This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Extended Paley-Wiener Theorem over the Hardy-Sobolev Spaces

Detian Liu Haichou Li Kit Ian Kou College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510640, China. Email:[email protected] Corresponding author. College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510640, China. Email: [email protected] Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau, P. R. China. Email:[email protected]
Abstract

We examine how the square-integrable function subspaces are transformed using the holomorphic Fourier transform. On account of this, the extended Paley-Wiener theorem over the Hardy-Sobolev spaces is produced. The theorem also asserts that the reproducing kernel of the Hardy-Sobolev spaces can be found. We discuss the relationship between the disc and the upper half-plane.

keywords:
Holomorphic Fourier transform , Reproducing kernel , Hardy-Sobolev spaces , Paley-Wiener theorem
journal: Mathematical Methods in the Applied Sciencesfootnotetext: 2020 Mathematics Subjuection Classification. Primary 46C07; Secondary 30A99, 47G10

1 Introduction

Function space, as a branch of functional analysis, has been widely developed. Classical Hardy space has formed a rich theoretical system [1; 2]. It consists of functions in the Lebesgue space Lp\displaystyle L^{p} (p>1\displaystyle p>1) that are smooth inside the domain and have finite integral growth on the boundary.

1.1 Related works

S.L. Sobolev developed a novel kind of function space during his investigation of the elastic wave problem in the 1930s. This space later came to be known as Sobolev space, which is a Banach space maked up by weakly differentiable functions.

Due to the smoothness of Sobolev space functions, they are crucial to the study of mathematical analysis. In harmonic analysis and partial differential equations (PDE for short) theory, when 0<p1\displaystyle 0<p\leq 1, Hardy space is the best alternative to Lebesgue space Lp\displaystyle L^{p}. When p>1\displaystyle p>1, the Sobolev space requires that the weak derivative of the function belongs to Lp\displaystyle L^{p}[3].

As a result, it makes sense to research Hardy-Sobolev spaces, which demand that a function’s derivative also belongs to Hardy spaces. As a significant analytic function space, Hardy-Sobolev space contains a number of well-known classical function spaces, including Dirichlet space, Hardy space, Bergmann space, and others. Since it has a more sophisticated spatial structure, it will have a more deep outcome than generic classical space, which seems sense to research the relative characteristics of this space.

Hardy-Sobolev spaces also combine the smoothness attributes of Sobolev space with the integral development characteristics of Hardy space. The functions have smoothness inside the domain and finite integral growth on the boundary, which makes the Hardy-Sobolev space particularly helpful for expressing issues with boundary influences, including boundary value problems.

In a word, the Hardy-Sobolev spaces have wide applications in areas such as PDE, boundary value problems, harmonic analysis, and more. Exactly, it provides a suitable framework for handling functions subject to boundary conditions, and offers tools for problem-solving in these areas[4; 5; 6].

1.2 Notations

Let +\displaystyle\mathbb{R}^{+} be the interval (0,\displaystyle\infty) and +\displaystyle\mathbb{C}^{+},+\displaystyle\mathbb{C}_{+} respectively denote the upper half-plane and the right-hand half-plane of complex plane, i.e., +={z:z>0}\displaystyle\mathbb{C}^{+}=\{z\in\mathbb{C}:\Im z>0\}, +={z:z>0}\displaystyle\mathbb{C}_{+}=\{z\in\mathbb{C}:\Re z>0\}. We let Lp(+)\displaystyle L^{p}(\mathbb{R}^{+}) be the usual Lebesgue space on (0,\displaystyle\infty) corresponding to its norm

fp=(0|f(t)|p𝑑t)1p<,fLp(+).\displaystyle\|f\|_{p}=\left(\int_{0}^{\infty}|f(t)|^{p}dt\right)^{\frac{1}{p}}<\infty,\qquad f\in L^{p}(\mathbb{R}^{+}).

In particular, L2(+)\displaystyle L^{2}(\mathbb{R}^{+}) is a Hilbert space with its inner product given by

f,g2=0f(t)g(t)¯𝑑t,f,gL2(+).\displaystyle\langle f,g\rangle_{2}=\int_{0}^{\infty}f(t)\overline{g(t)}dt,\qquad f,g\in L^{2}(\mathbb{R}^{+}).

We will usually write ,\displaystyle\langle\cdot,\cdot\rangle to denote the inner product of Hilbert space. For 1p<\displaystyle 1\leq p<\infty the space 𝒯p(n)\displaystyle\mathcal{T}^{(n)}_{p} consists of all the measurable functions on +\displaystyle\mathbb{R}^{+} which belongs to the closure of Cc(+)\displaystyle C^{\infty}_{c}(\mathbb{R}^{+}) corresponding to the norm

f𝒯p(n)=(0|f(n)(t)tn|p𝑑t)1p<,fCc(+).\displaystyle\|f\|_{\mathcal{T}^{(n)}_{p}}=\left(\int_{0}^{\infty}|f^{(n)}(t)t^{n}|^{p}dt\right)^{\frac{1}{p}}<\infty,\qquad f\in C^{\infty}_{c}(\mathbb{R}^{+}).

In particular, the space 𝒯1(n)\displaystyle\mathcal{T}^{(n)}_{1}, a subalgebra of L1(+)\displaystyle L^{1}(\mathbb{R}^{+}) , is a convolution Banach algebra with the norm 𝒯1(n)\displaystyle\|\cdot\|_{\mathcal{T}^{(n)}_{1}}. It was first introduced to approach Cauchy problems in [7] and it has been studied in [8; 9] recently.

When it turns to consider p=2\displaystyle p=2, it was proved that the range (𝒯2(n))\displaystyle\mathcal{L}(\mathcal{T}^{(n)}_{2}), where \displaystyle\mathcal{L} denotes to the Laplace transform given by

(f)(z)=0f(t)ezt𝑑t,fL2(+),z+,\displaystyle\mathcal{L}(f)(z)=\int_{0}^{\infty}f(t)e^{-zt}dt,\qquad f\in L^{2}(\mathbb{R}^{+}),z\in\mathbb{C}_{+},

is an isometric isomorphism onto the Hardy-Sobolev space H2(n)(+)\displaystyle H^{(n)}_{2}(\mathbb{C}_{+}) of all the holomorphic functions F\displaystyle F in H2(+)\displaystyle H_{2}(\mathbb{C}_{+}) satisfying condition zkF(k)H2(+)\displaystyle z^{k}F^{(k)}\in H_{2}(\mathbb{C}_{+}) for every k=0,1,,n\displaystyle k=0,1,\dots,n [10; 11]. Here the notation H2(+)\displaystyle H_{2}(\mathbb{C}_{+}) denotes the classical Hardy space of all analytic functions F\displaystyle F over the right-hand half-plane +\displaystyle\mathbb{C}_{+} such that

FH2(+)=supx>0(12π+|F(x+iy)|2𝑑y)12<.\displaystyle\|F\|_{H_{2}(\mathbb{C}_{+})}=\sup_{x>0}\left(\frac{1}{2\pi}\int_{-\infty}^{+\infty}|F(x+iy)|^{2}dy\right)^{\frac{1}{2}}<\infty.

