This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Effect of the Slit Configuration on the H2 1-0 S(1) to Brγ\gamma Line Ratio of Spatially Resolved Planetary Nebulae

Isabel Aleman1
1UNIFEI, Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303 Pinheirinho, 37500-903 Itajubá, MG, Brazil
E-mail: [email protected]
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

The H2 1-0 S(1)/Brγ\gamma ratio (RR(Brγ\gamma)) is used in many studies of the molecular content in planetary nebulae (PNe). As these lines are produced in different regions, the slit configuration used in spectroscopic observations may have an important effect on their ratio. In this work, observations and numerical simulations are used to demonstrate and quantify such effect in PNe. The study aims to assist the interpretation of observations and their comparison to models. The analysis shows that observed RR(Brγ\gamma) ratios reach only values up to 0.3 when the slit encompasses the entire nebula. Values higher than that are only obtained when the slit covers a limited region around the H2 peak emission and the Brγ\gamma emission is then minimised. The numerical simulations presented show that, when the effect of the slit configuration is taken into account, photoionization models can reproduce the whole range of observed RR(Brγ\gamma) in PNe, as well as the behaviour described above. The argument that shocks are needed to explain the higher values of RR(Brγ\gamma) is thus not valid. Therefore, this ratio is not a good indicator of the H2 excitation mechanism as suggested in the literature.

keywords:
planetary nebulae: general – circumstellar matter – astrochemistry – ISM: molecules – photodissociation region (PDR)
pubyear: 2020pagerange: The Effect of the Slit Configuration on the H2 1-0 S(1) to Brγ\gamma Line Ratio of Spatially Resolved Planetary NebulaeA

1 Introduction

As the most abundant molecular species in planetary nebulae (PNe), the emission of H2 is of great interest. Molecular hydrogen lines have been detected in the near infrared (IR) spectrum of more than 130 planetary nebulae (PNe) (e.g., Treffers et al., 1976; Isaacman, 1984; Kastner et al., 1996; Lumsden et al., 2001; Guerrero et al., 2000; Davis et al., 2003; Likkel et al., 2006; Ramos-Larios et al., 2017; Gledhill et al., 2018, see also Appendix A). Kastner et al. (1996) found a H2 detection rate of 40 per cent. Recent deep imaging detections of H2 in small structures in PNe indicate that this rate may be even higher (Fang et al., 2018; Akras et al., 2017, 2020a).

Most of the published H2 spectroscopic observations of PNe uses narrow slits or small apertures111To simplify the text, only slit observations will be mentioned, but most of the discussion also applies or can be easily extended to observations with different shape apertures. including only part of the planetary nebula (see Table 2). Sometimes only extractions of the slit observation are considered. Often the authors focus on specific positions in the nebula, for example, obtaining a spectrum with a slit centred at the H2 1-0 S(1) line emission peak.

The position and width of the slit aperture during a observation have a great impact on the measured line fluxes and derived line ratios demonstrated by Fernandes et al. (2005), Gesicki et al. (2016), and Akras et al. (2020b) studies for optical atomic lines. Fernandes et al. (2005), for example, studied the effects of the nebular area covered by the slit on the atomic line ratios and derived quantities in H II regions. Their results showed that ratios of low to high-ionization lines are sensitive to this area. The ratios of [O II], [N II] and [S II] optical lines to Hβ\beta can be affected by up to 30% in relation to the ratio of the entire ionized nebula. The difference of the emitting regions of each of the lines (low-ionization lines are emitted in the outer layers of the nebula) is responsible for such high percentage. The effect of the slit configuration on atomic line ratios can be important when studying diagnostic diagrams or comparing observations to models as showed by Akras et al. (2020b).

It is therefore expected that the effect of the slit aperture and position can also be important for the H2 line ratios to Brγ\gamma as they are not produced in the same region. The H2 1-0 S(1)/Brγ\gamma ratio (hereafter RR(Brγ\gamma)) has been used in several studies of the molecular content of PNe, as proxies of the H2 quantity (Aleman & Gruenwald, 2004, 2011) and assisting the diagnostic of the acting excitation mechanisms (Marquez-Lugo et al., 2015).

