Abstract.
We consider the existence and nonexistence of positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation:
{ − Δ u = | u | 2 ∗ − 2 u + λ u + μ u log u 2 x ∈ Ω , u = 0 x ∈ ∂ Ω , \begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u+\mu u\log{u}^{2}&x\in\Omega,\\
\quad\;\>\,u=0&x\in\partial\Omega,\end{cases}
where Ω \Omega ⊂ \subset ℝ N {\mathbb{R}}^{N} is a bounded smooth domain, λ , μ ∈ ℝ \lambda,\mu\in{\mathbb{R}} , N ≥ 3 N\geq 3 and 2 ∗ := 2 N N − 2 {2}^{\ast}:=\frac{2N}{N-2} is the critical Sobolev exponent for the embedding H 0 1 ( Ω ) ↪ L 2 ∗ ( Ω ) H^{1}_{0}(\Omega)\hookrightarrow L^{2^{\ast}}(\Omega) . The uncertainty of the sign of s log s 2 s\log s^{2} in ( 0 , + ∞ ) (0,+\infty) has some interest in itself. We will show the existence of positive ground state solution which is of mountain pass type provided λ ∈ ℝ , μ > 0 \lambda\in{\mathbb{R}},\mu>0 and N ≥ 4 N\geq 4 . While the case of μ < 0 \mu<0 is thornier. However, for N = 3 , 4 N=3,4 λ ∈ ( − ∞ , λ 1 ( Ω ) ) \lambda\in(-\infty,\lambda_{1}(\Omega)) , we can also establish the existence of positive solution under some further suitable assumptions. And a nonexistence result is also obtained for μ < 0 \mu<0 and − ( N − 2 ) μ 2 + ( N − 2 ) μ 2 log ( − ( N − 2 ) μ 2 ) + λ − λ 1 ( Ω ) ≥ 0 -\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)\geq 0 if N ≥ 3 N\geq 3 . Comparing with the results in Brézis, H. and Nirenberg, L. (Comm. Pure Appl. Math. 1983), some new interesting phenomenon occurs when the parameter μ \mu on logarithmic perturbation is not zero.
1. Introduction and main results
In this paper, we investigate the existence and nonexistence of positive solution for the following Brézis-Nirenberg problem with a logarithmic term:
{ − Δ u = | u | 2 ∗ − 2 u + λ u + μ u log u 2 x ∈ Ω , u = 0 x ∈ ∂ Ω , \begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u+\mu u\log{u}^{2}&x\in\Omega,\\
\quad\;\>\,u=0&x\in\partial\Omega,\end{cases}
(1.1)
where Ω \Omega ⊂ \subset ℝ N {\mathbb{R}}^{N} is a bounded smooth domain, λ , μ ∈ ℝ \lambda,\mu\in{\mathbb{R}} , N ≥ 3 N\geq 3 , and
2 ∗ = 2 N N − 2 {2}^{\ast}=\frac{2N}{N-2} is the critical Sobolev exponent for the embedding H 0 1 ( Ω ) ↪ L 2 ∗ ( Ω ) H^{1}_{0}(\Omega)\hookrightarrow L^{2^{\ast}}(\Omega) . Here H 0 1 ( Ω ) H^{1}_{0}(\Omega) denotes the closure of C 0 ∞ ( Ω ) C^{\infty}_{0}(\Omega) equipped with the norm ‖ u ‖ := ( ∫ Ω | ∇ u | 2 𝑑 x ) 1 2 \left\|u\right\|:=(\int_{\Omega}|\nabla u|^{2}dx)^{\frac{1}{2}} .
Our motivation to consider (1.1 ) is that it resembles some variational problems in geometry and physics, which is lack of compactness. The most notorious example is Yamabe’s problem: finding a function u u satisfying
{ − 4 N − 1 N − 2 Δ u = R ′ | u | 2 ∗ − 2 u − R ( x ) u on ℳ , u > 0 on ℳ , \begin{cases}-4\frac{N-1}{N-2}\Delta u=R^{\prime}{\left|u\right|}^{{2}^{\ast}-2}u-R(x)u&\text{ }~{}\hbox{on}~{}\mathcal{M},\\
\quad\;\>\,\quad\;\>\,\;\>\,u>0&\text{ }~{}\hbox{on}~{}\mathcal{M},\end{cases}
where R ′ R^{\prime} is a constant, ℳ \mathcal{M} is an N N -dimensional Riemannian manifold, Δ \Delta denotes the Laplacian and R ( x ) R(x) represents the scalar curvature. Some other examples we refer to [2 , 8 , 10 , 13 , 14 , 15 ] and the references therein.
When λ = μ = 0 \lambda=\mu=0 , Eq.(1.1 ) is reduced to
{ − Δ u = | u | 2 ∗ − 2 u x ∈ Ω , u = 0 x ∈ ∂ Ω . \begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u&\text{ }x\in{\Omega},\\
\quad\;\>\,u=0&\text{ }x\in{\partial\Omega}.\end{cases}
(1.2)
Pohozaev [11 ] asserts that Eq.(1.2 ) has no nontrivial solutions when Ω \Omega is starshaped. But, as Brézis and Nirenberg have shown in [3 ] , a lower-order terms can reverse this circumstance. Indeed, they considered the following classical problem
{ − Δ u = | u | 2 ∗ − 2 u + λ u x ∈ Ω , u = 0 x ∈ ∂ Ω , \begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u&\text{ }x\in{\Omega},\\
\quad\;\>\,u=0&\text{ }x\in{\partial\Omega},\end{cases}
(1.3)
with λ ∈ ℝ , N ≥ 3 \lambda\in{\mathbb{R}},N\geq 3 and Ω ⊂ ℝ N \Omega\subset{\mathbb{R}}^{N} is a bounded domain.
They found out that the existence of a solution depends heavily on the values of λ \lambda and N N . Precisely, they showed that:
( i ) (i)
when N ≥ 4 N\geq 4 and λ ∈ ( 0 , λ 1 ( Ω ) ) \lambda\in\left(0,\lambda_{1}(\Omega)\right) , there exists a positive solution for Eq.(1.3 );
( i i ) (ii)
when N = 3 N=3 and Ω \Omega is a ball, Eq.(1.3 ) has a positive solution if and only if λ ∈ ( 1 4 λ 1 ( Ω ) , λ 1 ( Ω ) ) \lambda\in\left(\frac{1}{4}\lambda_{1}(\Omega),\lambda_{1}(\Omega)\right) ;
( i i i ) (iii)
Eq. (1.3 ) has no solutions when λ < 0 \lambda<0 and Ω \Omega is starshaped;
where λ 1 ( Ω ) \lambda_{1}(\Omega) denotes the first eigenvalue of − Δ -\Delta with zero Dirichlet boundary value. Furthermore, Brézis and Nirenberg [3 ] also considered the following general case:
{ − Δ u = | u | 2 ∗ − 2 u + f ( x , u ) x ∈ Ω , u = 0 x ∈ ∂ Ω , \begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+f(x,u)&\text{ }x\in{\Omega},\\
\quad\;\>\,u=0&\text{ }x\in{\partial\Omega},\end{cases}
(1.4)
where f ( x , u ) f(x,u) satisfies some of the following assumptions :
( f 1 ) (f_{1})
f ( x , u ) = a ( x ) u + g ( x , u ) , a ( x ) ∈ L ∞ ( Ω ) ; f(x,u)=a(x)u+g(x,u),a(x)\in L^{\infty}(\Omega);
( f 2 ) (f_{2})
lim u → 0 + g ( x , u ) u = 0 , \lim\limits_{u\to 0^{+}}\frac{g(x,u)}{u}=0, uniformly in x ∈ Ω x\in\Omega ;
( f 3 ) (f_{3})
lim u → + ∞ g ( x , u ) u 2 ∗ − 1 = 0 , \lim\limits_{u\to+\infty}\frac{g(x,u)}{u^{2^{*}-1}}=0, uniformly in x ∈ Ω x\in\Omega ;
( f 4 ) (f_{4})
∃ α > 0 \exists\,\alpha>0 such that ∫ ( | ∇ v | 2 − a ( x ) v 2 ) 𝑑 x ≥ α ∫ v 2 𝑑 x \int(|\nabla v|^{2}-a(x)v^{2})dx\geq\alpha\int v^{2}dx for all v ∈ H 0 1 ( Ω ) ; v\in H^{1}_{0}(\Omega);
( f 5 ) (f_{5})
f ( x , u ) ≥ 0 f(x,u)\geq 0 for a.e x ∈ ω 0 x\in\omega_{0} and for all u ≥ 0 u\geq 0 , where ω 0 \omega_{0} is some nonempty open subset of Ω \Omega ;
( f 6 ) (f_{6})
f ( x , u ) ≥ δ 0 > 0 f(x,u)\geq\delta_{0}>0 for a.e x ∈ ω 0 x\in\omega_{0} and for all u ∈ I u\in I , where ω 0 \omega_{0} is given in ( f 5 ) (f_{5}) , I ⊂ ( 0 , + ∞ ) I\subset(0,+\infty) is some nonempty open interval and δ 0 > 0 \delta_{0}>0 is some constant;
( f 7 ) (f_{7})
f ( x , u ) ≥ δ 1 u f(x,u)\geq\delta_{1}u for a.e x ∈ ω 1 x\in\omega_{1} and for all u ∈ [ 0 , A ] , u\in[0,A], or, f ( x , u ) ≥ δ 1 u f(x,u)\geq\delta_{1}u for a.e x ∈ ω 1 x\in\omega_{1} and for all u ∈ [ A , + ∞ ] , u\in[A,+\infty], where ω 1 \omega_{1} is some nonempty open subset of Ω \Omega and δ 1 , A \delta_{1},\,A are two positive constants;
( f 8 ) (f_{8})
lim u → + ∞ f ( x , u ) u 3 = + ∞ \lim\limits_{u\to+\infty}\frac{f(x,u)}{u^{3}}=+\infty uniformly in x ∈ ω 2 x\in\omega_{2} , where ω 2 \omega_{2} is some nonempty open subset of Ω \Omega .
