This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation

Abstract.

We consider the existence and nonexistence of positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation:

{Δu=|u|22u+λu+μulogu2xΩ,u=0xΩ,\begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u+\mu u\log{u}^{2}&x\in\Omega,\\ \quad\;\>\,u=0&x\in\partial\Omega,\end{cases}

where Ω\Omega \subset N{\mathbb{R}}^{N} is a bounded smooth domain, λ,μ\lambda,\mu\in{\mathbb{R}}, N3N\geq 3 and 2:=2NN2{2}^{\ast}:=\frac{2N}{N-2} is the critical Sobolev exponent for the embedding H01(Ω)L2(Ω)H^{1}_{0}(\Omega)\hookrightarrow L^{2^{\ast}}(\Omega). The uncertainty of the sign of slogs2s\log s^{2} in (0,+)(0,+\infty) has some interest in itself. We will show the existence of positive ground state solution which is of mountain pass type provided λ,μ>0\lambda\in{\mathbb{R}},\mu>0 and N4N\geq 4. While the case of μ<0\mu<0 is thornier. However, for N=3,4N=3,4 λ(,λ1(Ω))\lambda\in(-\infty,\lambda_{1}(\Omega)), we can also establish the existence of positive solution under some further suitable assumptions. And a nonexistence result is also obtained for μ<0\mu<0 and (N2)μ2+(N2)μ2log((N2)μ2)+λλ1(Ω)0-\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)\geq 0 if N3N\geq 3. Comparing with the results in Brézis, H. and Nirenberg, L. (Comm. Pure Appl. Math. 1983), some new interesting phenomenon occurs when the parameter μ\mu on logarithmic perturbation is not zero.

Yinbin Deng 111 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China. Email: [email protected]., Qihan He 222 College of Mathematics and Information Science, Guangxi Center for Mathematical Research, Guangxi University, Nanning, 530003, China, Email: [email protected]., Yiqing Pan 333 College of Mathematics and Information Science, Guangxi Center for Mathematical Research, Guangxi University, Nanning, 530003, China, Email: [email protected]. and Xuexiu Zhong 444 South China Research Center for Applied Mathematics and Interdisciplinary Studies, South China Normal University, Guangzhou 510631, China, Email: [email protected].

Keywords: Brézis-Nirenberg Problem, Critical exponents, Positive solution, Logarithmic perturbation

1. Introduction and main results

In this paper, we investigate the existence and nonexistence of positive solution for the following Brézis-Nirenberg problem with a logarithmic term:

{Δu=|u|22u+λu+μulogu2xΩ,u=0xΩ,\begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u+\mu u\log{u}^{2}&x\in\Omega,\\ \quad\;\>\,u=0&x\in\partial\Omega,\end{cases} (1.1)

where Ω\Omega \subset N{\mathbb{R}}^{N} is a bounded smooth domain, λ,μ\lambda,\mu\in{\mathbb{R}}, N3N\geq 3, and 2=2NN2{2}^{\ast}=\frac{2N}{N-2} is the critical Sobolev exponent for the embedding H01(Ω)L2(Ω)H^{1}_{0}(\Omega)\hookrightarrow L^{2^{\ast}}(\Omega). Here H01(Ω)H^{1}_{0}(\Omega) denotes the closure of C0(Ω)C^{\infty}_{0}(\Omega) equipped with the norm u:=(Ω|u|2𝑑x)12\left\|u\right\|:=(\int_{\Omega}|\nabla u|^{2}dx)^{\frac{1}{2}}.

Our motivation to consider (1.1) is that it resembles some variational problems in geometry and physics, which is lack of compactness. The most notorious example is Yamabe’s problem: finding a function uu satisfying

{4N1N2Δu=R|u|22uR(x)u on,u>0 on,\begin{cases}-4\frac{N-1}{N-2}\Delta u=R^{\prime}{\left|u\right|}^{{2}^{\ast}-2}u-R(x)u&\text{ }~{}\hbox{on}~{}\mathcal{M},\\ \quad\;\>\,\quad\;\>\,\;\>\,u>0&\text{ }~{}\hbox{on}~{}\mathcal{M},\end{cases}

where RR^{\prime} is a constant, \mathcal{M} is an NN-dimensional Riemannian manifold, Δ\Delta denotes the Laplacian and R(x)R(x) represents the scalar curvature. Some other examples we refer to [2, 8, 10, 13, 14, 15] and the references therein.

When λ=μ=0\lambda=\mu=0, Eq.(1.1) is reduced to

{Δu=|u|22u xΩ,u=0 xΩ.\begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u&\text{ }x\in{\Omega},\\ \quad\;\>\,u=0&\text{ }x\in{\partial\Omega}.\end{cases} (1.2)

Pohozaev [11] asserts that Eq.(1.2) has no nontrivial solutions when Ω\Omega is starshaped.  But, as Brézis and Nirenberg have shown in [3], a lower-order terms can reverse this circumstance. Indeed, they considered the following classical problem

{Δu=|u|22u+λu xΩ,u=0 xΩ,\begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+\lambda u&\text{ }x\in{\Omega},\\ \quad\;\>\,u=0&\text{ }x\in{\partial\Omega},\end{cases} (1.3)

with λ,N3\lambda\in{\mathbb{R}},N\geq 3 and ΩN\Omega\subset{\mathbb{R}}^{N} is a bounded domain. They found out that the existence of a solution depends heavily on the values of λ\lambda and NN. Precisely, they showed that:

  1. (i)(i)

    when N4N\geq 4 and λ(0,λ1(Ω))\lambda\in\left(0,\lambda_{1}(\Omega)\right), there exists a positive solution for Eq.(1.3);

  2. (ii)(ii)

    when N=3N=3 and Ω\Omega is a ball, Eq.(1.3) has a positive solution if and only if λ(14λ1(Ω),λ1(Ω))\lambda\in\left(\frac{1}{4}\lambda_{1}(\Omega),\lambda_{1}(\Omega)\right);

  3. (iii)(iii)

    Eq. (1.3) has no solutions when λ<0\lambda<0 and Ω\Omega is starshaped;

where λ1(Ω)\lambda_{1}(\Omega) denotes the first eigenvalue of Δ-\Delta with zero Dirichlet boundary value. Furthermore, Brézis and Nirenberg [3] also considered the following general case:

{Δu=|u|22u+f(x,u) xΩ,u=0 xΩ,\begin{cases}-\Delta u={\left|u\right|}^{{2}^{\ast}-2}u+f(x,u)&\text{ }x\in{\Omega},\\ \quad\;\>\,u=0&\text{ }x\in{\partial\Omega},\end{cases} (1.4)

where f(x,u)f(x,u) satisfies some of the following assumptions :

  • (f1)(f_{1})

    f(x,u)=a(x)u+g(x,u),a(x)L(Ω);f(x,u)=a(x)u+g(x,u),a(x)\in L^{\infty}(\Omega);

  • (f2)(f_{2})

    limu0+g(x,u)u=0,\lim\limits_{u\to 0^{+}}\frac{g(x,u)}{u}=0, uniformly in xΩx\in\Omega;

  • (f3)(f_{3})

    limu+g(x,u)u21=0,\lim\limits_{u\to+\infty}\frac{g(x,u)}{u^{2^{*}-1}}=0, uniformly in xΩx\in\Omega;

  • (f4)(f_{4})

    α>0\exists\,\alpha>0 such that (|v|2a(x)v2)𝑑xαv2𝑑x\int(|\nabla v|^{2}-a(x)v^{2})dx\geq\alpha\int v^{2}dx for all vH01(Ω);v\in H^{1}_{0}(\Omega);

  • (f5)(f_{5})

    f(x,u)0f(x,u)\geq 0 for a.e xω0x\in\omega_{0} and for all u0u\geq 0, where ω0\omega_{0} is some nonempty open subset of Ω\Omega;

  • (f6)(f_{6})

    f(x,u)δ0>0f(x,u)\geq\delta_{0}>0 for a.e xω0x\in\omega_{0} and for all uIu\in I, where ω0\omega_{0} is given in (f5)(f_{5}), I(0,+)I\subset(0,+\infty) is some nonempty open interval and δ0>0\delta_{0}>0 is some constant;

  • (f7)(f_{7})

    f(x,u)δ1uf(x,u)\geq\delta_{1}u for a.e xω1x\in\omega_{1} and for all u[0,A],u\in[0,A], or, f(x,u)δ1uf(x,u)\geq\delta_{1}u for a.e xω1x\in\omega_{1} and for all u[A,+],u\in[A,+\infty], where ω1\omega_{1} is some nonempty open subset of Ω\Omega and δ1,A\delta_{1},\,A are two positive constants;

  • (f8)(f_{8})

    limu+f(x,u)u3=+\lim\limits_{u\to+\infty}\frac{f(x,u)}{u^{3}}=+\infty uniformly in xω2x\in\omega_{2}, where ω2\omega_{2} is some nonempty open subset of Ω\Omega.

They showed that if the assumptions (f1)(f4)(f_{1})-(f_{4}) hold and there exists some 0u0H01(Ω){0}0\leq u_{0}\in H^{1}_{0}(\Omega)\setminus\{0\} such that supt0I(tu0)<1NSN2\displaystyle\sup_{t\geq 0}I(tu_{0})<\frac{1}{N}S^{\frac{N}{2}}, then Eq.(1.4) has a positive solution. More precisely, they proved that:

  1. (i)(i)

    If N5N\geq 5, Eq.(1.4) has a positive solution provided (f1)(f6)(f_{1})-(f_{6});

  2. (ii)(ii)

    If N=4N=4, Eq.(1.4) has a positive solution provided (f1)(f5)(f_{1})-(f_{5}) and (f7)(f_{7});

  3. (iii)(iii)

    If N=3N=3, Eq.(1.4) has a positive solution provided (f1)(f5)(f_{1})-(f_{5}) and (f8)(f_{8}).

Some similar results can be seen in [1, 5, 7]. Barrios et al. [1] proved the existence of positive solution for a fractional critical problem with a lower-order term, and Gao and Yang [5], Li and Ma [7] considered the existence of positive solution to a Choquard equation with critical exponent and lower-order term in a bounded domain Ω\Omega and in N{\mathbb{R}}^{N}, respectively.

Remark 1.1.

Compared with |u|22u|u|^{2^{*}-2}u, ulogu2u\log u^{2} is a lower-order term at infinity. However, we note that the situation we considered in present paper is not covered above. Indeed, in the Eq. (1.1), f(x,u)=λu+μulogu2f(x,u)=\lambda u+\mu u\log{u}^{2}. So (f1)(f_{1}) fails due to the fact of limu0+ulogu2u=\lim\limits_{u\to 0^{+}}\frac{u\log u^{2}}{u}=-\infty. That is λu=o(μulogu2)\lambda u=o(\mu u\log{u}^{2}) for uu close to 0. So it is natural to believe that μulogu2\mu u\log u^{2} has much more influence than λu\lambda u on the existence of positive solutions to Eq.(1.1). Hence, our main goal in present paper is to make clear this guess.

To find a positive solution to Eq.(1.1), we define a modified functional:

I(u)=12Ω|u|2𝑑x12|u+|2𝑑xλ2u+2𝑑xμ2u+2(logu+21)𝑑x,uH01(Ω),I(u)=\frac{1}{2}\int_{\Omega}\left|\nabla u\right|^{2}dx-\frac{1}{2^{\ast}}\int\left|u_{+}\right|^{2^{\ast}}dx-\frac{\lambda}{2}\int u_{+}^{2}dx-\frac{\mu}{2}\int{u^{2}_{+}}(\log u^{2}_{+}-1)dx,~{}u\in H^{1}_{0}(\Omega), (1.5)

which can be rewritten by

I(u)=12Ω|u|2𝑑x12|u+|2𝑑xμ2u+2(logu+2+λμ1)𝑑x,uH01(Ω),I(u)=\frac{1}{2}\int_{\Omega}\left|\nabla u\right|^{2}dx-\frac{1}{2^{\ast}}\int\left|u_{+}\right|^{2^{\ast}}dx-\frac{\mu}{2}\int{u^{2}_{+}}(\log u^{2}_{+}+\frac{\lambda}{\mu}-1)dx,~{}u\in H^{1}_{0}(\Omega), (1.6)

where u+=max{u,0},u=max{u,0}u_{+}=\max\{u,0\},\,u_{-}=-\max\{-u,0\}. It is easy to see that II is well-defined in H01(Ω)H_{0}^{1}(\Omega) and any nonnegative critical point of II corresponds to a solution of Eq.(1.1).

Before stating our results, we introduce some notations. Hereafter, we use \int to denote Ωdx\int_{\Omega}~{}\mathrm{d}x, unless specifically stated, and let SS and λ1(Ω)\lambda_{1}(\Omega) be the best Sobolev constant of the embedding H1(N)L2(N)H^{1}({\mathbb{R}}^{N})\hookrightarrow L^{2^{*}}({\mathbb{R}}^{N}) and the first eigenvalue of Δ-\Delta with zero Dirichlet boundary value respectively, i.e,

S:=infuH1(N){0}N|u|2dx(N|u|2dx)22S:=\inf\limits_{u\in H^{1}({\mathbb{R}}^{N})\setminus\{0\}}\frac{\int_{{\mathbb{R}}^{N}}|\nabla u|^{2}~{}\mathrm{d}x}{(\int_{{\mathbb{R}}^{N}}|u|^{2^{*}}~{}\mathrm{d}x)^{\frac{2}{2^{*}}}}

and

λ1(Ω):=infuH01(Ω){0}Ω|u|2dxΩ|u|2dx.\lambda_{1}(\Omega):=\inf\limits_{u\in H^{1}_{0}(\Omega)\setminus\{0\}}\frac{\int_{\Omega}|\nabla u|^{2}~{}\mathrm{d}x}{\int_{\Omega}|u|^{2}~{}\mathrm{d}x}.

