This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The estimate of lifespan and local well-posedness for the non-resistive MHD equations in homogeneous Besov spaces

Weikui Ye1\mbox{Ye}^{1}111email: [email protected] Wei Luo1\mbox{Luo}^{1}222email: [email protected]  and Zhaoyang Yin1,2\mbox{Yin}^{1,2}333email: [email protected]
Department1{}^{1}\mbox{Department} of Mathematics, Sun Yat-sen University,
Guangzhou, 510275, China
Faculty2{}^{2}\mbox{Faculty} of Information Technology,
Macau University of Science and Technology, Macau, China
Abstract

In this paper, we mainly investigate the Cauchy problem of the non-resistive MHD equation. We first establish the local existence in the homogeneous Besov space B˙p,1dp1×B˙p,1dp\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1} with p<p<\infty, and give a lifespan TT of the solution which depends on the norm of the Littlewood-Paley decomposition of the initial data. Then, we prove that if the initial data (u0n,b0n)(u0,b0)(u^{n}_{0},b^{n}_{0})\rightarrow(u_{0},b_{0}) in B˙p,1dp1×B˙p,1dp\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1}, then the corresponding existence times TnTT_{n}\rightarrow T, which implies that they have a common lower bound of the lifespan. Finally, we prove that the data-to-solutions map depends continuously on the initial data when p2dp\leq 2d. Therefore the non-resistive MHD equation is local well-posedness in the homogeneous Besov space in the Hadamard sense. Our obtained result improves considerably the recent results in [13, 5, 11].

Keywords: The non-resistive MHD equation, Lifespan, Continuous dependence, Local well-posedness.
Mathematics Subject Classification: 35Q53, 35B30, 35B44, 35D10, 76W05.

1 Introduction

In this paper, we mainly investigate the Cauchy problem of the incompressible non-resistive magnetohydrodynamic (MHD) equations:

{utΔu+P=bbuu,bt+ub=bu,divu=divb=0,(u,b)|t=0:=(u0,b0),\left\{\begin{array}[]{lll}u_{t}-\Delta u+\nabla P=b\nabla b-u\nabla u,\\ b_{t}+u\nabla b=b\nabla u,\\ div~{}u=div~{}b=0,\\ (u,b)|_{t=0}:=(u_{0},b_{0}),\end{array}\right. (1.1)

where the unknowns are the vector fields u=(u1,u2,,ud),b=(b1,b2,,bd)u=(u_{1},u_{2},...,u_{d}),\quad b=(b_{1},b_{2},...,b_{d}) and the scalar function PP. Here, uu and bb are the velocity and magnetic, respectively, while PP denotes the pressure. The magnetohydrodynamic equation is a coupled system of the Navier-Stokes equation and Maxwell’s equation. This model describes the interactions between the magnetic field and the fluid of moving electrically charged particles such as plasmas, liquid metals, and electrolytes. For more physical background, we refer to [4, 8].

The MHD equations are of great interest in mathematics and physics. Let’s review some well-posedness results about the MHD equations. In the case when there is full magnetic diffusion in system (1.1), G. Duvaut and J.-L. Lions, [9] firstly established the local existence and uniqueness result in the Sobolev spaces. They also prove the global existence of strong solutions with small initial data. M. Sermange, and R. Temam[18] proved the global well-posedness in the Sobolev spaces with d=2d=2. For the system (1.1) with magnetic diffusion, one may refer to the survey paper[14] written by F-H. Lin and the references therein for recent progress in this direction.

In the physics of plasmas the magnetic diffusion is very small such that it can be neglected. In this case, the study of well-posedness will become more difficult. We refer to [1, 12, 15, 17, 16] about the global existence results with initial data sufficiently close to the equilibrium. The L2L^{2} decay rate was studied by R. Agapito and M. Schonbek[2]. C. Fefferman, D. McCormicket, J. Robinson and J. Rodrigo consider the critical Sobolev space about the well-posedness of the system (1.1). They obtained a local existence result in d,d=2,3\mathbb{R}^{d},d=2,3 with the initial data (u0,B0)Hs(d)×Hs(d),s>d/2(u_{0},B_{0})\in H^{s}(\mathbb{R}^{d})\times H^{s}(\mathbb{R}^{d}),s>d/2 in [10] and (u0,B0)Hs1ϵ(d)×Hs(d),s>d/2,0<ϵ<1(u_{0},B_{0})\in H^{s-1-\epsilon}(\mathbb{R}^{d})\times H^{s}(\mathbb{R}^{d}),s>d/2,0<\epsilon<1 in [11]. J. Chemin, D. McCormicket, J. Robinson and J. Rodrigo [5] improved Fefferman et al.’s results to the inhomogenous Besov space with the initial data (u0,B0)B2,1d21(d)×B2,1d2(d),(d=2,3)(u_{0},B_{0})\in B^{\frac{d}{2}-1}_{2,1}(\mathbb{R}^{d})\times B^{\frac{d}{2}}_{2,1}(\mathbb{R}^{d}),(d=2,3) and also proved the uniqueness with d=3d=3. R. Wan in [19] obtained the uniqueness with d=2d=2. Recently, J. Li, W, Tan and Z. Yin in [13] obtained the existence and uniqueness of solutions to (1.1) with the initial data (u0,B0)B˙p,1dp1(d)×B˙p,1dp(d)(u_{0},B_{0})\in\dot{B}^{\frac{d}{p}-1}_{p,1}(\mathbb{R}^{d})\times\dot{B}^{\frac{d}{p}}_{p,1}(\mathbb{R}^{d}) (1p2d)(1\leq p\leq 2d).

However, whether or not the solution for the non-resistive MHD equations is local well-posedness (local existence, uniqueness and continuous dependence of the solution) in homogeneous Besov spaces is an open problem which was proposed by Chemin et al. in [5]. In [13], J. Li, W, Tan and Z. Yin proved the local existence and uniqueness of solutions to (1.1) in (u0,B0)B˙p,1dp1(d)×B˙p,1dp(d)(u_{0},B_{0})\in\dot{B}^{\frac{d}{p}-1}_{p,1}(\mathbb{R}^{d})\times\dot{B}^{\frac{d}{p}}_{p,1}(\mathbb{R}^{d}) (1p2d)(1\leq p\leq 2d). But the continuous dependence of the solution for the Cauchy problem of the non-resistive MHD equations in homogeneous Besov spaces has not been proved yet. In the paper, our aim is to solve this open problem by establishing the local well-posedness for the Cauchy problem (1.1) in homogeneous Besov spaces. Meanwhile, we generalized the local existence’s index from 1p2d1\leq p\leq 2d[13] to 1p<1\leq p<\infty.

For convenience, we transform the system (1.1) into an equivalent form of compressible type. By using divu=divB=0divu=divB=0, we have

uu=div(uu),BB=div(BB),Bu=div(uB).u\nabla u=div(u\otimes u),\quad B\nabla B=div(B\otimes B),\quad B\nabla u=div(u\otimes B).

Therefore, the system (1.2) is formally equivalent to the following equations

{utΔu=(bbuu),bt+ub=bu,(u,b)|t=0:=(u0,b0),\left\{\begin{array}[]{lll}u_{t}-\Delta u=\mathbb{P}(b\nabla b-u\nabla u),\\ b_{t}+u\nabla b=b\nabla u,\\ (u,b)|_{t=0}:=(u_{0},b_{0}),\end{array}\right. (1.2)

where =I+(Δ)1div\mathbb{P}=I+\nabla(-\Delta)^{-1}div is the Leray project operator, and the initial data is divergence free divu0=divb0=0div~{}u_{0}=div~{}b_{0}=0.

To solve (1.2), the main difficulty is that the system is only partially parabolic, owing to the magnetic equation which is of hyperbolic type. This means it’s hard to get the concrete expression for the lifespan TT (especially the lower bound of TT), which creates the main difficulty for proving the continuous dependence. Therefore, we would like to present a general functional framework to deal with the local existence of the solution of (1.2) in the homogeneous Besov spaces. By obtaining the expression of the lifespan, we get the uniformly lower bound of the lifespan TT by a constructive way (see the key Lemma 4.1 below). Finally, we use the frequency decomposition (see Theorem 4.4 below) to get the continuous dependence.
Our main theorem can be stated as follows.

Theorem 1.1.

Let (u0,b0)B˙p,1dp1(d)×B˙p,1dp(d)(u_{0},b_{0})\in\dot{B}^{\frac{d}{p}-1}_{p,1}(\mathbb{R}^{d})\times\dot{B}^{\frac{d}{p}}_{p,1}(\mathbb{R}^{d}) with d2d\geq 2. Then there exists a positive time TT such that
(1) Local existence: if p[1,)p\in[1,\infty), then the system (1.2) has a local solution (u,b)(u,b) in ETpE^{p}_{T} with

ETp:=C([0,T];B˙p,1dp1(d))L1([0,T];B˙p,1dp+1(d))×C([0,T];B˙p,1dp(d)).E^{p}_{T}:=C([0,T];\dot{B}^{\frac{d}{p}-1}_{p,1}(\mathbb{R}^{d}))\cap L^{1}([0,T];\dot{B}^{\frac{d}{p}+1}_{p,1}(\mathbb{R}^{d}))\times C([0,T];\dot{B}^{\frac{d}{p}}_{p,1}(\mathbb{R}^{d})).

(2) Uniqueness: if p[1,2d]p\in[1,2d], then the solution of (1.2) is unique.
(3) Continuous dependence: if p[1,2d]p\in[1,2d], then the solution depends continuously on the initial data in ETpE^{p}_{T}.

Remark 1.2.

Comparing to [13], we generalized the local existence’s index from p[1,2d]p\in[1,2d] to p[1,)p\in[1,\infty) and prove the continuous dependence with p[1,2d]p\in[1,2d] in homogeneous Besov spaces.

The remainder of the paper is organized as follows. In Section 2 we introduce some useful preliminaries. In Section 3, we prove the local existence and the uniqueness of the solution to (1.2) with the expression of local time being given. In Section 4, we firstly prove that if the initial data (u0n,B0n)(u^{n}_{0},B^{n}_{0}) tends to (u0,B0)(u_{0},B_{0}) in Bp,1dp1×Bp,1dpB^{\frac{d}{p}-1}_{p,1}\times B^{\frac{d}{p}}_{p,1}, then their local existence times TnTT_{n}\rightarrow T, which implies that they have the common existence time TδT-\delta (δ\delta is small enough). Then we use the method of frequency decomposition to obtain the continuous dependence.

Notations: Throughout, we donate B˙p,rs(d))=B˙sp,r\dot{B}^{s}_{p,r}(\mathbb{R}^{d}))=\dot{B}^{s}_{p,r}, uB˙p,rs(d)+vB˙p,rs(d)=u,vB˙p,rs\|u\|_{\dot{B}^{s}_{p,r}(\mathbb{R}^{d})}+\|v\|_{\dot{B}^{s}_{p,r}(\mathbb{R}^{d})}=\|u,v\|_{\dot{B}^{s}_{p,r}} and C([0,T];B˙p,rs(d))=CT(B˙p,rs)C([0,T];\dot{B}^{s}_{p,r}(\mathbb{R}^{d}))=C_{T}(\dot{B}^{s}_{p,r}), Lp([0,T];B˙p,rs(d))=LTp(B˙p,rs)L^{p}([0,T];\dot{B}^{s}_{p,r}(\mathbb{R}^{d}))=L^{p}_{T}(\dot{B}^{s}_{p,r}). For convenience, we donate CE0C(1+E0+eE0)C_{E_{0}}\approx C(1+E_{0}+e^{E_{0}}) for CC large enough.

2 Preliminaries

In this section, we will recall some propositons and lemmas on the Littlewood-Paley decomposition and Besov spaces.

Proposition 2.1.

[3] Let 𝒞\mathcal{C} be the annulus {ξd:34|ξ|83}\{\xi\in\mathbb{R}^{d}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\}. There exist radial functions χ\chi and φ\varphi, valued in the interval [0,1][0,1], belonging respectively to 𝒟(B(0,43))\mathcal{D}(B(0,\frac{4}{3})) and 𝒟(𝒞)\mathcal{D}(\mathcal{C}), and such that

ξd,χ(ξ)+j0φ(2jξ)=1,\forall\xi\in\mathbb{R}^{d},\ \chi(\xi)+\sum_{j\geq 0}\varphi(2^{-j}\xi)=1,
ξd\{0},jφ(2jξ)=1,\forall\xi\in\mathbb{R}^{d}\backslash\{0\},\ \sum_{j\in\mathbb{Z}}\varphi(2^{-j}\xi)=1,
|jj|2Suppφ(2j)Suppφ(2j)=,|j-j^{\prime}|\geq 2\Rightarrow\mathrm{Supp}\ \varphi(2^{-j}\cdot)\cap\mathrm{Supp}\ \varphi(2^{-j^{\prime}}\cdot)=\emptyset,
j1Suppχ()Suppφ(2j)=.j\geq 1\Rightarrow\mathrm{Supp}\ \chi(\cdot)\cap\mathrm{Supp}\ \varphi(2^{-j}\cdot)=\emptyset.