They showed that if the assumptions ( f 1 ) − ( f 4 ) (f_{1})-(f_{4}) hold and there exists some 0 ≤ u 0 ∈ H 0 1 ( Ω ) ∖ { 0 } 0\leq u_{0}\in H^{1}_{0}(\Omega)\setminus\{0\} such that sup t ≥ 0 I ( t u 0 ) < 1 N S N 2 \displaystyle\sup_{t\geq 0}I(tu_{0})<\frac{1}{N}S^{\frac{N}{2}} , then Eq.(1.4 ) has a positive solution. More precisely, they proved that:
( i ) (i)
If N ≥ 5 N\geq 5 , Eq.(1.4 ) has a positive solution provided ( f 1 ) − ( f 6 ) (f_{1})-(f_{6}) ;
( i i ) (ii)
If N = 4 N=4 , Eq.(1.4 ) has a positive solution provided ( f 1 ) − ( f 5 ) (f_{1})-(f_{5}) and ( f 7 ) (f_{7}) ;
( i i i ) (iii)
If N = 3 N=3 , Eq.(1.4 ) has a positive solution provided ( f 1 ) − ( f 5 ) (f_{1})-(f_{5}) and ( f 8 ) (f_{8}) .
Some similar results can be seen in [1 , 5 , 7 ] . Barrios et al. [1 ] proved the existence of positive solution for a fractional critical problem with a lower-order term, and Gao and Yang [5 ] ,
Li and Ma [7 ] considered the existence of positive solution to a Choquard equation with critical exponent and lower-order term in a bounded domain Ω \Omega and in ℝ N {\mathbb{R}}^{N} , respectively.
To find a positive solution to Eq.(1.1 ), we define a modified functional:
I ( u ) = 1 2 ∫ Ω | ∇ u | 2 𝑑 x − 1 2 ∗ ∫ | u + | 2 ∗ 𝑑 x − λ 2 ∫ u + 2 𝑑 x − μ 2 ∫ u + 2 ( log u + 2 − 1 ) 𝑑 x , u ∈ H 0 1 ( Ω ) , I(u)=\frac{1}{2}\int_{\Omega}\left|\nabla u\right|^{2}dx-\frac{1}{2^{\ast}}\int\left|u_{+}\right|^{2^{\ast}}dx-\frac{\lambda}{2}\int u_{+}^{2}dx-\frac{\mu}{2}\int{u^{2}_{+}}(\log u^{2}_{+}-1)dx,~{}u\in H^{1}_{0}(\Omega),
(1.5)
which can be rewritten by
I ( u ) = 1 2 ∫ Ω | ∇ u | 2 𝑑 x − 1 2 ∗ ∫ | u + | 2 ∗ 𝑑 x − μ 2 ∫ u + 2 ( log u + 2 + λ μ − 1 ) 𝑑 x , u ∈ H 0 1 ( Ω ) , I(u)=\frac{1}{2}\int_{\Omega}\left|\nabla u\right|^{2}dx-\frac{1}{2^{\ast}}\int\left|u_{+}\right|^{2^{\ast}}dx-\frac{\mu}{2}\int{u^{2}_{+}}(\log u^{2}_{+}+\frac{\lambda}{\mu}-1)dx,~{}u\in H^{1}_{0}(\Omega),
(1.6)
where u + = max { u , 0 } , u − = − max { − u , 0 } u_{+}=\max\{u,0\},\,u_{-}=-\max\{-u,0\} . It is easy to see that I I is well-defined in H 0 1 ( Ω ) H_{0}^{1}(\Omega) and any nonnegative critical point of I I corresponds to a solution of Eq.(1.1 ).
Before stating our results, we introduce some notations.
Hereafter, we use ∫ \int to denote ∫ Ω d x \int_{\Omega}~{}\mathrm{d}x , unless specifically stated, and let S S and λ 1 ( Ω ) \lambda_{1}(\Omega) be the best Sobolev constant of the embedding H 1 ( ℝ N ) ↪ L 2 ∗ ( ℝ N ) H^{1}({\mathbb{R}}^{N})\hookrightarrow L^{2^{*}}({\mathbb{R}}^{N}) and the first eigenvalue of − Δ -\Delta with zero Dirichlet boundary value respectively, i.e,
S := inf u ∈ H 1 ( ℝ N ) ∖ { 0 } ∫ ℝ N | ∇ u | 2 d x ( ∫ ℝ N | u | 2 ∗ d x ) 2 2 ∗ S:=\inf\limits_{u\in H^{1}({\mathbb{R}}^{N})\setminus\{0\}}\frac{\int_{{\mathbb{R}}^{N}}|\nabla u|^{2}~{}\mathrm{d}x}{(\int_{{\mathbb{R}}^{N}}|u|^{2^{*}}~{}\mathrm{d}x)^{\frac{2}{2^{*}}}}
and
λ 1 ( Ω ) := inf u ∈ H 0 1 ( Ω ) ∖ { 0 } ∫ Ω | ∇ u | 2 d x ∫ Ω | u | 2 d x . \lambda_{1}(\Omega):=\inf\limits_{u\in H^{1}_{0}(\Omega)\setminus\{0\}}\frac{\int_{\Omega}|\nabla u|^{2}~{}\mathrm{d}x}{\int_{\Omega}|u|^{2}~{}\mathrm{d}x}.
We also set
‖ v ‖ 2 := ∫ | ∇ v | 2 , v ∈ H 0 1 ( Ω ) , \left\|v\right\|^{2}:=\int|\nabla v|^{2},\,~{}~{}v\in{H}_{0}^{1}(\Omega),
𝒩 := { u ∈ H 0 1 ( Ω ) ∖ { 0 } | g ( u ) = 0 } , \mathcal{N}:=\left\{u\in H^{1}_{0}(\Omega)\setminus\{0\}\ \ |\ \ g(u)=0\right\},
and
c g := inf u ∈ 𝒩 I ( u ) , c M := inf γ ∈ Γ max t ∈ [ 0 , 1 ] I ( γ ( t ) ) , c_{g}:=\inf\limits_{u\in\mathcal{N}}I(u),~{}~{}~{}~{}c_{M}:=\inf\limits_{\gamma\in\Gamma}\max\limits_{t\in[0,1]}I(\gamma(t)),
(1.7)
where
g ( u ) := ∫ | ∇ u | 2 − ∫ | u + | 2 ∗ − λ ∫ u + 2 − μ ∫ u + 2 log u + 2 , g(u):=\int\left|\nabla u\right|^{2}-\int\left|u_{+}\right|^{2^{\ast}}-\lambda\int u_{+}^{2}-\mu\int{u^{2}_{+}}\log u^{2}_{+},
and
Γ := { γ ∈ C ( [ 0 , 1 ] , H 0 1 ( Ω ) ) | γ ( 0 ) = 0 , I ( γ ( 1 ) ) < 0 } . \Gamma:=\{\gamma\in C([0,1],H^{1}_{0}(\Omega))\ \ |\ \ \gamma(0)=0,I(\gamma(1))<0\}.
Let
A 0 := \displaystyle A_{0}:=
{ ( λ , μ ) | λ ∈ ℝ , μ > 0 } , \displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in{\mathbb{R}},\mu>0\right\},
B 0 := \displaystyle B_{0}:=
{ ( λ , μ ) | λ ∈ [ 0 , λ 1 ( Ω ) ) , μ < 0 , 1 N ( λ 1 ( Ω ) − λ λ 1 ( Ω ) ) N 2 S N 2 + μ 2 | Ω | > 0 } , \displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in[0,\lambda_{1}(\Omega)),\mu<0,\frac{1}{N}\left(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\right)^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega|>0\right\},
C 0 := \displaystyle C_{0}:=
{ ( λ , μ ) | λ ∈ ℝ , μ < 0 , 1 N S N 2 + μ 2 e − λ μ | Ω | > 0 } . \displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in{\mathbb{R}},\mu<0,\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|>0\right\}.
Here comes our main results.
Theorem 1.2 .
If ( λ , μ ) ∈ A 0 (\lambda,\mu)\in A_{0} and N ≥ 4 N\geq 4 , then problem (1.1 ) has a positive Mountain pass solution, which is also a ground state solution.
Denote f ( s ) := | s | 2 ∗ − 2 s + λ s + μ s log s 2 f(s):=|s|^{2^{*}-2}s+\lambda s+\mu s\log s^{2} which is of odd. It is easy to see that 𝒩 ≠ ∅ \mathcal{N}\neq\emptyset and c M ≥ c g c_{M}\geq c_{g} if problem (1.1 ) has a positive mountain pass solution.