Naturally, it inspires us to consider the Holomorphic Fourier transform \displaystyle\mathcal{F} acting on the space 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2}, where \displaystyle\mathcal{F} is given by

(f)(z)=0f(t)eitz𝑑t,fL2(+),z+.\displaystyle\mathcal{F}(f)(z)=\int_{0}^{\infty}f(t)e^{itz}dt,\qquad f\in L^{2}(\mathbb{R}^{+}),z\in\mathbb{C}^{+}.

Note that the Holomorphic Fourier transform :L2(+)H2(+)\displaystyle\mathcal{F}:L^{2}(\mathbb{R}^{+})\to H_{2}(\mathbb{C}^{+}) is also an isometric isomorphism. We will show that the range (𝒯2(n))\displaystyle\mathcal{F}(\mathcal{T}^{(n)}_{2}) is characterized as the Hilbert space H2(n)(+)\displaystyle H^{(n)}_{2}(\mathbb{C}^{+}), where the space H2(n)(+)\displaystyle H^{(n)}_{2}(\mathbb{C}^{+}) and H2(+)\displaystyle H_{2}(\mathbb{C}^{+}) is similar to the definition above that the domain becomes to the upper half-plane +\displaystyle\mathbb{C}^{+}.

Point evalutation functionals on H2(+)\displaystyle H_{2}(\mathbb{C}^{+}) are bounded so that it is a Reproducing Kernel Hilbert Space(RKHS). In fact, its reproducing kernel K(z,w)=Kw(z)\displaystyle K(z,w)=K_{w}(z) is given by

Kw(z)=izw¯,z,w+.\displaystyle K_{w}(z)=\frac{i}{z-\overline{w}},\qquad z,w\in\mathbb{C}^{+}.

The space H2(n)(+)\displaystyle H^{(n)}_{2}(\mathbb{C}^{+}) is also a RKHS and one of the main purposes in this paper is to determine the reproducing kernel of H2(n)(+)\displaystyle H^{(n)}_{2}(\mathbb{C}^{+}). In the rest of paper, we will sometimes write H2(n)\displaystyle H^{(n)}_{2} and H2\displaystyle H_{2} for short to represent the Hardy-Sobolev spaces and Hardy space over the upper half-plane.

Here are the key notations and acronyms used in this paper.

Table 1: Notations
Notation Description
+\displaystyle\mathbb{R^{+}} Interval (0,\displaystyle\infty)
+\displaystyle\mathbb{C}^{+} Upper half-plane of complex plane
𝔻\displaystyle\mathbb{D} unit disc of complex plane
\displaystyle\Im Imaginary part
H2\displaystyle H_{2} Hardy space
𝒯2(n)\displaystyle\mathcal{T}_{2}^{(n)} Lebesgue-Sobolev space
H2(n)\displaystyle H^{(n)}_{2} Hardy-Soboelv space
\displaystyle\|\cdot\| Norm
,\displaystyle\langle\cdot,\cdot\rangle Inner product
\displaystyle\mathcal{F} Holomorphic Fourier transform
RKHS Reproducing Kernel Hilbert Space

1.3 Paper contributions

In this research, we focus on the properties of Hardy-Sobolev spaces defined on the upper half-plane. Royo established the extended form of the Paley-Wiener theorem for Hardy-Sobolev spaces on the right-hand half-plane by applying the standard Paley-Wiener theorem [11]. Matache enhanced Royo’s proof by introducing the equivalent inner product and constructing the associated auxiliary function, and he used the extended Paley-Wiener theorem to determine the reproducing kernel of Hardy-Sobolev spaces [10]. Based on the work of these two researchers, this paper extends the famous Paley-Wiener theorem to Hardy-Sobolev spaces on the upper half-plane and computes the reproducing kernel of this space. Our key findings are as follows.

  • A.

    Let \displaystyle\mathcal{F} be the Holomorphic Fourier transform :L2(+)H2(+)\displaystyle\mathcal{F}:L^{2}(\mathbb{R}^{+})\to H_{2}(\mathbb{C}^{+}). Then

    (𝒯2(n))=H2(n).\displaystyle\mathcal{F}(\mathcal{T}^{(n)}_{2})=H^{(n)}_{2}.

    That is, Holomorphic Fourier transform \displaystyle\mathcal{F} is an isometric isomorphism from 𝒯2(n)\displaystyle\mathcal{T}_{2}^{(n)} onto H2(n)\displaystyle H_{2}^{(n)}.

  • B.

    Let n\displaystyle n be a positive integer. Then the function Kn\displaystyle K_{n} is the reproducing kernel of H2(n)\displaystyle H^{(n)}_{2},which is given by

    Kn(z,w)=1((n1)!)20101(1y)n1(1x)n1iyzxw¯𝑑x𝑑y,z,w+.\displaystyle K_{n}(z,w)=\frac{1}{((n-1)!)^{2}}\int_{0}^{1}\int_{0}^{1}(1-y)^{n-1}(1-x)^{n-1}\frac{i}{yz-x\overline{w}}dxdy,\qquad z,w\in\mathbb{C^{+}}.
  • C.

    If FH2(n)\displaystyle F\in H^{(n)}_{2}, then zk1F(k1),k=1,2,,n\displaystyle z^{k-1}F^{(k-1)},k=1,2,\dots,n can be extended continuously at all nonzero points on the real axis, including the point at infinity.

The contributions of this work are summarized below.

  • 1.

    We extend the Paley-Wiener theorem and derive a version of the theorem regarding the Holomorphic Fourier transform about Hardy-Sobolev spaces. Furthermore, we derive the reproducing kernel with respect to the integral form of Hardy-Sobolev spaces over the upper half-plane, which extends Hardy-Sobolev space theory.

  • 2.

    We establish the link between Hardy-Sobolev spaces in the upper half-plane and classical Hardy spaces on the disc, which provides additional tools and approaches for dealing with Hardy-Sobolev spaces.

1.4 Paper outlines

The paper is organized as follows. In Section 2, we define spaces L2(tn)\displaystyle L^{2}(t^{n}) and 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2} with their corresponding norm, which are introduced in [11]. They are connected by the integration operator Wn\displaystyle W^{-n}. Then we give some propositions about these spaces. In section 3, we introduce the Holomorphic Fourier transform and some formulas related to the transform and n\displaystyle n-times derivation, which will be used to prove the extended Paley-Wiener theorem later. Then we give the definition of the space H2(n)\displaystyle H^{(n)}_{2} and finish the proof. Moreover, we compute the reproducing kernel of H2(n)\displaystyle H^{(n)}_{2} by applying the theorem. In addition, according to the Cayley transform, we give the connection of spaces H2(n)\displaystyle H^{(n)}_{2} with the usual Hardy space H2(𝔻)\displaystyle H_{2}(\mathbb{D}) on the disc 𝔻\displaystyle\mathbb{D}.

