This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The existence of Hamilton cycle in nn-balanced kk-partite graphs

Zongyuan Yang School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected] Yi Zhang School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected]  and  Shichang Zhao School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected]

The existence of Hamilton cycle in nn-balanced kk-partite graphs

Zongyuan Yang School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected] Yi Zhang School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected]  and  Shichang Zhao School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China [email protected]
Abstract.

Let Gk,nG_{k,n} be the nn-balanced kk-partite graph, whose vertex set can be partitioned into kk parts, each has nn vertices. In this paper, we prove that if k2,n1k\geq 2,n\geq 1, for the edge set E(G)E(G) of Gk,nG_{k,n}

|E(G)|{1 if k=2,n=1n2Ck2(k1)n+2 other |E(G)|\geq\left\{\begin{array}[]{cc}1&\text{ if }k=2,n=1\\ n^{2}C_{k}^{2}-(k-1)n+2&\text{ other }\end{array}\right.

then Gk,nG_{k,n} is hamiltonian. And the result may be the best.

Yi Zhang is supported by the National Natural Science Foundation of China (Grant 11901048 & 12071002).

1. 1  Introduction

A Hamiltonian circle is a circle that contains all the vertices of the graph. The problem of the existence of Hamiltonian circle has been a highly significant problem in graph theory, because it’s NP-hard. Researchers have tried to give some tight sufficient conditions to prove the existence of Hamiltonian circles, among which the minimum degree condition (Dirac condition), the minimum degree sum condition (Ore condition) and the Fan-type condition are three classical results.

Inspired by the problem of Turán-type extremal graphs, we hope to give a sufficient condition for the existence of Hamiltonian circles in balanced multipartite graphs in terms of the number of edges, i.e., there must be a Hamiltonian circle for as many edges as there are at least in a balanced multipartite graph. Complete balanced multipartite graphs have a lot of great structural properties, such as having Hamiltonian circles, which can be used as a structural basis for interconnection networks. Connections are often broken in networks, so the fault tolerance of edges can be an important indicator of the stability of a network. The paper can provide an important theoretical support for determining the fault tolerance of complete multipartite graphs with Hamiltonian circles from the perspective of the number of edges, making it the basis of network structure.

Let Gk,nG_{k,n} be the complete nn-balanced kk-partite graph, whose vertex set can be partitioned into kk parts, each has nn vertices. Our main result is the following theorem.

Theorem 1.

Let G=(V,E)G=(V,E) be an nn-balanced kk-partite graph with k2k\geq 2, n1n\geq 1 except k=2k=2, n=1n=1. If |E(G)|n2Ck2(k1)n+2|E(G)|\geq n^{2}C_{k}^{2}-(k-1)n+2, then GG is Hamiltonian.

2. 2  Notations and useful results

All graphs considered in this paper are simple, finite, loop-free and undirected. For a graph GG, let V(G),E(G)V(G),E(G) denote the vertex set and edge set of GG, respectively. For a vertex uV(G)u\in V(G), let NG(u)N_{G}(u) be the set of adjacent vertices to uu in GG and dG(u)=|NG(u)|d_{G}(u)=|N_{G}(u)|.

Let Gn1,,nk=(V(Gn1,,nk),E(Gn1,,nk))G_{n_{1},\cdots,n_{k}}=(V(G_{n_{1},\cdots,n_{k}}),E(G_{n_{1},\cdots,n_{k}})) be a kk-partite graph with order n1+n2++nkn_{1}+n_{2}+\cdots+n_{k}, where the vertex set V(Gn1,,nk)V(G_{n_{1},\cdots,n_{k}}) can be divided into kk parts V1,V2,,VkV_{1},V_{2},\cdots,V_{k} with |Vi|=ni|V_{i}|=n_{i} for 1ik1\leq i\leq k and the edge set E(Gn1,,nk)E(G_{n_{1},\cdots,n_{k}}) contains edges with no two vertices from one part. If the edge set E(Gn1,,nk)E(G_{n_{1},\cdots,n_{k}}) contains all edges with no two vertices from one part, then we call Gn1,,nkG_{n_{1},\cdots,n_{k}} the complete kk-partite graph with order n1+n2++nkn_{1}+n_{2}+\cdots+n_{k}, and denote the graph by CGn1,,nkCG_{n_{1},\cdots,n_{k}}. If n1==nkn_{1}=\cdots=n_{k}, for simplicity, we write Gk,nG_{k,n} and CGk,nCG_{k,n} instead, and call Gk,nG_{k,n} an nn-balanced kk-partite graph. Let Gn1,,nk¯\overline{G_{n_{1},\cdots,n_{k}}} be the kk-partite graph with the vertex set V(Gn1,,nk)V(G_{n_{1},\cdots,n_{k}}) and the edge set E(CGn1,,nk)E(Gn1,,nk)E(CG_{n_{1},\cdots,n_{k}})\setminus E(G_{n_{1},\cdots,n_{k}}). Clearly |E(Gn1,,nk)|+|E(Gn1,,nk¯)|=|E(CGn1,,nk)||E(G_{n_{1},\cdots,n_{k}})|+|E(\overline{G_{n_{1},\cdots,n_{k}}})|=|E(CG_{n_{1},\cdots,n_{k}})| and |E(Gk,n)|+|E(Gk,n¯)|=|E(CGk,n)||E(G_{k,n})|+|E(\overline{G_{k,n}})|=|E(CG_{k,n})|. Given a vertex uV(Gk,n)u\in V(G_{k,n}), clearly dGk,n¯(u)+dGk,n(u)=(k1)nd_{\overline{G_{k,n}}}(u)+d_{G_{k,n}}(u)=(k-1)n. Let δ(Gk,n)\delta(G_{k,n}) be the smallest degree among all vertices and σ(Gk,n)\sigma(G_{k,n}) be the smallest degree sum of two nonadjacent vertices from different parts.