On the other hand, when λ ∈ ℝ \lambda\in{\mathbb{R}} and μ > 0 \mu>0 , f ( s ) s \frac{f(s)}{s} is strictly increasing in ( 0 , + ∞ ) (0,+\infty) and strictly decreasing in ( − ∞ , 0 ) (-\infty,0) , which enable one to show that
c M ≤ c g c_{M}\leq c_{g} (See [18 , Theorem 4.2] ). Therefore, the ground state energy c g c_{g} equals to the Mountain pass level energy c M c_{M} , which implies that the mountain pass solution must be a ground state solution. So, in Theorem 1.2 , we only need to show that problem (1.1 ) has a positive mountain pass solution.
The case of μ < 0 \mu<0 is thorny. Indeed for ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} , I ( u ) I(u) still has the mountain pass geometry (See Lemma 2.1 ). However, in such a case, it holds that c g < c M c_{g}<c_{M} .
Since we can not check the ( P S ) c M (PS)_{c_{M}} condition for I ( u ) I(u) , we apply the mountain pass theorem without ( P S ) c M (PS)_{c_{M}} condition to gain a positive solution for Eq.(1.1 ) when ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} . However, we don’t know whether this solution is of mountain pass type or not.
Theorem 1.3 .
Problem (1.1 ) possesses a positive solution provided one of the following condition holds:
(i)
N = 3 N=3 , ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} ;
(ii)
N = 4 N=4 , ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} with 32 e λ μ ρ m a x 2 < 1 \frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1 ,where ρ m a x := sup { r > 0 : ∃ x ∈ Ω s . t . B ( x , r ) ⊂ Ω } \rho_{max}:=\sup\{r>0:\exists x\in\Omega~{}s.t.~{}B(x,r)\subset\Omega\} .
For the nonexistence of positive solutions for problem (1.1 ), we have the following partial result.
Theorem 1.4 .
Assume that N ≥ 3 . N\geq 3. If μ < 0 \mu<0 and − ( N − 2 ) μ 2 + ( N − 2 ) μ 2 log ( − ( N − 2 ) μ 2 ) + λ − λ 1 ( Ω ) ≥ 0 -\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)\geq 0 , then problem (1.1 )
has no positive solutions.
The existence and nonexistence results given by Theorem 1.2 - Theorem 1.4 can be described on the ( λ , μ ) (\lambda,\ \mu) plane by Figure 1 . The pink regions stand for the existence of positive solution, while the blue regions correspond the non-existence of positive solution. Here τ 1 \tau_{1} , η 1 \eta_{1} , η 2 \eta_{2} and η 3 \eta_{3} are curves given by
τ 1 : − ( N − 2 ) μ 2 + ( N − 2 ) μ 2 log ( − ( N − 2 ) μ 2 ) + λ − λ 1 ( Ω ) = 0 , \displaystyle\tau_{1}:\ -\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)=0,
η 1 : 1 N ( λ 1 ( Ω ) − λ λ 1 ( Ω ) ) N 2 S N 2 + μ 2 | Ω | = 0 , \displaystyle\eta_{1}:\ \frac{1}{N}(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)})^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega|=0,
η 2 : 1 N S N 2 + μ 2 e − λ μ | Ω | = 0 , \displaystyle\eta_{2}:\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|=0,
η 3 : 32 e λ μ = ρ m a x 2 , ρ m a x := sup { r ∈ ( 0 , + ∞ ) : ∃ x ∈ Ω s . t . B ( x , r ) ⊂ Ω } . \displaystyle\eta_{3}:{32e^{\frac{\lambda}{\mu}}}={\rho_{max}^{2}},\ \ \ \rho_{max}:=\sup\{r\in(0,+\infty):\exists x\in\Omega~{}s.t.~{}B(x,r)\subset\Omega\}.
Figure 1. existence and nonexistence
Before closing the introduction, we give the outline of our paper. In Section 2 , we will check the mountain pass geometry structure for I ( u ) I(u) , under different specific situations. We also give some other preliminaries.
In Section 3 , we are devoted to estimate the mountain pass level c M c_{M} for different parameters λ , μ \lambda,\mu and N N . The proofs of our main Theorems 1.2 , 1.3 and 1.4 are given in Section 4 .
3. Estimations on c M c_{M}
In this section, we are going to give an estimation that c M < 1 N S N 2 c_{M}<\frac{1}{N}S^{\frac{N}{2}} , under different assumptions on parameters λ \lambda , μ \mu and dimension N N . Inspired by Brézis-Nirengberg[3 ] , it is sufficient to find some suitable U ϵ ∈ H 0 1 ( Ω ) U_{\epsilon}\in H^{1}_{0}(\Omega) such that sup t ≥ 0 I ( t U ϵ ) < 1 N S N 2 \sup_{t\geq 0}I(tU_{\epsilon})<\frac{1}{N}S^{\frac{N}{2}} . Without loss of generality, we may assume that 0 ∈ Ω 0\in\Omega , in particular, we suppose that 0 is the geometric center of Ω \Omega , i.e., ρ max = d i s t ( 0 , ∂ Ω ) \rho_{\max}=dist(0,\partial\Omega) .
It is well-known (see [4 , 6 , 16 ] ) that the following problem
{ − Δ u = | u | 2 ∗ − 2 u , x ∈ ℝ N , u > 0 , u ( 0 ) = max x ∈ ℝ N u ( x ) , \displaystyle\begin{cases}-\Delta u=\left|u\right|^{2^{\ast}-2}u,&x\in\mathbb{R}^{N},\\
\quad\>\,\,u>0,&\\
\>\,u(0)=\max\limits_{x\in\mathbb{R}^{N}}u(x),&\\
\end{cases}
has a unique solution u ~ ( x ) \widetilde{u}(x)
u ~ ( x ) = [ N ( N − 2 ) ] N − 2 4 1 ( 1 + | x | 2 ) N − 2 2 . {\widetilde{u}}(x)=\left[N(N-2)\right]^{\frac{N-2}{4}}\frac{1}{{(1+\left|x\right|^{2})}^{\frac{N-2}{2}}}.
And correspondingly, up to a dilations,
u ϵ ( x ) = [ N ( N − 2 ) ] N − 2 4 ( ϵ ϵ 2 + | x | 2 ) N − 2 2 u_{\epsilon}(x)=\left[N(N-2)\right]^{\frac{N-2}{4}}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{\frac{N-2}{2}}\\
is a minimizer for S S .
We let φ ( x ) ∈ C 0 ∞ ( Ω ) \varphi(x)\in C^{\infty}_{0}(\Omega) be such that φ ( x ) ≡ 1 \varphi(x)\equiv 1 for x x in some neighborhood B ρ ( 0 ) B_{\rho}(0) of 0 , and define
U ϵ ( x ) = φ ( x ) u ϵ ( x ) . U_{\epsilon}(x)=\varphi(x)u_{\epsilon}(x).
(3.1)
Lemma 3.1 .
If N ≥ 4 N\geq 4 , then we have, as ϵ → 0 + \epsilon\to 0^{+} ,
∫ Ω | ∇ U ϵ | 2 = S N 2 + O ( ϵ N − 2 ) , \int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}=S^{\frac{N}{2}}+O(\epsilon^{N-2}),
(3.2)
∫ Ω | U ϵ | 2 ∗ = S N 2 + O ( ϵ N ) , \int_{\Omega}\left|U_{\epsilon}\right|^{2^{\ast}}=S^{\frac{N}{2}}+O(\epsilon^{N}),
(3.3)
and
∫ Ω | U ϵ | 2 = { d ϵ 2 | ln ϵ | + O ( ϵ 2 ) , i f N = 4 , d ϵ 2 + O ( ϵ N − 2 ) , i f N ≥ 5 , \displaystyle\int_{\Omega}\left|U_{\epsilon}\right|^{2}=\begin{cases}d\epsilon^{2}\left|\ln\epsilon\right|+O(\epsilon^{2}),~{}&if~{}N=4,\\
d\epsilon^{2}+O(\epsilon^{N-2}),~{}&if~{}N\geq 5,\end{cases}
where d d is a positive constant.
Proof.
The proof can be found in [18 ] .
∎
Lemma 3.2 .
If N ≥ 5 N\geq 5 , then we have, as ϵ → 0 + \epsilon\to 0^{+} ,
∫ Ω U ϵ 2 log U ϵ 2 = C 0 ϵ 2 log 1 ϵ + O ( ϵ 2 ) , \int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}=C_{0}\epsilon^{2}\log\frac{1}{\epsilon}+O({\epsilon}^{2}),
where C 0 C_{0} is a positive constant.
Proof.
∫ Ω U ϵ 2 log U ϵ 2 = ∫ Ω φ 2 u ϵ 2 log φ 2 + ∫ Ω φ 2 u ϵ 2 log u ϵ 2 = △ I + I I \begin{array}[]{ll}\displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}&=\displaystyle\int_{\Omega}\varphi^{2}u^{2}_{\epsilon}\log\varphi^{2}+\displaystyle\int_{\Omega}\varphi^{2}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\\
&\overset{\triangle}{=}I+II\end{array}
Since | s 2 log s 2 | ≤ C \left|s^{2}\log s^{2}\right|\leq C for 0 ≤ s ≤ 1 , 0\leq s\leq 1, we have
| I | ≤ C ∫ Ω u ϵ 2 = O ( ϵ 2 ) . \left|I\right|\leq C\int_{\Omega}u^{2}_{\epsilon}=O(\epsilon^{2}).
I I = ∫ B ρ ( 0 ) u ϵ 2 log u ϵ 2 + ∫ Ω ∖ B ρ ( 0 ) φ 2 u ϵ 2 log u ϵ 2 = △ I I 1 + I I 2 . II=\int_{B_{\rho}(0)}u^{2}_{\epsilon}\log u^{2}_{\epsilon}+\int_{\Omega\setminus{B_{\rho}(0)}}\varphi^{2}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\overset{\triangle}{=}II_{1}+II_{2}.