The set 𝒞~=B(0,23)+𝒞\widetilde{\mathcal{C}}=B(0,\frac{2}{3})+\mathcal{C} is an annulus, and we have

|jj|52j𝒞2j𝒞~=.|j-j^{\prime}|\geq 5\Rightarrow 2^{j}\mathcal{C}\cap 2^{j^{\prime}}\widetilde{\mathcal{C}}=\emptyset.

Further, we have

ξd,12χ2(ξ)+j0φ2(2jξ)1,\forall\xi\in\mathbb{R}^{d},\ \frac{1}{2}\leq\chi^{2}(\xi)+\sum_{j\geq 0}\varphi^{2}(2^{-j}\xi)\leq 1,
ξd\{0},12jφ2(2jξ)1.\forall\xi\in\mathbb{R}^{d}\backslash\{0\},\ \frac{1}{2}\leq\sum_{j\in\mathbb{Z}}\varphi^{2}(2^{-j}\xi)\leq 1.
Definition 2.2.

[3] Denote \mathcal{F} by the Fourier transform and 1\mathcal{F}^{-1} by its inverse. Let uu be a tempered distribution in 𝒮(d)\mathcal{S}^{\prime}(\mathbb{R}^{d}). For all jj\in\mathbb{Z}, define

Δju=0ifj2,Δ1u=1(χu),Δju=1(φ(2j)u)ifj0,Sju=j<jΔju.\Delta_{j}u=0\,\ \text{if}\,\ j\leq-2,\quad\Delta_{-1}u=\mathcal{F}^{-1}(\chi\mathcal{F}u),\quad\Delta_{j}u=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u)\,\ \text{if}\,\ j\geq 0,\quad S_{j}u=\sum_{j^{\prime}<j}\Delta_{j^{\prime}}u.

Then the Littlewood-Paley decomposition is given as follows:

u=jΔjuin𝒮(d).u=\sum_{j\in\mathbb{Z}}\Delta_{j}u\quad\text{in}\ \mathcal{S}^{\prime}(\mathbb{R}^{d}).

Let s, 1p,r.s\in\mathbb{R},\ 1\leq p,r\leq\infty. The nonhomogeneous Besov space Bp,rs(d)B^{s}_{p,r}(\mathbb{R}^{d}) is defined by

Bp,rs=Bp,rs(d)={uS(d):uBp,rs(d)=(2jsΔjuLp)jlr()<}.B^{s}_{p,r}=B^{s}_{p,r}(\mathbb{R}^{d})=\{u\in S^{\prime}(\mathbb{R}^{d}):\|u\|_{B^{s}_{p,r}(\mathbb{R}^{d})}=\Big{\|}(2^{js}\|\Delta_{j}u\|_{L^{p}})_{j}\Big{\|}_{l^{r}(\mathbb{Z})}<\infty\}.

Similarly, we can define the homogeneous Besov space.

B˙p,rs=B˙p,rs(d):={uSh(d)|uB˙p,rs:=2sjΔ˙juLp(𝕊d)lr},\dot{B}^{s}_{p,r}=\dot{B}^{s}_{p,r}(\mathbb{R}^{d}):=\{u\in S^{\prime}_{h}(\mathbb{R}^{d})|\|u\|_{\dot{B}^{s}_{p,r}}:=\|2^{sj}\|\dot{\Delta}_{j}u\|_{L^{p}(\mathbb{S}^{d})}\|_{l^{r}}\leq\infty\},

where the Littlewood-Paley operator Δ˙j\dot{\Delta}_{j} is defined by

Δ˙ju=1(φ(2j)u)ifj.\dot{\Delta}_{j}u=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u)\,\ \text{if}\,\ j\in\mathbb{Z}.
Lemma 2.3.

Let s(dp,dp]s\in(-\frac{d}{p^{\prime}},\frac{d}{p}] (s=dp,r=1s=\frac{d}{p},r=1). Assume fnf^{n} is uniformly bounded in B˙p,rsB˙,δ(δ>0)\dot{B}^{s}_{p,r}\cap\dot{B}^{-\delta}_{\infty,\infty}(\forall\delta>0) or B˙p,rsL\dot{B}^{s}_{p,r}\cap L^{\infty} . Then φfn\varphi f^{n} is bound in B˙p,rsB˙p,rsϵ1\dot{B}^{s}_{p,r}\cap\dot{B}^{s-\epsilon_{1}}_{p,r} (0<ϵ1<s+dp)(0<\epsilon_{1}<s+\frac{d}{p^{\prime}}), and the map fnφfnf^{n}\mapsto\varphi f^{n} is compact in B˙p,rsϵ\dot{B}^{s-\epsilon}_{p,r} (0<ϵ<ϵ1)(0<\epsilon<\epsilon_{1}), where φS(d)\varphi\in S(\mathbb{R}^{d}).

Proof.

The proof is based on Theorems 2.93-2.94 in [3], we omit it here. ∎

Lemma 2.4.

[6] Let s1,s2dps_{1},s_{2}\leq\frac{d}{p} and s1+s2>dmax{0,2p1}s_{1}+s_{2}>d\max\{0,\frac{2}{p}-1\}. Assume fB˙p,1s1f\in\dot{B}^{s_{1}}_{p,1} and gB˙p,1s2g\in\dot{B}^{s_{2}}_{p,1}. Then there holds

fgB˙p,s1+s2dpCfB˙p,s1gB˙p,1s2.\|fg\|_{\dot{B}^{s_{1}+s_{2}-\frac{d}{p}}_{p,\infty}}\leq C\|f\|_{\dot{B}^{s_{1}}_{p,\infty}}\|g\|_{\dot{B}^{s_{2}}_{p,1}}.
Definition 2.5.

[3] Let s,1p,q,rs\in\mathbb{R},1\leq p,q,r\leq\infty and T(0,].T\in(0,\infty]. The functional space L~Tq(B˙p,rs)\widetilde{L}^{q}_{T}(\dot{B}^{s}_{p,r}) is defined as the set of all the distributions f(t)f(t) satisfying fL~Tq(B˙p,rs):=(2ksΔ˙kf(t)LTqLp)klr<.\|f\|_{\widetilde{L}^{q}_{T}(\dot{B}^{s}_{p,r})}:=\|(2^{ks}\|\dot{\Delta}_{k}f(t)\|_{L^{q}_{T}L^{p}})_{k}\|_{l^{r}}<\infty.

By Minkowski’s inequality, it is easy to find that

fL~Tq(B˙p,rs)fLTq(B˙p,rs)qr,fL~Tq(B˙p,rs)fLTq(B˙p,rs)qr.\|f\|_{\widetilde{L}^{q}_{T}(\dot{B}^{s}_{p,r})}\leq\|f\|_{L^{q}_{T}(\dot{B}^{s}_{p,r})}\quad q\leq r,\quad\quad\quad\|f\|_{\widetilde{L}^{q}_{T}(\dot{B}^{s}_{p,r})}\geq\|f\|_{L^{q}_{T}(\dot{B}^{s}_{p,r})}\quad q\geq r.

Finally, we state some useful results about the heat equation and the transport equation

{ut+Δu=G,xd,t>0,u(0,x)=u0(x),\left\{\begin{array}[]{l}u_{t}+\Delta u=G,\ x\in\mathbb{R}^{d},\ t>0,\\ u(0,x)=u_{0}(x),\end{array}\right. (2.1)
{ft+vf=g,xd,t>0,f(0,x)=f0(x),\left\{\begin{array}[]{l}f_{t}+v\cdot\nabla f=g,\ x\in\mathbb{R}^{d},\ t>0,\\ f(0,x)=f_{0}(x),\end{array}\right. (2.2)

which are crucial to the proof of our main theorem later.

Lemma 2.6.

[7] Let s,1q,q1,p,rs\in\mathbb{R},1\leq q,q_{1},p,r\leq\infty with q1qq_{1}\leq q. Assume u0u_{0} in B˙p,rs\dot{B}^{s}_{p,r}, and GG in L~Tq1(B˙p,rs)\widetilde{L}^{q_{1}}_{T}(\dot{B}^{s}_{p,r}). Then (2.1) has a unique solution uu in L~Tq(B˙p,rs+2q)\widetilde{L}^{q}_{T}(\dot{B}^{s+\frac{2}{q}}_{p,r}) satisfying

uL~Tq(B˙p,rs+2q)C1(u0B˙p,rs+GL~Tq1B˙p,rs+2q12).\|u\|_{\widetilde{L}^{q}_{T}(\dot{B}^{s+\frac{2}{q}}_{p,r})}\leq C_{1}\Big{(}\|u_{0}\|_{\dot{B}^{s}_{p,r}}+\|G\|_{\widetilde{L}^{q_{1}}_{T}\dot{B}^{s+\frac{2}{q_{1}}-2}_{p,r}}\Big{)}.

In particular, if q1=r=1q_{1}=r=1, by Minkowski’s inequality we have

uLT(B˙p,1s)LT2(B˙p,1s+1)LT1(B˙p,1s+2)C1(u0B˙p,1s+GLT1B˙p,1s).\|u\|_{L^{\infty}_{T}(\dot{B}^{s}_{p,1})\cap L^{2}_{T}(\dot{B}^{s+1}_{p,1})\cap L^{1}_{T}(\dot{B}^{s+2}_{p,1})}\leq C_{1}\Big{(}\|u_{0}\|_{\dot{B}^{s}_{p,1}}+\|G\|_{L^{1}_{T}\dot{B}^{s}_{p,1}}\Big{)}.
Lemma 2.7.

[3] Let s[max{dp,dp},dp+1]s\in[\max\{-\frac{d}{p},-\frac{d}{p^{\prime}}\},\frac{d}{p}+1] (s=1+1p,r=1s=1+\frac{1}{p},r=1; s=max{dp,dp},r=s=\max\{-\frac{d}{p},-\frac{d}{p^{\prime}}\},r=\infty). There exists a constant CC such that for all solutions fL([0,T];Bp,rs)f\in L^{\infty}([0,T];B^{s}_{p,r}) of (2.2) with initial data f0f_{0} in B˙p,rs\dot{B}^{s}_{p,r}, and gg in L1([0,T];B˙p,rs)L^{1}([0,T];\dot{B}^{s}_{p,r}), we have, for a.e. t[0,T]t\in[0,T],

f(t)B˙p,rseC2V(t)(f0B˙p,rs+0teC2V(t)g(t)B˙p,rs𝑑t),\|f(t)\|_{\dot{B}^{s}_{p,r}}\leq e^{C_{2}V(t)}\Big{(}\|f_{0}\|_{\dot{B}^{s}_{p,r}}+\int_{0}^{t}e^{-C_{2}V(t^{\prime})}\|g(t^{\prime})\|_{\dot{B}^{s}_{p,r}}dt^{\prime}\Big{)},

where V(t)=vB˙p,rdpLV^{\prime}(t)=\|\nabla v\|_{\dot{B}^{\frac{d}{p}}_{p,r}\cap L^{\infty}}(if s=1+1p,r=1s=1+\frac{1}{p},r=1, V(t)=vB˙p,1dpV^{\prime}(t)=\|\nabla v\|_{\dot{B}^{\frac{d}{p}}_{p,1}}).

Remark 2.8.

[3] If divv=0div~{}v=0, we can get the same result with a better indicator: max{dp,dp}1<s<dp+1\max\{-\frac{d}{p},-\frac{d}{p^{\prime}}\}-1<s<\frac{d}{p}+1(or s=max{dp,dp}1,r=s=\max\{-\frac{d}{p},-\frac{d}{p^{\prime}}\}-1,r=\infty).

Lemma 2.9.

Let s(max{1dp,1dp},dp]s\in(\max\{1-\frac{d}{p},1-\frac{d}{p^{\prime}}\},\frac{d}{p}] (s=dp,r=1s=\frac{d}{p},r=1), f0B˙p,rsf_{0}\in\dot{B}^{s}_{p,r}, g0LT1(B˙p,rs)g_{0}\in L^{1}_{T}(\dot{B}^{s}_{p,r}) and vLT1(B˙p,1dp)\nabla v\in L^{1}_{T}(\dot{B}^{\frac{d}{p}}_{p,1}). If v(t,x)v(t,x) satisfies one of the following conditions (ρ>1)(\rho>1):
1) when s>1s>1, vLTρ(LB˙p,dp)v\in L^{\rho}_{T}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty});
2) when s=1s=1, vLTρ(LB˙p,rdp)v\in L^{\rho}_{T}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,r^{\prime}});
3) when s<1s<1 and 1p21\leq p\leq 2, vLTρ(LB˙p,dpB˙p,rdp)v\in L^{\rho}_{T}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty}\cap\dot{B}^{\frac{d}{p^{\prime}}}_{p^{\prime},r^{\prime}});
4) when s<1s<1 and p2p\geq 2, vLTρ(LB˙p,rdp)v\in L^{\rho}_{T}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,r^{\prime}}).
Then (2.2) has a unique solution fCT(B˙p,1s)f\in C_{T}(\dot{B}^{s}_{p,1}) with r<r<\infty (fCTw(B˙p,s)f\in C_{Tw}(\dot{B}^{s}_{p,\infty}) with r=r=\infty).

Proof.

Without loss of generality, we only give the proof with s=dp,r=1s=\frac{d}{p},r=1, other cases are similar.