The following results will be used in our proof.

Theorem 2.

(Ore [3]) Let GG be a graph with n3n\geq 3 vertices. If d(u)+d(v)nd(u)+d(v)\geq n for any two nonadjacent vertices uu and vv, then GG is hamiltonian.

Theorem 3.

For any graph GG with n3n\geq 3 vertices, if |E(G)|(n12)+2|E(G)|\geq\binom{n-1}{2}+2, then GG is Hamiltonian.

Proof. We claim that d(u)+d(v)nd(u)+d(v)\geq n for any two nonadjacent vertices uu and vv. Otherwise, we let u0u_{0} and v0v_{0} be two nonadjacent vertices with d(u)+d(v)n1d(u)+d(v)\leq n-1. Then we obtain that |E(G)|(n22)+n1<(n12)+2|E(G)|\leq\binom{n-2}{2}+n-1<\binom{n-1}{2}+2, a contradiction. Furthermore, by Ore Theorem, GG is Hamiltonian.

Lemma 4.

Let GG be a graph with n3n\geq 3 vertices and u1Punu_{1}-P-u_{n} be a Hamilton path. If d(u1)+d(un)nd(u_{1})+d(u_{n})\geq n, then GG is Hamiltonian.

Proof. Let u1u2un1unu_{1}-u_{2}-\cdots u_{n-1}-u_{n} be a Hamilton path. To the contrary, we assume that GG is not Hamiltonian. If uku_{k} ia adjacent to u1u_{1}, then uk1u_{k-1} is not adjacent to unu_{n}, otherwise we find a Hamilton cycle. Therefore d(un)n1d(u1)d(u_{n})\leq n-1-d(u_{1}). Similarly, d(u1)n1d(un)d(u_{1})\leq n-1-d(u_{n}). It follows that d(u1)+d(un)n1d(u_{1})+d(u_{n})\leq n-1, a contradiction.  

Theorem 5.

[1] Let Gk,nG_{k,n} be an nn-balanced kk-partite graph with k2k\geq 2. If

δ(Gk,n)>{(k21k+1)n if k is odd, (k22k+2)n if k is even, \delta(G_{k,n})>\left\{\begin{array}[]{ll}\left(\frac{k}{2}-\frac{1}{k+1}\right)n&\text{ if }k\text{ is odd, }\\ \left(\frac{k}{2}-\frac{2}{k+2}\right)n&\text{ if }k\text{ is even, }\end{array}\right.

then Gk,nG_{k,n} is Hamiltonian.

Theorem 6.

[2] Let Gk,nG_{k,n} be an nn-balanced kk-partite graph with k2k\geq 2. If

σ(Gk,n)>{(k2k+1)n if k is odd, (k4k+2)n if k is even, \sigma(G_{k,n})>\left\{\begin{array}[]{ll}\left(k-\frac{2}{k+1}\right)n&\text{ if }k\text{ is odd, }\\ \left(k-\frac{4}{k+2}\right)n&\text{ if }k\text{ is even, }\end{array}\right.

then Gk,nG_{k,n} is Hamiltonian.

3. Proof of Theorem 1

Suppose that Gk,n=(V(Gk,n),E(Gk,n))G_{k,n}=(V(G_{k,n}),E(G_{k,n})) is an nn-balanced kk-partite graph with kk parts V1V_{1}, V2V_{2}, ,\cdots, VkV_{k} and |E(Gk,n)|(k2)n2(k1)n+2|E(G_{k,n})|\geq\binom{k}{2}n^{2}-(k-1)n+2, where k2k\geq 2, n1n\geq 1 except k=2k=2, n=1n=1. Recall that E(Gk,n¯)=E(CGk,n)E(Gk,n)E(\overline{G_{k,n}})=E(CG_{k,n})\setminus E(G_{k,n}), we have

|E(Gk,n¯)|(k1)n2.|E(\overline{G_{k,n}})|\leq(k-1)n-2. (1)

If n=1n=1, then |E(Gk,1)|(k12)+2|E(G_{k,1})|\geq\binom{k-1}{2}+2, by Theorem 3, the result holds.

Claim 7.

If k=2k=2, the result holds.

Proof.

In this case, we have |E(G2,n)|n2n+2|E(G_{2,n})|\geq n^{2}-n+2 as k=2k=2, which implies that

σG2,nn+1 and δ(G2,n)2.\sigma{G_{2,n}}\geq n+1\text{\, and\, }\delta(G_{2,n})\geq 2. (2)

Otherwise |E(G2,n)|n2n+1|E(G_{2,n})|\leq n^{2}-n+1, a contradiction. By Theorem 6 with k=2k=2, the result holds. ∎

Claim 8.

If n=2n=2, the result holds.

Proof.

In this case we have |E(Gk,2)|2k24k+4|E(G_{k,2})|\geq 2k^{2}-4k+4 as n=2n=2, which implies that

σ(Gk,2)2k1 and δ(Gk,2)2.\sigma(G_{k,2})\geq 2k-1\text{\, and\, }\delta(G_{k,2})\geq 2. (3)

Otherwise |E(Gk,2)|2k24k+3|E(G_{k,2})|\leq 2k^{2}-4k+3, a contradiction.

Theorem 6 with n=2n=2 implies that if

σ(Gk,2)>{2k4k+1 when k is odd, 2k8k+2 when k is even, \sigma(G_{k,2})>\left\{\begin{array}[]{ll}2k-\frac{4}{k+1}&\text{ when }k\text{ is odd, }\\ 2k-\frac{8}{k+2}&\text{ when }k\text{ is even, }\end{array}\right. (4)

then Gk,2G_{k,2} is Hamiltonian. It follows directly that the result holds for k=2,4k=2,4.