Since | s log s | ≤ C 1 s 1 − δ + C 2 s 1 + δ \left|s\log s\right|\leq C_{1}s^{1-\delta}+C_{2}s^{1+\delta} for all s > 0 s>0 , where 0 < C 1 < C 2 0<C_{1}<C_{2} and 0 < δ < 1 3 0<\delta<\frac{1}{3} such that ( N − 2 ) ( 1 − δ ) ≥ 2 (N-2)(1-\delta)\geq 2 ,
| I I 2 | ≤ ∫ Ω ∖ B ρ ( 0 ) | u ϵ 2 log u ϵ 2 | ≤ C ∫ Ω ∖ B ρ ( 0 ) ( u ϵ 2 ( 1 − δ ) + u ϵ 2 ( 1 + δ ) ) ≤ C | Ω | ( ϵ ( N − 2 ) ( 1 − δ ) + ϵ ( N − 2 ) ( 1 + δ ) ) = O ( ϵ 2 ) , \begin{split}\left|II_{2}\right|&\leq\int_{\Omega\setminus{B_{\rho}(0)}}\left|u^{2}_{\epsilon}\log u^{2}_{\epsilon}\right|\\
&\leq C\int_{\Omega\setminus{B_{\rho}(0)}}(u^{2(1-\delta)}_{\epsilon}+u^{2(1+\delta)}_{\epsilon})\\
&\leq C\left|\Omega\right|(\epsilon^{(N-2)(1-\delta)}+\epsilon^{(N-2)(1+\delta)})\\
&=O(\epsilon^{2}),\end{split}
and
I I 1 = ∫ B ( 0 , ρ ) u ϵ 2 log u ϵ 2 d x = C ϵ 2 ∫ B ρ / ϵ ( 0 ) 1 ( 1 + | y | 2 ) N − 2 log ( C ϵ − ( N − 2 ) 1 ( 1 + | y | 2 ) N − 2 ) d y = C ϵ 2 log ( 1 ϵ ) ∫ B ρ / ϵ ( 0 ) 1 ( 1 + | y | 2 ) N − 2 + C ϵ 2 ∫ B ρ / ϵ ( 0 ) 1 ( 1 + | y | 2 ) N − 2 log C ( 1 + | y | 2 ) N − 2 = C ϵ 2 log ( 1 ϵ ) ∫ ℝ N 1 ( 1 + | y | 2 ) N − 2 d y + O ( ϵ 2 ) + ϵ 2 O ( ∫ ℝ N 1 ( 1 + | y | 2 ) N − 2 − 1 4 d y ) = C ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) , \begin{split}II_{1}&=\int_{B_{(0,\rho)}}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\mathrm{d}x\\
&=C\epsilon^{2}\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\log\left(C\epsilon^{-(N-2)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\right)\mathrm{d}y\\
&=C\epsilon^{2}\log(\frac{1}{\epsilon})\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}+C\epsilon^{2}\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\log\frac{C}{(1+\left|y\right|^{2})^{N-2}}\\
&=C\epsilon^{2}\log(\frac{1}{\epsilon})\int_{\mathbb{R}^{N}}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\mathrm{d}y+O(\epsilon^{2})+\epsilon^{2}O(\int_{{\mathbb{R}}^{N}}\frac{1}{(1+\left|y\right|^{2})^{N-2-\frac{1}{4}}}\mathrm{d}y)\\
&=C\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}),\end{split}
where we have used the fact that
∫ B ρ / ϵ c ( 0 ) 1 ( 1 + | y | 2 ) N − 2 d y = O ( ϵ N − 4 ) . \int_{B^{c}_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\mathrm{d}y=O(\epsilon^{N-4}).
Thus
∫ Ω U ϵ 2 log U ϵ 2 = C 0 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}=C_{0}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
We complete the proof.
∎
Lemma 3.3 .
If N ≥ 5 N\geq 5 , λ ∈ ℝ \lambda\in{\mathbb{R}} and μ > 0 \mu>0 , then c M < 1 N S N 2 c_{M}<\frac{1}{N}S^{\frac{N}{2}} .
Proof.
Let g ( t ) = △ I ( t U ϵ ) g(t)\overset{\triangle}{=}I(tU_{\epsilon}) . By Lemma 2.1 , g ( 0 ) = 0 g(0)=0 and lim t → + ∞ g ( t ) \lim\limits_{t\to+\infty}g(t) = − ∞ =-\infty , we can find t ϵ ∈ ( 0 , + ∞ ) t_{\epsilon}\in(0,+\infty) such that
sup t ≥ 0 I ( t U ϵ ) = sup t ≥ 0 g ( t ) = g ( t ϵ ) = I ( t ϵ U ϵ ) . \sup\limits_{t\geq 0}I(tU_{\epsilon})=\sup\limits_{t\geq 0}g(t)=g(t_{\epsilon})=I(t_{\epsilon}U_{\epsilon}).
So
∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ − 2 ∫ | U ϵ | 2 ∗ − λ ∫ U ϵ 2 − μ ∫ U ϵ 2 log U ϵ 2 − μ log t ϵ 2 ∫ U ϵ 2 = 0 , \int\left|\nabla U_{\epsilon}\right|^{2}-t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=0,
which implies that, as ϵ → 0 + \epsilon\to 0^{+}
2 S N 2 ≥ ∫ | ∇ U ϵ | 2 − λ ∫ U ϵ 2 − μ ∫ U ϵ 2 log U ϵ 2 = t ϵ 2 ∗ − 2 ∫ | U ϵ | 2 ∗ + μ log t ϵ 2 ∫ U ϵ 2 ≥ t ϵ 2 ∗ − 2 ( 1 2 S N 2 ) − c | log t ϵ 2 | . \begin{split}2S^{\frac{N}{2}}&\geq\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\
&=t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}\\
&\geq t^{2^{\ast}-2}_{\epsilon}(\frac{1}{2}S^{\frac{N}{2}})-c\left|\log t^{2}_{\epsilon}\right|.\end{split}
So there exists c 1 > 0 c_{1}>0 such that t ϵ < c 1 t_{\epsilon}<c_{1} .
On the other hand, as ϵ → 0 + \epsilon\to 0^{+} ,
1 2 S N 2 ≤ ∫ | ∇ U ϵ | 2 − λ ∫ U ϵ 2 − μ ∫ U ϵ 2 log U ϵ 2 = t ϵ 2 ∗ − 2 ∫ | U ϵ | ϵ 2 ∗ + μ log t ϵ 2 ∫ U ϵ 2 ≤ 2 S N 2 t ϵ 2 ∗ − 2 + C t ϵ 2 ∗ − 2 , \begin{split}\frac{1}{2}S^{\frac{N}{2}}&\leq\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\
&=t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}_{\epsilon}+\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}\\
&\leq 2S^{\frac{N}{2}}t^{2^{\ast}-2}_{\epsilon}+Ct^{2^{\ast}-2}_{\epsilon},\end{split}
which implies that there exists c 2 > 0 c_{2}>0 such that t ϵ > c 2 t_{\epsilon}>c_{2} .
Therefore, combining with the definition of c M c_{M} , we have that, as ϵ → 0 + \epsilon\to 0^{+} ,
c M ≤ sup t ≥ 0 I ( t u ϵ ) = t ϵ 2 2 ∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ 2 ∗ ∫ | U ϵ | 2 ∗ − λ 2 t ϵ 2 ∫ U ϵ 2 − μ 2 ∫ t ϵ 2 U ϵ 2 ( log ( t ϵ 2 U ϵ 2 ) − 1 ) ≤ ( t ϵ 2 2 − t ϵ 2 ∗ 2 ∗ ) S N 2 + O ( ϵ 2 ) + μ 2 t ϵ 2 ( 1 − log t ϵ 2 ) ∫ U ϵ 2 − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 ≤ 1 N S N 2 − c μ ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) < 1 N S N 2 . \begin{split}c_{M}&\leq\sup\limits_{t\geq 0}I(tu_{\epsilon})\\
&=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\frac{\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}\int t^{2}_{\epsilon}U^{2}_{\epsilon}(\log(t^{2}_{\epsilon}U^{2}_{\epsilon})-1)\\
&\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+O(\epsilon^{2})+\frac{\mu}{2}t^{2}_{\epsilon}(1-\log t^{2}_{\epsilon})\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\
&\leq\frac{1}{N}S^{\frac{N}{2}}-c\mu\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})\\
&<\frac{1}{N}S^{\frac{N}{2}}.\end{split}
We complete the proof.
∎
The case for 𝐍 = 𝟒 : \mathbf{N=4:}
Let φ ( x ) ∈ C 0 ∞ ( Ω ) \varphi(x)\in C^{\infty}_{0}(\Omega) be a radial function satisfying that φ ( x ) = 1 \varphi(x)=1 for 0 ≤ | x | ≤ ρ 0\leq\left|x\right|\leq\rho , 0 ≤ φ ( x ) ≤ 1 0\leq\varphi(x)\leq 1 for ρ ≤ | x | ≤ 2 ρ \rho\leq\left|x\right|\leq 2\rho , φ ( x ) = 0 \varphi(x)=0 for x ∈ Ω ∖ B 2 ρ ( 0 ) x\in\Omega\setminus B_{2\rho}(0) ,
where 0 < ρ ≤ 1 0<\rho\leq 1 with log ( 1 8 e 3 − λ μ ρ 2 ) > 1 \log(\frac{1}{8e^{3-\frac{\lambda}{\mu}}\rho^{2}})>1 .