This paper studies the effect of the slit configuration on the RR(Brγ\gamma) ratio, using observations available in the literature and numerical simulations to verify and quantify such effect. The observations used here are described in Sect. 2 and a table is given in Appendix A. The numerical simulations are described in Sect. 3. The results of the analysis of the slit configuration effect is presented in Section 4. Conclusions are summarised in Sect. 5.

2 Observations

For the present work, H2 and Brγ\gamma line fluxes and ratios from observations were compiled from the literature. The data collected is presented in Table 2 (see Appendix A). The table shows the RR(Brγ\gamma) line ratios obtained from spectroscopic observations of PNe and information on the corresponding slit configuration. The table also includes a few other relevant characteristics of the PNe, which are used in the present analysis.

The slit centred at the nebular centre and positioned across the entire nebula (indicated as “centred” in Fig. 1) is the most typical PN observation configuration used for optical nebular analysis, i.e., for works focused on the ionized region. Although also used in studies of the H2 component in extended objects, other common position in this case is the narrow slit positioned at the H2 emission peak (indicated as “H2 peak” in Fig 1). Observing the whole nebula is only possible for more compact and/or distant PNe. In Table 1, the observations are classified within four general slit configurations as follows:

  • Centred: the slit is positioned across the whole nebula passing by its centre;

  • H2 peak: centred at the H2 1-0 S(1) emission peak;

  • Whole nebula: when the slit encompass the entire nebula;

  • Other: all other configurations that do not falls under the previous categories or the configuration is not clear from the paper description.

This nomenclature will be used hereafter to indicate the slit positions for both observations and simulations.

Refer to caption
Figure 1: Simulated image of a spherical PN in the Brγ\gamma, H2 1-0 S(1), and H2 2-1 S(1) line emission, represented by red, green, and blue colours, respectively. The simulation uses the parameters of the reference model listed in Table 1. The two rectangles indicate the slit positions centred and H2 peak. DD is the diameter of the PN and ww is the slit width.

In Fig. 1, the illustration shows a round nebula, but the above classification is extended for all PNe morphologies. Bipolar PNe observations considered as centred are those with the slit across the equatorial region, perpendicular to the symmetry axis. In bipolar PNe, the waist region is usually a bright structure in H2 emission (Kastner et al., 1996). This region shows a torus or barrel-like structure. For the purposes of this paper, what is of importance is the hydrogen species that are sampled by the slit (this will become clear further in the text.). It is then not difficult to see that using the slit across this torus/barrel is analogous to the centred position for elliptical PNe, despite the angle the bipolar is observed. For bipolar PNe, observations considered as H2 peak are those where the slit samples a limited region around the wall of the torus, the wall of the lobes, or any known H2 bright position.

3 Simulations

To simulate the slit observations of the nebula, we use the Python222http://www.python.org library PyCloudy (version 0.9.6; Morisset, 2013). PyCloudy provides pseudo-3D simulations from cloudy one-dimensional models outputs. The library produces simulated line emission maps, which allow the simulation of slit observations in any configuration and the calculation of the corresponding line fluxes.

Numerical calculations of the H2 and Brγ\gamma emissivity in PNe were obtained with the photoionization code Cloudy (version 17.01; Ferland et al., 2017). Cloudy can simulate a photoionized nebula from the ionized to the neutral regions (photodissociation region, PDR) self-consistently. As shown in Aleman & Gruenwald (2004, 2011) and Aleman et al. (2011), this is very important for the calculation of the H2 infrared emission, in special for the PNe with high-temperature central stars.