Firstly, we smooth out the data:

f0n:=Snf0,gn:=ρntSng,vn:=ρntSnv.f^{n}_{0}:=S_{n}f_{0},\quad g^{n}:=\rho_{n}*_{t}S_{n}g,\quad v^{n}:=\rho_{n}*_{t}S_{n}v.

Hence, the function

fn(t,x)=f0n(ψt1(x))+0tgn(s,ψs(ψt1(x)))𝑑sf^{n}(t,x)=f^{n}_{0}(\psi^{-1}_{t}(x))+\int_{0}^{t}g^{n}(s,\psi_{s}(\psi^{-1}_{t}(x)))ds

is a solution to

ddtfn(t,ψt(x))=gn(t,ψt(x)).\frac{d}{dt}f^{n}(t,\psi_{t}(x))=g^{n}(t,\psi_{t}(x)).

Further, by Theorem 3.14 in [3], we have

fnB˙p,1dpCe0TvB˙p,11+d2𝑑s(f0nB˙p,1dp+0TgnB˙p,1dp𝑑s).\displaystyle\|f^{n}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\leq Ce^{\int_{0}^{T}\|v\|_{\dot{B}^{1+\frac{d}{2}}_{p,1}}ds}(\|f^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\int_{0}^{T}\|g^{n}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds). (2.3)

Then, setting f¯n:=fn0tgn(s)𝑑s=0tvnfnds\bar{f}^{n}:=f^{n}-\int_{0}^{t}g^{n}(s)ds=-\int_{0}^{t}v^{n}\nabla f^{n}ds, by the Bony decomposition, we get

vnfnLρB˙p,dp1{vnLρ(LB˙p,dp)fnLB˙p,1dp,when s>1,vnLρ(LB˙p,dp)fnLB˙p,1dp,when s=1,vnLρ(LB˙p,dpB˙p,dp)fnLB˙p,1dp,when s<1,1p2,vnLρ(LB˙p,dp)fnLB˙p,1dp,when s<1,p2.\|v^{n}\nabla f^{n}\|_{L^{\rho}\dot{B}^{\frac{d}{p}-1}_{p,\infty}}\leq\left\{\begin{array}[]{lll}\|v^{n}\|_{L^{\rho}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty})}\|f^{n}\|_{L^{\infty}\dot{B}^{\frac{d}{p}}_{p,1}},\quad\quad\quad\quad\text{when }s>1,\\ \|v^{n}\|_{L^{\rho}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty})}\|f^{n}\|_{L^{\infty}\dot{B}^{\frac{d}{p}}_{p,1}},\quad\quad\quad\quad\text{when }s=1,\\ \|v^{n}\|_{L^{\rho}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty}\cap\dot{B}^{\frac{d}{p^{\prime}}}_{p^{\prime},\infty})}\|f^{n}\|_{L^{\infty}\dot{B}^{\frac{d}{p}}_{p,1}},\quad\text{when }s<1,1\leq p\leq 2,\\ \|v^{n}\|_{L^{\rho}(L^{\infty}\cap\dot{B}^{\frac{d}{p}}_{p,\infty})}\|f^{n}\|_{L^{\infty}\dot{B}^{\frac{d}{p}}_{p,1}},\quad\quad\quad\quad\text{when }s<1,p\geq 2.\\ \end{array}\right. (2.4)

This implies that f¯n\bar{f}^{n} is uniformly bounded in CTβ(B˙p,dp1)LT(B˙p,1dp)C^{\beta}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})\cap L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1}). Lemma 2.3 guarantees that the map

f¯nφf¯n,φC0\bar{f}^{n}\rightarrow\varphi\bar{f}^{n},\quad\forall\varphi\in C^{\infty}_{0}

is compact in B˙p,dp1\dot{B}^{\frac{d}{p}-1}_{p,\infty}. Combining Ascoli’s theorem and Cantor’s diagonal process thus ensures that

φf¯nφf¯inCT(B˙p,dp1).\varphi\bar{f}^{n}\rightarrow\varphi\bar{f}\quad in\quad C_{T}(\dot{B}^{\frac{d}{p}-1}_{p,\infty}).

By the Fatou property, we have φf¯nφf¯LT(B˙p,1dp)\varphi\bar{f}^{n}\rightharpoonup\varphi\bar{f}\in L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1}). By interpolation, we get

φf¯nφf¯inCT(B˙p,1dpϵ),0<ϵ<1.\varphi\bar{f}^{n}\rightarrow\varphi\bar{f}\quad in\quad C_{T}(\dot{B}^{\frac{d}{p}-\epsilon}_{p,1}),\quad 0<\epsilon<1.

Finally, applying the above results we can pass the limit in the weak sense:

f:=limnfn=f¯+0tg(s)𝑑s.f:=\lim_{n\rightarrow\infty}f^{n}=\bar{f}+\int_{0}^{t}g(s)ds.

It is easily to deduce that f(t,x)f(t,x) is a solution of (2.2) and fCT(B˙p,1dp)f\in C_{T}(\dot{B}^{\frac{d}{p}}_{p,1}) (For more details see Theorem 3.19 in [3]). This completes the proof. ∎

Remark 2.10.

If divv=0div~{}v=0, we can get the same result with a better indicator: max{dp,dp}<s<dp\max\{-\frac{d}{p},-\frac{d}{p^{\prime}}\}<s<\frac{d}{p} (s=dp,r=1s=\frac{d}{p},r=1). The proof is similar to Lemma 2.10, we omit the detail here.

Definition 2.11.

[3] Let a>0a>0, μ(r)\mu(r) be a continue non-zero and non-decreasing function from [0,a][0,a] to +\mathbb{R}^{+}, μ(0)=0\mu(0)=0. We say that μ\mu is an Osgood modulus of continuity if

0a1μ(r)𝑑r=+.\int_{0}^{a}\frac{1}{\mu(r)}dr=+\infty.
Lemma 2.12.

[3] Let ρ\rho be a measurable function from [0,T][0,T] to [0,a][0,a], γ\gamma a locally integrable function from [0,T][0,T] to +\mathbb{R}^{+}, and μ\mu be an Osgood modulus of continuity. If for some ρ00\rho_{0}\geq 0,

ρ(t)ρ0+0tγ(s)μ(ρ(s))dsfora.e.t[0,T],\rho(t)\leq\rho_{0}+\int_{0}^{t}\gamma(s)\mu(\rho(s))ds\quad for\quad a.e.\quad t\in[0,T],

then we have

M(ρ(t))+M(ρ0)0tγ(s)𝑑swithM(x)=xadrμ(r).-M(\rho(t))+M(\rho_{0})\leq\int_{0}^{t}\gamma(s)ds\quad with\quad M(x)=\int_{x}^{a}\frac{dr}{\mu(r)}. (2.5)

For example, if μ(r)=r\mu(r)=r, we obtain the Gronwall inequality:

ρ(t)ρ0e0tγ(s)𝑑s,M(x)=lnalnx.\rho(t)\leq\rho_{0}e^{\int_{0}^{t}\gamma(s)ds},\quad M(x)=lna-lnx.

If μ(r)=rln(e+c/r)\mu(r)=rln(e+c/r), it’s easy to check that it is still an Osgood modulus of continuity. Then we have

ρ(t)ρ0cee0tγ(s)𝑑scρ0(e0tγ(s)𝑑se),M(ρ(t))+M(ρ0)ln[ln(e+cρ0)ln(e+cρ(t))].\rho(t)\leq\rho_{0}\frac{ce^{e^{\int_{0}^{t}\gamma(s)ds}}}{c-\rho_{0}(e^{\int_{0}^{t}\gamma(s)ds}-e)},\quad-M(\rho(t))+M(\rho_{0})\geq ln[\frac{ln(e+\frac{c}{\rho_{0}})}{ln(e+\frac{c}{\rho(t)})}].

Since γ\gamma is locally integrable, we deduce that if ρ0\rho_{0} small enough such that ρ0c2(e0tγ(s)𝑑se)\rho_{0}\leq\frac{c}{2(e^{\int_{0}^{t}\gamma(s)ds}-e)}, then

ρ(t)2ρ0ee0tγ(s)𝑑s.\rho(t)\leq 2\rho_{0}e^{e^{\int_{0}^{t}\gamma(s)ds}}.

3 Local existence and uniqueness

We divide the proof of local existence and uniqueness into 4 steps:

Step 1: An iterative scheme.

Set (u0n,b0n):=(S˙nu0,S˙nb0)(u^{n}_{0},b^{n}_{0}):=(\dot{S}_{n}u_{0},\dot{S}_{n}b_{0}) and define the first term (u0,b0):=(etΔu0,etΔb0)(u^{0},b^{0}):=(e^{t\Delta}u_{0},e^{t\Delta}b_{0}). Then we introduce a sequence (un,bn)(u^{n},b^{n}) with the initial data (u0n,b0n)(u^{n}_{0},b^{n}_{0}) by solving the following linear transport and heat conductive equations:

{utn+1Δun+1=(bnbnunun),btn+1+unbn+1=bnun,(u0n,b0n):=(S˙nu0,S˙nb0),\left\{\begin{array}[]{lll}u^{n+1}_{t}-\Delta u^{n+1}=\mathbb{P}(b^{n}\nabla b^{n}-u^{n}\nabla u^{n}),\\ b^{n+1}_{t}+u^{n}\nabla b^{n+1}=b^{n}\nabla u^{n},\\ (u^{n}_{0},b^{n}_{0}):=(\dot{S}_{n}u_{0},\dot{S}_{n}b_{0}),\end{array}\right. (3.1)

where S˙ng:=k<nΔ˙kg\dot{S}_{n}g:=\sum_{k<n}\dot{\Delta}_{k}g, it makes sense in Besov spaces when s<dps<\frac{d}{p} or s=dp,r=1s=\frac{d}{p},r=1.  

Step 2: Uniform estimates.

Taking advantage of Lemmas 2.6-2.7, we shall bound the approximating sequences in ETpE^{p}_{T}. Now we claim that there exists some TT independent of nn such that the solutions (un,bn)(u^{n},b^{n}) satisfy the following inequalities :

(H1):bnLT(B˙p,1dp)+unLT(B˙p,1dp1)6E0,(H_{1}):\quad\|b^{n}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|u^{n}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})}\leq 6E_{0},
(H2):unAT2a,AT:=LT2(B˙p,1dp)LT1(B˙p,1dp+1),(H_{2}):\quad\|u^{n}\|_{A_{T}}\leq 2a,\quad A_{T}:={L^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1}}),

where E0:=b0B˙p,1dp+u0B˙p,1dp1E_{0}:=\|b_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}. Now we suppose that aa is small enough such that (aa will be determined later):

amin{E04C1,c},\displaystyle a\leq\min\{\sqrt{\frac{E_{0}}{4C_{1}}},c\}, (3.2)

where cc is any positive real number satisfying c112,eC2c32,4cC112c\leq\frac{1}{12},e^{C_{2}c}\leq\frac{3}{2},4cC_{1}\leq\frac{1}{2}. Suppose that TT satisfies that

C1E02T172a,36C1E0T1,etΔu0ATa,\displaystyle C_{1}E^{2}_{0}T\leq\frac{1}{72}a,\quad 36C_{1}E_{0}T\leq 1,\quad\|e^{t\Delta}u_{0}\|_{A_{T}}\leq a, (3.3)

where C1C_{1} and C2C_{2} are the constants in Lemmas 2.6-2.7. (Indeed, we should take C1C_{1} and C2C_{2} more large as we need.)

It’s easy to check that (H1)(H2)(H_{1})-(H_{2}) hold true for n=0n=0. Now we will show that if (H1)(H2)(H_{1})-(H_{2}) hold true for nn, then they hold true for n+1n+1. In fact, by (3.2)-(3.3) and Lemmas 2.6-2.7, we have

un+1AT\displaystyle\|u^{n+1}\|_{A_{T}} etΔu0AT+div(unun+bnbn)LT1(B˙p,1dp1)\displaystyle\leq\|e^{t\Delta}u_{0}\|_{A_{T}}+\|\mathbb{P}div(-u^{n}\otimes u^{n}+b^{n}\otimes b^{n})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})}
a+C14a2+36C1E02T2a,\displaystyle\leq a+C_{1}4a^{2}+36C_{1}E^{2}_{0}T\leq 2a, (3.4)
un+1LTB˙p,1dp1\displaystyle\|u^{n+1}\|_{L^{\infty}_{T}\dot{B}^{\frac{d}{p}-1}_{p,1}} etΔu0LTB˙p,1dp1+div(unun+bnbn)LT1B˙p,1dp1\displaystyle\leq\|e^{t\Delta}u_{0}\|_{L^{\infty}_{T}\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|\mathbb{P}div(-u^{n}\otimes u^{n}+b^{n}\otimes b^{n})\|_{L^{1}_{T}\dot{B}^{\frac{d}{p}-1}_{p,1}}
u0B˙p,1dp1+div(unun+bnbn)LT1B˙p,1dp1\displaystyle\leq\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|\mathbb{P}div(-u^{n}\otimes u^{n}+b^{n}\otimes b^{n})\|_{L^{1}_{T}\dot{B}^{\frac{d}{p}-1}_{p,1}}
E0+C14a2+36C1E02T3E0.\displaystyle\leq E_{0}+C_{1}4a^{2}+36C_{1}E^{2}_{0}T\leq 3E_{0}. (3.5)

and

bn+1LT(B˙p,1dp)\displaystyle\|b^{n+1}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})} eC2a(b0B˙p,1dp+div(unbn)LT1(B˙p,1dp)\displaystyle\leq e^{C_{2}a}(\|b_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|div(u^{n}\otimes b^{n})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}
eC2a(E0+12aE0)\displaystyle\leq e^{C_{2}a}(E_{0}+12aE_{0})
3E0.\displaystyle\leq 3E_{0}. (3.6)

This implies (H1)(H2)(H_{1})-(H_{2}) hold true for n+1n+1.