We also set

v2:=|v|2,vH01(Ω),\left\|v\right\|^{2}:=\int|\nabla v|^{2},\,~{}~{}v\in{H}_{0}^{1}(\Omega),
𝒩:={uH01(Ω){0}|g(u)=0},\mathcal{N}:=\left\{u\in H^{1}_{0}(\Omega)\setminus\{0\}\ \ |\ \ g(u)=0\right\},

and

cg:=infu𝒩I(u),cM:=infγΓmaxt[0,1]I(γ(t)),c_{g}:=\inf\limits_{u\in\mathcal{N}}I(u),~{}~{}~{}~{}c_{M}:=\inf\limits_{\gamma\in\Gamma}\max\limits_{t\in[0,1]}I(\gamma(t)), (1.7)

where

g(u):=|u|2|u+|2λu+2μu+2logu+2,g(u):=\int\left|\nabla u\right|^{2}-\int\left|u_{+}\right|^{2^{\ast}}-\lambda\int u_{+}^{2}-\mu\int{u^{2}_{+}}\log u^{2}_{+},

and

Γ:={γC([0,1],H01(Ω))|γ(0)=0,I(γ(1))<0}.\Gamma:=\{\gamma\in C([0,1],H^{1}_{0}(\Omega))\ \ |\ \ \gamma(0)=0,I(\gamma(1))<0\}.

Let

A0:=\displaystyle A_{0}:= {(λ,μ)|λ,μ>0},\displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in{\mathbb{R}},\mu>0\right\},
B0:=\displaystyle B_{0}:= {(λ,μ)|λ[0,λ1(Ω)),μ<0,1N(λ1(Ω)λλ1(Ω))N2SN2+μ2|Ω|>0},\displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in[0,\lambda_{1}(\Omega)),\mu<0,\frac{1}{N}\left(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\right)^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega|>0\right\},
C0:=\displaystyle C_{0}:= {(λ,μ)|λ,μ<0,1NSN2+μ2eλμ|Ω|>0}.\displaystyle\left\{(\lambda,\mu)\ \ |\ \ \lambda\in{\mathbb{R}},\mu<0,\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|>0\right\}.

Here comes our main results.

Theorem 1.2.

If (λ,μ)A0(\lambda,\mu)\in A_{0} and N4N\geq 4, then problem (1.1) has a positive Mountain pass solution, which is also a ground state solution.

Denote f(s):=|s|22s+λs+μslogs2f(s):=|s|^{2^{*}-2}s+\lambda s+\mu s\log s^{2} which is of odd. It is easy to see that 𝒩\mathcal{N}\neq\emptyset and cMcgc_{M}\geq c_{g} if problem (1.1) has a positive mountain pass solution. On the other hand, when λ\lambda\in{\mathbb{R}} and μ>0\mu>0, f(s)s\frac{f(s)}{s} is strictly increasing in (0,+)(0,+\infty) and strictly decreasing in (,0)(-\infty,0), which enable one to show that cMcgc_{M}\leq c_{g} (See [18, Theorem 4.2]). Therefore, the ground state energy cgc_{g} equals to the Mountain pass level energy cMc_{M}, which implies that the mountain pass solution must be a ground state solution. So, in Theorem 1.2, we only need to show that problem (1.1) has a positive mountain pass solution.

The case of μ<0\mu<0 is thorny. Indeed for (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0}, I(u)I(u) still has the mountain pass geometry (See Lemma 2.1). However, in such a case, it holds that cg<cMc_{g}<c_{M}. Since we can not check the (PS)cM(PS)_{c_{M}} condition for I(u)I(u), we apply the mountain pass theorem without (PS)cM(PS)_{c_{M}} condition to gain a positive solution for Eq.(1.1) when (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0}. However, we don’t know whether this solution is of mountain pass type or not.

Theorem 1.3.

Problem (1.1) possesses a positive solution provided one of the following condition holds:

  • (i)

    N=3N=3, (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0};

  • (ii)

    N=4N=4, (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0} with 32eλμρmax2<1\frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1,where ρmax:=sup{r>0:xΩs.t.B(x,r)Ω}\rho_{max}:=\sup\{r>0:\exists x\in\Omega~{}s.t.~{}B(x,r)\subset\Omega\}.

For the nonexistence of positive solutions for problem (1.1), we have the following partial result.

Theorem 1.4.

Assume that N3.N\geq 3. If μ<0\mu<0 and (N2)μ2+(N2)μ2log((N2)μ2)+λλ1(Ω)0-\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)\geq 0, then problem (1.1) has no positive solutions.

The existence and nonexistence results given by Theorem 1.2 - Theorem 1.4 can be described on the (λ,μ)(\lambda,\ \mu) plane by Figure 1. The pink regions stand for the existence of positive solution, while the blue regions correspond the non-existence of positive solution. Here τ1\tau_{1}, η1\eta_{1}, η2\eta_{2} and η3\eta_{3} are curves given by

τ1:(N2)μ2+(N2)μ2log((N2)μ2)+λλ1(Ω)=0,\displaystyle\tau_{1}:\ -\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)=0,
η1:1N(λ1(Ω)λλ1(Ω))N2SN2+μ2|Ω|=0,\displaystyle\eta_{1}:\ \frac{1}{N}(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)})^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega|=0,
η2:1NSN2+μ2eλμ|Ω|=0,\displaystyle\eta_{2}:\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|=0,
η3:32eλμ=ρmax2,ρmax:=sup{r(0,+):xΩs.t.B(x,r)Ω}.\displaystyle\eta_{3}:{32e^{\frac{\lambda}{\mu}}}={\rho_{max}^{2}},\ \ \ \rho_{max}:=\sup\{r\in(0,+\infty):\exists x\in\Omega~{}s.t.~{}B(x,r)\subset\Omega\}.
Refer to caption
(a) N=3N=3
Refer to caption
(b) N=4N=4
Refer to caption
(c) N5N\geq 5
Figure 1. existence and nonexistence
Remark 1.5.

Comparing the results of [3] and FIGURE 1 above, we find that for the case of N4N\geq 4: Eq.(1.1) possesses a positive solution only for λ(0,λ1(Ω))\lambda\in(0,\lambda_{1}(\Omega)) if μ=0\mu=0. while it has a positive solution for all λ\lambda\in{\mathbb{R}} if μ>0\mu>0. So we see that μulogu2(μ>0)\mu u\log u^{2}\ (\mu>0) really plays a leading role (compared with λu\lambda u) in the effect on the existence of positive solution to Eq.(1.1). A similar phenomenon occurs for N=3N=3: Eq.(1.1) has a positive solution only for λ(λ,λ1(Ω))(0,λ1(Ω))\lambda\in(\lambda^{*},\ \lambda_{1}(\Omega))\subset(0,\ \lambda_{1}(\Omega)) if μ=0\mu=0, while it has a positive solution for all λ(,λ1(Ω))\lambda\in(-\infty,\lambda_{1}(\Omega)) if μ<0\mu<0.

Before closing the introduction, we give the outline of our paper. In Section 2, we will check the mountain pass geometry structure for I(u)I(u), under different specific situations. We also give some other preliminaries. In Section 3, we are devoted to estimate the mountain pass level cMc_{M} for different parameters λ,μ\lambda,\mu and NN. The proofs of our main Theorems 1.2, 1.3 and 1.4 are given in Section 4.

2. Preliminaries

In this section, firstly we verify the mountain pass geometry structure for I(u)I(u) when (λ,μ)A0B0C0(\lambda,\mu)\in A_{0}\cup B_{0}\cup C_{0}. Secondly we show that I(u)I(u) satisfies (PS)d(PS)_{d} condition provided d<1NSN2d<\frac{1}{N}S^{\frac{N}{2}}. Finally, we deduce a existence result for Eq.(1.1) when cM(, 0)(0,1NSN2)c_{M}\in(-\infty,\ 0)\cup(0,\ \frac{1}{N}S^{\frac{N}{2}}) and (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0}.

Lemma 2.1.

Assume that N3N\geq 3 and (λ,μ)A0B0C0(\lambda,\mu)\in A_{0}\cup B_{0}\cup C_{0}. Then the functional I(u)I(u) satisfies the mountain pass geometry structure:

  • (i)(i)

    there exist α,ρ>0\alpha,\rho>0 such that I(v)αI(v)\geq\alpha for all v=ρ\left\|v\right\|=\rho;

  • (ii)(ii)

    there exists ωH01(Ω)\omega\in H_{0}^{1}(\Omega) such that ωρ\left\|\omega\right\|\geq\rho and I(ω)<0I(\omega)<0.

Proof.

We divide the proof into three cases.

Case 1: (λ,μ)A0(\lambda,\mu)\in A_{0}.

Since μ>0\mu>0, it follows from the fact s2logs2Cs2s^{2}logs^{2}\leq Cs^{2^{*}} for all s[1,+)s\in[1,+\infty) that

μu+2(logu+2+λμ1)μu+2(logu+2+λμ)=μu+2log(eλμu+2)\displaystyle\mu\int u^{2}_{+}(\log u^{2}_{+}+\frac{\lambda}{\mu}-1)\leq\mu\int u^{2}_{+}(\log u^{2}_{+}+\frac{\lambda}{\mu})=\mu\int u^{2}_{+}\log(e^{\frac{\lambda}{\mu}}u^{2}_{+})
=\displaystyle= μ{eλμu+21}u+2log(eλμu+2)+μ{eλμu+21}u+2log(eλμu+2)\displaystyle\mu\int_{\{e^{\frac{\lambda}{\mu}}u^{2}_{+}\geq 1\}}u^{2}_{+}\log(e^{\frac{\lambda}{\mu}}u^{2}_{+})+\mu\int_{\{e^{\frac{\lambda}{\mu}}u^{2}_{+}\leq 1\}}u^{2}_{+}\log(e^{\frac{\lambda}{\mu}}u^{2}_{+})
\displaystyle\leq μ{eλμu+21}u+2log(eλμu+2)Cμ{eλμu+21}e(22)λ2μ|u+|2\displaystyle\mu\int_{\{e^{\frac{\lambda}{\mu}}u^{2}_{+}\geq 1\}}u^{2}_{+}\log(e^{\frac{\lambda}{\mu}}u^{2}_{+})\leq C\mu\int_{\{e^{\frac{\lambda}{\mu}}u^{2}_{+}\geq 1\}}e^{\frac{(2^{*}-2)\lambda}{2\mu}}\left|u_{+}\right|^{2^{\ast}}
\displaystyle\leq Ce(22)λ2μμ|u|2Ce(22)λ2μμu2.\displaystyle Ce^{\frac{(2^{*}-2)\lambda}{2\mu}}\mu\int\left|u\right|^{2^{\ast}}\leq Ce^{\frac{(2^{*}-2)\lambda}{2\mu}}\mu\left\|u\right\|^{2^{\ast}}.

So

I(u)12u2C1u2C2u2for some C1,C2>0,\displaystyle I(u)\geq\frac{1}{2}\left\|u\right\|^{2}-C_{1}\left\|u\right\|^{2\ast}-C_{2}\left\|u\right\|^{2^{\ast}}~{}\hbox{for some $C_{1},C_{2}>0$},

which implies that there exist α>0\alpha>0 and ρ>0\rho>0 such that I(v)α>0I(v)\geq\alpha>0 for all v=ρ\left\|v\right\|=\rho.

Let 0φH01(Ω){0}0\leq\varphi\in H_{0}^{1}(\Omega)\setminus\{0\} be a fixed function, then

I(tφ)\displaystyle I(t\varphi) =t22|φ|2|t|22|φ|2μ2t2φ2(log(t2φ2)+λμ1)\displaystyle=\frac{t^{2}}{2}\int\left|\nabla\varphi\right|^{2}-\frac{\left|t\right|^{2^{\ast}}}{2^{\ast}}\int\left|\varphi\right|^{2^{\ast}}-\frac{\mu}{2}t^{2}\int\varphi^{2}(\log(t^{2}\varphi^{2})+\frac{\lambda}{\mu}-1)
=t22|φ|2|t|22|φ|2μ2t2φ2(logt2+logφ2+λμ1)\displaystyle=\frac{t^{2}}{2}\int\left|\nabla\varphi\right|^{2}-\frac{\left|t\right|^{2^{\ast}}}{2^{\ast}}\int\left|\varphi\right|^{2^{\ast}}-\frac{\mu}{2}t^{2}\int\varphi^{2}(\log t^{2}+\log\varphi^{2}+\frac{\lambda}{\mu}-1)
=t22|φ|2|t|22|φ|2μ2t2logt2φ2μ2t2φ2(logφ2+λμ1)\displaystyle=\frac{t^{2}}{2}\int\left|\nabla\varphi\right|^{2}-\frac{\left|t\right|^{2^{\ast}}}{2^{\ast}}\int\left|\varphi\right|^{2^{\ast}}-\frac{\mu}{2}t^{2}\log t^{2}\int\varphi^{2}-\frac{\mu}{2}t^{2}\int\varphi^{2}(\log\varphi^{2}+\frac{\lambda}{\mu}-1)
ast+,\displaystyle\to-\infty\quad as\quad t\to+\infty,

since limt+t2t2logt2=+\lim\limits_{t\to+\infty}\frac{t^{2^{\ast}}}{t^{2}\log t^{2}}=+\infty. Therefore, we can choose t0+t_{0}\in{\mathbb{R}}^{+} large enough such that

I(t0φ)<0andt0φ>ρ.\displaystyle I(t_{0}\varphi)<0\quad and\quad\left\|t_{0}\varphi\right\|>\rho.

Case 2: (λ,μ)B0(\lambda,\mu)\in B_{0}.