In the present models, the ionizing source emits as a blackbody, here described by its effective temperature (TeffT_{\textrm{eff}}) and bolometric luminosity (LL_{\star}). The gas is assumed to be spherically distributed. Models were calculated for two gas density (nHn_{\textrm{H}}) distributions: (i) uniform density and (ii) diffuse gas with a denser surrounding shell. For the first case, we studied density values from nH=n_{\textrm{H}}= 103 to 105 cm-3. In the second case, the diffuse gas is assumed to have nH=n_{\textrm{H}}= 103 cm-3 and the shell nH=n_{\textrm{H}}= 105 cm-3. Shell models were simulated with different central star temperatures and shell distances from the central star. For each set of central star parameters, simulations with four different shell distances were studied. The position were set where H0/H = 10-4, 10-3, 10-2, and 5×\times10-1. All simulations are done with solar abundance (Grevesse et al., 2010). Although different abundance sets may change the atomic line fluxes and therefore the gas cooling rates, such differences will not affect the conclusions of this paper. Dust is included in the models uniformly mixed with the gas. Aleman & Gruenwald (2004) showed that the dust composition in the regular dust model included in photoionization codes is not a significant factor for the H2 emission (due to the similarities in the general behaviour of their opacities). On the other hand, dust size and density may greatly influence the H2 emission (Aleman & Gruenwald, 2011). Here, Cloudy models with graphite dust and dust grain size distribution typical for the ISM were explored. Dust-to-gas ratios of 3×\times10-2 and 3×\times10-3 were studied (Stasińska & Szczerba, 1999). All the models were calculated assuming a 2 kpc distance, but this value has no effect on the present results, as they are based on distance-independent quantities.

For convenience, reference values are defined in Table 1. Unless stated otherwise the model parameters are the reference values listed in that table.

Table 1: Reference Model Parameters.
Component Parameter Value
Central Star: Temperature 100 000 K
Luminosity 3 000 LL_{\sun}
Gas: nHn_{\textrm{H}} 1 000 cm-3
Abundances Solar
(Grevesse et al., 2010)
Dust: Material Graphite
Distribution Cloudy ISM
(Mathis et al., 1977)
Dust-to-Gas Ratio 3×\times10-3

The present models simulate the physical conditions and emissivities along the PN radial outward direction from an inner radius of 1015 cm to a distance to the central star where the gas temperature decreases to TF=T_{\mathrm{F}}= 40 K. This value was chosen based on inspection of the H2 emissivity radial profiles calculated with Cloudy and to reproduce well the observations. Such stop criterion guarantee the inclusion of most of the H2 ro-vibrational lines 1-0 S(1) and 2-1 S(1) emitting region. Figure 2 provides an example of behaviour of the emissivities of such H2 lines and Brγ\gamma as a function of the gas temperature.

Different stopping temperatures were tested. For TF>T_{\mathrm{F}}> 100 K (cut the nebula closer to the central star), a significant portion of the total nebular H2 emission would have been ignored (unless the cloud is limited by matter). For models with TF=T_{\mathrm{F}}= 100 K, more than 70 % of the flux determined for the model with TF=T_{\mathrm{F}}= 40 K would have been ignored. For TF=T_{\mathrm{F}}= 60 K, the flux ignored is approximately 50-70 %. On the other hand, extending the nebula for very low TFT_{\mathrm{F}}, could produce an unrealistic large PN and the low line emissivity in such regions would not contribute much to the flux. For temperatures lower than 40 K, the H2 1-0 S(1) and 2-1 S(1) line emissivities decreases and affects very little the total calculated flux (Fig. 2). The difference in the fluxes found for TF=T_{\mathrm{F}}= 40 K and TF=T_{\mathrm{F}}= 20 K is less than a factor of two, which will not affect our conclusions.

Refer to caption
Figure 2: Line emissivities as a function of the gas temperature for the reference model with parameters given in Table 1. The gas temperature axis is shown in inverted order so the distance to the central star increases to the right.

The observation simulations were performed with PyCloudy, using a slit placed in two positions, centred and H2 peak, as discussed in the previous section. Fig. 1 shows the configurations. The two slit apertures (white boxes) are positioned over a simulated PNe (reference model). The slit length is longer than the nebula size. For both cases, we study simulations where the slit width ww is varied from a small fraction of the nebula diameter up to a size that includes the whole nebula. The whole nebula configuration can therefore be understood as a special limit case of both of the configurations above, when the slit width is large enough to cover the entire nebula.

4 Results

4.1 The Effect of the Slit Configuration

As the H2 1-0 S(1) and Brγ\gamma lines are produced in different regions in the nebula (Fig. 2) the effect of the slit configuration on the RR(Brγ\gamma) ratio in spatially-resolved observations can be significant. Indeed, Figure 3 demonstrates that both the slit configuration and the fraction of the nebula covered by the slit can have a large influence in the RR(Brγ\gamma) values.