2 Preliminary

We use W1\displaystyle W^{-1} to denote the integration operator on the space Cc(+)\displaystyle C^{\infty}_{c}(\mathbb{R}^{+}) which is given by

W1φ(t)=tφ(s)𝑑s,φCc(+),t0.\displaystyle W^{-1}\varphi(t)=\int_{t}^{\infty}\varphi(s)ds,\qquad\varphi\in C^{\infty}_{c}(\mathbb{R}^{+}),t\geq 0.

For any function φCc(+)\displaystyle\varphi\in C^{\infty}_{c}(\mathbb{R}^{+}), it is easy to show that W1φCc(+)\displaystyle W^{-1}\varphi\in C^{\infty}_{c}(\mathbb{R}^{+}) and so that we can define the integration operator Wn=W1(W(n1))\displaystyle W^{-n}=W^{-1}(W^{-(n-1)}) for every positive integer n\displaystyle n. By applying Fubini’s theorem we get

Wnφ(t)=1(n1)!t(st)n1φ(s)𝑑s,φCc(+),t0.\displaystyle W^{-n}\varphi(t)=\frac{1}{(n-1)!}\int_{t}^{\infty}(s-t)^{n-1}\varphi(s)ds,\qquad\varphi\in C^{\infty}_{c}(\mathbb{R}^{+}),t\geq 0.

In fact, the index n\displaystyle n can be extended to any positive real number α\displaystyle\alpha, for more details about Wα\displaystyle W^{-\alpha}, see [11; 12].

Next we consider the operator Wn\displaystyle W^{-n} act on the Hilbert space L2(tn)\displaystyle L^{2}(t^{n}).

Definition 2.1.

([11]) For n\displaystyle n\in\mathbb{N}, let L2(tn)\displaystyle L^{2}(t^{n}) be the space of all complex measurable function φ\displaystyle\varphi on +\displaystyle\mathbb{R}^{+} whose norm satisfies

φL2(tn)=(0|φ(t)tn|2𝑑t)12<.\displaystyle\|\varphi\|_{L^{2}(t^{n})}=\left(\int_{0}^{\infty}|\varphi(t)t^{n}|^{2}dt\right)^{\frac{1}{2}}<\infty.
Proposition 2.2.

([10]) For n\displaystyle n\in\mathbb{N} and φL2(tn)\displaystyle\varphi\in L^{2}(t^{n}). Then for 1kn\displaystyle 1\leq k\leq n, we have

Wkφ(t)=1(k1)!t(st)n1φ(s)𝑑s,t>0.\displaystyle W^{-k}\varphi(t)=\frac{1}{(k-1)!}\int_{t}^{\infty}(s-t)^{n-1}\varphi(s)ds,\qquad t>0.

Moreover, Wkφ\displaystyle W^{-k}\varphi is (k1)\displaystyle(k-1)-times differentiable with (Wkφ)(l)=(1)lW(kl)φ\displaystyle(W^{-k}\varphi)^{(l)}=(-1)^{l}W^{-(k-l)}\varphi for every 1lk1\displaystyle 1\leq l\leq k-1, and (1)k(Wkφ)(k)=φ\displaystyle(-1)^{k}(W^{-k}\varphi)^{(k)}=\varphi.

Take m\displaystyle m\in\mathbb{N} and Borel function φ\displaystyle\varphi, we get WnφL2(+)\displaystyle W^{-n}\varphi\in L^{2}(\mathbb{R}^{+}) for all φL2(tn)\displaystyle\varphi\in L^{2}(t^{n}) by applying Hardy’s inequality [13]

0(Wmφ(t))2𝑑t(Γ(12)Γ(m+12))20(tmφ(t))2𝑑t.\displaystyle\int_{0}^{\infty}\left(W^{-m}\varphi(t)\right)^{2}dt\leq\left(\frac{\Gamma(\frac{1}{2})}{\Gamma(m+\frac{1}{2})}\right)^{2}\int_{0}^{\infty}(t^{m}\varphi(t))^{2}dt.

As a matter of fact, the integration operator Wn:L2(tn)L2(+)\displaystyle W^{-n}:L^{2}(t^{n})\to L^{2}(\mathbb{R}^{+}) is injective, which enables us to define Hardy-Lebesgue space 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2}.

Definition 2.3.

([11]) For n\displaystyle n\in\mathbb{N}, let 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2} be the range of operator Wn\displaystyle W^{-n} on L2(tn)\displaystyle L^{2}(t^{n}), i.e.,

𝒯2(n)=Wn(L2(tn)),\displaystyle\mathcal{T}^{(n)}_{2}=W^{-n}(L^{2}(t^{n})),

which is a subspace of L2(+)\displaystyle L^{2}(\mathbb{R}^{+}). It is clear that 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2} is a Hilbert space with the inner product

f,g𝒯2(n)=0f(n)(t)g(n)(t)¯t2n𝑑t,f,g𝒯2(n).\displaystyle\langle f,g\rangle_{\mathcal{T}^{(n)}_{2}}=\int_{0}^{\infty}f^{(n)}(t)\overline{g^{(n)}(t)}t^{2n}dt,\qquad f,g\in\mathcal{T}^{(n)}_{2}.

For nk0\displaystyle n\geq k\geq 0, let φ(t)=|f(n)(t)|tk\displaystyle\varphi(t)=|f^{(n)}(t)|t^{k} and m=nk\displaystyle m=n-k, by applying Hardy’s inequality again we get that the size of the space 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2} decreases as n\displaystyle n increases, i.e.,

𝒯2(n)𝒯2(k)L2(+),nk0.\displaystyle\displaystyle\mathcal{T}^{(n)}_{2}\subseteq\mathcal{T}^{(k)}_{2}\subseteq L^{2}(\mathbb{R}^{+}),\qquad n\geq k\geq 0. (2.1)

Moreover, by using Holder’s inequality and taking φ=(1)nf(n)\displaystyle\varphi=(-1)^{n}f^{(n)} in Proposition 2.2 we obtain

|f(k)(t)|Cn,ktk12f𝒯2(n),f𝒯2(n),0kn1,t>0,\displaystyle\displaystyle|f^{(k)}(t)|\leq C_{n,k}t^{-k-\frac{1}{2}}\|f\|_{\mathcal{T}^{(n)}_{2}},\qquad f\in\mathcal{T}^{(n)}_{2},0\leq k\leq n-1,t>0, (2.2)

where Cn,k\displaystyle C_{n,k} is a constant related to n\displaystyle n and k\displaystyle k.

Lemma 2.4.