Since μ<0\mu<0, we have

μ2u+2(logu+21)=μ2u+2log(e1u+2)\displaystyle-\frac{\mu}{2}\int u^{2}_{+}(\log u^{2}_{+}-1)=-\frac{\mu}{2}\int u^{2}_{+}\log(e^{-1}u^{2}_{+})
=\displaystyle= μ2{e1u+21}u+2log(e1u+2)μ2{e1u+21}u+2log(e1u+2)\displaystyle-\frac{\mu}{2}\int_{\{e^{-1}u^{2}_{+}\geq 1\}}u^{2}_{+}\log(e^{-1}u^{2}_{+})-\frac{\mu}{2}\int_{\{e^{-1}u^{2}_{+}\leq 1\}}u^{2}_{+}\log(e^{-1}u^{2}_{+})
\displaystyle\geq μ2{e1u+21}u+2log(e1u+2)\displaystyle-\frac{\mu}{2}\int_{\{e^{-1}u^{2}_{+}\leq 1\}}u^{2}_{+}\log(e^{-1}u^{2}_{+})
\displaystyle\geq μ2e{e1u+21}e1dxμ2|Ω|.\displaystyle-\frac{\mu}{2}e\int_{\{e^{-1}u^{2}_{+}\leq 1\}}-e^{-1}~{}\mathrm{d}x\geq\frac{\mu}{2}|\Omega|.

It follows that

I(u)12λ1(Ω)λλ1(Ω)|u|212S22(|u|2)22+μ2|Ω|.I(u)\geq\frac{1}{2}\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\int|\nabla u|^{2}-\frac{1}{2^{*}}S^{-\frac{2^{*}}{2}}\left(\int|\nabla u|^{2}\right)^{\frac{2^{*}}{2}}+\frac{\mu}{2}|\Omega|. (2.1)

Put α:=1N(λ1(Ω)λλ1(Ω))N2SN2+μ2|Ω|\alpha:=\frac{1}{N}\left(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\right)^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega| and ρ:=(λ1(Ω)λλ1(Ω))N24SN4\rho:=\left(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\right)^{\frac{N-2}{4}}S^{\frac{N}{4}}, then α>0\alpha>0 and ρ>0\rho>0 due to the fact (λ,μ)B0(\lambda,\mu)\in B_{0}. By (2.1),

I(v)12λ1(Ω)λλ1(Ω)ρ212S22ρ2+μ2|Ω|=1N(λ1(Ω)λλ1(Ω))N2SN2+μ2|Ω|=α>0I(v)\geq\frac{1}{2}\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\rho^{2}-\frac{1}{2^{*}}S^{-\frac{2^{*}}{2}}\rho^{2^{*}}+\frac{\mu}{2}|\Omega|=\frac{1}{N}\left(\frac{\lambda_{1}(\Omega)-\lambda}{\lambda_{1}(\Omega)}\right)^{\frac{N}{2}}S^{\frac{N}{2}}+\frac{\mu}{2}|\Omega|=\alpha>0

for any v=ρ||v||=\rho. Applying a similar argument as Case 1 above, we can find a function wH01(Ω)w\in H^{1}_{0}(\Omega) such that ω\left\|\omega\right\|\geqρ\rho and I(ω)<0I(\omega)<0.

Case 3: (λ,μ)C0(\lambda,\mu)\in C_{0}.

Since μ<0\mu<0, we have

λ2u+2μ2u+2(logu+21)=μ2u+2(logu+2+λμ1)\displaystyle-\frac{\lambda}{2}\int u_{+}^{2}-\frac{\mu}{2}\int u^{2}_{+}\left(\log u^{2}_{+}-1\right)=-\frac{\mu}{2}\int u^{2}_{+}\left(\log u^{2}_{+}+\frac{\lambda}{\mu}-1\right)
=μ2u+2log(eλμ1u+2)\displaystyle=-\frac{\mu}{2}\int u^{2}_{+}\log(e^{\frac{\lambda}{\mu}-1}u^{2}_{+})
=μ2{eλμ1u+21}u+2log(eλμ1u+2)μ2{eλμ1u+21}u+2log(eλμ1u+2)\displaystyle=-\frac{\mu}{2}\int_{\{e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\geq 1\}}u^{2}_{+}\log\left(e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\right)-\frac{\mu}{2}\int_{\{e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\leq 1\}}u^{2}_{+}\log\left(e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\right)
μ2{eλμ1u+21}u+2log(eλμ1u+2)\displaystyle\geq-\frac{\mu}{2}\int_{\{e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\leq 1\}}u^{2}_{+}\log\left(e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\right)
μ2e1λμ{eλμ1u+21}e1dxμ2eλμ|Ω|.\displaystyle\geq-\frac{\mu}{2}e^{1-\frac{\lambda}{\mu}}\int_{\{e^{\frac{\lambda}{\mu}-1}u^{2}_{+}\leq 1\}}-e^{-1}~{}\mathrm{d}x\geq\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|.

It follows that

I(u)12|u|212S22(|u|2)22+μ2eλμ|Ω|.I(u)\geq\frac{1}{2}\int|\nabla u|^{2}-\frac{1}{2^{*}}S^{-\frac{2^{*}}{2}}\left(\int|\nabla u|^{2}\right)^{\frac{2^{*}}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|. (2.2)

Put α:=1NSN2+μ2eλμ|Ω|\alpha:=\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega| and ρ:=SN4\rho:=S^{\frac{N}{4}}, then α>0\alpha>0 due to that (λ,μ)C0(\lambda,\mu)\in C_{0}. By (2.2),

I(v)12ρ212S22ρ2+μ2eλμ|Ω|=1NSN2+μ2eλμ|Ω|=α>0I(v)\geq\frac{1}{2}\rho^{2}-\frac{1}{2^{*}}S^{-\frac{2^{*}}{2}}\rho^{2^{*}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|=\frac{1}{N}S^{\frac{N}{2}}+\frac{\mu}{2}e^{-\frac{\lambda}{\mu}}|\Omega|=\alpha>0

for any v=ρ||v||=\rho. Similarly, it is not hard to find a function wH01(Ω)w\in H^{1}_{0}(\Omega) such that ω\left\|\omega\right\|\geqρ\rho and I(ω)<0I(\omega)<0. ∎

Lemma 2.2.

Assume that N3,λN\geq 3,\lambda\in{\mathbb{R}} and μ{0}\mu\in{\mathbb{R}}\setminus\{0\}. Then any (PS)d(PS)_{d} sequence {un}\{u_{n}\} of II must be bounded in H01(Ω)H^{1}_{0}(\Omega) for all dd\in{\mathbb{R}}.

Proof.

By the definition of the (PS)d(PS)_{d} sequence, we have that, as n+,n\to+\infty,

I(un)dandI(un)0inH1(Ω).I(u_{n})\to d~{}~{}\hbox{and}~{}~{}I^{{}^{\prime}}(u_{n})\to 0~{}\hbox{in}~{}H^{-1}(\Omega).

That is,

12|un|212|(un)+|2μ2(un)+2log(un)+2+μλ2(un)+2=d+on(1),\begin{split}\frac{1}{2}\int\left|\nabla u_{n}\right|^{2}-\frac{1}{2^{\ast}}\int\left|{(u_{n})}_{+}\right|^{2^{\ast}}-\frac{\mu}{2}\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}+\frac{\mu-\lambda}{2}\int(u_{n})^{2}_{+}=d+o_{n}(1),\end{split} (2.3)

and

|un|2|(un)+|2λ(un)+2μ(un)+2log(un)+2=on(1)un\begin{split}\int\left|\nabla u_{n}\right|^{2}-\int\left|{(u_{n})}_{+}\right|^{2^{\ast}}-\lambda\int(u_{n})^{2}_{+}-\mu\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}=o_{n}(1)\left\|u_{n}\right\|\end{split} (2.4)

as n+.n\to+\infty. Now we divide the proof into two cases.

Case 1: μ>0\mu>0.

It follows from (2.3) and (2.4) that

d+on(1)+on(1)un=I(un)12I(un),un=1N|(un)+|2+μ2(un)+2μ2(un)+2,\begin{split}&d+o_{n}(1)+o_{n}(1)\left\|u_{n}\right\|=I(u_{n})-\frac{1}{2}\langle I^{{}^{\prime}}(u_{n}),u_{n}\rangle\\ =&\frac{1}{N}\int\left|(u_{n})_{+}\right|^{2^{\ast}}+\frac{\mu}{2}\int(u_{n})^{2}_{+}\geq\frac{\mu}{2}\int(u_{n})^{2}_{+},\end{split}

thus |(un)+|22C+Cun\left|(u_{n})_{+}\right|^{2}_{2}\leq C+C\left\|u_{n}\right\|. Using (2.3)\eqref{1.4} and (2.4)\eqref{1.5} again, we have, for nn large enough,

2d+unI(un)12I(un),un=1Nun2λN(un)+2+μ2(un)+21Nμ(un)+2log(un)+2.\begin{split}&2d+\left\|u_{n}\right\|\geq I(u_{n})-\frac{1}{2^{\ast}}\langle I^{{}^{\prime}}(u_{n}),u_{n}\rangle\\ =&\frac{1}{N}\left\|u_{n}\right\|^{2}-\frac{\lambda}{N}\int(u_{n})^{2}_{+}+\frac{\mu}{2}\int(u_{n})^{2}_{+}-\frac{1}{N}\mu\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}.\end{split}

Recalling the following inequality (see [12] or see [9, Theorem 8.14])

u2logu2aπu2+(log|u|22N(1+loga))|u|22foruH01(Ω)anda>0,\int u^{2}\log u^{2}\leq\frac{a}{\pi}\left\|u\right\|^{2}+(\log|u|^{2}_{2}-N(1+\log a))|u|^{2}_{2}~{}\hbox{for}~{}u\in H^{1}_{0}(\Omega)~{}\hbox{and}\>a>0,

we have that

1Nun22d+un+C(un)+2+1Nμ(un)+2log(un)+2C+Cun+1Nμ[aπun2+(log|(un)+|22N(1+loga))|(un)+|22]C+Cun+12Nun2+||(un)+|22log|(un)+|22|+C|(un)+|22C+Cun+12Nun2+C|(un)+|22δ+C|(un)+|22+δ+C|(un)+|22C+Cun+12Nun2+C(C+Cun)2δ2+C(C+Cun)2+δ2,\begin{split}\frac{1}{N}\left\|u_{n}\right\|^{2}&\leq 2d+\left\|u_{n}\right\|+C\int(u_{n})^{2}_{+}+\frac{1}{N}\mu\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}\\ &\leq C+C\left\|u_{n}\right\|+\frac{1}{N}\mu\left[\frac{a}{\pi}\left\|u_{n}\right\|^{2}+\left(\log\left|(u_{n})_{+}\right|^{2}_{2}-N(1+\log a)\right)\left|(u_{n})_{+}\right|^{2}_{2}\right]\\ &\leq C+C\left\|u_{n}\right\|+\frac{1}{2N}\left\|u_{n}\right\|^{2}+\left|\left|(u_{n})_{+}\right|^{2}_{2}\log\left|(u_{n})_{+}\right|^{2}_{2}\right|+C\left|(u_{n})_{+}\right|^{2}_{2}\\ &\leq C+C\left\|u_{n}\right\|+\frac{1}{2N}{\lVert u_{n}\rVert}^{2}+C\left|(u_{n})_{+}\right|^{2-\delta}_{2}+C\left|(u_{n})_{+}\right|^{2+\delta}_{2}+C\left|(u_{n})_{+}\right|^{2}_{2}\\ &\leq C+C\left\|u_{n}\right\|+\frac{1}{2N}{\lVert u_{n}\rVert}^{2}+C\left(C+C\left\|u_{n}\right\|\right)^{\frac{2-\delta}{2}}+C\left(C+C\left\|u_{n}\right\|\right)^{\frac{2+\delta}{2}},\end{split}

where a>0a>0 with aπμ<12\frac{a}{\pi}\mu<\frac{1}{2} and δ(0,1)\delta\in(0,1). So there exists C>0C>0 such that un<C.\|u_{n}\|<C.

Case 2: μ<0\mu<0.

For nn large enough, we have

2d+un1Nun2λN(un)+2+μ2(un)+21Nμ(un)+2log(un)+2=1Nun21Nμ(un)+2log(eλμN2(un)+2)1Nun21Nμ{eλμN2(un)+21}(un)+2log(eλμN2(un)+2)1Nun21Nμ{eλμN2(un)+21}eN2λμ1dx1Nun2+μNeN2λμ1|Ω|,\begin{split}2d+\left\|u_{n}\right\|&\geq\frac{1}{N}\left\|u_{n}\right\|^{2}-\frac{\lambda}{N}\int(u_{n})^{2}_{+}+\frac{\mu}{2}\int(u_{n})_{+}^{2}-\frac{1}{N}\mu\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}\\ &=\frac{1}{N}\left\|u_{n}\right\|^{2}-\frac{1}{N}\mu\int(u_{n})^{2}_{+}\log(e^{\frac{\lambda}{\mu}-\frac{N}{2}}(u_{n})^{2}_{+})\\ &\geq\frac{1}{N}\left\|u_{n}\right\|^{2}-\frac{1}{N}\mu\int_{\{e^{\frac{\lambda}{\mu}-\frac{N}{2}}(u_{n})^{2}_{+}\leq 1\}}(u_{n})^{2}_{+}\log(e^{\frac{\lambda}{\mu}-\frac{N}{2}}(u_{n})^{2}_{+})\\ &\geq\frac{1}{N}\left\|u_{n}\right\|^{2}-\frac{1}{N}\mu\int_{\{e^{\frac{\lambda}{\mu}-\frac{N}{2}}(u_{n})^{2}_{+}\leq 1\}}-e^{\frac{N}{2}-\frac{\lambda}{\mu}-1}~{}\mathrm{d}x\\ &\geq\frac{1}{N}\left\|u_{n}\right\|^{2}+\frac{\mu}{N}e^{\frac{N}{2}-\frac{\lambda}{\mu}-1}|\Omega|,\\ \end{split} (2.5)

which implies that {un}\{u_{n}\} is bounded in H01(Ω).H_{0}^{1}(\Omega).

Lemma 2.3.

Let {un}\{u_{n}\} be a bounded sequence in H01(Ω)H^{1}_{0}(\Omega) such that unuu_{n}\to u a.e in Ω\Omega as nn\rightarrow\infty, then

limnΩun2logun2dx=Ωu2logu2dx,\lim\limits_{n\to\infty}\int_{\Omega}u^{2}_{n}\log u^{2}_{n}\mathrm{d}x=\int_{\Omega}u^{2}\log u^{2}\mathrm{d}x, (2.6)

and

limnΩ(un)+2log(un)+2dx=Ωu+2logu+2dx.\lim\limits_{n\to\infty}\int_{\Omega}(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}\mathrm{d}x=\int_{\Omega}u^{2}_{+}\log u^{2}_{+}\mathrm{d}x. (2.7)
Proof.