Set
U ϵ = φ ( x ) u ϵ ( x ) . \begin{array}[]{ll}U_{\epsilon}=\varphi(x)u_{\epsilon}(x).\end{array}
Lemma 3.4 .
If N = 4 N=4 , then, as ϵ → 0 + \epsilon\to 0^{+} ,
∫ Ω U ϵ 2 log U ϵ 2 ≥ 8 log ( 8 ( ϵ 2 + ρ 2 ) e ( ϵ 2 + 4 ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) \int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}\geq 8\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
and
∫ Ω U ϵ 2 log U ϵ 2 ≤ 8 log ( 8 e ( ϵ 2 + 4 ρ 2 ) ( ϵ 2 + ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}\leq 8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
Proof.
Following from the definition of U ϵ U_{\epsilon} , we have, as ϵ → 0 + \epsilon\to 0^{+} ,
∫ Ω U ϵ 2 log ( U ϵ 2 ) = 8 ∫ Ω φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 log [ 8 φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 ] d x = 8 ∫ Ω φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 log ( ϵ ϵ 2 + | x | 2 ) 2 d x + 8 log ( 8 ) ∫ Ω φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 d x + 8 ∫ Ω ∖ B ρ ( 0 ) φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 log φ 2 d x = I 1 + I 2 + O ( ϵ 2 ) . \begin{split}\int_{\Omega}U^{2}_{\epsilon}\log(U^{2}_{\epsilon})&=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left[8\varphi^{2}(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})^{2}\right]\mathrm{d}x\\
&=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\
&+8\log(8)\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\
&+8\int_{\Omega\setminus{B_{\rho}(0)}}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\varphi^{2}\mathrm{d}x\\
&=I_{1}+I_{2}+O(\epsilon^{2}).\end{split}
(3.4)
By direct computation, we obtain
I 2 = 8 log 8 ∫ B ρ ( 0 ) ( ϵ ϵ 2 + | x | 2 ) 2 d x + O ( ϵ 2 ) = 8 log 8 ω 4 ϵ 2 ∫ 0 ρ / ϵ 1 ( 1 + r 2 ) 2 r 3 d r + O ( ϵ 2 ) = 4 log 8 ω 4 ϵ 2 [ log ( r 2 + 1 ) + 1 1 + r 2 ] | 0 ρ / ϵ + O ( ϵ 2 ) = 4 log 8 ω 4 ϵ 2 [ log ( ρ 2 + ϵ 2 ϵ 2 ) + 1 1 + ρ 2 ϵ 2 − 1 ] + O ( ϵ 2 ) = 8 log 8 ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) , \begin{split}I_{2}&=8\log 8\int_{B_{\rho}(0)}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x+O(\epsilon^{2})\\
&=8\log 8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r+O(\epsilon^{2})\\
&=4\log 8\omega_{4}\epsilon^{2}\left[\log(r^{2}+1)+\frac{1}{1+r^{2}}\right]{\Biggl{\arrowvert}}^{\rho/\epsilon}_{0}+O(\epsilon^{2})\\
&=4\log 8\omega_{4}\epsilon^{2}\left[\log\left(\frac{\rho^{2}+\epsilon^{2}}{\epsilon^{2}}\right)+\frac{1}{1+\frac{\rho^{2}}{\epsilon^{2}}}-1\right]+O(\epsilon^{2})\\
&=8\log 8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}),\end{split}
(3.5)
I 1 = 8 ∫ Ω φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 log ( ϵ ϵ 2 + | x | 2 ) 2 d r = 8 ∫ B 2 ρ ( 0 ) φ 2 ( ϵ ϵ 2 + | x | 2 ) 2 log ( ϵ ϵ 2 + | x | 2 ) 2 d x = 8 ϵ 2 ∫ B 2 ρ / ϵ ( 0 ) φ 2 ( ϵ x ) 1 ( 1 + | x | 2 ) 2 log ( 1 ϵ 2 1 ( 1 + | x | 2 ) 2 ) d x = 16 ϵ 2 log ( 1 ϵ ) ∫ B 2 ρ / ϵ ( 0 ) φ 2 ( ϵ x ) 1 ( 1 + | x | 2 ) 2 d x + 8 ϵ 2 ∫ B 2 ρ / ϵ ( 0 ) φ 2 ( ϵ x ) 1 ( 1 + | x | 2 ) 2 log 1 ( 1 + | x | 2 ) 2 d x = △ I 11 + I 12 , \begin{split}I_{1}&=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}r\\
&=8\int_{B_{2\rho}(0)}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\
&=8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\log\left(\frac{1}{\epsilon^{2}}\frac{1}{(1+\left|x\right|^{2})^{2}}\right)\mathrm{d}x\\
&=16\epsilon^{2}\log(\frac{1}{\epsilon})\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\mathrm{d}x\\
&\quad+8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\log\frac{1}{(1+\left|x\right|^{2})^{2}}\mathrm{d}x\\
&\overset{\triangle}{=}I_{11}+I_{12},\end{split}
(3.6)
where
I 11 \displaystyle I_{11}
≥ 16 ω 4 ϵ 2 log ( 1 ϵ ) ∫ 0 ρ / ϵ 1 ( 1 + r 2 ) 2 r 3 d r \displaystyle\geq 16\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r
= 8 ω 4 ϵ 2 log ( 1 ϵ ) [ log ( 1 ϵ 2 ) + log ( ρ 2 + ϵ 2 ) + ϵ 2 ρ 2 + ϵ 2 − 1 ] \displaystyle=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\left[\log(\frac{1}{\epsilon^{2}})+\log(\rho^{2}+\epsilon^{2})+\frac{\epsilon^{2}}{\rho^{2}+\epsilon^{2}}-1\right]
= 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 + 8 ω 4 log ( ρ 2 + ϵ 2 e ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 4 log ( 1 ϵ ) ) , \displaystyle=16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log\left(\frac{\rho^{2}+\epsilon^{2}}{e}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{4}\log(\frac{1}{\epsilon})),
(3.7)
I 11 \displaystyle I_{11}
≤ 16 ω 4 ϵ 2 log ( 1 ϵ ) ∫ 0 2 ρ / ϵ 1 ( 1 + r 2 ) 2 r 3 d r \displaystyle\leq 16\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r
= 8 ω 4 ϵ 2 log ( 1 ϵ ) [ log ( 1 ϵ 2 ) + log ( 4 ρ 2 + ϵ 2 ) + ϵ 2 4 ρ 2 + ϵ 2 − 1 ] \displaystyle=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\left[\log(\frac{1}{\epsilon^{2}})+\log(4\rho^{2}+\epsilon^{2})+\frac{\epsilon^{2}}{4\rho^{2}+\epsilon^{2}}-1\right]
= 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 + 8 ω 4 log ( 4 ρ 2 + ϵ 2 e ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 4 log ( 1 ϵ ) ) , \displaystyle=16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log\left(\frac{4\rho^{2}+\epsilon^{2}}{e}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{4}\log(\frac{1}{\epsilon})),
(3.8)
I 12 \displaystyle I_{12}
≥ − 8 ϵ 2 ∫ B 2 ρ / ϵ ( 0 ) 1 ( 1 + | x | 2 ) 2 log ( 1 + | x | 2 ) 2 d x \displaystyle\geq-8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\frac{1}{(1+\left|x\right|^{2})^{2}}\log(1+\left|x\right|^{2})^{2}\mathrm{d}x
= − 16 ω 4 ϵ 2 ∫ 0 2 ρ / ϵ 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) r 3 d r \displaystyle=-16\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})r^{3}\mathrm{d}r
= − 8 ω 4 ϵ 2 ∫ 0 2 ρ / ϵ r 2 + 1 − 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{r^{2}+1-1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
= − 8 ω 4 ϵ 2 ∫ 0 2 ρ / ϵ 1 1 + r 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{1+r^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
+ 8 ω 4 ϵ 2 ∫ 0 2 ρ / ϵ 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle+8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
≥ − 4 ω 4 ϵ 2 ( log ( 1 + r 2 ) ) 2 | 0 2 ρ / ϵ \displaystyle\geq-4\omega_{4}\epsilon^{2}\left(\log(1+r^{2})\right)^{2}{\Big{\arrowvert}}^{2\rho/\epsilon}_{0}
= − 4 ω 4 ϵ 2 ( log ( 1 + 4 ρ 2 ϵ 2 ) ) 2 \displaystyle=-4\omega_{4}\epsilon^{2}\left(\log(1+\frac{4\rho^{2}}{\epsilon^{2}})\right)^{2}
= − 4 ω 4 ϵ 2 [ log ( ϵ 2 + 4 ρ 2 ) + 2 log ( 1 ϵ ) ] 2 \displaystyle=-4\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+4\rho^{2})+2\log(\frac{1}{\epsilon})\right]^{2}
= − 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 − 16 ω 4 log ( ϵ 2 + 4 ρ 2 ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \displaystyle=-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\epsilon^{2}+4\rho^{2})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
(3.9)
and
I 12 \displaystyle I_{12}
≤ − 8 ϵ 2 ∫ B ρ / ϵ ( 0 ) 1 ( 1 + | x | 2 ) 2 log ( 1 + | x | 2 ) 2 d x \displaystyle\leq-8\epsilon^{2}\int_{B_{{\rho}/\epsilon}(0)}\frac{1}{(1+\left|x\right|^{2})^{2}}\log(1+\left|x\right|^{2})^{2}\mathrm{d}x
= − 16 ω 4 ϵ 2 ∫ 0 ρ / ϵ 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) r 3 d r \displaystyle=-16\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})r^{3}\mathrm{d}r