If σ(Gk,2)2k\sigma(G_{k,2})\geq 2k, then Gk,2G_{k,2} is Hamiltonian as (4). By (3), we just need to consider the case when σ(Gk,2)=2k1\sigma(G_{k,2})=2k-1. Without loss of generality, we let u1V1u_{1}\in V_{1} and u2V2u_{2}\in V_{2} be two nonadjacent vertices such that d(u1)+d(u2)=2k1d(u_{1})+d(u_{2})=2k-1 and d(u2)>d(u1)d(u_{2})>d(u_{1}). It follows that d(u2)kd(u_{2})\geq k. Since |E(Gk,2)|2k24k+4|E(G_{k,2})|\geq 2k^{2}-4k+4, we obtain that Gk,2{u1,u2}G_{k,2}-\{u_{1},u_{2}\} is the complete kk-partite graph with order 1+1+2++2=2k21+1+2+\cdots+2=2k-2. Otherwise |E(Gk,2)|2k24k+3|E(G_{k,2})|\leq 2k^{2}-4k+3, a contradiction. Suppose k=3k=3. We obtain that d(u1)=2d(u_{1})=2, d(u2)=3d(u_{2})=3. Combining with |E(G3,2)|10|E(G_{3,2})|\geq 10, it is easy to find a Hamilton cycle in G3,2G_{3,2}.

We prove the case when k5k\geq 5 by induction on kk. It is easy to obtain that Gk,2[V2V3Vk]G_{k,2}[V_{2}\cup V_{3}\cup\cdots V_{k}] is a 2-balanced k1k-1 partite graph with at least (k22)22+2(k2)+k1>2(k1)24(k1)+4\binom{k-2}{2}2^{2}+2(k-2)+k-1>2(k-1)^{2}-4(k-1)+4 as k5k\geq 5. By inductive hypothesis, Gk,2[V2V3Vk]G_{k,2}[V_{2}\cup V_{3}\cup\cdots V_{k}] contains a Hamilton cycle CC. Let u1u_{1}^{\prime} be the other vertex of V1V_{1} different from u1u_{1}. By (3), δ(Gk,2)2\delta(G_{k,2})\geq 2, we can let u,vV(C)u,v\in V(C) be two vertices adjacent to u1u_{1}. If {u,v}E(C)\{u,v\}\in E(C), then we can construct a cycle of size 2k12k-1 in Gk,2u1G_{k,2}-u_{1}^{\prime}. Since dGk,2(u1)2d_{G_{k,2}}(u_{1}^{\prime})\geq 2, it is easy to find a Hamilton path in Gk,2G_{k,2} with one end being u1u_{1}^{\prime} and the other not being u1u_{1}, denoted by ww. Clearly d(u1)+d(w)2(k2)+1+k>2kd(u_{1}^{\prime})+d(w)\geq 2(k-2)+1+k>2k as k5k\geq 5. By Lemma 4, Gk,2G_{k,2} has a Hamilton cycle. If {u,v}E(C)\{u,v\}\notin E(C), suppose that C=uuC1vvC2uC=u-u^{\prime}-C_{1}-v-v^{\prime}-C_{2}-u, where uC1vu^{\prime}-C_{1}-v is the path from uu^{\prime} to vv on CC not passing uu and vC2uv^{\prime}-C_{2}-u is the path from vv^{\prime} to uu on CC not passing vv, then at least one of uu^{\prime} and vv^{\prime} is adjacent to u1u_{1}^{\prime} as d(u1)2(k2)+1d(u_{1}^{\prime})\geq 2(k-2)+1, say {u1,v}E(Gk,2)\{u_{1}^{\prime},v^{\prime}\}\in E(G_{k,2}). Then u1vC2uu1vC1uu_{1}^{\prime}-v^{\prime}-C_{2}-u-u_{1}-v-C_{1}-u^{\prime} is a Hamilton path in Gk,nG_{k,n}. Clearly d(u1)+d(u)2(k2)+1+k>2kd(u_{1}^{\prime})+d(u^{\prime})\geq 2(k-2)+1+k>2k as k5k\geq 5. By Lemma 4, Gk,2G_{k,2} has a Hamilton cycle. ∎

Next we prove the case when k3,n3k\geq 3,n\geq 3 by induction on nn. We assume

σ(Gk,n){(k2k+1)n if k is odd, (k4k+2)n if k is even. \sigma(G_{k,n})\leq\left\{\begin{array}[]{ll}\left(k-\frac{2}{k+1}\right)n&\text{ if }k\text{ is odd, }\\ \left(k-\frac{4}{k+2}\right)n&\text{ if }k\text{ is even. }\end{array}\right.

Otherwise, by Theorem 6, Gk,nG_{k,n} is Hamiltonian. Without loss of generality, we let u1V1u_{1}\in V_{1} and vV2v\in V_{2} be two nonadjacent vertices such that

dGk,n(u1)+dGk,n(v){(k2k+1)n if k is odd, (k4k+2)n if k is even, d_{G_{k,n}}(u_{1})+d_{G_{k,n}}(v)\leq\left\{\begin{array}[]{ll}\left(k-\frac{2}{k+1}\right)n&\text{ if }k\text{ is odd, }\\ \left(k-\frac{4}{k+2}\right)n&\text{ if }k\text{ is even, }\end{array}\right. (5)

and

dGk,n(u1){(k21k+1)n if k is odd, (k22k+2)n if k is even. d_{G_{k,n}}(u_{1})\leq\left\{\begin{array}[]{ll}\left(\frac{k}{2}-\frac{1}{k+1}\right)n&\text{ if }k\text{ is odd, }\\ \left(\frac{k}{2}-\frac{2}{k+2}\right)n&\text{ if }k\text{ is even. }\end{array}\right. (6)