Finally, we have to obtain the relationship between the existence time TT and the initial data via (3.3). It is easy to deduce that

TT0:=min{a72C1E02,136C1E0}.T\leq T_{0}:=\min\{\frac{a}{72C_{1}E^{2}_{0}},\frac{1}{36C_{1}E_{0}}\}.

Now we turn to study the condition etΔu0ATa\|e^{t\Delta}u_{0}\|_{A_{T}}\leq a of (3.3). For this purpose, we have to classify the initial data.
(1) For u0B˙p,1dp1c¯=min{14C1,c}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}\leq\bar{c}=\min\{\frac{1}{4C_{1}},c\}, we let a:=min{E04C1,c}a:=\min\{\sqrt{\frac{E_{0}}{4C_{1}}},c\}, which implies (3.2).

Then we have

etΔu0ATu0B˙p,1dp1min{u0B˙p,1dp14C1,c}a.\|e^{t\Delta}u_{0}\|_{A_{T}}\leq\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}\leq\min\{\sqrt{\frac{\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}}{4C_{1}}},c\}\leq a.

(2) For u0B˙p,1dp1>c¯=min{14C1,c}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}>\bar{c}=\min\{\frac{1}{4C_{1}},c\}, we let a:=min{c¯4C1,c}min{E04C1,c}a:=\min\{\sqrt{\frac{\bar{c}}{4C_{1}}},c\}\leq\min\{\sqrt{\frac{E_{0}}{4C_{1}}},c\}, which also implies (3.2).

Since u0B˙p,1dp1u_{0}\in\dot{B}^{\frac{d}{p}-1}_{p,1}, there exists an integer j0j_{0} such that (j0j_{0} may not be unique):

|j|j0Δ˙ju0Lp2(dp1)j<a4.\displaystyle\sum_{|j|\geq j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}. (3.7)

Defining that T1:=a4122j0u0B˙p,1dp1T_{1}:=\frac{a}{4}\frac{1}{2^{2j_{0}}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}} and T2:=a242122j0u0B˙p,1dp12T_{2}:=\frac{a^{2}}{4^{2}}\frac{1}{2^{2j_{0}}\|u_{0}\|^{2}_{\dot{B}^{\frac{d}{p}-1}_{p,1}}}, we get

etΔu0LT11(B˙p,1dp+1)\displaystyle\|e^{t\Delta}u_{0}\|_{L^{1}_{T_{1}}(\dot{B}^{\frac{d}{p}+1}_{p,1})}
|j|j00T1etΔΔ˙ju0Lp2(dp+1)j𝑑t+|j|>j00T1et22jΔ˙ju0Lp2(dp+1)j𝑑t\displaystyle\leq\sum_{|j|\leq j_{0}}\int_{0}^{T_{1}}\|e^{t\Delta}\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}+1)j}dt+\sum_{|j|>j_{0}}\int_{0}^{T_{1}}e^{-t2^{2j}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}+1)j}dt
22j0|j|j00T1Δ˙ju0Lp2(dp1)j𝑑t+|j|>j00T1et22jΔ˙ju0Lp2(dp+1)j𝑑t\displaystyle\leq 2^{2j_{0}}\sum_{|j|\leq j_{0}}\int_{0}^{T_{1}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}dt+\sum_{|j|>j_{0}}\int_{0}^{T_{1}}e^{-t2^{2j}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}+1)j}dt
22j0T1u0B˙p,1dp1+|j|>j0(1eT222j)Δ˙ju0Lp2(dp1)j\displaystyle\leq 2^{2j_{0}}T_{1}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\sum_{|j|>j_{0}}(1-e^{-T_{2}2^{2j}})\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}
22j0T1u0B˙p,1dp1+|j|>j0Δ˙ju0Lp2(dp1)j12a,\displaystyle\leq 2^{2j_{0}}T_{1}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\sum_{|j|>j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}\leq\frac{1}{2}a, (3.8)

and

etΔu0LT22(B˙p,1dp)\displaystyle\|e^{t\Delta}u_{0}\|_{L^{2}_{T_{2}}(\dot{B}^{\frac{d}{p}}_{p,1})}
|j|j0[0T2etΔΔ˙ju0Lp2𝑑t]122dpj+|j|>j0[0T2(et22jΔ˙ju0Lp)2𝑑t]122dpj\displaystyle\leq\sum_{|j|\leq j_{0}}[\int_{0}^{T_{2}}\|e^{t\Delta}\dot{\Delta}_{j}u_{0}\|^{2}_{L^{p}}dt]^{\frac{1}{2}}2^{\frac{d}{p}j}+\sum_{|j|>j_{0}}[\int_{0}^{T_{2}}(e^{-t2^{2j}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}})^{2}dt]^{\frac{1}{2}}2^{\frac{d}{p}j}
2j0T212u0B˙dp1+|j|>j0(1eT222j)12Δ˙ju0Lp2(dp1)j\displaystyle\leq 2^{j_{0}}T^{\frac{1}{2}}_{2}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}}+\sum_{|j|>j_{0}}(1-e^{-T_{2}2^{2j}})^{\frac{1}{2}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}
2j0T212u0B˙dp1+|j|>j0Δ˙ju0Lp2(dp1)j12a.\displaystyle\leq 2^{j_{0}}T^{\frac{1}{2}}_{2}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}}+\sum_{|j|>j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}\leq\frac{1}{2}a. (3.9)

Letting T=min{T0,T1,T2}T=\min\{T_{0},T_{1},T_{2}\}, we get

etΔu0ATa.\|e^{t\Delta}u_{0}\|_{A_{T}}\leq a.

Finally, if we choose TT to satisfy that

T={T0,u0B˙p,1dp114C1,min{T0,T1,T2},u0B˙p,1dp1>14C1,T=\begin{cases}T_{0},&\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}\leq\frac{1}{4C_{1}},\\ \min\{T_{0},T_{1},T_{2}\},&\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}>\frac{1}{4C_{1}},\end{cases} (3.10)

then (3.3) holds true. For this TT, we have the approximate sequence (un,bn)(u^{n},b^{n}) is uniformly bounded in ETpE^{p}_{T}.

Remark 3.1.

By (3.10), we know that if the initial data is small, the local existence time TT depends only on E0E_{0}. However, for large initial data, the local existence time TT depends on both E0E_{0} and the j0j_{0} which satisfies (3.7).

Step 3: Existence of a solution.

This step is similar to the process of [3, 13, 6], we also use the compactness argument in Besov spaces for the approximate sequence (un,bn)(u^{n},b^{n}) to get some solution (u,b)(u,b) of (1.2). Since (un,bn)(u^{n},b^{n}) is uniformly bounded in ETpE^{p}_{T}, the interpolation inequality yields that un+1u^{n+1} is also uniformly bounded in LTq(B˙p,1d21+2q)L^{q}_{T}(\dot{B}^{\frac{d}{2}-1+\frac{2}{q}}_{p,1}) for 1q1\leq q\leq\infty. Then, by Lemma 2.6-2.7, after some calculations, we can easily get that (for fixed 0<ϵ<dp0<\epsilon<\frac{d}{p}):

tun+1is uniformly bounded in LT22ϵ(B˙p,1dp1ϵ+B˙p,1dp1),\partial_{t}u^{n+1}\text{is uniformly bounded in }L^{\frac{2}{2-\epsilon}}_{T}(\dot{B}^{\frac{d}{p}-1-\epsilon}_{p,1}+\dot{B}^{\frac{d}{p}-1}_{p,1}),
tbn+1is uniformly bounded in LT2(B˙p,1dp1).\partial_{t}b^{n+1}\text{is uniformly bounded in }L^{2}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1}).

Let {χj}j\{\chi_{j}\}_{j\in\mathbb{N}} be a sequence of smooth functions with value in [0,1][0,1] supported in the ball B(0,j+1)B(0,j+1) and equal to 1 on B(0,j)B(0,j). The above argument ensures that un+1u^{n+1} is uniformly bounded in CTσ(ϵ)(B˙p,1dp1ϵ+B˙p,1dp1)CT(B˙p,1dp1)C^{\sigma(\epsilon)}_{T}(\dot{B}^{\frac{d}{p}-1-\epsilon}_{p,1}+\dot{B}^{\frac{d}{p}-1}_{p,1})\cap C_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1}) (σ(ϵ)>0\sigma(\epsilon)>0 for fixed ϵ>0\epsilon>0 small enough), and bn+1b^{n+1} is uniformly bounded in CT12(B˙p,1dp1)CT(B˙p,1dp)C^{\frac{1}{2}}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap C_{T}(\dot{B}^{\frac{d}{p}}_{p,1}). Then by Lemma 2.3 with ϵ1=2ϵ\epsilon_{1}=2\epsilon (d2d\geq 2), since the embedding B˙p,1dp12ϵB˙p,1dp1B˙p,1dp1ϵ\dot{B}^{\frac{d}{p}-1-2\epsilon}_{p,1}\cap\dot{B}^{\frac{d}{p}-1}_{p,1}\hookrightarrow\dot{B}^{\frac{d}{p}-1-\epsilon}_{p,1} and B˙p,1dp12ϵB˙p,1dpBp,1dp1\dot{B}^{\frac{d}{p}-1-2\epsilon}_{p,1}\cap\dot{B}^{\frac{d}{p}}_{p,1}\hookrightarrow B^{\frac{d}{p}-1}_{p,1} are locally compact, by applying Ascoli’s theorem and Cantor’s diagonal process, there exist some functions (uj,bj)(u_{j},b_{j}) such that for any jj\in\mathbb{N}, χjun\chi_{j}u^{n} tends to uju_{j}, and χjbn\chi_{j}b^{n} tends to bjb_{j}. As χjχj+1=χj\chi_{j}\chi_{j+1}=\chi_{j}, we have uj=χjuj+1u_{j}=\chi_{j}u_{j+1} and bj=χjbj+1b_{j}=\chi_{j}b_{j+1}. From that, we can easily deduce that there exists (u,b)(u,b) such that for all χD(Rd)\chi\in D(R^{d}),

{χunχuinCT(B˙p,1dp1ϵ),χbnχbinCT(B˙p,1dp1),\left\{\begin{array}[]{l}\chi u^{n}\rightarrow\chi u\quad in\quad C_{T}(\dot{B}^{\frac{d}{p}-1-\epsilon}_{p,1}),\\ \chi b^{n}\rightarrow\chi b\quad in\quad C_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1}),\end{array}\right. (3.11)

as n tends to \infty (up to a subsequence). By interpolation, we have

{χunχuinLT1(B˙p,1dp+1δ),0<ϵ<1+ϵ,χbnχbinCT(B˙p,1dpδ),0<δ<1.\left\{\begin{array}[]{l}\chi u^{n}\rightarrow\chi u\quad in\quad L^{1}_{T}(\dot{B}^{\frac{d}{p}+1-\delta}_{p,1}),\quad 0<\epsilon<1+\epsilon,\\ \chi b^{n}\rightarrow\chi b\quad in\quad C_{T}(\dot{B}^{\frac{d}{p}-\delta}_{p,1}),\quad 0<\delta<1.\end{array}\right. (3.12)

Note that (un,bn)(u^{n},b^{n}) is uniformly bounded in ETpE^{p}_{T}. By the Fatou property, we readily get

(u,b)(L~(B˙p,1dp1)L1(B˙p,1dp+1))d×(L(B˙p,1dp))d.(u,b)\in(\widetilde{L}^{\infty}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}(\dot{B}^{\frac{d}{p}+1}_{p,1}))^{d}\times(L^{\infty}(\dot{B}^{\frac{d}{p}}_{p,1}))^{d}.

Finally, it is a routine process to verify that (u,b)(u,b) satisfies the system (1.2). Following the argment of Theorem 3.19 in [3], we have (u,b)ETp(u,b)\in E^{p}_{T}.

Step 4: Uniqueness.

The proof of the uniqueness of (1.2) is similar to [13] with p2dp\leq 2d, we omit it here.

4 Continuous dependence

Before proving the continuous dependence of solutions to (1.2), firstly we need to prove that let TT be a lifespan corresponding to the initial data u0u_{0} by (3.10), if (u0n,b0n)(u^{n}_{0},b^{n}_{0}) tends to (u0,b0)(u_{0},b_{0}) in B˙p,1dp1×B˙p,1dp\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1}, then there exists a lifespan TnT^{n} corresponding to (u0n,b0n)(u^{n}_{0},b^{n}_{0}) such that TnTT^{n}\rightarrow T. This implies that TδT-\delta (for some small δ\delta) is a common lifespan both for unu^{n} and uu when nn is sufficiently large. We first give a useful lemma:

Lemma 4.1.