= − 8 ω 4 ϵ 2 ∫ 0 ρ / ϵ r 2 + 1 − 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{r^{2}+1-1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
= − 8 ω 4 ϵ 2 ∫ 0 ρ / ϵ 1 1 + r 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{1+r^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
+ 8 ω 4 ϵ 2 ∫ 0 ρ / ϵ 1 ( 1 + r 2 ) 2 log ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle+8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
≤ − 4 ω 4 ϵ 2 ( log ( 1 + r 2 ) ) 2 | 0 ρ / ϵ + 8 ω 4 ϵ 2 ∫ 0 ρ / ϵ 1 ( 1 + r 2 ) d ( 1 + r 2 ) \displaystyle\leq-4\omega_{4}\epsilon^{2}\left(\log(1+r^{2})\right)^{2}{\Big{\arrowvert}}^{\rho/\epsilon}_{0}+8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})}\mathrm{d}(1+r^{2})
= − 4 ω 4 ϵ 2 [ log ( ϵ 2 + ρ 2 ) + 2 log ( 1 ϵ ) ] 2 + 8 ω 4 ϵ 2 [ log ( ϵ 2 + ρ 2 ) + 2 log ( 1 ϵ ) ] \displaystyle=-4\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+\rho^{2})+2\log(\frac{1}{\epsilon})\right]^{2}+8\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+\rho^{2})+2\log(\frac{1}{\epsilon})\right]
= − 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 − 16 ω 4 log ( ϵ 2 + ρ 2 e ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \displaystyle=-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
(3.10)
So, by (3.4 )–(3.12 ), we have that
∫ Ω U ϵ 2 log U ϵ 2 \displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}
≥ 8 log 8 ω 4 ϵ 2 ln ( 1 ϵ ) + 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 + 8 ω 4 log ( ϵ 2 + ρ 2 e ) ϵ 2 log ( 1 ϵ ) \displaystyle\geq 8\log 8\omega_{4}\epsilon^{2}\ln(\frac{1}{\epsilon})+16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})
− 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 − 16 ω 4 log ( ϵ 2 + 4 ρ 2 ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) \displaystyle-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\epsilon^{2}+4\rho^{2})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
= 8 log ( 8 ( ϵ 2 + ρ 2 ) e ( ϵ 2 + 4 ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) \displaystyle=8\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
and
∫ Ω U ϵ 2 log U ϵ 2 \displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}
≤ 8 log 8 ω 4 ϵ 2 ln ( 1 ϵ ) + 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 + 8 ω 4 log ( ϵ 2 + 4 ρ 2 e ) ϵ 2 log ( 1 ϵ ) \displaystyle\leq 8\log 8\omega_{4}\epsilon^{2}\ln(\frac{1}{\epsilon})+16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log(\frac{\epsilon^{2}+4\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})
− 16 ω 4 ϵ 2 ( log ( 1 ϵ ) ) 2 − 16 ω 4 log ( ϵ 2 + ρ 2 e ) ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) \displaystyle-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
= 8 log ( 8 e ( ϵ 2 + 4 ρ 2 ) ( ϵ 2 + ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \displaystyle=8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
∎
Lemma 3.5 .
Assume that N = 4 N=4 . If ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} and 32 e λ μ ρ m a x 2 < 1 \frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1 , or λ ∈ ℝ \lambda\in{\mathbb{R}} and μ > 0 \mu>0 , then c M < 1 N S N 2 c_{M}<\frac{1}{N}S^{\frac{N}{2}} .
Proof.
Let g ( t ) = △ I ( t U ϵ ) g(t)\overset{\triangle}{=}I(tU_{\epsilon}) . Similar to the case of N ≥ 5 N\geq 5 , we can find a t ϵ ∈ ( 0 , + ∞ ) t_{\epsilon}\in(0,+\infty) such that
sup t ≥ 0 I ( t U ϵ ) = I ( t ϵ U ϵ ) \displaystyle\sup_{t\geq 0}I(tU_{\epsilon})=I(t_{\epsilon}U_{\epsilon})
and
∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ − 2 ∫ | U ϵ | 2 ∗ − λ ∫ U ϵ 2 − μ ∫ U ϵ 2 log U ϵ 2 − μ log t ϵ 2 ∫ U ϵ 2 = 0 . \displaystyle\int\left|\nabla U_{\epsilon}\right|^{2}-t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=0.
Similar to the case of N ≥ 5 N\geq 5 again, we can see that there exists 0 < C 2 0<C_{2} such that t ϵ < C 2 t_{\epsilon}<C_{2} for any μ ∈ ℝ ∖ { 0 } \mu\in{\mathbb{R}}\setminus\{0\} and there exists C 1 > 0 C_{1}>0 such that t ϵ > C 1 t_{\epsilon}>C_{1} for μ > 0 \mu>0 .
So
μ log t ϵ 2 ∫ U ϵ 2 = O ( ϵ 2 | ln ϵ | ) , \mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=O(\epsilon^{2}\left|\ln\epsilon\right|),
and
t ϵ 2 ∗ − 2 \displaystyle t^{2^{\ast}-2}_{\epsilon}
= ∫ | ∇ U ϵ | 2 − λ ∫ U ϵ 2 − μ ∫ U ϵ 2 log U ϵ 2 − μ log t ϵ 2 ∫ U ϵ 2 ∫ | U ϵ | 2 ∗ \displaystyle=\frac{\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}}{\int\left|U_{\epsilon}\right|^{2^{\ast}}}
= S N 2 + O ( ϵ 2 ( log ( 1 ϵ ) ) 2 ) S N 2 + O ( ϵ N ) ⟶ 1 a s ϵ → 0 + , \displaystyle=\frac{S^{\frac{N}{2}}+O(\epsilon^{2}(\log(\frac{1}{\epsilon}))^{2})}{S^{\frac{N}{2}}+O(\epsilon^{N})}\longrightarrow 1~{}as~{}\epsilon\to 0^{+},
which implies that,
μ log t ϵ 2 ∫ U ϵ 2 = o ( ϵ 2 | ln ϵ | ) , \mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=o(\epsilon^{2}\left|\ln\epsilon\right|),
According to (3.5 ), we get that
∫ Ω U ϵ 2 = 8 ω 4 ϵ 2 log ( 1 ϵ ) + O ( ϵ 2 ) . \int_{\Omega}U_{\epsilon}^{2}=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
Therefore we have that, as ϵ → 0 + , \epsilon\to 0^{+},
c M \displaystyle c_{M}
≤ I ( t ϵ U ϵ ) \displaystyle\leq I(t_{\epsilon}U_{\epsilon})
= t ϵ 2 2 ∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ 2 ∗ ∫ | U ϵ | 2 ∗ + μ − λ 2 t ϵ 2 ∫ U ϵ 2 − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 + o ( ϵ 2 | ln ϵ | ) \displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\frac{\mu-\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ ( t ϵ 2 2 − t ϵ 2 ∗ 2 ∗ ) S N 2 + O ( ϵ 2 ) + μ − λ 2 t ϵ 2 ∫ U ϵ 2 − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+O(\epsilon^{2})+\frac{\mu-\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − t ϵ 2 2 ∫ [ μ U ϵ 2 log U ϵ 2 + ( λ − μ ) U ϵ 2 ] + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{t^{2}_{\epsilon}}{2}\int[\mu U^{2}_{\epsilon}\log U^{2}_{\epsilon}+(\lambda-\mu)U^{2}_{\epsilon}]+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − t ϵ 2 2 ( 8 μ log ( 8 ( ϵ 2 + ρ 2 ) e ( ϵ 2 + 4 ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) + ( λ − μ ) 8 ω 4 ϵ 2 log ( 1 ϵ ) ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{t^{2}_{\epsilon}}{2}\left(8\mu\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+(\lambda-\mu)8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\right)+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 t ϵ 2 log ( 8 μ ( ϵ 2 + ρ 2 ) μ e 2 μ − λ ( ϵ 2 + 4 ρ 2 ) 2 μ ) ω 4 ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4t^{2}_{\epsilon}\log\left(\frac{8^{\mu}(\epsilon^{2}+\rho^{2})^{\mu}}{e^{2\mu-\lambda}(\epsilon^{2}+4\rho^{2})^{2\mu}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 t ϵ 2 log ( 8 μ 25 μ e 2 μ − λ ρ 2 μ ) ω 4 ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4t^{2}_{\epsilon}\log\left(\frac{8^{\mu}}{25^{\mu}e^{2\mu-\lambda}\rho^{2\mu}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 C 1 2 C ω 4 ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4C^{2}_{1}C\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
< 1 N S N 2 , \displaystyle<\frac{1}{N}S^{\frac{N}{2}},
where we choose ρ > 0 \rho>0 small enough such that 8 μ 25 μ e 2 μ − λ ρ 2 μ > 1 . \frac{8^{\mu}}{25^{\mu}e^{2\mu-\lambda}\rho^{2\mu}}>1.
When ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} , we choose ρ = ρ m a x \rho=\rho_{max} . We can see that t ϵ ↛ 0 t_{\epsilon}\not\to 0 . Otherwise, 0 < α ≤ c M ≤ I ( t ϵ U ϵ ) → 0 0<\alpha\leq c_{M}\leq I(t_{\epsilon}U_{\epsilon})\to 0 , which is impossible.