We only prove (2.6)\eqref{1.6}. And (2.7)\eqref{1.7} can be proved similarly.
Under the conditions, there exists some C>0C>0 such that

|Ωun2logun2|Cand|Ωu2logu2|C\displaystyle\left|\int_{\Omega}u^{2}_{n}\log u^{2}_{n}\right|\leq C~{}\hbox{and}~{}\left|\int_{\Omega}u^{2}\log u^{2}\right|\leq C

By [12, Lemma 3.1], we have

limnΩun2logun2|unu|2log|unu|2=Ωu2logu2.\displaystyle\lim\limits_{n\to\infty}\int_{\Omega}u^{2}_{n}\log u^{2}_{n}-\left|u_{n}-u\right|^{2}\log\left|u_{n}-u\right|^{2}=\int_{\Omega}u^{2}\log u^{2}.

Since |s2logs2|Cs2δ+Cs2+δ\left|s^{2}\log s^{2}\right|\leq Cs^{2-\delta}+Cs^{2+\delta} and the embedding of H01(Ω)Lp(1p<2)H^{1}_{0}(\Omega)\hookrightarrow L^{p}(1\leq p<2^{\ast}) is compact, we obtain that

|Ω|unu|2log|unu|2dx|CΩ|unu|2δ+CΩ|unu|2+δ0asn.\displaystyle\left|\int_{\Omega}\left|u_{n}-u\right|^{2}\log\left|u_{n}-u\right|^{2}\mathrm{d}x\right|\leq C\int_{\Omega}\left|u_{n}-u\right|^{2-\delta}+C\int_{\Omega}\left|u_{n}-u\right|^{2+\delta}\to 0\quad as\quad n\to\infty.

Hence,

limnΩun2logun2=Ωu2logu2.\lim\limits_{n\to\infty}\int_{\Omega}u^{2}_{n}\log u^{2}_{n}=\int_{\Omega}u^{2}\log u^{2}.

Lemma 2.4.

If N3,λ,μ>0N\geq 3,\lambda\in{\mathbb{R}},\mu>0 and d<1NSN2d<\frac{1}{N}S^{\frac{N}{2}}, then I(u)I(u) satisfies the (PS)d(PS)_{d} condition.

Proof.

Let {un}\{u_{n}\} be a (PS)d(PS)_{d} sequence of II. By Lemma 2.2, we know that {un}\{u_{n}\} is bounded in H01(Ω)H^{1}_{0}(\Omega). So there exists uH01(Ω)u\in H^{1}_{0}(\Omega) such that, up to a subsequence,

unuinH01(Ω),unuinLq(Ω),1q<2,unua.einΩ.\begin{array}[]{ll}u_{n}&\rightharpoonup u\quad in\quad H^{1}_{0}(\Omega),\\ u_{n}&\rightarrow u\quad in\quad L^{q}(\Omega),\quad 1\leq q<2^{\ast},\\ u_{n}&\rightarrow u\quad a.e\quad in\quad\Omega.\end{array}

Since I(un),φ0\langle I^{{}^{\prime}}(u_{n}),\varphi\rangle\to 0 as nn\to\infty for any φC0(Ω)\varphi\in C^{\infty}_{0}(\Omega), uu is a weak solution to

Δu=|u+|22u++λu++μu+logu+2,\displaystyle-\Delta u=\left|u_{+}\right|^{2^{\ast}-2}u_{+}+\lambda u_{+}+\mu u_{+}\log u^{2}_{+},

which implies that

|u|2=|u+|2+λu+2+μu+2logu+2\int\left|\nabla u\right|^{2}=\int\left|u_{+}\right|^{2^{\ast}}+\lambda\int u^{2}_{+}+\mu\int u^{2}_{+}\log u^{2}_{+}

and

I(u)=12|u|212|u+|2λ2u+2μ2u+2(logu+21)=1N|u+|2+μ2u+20.\begin{array}[]{ll}I(u)&=\frac{1}{2}\displaystyle\int\left|\nabla u\right|^{2}-\frac{1}{2^{\ast}}\displaystyle\int\left|u_{+}\right|^{2^{\ast}}-\frac{\lambda}{2}\int u^{2}_{+}-\frac{\mu}{2}\displaystyle\int u^{2}_{+}(\log u^{2}_{+}-1)\\ &=\frac{1}{N}\displaystyle\int\left|u_{+}\right|^{2^{\ast}}+\frac{\mu}{2}\displaystyle\int u^{2}_{+}\geq 0.\end{array} (2.8)

Following from the definition of (PS)d(PS)_{d} sequence, we have

|un|2|(un)+|2λ(un)+2μ(un)+2log(un)+2=on(1)\int\left|\nabla u_{n}\right|^{2}-\int\left|(u_{n})_{+}\right|^{2^{\ast}}-\lambda\int(u_{n})^{2}_{+}-\mu\int(u_{n})^{2}_{+}\log(u_{n})^{2}_{+}=o_{n}(1)

and

12|un|212|(un)+|2λ2(un)+2μ2(un)+2(log(un)+21)=d+on(1).\frac{1}{2}\int\left|\nabla u_{n}\right|^{2}-\frac{1}{2^{\ast}}\int\left|(u_{n})_{+}\right|^{2^{\ast}}-\frac{\lambda}{2}\int(u_{n})^{2}_{+}-\frac{\mu}{2}\int(u_{n})^{2}_{+}(\log(u_{n})^{2}_{+}-1)=d+o_{n}(1).

Set vn=unuv_{n}=u_{n}-u. Then

|vn|2|(vn)+|2=on(1)\int\left|\nabla v_{n}\right|^{2}-\int\left|(v_{n})_{+}\right|^{2^{\ast}}=o_{n}(1)

and

I(u)+12|vn|212|(vn)+|2=d+on(1).I(u)+\frac{1}{2}\int\left|\nabla v_{n}\right|^{2}-\frac{1}{2^{\ast}}\int\left|(v_{n})_{+}\right|^{2^{\ast}}=d+o_{n}(1).

Let

|vn|2k,asn.\displaystyle\int\left|\nabla v_{n}\right|^{2}\to k,~{}\hbox{as}~{}n\to\infty.

So

|(vn)+|2k,asn.\int\left|(v_{n})_{+}\right|^{2^{\ast}}\to k,~{}\hbox{as}~{}n\to\infty.

By the definition of SS, we have

|u|22S|u|22,uH01(Ω)\left|\nabla u\right|^{2}_{2}\geq S\left|u\right|^{2}_{2^{\ast}},~{}~{}\forall u\in H^{1}_{0}(\Omega)

and

k+on(1)=|vn|2S(|(vn)+|2)22=SkN2N+on(1).k+o_{n}(1)=\int\left|\nabla v_{n}\right|^{2}\geq S(\int\left|(v_{n})_{+}\right|^{2^{\ast}})^{\frac{2}{2^{\ast}}}=Sk^{\frac{N-2}{N}}+o_{n}(1).

If k>0k>0, then kSN2k\geq S^{\frac{N}{2}}. By (2.8)\eqref{2.5}, we have

0I(u)d(1212)kd1NSN2<0,\begin{array}[]{ll}0\leq I(u)\leq d-(\frac{1}{2}-\frac{1}{2^{\ast}})k\leq d-\frac{1}{N}S^{\frac{N}{2}}<0,\end{array}

which is impossible. So k=0k=0 and thus

unu, inH01(Ω)\begin{array}[]{ll}u_{n}\rightarrow u,~{}\hbox{ in}~{}H^{1}_{0}(\Omega)\end{array}

Lemma 2.5.

Assume that N3,λ,μ<0N\geq 3,\lambda\in{\mathbb{R}},\mu<0 and c(,0)(0,1NSN2)c\in(-\infty,0)\cup(0,\frac{1}{N}S^{\frac{N}{2}}). If {un}\{u_{n}\} is a (PS)c(PS)_{c} sequence of II, then there exists a uH01(Ω){0}u\in H^{1}_{0}(\Omega)\setminus\{0\} such that unuu_{n}\rightharpoonup u weakly in H01(Ω)H^{1}_{0}(\Omega) and uu is a nonnegative weak solution of (1.1).

Proof.

Let {un}\{u_{n}\} be a (PS)c(PS)_{c} sequence of II. By Lemma 2.2, we know that {un}\{u_{n}\} is bounded in H01(Ω)H^{1}_{0}(\Omega). So there exists uH01(Ω)u\in H^{1}_{0}(\Omega) such that, up to a subsequence,

unuinH01(Ω),unuinLq(Ω),1q<2,unua.einΩ.\begin{array}[]{ll}u_{n}&\rightharpoonup u\quad in\quad H^{1}_{0}(\Omega),\\ u_{n}&\rightarrow u\quad in\quad L^{q}(\Omega),\quad 1\leq q<2^{\ast},\\ u_{n}&\rightarrow u\quad a.e\quad in\quad\Omega.\end{array}

Since I(un),φ0\langle I^{{}^{\prime}}(u_{n}),\varphi\rangle\to 0 as nn\to\infty for any φC0(Ω)\varphi\in C^{\infty}_{0}(\Omega), uu is a weak solution to

Δu=|u+|22u++λu++μu+logu+2.-\Delta u=\left|u_{+}\right|^{2^{\ast}-2}u_{+}+\lambda u_{+}+\mu u_{+}\log u^{2}_{+}. (2.9)

Assume that u=0u=0 and set vn:=unuv_{n}:=u_{n}-u. Following from the definition of (PS)c(PS)_{c} sequence and Brezis-Lieb Lemma, we have

|vn|2|(vn)+|2=on(1)\int\left|\nabla v_{n}\right|^{2}-\int\left|(v_{n})_{+}\right|^{2^{\ast}}=o_{n}(1)

and

12|vn|212|(vn)+|2=c+on(1).\frac{1}{2}\int\left|\nabla v_{n}\right|^{2}-\frac{1}{2^{\ast}}\int\left|(v_{n})_{+}\right|^{2^{\ast}}=c+o_{n}(1). (2.10)

Let

|vn|2k,asn.\displaystyle\int\left|\nabla v_{n}\right|^{2}\to k,~{}\hbox{as}~{}n\to\infty.

Then

|(vn)+|2k,asn.\int\left|(v_{n})_{+}\right|^{2^{\ast}}\to k,~{}\hbox{as}~{}n\to\infty.

It is easy to see that k>0k>0. In fact, if k=0k=0, then |un|2=|vn|20\int\left|\nabla u_{n}\right|^{2}=\int\left|\nabla v_{n}\right|^{2}\to 0, which implies that I(un)0I(u_{n})\to 0, contradicting to c0c\neq 0. Going on as Lemma 2.4, we can obtain that kSN2k\geq S^{\frac{N}{2}}. So, by (2.10)\eqref{1228.1}, we have

1NSN21Nk=(1212)k=c<1NSN2,\begin{array}[]{ll}\frac{1}{N}S^{\frac{N}{2}}\leq\frac{1}{N}k=(\frac{1}{2}-\frac{1}{2^{\ast}})k=c<\frac{1}{N}S^{\frac{N}{2}},\end{array}

a contradiction. Hence, u0u\neq 0.

By the density of C0C_{0}^{\infty} in H01(Ω)H^{1}_{0}(\Omega) and (2.9), we have that

|u|2=0,\int\left|\nabla u_{-}\right|^{2}=0,

which implies that u0u\geq 0. Therefore, we can see that uH01(Ω){0}u\in H^{1}_{0}(\Omega)\setminus\{0\} and uu is a nonnegative weak solution of (1.1).

3. Estimations on cMc_{M}

In this section, we are going to give an estimation that cM<1NSN2c_{M}<\frac{1}{N}S^{\frac{N}{2}}, under different assumptions on parameters λ\lambda, μ\mu and dimension NN. Inspired by Brézis-Nirengberg[3], it is sufficient to find some suitable UϵH01(Ω)U_{\epsilon}\in H^{1}_{0}(\Omega) such that supt0I(tUϵ)<1NSN2\sup_{t\geq 0}I(tU_{\epsilon})<\frac{1}{N}S^{\frac{N}{2}}. Without loss of generality, we may assume that 0Ω0\in\Omega, in particular, we suppose that 0 is the geometric center of Ω\Omega, i.e., ρmax=dist(0,Ω)\rho_{\max}=dist(0,\partial\Omega).

It is well-known (see [4, 6, 16]) that the following problem

{Δu=|u|22u,xN,u>0,u(0)=maxxNu(x),\displaystyle\begin{cases}-\Delta u=\left|u\right|^{2^{\ast}-2}u,&x\in\mathbb{R}^{N},\\ \quad\>\,\,u>0,&\\ \>\,u(0)=\max\limits_{x\in\mathbb{R}^{N}}u(x),&\\ \end{cases}

has a unique solution u~(x)\widetilde{u}(x)

u~(x)=[N(N2)]N241(1+|x|2)N22.{\widetilde{u}}(x)=\left[N(N-2)\right]^{\frac{N-2}{4}}\frac{1}{{(1+\left|x\right|^{2})}^{\frac{N-2}{2}}}.

And correspondingly, up to a dilations,

uϵ(x)=[N(N2)]N24(ϵϵ2+|x|2)N22u_{\epsilon}(x)=\left[N(N-2)\right]^{\frac{N-2}{4}}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{\frac{N-2}{2}}\\

is a minimizer for SS.

We let φ(x)C0(Ω)\varphi(x)\in C^{\infty}_{0}(\Omega) be such that φ(x)1\varphi(x)\equiv 1 for xx in some neighborhood Bρ(0)B_{\rho}(0) of 0, and define

Uϵ(x)=φ(x)uϵ(x).U_{\epsilon}(x)=\varphi(x)u_{\epsilon}(x). (3.1)
Lemma 3.1.

