesas, W. S., Kouveliotou, C., et al. 1996, ApJ, 463, 570
  • Li et al. (2018a) Li, T. P., Xiong, S. L., Zhang, S. N., Lu, F. J., & Zou, C. L. 2018a, Science China Physics Mechanics I& Astronomy, 61, 031011
  • Li et al. (2018b) Li, T. P., Xiong, S. L., Zhang, S. N., et al. 2018b, Sci China-Phys. Mech. Astron., 61, doi:10.1007/s11433-017-9107-5
  • Li et al. (2020) Li, X., Li, X., Tan, Y., et al. 2020, Journal of High Energy Astrophysics, 27, 64. https://www.sciencedirect.com/science/article/pii/S2214404820300227
  • Li et al. (2019) Li, X. F., Liu, C. Z., Chang, Z., et al. 2019, Journal of High Energy Astrophysics, 24, 6
  • Li et al. (2017) Li, Z. W., Liao, J. Y., Li, C. K., et al. 2017, GRB Coordinates Network, 21593, 1
  • Liu et al. (2020) Liu, C. Z., Zhang, Y. F., Li, X. F., et al. 2020, Sci. China-Phys. Mech. Astron., 63, arXiv:1910.04955
  • Luo et al. (2020) Luo, Q., Liao, J.-Y., Li, X.-F., et al. 2020, Journal of High Energy Astrophysics, 27, 1 . http://www.sciencedirect.com/science/article/pii/S2214404820300264
  • Preece et al. (1998) Preece, R. D., Briggs, M. S., Mallozzi, R. S., et al. 1998, ApJ, 506, L23. https://doi.org/10.1086/311644
  • Sakamoto et al. (2011) Sakamoto, T., Pal’Shin, V., Yamaoka, K., et al. 2011, Publications of the Astronomical Society of Japan, 63, 215
  • Tierney et al. (2010) Tierney, D., McBreen, S., Fermi Gbm Team, et al. 2010, in Eighth Integral Workshop. The Restless Gamma-ray Universe (INTEGRAL 2010), 103
  • Tsujimoto et al. (2011) Tsujimoto, M., Guainazzi, M., Plucinsky, P. P., et al. 2011, A&A, 525, A25
  • von Kienlin et al. (2020) von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2020, ApJ, 893, 46. https://doi.org/10.3847/1538-4357/ab7a18
  • Xiao et al. (2020) Xiao, S., Xiong, S., Liu, C., et al. 2020, Journal of High Energy Astrophysics, 26, 58. https://www.sciencedirect.com/science/article/pii/S2214404820300069
  • Xie et al. (2015) Xie, F., Zhang, J., Song, L. M., Xiong, S. L., & Guan, J. 2015, Astrophysics and Space Science, 360, 1. http://dx.doi.org/10.1007/s10509-015-2559-1
  • Zhang et al. (2021) Zhang, P., Wang, W., Su, Y., et al. 2021, ApJ, 918, 42
  • Zhang et al. (2018) Zhang, S., Zhang, S. N., Lu, F. J., et al. 2018, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, ed. J.-W. A. den Herder, S. Nikzad, & K. Nakazawa, Vol. 10699, International Society for Optics and Photonics (SPIE), 434 – 455. https://doi.org/10.1117/12.2311835
  • Zhang et al. (2020) Zhang, S. N., Li, T. P., Lu, F. J., & et al. 2020, Sci China-Phys. Mech. Astron., 63, doi:10.1007/s11433-019-1432-6
  • Zheng et al. (2020) Zheng, Y. G., Cai, C., Du, Y. F., et al. 2020, GCN, 26815