Furthermore, since dGk,n¯(u)+dGk,n(u)=(k1)nd_{\overline{G_{k,n}}}(u)+d_{G_{k,n}}(u)=(k-1)n for any vertex uV(Gk,n)u\in V(G_{k,n}), we obtain:

dGk,n¯(u1)+dGk,n¯(v){(k+2k+12)n if k is odd, (k+4k+22)n if k is even, d_{\overline{G_{k,n}}}(u_{1})+d_{\overline{G_{k,n}}}(v)\geq\left\{\begin{array}[]{ll}\left(k+\frac{2}{k+1}-2\right)n&\text{ if }k\text{ is odd, }\\ \left(k+\frac{4}{k+2}-2\right)n&\text{ if }k\text{ is even, }\end{array}\right. (7)

and

dGk,n¯(u1){(k2+1k+11)n if k is odd, (k2+2k+21)n if k is even. d_{\overline{G_{k,n}}}(u_{1})\geq\left\{\begin{array}[]{ll}\left(\frac{k}{2}+\frac{1}{k+1}-1\right)n&\text{ if }k\text{ is odd, }\\ \left(\frac{k}{2}+\frac{2}{k+2}-1\right)n&\text{ if }k\text{ is even. }\end{array}\right. (8)

Clearly δ(Gk,n)2\delta(G_{k,n})\geq 2 as |E(Gk,n)|(k2)n2(k1)n+2|E(G_{k,n})|\geq\binom{k}{2}n^{2}-(k-1)n+2. Therefore dGk,n(u1)2d_{G_{k,n}}(u_{1})\geq 2. We distinguish the following two cases:

Case 1. There exist ij{2,3,,k}i\neq j\in\{2,3,\cdots,k\} such that NGk,n(u1)ViN_{G_{k,n}}(u_{1})\cap V_{i}\neq\emptyset and NGk,n(u1)VjN_{G_{k,n}}(u_{1})\cap V_{j}\neq\emptyset.

Let G=Gk,n{u1,v}G=G_{k,n}-\{u_{1},v\}. We claim that

δ(G)(k2)n.\displaystyle\delta(G)\geq(k-2)n. (9)

Otherwise, there exists a vertex uV(G)u\in V(G) such that dG(u)(k2)n1d_{G}(u)\leq(k-2)n-1. If uV1u\in V_{1} or V2V_{2}, then

dG¯(u)(k2)n+(n1)((k2)n1)=n.\displaystyle d_{\overline{G}}(u)\geq(k-2)n+(n-1)-((k-2)n-1)=n.

If uViu\in V_{i}, 3ik3\leq i\leq k, then

dG¯(u)(k3)n+2(n1)((k2)n1)=n1.\displaystyle d_{\overline{G}}(u)\geq(k-3)n+2(n-1)-((k-2)n-1)=n-1.

Combining with (7), we obtain that

|E(Gk,n¯)|n1+{(k+2k+12)n1 if k is odd, (k+4k+22)n1 if k is even. |E(\overline{G_{k,n}})|\geq n-1+\left\{\begin{array}[]{ll}\left(k+\frac{2}{k+1}-2\right)n-1&\text{ if }k\text{ is odd, }\\ \left(k+\frac{4}{k+2}-2\right)n-1&\text{ if }k\text{ is even. }\end{array}\right.

If kk is odd, then

n1+(k+2k+12)n1=(k1)n2+2k+1n>(k1)n2;\displaystyle n-1+\left(k+\frac{2}{k+1}-2\right)n-1=(k-1)n-2+\frac{2}{k+1}n>(k-1)n-2;

if kk is even, then

n1+(k+4k+22)n1=(k1)n2+4k+2n>(k1)n2.\displaystyle n-1+\left(k+\frac{4}{k+2}-2\right)n-1=(k-1)n-2+\frac{4}{k+2}n>(k-1)n-2.

It is a contradiction.

If NGk,n(u1)V2N_{G_{k,n}}(u_{1})\cap V_{2}\neq\emptyset, without loss of generality, we let u2V2u_{2}\in V_{2} and u3V3u_{3}\in V_{3} be two adjacent vertices to u1u_{1}. By 9, we can greedily find a path P=u2u1u3ukP=u_{2}-u_{1}-u_{3}-\cdots-u_{k} of length kk, where uiViu_{i}\in V_{i} for i=2,,ki=2,\cdots,k. Otherwise there exists 3ik13\leq i\leq k-1 such that NG(ui)Vi+1=N_{G}(u_{i})\cap V_{i+1}=\emptyset. Then dG(ui)2(n1)+(k4)n=(k2)n2d_{G}(u_{i})\leq 2(n-1)+(k-4)n=(k-2)n-2, a contradiction. If NGk,n(u1)V2=N_{G_{k,n}}(u_{1})\cap V_{2}=\emptyset, without loss of generality, we let u3V3u_{3}\in V_{3} and u4V4u_{4}\in V_{4} be two adjacent vertices to u1u_{1}. Similarly, by 9, we can greedily find a path P=u3u1u4uku2P=u_{3}-u_{1}-u_{4}-\cdots-u_{k}-u_{2}, where uiViu_{i}\in V_{i} for i=2,,ki=2,\cdots,k and u2vu_{2}\neq v. Otherwise there exists 4ik14\leq i\leq k-1 such that NG(ui)Vi+1=N_{G}(u_{i})\cap V_{i+1}=\emptyset or NG(uk)V2{v}=N_{G}(u_{k})\cap V_{2}\setminus\{v\}=\emptyset. Then dG(ui)(k2)n1d_{G}(u_{i})\leq(k-2)n-1, a contradiction. Clearly the path PP contains one and only one vertex from every part.