If N4N\geq 4, then we have, as ϵ0+\epsilon\to 0^{+},

Ω|Uϵ|2=SN2+O(ϵN2),\int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}=S^{\frac{N}{2}}+O(\epsilon^{N-2}), (3.2)
Ω|Uϵ|2=SN2+O(ϵN),\int_{\Omega}\left|U_{\epsilon}\right|^{2^{\ast}}=S^{\frac{N}{2}}+O(\epsilon^{N}), (3.3)

and

Ω|Uϵ|2={dϵ2|lnϵ|+O(ϵ2),ifN=4,dϵ2+O(ϵN2),ifN5,\displaystyle\int_{\Omega}\left|U_{\epsilon}\right|^{2}=\begin{cases}d\epsilon^{2}\left|\ln\epsilon\right|+O(\epsilon^{2}),~{}&if~{}N=4,\\ d\epsilon^{2}+O(\epsilon^{N-2}),~{}&if~{}N\geq 5,\end{cases}

where dd is a positive constant.

Proof.

The proof can be found in [18]. ∎

Lemma 3.2.

If N5N\geq 5, then we have, as ϵ0+\epsilon\to 0^{+},

ΩUϵ2logUϵ2=C0ϵ2log1ϵ+O(ϵ2),\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}=C_{0}\epsilon^{2}\log\frac{1}{\epsilon}+O({\epsilon}^{2}),

where C0C_{0} is a positive constant.

Proof.
ΩUϵ2logUϵ2=Ωφ2uϵ2logφ2+Ωφ2uϵ2loguϵ2=I+II\begin{array}[]{ll}\displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}&=\displaystyle\int_{\Omega}\varphi^{2}u^{2}_{\epsilon}\log\varphi^{2}+\displaystyle\int_{\Omega}\varphi^{2}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\\ &\overset{\triangle}{=}I+II\end{array}

Since |s2logs2|C\left|s^{2}\log s^{2}\right|\leq C for 0s1,0\leq s\leq 1, we have

|I|CΩuϵ2=O(ϵ2).\left|I\right|\leq C\int_{\Omega}u^{2}_{\epsilon}=O(\epsilon^{2}).
II=Bρ(0)uϵ2loguϵ2+ΩBρ(0)φ2uϵ2loguϵ2=II1+II2.II=\int_{B_{\rho}(0)}u^{2}_{\epsilon}\log u^{2}_{\epsilon}+\int_{\Omega\setminus{B_{\rho}(0)}}\varphi^{2}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\overset{\triangle}{=}II_{1}+II_{2}.

Since |slogs|C1s1δ+C2s1+δ\left|s\log s\right|\leq C_{1}s^{1-\delta}+C_{2}s^{1+\delta} for all s>0s>0, where 0<C1<C20<C_{1}<C_{2} and 0<δ<130<\delta<\frac{1}{3} such that (N2)(1δ)2(N-2)(1-\delta)\geq 2,

|II2|ΩBρ(0)|uϵ2loguϵ2|CΩBρ(0)(uϵ2(1δ)+uϵ2(1+δ))C|Ω|(ϵ(N2)(1δ)+ϵ(N2)(1+δ))=O(ϵ2),\begin{split}\left|II_{2}\right|&\leq\int_{\Omega\setminus{B_{\rho}(0)}}\left|u^{2}_{\epsilon}\log u^{2}_{\epsilon}\right|\\ &\leq C\int_{\Omega\setminus{B_{\rho}(0)}}(u^{2(1-\delta)}_{\epsilon}+u^{2(1+\delta)}_{\epsilon})\\ &\leq C\left|\Omega\right|(\epsilon^{(N-2)(1-\delta)}+\epsilon^{(N-2)(1+\delta)})\\ &=O(\epsilon^{2}),\end{split}

and

II1=B(0,ρ)uϵ2loguϵ2dx=Cϵ2Bρ/ϵ(0)1(1+|y|2)N2log(Cϵ(N2)1(1+|y|2)N2)dy=Cϵ2log(1ϵ)Bρ/ϵ(0)1(1+|y|2)N2+Cϵ2Bρ/ϵ(0)1(1+|y|2)N2logC(1+|y|2)N2=Cϵ2log(1ϵ)N1(1+|y|2)N2dy+O(ϵ2)+ϵ2O(N1(1+|y|2)N214dy)=Cϵ2log(1ϵ)+O(ϵ2),\begin{split}II_{1}&=\int_{B_{(0,\rho)}}u^{2}_{\epsilon}\log u^{2}_{\epsilon}\mathrm{d}x\\ &=C\epsilon^{2}\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\log\left(C\epsilon^{-(N-2)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\right)\mathrm{d}y\\ &=C\epsilon^{2}\log(\frac{1}{\epsilon})\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}+C\epsilon^{2}\int_{B_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\log\frac{C}{(1+\left|y\right|^{2})^{N-2}}\\ &=C\epsilon^{2}\log(\frac{1}{\epsilon})\int_{\mathbb{R}^{N}}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\mathrm{d}y+O(\epsilon^{2})+\epsilon^{2}O(\int_{{\mathbb{R}}^{N}}\frac{1}{(1+\left|y\right|^{2})^{N-2-\frac{1}{4}}}\mathrm{d}y)\\ &=C\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}),\end{split}

where we have used the fact that

Bρ/ϵc(0)1(1+|y|2)N2dy=O(ϵN4).\int_{B^{c}_{\rho/\epsilon}(0)}\frac{1}{(1+\left|y\right|^{2})^{N-2}}\mathrm{d}y=O(\epsilon^{N-4}).

Thus

ΩUϵ2logUϵ2=C0ϵ2log(1ϵ)+O(ϵ2).\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}=C_{0}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).

We complete the proof. ∎

Lemma 3.3.

If N5N\geq 5, λ\lambda\in{\mathbb{R}} and μ>0\mu>0, then cM<1NSN2c_{M}<\frac{1}{N}S^{\frac{N}{2}}.

Proof.

Let g(t)=I(tUϵ)g(t)\overset{\triangle}{=}I(tU_{\epsilon}). By Lemma 2.1, g(0)=0g(0)=0 and limt+g(t)\lim\limits_{t\to+\infty}g(t)==-\infty, we can find tϵ(0,+)t_{\epsilon}\in(0,+\infty) such that

supt0I(tUϵ)=supt0g(t)=g(tϵ)=I(tϵUϵ).\sup\limits_{t\geq 0}I(tU_{\epsilon})=\sup\limits_{t\geq 0}g(t)=g(t_{\epsilon})=I(t_{\epsilon}U_{\epsilon}).

So

|Uϵ|2tϵ22|Uϵ|2λUϵ2μUϵ2logUϵ2μlogtϵ2Uϵ2=0,\int\left|\nabla U_{\epsilon}\right|^{2}-t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=0,

which implies that, as ϵ0+\epsilon\to 0^{+}

2SN2|Uϵ|2λUϵ2μUϵ2logUϵ2=tϵ22|Uϵ|2+μlogtϵ2Uϵ2tϵ22(12SN2)c|logtϵ2|.\begin{split}2S^{\frac{N}{2}}&\geq\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\ &=t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}\\ &\geq t^{2^{\ast}-2}_{\epsilon}(\frac{1}{2}S^{\frac{N}{2}})-c\left|\log t^{2}_{\epsilon}\right|.\end{split}

So there exists c1>0c_{1}>0 such that tϵ<c1t_{\epsilon}<c_{1}.
On the other hand, as ϵ0+\epsilon\to 0^{+},

12SN2|Uϵ|2λUϵ2μUϵ2logUϵ2=tϵ22|Uϵ|ϵ2+μlogtϵ2Uϵ22SN2tϵ22+Ctϵ22,\begin{split}\frac{1}{2}S^{\frac{N}{2}}&\leq\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\ &=t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}_{\epsilon}+\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}\\ &\leq 2S^{\frac{N}{2}}t^{2^{\ast}-2}_{\epsilon}+Ct^{2^{\ast}-2}_{\epsilon},\end{split}

which implies that there exists c2>0c_{2}>0 such that tϵ>c2t_{\epsilon}>c_{2}.

Therefore, combining with the definition of cMc_{M}, we have that, as ϵ0+\epsilon\to 0^{+},

cMsupt0I(tuϵ)=tϵ22|Uϵ|2tϵ22|Uϵ|2λ2tϵ2Uϵ2μ2tϵ2Uϵ2(log(tϵ2Uϵ2)1)(tϵ22tϵ22)SN2+O(ϵ2)+μ2tϵ2(1logtϵ2)Uϵ2μ2tϵ2Uϵ2logUϵ21NSN2cμϵ2log(1ϵ)+O(ϵ2)<1NSN2.\begin{split}c_{M}&\leq\sup\limits_{t\geq 0}I(tu_{\epsilon})\\ &=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\frac{\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}\int t^{2}_{\epsilon}U^{2}_{\epsilon}(\log(t^{2}_{\epsilon}U^{2}_{\epsilon})-1)\\ &\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+O(\epsilon^{2})+\frac{\mu}{2}t^{2}_{\epsilon}(1-\log t^{2}_{\epsilon})\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\\ &\leq\frac{1}{N}S^{\frac{N}{2}}-c\mu\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})\\ &<\frac{1}{N}S^{\frac{N}{2}}.\end{split}

We complete the proof. ∎

The case for 𝐍=𝟒:\mathbf{N=4:}

Let φ(x)C0(Ω)\varphi(x)\in C^{\infty}_{0}(\Omega) be a radial function satisfying that φ(x)=1\varphi(x)=1 for 0|x|ρ0\leq\left|x\right|\leq\rho, 0φ(x)10\leq\varphi(x)\leq 1 for ρ|x|2ρ\rho\leq\left|x\right|\leq 2\rho, φ(x)=0\varphi(x)=0 for xΩB2ρ(0)x\in\Omega\setminus B_{2\rho}(0), where 0<ρ10<\rho\leq 1 with log(18e3λμρ2)>1\log(\frac{1}{8e^{3-\frac{\lambda}{\mu}}\rho^{2}})>1.

Set

Uϵ=φ(x)uϵ(x).\begin{array}[]{ll}U_{\epsilon}=\varphi(x)u_{\epsilon}(x).\end{array}
Lemma 3.4.

If N=4N=4, then, as ϵ0+\epsilon\to 0^{+},

ΩUϵ2logUϵ28log(8(ϵ2+ρ2)e(ϵ2+4ρ2)2)ω4ϵ2log(1ϵ)+O(ϵ2)\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}\geq 8\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})

and

ΩUϵ2logUϵ28log(8e(ϵ2+4ρ2)(ϵ2+ρ2)2)ω4ϵ2log(1ϵ)+O(ϵ2).\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon}\leq 8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).
Proof.

Following from the definition of UϵU_{\epsilon}, we have, as ϵ0+\epsilon\to 0^{+},

ΩUϵ2log(Uϵ2)=8Ωφ2(ϵϵ2+|x|2)2log[8φ2(ϵϵ2+|x|2)2]dx=8Ωφ2(ϵϵ2+|x|2)2log(ϵϵ2+|x|2)2dx+8log(8)Ωφ2(ϵϵ2+|x|2)2dx+8ΩBρ(0)φ2(ϵϵ2+|x|2)2logφ2dx=I1+I2+O(ϵ2).\begin{split}\int_{\Omega}U^{2}_{\epsilon}\log(U^{2}_{\epsilon})&=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left[8\varphi^{2}(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})^{2}\right]\mathrm{d}x\\ &=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\ &+8\log(8)\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\ &+8\int_{\Omega\setminus{B_{\rho}(0)}}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\varphi^{2}\mathrm{d}x\\ &=I_{1}+I_{2}+O(\epsilon^{2}).\end{split} (3.4)

By direct computation, we obtain

I2=8log8Bρ(0)(ϵϵ2+|x|2)2dx+O(ϵ2)=8log8ω4ϵ20ρ/ϵ1(1+r2)2r3dr+O(ϵ2)=4log8ω4ϵ2[log(r2+1)+11+r2]|0ρ/ϵ+O(ϵ2)=4log8ω4ϵ2[log(ρ2+ϵ2ϵ2)+11+ρ2ϵ21]+O(ϵ2)=8log8ω4ϵ2log(1ϵ)+O(ϵ2),\begin{split}I_{2}&=8\log 8\int_{B_{\rho}(0)}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x+O(\epsilon^{2})\\ &=8\log 8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r+O(\epsilon^{2})\\ &=4\log 8\omega_{4}\epsilon^{2}\left[\log(r^{2}+1)+\frac{1}{1+r^{2}}\right]{\Biggl{\arrowvert}}^{\rho/\epsilon}_{0}+O(\epsilon^{2})\\ &=4\log 8\omega_{4}\epsilon^{2}\left[\log\left(\frac{\rho^{2}+\epsilon^{2}}{\epsilon^{2}}\right)+\frac{1}{1+\frac{\rho^{2}}{\epsilon^{2}}}-1\right]+O(\epsilon^{2})\\ &=8\log 8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}),\end{split} (3.5)
I1=8Ωφ2(ϵϵ2+|x|2)2log(ϵϵ2+|x|2)2dr=8B2ρ(0)φ2(ϵϵ2+|x|2)2log(ϵϵ2+|x|2)2dx=8ϵ2B2ρ/ϵ(0)φ2(ϵx)1(1+|x|2)2log(1ϵ21(1+|x|2)2)dx=16ϵ2log(1ϵ)B2ρ/ϵ(0)φ2(ϵx)1(1+|x|2)2dx+8ϵ2B2ρ/ϵ(0)φ2(ϵx)1(1+|x|2)2log1(1+|x|2)2dx=I11+I12,\begin{split}I_{1}&=8\int_{\Omega}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}r\\ &=8\int_{B_{2\rho}(0)}\varphi^{2}\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\log\left(\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\right)^{2}\mathrm{d}x\\ &=8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\log\left(\frac{1}{\epsilon^{2}}\frac{1}{(1+\left|x\right|^{2})^{2}}\right)\mathrm{d}x\\ &=16\epsilon^{2}\log(\frac{1}{\epsilon})\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\mathrm{d}x\\ &\quad+8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\varphi^{2}(\epsilon x)\frac{1}{(1+\left|x\right|^{2})^{2}}\log\frac{1}{(1+\left|x\right|^{2})^{2}}\mathrm{d}x\\ &\overset{\triangle}{=}I_{11}+I_{12},\end{split} (3.6)