Let (u0,b0)B˙p,1dp1×B˙p,1dp(u_{0},b_{0})\in\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1} be the initial data of (1.2) with p2dp\leq 2d, if there exists another initial data (u0n,b0n)B˙p,1dp1×B˙p,1dp(u^{n}_{0},b^{n}_{0})\in\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1} such that u0nu0B˙p,1dp1,b0nb0B˙p,1dp0(n)\|u^{n}_{0}-u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}},\|b^{n}_{0}-b_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\rightarrow 0\quad(n\rightarrow\infty), then we can construct a lifespan TnT^{n} corresponding to (u0n,b0n)(u^{n}_{0},b^{n}_{0}) such that

TnT,n,T^{n}\rightarrow T,\quad\quad n\rightarrow\infty,

where the lifespan TT correspondsto (u0,b0)(u_{0},b_{0}).

Proof.

By virtue of Remark 3.1, we only consider the large initial data. Thus, we need to prove that TnTT^{n}\rightarrow T, when u0B˙p,1dp1>14C1\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}>\frac{1}{4C_{1}}. For convenience, we write down the definitions of T0,T1,T2T_{0},T_{1},T_{2} here:

T0=min{a72C1E02,136C1E0},T1=a4122j0u0B˙p,1dp1,T2=a242122j0u0B˙dp12,T_{0}=\min\{\frac{a}{72C_{1}E^{2}_{0}},\frac{1}{36C_{1}E_{0}}\},\quad T_{1}=\frac{a}{4}\frac{1}{2^{2j_{0}}\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}},\quad T_{2}=\frac{a^{2}}{4^{2}}\frac{1}{2^{2j_{0}}\|u_{0}\|^{2}_{\dot{B}^{\frac{d}{p}-1}}},

where j0j_{0} is a fixed integer such that

|j|j0Δ˙ju0Lp2(dp1)j<a4.\sum_{|j|\geq j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}.

Since u0B˙p,1dp1u_{0}\in\dot{B}^{\frac{d}{p}-1}_{p,1}, we can suppose that j0j_{0} is the smallest integer such that the above inequality holds true. Since E0nE0E^{n}_{0}\rightarrow E_{0}, it follows that T0nT0T^{n}_{0}\rightarrow T_{0}. In order to prove that T1nT1T^{n}_{1}\rightarrow T_{1} and T2nT2T^{n}_{2}\rightarrow T_{2}, it is sufficient to show that there exists a corresponding sequence j0nj^{n}_{0} satisfying

|j|j0nΔ˙ju0nLp2(dp1)j<a4,\sum_{|j|\geq j^{n}_{0}}\|\dot{\Delta}_{j}u^{n}_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4},

and j0nj0j^{n}_{0}\rightarrow j_{0}.

For any 0<ϵ<a40<\epsilon<\frac{a}{4}, there exists NϵN_{\epsilon} such that for nNϵn\geq N_{\epsilon} we have

u0nu0B˙p,1dp1ϵ.\|u^{n}_{0}-u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}\leq\epsilon.

For this ϵ\epsilon, we define that j0ϵj^{\epsilon}_{0} is the smallest integer such that

|j|j0ϵΔ˙ju0Lp2(dp1)j<a4ϵ.\sum_{|j|\geq j^{\epsilon}_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}-\epsilon.

By the definition of j0j_{0}, we have j0j0ϵj_{0}\leq j^{\epsilon}_{0}.

Replacing ϵ\epsilon by ϵm(m+)\frac{\epsilon}{m}~{}(m\in\mathbb{N}^{+}), we can find NϵmN_{\frac{\epsilon}{m}} such that for nNϵmn\geq N_{\frac{\epsilon}{m}},

u0nu0B˙p,1dp1ϵm.\|u^{n}_{0}-u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}\leq\frac{\epsilon}{m}.

For this ϵm\frac{\epsilon}{m}, we define that j0ϵmj^{\frac{\epsilon}{m}}_{0} is the smallest integer such that

|j|j0ϵmΔ˙ju0Lp2(dp1)j<a4ϵm.\sum_{|j|\geq j^{\frac{\epsilon}{m}}_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}-\frac{\epsilon}{m}.

Since a4ϵm>a4ϵm1\frac{a}{4}-\frac{\epsilon}{m}>\frac{a}{4}-\frac{\epsilon}{m-1}, it follows that

j0j0ϵmj0ϵm1.j_{0}\leq j^{\frac{\epsilon}{m}}_{0}\leq j^{\frac{\epsilon}{m-1}}_{0}.

Now letting j¯0m:=j0ϵm,m=1,2,3,\bar{j}^{m}_{0}:=j^{\frac{\epsilon}{m}}_{0},m=1,2,3,..., we deduce that

|j|j¯0mΔj˙u0nLp2(dp1)ju0nu0B˙p,1dp1+|j|>j¯0mΔ˙ju0Lp2(dp1)j<ϵm+a4ϵm=a4,nNϵm.\displaystyle\sum_{|j|\geq\bar{j}^{m}_{0}}\|\dot{\Delta_{j}}u^{n}_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}\leq\|u^{n}_{0}-u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\sum_{|j|>\bar{j}^{m}_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{\epsilon}{m}+\frac{a}{4}-\frac{\epsilon}{m}=\frac{a}{4},\quad n\geq N_{\frac{\epsilon}{m}}. (4.1)

Since j¯0m\bar{j}^{m}_{0} is a monotone and bounded sequence, we deduce that j¯0mj¯0\bar{j}^{m}_{0}\rightarrow\bar{j}_{0} (m)(m\rightarrow\infty) for some integer j¯0j0\bar{j}_{0}\geq j_{0}. For any 0<ϵ¯<10<\bar{\epsilon}<1 there exists NN such that if mNm\geq N

|j¯0mj¯0|ϵ¯<1,|\bar{j}^{m}_{0}-\bar{j}_{0}|\leq\bar{\epsilon}<1,

Note that j¯0m,j¯0\bar{j}^{m}_{0},\bar{j}_{0} are integers, we deduce that j¯0=j¯0m\bar{j}_{0}=\bar{j}^{m}_{0} when mNm\geq N and j¯0\bar{j}_{0} is the smallest integer such that

|j|j¯0Δ˙ju0Lp2(dp1)j=|j|j¯0mΔ˙ju0Lp2(dp1)j<a4ϵm.\sum_{|j|\geq\bar{j}_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}=\sum_{|j|\geq\bar{j}^{m}_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}-\frac{\epsilon}{m}.

We claim that j¯0=j0\bar{j}_{0}=j_{0}. Otherwise, if j¯0>j0\bar{j}_{0}>j_{0}, we deduce from the above inequality that

|j|j0Δ˙ju0Lp2(dp1)ja4ϵm,mN.\sum_{|j|\geq j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}\geq\frac{a}{4}-\frac{\epsilon}{m},\quad\forall m\geq N.

Since the left hand-side of the above inequality is independent of mm, we have

|j|j0Δ˙ju0Lp2(dp1)ja4.\sum_{|j|\geq j_{0}}\|\dot{\Delta}_{j}u_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}\geq\frac{a}{4}.

This contradicts the definition of j0j_{0}. So we have j¯0mj¯0=j0\bar{j}^{m}_{0}\rightarrow\bar{j}_{0}=j_{0} (m)(m\rightarrow\infty).

Finally, taking ϵ=a8<a4\epsilon=\frac{a}{8}<\frac{a}{4}, we can construct a sequence {j0n}\{j^{n}_{0}\} by {j¯0m}\{\bar{j}^{m}_{0}\} when nNϵn\geq N_{\epsilon}:

j0n:={j¯01,Nϵn<Nϵ2,j¯02,Nϵ2n<Nϵ3,j¯0m,Nϵmn<Nϵm+1,j^{n}_{0}:=\left\{\begin{array}[]{l}\bar{j}^{1}_{0},\quad N_{\epsilon}\leq n<N_{\frac{\epsilon}{2}},\\ \bar{j}^{2}_{0},\quad N_{\frac{\epsilon}{2}}\leq n<N_{\frac{\epsilon}{3}},\\ ......\\ \bar{j}^{m}_{0},\quad N_{\frac{\epsilon}{m}}\leq n<N_{\frac{\epsilon}{m+1}},\\ ......\\ \end{array}\right. (4.2)

By virtue of (4.1), one can check that

|j|j0nΔ˙ju0nLp2(dp1)j<a4.\sum_{|j|\geq j^{n}_{0}}\|\dot{\Delta}_{j}u^{n}_{0}\|_{L^{p}}2^{(\frac{d}{p}-1)j}<\frac{a}{4}.

Using the monotone bounded theorem, one can prove that j0nj0(n)j^{n}_{0}\rightarrow j_{0}(n\rightarrow\infty). Therefore, we have

T1nT1,T2nT2TnT,n.T^{n}_{1}\rightarrow T_{1},T^{n}_{2}\rightarrow T_{2}\quad\Longrightarrow T^{n}\rightarrow T,\quad n\rightarrow\infty.

This completes the proof of the lemma. ∎

Remark 4.2.

The sequence j¯0m\bar{j}^{m}_{0} we construct in the proof of Lemma 4.1 is only a subsequence since mnm\neq n but depends on nn. And one can obtain a subsequence TnmT^{n_{m}} of TnT^{n} such that TnmTT^{n_{m}}\to T. This is much weaker than previous one. Therefore , we have to construct the jnj^{n} by (4.2).

Remark 4.3.

By Lemma 4.1, letting TT be the lifespan time of (u,b)(u^{\infty},b^{\infty}), then we can define a TnT^{n} corresponding with (un,bn)(u^{n},b^{n}) such that TnT,nT^{n}\rightarrow T,n\rightarrow\infty. That is, for fixed any small δ>0\delta>0, there exists an integer NN, when nNn\geq N, we have

|TnT|<δ.|T^{n}-T|<\delta.

Thus, we can consider Tn:=min{Tn,T}T_{n}:=\min\{T^{n},T\} as the common lifespan both for (u,b)(u^{\infty},b^{\infty}) and (un,bn)(u^{n},b^{n}). Then we still have

TnT,n.T_{n}\rightarrow T,\quad n\rightarrow\infty.

Roughly, we can choose TδT-\delta as the common lifespan both for (u,b)(u^{\infty},b^{\infty}) and (un,bn)(u^{n},b^{n}), which is independent of nn.

Now we begin to prove the continuous dependence.

Theorem 4.4.

Let p2dp\leq 2d. Assume that (un,bn)n(u^{n},b^{n})_{n\in\mathbb{N}} be the solution to the system (1.2) with the initial data (u0n,b0n)n(u^{n}_{0},b^{n}_{0})_{n\in\mathbb{N}}. If (u0n,b0n)(u^{n}_{0},b^{n}_{0}) tends to (u0,b0)(u^{\infty}_{0},b^{\infty}_{0}) in B˙p,1dp1×B˙p,1dp\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1}, then there exists a positive T{T} independent of nn such that (un,bn)(u^{n},b^{n}) tends to (u,b)(u^{\infty},b^{\infty}) in CT(B˙p,1dp1)LT1(B˙p,1dp+1)×CT(B˙p,1dp)C_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})\times C_{T}(\dot{B}^{\frac{d}{p}}_{p,1}).

Proof.

Our aim is to estimate unuLT(B˙p,1dp1)LT1(B˙p,1dp+1)\|u^{n}-u^{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})} and bnbLT(B˙p,1dp)\|b^{n}-b^{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})} when nn\rightarrow\infty. Note that

{unuLT(B˙p,1dp1)LT1(B˙p,1dp+1)unujnLT(B˙p,1dp1)LT1(B˙p,1dp+1)+ujnujLT(B˙p,1dp1)LT1(B˙p,1dp+1)+ujuLT(B˙p,1dp1)LT1(B˙p,1dp+1),bnbLT(B˙p,1dp)bnbjnLT(B˙p,1dp)+bjnbjLT(B˙p,1dp)+bjbLT(B˙p,1dp),\left\{\begin{array}[]{l}\|u^{n}-u^{\infty}\|_{{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{{T}}(\dot{B}^{\frac{d}{p}+1}_{p,1})}}\\ \leq\|u^{n}-u^{n}_{j}\|_{{L^{\infty}_{{T}}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{{T}}(\dot{B}^{\frac{d}{p}+1}_{p,1})}}+\|u^{n}_{j}-u^{\infty}_{j}\|_{{L^{\infty}_{{T}}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{{T}}(\dot{B}^{\frac{d}{p}+1}_{p,1})}}+\|u^{\infty}_{j}-u^{\infty}\|_{{L^{\infty}_{{T}}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{{T}}(\dot{B}^{\frac{d}{p}+1}_{p,1})}},\\ \|b^{n}-b^{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\\ \leq\|b^{n}-b^{n}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|b^{n}_{j}-b^{\infty}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|b^{\infty}_{j}-b^{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})},\end{array}\right. (4.3)

where

(un,bn) corresponds to the initial data (u0n,b0n),n,(u^{n},b^{n})\text{ corresponds to the initial data }(u^{n}_{0},b^{n}_{0}),\quad n\in\mathbb{N}\cup{\infty},
(ujn,bjn) corresponds to the initial data (S˙ju0n,S˙jb0n),n.(u^{n}_{j},b^{n}_{j})\text{ corresponds to the initial data }(\dot{S}_{j}u^{n}_{0},\dot{S}_{j}b^{n}_{0}),\quad n\in\mathbb{N}\cup{\infty}.