Suppose P=u2u1u3u4ukP=u_{2}-u_{1}-u_{3}-u_{4}-\cdots-u_{k} (The case when P=u3u1u4uku2P=u_{3}-u_{1}-u_{4}-\cdots-u_{k}-u_{2} is similar). By (1) and (8), we obtain that Gk,nV(P)¯\overline{G_{k,n}-V(P)} is a (n1)(n-1)-balanced kk-partite graph with at most (k21k+1)n2\left(\frac{k}{2}-\frac{1}{k+1}\right)n-2 edges if kk is odd and at most (k22k+2)n2\left(\frac{k}{2}-\frac{2}{k+2}\right)n-2 edges if kk is even. It is not difficult to check that

max{(k21k+1)n2,(k22k+2)n2}(k1)(n1)2\max\Big{\{}\left(\frac{k}{2}-\frac{1}{k+1}\right)n-2,\left(\frac{k}{2}-\frac{2}{k+2}\right)n-2\Big{\}}\leq(k-1)(n-1)-2

as k3k\geq 3, n3n\geq 3. It follows that Gk,nV(P)G_{k,n}-V(P) contains at least (k2)(n1)2(k1)(n1)+2\binom{k}{2}(n-1)^{2}-(k-1)(n-1)+2 edges. By inductive hypothesis, Gk,nV(P)G_{k,n}-V(P) contains a Hamilton cycle, denoted by

C=v1v2vk(n1)v1.C=v_{1}-v_{2}-\cdots-v_{k(n-1)}-v_{1}.

If k(n1)k(n-1) is odd, we construct a matching MM of size k(n1)12\frac{k(n-1)-1}{2} from the edges of CC with vV(M)v\notin V(M):

M={{v2i1,v2i}:i=1,2,,k(n1)12}.M=\Big{\{}\{v_{2i-1},v_{2i}\}:i=1,2,\cdots,\frac{k(n-1)-1}{2}\Big{\}}.

If k(n1)k(n-1) is even, we construct a matching MM of size k(n1)22\frac{k(n-1)-2}{2} from the edges of CC with vV(M)v\notin V(M):

M={{v2i1,v2i}:i=1,2,,k(n1)22}.M=\Big{\{}\{v_{2i-1},v_{2i}\}:i=1,2,\cdots,\frac{k(n-1)-2}{2}\Big{\}}.

We have the following claim.

Claim 9.

There exists one edge {v2i1,v2i}\{v_{2i-1},v_{2i}\} of MM such that {u2,v2i1}E(Gk,n)\{u_{2},v_{2i-1}\}\in E(G_{k,n}) and {uk,v2i}E(Gk,n)\{u_{k},v_{2i}\}\in E(G_{k,n}) or {u2,v2i}E(Gk,n)\{u_{2},v_{2i}\}\in E(G_{k,n}) and {uk,v2i1}E(Gk,n)\{u_{k},v_{2i-1}\}\in E(G_{k,n}).

Proof.

To the contrary, if k(n1)k(n-1) is odd, the number of vertices in Gk,nV(P)v¯\overline{G_{k,n}-V(P)-v}, which is adjacent to u2u_{2} or uku_{k}, is at least

2k(n1)122(n1)=knk2n+1,2\frac{k(n-1)-1}{2}-2(n-1)=kn-k-2n+1,

as the number of vertices from the same part to u2u_{2} (uku_{k}) is at most (n1)(n-1) in Gk,nV(P)v¯\overline{G_{k,n}-V(P)-v}. By (7), we obtain:

|E(Gk,n¯)|knk2n+1+{(k+2k+12)n1 if k is odd, (k+4k+22)n1 if k is even. }|E(\overline{G_{k,n}})|\geq kn-k-2n+1+\left\{\begin{array}[]{ll}\left(k+\frac{2}{k+1}-2\right)n-1&\text{ if }k\text{ is odd, }\\ \left(k+\frac{4}{k+2}-2\right)n-1&\text{ if }k\text{ is even. }\end{array}\right\}

If kk is odd, then

knk2n+1+(k+2k+12)n1=(k1)n2+(k3+2k+1)nk+2\displaystyle kn-k-2n+1+\left(k+\frac{2}{k+1}-2\right)n-1=(k-1)n-2+\left(k-3+\frac{2}{k+1}\right)n-k+2
\displaystyle\geq (k1)n2+3(k3+2k+1)k+2=(k1)n2+2k+6k+17>(k1)n2.\displaystyle(k-1)n-2+3\left(k-3+\frac{2}{k+1}\right)-k+2=(k-1)n-2+2k+\frac{6}{k+1}-7>(k-1)n-2.

We derive that |E(Gk,n¯)|>(k1)n+2|E(\overline{G_{k,n}})|>(k-1)n+2. It is similar when kk is even. It is a contradiction. ∎

By Claim 9, we obtain a Hamilton cycle of Gk,nG_{k,n} from PP and CC. Without loss of generality, we can assume {v1,v2}\{v_{1},v_{2}\} of MM satisfying: {u2,v1},{uk,v2}E(Gk,n)\{u_{2},v_{1}\},\{u_{k},v_{2}\}\ \in E(G_{k,n}). Obviously v1u2Pukv2Cv1v_{1}-u_{2}-P-u_{k}-v_{2}-C-v_{1} is a Hamilton cycle of Gk,nG_{k,n}.

Case 2. There exists only one i{2,3,,k}i\in\{2,3,\cdots,k\} such that NGk,n(u1)ViN_{G_{k,n}}(u_{1})\cap V_{i}\neq\emptyset.

In this case we have dGk,n(u1)nd_{G_{k,n}}(u_{1})\leq n. If k=3k=3 and n=3n=3, then it is easy to check that G3,3G_{3,3} contains a Hamilton cycle. Suppose that k3k\geq 3, n3n\geq 3 except k=3k=3 and n=3n=3. We have the following claim.

Claim 10.

δ(Gk,nu1)(k2)n+1\delta(G_{k,n}-u_{1})\geq(k-2)n+1.

Proof.