where

I11\displaystyle I_{11} 16ω4ϵ2log(1ϵ)0ρ/ϵ1(1+r2)2r3dr\displaystyle\geq 16\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r
=8ω4ϵ2log(1ϵ)[log(1ϵ2)+log(ρ2+ϵ2)+ϵ2ρ2+ϵ21]\displaystyle=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\left[\log(\frac{1}{\epsilon^{2}})+\log(\rho^{2}+\epsilon^{2})+\frac{\epsilon^{2}}{\rho^{2}+\epsilon^{2}}-1\right]
=16ω4ϵ2(log(1ϵ))2+8ω4log(ρ2+ϵ2e)ϵ2log(1ϵ)+O(ϵ4log(1ϵ)),\displaystyle=16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log\left(\frac{\rho^{2}+\epsilon^{2}}{e}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{4}\log(\frac{1}{\epsilon})), (3.7)
I11\displaystyle I_{11} 16ω4ϵ2log(1ϵ)02ρ/ϵ1(1+r2)2r3dr\displaystyle\leq 16\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}r^{3}\mathrm{d}r
=8ω4ϵ2log(1ϵ)[log(1ϵ2)+log(4ρ2+ϵ2)+ϵ24ρ2+ϵ21]\displaystyle=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\left[\log(\frac{1}{\epsilon^{2}})+\log(4\rho^{2}+\epsilon^{2})+\frac{\epsilon^{2}}{4\rho^{2}+\epsilon^{2}}-1\right]
=16ω4ϵ2(log(1ϵ))2+8ω4log(4ρ2+ϵ2e)ϵ2log(1ϵ)+O(ϵ4log(1ϵ)),\displaystyle=16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log\left(\frac{4\rho^{2}+\epsilon^{2}}{e}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{4}\log(\frac{1}{\epsilon})), (3.8)
I12\displaystyle I_{12} 8ϵ2B2ρ/ϵ(0)1(1+|x|2)2log(1+|x|2)2dx\displaystyle\geq-8\epsilon^{2}\int_{B_{{2\rho}/\epsilon}(0)}\frac{1}{(1+\left|x\right|^{2})^{2}}\log(1+\left|x\right|^{2})^{2}\mathrm{d}x
=16ω4ϵ202ρ/ϵ1(1+r2)2log(1+r2)r3dr\displaystyle=-16\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})r^{3}\mathrm{d}r
=8ω4ϵ202ρ/ϵr2+11(1+r2)2log(1+r2)d(1+r2)\displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{r^{2}+1-1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
=8ω4ϵ202ρ/ϵ11+r2log(1+r2)d(1+r2)\displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{1+r^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
+8ω4ϵ202ρ/ϵ1(1+r2)2log(1+r2)d(1+r2)\displaystyle+8\omega_{4}\epsilon^{2}\int_{0}^{2\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
4ω4ϵ2(log(1+r2))2|02ρ/ϵ\displaystyle\geq-4\omega_{4}\epsilon^{2}\left(\log(1+r^{2})\right)^{2}{\Big{\arrowvert}}^{2\rho/\epsilon}_{0}
=4ω4ϵ2(log(1+4ρ2ϵ2))2\displaystyle=-4\omega_{4}\epsilon^{2}\left(\log(1+\frac{4\rho^{2}}{\epsilon^{2}})\right)^{2}
=4ω4ϵ2[log(ϵ2+4ρ2)+2log(1ϵ)]2\displaystyle=-4\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+4\rho^{2})+2\log(\frac{1}{\epsilon})\right]^{2}
=16ω4ϵ2(log(1ϵ))216ω4log(ϵ2+4ρ2)ϵ2log(1ϵ)+O(ϵ2).\displaystyle=-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\epsilon^{2}+4\rho^{2})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}). (3.9)

and

I12\displaystyle I_{12} 8ϵ2Bρ/ϵ(0)1(1+|x|2)2log(1+|x|2)2dx\displaystyle\leq-8\epsilon^{2}\int_{B_{{\rho}/\epsilon}(0)}\frac{1}{(1+\left|x\right|^{2})^{2}}\log(1+\left|x\right|^{2})^{2}\mathrm{d}x
=16ω4ϵ20ρ/ϵ1(1+r2)2log(1+r2)r3dr\displaystyle=-16\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})r^{3}\mathrm{d}r
=8ω4ϵ20ρ/ϵr2+11(1+r2)2log(1+r2)d(1+r2)\displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{r^{2}+1-1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
=8ω4ϵ20ρ/ϵ11+r2log(1+r2)d(1+r2)\displaystyle=-8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{1+r^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
+8ω4ϵ20ρ/ϵ1(1+r2)2log(1+r2)d(1+r2)\displaystyle+8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})^{2}}\log(1+r^{2})\mathrm{d}(1+r^{2})
4ω4ϵ2(log(1+r2))2|0ρ/ϵ+8ω4ϵ20ρ/ϵ1(1+r2)d(1+r2)\displaystyle\leq-4\omega_{4}\epsilon^{2}\left(\log(1+r^{2})\right)^{2}{\Big{\arrowvert}}^{\rho/\epsilon}_{0}+8\omega_{4}\epsilon^{2}\int_{0}^{\rho/\epsilon}\frac{1}{(1+r^{2})}\mathrm{d}(1+r^{2})
=4ω4ϵ2[log(ϵ2+ρ2)+2log(1ϵ)]2+8ω4ϵ2[log(ϵ2+ρ2)+2log(1ϵ)]\displaystyle=-4\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+\rho^{2})+2\log(\frac{1}{\epsilon})\right]^{2}+8\omega_{4}\epsilon^{2}\left[\log(\epsilon^{2}+\rho^{2})+2\log(\frac{1}{\epsilon})\right]
=16ω4ϵ2(log(1ϵ))216ω4log(ϵ2+ρ2e)ϵ2log(1ϵ)+O(ϵ2).\displaystyle=-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}). (3.10)

So, by (3.4)–(3.12), we have that

ΩUϵ2logUϵ2\displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon} 8log8ω4ϵ2ln(1ϵ)+16ω4ϵ2(log(1ϵ))2+8ω4log(ϵ2+ρ2e)ϵ2log(1ϵ)\displaystyle\geq 8\log 8\omega_{4}\epsilon^{2}\ln(\frac{1}{\epsilon})+16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})
16ω4ϵ2(log(1ϵ))216ω4log(ϵ2+4ρ2)ϵ2log(1ϵ)+O(ϵ2)\displaystyle-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\epsilon^{2}+4\rho^{2})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
=8log(8(ϵ2+ρ2)e(ϵ2+4ρ2)2)ω4ϵ2log(1ϵ)+O(ϵ2)\displaystyle=8\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})

and

ΩUϵ2logUϵ2\displaystyle\int_{\Omega}U^{2}_{\epsilon}\log U^{2}_{\epsilon} 8log8ω4ϵ2ln(1ϵ)+16ω4ϵ2(log(1ϵ))2+8ω4log(ϵ2+4ρ2e)ϵ2log(1ϵ)\displaystyle\leq 8\log 8\omega_{4}\epsilon^{2}\ln(\frac{1}{\epsilon})+16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}+8\omega_{4}\log(\frac{\epsilon^{2}+4\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})
16ω4ϵ2(log(1ϵ))216ω4log(ϵ2+ρ2e)ϵ2log(1ϵ)+O(ϵ2)\displaystyle-16\omega_{4}\epsilon^{2}\left(\log(\frac{1}{\epsilon})\right)^{2}-16\omega_{4}\log(\frac{\epsilon^{2}+\rho^{2}}{e})\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2})
=8log(8e(ϵ2+4ρ2)(ϵ2+ρ2)2)ω4ϵ2log(1ϵ)+O(ϵ2).\displaystyle=8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).

Lemma 3.5.

Assume that N=4N=4. If (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0} and 32eλμρmax2<1\frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1, or λ\lambda\in{\mathbb{R}} and μ>0\mu>0 , then cM<1NSN2c_{M}<\frac{1}{N}S^{\frac{N}{2}}.

Proof.

Let g(t)=I(tUϵ)g(t)\overset{\triangle}{=}I(tU_{\epsilon}). Similar to the case of N5N\geq 5, we can find a tϵ(0,+)t_{\epsilon}\in(0,+\infty) such that

supt0I(tUϵ)=I(tϵUϵ)\displaystyle\sup_{t\geq 0}I(tU_{\epsilon})=I(t_{\epsilon}U_{\epsilon})

and

|Uϵ|2tϵ22|Uϵ|2λUϵ2μUϵ2logUϵ2μlogtϵ2Uϵ2=0.\displaystyle\int\left|\nabla U_{\epsilon}\right|^{2}-t^{2^{\ast}-2}_{\epsilon}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=0.

Similar to the case of N5N\geq 5 again, we can see that there exists 0<C20<C_{2} such that tϵ<C2t_{\epsilon}<C_{2} for any μ{0}\mu\in{\mathbb{R}}\setminus\{0\} and there exists C1>0C_{1}>0 such that tϵ>C1t_{\epsilon}>C_{1} for μ>0\mu>0.

Case 1: μ>0\mu>0

So

μlogtϵ2Uϵ2=O(ϵ2|lnϵ|),\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=O(\epsilon^{2}\left|\ln\epsilon\right|),

and

tϵ22\displaystyle t^{2^{\ast}-2}_{\epsilon} =|Uϵ|2λUϵ2μUϵ2logUϵ2μlogtϵ2Uϵ2|Uϵ|2\displaystyle=\frac{\int\left|\nabla U_{\epsilon}\right|^{2}-\lambda\int U_{\epsilon}^{2}-\mu\int U_{\epsilon}^{2}\log U^{2}_{\epsilon}-\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}}{\int\left|U_{\epsilon}\right|^{2^{\ast}}}
=SN2+O(ϵ2(log(1ϵ))2)SN2+O(ϵN)1asϵ0+,\displaystyle=\frac{S^{\frac{N}{2}}+O(\epsilon^{2}(\log(\frac{1}{\epsilon}))^{2})}{S^{\frac{N}{2}}+O(\epsilon^{N})}\longrightarrow 1~{}as~{}\epsilon\to 0^{+},

which implies that,

μlogtϵ2Uϵ2=o(ϵ2|lnϵ|),\mu\log t^{2}_{\epsilon}\int U^{2}_{\epsilon}=o(\epsilon^{2}\left|\ln\epsilon\right|),

According to (3.5), we get that

ΩUϵ2=8ω4ϵ2log(1ϵ)+O(ϵ2).\int_{\Omega}U_{\epsilon}^{2}=8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+O(\epsilon^{2}).

Therefore we have that, as ϵ0+,\epsilon\to 0^{+},

cM\displaystyle c_{M} I(tϵUϵ)\displaystyle\leq I(t_{\epsilon}U_{\epsilon})
=tϵ22|Uϵ|2tϵ22|Uϵ|2+μλ2tϵ2Uϵ2μ2tϵ2Uϵ2logUϵ2+o(ϵ2|lnϵ|)\displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\frac{\mu-\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
(tϵ22tϵ22)SN2+O(ϵ2)+μλ2tϵ2Uϵ2μ2tϵ2Uϵ2logUϵ2+o(ϵ2|lnϵ|)\displaystyle\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+O(\epsilon^{2})+\frac{\mu-\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN2tϵ22[μUϵ2logUϵ2+(λμ)Uϵ2]+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{t^{2}_{\epsilon}}{2}\int[\mu U^{2}_{\epsilon}\log U^{2}_{\epsilon}+(\lambda-\mu)U^{2}_{\epsilon}]+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN2tϵ22(8μlog(8(ϵ2+ρ2)e(ϵ2+4ρ2)2)ω4ϵ2log(1ϵ)+(λμ)8ω4ϵ2log(1ϵ))+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{t^{2}_{\epsilon}}{2}\left(8\mu\log\left(\frac{8(\epsilon^{2}+\rho^{2})}{e(\epsilon^{2}+4\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+(\lambda-\mu)8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\right)+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24tϵ2log(8μ(ϵ2+ρ2)μe2μλ(ϵ2+4ρ2)2μ)ω4ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4t^{2}_{\epsilon}\log\left(\frac{8^{\mu}(\epsilon^{2}+\rho^{2})^{\mu}}{e^{2\mu-\lambda}(\epsilon^{2}+4\rho^{2})^{2\mu}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24tϵ2log(8μ25μe2μλρ2μ)ω4ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4t^{2}_{\epsilon}\log\left(\frac{8^{\mu}}{25^{\mu}e^{2\mu-\lambda}\rho^{2\mu}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24C12Cω4ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4C^{2}_{1}C\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
<1NSN2,\displaystyle<\frac{1}{N}S^{\frac{N}{2}},

where we choose ρ>0\rho>0 small enough such that 8μ25μe2μλρ2μ>1.\frac{8^{\mu}}{25^{\mu}e^{2\mu-\lambda}\rho^{2\mu}}>1.