By Lemma 4.1, we find that TδT-\delta (we still write it as TT) is the common lifespan for (un,bn)(u^{n},b^{n}), (ujn,bjn)(u^{n}_{j},b^{n}_{j}), (u,b)(u^{\infty},b^{\infty}) and (uj,bj)(u^{\infty}_{j},b^{\infty}_{j}) when n,jn,j are large enough. By the argument as in Step 2, since (u0n,b0n)(u0,b0)(u^{n}_{0},b^{n}_{0})\rightarrow(u^{\infty}_{0},b^{\infty}_{0}) and (S˙ju0n,S˙jb0n)(u0n,b0n)(\dot{S}_{j}u^{n}_{0},\dot{S}_{j}b^{n}_{0})\rightarrow(u^{n}_{0},b^{n}_{0}) in B˙p,1dp1×B˙p,1dp\dot{B}^{\frac{d}{p}-1}_{p,1}\times\dot{B}^{\frac{d}{p}}_{p,1}, it follows that for any large nn and jj,

un,ujnLT(B˙p,1dp1),bn,bjnLT(B˙p,1dp)CE0,unLTp(B˙p,1dp)LT1(B˙p,1dp+1)2a14C1,\displaystyle\|u^{n},u^{n}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})},\quad\|b^{n},b^{n}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq C_{E_{0}},\quad\|u^{n}\|_{L^{p}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq 2a\leq\frac{1}{4C_{1}}, (4.4)

where E0n:=u0nB˙p,1dp1+b0nB˙p,1dpE^{n}_{0}:=\|u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}, aa is a small quantity satisfying (3.2). For any t[0.T]t\in[0.T], we now divide the estimations of (4.3) into 4 steps.

Step 1. Estimate ujnujLT(B˙p,1dp1)LT1(B˙p,1dp+1)\|u^{n}_{j}-u^{\infty}_{j}\|_{{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})}} and bjnbjLT(B˙p,1dp)\|b^{n}_{j}-b^{\infty}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})} for fixed jj.

Recall the equations of (ujn,bjn)(u^{n}_{j},b^{n}_{j}), n{}n\in\mathbb{N}\cup\{\infty\}:

{ujtnΔujn=(bjnbjn+ujnujn),bjtn+ujnbjn=bjnujn,(u0n,b0n):=(S˙ju0n,S˙jb0n).\left\{\begin{array}[]{lll}u^{n}_{jt}-\Delta u^{n}_{j}=\mathbb{P}(b^{n}_{j}\nabla b^{n}_{j}+u^{n}_{j}\nabla u^{n}_{j}),\\ b^{n}_{jt}+u^{n}_{j}\nabla b^{n}_{j}=b^{n}_{j}\nabla u^{n}_{j},\\ (u^{n}_{0},b^{n}_{0}):=(\dot{S}_{j}u^{n}_{0},\dot{S}_{j}b^{n}_{0}).\end{array}\right. (4.5)

Multiplying both sides of the first equation in (4.5) by η\eta (η\eta is determined later) and applying Lemmas 2.6-2.7 to (4.5), we have

η(ujnB˙p,1dp+ujnLt2(B˙p,1dp+1)+ujnLt1(B˙p,1d2+2))\displaystyle\eta(\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{j}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|u^{n}_{j}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+2}_{p,1})})
ηS˙ju0nB˙p,1dp+η0tujnB˙p,1dpujnB˙p,1dp+1+bjnB˙p,1dpbjnB˙p,1dp+1ds\displaystyle\leq\eta\|\dot{S}_{j}u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\eta\int_{0}^{t}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds
2jηS˙ju0nB˙p,1dp1+η0tujnB˙p,1dpujnB˙p,1dp+1+bjnB˙p,1dpbjnB˙p,1dp+1ds\displaystyle\leq 2^{j}\eta\|\dot{S}_{j}u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\eta\int_{0}^{t}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds (4.6)

and

bjnB˙p,1dp+1\displaystyle\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}} S˙jb0nB˙p,1dp+1+CE00tbjnB˙p,1dp+1ujnB˙p,1dp+1+bjnB˙p,1dpujnB˙p,1dp+2ds\displaystyle\leq\|\dot{S}_{j}b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+C_{E_{0}}\int_{0}^{t}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+2}_{p,1}}ds
2jS˙jb0nB˙p,1dp+CE0ujnLT1(B˙p,1dp+2)+C0tujnB˙p,1dp+1bjnB˙p,1dp+1𝑑s,\displaystyle\leq 2^{j}\|\dot{S}_{j}b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+C^{\prime}_{E_{0}}\|u^{n}_{j}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}+2}_{p,1})}+C\int_{0}^{t}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds, (4.7)

where we used the fact that S˙jgB˙p,1dpC2mS˙jgB˙p,1dpm,m>0.\|\dot{S}_{j}g\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\leq C2^{m}\|\dot{S}_{j}g\|_{\dot{B}^{\frac{d}{p}-m}_{p,1}},\quad m>0.

Then setting η>4CE0\eta>4C^{\prime}_{E_{0}}, combining (4), (4) and the Gronwall inequality, we thus have

η2(ujnB˙p,1dp+ujnLt2(B˙p,1dp+1)+ujnLt1(B˙p,1dp+2))+bjnB˙p,1dp+1\displaystyle\frac{\eta}{2}(\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{j}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|u^{n}_{j}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+2}_{p,1})})+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}
2j(b0nB˙p,1dp+S˙ju0nB˙p,1dp1)\displaystyle\leq 2^{j}(\|b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|\dot{S}_{j}u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}) (4.8)
+CE00tujnB˙p,1dpujnB˙p,1dp+1+bjnB˙p,1dpbjnB˙p,1dp+1+ujnB˙p,1dp+1bjnB˙p,1dp+1ds\displaystyle\quad+C_{E_{0}}\int_{0}^{t}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds
CE0,j[b0nB˙p,1dp+u0nB˙p,1dp1]\displaystyle\leq C_{E_{0},j}[\|b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}] (4.9)
+0tujnB˙p,1dp+1ujnB˙p,1dp+bjnB˙p,1dpbjnB˙p,1dp+1+ujnB˙p,1dp+1bjnB˙p,1dp+1ds\displaystyle\quad+\int_{0}^{t}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds
CE0,j(b0nB˙p,1dp+u0nB˙p,1dp1),\displaystyle\leq C^{\prime}_{E_{0},j}(\|b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}), (4.10)

which along with the Gronwall inequality leads to

η2(ujnB˙p,1dp+ujnLt2B˙p,1dp+1+ujnLt1B˙p,1dp+2)+bjnB˙p,1dp+1CE0,j(b0nB˙p,1dp+u0nB˙p,1dp1).\displaystyle\frac{\eta}{2}(\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{j}\|_{L^{2}_{t}\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{n}_{j}\|_{L^{1}_{t}\dot{B}^{\frac{d}{p}+2}_{p,1}})+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\leq C^{\prime}_{E_{0},j}(\|b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}). (4.11)

For fixed jj, letting δnu=ujnuj\delta^{n}u=u^{n}_{j}-u^{\infty}_{j} and δnb=bjnbj\delta^{n}b=b^{n}_{j}-b^{\infty}_{j}, we have

{δnutΔδnu+ujnδnu+δnuuj+(PjnPj)=bjnδnb+δnbbj,δnbt+ujnδnb+δnubj=bjnδnu+δnbuj,(δnu,δnb)|t=0=(S˙ju0n,S˙jb0n).\left\{\begin{array}[]{lll}\delta^{n}u_{t}-\Delta\delta^{n}u+u^{n}_{j}\nabla\delta^{n}u+\delta^{n}u\nabla u^{\infty}_{j}+\nabla(P^{n}_{j}-P^{\infty}_{j})=b^{n}_{j}\nabla\delta^{n}b+\delta^{n}b\nabla b^{\infty}_{j},\\ \delta^{n}b_{t}+u^{n}_{j}\nabla\delta^{n}b+\delta^{n}u\nabla b^{\infty}_{j}=b^{n}_{j}\nabla\delta^{n}u+\delta^{n}b\nabla u^{\infty}_{j},\\ (\delta^{n}u,\delta^{n}b)|_{t=0}=(\dot{S}_{j}u^{n}_{0},\dot{S}_{j}b^{n}_{0}).\end{array}\right. (4.12)

Multiplying both sides of the first equation in (4.12) by λj\lambda_{j} (λj\lambda_{j} is determined later) and applying Lemma 2.6 for (4.12), we have

λj(δnuB˙p,1dp1+δnuLt2(B˙p,1dp)+δnuLt1(B˙p,1dp+1))\displaystyle\lambda_{j}(\|\delta^{n}u\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|\delta^{n}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|\delta^{n}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})})
λjS˙j(u0nu0)B˙p,1dp1+Cλjujn,ujLt2(B˙p,1dp)δnuLt2B˙p,1dp+Cλj0tbjn,bjB˙p,1dpδnbB˙p,1dpds\displaystyle\leq\lambda_{j}\|\dot{S}_{j}(u^{n}_{0}-u^{\infty}_{0})\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+C\lambda_{j}\|u^{n}_{j},u^{\infty}_{j}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\|\delta^{n}u\|_{L^{2}_{t}\dot{B}^{\frac{d}{p}}_{p,1}}+C\lambda_{j}\int_{0}^{t}\|b^{n}_{j},b^{\infty}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds
λju0nu0B˙p,1dp1+λj2δnuLt2(B˙p,1dp)+Cλj0tCE0δnbB˙p,1dp𝑑s,\displaystyle\leq\lambda_{j}\|u^{n}_{0}-u^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\frac{\lambda_{j}}{2}\|\delta^{n}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+C\lambda_{j}\int_{0}^{t}C_{E_{0}}\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds, (4.13)

where ujn,ujLt2B˙p,1dp4a12C\|u^{n}_{j},u^{\infty}_{j}\|_{L^{2}_{t}\dot{B}^{\frac{d}{p}}_{p,1}}\leq 4a\leq\frac{1}{2C} by (3.2). Taking advantage of Lemma 2.7, we get

δnbB˙p,1dp\displaystyle\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}} S˙j(b0nb0)B˙p,1dp+0tδnuB˙p,1dpbjB˙p,1dp+1+bjnB˙p,1dpδnuB˙p,1dp+1+ujB˙p,1dp+1δnbB˙p,1dpds\displaystyle\leq\|\dot{S}_{j}(b^{n}_{0}-b^{\infty}_{0})\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\int_{0}^{t}\|\delta^{n}u\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|b^{\infty}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|\delta^{n}u\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{\infty}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds
b0nb0B˙p,1dp+CE0,j(δnuLt1(B˙p,1dp+1)+δnuLt2(B˙p,1dp))+0tujB˙p,1dp+1δnbB˙p,1dp𝑑s.\displaystyle\leq\|b^{n}_{0}-b^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+C_{E_{0},j}(\|\delta^{n}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|\delta^{n}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})})+\int_{0}^{t}\|u^{\infty}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds. (4.14)

Combining (4) and (4), selecting λj\lambda_{j} large enough such that λj>4(CE0,j+1)\lambda_{j}>4(C_{E_{0},j}+1), for fixed jj we obtain that

λj4δnuB˙p,1dp1Lt2(B˙p,1dp)Lt1(B˙p,1dp+1)+δnbB˙p,1dp\displaystyle\frac{\lambda_{j}}{4}\|\delta^{n}u\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}\cap L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|\delta^{n}b\|_{{\dot{B}^{\frac{d}{p}}_{p,1}}}
CE0,j(b0nb0B˙p,1dp+u0nu0B˙p,1dp1)+0tCE0,jδnbB˙p,1dp𝑑s0,n,\displaystyle\leq C_{E_{0},j}(\|b^{n}_{0}-b^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{0}-u^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}})+\int_{0}^{t}C_{E_{0},j}\|\delta^{n}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds\rightarrow 0,\quad n\rightarrow\infty, (4.15)

where the last inequality is based on the Gronwall inequality. This implies that for any fixed jj, we have

ujnujLt(B˙p,1dp1)Lt1(B˙p,1dp+1)+bjnbjLt(B˙p,1dp)0,n.\displaystyle\|u^{n}_{j}-u^{\infty}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|b^{n}_{j}-b^{\infty}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\rightarrow 0,\quad n\rightarrow\infty. (4.16)

Step 2. Estimate unujnLT(B˙p,1dp1)LT1(B˙p,1dp+1)\|u^{n}-u^{n}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})} for any n{}n\in\mathbb{N}\cup\{\infty\} .