Similar to Case 1, we can see that t ϵ → 1 t_{\epsilon}\to 1 and t ϵ 2 log t ϵ 2 = o ( 1 ) t_{\epsilon}^{2}\log t_{\epsilon}^{2}=o(1) .
Therefore,
− μ 2 t ϵ 2 log t ϵ 2 ∫ U ϵ 2 = o ( ϵ 2 | ln ϵ | ) . -\frac{\mu}{2}t_{\epsilon}^{2}\log t_{\epsilon}^{2}\int U_{\epsilon}^{2}=o(\epsilon^{2}\left|\ln\epsilon\right|).
(3.11)
Then we obtain that, as ϵ → 0 + , \epsilon\to 0^{+},
c M \displaystyle c_{M}
≤ I ( t ϵ U ϵ ) \displaystyle\leq I(t_{\epsilon}U_{\epsilon})
= t ϵ 2 2 ∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ 2 ∗ ∫ | U ϵ | 2 ∗ + μ 2 t ϵ 2 ( 1 − log t ϵ 2 ) ∫ U ϵ 2 − μ 2 t ϵ 2 ∫ U ϵ 2 ( log U ϵ 2 + λ μ ) \displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\frac{\mu}{2}t^{2}_{\epsilon}(1-\log t^{2}_{\epsilon})\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}(\log U^{2}_{\epsilon}+\frac{\lambda}{\mu})
≤ ( t ϵ 2 2 − t ϵ 2 ∗ 2 ∗ ) S N 2 + μ 2 t ϵ 2 ∫ U ϵ 2 − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 − λ 2 t ϵ 2 ∫ U ϵ 2 + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}-\frac{\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − μ 2 t ϵ 2 ( ( λ μ − 1 ) 8 ω 4 ϵ 2 log ( 1 ϵ ) + 8 log ( 8 e ( ϵ 2 + 4 ρ 2 ) ( ϵ 2 + ρ 2 ) 2 ) ω 4 ϵ 2 log ( 1 ϵ ) ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{\mu}{2}t^{2}_{\epsilon}\left((\frac{\lambda}{\mu}-1)8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\right)+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 μ ω 4 t ϵ 2 ( ( λ μ − 1 ) + log ( 8 e ( ϵ 2 + 4 ρ 2 ) ( ϵ 2 + ρ 2 ) 2 ) ) ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}t^{2}_{\epsilon}\left((\frac{\lambda}{\mu}-1)+\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 μ ω 4 t ϵ 2 log ( 8 e λ μ ( ϵ 2 + 4 ρ 2 ) ( ϵ 2 + ρ 2 ) 2 ) ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}t^{2}_{\epsilon}\log\left(\frac{8e^{\frac{\lambda}{\mu}}(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
≤ 1 N S N 2 − 4 μ ω 4 log ( 32 e λ μ ρ 2 ) ϵ 2 log ( 1 ϵ ) + o ( ϵ 2 | ln ϵ | ) \displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}\log\left(\frac{32e^{\frac{\lambda}{\mu}}}{\rho^{2}}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
< 1 N S N 2 \displaystyle<\frac{1}{N}S^{\frac{N}{2}}
since the fact that 32 e λ μ ρ m a x 2 < 1 \frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1 .
The case for 𝐍 = 𝟑 : \mathbf{N=3:}
Let φ ( x ) ∈ C 0 1 ( Ω ) \varphi(x)\in C^{1}_{0}(\Omega) be a radial function satisfying that φ ( x ) = 1 \varphi(x)=1 for 0 ≤ | x | ≤ ρ 0\leq\left|x\right|\leq\rho , 0 ≤ φ ( x ) ≤ 1 0\leq\varphi(x)\leq 1 for ρ ≤ | x | ≤ 2 ρ \rho\leq\left|x\right|\leq 2\rho , φ ( x ) = 0 \varphi(x)=0 for x ∈ Ω ∖ B 2 ρ ( 0 ) x\in\Omega\setminus B_{2\rho}(0) ,
where 0 < ρ 0<\rho is any fixed constant such that B 2 ρ ( 0 ) ⊂ Ω B_{2\rho}(0)\subset\Omega and 4 ρ 2 < 1 . 4\rho^{2}<1.
Set
U ϵ = φ ( x ) u ϵ ( x ) . \begin{array}[]{ll}U_{\epsilon}=\varphi(x)u_{\epsilon}(x).\end{array}
Lemma 3.6 .
If N = 3 N=3 , then we have, as ϵ → 0 + \epsilon\to 0^{+} ,
∫ Ω | ∇ U ϵ | 2 d x = S 3 2 + 3 ω 3 ∫ ρ 2 ρ | φ ′ ( r ) | 2 d r ϵ + O ( ϵ 3 ) , \int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}\mathrm{d}x=S^{\frac{3}{2}}+\sqrt{3}\omega_{3}\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r\epsilon+O(\epsilon^{3}),
(3.12)
∫ Ω | U ϵ | 2 ∗ d x = S 3 2 + O ( ϵ 3 ) , \int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}}\mathrm{d}x=S^{\frac{3}{2}}+O(\epsilon^{3}),
(3.13)
∫ Ω U ϵ 2 d x = 3 ω 3 ∫ 0 2 ρ φ 2 d r ϵ + O ( ϵ 2 ) , \int_{\Omega}U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon+O(\epsilon^{2}),
(3.14)
and
∫ U ϵ 2 log U ϵ 2 d x = 3 ω 3 ∫ 0 2 ρ φ 2 d r ϵ log ϵ + O ( ϵ ) , \int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon\log\epsilon+O(\epsilon),
(3.15)
where ω 3 \omega_{3} denotes the area of the unit sphere surface.
Proof.
Following from the definition of U ϵ U_{\epsilon} , direct computations implies that
∫ Ω | ∇ U ϵ | 2 d x = ∫ B 2 ρ ( | ∇ φ | 2 3 ϵ ϵ 2 + | x | 2 − 2 ∇ φ ⋅ φ ( r ) 3 ϵ x ( ϵ 2 + | x | 2 ) 2 + 3 ϵ φ 2 ( r ) x 2 ( ϵ 2 + | x | 2 ) 3 ) d x = 3 ω 3 ϵ ∫ ρ 2 ρ | φ ′ ( r ) | 2 r 2 ϵ 2 + r 2 d r − 2 3 ω 3 ϵ ∫ ρ 2 ρ φ ′ ( r ) r φ ( r ) r 2 ( ϵ 2 + r 2 ) 2 d r + 3 ω 3 ϵ ∫ 0 ρ r 4 ( ϵ 2 + r 2 ) 3 d r + 3 ω 3 ϵ ∫ ρ 2 ρ φ 2 ( r ) r 4 ( ϵ 2 + r 2 ) 3 d r = 3 ω 3 ϵ ∫ ρ 2 ρ | φ ′ ( r ) | 2 d r + O ( ϵ 3 ) − 2 3 ω 3 ϵ ∫ ρ 2 ρ φ ′ ( r ) r φ ( r ) 1 ϵ 2 + r 2 d r + O ( ϵ 3 ) + 3 ω 3 ϵ ∫ 0 + ∞ r 4 ( ϵ 2 + r 2 ) 3 d r − 3 ω 3 ϵ ∫ ρ + ∞ r 4 ( ϵ 2 + r 2 ) 3 d r + 3 ω 3 ϵ ∫ ρ 2 ρ φ 2 ( r ) r 4 ( ϵ 2 + r 2 ) 3 d r = 3 ω 3 ϵ ∫ ρ 2 ρ | φ ′ ( r ) | 2 d r − 2 3 ω 3 ϵ ∫ ρ 2 ρ φ ′ ( r ) φ ( r ) 1 r d r + O ( ϵ 3 ) + ∫ ℝ N | ∇ u ϵ | 2 − 3 ω 3 ϵ ∫ ρ + ∞ 1 ϵ 2 + r 2 d r + 3 ω 3 ϵ ∫ ρ 2 ρ φ 2 ( r ) 1 ϵ 2 + r 2 d r + O ( ϵ 3 ) = S 3 2 + O ( ϵ 3 ) + 3 ω 3 ϵ ( ∫ ρ 2 ρ | φ ′ ( r ) | 2 d r − ∫ ρ 2 ρ 2 φ ′ ( r ) φ ( r ) 1 r d r − ∫ ρ + ∞ 1 r 2 d r + ∫ ρ 2 ρ φ 2 ( r ) 1 r 2 d r ) = S 3 2 + 3 ω 3 ϵ ∫ ρ 2 ρ | φ ′ ( r ) | 2 d r + O ( ϵ 3 ) \begin{split}&\int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}\mathrm{d}x\\
&=\int_{B_{2\rho}}\left(\left|\nabla\varphi\right|^{2}\frac{\sqrt{3}\epsilon}{\epsilon^{2}+\left|x\right|^{2}}-2\nabla\varphi\cdot\varphi(r)\frac{\sqrt{3}\epsilon x}{(\epsilon^{2}+\left|x\right|^{2})^{2}}+\frac{\sqrt{3}\epsilon\varphi^{2}(r)x^{2}}{(\epsilon^{2}+\left|x\right|^{2})^{3}}\right)\mathrm{d}x\\
&=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)r\varphi(r)\frac{r^{2}}{(\epsilon^{2}+r^{2})^{2}}\mathrm{d}r\\
&+\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\frac{\varphi^{2}(r)r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r\\
&=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r+O(\epsilon^{3})-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)r\varphi(r)\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+O(\epsilon^{3})\\
&+\sqrt{3}\omega_{3}\epsilon\int_{0}^{+\infty}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{+\infty}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\frac{\varphi^{2}(r)r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r\\
&=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)\varphi(r)\frac{1}{r}\mathrm{d}r+O(\epsilon^{3})\\