Case 2: μ<0\mu<0

When (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0}, we choose ρ=ρmax\rho=\rho_{max}. We can see that tϵ↛0t_{\epsilon}\not\to 0. Otherwise, 0<αcMI(tϵUϵ)00<\alpha\leq c_{M}\leq I(t_{\epsilon}U_{\epsilon})\to 0, which is impossible. Similar to Case 1, we can see that tϵ1t_{\epsilon}\to 1 and tϵ2logtϵ2=o(1)t_{\epsilon}^{2}\log t_{\epsilon}^{2}=o(1). Therefore,

μ2tϵ2logtϵ2Uϵ2=o(ϵ2|lnϵ|).-\frac{\mu}{2}t_{\epsilon}^{2}\log t_{\epsilon}^{2}\int U_{\epsilon}^{2}=o(\epsilon^{2}\left|\ln\epsilon\right|). (3.11)

Then we obtain that, as ϵ0+,\epsilon\to 0^{+},

cM\displaystyle c_{M} I(tϵUϵ)\displaystyle\leq I(t_{\epsilon}U_{\epsilon})
=tϵ22|Uϵ|2tϵ22|Uϵ|2+μ2tϵ2(1logtϵ2)Uϵ2μ2tϵ2Uϵ2(logUϵ2+λμ)\displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}+\frac{\mu}{2}t^{2}_{\epsilon}(1-\log t^{2}_{\epsilon})\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}(\log U^{2}_{\epsilon}+\frac{\lambda}{\mu})
(tϵ22tϵ22)SN2+μ2tϵ2Uϵ2μ2tϵ2Uϵ2logUϵ2λ2tϵ2Uϵ2+o(ϵ2|lnϵ|)\displaystyle\leq(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{N}{2}}+\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}-\frac{\lambda}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN2μ2tϵ2((λμ1)8ω4ϵ2log(1ϵ)+8log(8e(ϵ2+4ρ2)(ϵ2+ρ2)2)ω4ϵ2log(1ϵ))+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-\frac{\mu}{2}t^{2}_{\epsilon}\left((\frac{\lambda}{\mu}-1)8\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})+8\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\omega_{4}\epsilon^{2}\log(\frac{1}{\epsilon})\right)+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24μω4tϵ2((λμ1)+log(8e(ϵ2+4ρ2)(ϵ2+ρ2)2))ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}t^{2}_{\epsilon}\left((\frac{\lambda}{\mu}-1)+\log\left(\frac{8e(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24μω4tϵ2log(8eλμ(ϵ2+4ρ2)(ϵ2+ρ2)2)ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}t^{2}_{\epsilon}\log\left(\frac{8e^{\frac{\lambda}{\mu}}(\epsilon^{2}+4\rho^{2})}{(\epsilon^{2}+\rho^{2})^{2}}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
1NSN24μω4log(32eλμρ2)ϵ2log(1ϵ)+o(ϵ2|lnϵ|)\displaystyle\leq\frac{1}{N}S^{\frac{N}{2}}-4\mu\omega_{4}\log\left(\frac{32e^{\frac{\lambda}{\mu}}}{\rho^{2}}\right)\epsilon^{2}\log(\frac{1}{\epsilon})+o(\epsilon^{2}\left|\ln\epsilon\right|)
<1NSN2\displaystyle<\frac{1}{N}S^{\frac{N}{2}}

since the fact that 32eλμρmax2<1\frac{32e^{\frac{\lambda}{\mu}}}{\rho_{max}^{2}}<1.

We complete the proof.

The case for 𝐍=𝟑:\mathbf{N=3:}

Let φ(x)C01(Ω)\varphi(x)\in C^{1}_{0}(\Omega) be a radial function satisfying that φ(x)=1\varphi(x)=1 for 0|x|ρ0\leq\left|x\right|\leq\rho, 0φ(x)10\leq\varphi(x)\leq 1 for ρ|x|2ρ\rho\leq\left|x\right|\leq 2\rho, φ(x)=0\varphi(x)=0 for xΩB2ρ(0)x\in\Omega\setminus B_{2\rho}(0), where 0<ρ0<\rho is any fixed constant such that B2ρ(0)ΩB_{2\rho}(0)\subset\Omega and 4ρ2<1.4\rho^{2}<1.

Set

Uϵ=φ(x)uϵ(x).\begin{array}[]{ll}U_{\epsilon}=\varphi(x)u_{\epsilon}(x).\end{array}
Lemma 3.6.

If N=3N=3, then we have, as ϵ0+\epsilon\to 0^{+},

Ω|Uϵ|2dx=S32+3ω3ρ2ρ|φ(r)|2drϵ+O(ϵ3),\int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}\mathrm{d}x=S^{\frac{3}{2}}+\sqrt{3}\omega_{3}\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r\epsilon+O(\epsilon^{3}), (3.12)
Ω|Uϵ|2dx=S32+O(ϵ3),\int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}}\mathrm{d}x=S^{\frac{3}{2}}+O(\epsilon^{3}), (3.13)
ΩUϵ2dx=3ω302ρφ2drϵ+O(ϵ2),\int_{\Omega}U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon+O(\epsilon^{2}), (3.14)

and

Uϵ2logUϵ2dx=3ω302ρφ2drϵlogϵ+O(ϵ),\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon\log\epsilon+O(\epsilon), (3.15)

where ω3\omega_{3} denotes the area of the unit sphere surface.

Proof.

Following from the definition of UϵU_{\epsilon}, direct computations implies that

Ω|Uϵ|2dx=B2ρ(|φ|23ϵϵ2+|x|22φφ(r)3ϵx(ϵ2+|x|2)2+3ϵφ2(r)x2(ϵ2+|x|2)3)dx=3ω3ϵρ2ρ|φ(r)|2r2ϵ2+r2dr23ω3ϵρ2ρφ(r)rφ(r)r2(ϵ2+r2)2dr+3ω3ϵ0ρr4(ϵ2+r2)3dr+3ω3ϵρ2ρφ2(r)r4(ϵ2+r2)3dr=3ω3ϵρ2ρ|φ(r)|2dr+O(ϵ3)23ω3ϵρ2ρφ(r)rφ(r)1ϵ2+r2dr+O(ϵ3)+3ω3ϵ0+r4(ϵ2+r2)3dr3ω3ϵρ+r4(ϵ2+r2)3dr+3ω3ϵρ2ρφ2(r)r4(ϵ2+r2)3dr=3ω3ϵρ2ρ|φ(r)|2dr23ω3ϵρ2ρφ(r)φ(r)1rdr+O(ϵ3)+N|uϵ|23ω3ϵρ+1ϵ2+r2dr+3ω3ϵρ2ρφ2(r)1ϵ2+r2dr+O(ϵ3)=S32+O(ϵ3)+3ω3ϵ(ρ2ρ|φ(r)|2drρ2ρ2φ(r)φ(r)1rdrρ+1r2dr+ρ2ρφ2(r)1r2dr)=S32+3ω3ϵρ2ρ|φ(r)|2dr+O(ϵ3)\begin{split}&\int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2}\mathrm{d}x\\ &=\int_{B_{2\rho}}\left(\left|\nabla\varphi\right|^{2}\frac{\sqrt{3}\epsilon}{\epsilon^{2}+\left|x\right|^{2}}-2\nabla\varphi\cdot\varphi(r)\frac{\sqrt{3}\epsilon x}{(\epsilon^{2}+\left|x\right|^{2})^{2}}+\frac{\sqrt{3}\epsilon\varphi^{2}(r)x^{2}}{(\epsilon^{2}+\left|x\right|^{2})^{3}}\right)\mathrm{d}x\\ &=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)r\varphi(r)\frac{r^{2}}{(\epsilon^{2}+r^{2})^{2}}\mathrm{d}r\\ &+\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\frac{\varphi^{2}(r)r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r\\ &=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r+O(\epsilon^{3})-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)r\varphi(r)\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+O(\epsilon^{3})\\ &+\sqrt{3}\omega_{3}\epsilon\int_{0}^{+\infty}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{+\infty}\frac{r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\frac{\varphi^{2}(r)r^{4}}{(\epsilon^{2}+r^{2})^{3}}\mathrm{d}r\\ &=\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r-2\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{{}^{\prime}}(r)\varphi(r)\frac{1}{r}\mathrm{d}r+O(\epsilon^{3})\\ &+\int_{{\mathbb{R}}^{N}}\left|\nabla u_{\epsilon}\right|^{2}-\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{+\infty}\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\varphi^{2}(r)\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r+O(\epsilon^{3})\\ &=S^{\frac{3}{2}}+O(\epsilon^{3})\\ &+\sqrt{3}\omega_{3}\epsilon\left(\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r-\int_{\rho}^{2\rho}2\varphi^{{}^{\prime}}(r)\varphi(r)\frac{1}{r}\mathrm{d}r-\int_{\rho}^{+\infty}\frac{1}{r^{2}}\mathrm{d}r+\int_{\rho}^{2\rho}\varphi^{2}(r)\frac{1}{r^{2}}\mathrm{d}r\right)\\ &=S^{\frac{3}{2}}+\sqrt{3}\omega_{3}\epsilon\int_{\rho}^{2\rho}\left|\varphi^{{}^{\prime}}(r)\right|^{2}\mathrm{d}r+O(\epsilon^{3})\end{split}
Ω|Uϵ|2dx=Bρ(0)|uϵ|2dx+O(ϵ3)=3|uϵ|2dx+O(ϵ3)=S32+O(ϵ3),\int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}}\mathrm{d}x=\int_{B_{\rho}(0)}\left|u_{\epsilon}\right|^{2^{*}}\mathrm{d}x+O(\epsilon^{3})=\int_{\mathbb{R}^{3}}\left|u_{\epsilon}\right|^{2^{*}}\mathrm{d}x+O(\epsilon^{3})=S^{\frac{3}{2}}+O(\epsilon^{3}),

and

ΩUϵ2dx=3B2ρ(0)φ2ϵϵ2+|x|2dx=3ω3ϵ02ρφ21ϵ2+r2r2dr=3ω3ϵ02ρφ2dr3ω3ϵ302ρφ21ϵ2+r2dr=3ω3ϵ02ρφ2dr+O(ϵ2).\begin{array}[]{ll}\displaystyle\int_{\Omega}U^{2}_{\epsilon}\mathrm{d}x&=\sqrt{3}\displaystyle\int_{B_{2\rho}(0)}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\mathrm{d}x\\ &=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\frac{1}{\epsilon^{2}+r^{2}}r^{2}\mathrm{d}r\\ &=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon^{3}\int_{0}^{2\rho}\varphi^{2}\frac{1}{\epsilon^{2}+r^{2}}~{}\mathrm{d}r\\ &=\sqrt{3}\omega_{3}\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r+O(\epsilon^{2}).\end{array}

On the other hand, we have

ΩUϵ2logUϵ2=3Ωφ2ϵϵ2+|x|2log(3φ2ϵϵ2+|x|2)dx=3B2ρ(0)φ2ϵϵ2+|x|2log(3φ2ϵϵ2+|x|2)dx=3ω3ϵ02ρφ2(r)r2ϵ2+r2[log3+logϵ+logφ2+log1ϵ2+r2]dr=3log3ω3ϵ02ρφ2(r)r2ϵ2+r2dr+3ω3ϵlogϵ02ρφ2r2ϵ2+r2dr+3ω3ϵ02ρφ2logφ2r2ϵ2+r2dr+3ω3ϵ02ρφ2(r)r2ϵ2+r2log1ϵ2+r2dr=I1+I2+I3+I4.\begin{split}\int_{\Omega}U_{\epsilon}^{2}\log{U_{\epsilon}^{2}}&=\sqrt{3}\int_{\Omega}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\log(\sqrt{3}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})\mathrm{d}x\\ &=\sqrt{3}\int_{B_{2\rho}(0)}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}}\log(\sqrt{3}\varphi^{2}\frac{\epsilon}{\epsilon^{2}+\left|x\right|^{2}})\mathrm{d}x\\ &=\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\left[\log\sqrt{3}+\log\epsilon+\log\varphi^{2}+\log\frac{1}{\epsilon^{2}+r^{2}}\right]\mathrm{d}r\\ &=\sqrt{3}\log\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\ &+\sqrt{3}\omega_{3}\epsilon\log\epsilon\int_{0}^{2\rho}\varphi^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\ &+\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}\log\varphi^{2}\frac{r^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\ &+\sqrt{3}\omega_{3}\epsilon\int_{0}^{2\rho}\varphi^{2}(r)\frac{r^{2}}{\epsilon^{2}+r^{2}}\log\frac{1}{\epsilon^{2}+r^{2}}\mathrm{d}r\\ &\overset{\triangle}{=}I_{1}+I_{2}+I_{3}+I_{4}.\end{split} (3.16)

By direct computation, we obtain that

I1=O(ϵ),I3=O(ϵ),I_{1}=O(\epsilon),~{}I_{3}=O(\epsilon), (3.17)
I2=3ω3ϵlogϵ02ρφ2dr3ω3ϵlogϵ02ρφ2ϵ2ϵ2+r2dr=3ω3ϵlogϵ02ρφ2dr+O(ϵ2logϵ),\begin{array}[]{ll}I_{2}&=\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r-\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\frac{\epsilon^{2}}{\epsilon^{2}+r^{2}}\mathrm{d}r\\ &=\sqrt{3}\omega_{3}\epsilon\log\epsilon\displaystyle\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r+O(\epsilon^{2}\log\epsilon),\\ \end{array} (3.18)

and

|I4|3ω3ϵ0ρlog(ϵ2+r2)dr+O(ϵ)=3ω3ϵrlog(ϵ2+r2)|0ρ+3ω3ϵ0ρr1ϵ2+r22rdr+O(ϵ)=O(ϵ).\begin{split}|I_{4}|&\leq-\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}\log(\epsilon^{2}+r^{2})\mathrm{d}r+O(\epsilon)\\ &=-\sqrt{3}\omega_{3}\epsilon r\log(\epsilon^{2}+r^{2}){\Big{\arrowvert}}^{\rho}_{0}+\sqrt{3}\omega_{3}\epsilon\int_{0}^{\rho}r\frac{1}{\epsilon^{2}+r^{2}}2r\mathrm{d}r+O(\epsilon)\\ &=O(\epsilon).\end{split} (3.19)

It follows from (3.16)–(3.19) that

Uϵ2logUϵ2dx=3ω302ρφ2drϵlogϵ+O(ϵ).\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}\mathrm{d}x=\sqrt{3}\omega_{3}\int_{0}^{2\rho}\varphi^{2}\mathrm{d}r\epsilon\log\epsilon+O(\epsilon).

We complete the proof.

Lemma 3.7.

If N=3N=3 and (λ,μ)B0C0(\lambda,\mu)\in B_{0}\cup C_{0}, then cM<1NSN2c_{M}<\frac{1}{N}S^{\frac{N}{2}}.