([10]) Take n0\displaystyle n\geq 0, the (n+1)\displaystyle(n+1)-square matrix Cn=(ci,j)0i,jn\displaystyle C_{n}=(c_{i,j})_{0\leq i,j\leq n} defined by

ci,j={0,i<j;(ij)i!j!,ij.\displaystyle\displaystyle c_{i,j}=\begin{cases}0,&i<j;\\ \binom{i}{j}\frac{i!}{j!},&i\geq j.\end{cases}

satisfies:

(i) the matrix Cn\displaystyle C_{n} is invertible and Cn1=((1)i+jci,j)0i,jn\displaystyle C^{-1}_{n}=((-1)^{i+j}c_{i,j})_{0\leq i,j\leq n}.

(ii) f𝒯2(n),t>0,\displaystyle\forall f\in\mathcal{T}^{(n)}_{2},t>0, we have

(tnf)(n)(t)=k=0ncn,ktkf(k)(t),\displaystyle\displaystyle(t^{n}f)^{(n)}(t)=\sum_{k=0}^{n}c_{n,k}t^{k}f^{(k)}(t),
tnf(n)(t)=k=0n(1)k+ncn,k(tkf)(k)(t).\displaystyle\displaystyle t^{n}f^{(n)}(t)=\sum_{k=0}^{n}(-1)^{k+n}c_{n,k}(t^{k}f)^{(k)}(t).
Proposition 2.5.

([10]) Take f,g𝒯2(n)\displaystyle f,g\in\mathcal{T}^{(n)}_{2}. Then

f,g𝒯2(n)=(tnf)(n),(tng)(n)2,\displaystyle\langle f,g\rangle_{\mathcal{T}^{(n)}_{2}}=\langle(t^{n}f)^{(n)},(t^{n}g)^{(n)}\rangle_{2},

where f,g2=0f(t)g(t)¯𝑑t\displaystyle\langle f,g\rangle_{2}=\int_{0}^{\infty}f(t)\overline{g(t)}dt.

3 Main results

Recall that H2(+)\displaystyle H_{2}(\mathbb{C^{+}}) is the space of holomorphic function on the upper half-plane +\displaystyle\mathbb{C^{+}} such that ([1; 2])

fH2=supy>012π+|f(x+iy)|2𝑑x<.\displaystyle\|f\|_{H_{2}}=\sup_{y>0}\frac{1}{2\pi}\int_{-\infty}^{+\infty}|f(x+iy)|^{2}dx<\infty.

In fact, H2(+)\displaystyle H_{2}(\mathbb{C^{+}}) is a Hilbert space with the inner product

f,gH2=12π+f(x)g(x)¯𝑑x,f,gH2(+),\displaystyle\langle f,g\rangle_{H_{2}}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}f^{*}(x)\overline{g^{*}(x)}dx,\qquad f,g\in H_{2}(\mathbb{C^{+}}),

where f(x)=limy0f(x+iy)\displaystyle f^{*}(x)=\lim\limits_{y\to 0}f(x+iy) a.e. x\displaystyle x\in\mathbb{R}.

Let f\displaystyle f be any function in L2(+)\displaystyle L^{2}(\mathbb{R^{+}}) and define the Holomorphic Fourier transform \displaystyle\mathcal{F} given by

(f)(z)=F(z)=0f(t)eitz𝑑t,z+,\displaystyle\mathcal{F}(f)(z)=F(z)=\int_{0}^{\infty}f(t)e^{itz}dt,\qquad z\in\mathbb{C^{+}},

If z=x+iy+\displaystyle z=x+iy\in\mathbb{C^{+}}, then |eitz|=ety\displaystyle|e^{itz}|=e^{-ty}, which shows that the integral above exists as a Lebesgue integral. By applying a series of theorems about real and complex analysis ,we can prove that F\displaystyle F is a holomorphic function on +\displaystyle\mathbb{C^{+}} [14]. The classical Paley-Wiener theorem ([14]) shows that the Holomorphic Fourier transform :L2(+)H2(+)\displaystyle\mathcal{F}:L^{2}(\mathbb{R}^{+})\to H_{2}(\mathbb{C}^{+}) is an isometric isomorphism, i.e., FH2(+)\displaystyle F\in H_{2}(\mathbb{C^{+}}) if and only if there exists an fL2(+)\displaystyle f\in L^{2}(\mathbb{R^{+}}) such that F=(f)\displaystyle F=\mathcal{F}(f) and

FH2=f2.\displaystyle\|F\|_{H_{2}}=\|f\|_{2}.

Next we will consider the Paley-Wiener type theorem on the Hardy-Sobolev spaces over the upper half-plane.

Lemma 3.6.

n,zC¯+\{0}\displaystyle\forall n\in\mathbb{N},z\in\overline{C}^{+}\backslash\{0\} and f𝒯2(n),\displaystyle f\in\mathcal{T}^{(n)}_{2},

(1)kzk[(f)](k)(z)=j=0kck,j(tjf(j))(z),k=0,1,,n;\displaystyle\displaystyle(-1)^{k}z^{k}[\mathcal{F}(f)]^{(k)}(z)=\sum_{j=0}^{k}c_{k,j}\mathcal{F}(t^{j}f^{(j)})(z),\qquad k=0,1,\dots,n;
(1)k(tkf(k))(z)=j=0kck,jzj[(f)](j)(z),k=0,1,,n,\displaystyle\displaystyle(-1)^{k}\mathcal{F}(t^{k}f^{(k)})(z)=\sum_{j=0}^{k}c_{k,j}z^{j}[\mathcal{F}(f)]^{(j)}(z),\qquad k=0,1,\dots,n,

where ck,j\displaystyle c_{k,j} is a constant defined by Lemma 2.4.

Proof.

Let j,k\displaystyle j,k be nonnegative integers such that 0jkn\displaystyle 0\leq j\leq k\leq n. Taking h=tkf\displaystyle h=t^{k}f and integrating by parts k\displaystyle k times, we get

(h(k))(z)=(iz)k(h)(z)j=0k1(iz)k1jh(j)(0).\displaystyle\mathcal{F}(h^{(k)})(z)=(-iz)^{k}\mathcal{F}(h)(z)-\sum_{j=0}^{k-1}(-iz)^{k-1-j}h^{(j)}(0).

By applying Leibniz’s rule of derivation in (tkf)(j)\displaystyle(t^{k}f)^{(j)} and the formula given by (1), we get

(tkf)(j)(0)=limt0+(tkf)(j)(t)=0,j=0,1,,k1.\displaystyle(t^{k}f)^{(j)}(0)=\lim\limits_{t\to 0^{+}}(t^{k}f)^{(j)}(t)=0,\qquad j=0,1,\dots,k-1.

Thus we have

((tkf)(k))(z)=(iz)k(tkf)(z)=(1)kzk[(f)](k)(z).\displaystyle\mathcal{F}((t^{k}f)^{(k)})(z)=(-iz)^{k}\mathcal{F}(t^{k}f)(z)=(-1)^{k}z^{k}[\mathcal{F}(f)]^{(k)}(z).