Letting δju=unujn\delta_{j}u=u^{n}-u^{n}_{j} and δjb=bnbjn\delta_{j}b=b^{n}-b^{n}_{j}, then we have

{δjutΔδju+unδju+δjuujn+(PnPjn)=bnδjb+δjbbjn,δjbt+unδjb+δjubjn=bnδju+δjbujn,(δju0,δjb0)|t=0=((IdSj)u0n,(IdSj)b0n).\left\{\begin{array}[]{lll}\delta_{j}u_{t}-\Delta\delta_{j}u+u^{n}\nabla\delta_{j}u+\delta_{j}u\nabla u^{n}_{j}+\nabla(P^{n}-P^{n}_{j})=b^{n}\nabla\delta_{j}b+\delta_{j}b\nabla b^{n}_{j},\\ \delta_{j}b_{t}+u^{n}\nabla\delta_{j}b+\delta_{j}u\nabla b^{n}_{j}=b^{n}\nabla\delta_{j}u+\delta_{j}b\nabla u^{n}_{j},\\ (\delta_{j}u_{0},\delta_{j}b_{0})|_{t=0}=((Id-S_{j})u^{n}_{0},(Id-S_{j})b^{n}_{0}).\end{array}\right. (4.17)

By Lemma 2.4, for p2dp\leq 2d we have fgB˙p,dp1fB˙p,dp1gB˙p,1dp.\|fg\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}}\leq\|f\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}}\|g\|_{\dot{B}^{\frac{d}{p}}_{p,1}}. Using Lemmas 2.6-2.7 to (4.17), we have

δjuB˙p,d22+δjuL~t2(B˙p,dp1)+δjuL~t1(B˙p,dp)\displaystyle\|\delta_{j}u\|_{\dot{B}^{\frac{d}{2}-2}_{p,\infty}}+\|\delta_{j}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})}+\|\delta_{j}u\|_{\widetilde{L}^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,\infty})}
(IdS˙j)u0nB˙p,1d22+Cujn,unL~t2(B˙p,1dp)δjuL~t2(B˙p,dp1)+0tbjn,bnB˙p,1dpδjbB˙p,dp1ds\displaystyle\leq\|(Id-\dot{S}_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{2}-2}_{p,1}}+C\|u^{n}_{j},u^{n}\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\|\delta_{j}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})}+\int_{0}^{t}\|b^{n}_{j},b^{n}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}}ds
2j(IdSj)u0nB˙p,1dp1+12δjuL~t2(B˙p,dp1)+0tCE0δjbB˙p,dp1𝑑s,\displaystyle\leq 2^{-j}\|(Id-S_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\frac{1}{2}\|\delta_{j}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})}+\int_{0}^{t}C_{E_{0}}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}}ds, (4.18)

where we used the fact that ujn,unLT2(B˙p,1dp)4a12C\|u^{n}_{j},u^{n}\|_{L^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq 4a\leq\frac{1}{2C}, and

δjbB˙p,dp1\displaystyle\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}} (IdSj)b0nB˙p,1dp1+0t[bjn,bnB˙p,1dpδjuB˙p,1dp+ujnB˙p,1dp+1δjbB˙p,dp1ds\displaystyle\leq\|(Id-S_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\int_{0}^{t}[\|b^{n}_{j},b^{n}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|\delta_{j}u\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}-1}_{p,\infty}}ds
2j(IdSj)b0nB˙p,1dp+CE0δjuLt1(B˙p,1dp),\displaystyle\leq 2^{-j}\|(Id-S_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+C_{E_{0}}\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}, (4.19)

where we used the fact that (IdSj)vB˙p,1dpmC(IdSj)vB˙p,1dp2m,m>0\|(Id-S_{j})v\|_{\dot{B}^{\frac{d}{p}-m}_{p,1}}\leq C\|(Id-S_{j})v\|_{\dot{B}^{\frac{d}{p}}_{p,1}}2^{-m},m>0, and the last inequality is based on the Gronwall inequality.

By interpolation, it follows that

δjuLt1(B˙p,1dp)CδjuL~t1(B˙p,dp)ln(e+δjuLt1(B˙p,1dp1)+δjuLt1(B˙p,1dp+1)δjuL~t1(B˙p,dp)),\displaystyle\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq C\|\delta_{j}u\|_{\widetilde{L}^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,\infty})}ln(e+\frac{\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})}+\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}}{\|\delta_{j}u\|_{\widetilde{L}^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,\infty})}}), (4.20)

which together with (4) and (4) yields that

δjuB˙p,d22+δjuL~t2(B˙p,dp1)+δjuL~t1(B˙p,dp)\displaystyle\|\delta_{j}u\|_{\dot{B}^{\frac{d}{2}-2}_{p,\infty}}+\|\delta_{j}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})}+\|\delta_{j}u\|_{\widetilde{L}^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,\infty})}
CE0((IdSj)u0nB˙p,1dp1+(IdSj)b0nB˙p,1dp)+CE00tδjuL~s1(B˙p,dp)ln(e+CE0δjuL~s1(B˙p,dp))𝑑s.\displaystyle\leq C_{E_{0}}(\|(Id-S_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|(Id-S_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}})+C_{E_{0}}\int_{0}^{t}\|\delta_{j}u\|_{\widetilde{L}^{1}_{s}(\dot{B}^{\frac{d}{p}}_{p,\infty})}ln(e+\frac{C_{E_{0}}}{\|\delta_{j}u\|_{\widetilde{L}^{1}_{s}(\dot{B}^{\frac{d}{p}}_{p,\infty})}})ds. (4.21)

By Lemma 2.12 with μ(r)=rln(e+CE0r)\mu(r)=rln(e+\frac{C_{E_{0}}}{r}), γ(s)=CE0\gamma(s)=C_{E_{0}}, we obtain

δjuLt(B˙p,d22)+δjuL~t2(B˙p,dp1)+δjuL~t1(B˙p,dp)\displaystyle\|\delta_{j}u\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{2}-2}_{p,\infty})}+\|\delta_{j}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})}+\|\delta_{j}u\|_{\widetilde{L}^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,\infty})}
CE0((IdSj)u0nB˙p,1dp1+(IdSj)b0nB˙p,1dp)\displaystyle\leq C_{E_{0}}(\|(Id-S_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|(Id-S_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}})
0,j,n{}.\displaystyle\rightarrow 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.22)

Thus, by (4) and (4.20) we have

δjbLt(B˙p,dp1),δjuLt1(B˙p,1dp)0,j,n{}.\displaystyle\|\delta_{j}b\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,\infty})},\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\rightarrow 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.23)

Next we estimate δjuLt(B˙p,1dp1)(Lt1B˙p,1dp+1)\|\delta_{j}u\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap(L^{1}_{t}\dot{B}^{\frac{d}{p}+1}_{p,1})}. Similarly, we have

δjuLt(B˙p,1dp1)+δjuLt2(B˙p,1dp)+δjuLt1(B˙p,1dp+1)\displaystyle\|\delta_{j}u\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})}+\|\delta_{j}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|\delta_{j}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}
(IdS˙j)u0nBp,1dp1+Cujn,unLt2(B˙p,1dp)δjuLt2(B˙p,1dp)+C0tbjnB˙p,1dpδjbB˙p,1dpds\displaystyle\leq\|(Id-\dot{S}_{j})u^{n}_{0}\|_{B^{\frac{d}{p}-1}_{p,1}}+C\|u^{n}_{j},u^{n}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\|\delta_{j}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+C\int_{0}^{t}\|b^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds
(IdS˙j)u0nBp,1dp1+12δjuLt2(B˙p,1dp)+0tCE0δjbB˙p,1dp𝑑s,\displaystyle\leq\|(Id-\dot{S}_{j})u^{n}_{0}\|_{B^{\frac{d}{p}-1}_{p,1}}+\frac{1}{2}\|\delta_{j}u\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\int_{0}^{t}C_{E_{0}}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds, (4.24)

which implies that

δjuLt(B˙p,1dp1)Lt1(B˙p,1dp+1)C(IdS˙j)u0nBp,1dp1+CE00tδjbB˙p,1dp𝑑s,n{}.\displaystyle\|\delta_{j}u\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq C\|(Id-\dot{S}_{j})u^{n}_{0}\|_{B^{\frac{d}{p}-1}_{p,1}}+C_{E_{0}}\int_{0}^{t}\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.25)

Thus, we must combine the estimation of (4.25) with δjbB˙p,1dp\|\delta_{j}b\|_{\dot{B}^{\frac{d}{p}}_{p,1}} to prove the continuous dependence of (δju,δjb)(\delta_{j}u,\delta_{j}b).

Step 3. Estimate bnbjnLt(B˙p,1dp)\|b^{n}-b^{n}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} for any n{}n\in\mathbb{N}\cup\{\infty\} .

Define that bn:=bnb^{n}_{\infty}:=b^{n}, un:=unu^{n}_{\infty}:=u^{n} and recall the equations of bjnb^{n}_{j} with n,j{}n,j\in\mathbb{N}\cup\{\infty\}:

{ddtbjn+ujnbjn=bjnujn,bjn(0,x)=S˙jb0n.\left\{\begin{array}[]{l}\frac{d}{dt}b^{n}_{j}+u^{n}_{j}\nabla b^{n}_{j}=b^{n}_{j}\nabla u^{n}_{j},\\ b^{n}_{j}(0,x)=\dot{S}_{j}b^{n}_{0}.\end{array}\right. (4.26)

We let bjn:=wjn+zjnb^{n}_{j}:=w^{n}_{j}+z^{n}_{j} such that

{ddtwjn+ujnwjn=F,wjn|t=0=b0n,\left\{\begin{array}[]{lll}\frac{d}{dt}w^{n}_{j}+u^{n}_{j}\nabla w^{n}_{j}=F^{\infty},\\ w^{n}_{j}|_{t=0}=b^{n}_{0},\end{array}\right. (4.27)

and

{ddtzjn+ujnzjn=FjF,zjn|t=0=S˙jb0nb0n,\left\{\begin{array}[]{lll}\frac{d}{dt}z^{n}_{j}+u^{n}_{j}\nabla z^{n}_{j}=F^{j}-F^{\infty},\\ z^{n}_{j}|_{t=0}=\dot{S}_{j}b^{n}_{0}-b^{n}_{0},\end{array}\right. (4.28)

where Fj:=bjnujnF^{j}:=b^{n}_{j}\nabla u^{n}_{j} and F:=bnunF^{\infty}:=b^{n}_{\infty}\nabla u^{n}_{\infty}.

Since F,FjF^{\infty},F^{j} are bounded in LT1(B˙p,1dp)LT2(B˙p,1dp1)L^{1}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})\cap L^{2}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1}), by Remark 2.10, we deduce that (4.27) and (4.28) have a unique solution wjn,zjnCT(B˙p,1dp)w^{n}_{j},z^{n}_{j}\in C_{T}(\dot{B}^{\frac{d}{p}}_{p,1}).

Our main idea is to verify that (wjn,zjn)(wn,0) in B˙p,1dp(w^{n}_{j},z^{n}_{j})\rightarrow(w^{n}_{\infty},0)\text{ in }\dot{B}^{\frac{d}{p}}_{p,1} for any n{}n\in\mathbb{N}\cup\{\infty\}, which implies that bjnbn in B˙p,1dp.b^{n}_{j}\rightarrow b^{n}_{\infty}\text{ in }\dot{B}^{\frac{d}{p}}_{p,1}. For this purpose, we divide the verification into the following three small parts.

Firstly, we estimate wjnwnLt(B˙p,1dp)\|w^{n}_{j}-w^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}. Similarly to (4.3), we see that

wjnwnLT(B˙p,1dp)wjnwjknLT(B˙p,1dp)+wjknwknLT(B˙p,1dp)+wknwnLT(B˙p,1dp),\displaystyle\|w^{n}_{j}-w^{n}_{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\|w^{n}_{j}-w^{n}_{jk}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|w^{n}_{jk}-w^{n}_{\infty k}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|w^{n}_{\infty k}-w^{n}_{\infty}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}, (4.29)

where

{ddtwjkn+ujn(wjkn)=S˙kF,wjkn|t=0=S˙kb0n.\left\{\begin{array}[]{lll}\frac{d}{dt}w^{n}_{jk}+u^{n}_{j}\nabla(w^{n}_{jk})=\dot{S}_{k}F_{\infty},\\ w^{n}_{jk}|_{t=0}=\dot{S}_{k}b^{n}_{0}.\end{array}\right. (4.30)

i. Estimate wjknwknLt(B˙p,1dp)\|w^{n}_{jk}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} for fixed kk .
From (4.30) we deduce that:

{ddt(wjknwkn)+ujn(wjknwkn)=(ujnun)wkn,(wjknwkn)|t=0=0.\left\{\begin{array}[]{lll}\frac{d}{dt}(w^{n}_{jk}-w^{n}_{\infty k})+u^{n}_{j}\nabla(w^{n}_{jk}-w^{n}_{\infty k})=-(u^{n}_{j}-u^{n}_{\infty})\nabla w^{n}_{\infty k},\\ (w^{n}_{jk}-w^{n}_{\infty k})|_{t=0}=0.\end{array}\right. (4.31)