Let G=Gk,nu1G^{\prime}=G_{k,n}-u_{1}. To the contrary, suppose uV(G)u\in V(G^{\prime}) such that dG(u)(k2)nd_{G^{\prime}}(u)\leq(k-2)n. If uV1u\in V_{1}, then |E(Gu)|(k12)n2+(n2)(k1)n|E(G^{\prime}-u)|\leq\binom{k-1}{2}n^{2}+(n-2)(k-1)n. It follows that

|E(Gk,n)|\displaystyle|E(G_{k,n})| dG(u)+|E(Gu)|+dGk,n(u1)\displaystyle\leq d_{G^{\prime}}(u)+|E(G^{\prime}-u)|+d_{G_{k,n}}(u_{1})
(k2)n+(k12)n2+(n2)(k1)n+n=(k2)n2(k1)n,\displaystyle\leq(k-2)n+\binom{k-1}{2}n^{2}+(n-2)(k-1)n+n=\binom{k}{2}n^{2}-(k-1)n,

a contradiction. We assume that uViu\in V_{i} for some 2ik2\leq i\leq k. Then |E(Gu)|(k22)n2+(2n2)(k2)n+(n1)(n1)|E(G^{\prime}-u)|\leq\binom{k-2}{2}n^{2}+(2n-2)(k-2)n+(n-1)(n-1). Therefore

|E(Gk,n)|\displaystyle|E(G_{k,n})| dG(u)+|E(Gu)|+dGk,n(u1)\displaystyle\leq d_{G^{\prime}}(u)+|E(G^{\prime}-u)|+d_{G_{k,n}}(u_{1})
(k2)n+(k22)n2+(2n2)(k2)n+(n1)(n1)+n=(k2)n2(k1)n+1,\displaystyle\leq(k-2)n+\binom{k-2}{2}n^{2}+(2n-2)(k-2)n+(n-1)(n-1)+n=\binom{k}{2}n^{2}-(k-1)n+1,

a contradiction. ∎

Suppose that NGk,n(u1)V2N_{G_{k,n}}(u_{1})\subseteq V_{2}. Let u2,u2NGk,n(u1)V2u_{2},u_{2}^{\prime}\in N_{G_{k,n}}(u_{1})\subseteq V_{2}. We claim that there exist two disjoint paths of length kk:

P1=u1u2u3ukandP2=u1u2u3uku1,\displaystyle P_{1}=u_{1}-u_{2}-u_{3}-\cdots-u_{k}{\,\,\text{and}\,\,}P_{2}=u_{1}-u_{2}^{\prime}-u_{3}^{\prime}-\cdots-u_{k}^{\prime}-u_{1}^{\prime},

where uiuiViu_{i}\neq u_{i}^{\prime}\in V_{i} for i=1,2,,ki=1,2,\cdots,k. First, we can greedily construct P1P_{1}. By Claim 10, δ(Gk,nu1)(k2)n+1\delta(G_{k,n}-u_{1})\geq(k-2)n+1, we obtain that NGk,nu1(ui)Vi+1N_{G_{k,n}-u_{1}}(u_{i})\cap V_{i+1}\neq\emptyset for 2ik12\leq i\leq k-1. Next, we can also greedily construct P2P_{2}. Otherwise, there exists uiViu_{i}^{\prime}\in V_{i} such that NGk,nu1(ui)Vi+1{ui}=N_{G_{k,n}-u_{1}}(u_{i}^{\prime})\cap V_{i+1}\setminus\{u_{i}\}=\emptyset for 2ik12\leq i\leq k-1 or NGk,nu1(uk)V1{u1}=N_{G_{k,n}-u_{1}}(u_{k}^{\prime})\cap V_{1}\setminus\{u_{1}\}=\emptyset. It follows that dGk,nu1(ui)kn1n(n1)=(k2)nd_{G_{k,n}-u_{1}}(u_{i}^{\prime})\leq kn-1-n-(n-1)=(k-2)n, a contradiction.

Suppose that NGk,n(u1)ViN_{G_{k,n}}(u_{1})\subseteq V_{i} for 3ik3\leq i\leq k. Without loss of generality, we let u3,u3NGk,n(u1)V3u_{3},u_{3}^{\prime}\in N_{G_{k,n}}(u_{1})\subseteq V_{3}. We claim that there exist two disjoint paths of length kk:

P1=u1u3u2u4ukandP2=u1u3u2u4uku1,\displaystyle P_{1}=u_{1}-u_{3}-u_{2}-u_{4}-\cdots-u_{k}{\,\,\text{and}\,\,}P_{2}=u_{1}-u_{3}^{\prime}-u_{2}^{\prime}-u_{4}^{\prime}-\cdots-u_{k}^{\prime}-u_{1}^{\prime},

where uiuiViu_{i}\neq u_{i}^{\prime}\in V_{i} for i=1,2,,ki=1,2,\cdots,k. Especially, if k=3k=3, we can let u2vu_{2}\neq v. The explanation is similar to the case when NGk,n(u1)V2N_{G_{k,n}}(u_{1})\subseteq V_{2}.

Recall that dGk,n(u1)nd_{G_{k,n}}(u_{1})\leq n. Clearly dGk,n¯(u1)(k2)nd_{\overline{G_{k,n}}}(u_{1})\geq(k-2)n. By (1), we derive that

|E(Gk,nV(P1P2)¯)|n2.|E(\overline{G_{k,n}-V(P_{1}\cup P_{2})})|\leq n-2.

Therefore Gk,nV(P1)V(P2)G_{k,n}-V(P_{1})-V(P_{2}) is a (n2)(n-2)-balanced kk-partite graph with at least

(k2)(n2)2(n2)(k2)(n2)2(k1)(n2)+2\displaystyle\binom{k}{2}(n-2)^{2}-(n-2)\geq\binom{k}{2}(n-2)^{2}-(k-1)(n-2)+2

edges as k3k\geq 3, n3n\geq 3 except k=3k=3, n=3n=3. By inductive hypothesis, Gk,nV(P1P2)G_{k,n}-V(P_{1}\cup P_{2}) contains a Hamilton cycle, denoted by

C=v1v2vk(n2)v1.C=v_{1}-v_{2}-\cdots-v_{k(n-2)}-v_{1}.