Then

(1)kzk[(f)](k)(z)=((tkf)(k))(z)=j=0kck,j(tjf(j))(z)\displaystyle(-1)^{k}z^{k}[\mathcal{F}(f)]^{(k)}(z)=\mathcal{F}((t^{k}f)^{(k)})(z)=\sum_{j=0}^{k}c_{k,j}\mathcal{F}(t^{j}f^{(j)})(z)

where the second equality is based on Lemma 2.4.

By applying the invertibility of the matrix defined by Lemma 2.4, we have

(tjf(j))(z)=k=0j(1)jcj,kzk[(f)](k)(z).\displaystyle\mathcal{F}(t^{j}f^{(j)})(z)=\sum_{k=0}^{j}(-1)^{j}c_{j,k}z^{k}[\mathcal{F}(f)]^{(k)}(z).

Interchange the position of j\displaystyle j and k\displaystyle k, we derive

(1)k(tkf(k))(z)=j=0kck,jzj[(f)](j)(z).\displaystyle(-1)^{k}\mathcal{F}(t^{k}f^{(k)})(z)=\sum_{j=0}^{k}c_{k,j}z^{j}[\mathcal{F}(f)]^{(j)}(z).

Now we define Hardy-Sobolev space over the upper half-plane.

Definition 3.7.

For n\displaystyle n\in\mathbb{N}, let H2(n)\displaystyle H^{(n)}_{2} be the linear space of all holomorphic functions F\displaystyle F on +\displaystyle\mathbb{C^{+}} such that

zkF(k)H2,k=0,1,,n.\displaystyle z^{k}F^{(k)}\in H_{2},\qquad k=0,1,\dots,n.

It is clear that H2(n)H2(0)=H2\displaystyle H^{(n)}_{2}\subseteq H^{(0)}_{2}=H_{2}.

Here is the Paley-Wiener theorem on Hardy-Sobolev spaces.

Theorem 3.8.

Let \displaystyle\mathcal{F} be the Holomorphic Fourier transform :L2(+)H2(+)\displaystyle\mathcal{F}:L^{2}(\mathbb{R}^{+})\to H_{2}(\mathbb{C}^{+}). Then

(𝒯2(n))=H2(n).\displaystyle\mathcal{F}(\mathcal{T}^{(n)}_{2})=H^{(n)}_{2}.

Thus, H2(n)\displaystyle H^{(n)}_{2} is a Hilbert space endowed with the inner product

F,GH2(n)=+x2n(F)(n)(x)(G)(n)(x)¯𝑑x,F,GH2(n),\displaystyle\langle F,G\rangle_{H^{(n)}_{2}}=\int_{\mathbb{-\infty}}^{+\infty}x^{2n}(F^{*})^{(n)}(x)\overline{(G^{*})^{(n)}(x)}dx,\qquad F,G\in H^{(n)}_{2},

and corresponding to the norm

FH2(n)=znF(n)H2,FH2(n).\displaystyle\|F\|_{H^{(n)}_{2}}=\|z^{n}F^{(n)}\|_{H_{2}},\qquad F\in H^{(n)}_{2}.

Moreover, \displaystyle\mathcal{F} is an isometric isomorphism from 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2} onto H2(n)\displaystyle H^{(n)}_{2}, i.e., F,GH2(n)\displaystyle F,G\in H^{(n)}_{2} if and only if there exists f,g𝒯2(n)\displaystyle f,g\in\mathcal{T}^{(n)}_{2} and have the property

f,g𝒯2(n)=(f),(g)H2(n).\displaystyle\langle f,g\rangle_{\mathcal{T}^{(n)}_{2}}=\langle\mathcal{F}(f),\mathcal{F}(g)\rangle_{H^{(n)}_{2}}.
Proof.

Suppose f𝒯2(n)\displaystyle f\in\mathcal{T}^{(n)}_{2}, then for 0kn\displaystyle 0\leq k\leq n, it is easy to see that tkf(k)L2(+)\displaystyle t^{k}f^{(k)}\in L^{2}(\mathbb{R^{+}}).

By applying Lemma 3.1 and the classical Paley-Wiener Theorem, we derive that zk[(f)](k)H2\displaystyle z^{k}[\mathcal{F}(f)]^{(k)}\in H_{2}. Thus (f)H2(n)\displaystyle\mathcal{F}(f)\in H^{(n)}_{2}.

Conversely, provided that FH2(n)H2\displaystyle F\in H^{(n)}_{2}\subseteq H_{2}, then according to the classical Paley-Wiener theorem, there exists a function fL2(+)\displaystyle f\in L^{2}(\mathbb{R^{+}}) such that F=(f)\displaystyle F=\mathcal{F}(f).

All we need is to prove that f𝒯2(n)\displaystyle f\in\mathcal{T}^{(n)}_{2}. To arrive this aim, considering the function

G(z)=(1)nj=0ncn,jzjF(j)(z),z+,\displaystyle G(z)=(-1)^{n}\sum_{j=0}^{n}c_{n,j}z^{j}F^{(j)}(z),\qquad z\in\mathbb{C^{+}},

we get GH2\displaystyle G\in H_{2} since FH2(n)\displaystyle F\in H^{(n)}_{2}.

Therefore, there exists a function gL2(+)\displaystyle g\in L^{2}(\mathbb{R^{+}}) such that G=(g)\displaystyle G=\mathcal{F}(g). What’s more, we define another function

h(s)=1(n1)!s(st)n1g(t)tn𝑑t.\displaystyle h(s)=-\frac{1}{(n-1)!}\int_{s}^{\infty}(s-t)^{n-1}\frac{g(t)}{t^{n}}dt.

Note that g(t)tnL2(tn)\displaystyle\frac{g(t)}{t^{n}}\in L^{2}(t^{n}), it is clear that it belongs to 𝒯2(n)\displaystyle\mathcal{T}^{(n)}_{2}. By applying proposition 2.2, we derive g=tnh(n)\displaystyle g=t^{n}h^{(n)}.

Now according to Lemma 3.1, we have

G(z)=(g)(z)=(tnh(n))(z)=(1)nj=0ncn,jzj[(h)](j)(z),z+.\displaystyle G(z)=\mathcal{F}(g)(z)=\mathcal{F}(t^{n}h^{(n)})(z)=(-1)^{n}\sum_{j=0}^{n}c_{n,j}z^{j}[\mathcal{F}(h)]^{(j)}(z),\qquad z\in\mathbb{C^{+}}.

Therefore, since F=(f)\displaystyle F=\mathcal{F}(f), we get

(1)n[zn(hf)](n)(z)=(1)nj=0ncn,jzj[(hf)](j)(z)=0.\displaystyle(-1)^{n}[z^{n}\mathcal{F}(h-f)]^{(n)}(z)=(-1)^{n}\sum_{j=0}^{n}c_{n,j}z^{j}[\mathcal{F}(h-f)]^{(j)}(z)=0.

It shows that zn(hf)=Pn(z)\displaystyle z^{n}\mathcal{F}(h-f)=P_{n}(z) where Pn(z)\displaystyle P_{n}(z) denotes the polynomial with its degree less than or equal to n1\displaystyle n-1.