Proof.

Assume that g(t):=I(tUϵ)g(t):=I(tU_{\epsilon}). Since g(0)=0g(0)=0, limt+g(t)=\lim\limits_{t\to+\infty}g(t)=-\infty and Lemma 2.1, we can get a tϵ(0,+)t_{\epsilon}\in(0,+\infty) such that

supt0I(tUϵ)=I(tϵUϵ).\displaystyle\sup_{t\geq 0}I(tU_{\epsilon})=I(t_{\epsilon}U_{\epsilon}).

Similar to the case of N=4,N=4, we can see that there exist 0<C1<C20<C_{1}<C_{2} such that tϵ(C1,C2).t_{\epsilon}\in(C_{1},C_{2}). Therefore, for ϵ\epsilon small enough,

cMI(tϵUϵ)\displaystyle c_{M}\leq I(t_{\epsilon}U_{\epsilon}) =tϵ22|Uϵ|2tϵ22|Uϵ|2μ2tϵ2Uϵ2logUϵ2+O(ϵ)\displaystyle=\frac{t^{2}_{\epsilon}}{2}\int\left|\nabla U_{\epsilon}\right|^{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}}\int\left|U_{\epsilon}\right|^{2^{\ast}}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+O(\epsilon)
=(tϵ22tϵ22)S32μ2tϵ2Uϵ2logUϵ2+O(ϵ)\displaystyle=(\frac{t^{2}_{\epsilon}}{2}-\frac{t^{2^{\ast}}_{\epsilon}}{2^{\ast}})S^{\frac{3}{2}}-\frac{\mu}{2}t^{2}_{\epsilon}\int U^{2}_{\epsilon}\log U^{2}_{\epsilon}+O(\epsilon)
1NS323μ2C12ω302ρφ2drϵlog(ϵ)+O(ϵ)\displaystyle\leq\frac{1}{N}S^{\frac{3}{2}}-\frac{\sqrt{3}\mu}{2}C^{2}_{1}\omega_{3}\displaystyle\int_{0}^{2\rho}\varphi^{2}~{}\mathrm{d}r\epsilon\log(\epsilon)+O(\epsilon)
<1NS32.\displaystyle<\frac{1}{N}S^{\frac{3}{2}}.

We complete the proof. ∎

4. The Proof of Main Theorems

The proof of Theorem 1.2:.

Assume that N4N\geq 4 and (λ,μ)A0(\lambda,\mu)\in A_{0}. By Lemma 2.1 and the mountain-pass theorem, there exists a sequence {un}H01(Ω)\{u_{n}\}\subset H^{1}_{0}(\Omega) such that, as nn\to\infty,

I(un)\displaystyle I(u_{n}) cM,\displaystyle\rightarrow c_{M},
I(un)\displaystyle I^{{}^{\prime}}(u_{n}) 0,in(H01(Ω))1,\displaystyle\rightarrow 0,\quad in\quad(H^{1}_{0}(\Omega))^{-1},

which, together with Lemma 2.2, implies that {un}\{u_{n}\} is bounded in H01(Ω)H^{1}_{0}(\Omega). By Lemmas 2.4, 3.3 and 3.5, we can see that there exists uH01(Ω)u\in H^{1}_{0}(\Omega) such that unuu_{n}\to u in H01(Ω)H^{1}_{0}(\Omega), which implies that

I(u)=cMandI(u)=0.I(u)=c_{M}\quad and\quad I^{{}^{\prime}}(u)=0.

Thus,

0=I(u),u=|u|2,0=\langle I^{{}^{\prime}}(u),u_{-}\rangle=\int\left|\nabla u_{-}\right|^{2},

which implies that u0u\geq 0.
Therefore, uu is a nonnegative nontrivial weak solution of (1.1)(1.1). By Moser’s iteration, it is standard to prove that uL(Ω)u\in L^{\infty}(\Omega), then the Hölder estimate implies that uC0,γ(Ω)(0<γ<1)u\in C^{0,\gamma}(\Omega)~{}(0<\gamma<1). Let β:[0,+)\beta:[0,+\infty)\mapsto{\mathbb{R}} be defined by

β(s):={3|μ|2|slogs2|,s>0,0,s=0,\beta(s):=\begin{cases}\frac{3|\mu|}{2}|s\log s^{2}|,\quad&s>0,\\ 0,\quad&s=0,\end{cases}

then for a>0a>0 small enough, one can see that

Δ(u)=u21λuμulogu2β(u)in{xΩ:0<u(x)<a}.\Delta(u)=-u^{2^{*}-1}-\lambda u-\mu u\log u^{2}\leq\beta(u)~{}\hbox{in}~{}\{x\in\Omega:0<u(x)<a\}.

We may also assume that a<1ea<\frac{1}{e}, then β(s)=3|μ|2(logs22)>|μ|(loga1)>0\beta^{\prime}(s)=\frac{3|\mu|}{2}(-\log s^{2}-2)>|\mu|(-\log a-1)>0 for s(0,a)s\in(0,a). So we have that β(0)=0\beta(0)=0 and β(s)\beta(s) is nondecreasing in (0,a)(0,a). Furthermore,

0a2(β(s)s)12𝑑s=23|μ|(2logs)12|0a2=+.\int_{0}^{\frac{a}{2}}(\beta(s)s)^{-\frac{1}{2}}ds=-\sqrt{\frac{2}{3|\mu|}}(-2\log s)^{\frac{1}{2}}\Big{|}_{0}^{\frac{a}{2}}=+\infty.

Hence, by [17, Theorem 1], we have that u(x)>0u(x)>0 in Ω\Omega. In particular, for any compact KΩK\subset\subset\Omega, there exists c=c(K)>0c=c(K)>0 such that u(x)c,xKu(x)\geq c,\forall x\in K. Take KK1ΩK\subset\subset K_{1}\subset\subset\Omega and put f(x):=u(x)21λu(x)μu(x)logu(x)2f(x):=-u(x)^{2^{*}-1}-\lambda u(x)-\mu u(x)\log u(x)^{2}, then Δu=f(x)\Delta u=f(x) in K1K_{1} and ff is of C0,γC^{0,\gamma} in K1K_{1}. So by the standard Schauder estimate, we see that uC2,γ(K)u\in C^{2,\gamma}(K). By the arbitrariness of KK, we obtain that uC2(Ω)u\in C^{2}(\Omega) and u>0u>0 in Ω\Omega. The proof is completed. ∎

The proof of Theorem 1.3:.

By Lemma 2.1 and the mountain-pass theorem, there exists a sequence {un}H01(Ω)\{u_{n}\}\subset H^{1}_{0}(\Omega) such that, as nn\to\infty,

I(un)\displaystyle I(u_{n}) cM,\displaystyle\rightarrow c_{M},
I(un)\displaystyle I^{{}^{\prime}}(u_{n}) 0,in(H01(Ω))1,\displaystyle\rightarrow 0,\quad in\quad(H^{1}_{0}(\Omega))^{-1},

combining with Lemmas 2.5, 3.5 and 3.7, problem (1.1) has a nonnegative nontrivial weak solution uu. Applying a similar argument as the proof of Theorem 1.2, we obatin that uC2(Ω)u\in C^{2}(\Omega) and u(x)>0u(x)>0 in Ω\Omega. ∎

The proof of the Theorem 1.4:.

Assume that problem (1.1) has a positive solution u0u_{0} and let φ1(x)>0\varphi_{1}(x)>0 be the first eigenfunction corresponding to λ1(Ω)\lambda_{1}(\Omega). Then

Ω(u021+λu0+μu0logu02)φ1(x)=ΩΔu0φ1(x)=ΩΔφ1(x)u0=Ωλ1(Ω)φ1(x)u0,\begin{array}[]{ll}\displaystyle\int_{\Omega}(u_{0}^{2^{*}-1}&+\lambda u_{0}+\mu u_{0}\log u^{2}_{0})\varphi_{1}(x)=\displaystyle\int_{\Omega}-\Delta u_{0}\varphi_{1}(x)\\ &=\displaystyle\int_{\Omega}-\Delta\varphi_{1}(x)u_{0}=\displaystyle\int_{\Omega}\lambda_{1}(\Omega)\varphi_{1}(x)u_{0},\\ \end{array}

which implies that

Ω(u022+λλ1(Ω)+μlogu02)u0φ1(x)=0.\displaystyle\int_{\Omega}(u_{0}^{2^{*}-2}+\lambda-\lambda_{1}(\Omega)+\mu\log u^{2}_{0})u_{0}\varphi_{1}(x)=0. (4.1)

Define

f(s):=s22+μlogs2+λλ1(Ω),s>0,f(s):=s^{2^{*}-2}+\mu\log s^{2}+\lambda-\lambda_{1}(\Omega),s>0,

then

f(s)=(22)s23+2μ1s.f^{\prime}(s)=(2^{*}-2)s^{2^{*}-3}+2\mu\frac{1}{s}.

By a direct computation, f(s)=0f^{\prime}(s)=0 has a unique root s0=((N2)μ2)N24s_{0}=(-\frac{(N-2)\mu}{2})^{\frac{N-2}{4}}. Furthermore, f(s)<0f^{\prime}(s)<0 in (0,((N2)μ2)N24)(0,(-\frac{(N-2)\mu}{2})^{\frac{N-2}{4}}) and f(s)>0f^{\prime}(s)>0 in (((N2)μ2)N24,+)((-\frac{(N-2)\mu}{2})^{\frac{N-2}{4}},+\infty). Hence,

f(s)f(((N2)μ2)N24)=(N2)μ2+(N2)μ2log((N2)μ2)+λλ1(Ω)0.f(s)\geq f((-\frac{(N-2)\mu}{2})^{\frac{N-2}{4}})=-\frac{(N-2)\mu}{2}+\frac{(N-2)\mu}{2}\log(-\frac{(N-2)\mu}{2})+\lambda-\lambda_{1}(\Omega)\geq 0. (4.2)

Since u0H01(Ω)u_{0}\in H^{1}_{0}(\Omega) and u0,φ1>0u_{0},\varphi_{1}>0, we have Ωf(u0(x))u0φ1(x)>0\displaystyle\int_{\Omega}f(u_{0}(x))u_{0}\varphi_{1}(x)>0. Otherwise, f(u0(x))=0f(u_{0}(x))=0 a.e in Ω\Omega. That is, u0(x)=((N2)μ2)N24u_{0}(x)=(-\frac{(N-2)\mu}{2})^{\frac{N-2}{4}} a.e in Ω\Omega, which contradicts to u0H01(Ω).u_{0}\in H^{1}_{0}(\Omega). By (4.1) and (4.2), we have that

0=Ω(u022+λλ1(Ω)+μlogu02)u0φ1(x)=Ωf(u0(x))u0φ1(x)>0,0=\displaystyle\int_{\Omega}(u_{0}^{2^{*}-2}+\lambda-\lambda_{1}(\Omega)+\mu\log u^{2}_{0})u_{0}\varphi_{1}(x)=\displaystyle\int_{\Omega}f(u_{0}(x))u_{0}\varphi_{1}(x)>0,

a contradiction. Hence, problem (1.1) has no positive solutions. ∎

Acknowledgement

This work is supported by the special foundation for Guangxi Ba Gui Scholars and the Natural Science Foundation of China (Nos.11801581, 12061012, 11931012), Guangdong Basic and Applied Basic Research Foundation (2021A1515010034),Guangzhou Basic and Applied Basic Research Foundation(202102020225).

References

  • [1] Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.. On some critical problems for the fractional Laplacian operator. J. Differential Equations. 252 (2012), 6133-6162.
  • [2] Brézis, H., Coron, J.. Multiple solutions of H-systems and Rellich’s conjecture. Comm. Pure Appl. Math. 37 (1984), 149-187.
  • [3] Brézis, H., Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437-477.
  • [4] Edmunds, D. E., Fortunato, D., Jannelli, E.. Critical exponents, critical dimensions and the biharmonic operator. Arch. Rational Mech. Anal. 112 (1990), 269-289.
  • [5] Gao, F., Yang, M.. The Brézis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. 61 (2018), 1219-1242.
  • [6] Gu, Y., Deng, Y., Wang, X.. Existence of nontrivial solutions for critical semilinear biharmonic equations. Systems Sci. Math. Sci. 7 (1994), 140-152.
  • [7] Li, X., Ma, S.. Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22 (2020), 23-28.
  • [8] Lieb, Elliott H.. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. 118 (1983), 349-374.
  • [9] Lieb, Elliott H., Loss, M.. Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001.
  • [10] Lions, P. L.. Applications de la méthode de concentration-compacitè a`\grave{a} I existence de fonctions extrèmales. C. R. Acad. Sci. Paris Sèr. I Math. 296 (1983), 645-648.
  • [11] Pohoǎev, S. I.. On the Eigenfunctions of the equation Δu+λf(u)=0\Delta u+\lambda f(u)=0. Dokl. Akad. Nauk SSSR. 165(1965), 36-39.
  • [12] Shuai, W.. Multiple solutions for logarithmic Schrödinger equations. Nonlinearity 32 (2019), 2201-2225.
  • [13] Taubes, C. H.. The existence of a nonminimal solution to the SU(2) Yang-Mills-Higgs equations on 3\mathbb{R}^{3}. I. Comm. Math. Phys. 86 (1982), 257-298.
  • [14] Taubes, C. H.. The existence of a nonminimal solution to the SU(2) Yang-Mills-Higgs equations on 3\mathbb{R}^{3}. II. Comm. Math. Phys. 86 (1982), 299-320.
  • [15] Uhlenbeck, Karen K.. Variational problems for gauge fields. Ann. of Math. Stud. 102(1982), 455-464.
  • [16] Van der Vorst, R. C. A. M.. Best constant for the embedding of the space H2H01H^{2}\cap H^{1}_{0} into L2NN2L^{\frac{2N}{N-2}}. Differential Integral Equations. 6 (1993), 259-276.
  • [17] Va´\acute{a}zquez, J.. A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984), 191-202.
  • [18] Willem, M.. Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.