If k(n2)k(n-2) is odd, we construct a matching MM of size k(n2)12\frac{k(n-2)-1}{2} from the edges of CC with vV(M)v\notin V(M):

M={{v2i1,v2i}:i=1,2,,k(n2)12}.M=\Big{\{}\{v_{2i-1},v_{2i}\}:i=1,2,\cdots,\frac{k(n-2)-1}{2}\Big{\}}.

If k(n2)k(n-2) is even, we construct a matching MM of size k(n2)22\frac{k(n-2)-2}{2} from the edges of CC with vV(M)v\notin V(M):

M={{v2i1,v2i}:i=1,2,,k(n2)22}.M=\Big{\{}\{v_{2i-1},v_{2i}\}:i=1,2,\cdots,\frac{k(n-2)-2}{2}\Big{\}}.

We have the following claim.

Claim 11.

There exists one edge {v2i1,v2i}\{v_{2i-1},v_{2i}\} of MM such that {u1,v2i1}E(Gk,n)\{u_{1}^{\prime},v_{2i-1}\}\in E(G_{k,n}) and {uk,v2i}E(Gk,n)\{u_{k},v_{2i}\}\in E(G_{k,n}) or {u1,v2i}E(Gk,n)\{u_{1}^{\prime},v_{2i}\}\in E(G_{k,n}) and {uk,v2i1}E(Gk,n)\{u_{k},v_{2i-1}\}\in E(G_{k,n}).

Proof.

To the contrary, if k(n2)k(n-2) is odd, the number of vertices in Gk,nV(P1P2)v¯\overline{G_{k,n}-V(P_{1}\cup P_{2})-v}, which is adjacent to u1u_{1}^{\prime} or uku_{k}, is at least

2k(n2)122(n2)=kn2k2n+3,2\frac{k(n-2)-1}{2}-2(n-2)=kn-2k-2n+3,

as the number of vertices from the same part to u1u_{1}^{\prime} (uku_{k}) is at most (n2)(n-2) in Gk,nV(P1P2)v¯\overline{G_{k,n}-V(P_{1}\cup P_{2})-v}. By (7), we obtain:

|E(Gk,n¯)|kn2k2n+3+{(k+2k+12)n1 if k is odd, (k+4k+22)n1 if k is even. }|E(\overline{G_{k,n}})|\geq kn-2k-2n+3+\left\{\begin{array}[]{ll}\left(k+\frac{2}{k+1}-2\right)n-1&\text{ if }k\text{ is odd, }\\ \left(k+\frac{4}{k+2}-2\right)n-1&\text{ if }k\text{ is even. }\end{array}\right\}

If kk is odd, then

kn2k2n+3+(k+2k+12)n1\displaystyle kn-2k-2n+3+\left(k+\frac{2}{k+1}-2\right)n-1
=\displaystyle= (k1)n2+(k3+2k+1)n2k+4\displaystyle(k-1)n-2+\left(k-3+\frac{2}{k+1}\right)n-2k+4
\displaystyle\geq (k1)n2+3(k3+2k+1)2k+4\displaystyle(k-1)n-2+3\left(k-3+\frac{2}{k+1}\right)-2k+4
=\displaystyle= (k1)n2+k+6k+15>(k1)n2.\displaystyle(k-1)n-2+k+\frac{6}{k+1}-5>(k-1)n-2.

We derive that |E(Gk,n¯)|>(k1)n+2|E(\overline{G_{k,n}})|>(k-1)n+2. It is similar when kk is even. It is a contradiction. ∎

By Claim 11, we obtain a Hamilton cycle of Gk,nG_{k,n} from P1P_{1}, P2P_{2} and CC. Without loss of generality, we can assume {v1,v2}\{v_{1},v_{2}\} of MM satisfying: {u1,v1},{uk,v2}E(Gk,n)\{u_{1}^{\prime},v_{1}\},\{u_{k},v_{2}\}\ \in E(G_{k,n}). Obviously v1u1P2u1P1ukv2Cv1v_{1}-u_{1}^{\prime}-P_{2}-u_{1}-P_{1}-u_{k}-v_{2}-C-v_{1} is a Hamilton cycle of Gk,nG_{k,n}.

Once we have proved Theorem 1, we can obtain a useful inference.

Theorem 12.

Let G=(V,E)G=(V,E) be an nn-balanced kk-partite graph with k2k\geq 2, n1n\geq 1 except k=2k=2, n=1n=1. If |E(G)|n2Ck2(k1)n+1|E(G)|\geq n^{2}C_{k}^{2}-(k-1)n+1 and δ(Gk,n)2\delta(G_{k,n})\geq 2, then GG is Hamiltonian.

4. Proof of Theorem 12

Suppose that Gk,n=(V(Gk,n),E(Gk,n))G_{k,n}=(V(G_{k,n}),E(G_{k,n})) is an nn-balanced kk-partite graph with kk parts V1V_{1}, V2V_{2}, ,\cdots, VkV_{k} , |E(Gk,n)|(k2)n2(k1)n+1|E(G_{k,n})|\geq\binom{k}{2}n^{2}-(k-1)n+1 and δ(Gk,n)2\delta(G_{k,n})\geq 2, where k2k\geq 2, n1n\geq 1 except k=2k=2, n=1n=1. Recall that E(Gk,n¯)=E(CGk,n)E(Gk,n)E(\overline{G_{k,n}})=E(CG_{k,n})\setminus E(G_{k,n}), we have

|E(Gk,n¯)|(k1)n1.|E(\overline{G_{k,n}})|\leq(k-1)n-1. (10)