Note that Pn(z)zn=(hf)H2\displaystyle P_{n}(z)z^{-n}=\mathcal{F}(h-f)\in H_{2}, we get (hf)=0\displaystyle\mathcal{F}(h-f)=0. Then by the injectivity of \displaystyle\mathcal{F}, we derive f=h𝒯2(n)\displaystyle f=h\in\mathcal{T}^{(n)}_{2}. Therefore, we have shown that (𝒯2(n))=H2(n)\displaystyle\mathcal{F}(\mathcal{T}^{(n)}_{2})=H^{(n)}_{2}.

Take f,g𝒯2(n)\displaystyle f,g\in\mathcal{T}^{(n)}_{2}, then F=(f),G=(g)\displaystyle F=\mathcal{F}(f),G=\mathcal{F}(g) lies in H2(n)\displaystyle H^{(n)}_{2}. By proposition 2.5, we have

f,g𝒯2(n)\displaystyle\displaystyle\langle f,g\rangle_{\mathcal{T}^{(n)}_{2}} =(tnf)(n),(tng)(n)2\displaystyle\displaystyle=\langle(t^{n}f)^{(n)},(t^{n}g)^{(n)}\rangle_{2}
=[(tnf)(n)],[(tng)(n)]H2\displaystyle\displaystyle=\langle\mathcal{F}[(t^{n}f)^{(n)}],\mathcal{F}[(t^{n}g)^{(n)}]\rangle_{H_{2}}
=(1)nzn[(f)](n),(1)nzn[(g)](n)H2\displaystyle\displaystyle=\langle(-1)^{n}z^{n}[\mathcal{F}(f)]^{(n)},(-1)^{n}z^{n}[\mathcal{F}(g)]^{(n)}\rangle_{H_{2}}
=F,GH2(n).\displaystyle\displaystyle=\langle F,G\rangle_{H^{(n)}_{2}}.

Let X\displaystyle X be a set, recall that \displaystyle\mathcal{H} is a Reproducing Kernel Hilbert Space or, more briefly, an RKHS on X\displaystyle X, if it is a Hilbert space of all complex functions on X\displaystyle X with its inner product ,\displaystyle\langle\cdot,\cdot\rangle satisfying the condition that the evaluation functional, Ex:\displaystyle E_{x}:\mathcal{H}\to\mathbb{C}, defined by Ex(f)=f(x)\displaystyle E_{x}(f)=f(x), is bounded for every xX\displaystyle x\in X.

If \displaystyle\mathcal{H} is an RKHS on X\displaystyle X, then an application of the Riesz representation theorem shows that the linear evaluation functional is given by the inner product with a unique vector in \displaystyle\mathcal{H}.

Thus, for each xX\displaystyle x\in X, there exists a unique vector kx\displaystyle k_{x}\in\mathcal{H} such that for every f,f(x)=Ex(f)=f,kx\displaystyle f\in\mathcal{H},f(x)=E_{x}(f)=\langle f,k_{x}\rangle. The function kx\displaystyle k_{x} is called kernel-functions and the span generated by all of kernel-functions is dense in \displaystyle\mathcal{H}.

The function K:X×X\displaystyle K:X\times X\to\mathbb{C} defined by K(x,y)=ky(x)=ky,kx,x,yX\displaystyle K(x,y)=k_{y}(x)=\langle k_{y},k_{x}\rangle,x,y\in X is said to be the reproducing kernel of \displaystyle\mathcal{H}[15]. Point evaluation functions on H2(n)\displaystyle H^{(n)}_{2} are continuous so that H2(n)\displaystyle H^{(n)}_{2} is a RKHS.

Next we determine the reproducing kernel of H2(n)\displaystyle H^{(n)}_{2}.

Theorem 3.9.

Let n\displaystyle n be a positive integer. Then the function Kn\displaystyle K_{n} defined on +×+\displaystyle\mathbb{C^{+}}\times\mathbb{C^{+}} by

Kn(z,w)=1((n1)!)20101(1y)n1(1x)n1iyzxw¯𝑑x𝑑y,z,w+,\displaystyle K_{n}(z,w)=\frac{1}{((n-1)!)^{2}}\int_{0}^{1}\int_{0}^{1}(1-y)^{n-1}(1-x)^{n-1}\frac{i}{yz-x\overline{w}}dxdy,\qquad z,w\in\mathbb{C^{+}},

is the reproducing kernel of H2(n)\displaystyle H^{(n)}_{2}, i.e., if Kn,w(z)=Kn(z,w)\displaystyle K_{n,w}(z)=K_{n}(z,w) then

Kn,wH2(n) and F(w)=F,Kn,wH2(n),FH2(n).\displaystyle K_{n,w}\in H^{(n)}_{2}\text{ and }F(w)=\langle F,K_{n,w}\rangle_{H^{(n)}_{2}},\forall F\in H^{(n)}_{2}.
Proof.

Take w+\displaystyle w\in\mathbb{C^{+}} and n\displaystyle n\in\mathbb{N^{*}}. Let

φw,n(t)=1tn01(1x)n1(n1)!eiw¯tx𝑑x,t>0.\displaystyle\varphi_{w,n}(t)=\frac{1}{t^{n}}\int_{0}^{1}\frac{(1-x)^{n-1}}{(n-1)!}e^{-i\overline{w}tx}dx,\qquad t>0.

We will show that φw,nL2(tn)\displaystyle\varphi_{w,n}\in L^{2}(t^{n}). In fact,

(0|φw,n(t)|2t2n𝑑t)12\displaystyle\displaystyle\left(\int_{0}^{\infty}|\varphi_{w,n}(t)|^{2}t^{2n}dt\right)^{\frac{1}{2}} (0(01(1x)n1(n1)!e(w)tx𝑑x)2𝑑t)12\displaystyle\displaystyle\leq\left(\int_{0}^{\infty}\left(\int_{0}^{1}\frac{(1-x)^{n-1}}{(n-1)!}e^{-(\Im w)tx}dx\right)^{2}dt\right)^{\frac{1}{2}}
01(1x)n1(n1)!(0e2(w)tx)12𝑑x\displaystyle\displaystyle\leq\int_{0}^{1}\frac{(1-x)^{n-1}}{(n-1)!}\left(\int_{0}^{\infty}e^{-2(\Im w)tx}\right)^{\frac{1}{2}}dx
=π2Γ(n+12)w.\displaystyle\displaystyle=\frac{\sqrt{\frac{\pi}{2}}}{\Gamma(n+\frac{1}{2})\sqrt{\Im w}}.