By Lemma 2.7 we have

wknLT(B˙p,1dp+1)S˙kb0B˙p,1dp+1+S˙kFLT1(B˙p,1dp+1)2kb0B˙p,1dp+2kFLT1(B˙p,1dp)2kCE0,\|w^{n}_{\infty k}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq\|\dot{S}_{k}b^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|\dot{S}_{k}F^{\infty}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq 2^{k}\|b^{\infty}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+2^{k}\|F^{\infty}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq 2^{k}C_{E_{0}},

and

wjknwknLt(B˙p,1dp)\displaystyle\|w^{n}_{jk}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} 0tujnunB˙p,1dpwknB˙p,1dp+1𝑑s\displaystyle\leq\int_{0}^{t}\|u^{n}_{j}-u^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|w^{n}_{\infty k}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds
0tujnunB˙p,1dp(2kCE0)𝑑s\displaystyle\leq\int_{0}^{t}\|u^{n}_{j}-u^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}(2^{k}C_{E_{0}})ds
2kCE0ujnunLt1(B˙p,1dp)\displaystyle\leq 2^{k}C_{E_{0}}\|u^{n}_{j}-u^{n}_{\infty}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}
0,j,\displaystyle\rightarrow 0,\quad j\rightarrow\infty, (4.32)

where the last inequality is based on (4.23).
ii. Estimate wjnwjknLt(B˙p,1dp)\|w^{n}_{j}-w^{n}_{jk}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} for any j{}j\in\mathbb{N}\cup\{\infty\}.
From (4.27) and (4.30), we obtain

{ddt(wjnwjkn)+ujn(wjnwjkn)=(IdS˙k)F,(wjiwjki)|t=0=(IdS˙k)b0.\left\{\begin{array}[]{lll}\frac{d}{dt}(w^{n}_{j}-w^{n}_{jk})+u^{n}_{j}\nabla(w^{n}_{j}-w^{n}_{jk})=(Id-\dot{S}_{k})F_{\infty},\\ (w^{i}_{j}-w^{i}_{jk})|_{t=0}=(Id-\dot{S}_{k})b_{0}.\end{array}\right. (4.33)

By Lemma 2.7, we have

wjnwjknLt(B˙p,1dp)\displaystyle\|w^{n}_{j}-w^{n}_{jk}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} (IdS˙k)b0B˙p,1dp+0t(IdS˙k)FB˙p,1dp𝑑s\displaystyle\leq\|(Id-\dot{S}_{k})b_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\int_{0}^{t}\|(Id-\dot{S}_{k})F_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds
0,k.\displaystyle\rightarrow 0,\quad k\rightarrow\infty. (4.34)

By (4), for any ϵ>0\epsilon>0, there exists NN (independent on jj and nn) such that when kNk\geq N we have

wjnwjknLt(B˙p,1dp)ϵ3,wnwknLt(B˙p,1dp)ϵ3.\|w^{n}_{j}-w^{n}_{jk}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\frac{\epsilon}{3},\quad\|w^{n}_{\infty}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\frac{\epsilon}{3}.

For this ϵ\epsilon and kNk\geq N, by (4), there exists MM (independent on nn) such that when jMj\geq M we have

wjknwknLt(B˙p,1dp)ϵ3.\|w^{n}_{jk}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\frac{\epsilon}{3}.

Thus we get

wjnwnLt(B˙p,1dp)wjnwjknLt(B˙p,1dp)+wnwknLt(B˙p,1dp)+wjknwknLt(B˙p,1dp)ϵ,\displaystyle\|w^{n}_{j}-w^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\|w^{n}_{j}-w^{n}_{jk}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|w^{n}_{\infty}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|w^{n}_{jk}-w^{n}_{\infty k}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\epsilon, (4.35)

that is

wjnwnLt(B˙p,1dp)0,j,n{}.\displaystyle\|w^{n}_{j}-w^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\rightarrow 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.36)

Next, we estimate zjnLT(B˙p,1dp)\|z^{n}_{j}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}. Recall that

{ddtzjn+ujnzjn=FjF,zji|t=0=(S˙jId)b0,\left\{\begin{array}[]{lll}\frac{d}{dt}z^{n}_{j}+u^{n}_{j}\nabla z^{n}_{j}=F^{j}-F^{\infty},\\ z^{i}_{j}|_{t=0}=(\dot{S}_{j}-Id)b_{0},\end{array}\right. (4.37)

where Fj:=bjnujnF^{j}:=b^{n}_{j}\nabla u^{n}_{j}. By the Bony decomposition, we have

FjFB˙p,1dp\displaystyle\|F^{j}-F^{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}
(bjnbn)ujnB˙p,1dp+bn(ujnun)B˙p,1dp\displaystyle\leq\|(b^{n}_{j}-b^{n}_{\infty})\nabla u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|b^{n}_{\infty}\nabla(u^{n}_{j}-u^{n}_{\infty})\|_{\dot{B}^{\frac{d}{p}}_{p,1}}
bjnbnB˙p,1dpujnB˙p,1dp+1+ujnunB˙p,1dp+1bnB˙p,1dp\displaystyle\leq\|b^{n}_{j}-b^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{n}_{j}-u^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|b^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}
(zjnB˙p,1dp+wjnwnB˙p,1dp)ujnB˙p,1dp+1+ujnunB˙p,1dp+1bnB˙p,1dp,\displaystyle\leq(\|z^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|w^{n}_{j}-w^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}})\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+\|u^{n}_{j}-u^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\|b^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}, (4.38)

where the last inequality is based on bjnbnB˙p,1dpwjnwnB˙p,1dp+zjnB˙p,1dp\|b^{n}_{j}-b^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\leq\|w^{n}_{j}-w^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|z^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}. Combining (4.25) , (4) and (4.37), we have

zjnB˙p,1dp\displaystyle\|z^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}
\displaystyle\leq (IdS˙j)b0nB˙p,1dp+C0t(zjnB˙p,1dp+wjnwnB˙p,1dp)ujnB˙p,1dp+1𝑑s+CE0ujnunLt1B˙p,1dp+1\displaystyle\|(Id-\dot{S}_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+C\int_{0}^{t}(\|z^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|w^{n}_{j}-w^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}})\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}ds+C_{E_{0}}\|u^{n}_{j}-u^{n}_{\infty}\|_{L^{1}_{t}\dot{B}^{\frac{d}{p}+1}_{p,1}}
\displaystyle\leq CE0((IdS˙j)b0nB˙p,1dp+(IdSj)u0nB˙p,1dp1+wjnwnLt(B˙p,1dp))(CE0+ujnLt1(B˙p,1dp+1))\displaystyle C_{E_{0}}(\|(Id-\dot{S}_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|(Id-S_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|w^{n}_{j}-w^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})})(C_{E_{0}}+\|u^{n}_{j}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})})
+0tCE0(ujnB˙p,1dp+1+1)zjnB˙p,1dp𝑑s.\displaystyle+\int_{0}^{t}C_{E_{0}}(\|u^{n}_{j}\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}+1)\|z^{n}_{j}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds. (4.39)

Applying the Gronwall inequality and (4.36), we obtain

zjnLt(B˙p,1dp)\displaystyle\|z^{n}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq CE0((IdSj)b0nB˙p,1dp+(IdSj)u0nB˙p,1dp1+wjnwnB˙p,1dp)\displaystyle C_{E_{0}}(\|(Id-S_{j})b^{n}_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}+\|(Id-S_{j})u^{n}_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}+\|w^{n}_{j}-w^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}})
\displaystyle\rightarrow 0,j,n{}.\displaystyle 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.40)

Finally, combining (4.36) and (4), we have

bjnbnLt(B˙p,1dp)0,j,n{},\displaystyle\|b^{n}_{j}-b^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\rightarrow 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}, (4.41)

and

ujnunLt(B˙p,1dp1)Lt1(B˙p,1dp+1)\displaystyle\|u^{n}_{j}-u^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}
C(IdS˙j)u0nBp,1dp1+CE00tbjnbnB˙p,1dp𝑑s\displaystyle\leq C\|(Id-\dot{S}_{j})u^{n}_{0}\|_{B^{\frac{d}{p}-1}_{p,1}}+C_{E_{0}}\int_{0}^{t}\|b^{n}_{j}-b^{n}_{\infty}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}ds
0,j,n{}.\displaystyle\rightarrow 0,\quad j\rightarrow\infty,\quad\forall n\in\mathbb{N}\cup\{\infty\}. (4.42)

Thus, we complete the estimations of bjnbnLt(B˙p,1dp)\|b^{n}_{j}-b^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} and ujnunLt(B˙p,1dp1)Lt1(B˙p,1dp+1)\|u^{n}_{j}-u^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}.

Step 4. Proof of the continuous dependence

Finally, combining (4) and (4.41), we obtain

ujnunLt(B˙p,1dp1)Lt1(B˙p,1dp+1)+bjnbnLt(B˙p,1dp)0,j,n{}.\displaystyle\|u^{n}_{j}-u^{n}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|b^{n}_{j}-b^{n}_{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\rightarrow 0\quad,j\rightarrow\infty,\forall n\in\mathbb{N}\cup\{\infty\}. (4.43)

By (4.43), for any ϵ>0\epsilon>0, there exists NN (independent of nn) such that when jNj\geq N we have

unujnLt(B˙p,1dp1)Lt1(B˙p,1dp+1)ϵ3n+{}.\|u^{n}-u^{n}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq\frac{\epsilon}{3}\quad\forall n\in\mathbb{N}^{+}\cup\{\infty\}.

For this ϵ\epsilon and jNj\geq N, by (4.16) there exists MM such that when nMn\geq M, we get

ujnujLt(B˙p,1dp1)Lt1(B˙p,1dp+1)ϵ3.\|u^{n}_{j}-u^{\infty}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}\leq\frac{\epsilon}{3}.

Thus we deduce

unuLt(B˙p,1dp1Lt1B˙p,1dp+1)\displaystyle\quad\|u^{n}-u^{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1}\cap L^{1}_{t}\dot{B}^{\frac{d}{p}+1}_{p,1})}
unujnLt(B˙p,1dp1)Lt1(B˙p,1dp+1)+ujnujLt(B˙p,1dp1)Lt1(B˙p,1dp+1)+ujuLt(B˙p,1dp1Lt1B˙p,1dp+1)\displaystyle\leq\|u^{n}-u^{n}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|u^{n}_{j}-u^{\infty}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})\cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}+\|u^{\infty}_{j}-u^{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1}\cap L^{1}_{t}\dot{B}^{\frac{d}{p}+1}_{p,1})}
ϵ.\displaystyle\leq\epsilon. (4.44)

Similarly, we have

bnbLt(B˙p,1dp)bnbjnLt(B˙p,1dp)+bjnbjLt(B˙p,1dp)+bjbLt(B˙p,1dp)ϵ.\displaystyle\|b^{n}-b^{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\|b^{n}-b^{n}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|b^{n}_{j}-b^{\infty}_{j}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}+\|b^{\infty}_{j}-b^{\infty}\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq\epsilon. (4.45)

This completes the proof of the continuous dependence in tt\in [0,T][0,T]. ∎

Acknowledgements. This work was partially supported by National Natural Science Foundation of China [grant number 11671407 and 11701586], the Macao Science and Technology Development Fund (grant number 0091/2018/A3), Guangdong Special Support Program (grant number 8-2015), and the key project of NSF of Guangdong province (grant number 2016A030311004).

References

  • [1] H. Abidi and P. Zhang. On the global solution of a 3-D MHD system with initial data near equilibrium. Comm. Pure Appl. Math., 70(8):1509–1561, 2017.
  • [2] R. Agapito and M. Schonbek. Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ., 32(10-12):1791–1812, 2007.
  • [3] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
  • [4] D. Biskamp. Nonlinear magnetohydrodynamics, volume 1 of Cambridge Monographs on Plasma Physics. Cambridge University Press, Cambridge, 1993.
  • [5] J.-Y. Chemin, D. S. McCormick, J. C. Robinson, and J. L. Rodrigo. Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math., 286:1–31, 2016.
  • [6] Q. Chen, C. Miao, and Z. Zhang. Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Rev. Mat. Iberoam., 26(3):915–946, 2010.
  • [7] R. Danchin. On the uniqueness in critical spaces for compressible Navier-Stokes equations. NoDEA Nonlinear Differential Equations Appl., 12(1):111–128, 2005.
  • [8] P. A. Davidson. An introduction to magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.
  • [9] G. Duvaut and J.-L. Lions. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal., 46:241–279, 1972.
  • [10] C. L. Fefferman, D. S. McCormick, J. C. Robinson, and J. L. Rodrigo. Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal., 267(4):1035–1056, 2014.
  • [11] C. L. Fefferman, D. S. McCormick, J. C. Robinson, and J. L. Rodrigo. Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch. Ration. Mech. Anal., 223(2):677–691, 2017.
  • [12] Q. Jiu and D. Niu. Mathematical results related to a two-dimensional magneto-hydrodynamic equations. Acta Math. Sci. Ser. B (Engl. Ed.), 26(4):744–756, 2006.
  • [13] J. Li, W. Tan, and Z. Yin. Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces. Adv. Math., 317:786–798, 2017.
  • [14] F. Lin. Some analytical issues for elastic complex fluids. Comm. Pure Appl. Math., 65(7):893–919, 2012.
  • [15] F. Lin, L. Xu, and P. Zhang. Global small solutions of 2-D incompressible MHD system. J. Diff. Equ., 259(10):5440–5485, 2015.
  • [16] R. Pan, Y. Zhou, and Y. Zhu. Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes. Arch. Ration. Mech. Anal., 227(2):637–662, 2018.
  • [17] X. Ren, J. Wu, Z. Xiang, and Z. Zhang. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal., 267(2):503–541, 2014.
  • [18] M. Sermange and R. Temam. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 36(5):635–664, 1983.
  • [19] R. Wan. On the uniqueness for the 2D MHD equations without magnetic diffusion. Nonlinear Anal. Real World Appl., 30:32–40, 2016.