For every pair of nonadjacent vertices uu and vv which are in different partite sets,

d(u)+d(v)max{4,(k1)n}=σGk,nd(u)+d(v)\geq\max\{4,(k-1)n\}=\sigma_{G_{k,n}}

If GG satisfies the conditions of Theorem6, GG is hamiltonian. Otherwise, there exists a pair of nonadjacent vertices uu and vv which are in different partite sets such that

dGk,n¯(u){(k21k+1)n1 if k is odd (k22k+2)n1 if k is even d_{\overline{G_{k,n}}}(u)\leq\left\{\begin{array}[]{l}\left(\frac{k}{2}-\frac{1}{k+1}\right)n-1\text{ if }k\text{ is odd }\\ \left(\frac{k}{2}-\frac{2}{k+2}\right)n-1\text{ if }k\text{ is even }\end{array}\right. (11)
|E(Gk,n{u}¯)E(Gk,n{v}¯)|{(12k+1)n if k is odd (14k+2)n if k is even \left|E(\overline{G_{k,n}-\{u\}})\bigcap E(\overline{G_{k,n}-\{v\}})\right|\leq\left\{\begin{array}[]{l}\left(1-\frac{2}{k+1}\right)n\text{ if }k\text{ is odd }\\ \left(1-\frac{4}{k+2}\right)n\text{ if }k\text{ is even }\end{array}\right. (12)

hold.

δ(Gk,n)+1>{(k2k+1)nif k is odd(k4k+2)nif k is even\delta(G_{k,n})+1>\left\{\begin{array}[]{l}\left(k-\frac{2}{k+1}\right)n\quad\text{if k is odd}\\ \left(k-\frac{4}{k+2}\right)n\quad\text{if k is even}\end{array}\right., only when k=2,n2k=2,n\geq 2, or k=4,n=2k=4,n=2, or k2,n=1k\geq 2,n=1. In these several cases, we only need to consider d(u)+d(v)=δ(Gk,n)>{(k2k+1)nif k is odd(k4k+2)nif k is evend(u)+d(v)=\delta(G_{k,n})>\left\{\begin{array}[]{l}\left(k-\frac{2}{k+1}\right)n\quad\text{if k is odd}\\ \left(k-\frac{4}{k+2}\right)n\quad\text{if k is even}\end{array}\right.. It’s straightforward to prove these cases with a comparable proof of the k2,n=2k\geq 2,n=2 case in Proof of Claim 8.

The other case is δ(Gk,n)+1{(k2k+1)nif k is odd(k4k+2)nif k is even\delta(G_{k,n})+1\leq\left\{\begin{array}[]{l}\left(k-\frac{2}{k+1}\right)n\quad\text{if k is odd}\\ \left(k-\frac{4}{k+2}\right)n\quad\text{if k is even}\end{array}\right.. If d(u)+d(v)=δ(Gk,n)d(u)+d(v)=\delta(G_{k,n}), it’s straightforward to prove these cases with a comparable proof of the k2,n=2k\geq 2,n=2 case in Proof of Claim 8. If d(u)+d(v)>δ(Gk,n)d(u)+d(v)>\delta(G_{k,n}), then |E(Gk,n{u}¯)E(Gk,n{v}¯)|1|E(\overline{G_{k,n}-\{u\}})\bigcap E(\overline{G_{k,n}-\{v\}})|\geq 1. There must exist an edge belonging to E(Gk,n¯)E(\overline{G_{k,n}}) that is not associated with uu or vv. It is useful to set the edge to abab. Considering the graph G{ab}G\bigcup\{ab\}, set it to GG. Applying Theorem 11, GG is Hamiltonian. Let the Hamiltonian cycle of GG^{\prime} be HH. If HH does not include the edge abab, the conclusion holds. Otherwise, HH contains the edge abab. Let the other points adjacent to a,ba,b on HH, respectively, be aleft,brighta_{left},b_{right}. It’s useful to set H:waleftabbrightwH:w\ldots a_{left}abb_{right}\ldots w. Because d(a)2d(a)\geq 2 and d(b)2d(b)\geq 2 in GG, let aN(a),bN(b),aaleft,bbrighta^{\prime}\in N(a),b^{\prime}\in N(b),a^{\prime}\neq a_{left},b^{\prime}\neq b_{right}. If HH contains the edge aba^{\prime}b^{\prime}, there exists a new Hamiltonian cycle H:wHaaHbbHw(H:wHaaHbbHw)H^{\prime}:w-\overrightarrow{H}-a^{\prime}a-\overleftarrow{H}-b^{\prime}b-\overrightarrow{H}-w\left(H^{\prime}:w-\overrightarrow{H}-aa^{\prime}-\overleftarrow{H}-b^{\prime}b-\overrightarrow{H}-w\right) And the conclusion holds. Thus, |NGk,n¯(a)NGk,n¯(b)|kn3+1(n1)(n1)=(k2)n|N_{\overline{G_{k,n}}}(a)\bigcup N_{\overline{G_{k,n}}}(b)|\geq kn-3+1-(n-1)-(n-1)=(k-2)n, then |E(Gk,n{u}¯)E(Gk,n{v}¯)||NGk,n¯(a)NGk,n¯(b)|4(k2)n4|E(\overline{G_{k,n}-\{u\}})\bigcap E(\overline{G_{k,n}-\{v\}})|\geq|N_{\overline{G_{k,n}}}(a)\bigcup N_{\overline{G_{k,n}}}(b)|-4\geq(k-2)n-4. Since (12), the contradiction arises if kk and nn are sufficiently large.

References

  • [1] G. Chen, R. J. Faudree, R. J. Gould, M. S. Jacobson, and L. Lesniak. Hamiltonicity in balancedk-partite graphs. Graphs and Combinatorics, 11(3):221–231, 1995.
  • [2] G. Chen and M. S. Jacobson. Degree sum conditions for hamiltonicity onk-partite graphs. Graphs and Combinatorics, 13(4):325–343, 1997.
  • [3] O. Ore. Note on hamilton circuits. American Mathematical Monthly, 67(1):55–55, 1960.