Hence, gw,n(t)=Wnφw,n(t)𝒯2(n)\displaystyle g_{w,n}(t)=W^{-n}\varphi_{w,n}(t)\in\mathcal{T}^{(n)}_{2} and

gw,n(t)=1((n1)!)2t(st)n1sn01(1x)n1eiw¯sx𝑑x𝑑s.\displaystyle g_{w,n}(t)=\frac{1}{((n-1)!)^{2}}\int_{t}^{\infty}\frac{(s-t)^{n-1}}{s^{n}}\int_{0}^{1}(1-x)^{n-1}e^{-i\overline{w}sx}dxds.

By proposition 2.1, we have

gw,n(n)(t)=(1)nφw,n(t)=(1)ntn01(1x)n1(n1)!eiw¯tx𝑑x=(1)nt2n0t(ts)n1(n1)!eiw¯s𝑑s.\displaystyle g_{w,n}^{(n)}(t)=(-1)^{n}\varphi_{w,n}(t)=\frac{(-1)^{n}}{t^{n}}\int_{0}^{1}\frac{(1-x)^{n-1}}{(n-1)!}e^{-i\overline{w}tx}dx=\frac{(-1)^{n}}{t^{2n}}\int_{0}^{t}\frac{(t-s)^{n-1}}{(n-1)!}e^{-i\overline{w}s}ds.

Take FH2n\displaystyle F\in H^{n}_{2}. By Theorem 3.3, there exists a function f𝒯2(n)\displaystyle f\in\mathcal{T}^{(n)}_{2} such that F=(f)\displaystyle F=\mathcal{F}(f).

Then by applying Fubini’s theorem, we have f𝒯2(n)\displaystyle\forall f\in\mathcal{T}^{(n)}_{2},

F(w)=(f)(w)=0f(t)eiwt𝑑t\displaystyle\displaystyle F(w)=\mathcal{F}(f)(w)=\int_{0}^{\infty}f(t)e^{iwt}dt =(1)n0t(st)n1(n1)!f(n)(s)𝑑seiwt𝑑t\displaystyle\displaystyle=(-1)^{n}\int_{0}^{\infty}\int_{t}^{\infty}\frac{(s-t)^{n-1}}{(n-1)!}f^{(n)}(s)ds\ e^{iwt}dt
=0f(n)(t)0t(1)n(ts)n1(n1)!eiws𝑑s\displaystyle\displaystyle=\int_{0}^{\infty}f^{(n)}(t)\int_{0}^{t}(-1)^{n}\frac{(t-s)^{n-1}}{(n-1)!}e^{iws}ds
=0f(n)(t)t2ngw,n(n)(t)¯𝑑t\displaystyle\displaystyle=\int_{0}^{\infty}f^{(n)}(t)t^{2n}\overline{g^{(n)}_{w,n}(t)}dt
=f,gw,n𝒯2(n).\displaystyle\displaystyle=\langle f,g_{w,n}\rangle_{\mathcal{T}^{(n)}_{2}}.

On the other hand, use the change of variables s=ty\displaystyle s=\frac{t}{y}, we get

gw,n(t)=0101(1y)n1(1x)n1y[(n1)!]2eiw¯txy𝑑x𝑑y.\displaystyle g_{w,n}(t)=\int_{0}^{1}\int_{0}^{1}\frac{(1-y)^{n-1}(1-x)^{n-1}}{y[(n-1)!]^{2}}e^{\frac{-i\overline{w}tx}{y}}dxdy.

Then for z+\displaystyle z\in\mathbb{C^{+}},

(gw,n)(z)\displaystyle\displaystyle\mathcal{F}(g_{w,n})(z) =0101(1y)n1(1x)n1y[(n1)!]2(eiw¯txy)(z)𝑑x𝑑y\displaystyle\displaystyle=\int_{0}^{1}\int_{0}^{1}\frac{(1-y)^{n-1}(1-x)^{n-1}}{y[(n-1)!]^{2}}\mathcal{F}(e^{\frac{-i\overline{w}tx}{y}})(z)dxdy
=0101(1y)n1(n1)!(1x)n1(n1)!iyzxw¯𝑑x𝑑y\displaystyle\displaystyle=\int_{0}^{1}\int_{0}^{1}\frac{(1-y)^{n-1}}{(n-1)!}\frac{(1-x)^{n-1}}{(n-1)!}\frac{i}{yz-x\overline{w}}dxdy
=Kn,w(z).\displaystyle\displaystyle=K_{n,w}(z).

Therefore, by theorem 3.3, we have

F(w)=f,gw,n𝒯2(n)=F,Kn,wH2(n),w+.\displaystyle F(w)=\langle f,g_{w,n}\rangle_{\mathcal{T}^{(n)}_{2}}=\langle F,K_{n,w}\rangle_{H^{(n)}_{2}},\qquad w\in\mathbb{C^{+}}.

Recall that the usual Hardy space H2(𝔻)\displaystyle H_{2}(\mathbb{D}) on the unit disc 𝔻={z:|z|=1}\displaystyle\mathbb{D}=\{z\in\mathbb{C}:|z|=1\} is endowed with the norm

FH2(𝔻)=sup0<r<1(12π02π|F(reiθ)|2𝑑θ)12,FH2(𝔻).\displaystyle\|F\|_{H_{2}(\mathbb{D})}=\sup_{0<r<1}\left(\frac{1}{2\pi}\int_{0}^{2\pi}|F(re^{i\theta})|^{2}d\theta\right)^{\frac{1}{2}},\qquad F\in H_{2}(\mathbb{D}).

The Cayley transform Φ(λ)=i1λ1+λ,λ𝔻\displaystyle\Phi(\lambda)=i\frac{1-\lambda}{1+\lambda},\lambda\in\mathbb{D} maps the unit disc 𝔻\displaystyle\mathbb{D} conformally onto the upper half-plane +\displaystyle\mathbb{C^{+}}. Then FH2(+)\displaystyle F\in H_{2}(\mathbb{C^{+}}) if and only if F𝔻(1+λ)H2(𝔻)\displaystyle F_{\mathbb{D}}\in(1+\lambda)H_{2}(\mathbb{D}) ([2]), where

F𝔻(λ)=F(i1λ1+λ),λ𝔻.\displaystyle\displaystyle F_{\mathbb{D}}(\lambda)=F\left(i\frac{1-\lambda}{1+\lambda}\right),\qquad\lambda\in\mathbb{D}. (3.1)
Proposition 3.10.

Supposed F\displaystyle F is an holomorphic function on +\displaystyle\mathbb{C^{+}} and F𝔻\displaystyle F_{\mathbb{D}} is the function on the unit disc given by (3). Then FH2(1)\displaystyle F\in H^{(1)}_{2} if and only if

F𝔻(1+λ)H2(𝔻) and F𝔻(1λ)1H2(𝔻)\displaystyle F_{\mathbb{D}}\in(1+\lambda)H_{2}(\mathbb{D})\text{\qquad and\qquad}F^{\prime}_{\mathbb{D}}\in(1-\lambda)^{-1}H_{2}(\mathbb{D})
Proof.