&+\int_{{\mathbb{R}}^{N}}\left|\nabla u_{\epsilon}\right|^{2}-\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{+\infty}\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{2}(r)\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+O(\epsilon^{3})\\
&=S^{\frac{3}{2}}+O(\epsilon^{3})\\
&+\sqrt{3}\omega_{3}\epsilon\left(\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r-\int_{\rho}^{2\rho}2\varphi^{{}^{\prime}}(r)\varphi(r)\frac{1}{r}\mathrm{d}r-\int_{\rho}^{+\infty}\frac{1}{r^{2}}\mathrm{d}r+\int_{\rho}^{2\rho}\varphi^{2}(r)\frac{1}{r^{2}}\mathrm{d}r\right)\\
&=S^{\frac{3}{2}}+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r+O(\epsilon^{3})\end{split}
∫ Ω | U ϵ | 2 ∗ d x = ∫ B ρ ( 0 ) | u ϵ | 2 ∗ d x + O ( ϵ 3 ) = ∫ ℝ 3 | u ϵ | 2 ∗ d x + O ( ϵ 3 ) = S 3 2 + O ( ϵ 3 ) , \int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}}\mathrm{d}x=\int_{B_{\rho}(0)}\left|u_{\epsilon}\right|^{2^{*}}\mathrm{d}x+O(\epsilon^{3})=\int_{\mathbb{R}^{3}}\left|u_{\epsilon}\right|^{2^{*}}\mathrm{d}x+O(\epsilon^{3})=S^{\frac{3}{2}}+O(\epsilon^{3}),
and
∫ Ω U ϵ 2 d x = 3 ∫ B 2 ρ ( 0 ) φ 2 ϵ ϵ 2 + | x | 2 d x = 3 ω 3 ϵ ∫ 0 2 ρ φ 2 1 ϵ 2 + r 2 r 2 d r = 3 ω 3 ϵ ∫ 0 2 ρ φ 2 d r − 3 ω 3 ϵ 3 ∫ 0 2 ρ φ 2 1 ϵ 2 + r 2 d r = 3 ω 3 ϵ ∫ 0 2 ρ φ 2 d r + O ( ϵ 2 ) . \begin{array}[]{ll}\displaystyle\int_{\Omega}U^{2}_{\epsilon}\mathrm{d}x&=\sqrt{3}\displaystyle\int_{B_{2\rho}(0)}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\mathrm{d}x\\
&=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\frac{1}{\epsilon^{2}+r^{2}}r^{2}\mathrm{d}r\\
&=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon^{3}\int_{0}^{2\rho}\varphi^{2}\frac{1}{\epsilon^{2}+r^{2}}~{}\mathrm{d}r\\
&=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r+O(\epsilon^{2}).\end{array}
On the other hand, we have
∫ Ω U ϵ 2 log U ϵ 2 = 3 ∫ Ω φ 2 ϵ ϵ 2 + | x | 2 log ( 3 φ 2 ϵ ϵ 2 + | x | 2 ) d x = 3 ∫ B 2 ρ ( 0 ) φ 2 ϵ ϵ 2 + | x | 2 log ( 3 φ 2 ϵ ϵ 2 + | x | 2 ) d x = 3 ω 3 ϵ ∫ 0 2 ρ φ 2 ( r ) r 2 ϵ 2 + r 2 [ log 3 + log ϵ + log φ 2 + log 1 ϵ 2 + r 2 ] d r = 3 log 3 ω 3 ϵ ∫ 0 2 ρ φ 2 ( r ) r 2 ϵ 2 + r 2 d r + 3 ω 3 ϵ log ϵ ∫ 0 2 ρ φ 2 r 2 ϵ 2 + r 2 d r + 3 ω 3 ϵ ∫ 0 2 ρ φ 2 log φ 2 r 2 ϵ 2 + r 2 d r + 3 ω 3 ϵ ∫ 0 2 ρ φ 2 ( r ) r 2 ϵ 2 + r 2 log 1 ϵ 2 + r 2 d r = △ I 1 + I 2 + I 3 + I 4 . \begin{split}\int_{\Omega}U_{\epsilon}^{2}\log{U_{\epsilon}^{2}}&=\sqrt{3}\int_{\Omega}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\log(\sqrt{3}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})\mathrm{d}x\\
&=\sqrt{3}\int_{B_{2\rho}(0)}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\log(\sqrt{3}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})\mathrm{d}x\\
&=\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\left[\log\sqrt{3}+\log\epsilon+\log\varphi^{2}+\log\frac{1}{\epsilon^{2}+r^{2}}\right]\mathrm{d}r\\
&=\sqrt{3}\log\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\
&+\sqrt{3}\omega_{3}\epsilon\log\epsilon\int_{0}^{2\rho}\varphi^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\
&+\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}\log\varphi^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\
&+\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\log\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r\\
&\overset{\triangle}{=}I_{1}+I_{2}+I_{3}+I_{4}.\end{split}
(3.16)
By direct computation, we obtain that
I 1 = O ( ϵ ) , I 3 = O ( ϵ ) , I_{1}=O(\epsilon),~{}I_{3}=O(\epsilon),
(3.17)
I 2 = 3 ω 3 ϵ log ϵ ∫ 0 2 ρ φ 2 d r − 3 ω 3 ϵ log ϵ ∫ 0 2 ρ φ 2 ϵ 2 ϵ 2 + r 2 d r = 3 ω 3 ϵ log ϵ ∫ 0 2 ρ φ 2 d r + O ( ϵ 2 log ϵ ) , \begin{array}[]{ll}I_{2}&=\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\frac{\epsilon^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\
&=\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r+O(\epsilon^{2}\log\epsilon),\\
\end{array}
(3.18)
and
| I 4 | ≤ − 3 ω 3 ϵ ∫ 0 ρ log ( ϵ 2 + r 2 ) d r + O ( ϵ ) = − 3 ω 3 ϵ r log ( ϵ 2 + r 2 ) | 0 ρ + 3 ω 3 ϵ ∫ 0 ρ r 1 ϵ 2 + r 2 2 r d r + O ( ϵ ) = O ( ϵ ) . \begin{split}|I_{4}|&\leq-\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}\log(\epsilon^{2}+r^{2})\mathrm{d}r+O(\epsilon)\\
&=-\sqrt{3}\omega_{3}\epsilon r\log(\epsilon^{2}+r^{2}){\Big{\arrowvert}}^{\rho}_{0}+\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}r\frac{1}{\epsilon^{2}+r^{2}}2r\mathrm{d}r+O(\epsilon)\\
&=O(\epsilon).\end{split}
(3.19)
It follows from (3.16 )–(3.19 ) that
∫ U ϵ 2 log U ϵ 2 d x = 3 ω 3 ∫ 0 2 ρ φ 2 d r ϵ log ϵ + O ( ϵ ) . \int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r\epsilon\log\epsilon+O(\epsilon).
Lemma 3.7 .
If N = 3 N=3 and ( λ , μ ) ∈ B 0 ∪ C 0 (\lambda,\mu)\in B_{0}\cup C_{0} , then c M < 1 N S N 2 c_{M}<\frac{1}{N}S^{\frac{N}{2}} .
Proof.
Assume that g ( t ) := I ( t U ϵ ) g(t):=I(tU_{\epsilon}) .
Since g ( 0 ) = 0 g(0)=0 , lim t → + ∞ g ( t ) = − ∞ \lim\limits_{t\to+\infty}g(t)=-\infty and Lemma 2.1 , we can get a t ϵ ∈ ( 0 , + ∞ ) t_{\epsilon}\in(0,+\infty) such that
sup t ≥ 0 I ( t U ϵ ) = I ( t ϵ U ϵ ) . \displaystyle\sup_{t\geq 0}I(tU_{\epsilon})=I(t_{\epsilon}U_{\epsilon}).
Similar to the case of N = 4 , N=4, we can see that there exist 0 < C 1 < C 2 0<C_{1}<C_{2} such that t ϵ ∈ ( C 1 , C 2 ) . t_{\epsilon}\in(C_{1},C_{2}).
Therefore, for ϵ \epsilon small enough,
c M ≤ I ( t ϵ U ϵ ) \displaystyle c_{M}\leq I(t_{\epsilon}U_{\epsilon})
= t ϵ 2 2 ∫ | ∇ U ϵ | 2 − t ϵ 2 ∗ 2 ∗ ∫ | U ϵ | 2 ∗ − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 + O ( ϵ ) \displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+O(\epsilon)
= ( t ϵ 2 2 − t ϵ 2 ∗ 2 ∗ ) S 3 2 − μ 2 t ϵ 2 ∫ U ϵ 2 log U ϵ 2 + O ( ϵ ) \displaystyle=(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{3}{2}}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+O(\epsilon)
≤ 1 N S 3 2 − 3 μ 2 C 1 2 ω 3 ∫ 0 2 ρ φ 2 d r ϵ log ( ϵ ) + O ( ϵ ) \displaystyle\leq\frac{1}{N}S^{\frac{3}{2}}-\frac{\sqrt{3}\mu}{2}C^{2}_{1}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon\log(\epsilon)+O(\epsilon)
< 1 N S 3 2 . \displaystyle<\frac{1}{N}S^{\frac{3}{2}}.
We complete the proof.
∎