The condition FH2(1)\displaystyle F\in H^{(1)}_{2} is equivalent to FH2(+)\displaystyle F\in H_{2}(\mathbb{C^{+}}) and zFH2(+)\displaystyle zF^{\prime}\in H_{2}(\mathbb{C^{+}}). Then we have

F𝔻(1+λ)H2(𝔻) and i1λ1+λF(i1λ1+λ)(1+λ)H2(𝔻).\displaystyle\displaystyle F_{\mathbb{D}}\in(1+\lambda)H_{2}(\mathbb{D})\text{\qquad and\qquad}i\frac{1-\lambda}{1+\lambda}F^{\prime}\left(i\frac{1-\lambda}{1+\lambda}\right)\in(1+\lambda)H_{2}(\mathbb{D}). (3.2)

Note that

F𝔻(λ)=2i(1+λ)2F(i1λ1+λ).\displaystyle F^{\prime}_{\mathbb{D}}(\lambda)=\frac{-2i}{(1+\lambda)^{2}}F^{\prime}\left(i\frac{1-\lambda}{1+\lambda}\right).

we get

F𝔻(λ)(1λ)1H2(𝔻).\displaystyle F_{\mathbb{D}}^{\prime}(\lambda)\in(1-\lambda)^{-1}H_{2}(\mathbb{D}).

Of course Proposition 4.1 can be extended for n>1\displaystyle n>1 in the same way so that we could deal with Hardy-Sobolev spaces on 𝔻\displaystyle\mathbb{D} instead on the upper half-plane.

Proposition 3.11.

If FH2(n)\displaystyle F\in H^{(n)}_{2}, then zk1F(k1),k=1,2,,n\displaystyle z^{k-1}F^{(k-1)},k=1,2,\dots,n can be extended continuously at all nonzero point on the real axis and the point at infinity is included.

Proof.

Take FH2(1)\displaystyle F\in H^{(1)}_{2}. By proposition 4.1, we get

F𝔻(1+λ)H2(𝔻)H2(𝔻)\displaystyle F_{\mathbb{D}}\in(1+\lambda)H_{2}(\mathbb{D})\subseteq H_{2}(\mathbb{D})

and

(1λ)F𝔻H2(𝔻).\displaystyle(1-\lambda)F^{\prime}_{\mathbb{D}}\in H_{2}(\mathbb{D}).

Note that

[(1λ)F𝔻(λ)]=F𝔻(λ)+(1λ)F𝔻(λ)H2(𝔻)H1(𝔻).\displaystyle[(1-\lambda)F_{\mathbb{D}}(\lambda)]^{\prime}=-F_{\mathbb{D}}(\lambda)+(1-\lambda)F_{\mathbb{D}}^{\prime}(\lambda)\subseteq H_{2}(\mathbb{D})\subseteq H_{1}(\mathbb{D}).

Then, the function (1λ)F𝔻(λ)\displaystyle(1-\lambda)F_{\mathbb{D}}(\lambda) can be extended continuously on the unit circle, that is, F𝔻\displaystyle F_{\mathbb{D}} extends by continuity to the unit circle except possibly at 1.

Since the Cayley transform maps 1 to 0 and -1 to \displaystyle\infty, the conclusion on the extensibility of F\displaystyle F by continuity follows.

Now take FH2(n),n>1\displaystyle F\in H^{(n)}_{2},n>1.Note that

zddz(zk1F(k1)(z))=(k1)zk1F(k1)(z)+zkFk(z),z+.\displaystyle z\frac{d}{dz}\left(z^{k-1}F^{(k-1)}(z)\right)=(k-1)z^{k-1}F^{(k-1)}(z)+z^{k}F^{k}(z),\qquad z\in\mathbb{C^{+}}.

we get zk1F(k1)(z)\displaystyle z^{k-1}F^{(k-1)}(z) belongs to H2(1)\displaystyle H^{(1)}_{2} for 1kn\displaystyle 1\leq k\leq n.

Therefore, the continutiy on the real axis of the functions zk1F(k1),k=1,2,,n\displaystyle z^{k-1}F^{(k-1)},k=1,2,\dots,n follows by the previous discussion. ∎

4 Conclusion

In this study, we offer an extended Paley-Wiener theorem for Hardy-Sobolev spaces H2(n)\displaystyle H^{(n)}_{2} and use it to find the reproducing kernel Kn\displaystyle K_{n} of Hardy-Sobolev space on the upper half-plane. In addition, using the Cayley transform, we investigate the boundary behavior of functions in Hardy-Sobolev spaces.

Acknowledgements

This work was supported by the NSF of China (Grant No. 12226318 and 12071155). This work was also partly supported by The Science and Technology Development Fund, Macau SAR (File no. FDCT/0036/2021/AGJ) and University of Macau (File no. MYRG2022-00108-FST).

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

The author declare no conflict of interest.

References

  • [1] Peter L Duren. Theory of H p Spaces. Academic press, 1970.
  • [2] Javad Mashreghi. Representation theorems in Hardy spaces, volume 74. Cambridge University Press, 2009.
  • [3] Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier, 2003.
  • [4] Haïm Brezis and Petru Mironescu. Gagliardo-nirenberg, composition and products in fractional sobolev spaces. Journal of Evolution Equations, 1(4):387–404, 2001.
  • [5] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to the fractional sobolev spaces. Bulletin des sciences mathématiques, 136(5):521–573, 2012.
  • [6] Akihiko Miyachi. Hardy-sobolev spaces and maximal functions. Journal of the Mathematical Society of Japan, 42(1):73–90, 1990.
  • [7] Wolfgang Arendt. Vector-valued laplace transforms and cauchy problems. Israel Journal of Mathematics, 59:327–352, 1987.
  • [8] Jose E Gale and Luis Sanchez-Lajusticia. A sobolev algebra of volterra type. Journal of the Australian Mathematical Society, 92(3):313–334, 2012.
  • [9] José E Galé, Pedro J Miana, and Juan J Royo. Estimates of the laplace transform on convolution sobolev algebras. Journal of approximation theory, 164(1):162–178, 2012.
  • [10] José E Galé, Valentin Matache, Pedro J Miana, and Luis Sánchez-Lajusticia. Hilbertian hardy-sobolev spaces on a half-plane. Journal of Mathematical Analysis and Applications, 489(1):124131, 2020.
  • [11] Juan José Royo Espallargas. Álgebras y módulos de convolución sobre r+ definidos mediante derivación fraccionaria. PhD thesis, Universidad de Zaragoza, 2008.
  • [12] Stefan G Samko. Fractional integrals and derivatives. Theory and applications, 1993.
  • [13] Godfrey Harold Hardy, John Edensor Littlewood, George Pólya, György Pólya, et al. Inequalities. Cambridge university press, 1952.
  • [14] Walter Rudin. Real and complex analysis. 1987. Cited on, 156:16, 1987.
  • [15] Vern I Paulsen and Mrinal Raghupathi. An introduction to the theory of reproducing kernel Hilbert spaces, volume 152. Cambridge university press, 2016.