Figure 3 shows RR(Brγ\gamma) as a function of the w/Dw/D ratio, i.e., ratio of the slit width (ww) to the diameter of the PN ionized region (DD). The ionized region diameter DD is used for convenience, as it is more commonly available than the total PN size (including the neutral region). When this values is not found, other diameter is used. The value will be of similar order and as this only happens for a small fraction for the sample, it will not affect the results of this work. For bipolar PNe, DD is assumed to be the width taken in the minor axis of the object. As H2 is more often seen in the torus/waist region or the wall of the lobes in bipolar PNe, the minor axis size would then be a better analogous dimension to DD of spherical PNe. The plot in Fig. 3 includes all the data collected from the literature listed in Table 2. The lower values of RR(Brγ\gamma) are limited for the observation sensitivity. This is what causes the empty lower left area in Fig. 3.

Refer to caption
Figure 3: RR(Brγ\gamma) as a function of the ratio of the slit width (ww) to the diameter of the PN ionized region (DD). Measurements are taken with configurations H2 peak (violet), centred (pink), whole nebula (cyan) and others (grey). The morphology of the object is indicated by the different symbols: dots for round, stars for bipolar and multipolar, squares for irregular and unresolved PNe. Error bars are shown when uncertainties are available. Upper and down arrows indicate lower and upper limits, respectively. The black dashed line indicates the maximum value found for whole nebula measurements.

There is a clear segregation of RR(Brγ\gamma) values in Fig. 3 related to the slit configuration. The ratios obtained in the centred and whole nebula configurations show a similar range of values. In these cases, there is no indication of significant trends RR(Brγ\gammaw/Dw/D. The maximum value found for RR(Brγ\gamma) is 0.3 (indicated by the dashed line in the figure).

The H2 peak and other configurations exhibit the largest line ratios, which can be up to three orders of magnitude larger than the ratios measured for the whole nebula or using the centred configuration. For H2 peak, most observation are found with RR(Brγ\gamma) > 0.3.

There is also a trend for higher RR(Brγ\gamma) values being found towards small w/Dw/D. For H2 peak observations, such trend can be naturally understood in terms of the different regions emitting H2 and Brγ\gamma lines and the different regions covered by the slit in each configuration. For a given nebula, DD is fixed, so decreasing w/Dw/D, corresponds to using narrower slits. As ww decreases, the region around the H2 peak will include less Brγ\gamma emission, maximising the ratio RR(Brγ\gamma)(see Figs. 1 and 2). In the case of other configuration, a similar behaviour might be occurring.

For the bipolar PNe observations, a classification scheme analogue to the scheme for round objects was used. Observations considered as centred are those with the slit across the equatorial region, perpendicular to the symmetry axis. The torus is usually a bright structure in H2 emission in bipolar PNe (Kastner et al., 1996). Observations considered as H2 peak were taken with the slit sampling the wall of the torus, the wall of the lobes or at any known H2 bright position. The results found, i.e. segregation and values, are the same as found for the round PNe.

4.2 Simulations of RR(Brγ\gamma) for Different Slit Configurations

The study of models presented in this section has two goals: (i) to test our interpretation of the effect showed in the previous Section and (ii) to test if general photoionization models can reproduce the observed range of RR(Brγ\gamma) values if the slit configuration is taken into account. The second goal is of interest, as it is sometimes argued that UV excitation simulations cannot reproduce the observed values of RR(Brγ\gamma) in PNe (e.g., Marquez-Lugo et al., 2015). Comparison of observed with modelled H2 emission in PNe are done using zero- or one-dimensional models in many published works (e.g., Vicini et al., 1999; Lumsden et al., 2001; Kelly & Hrivnak, 2005; Aleman & Gruenwald, 2011; Marquez-Lugo et al., 2015; Akras et al., 2020a), but in most of them the slit configuration during the observation is not taken into account in the comparison.

Figure 4 shows simulations of the RR(Brγ\gamma) ratio for round, uniform density PNe. Each panel shows two PN models calculated for a given TeffT_{\textrm{eff}} and with two different dust-to-gas ratios; the other parameters are from the reference model (Table 1). For each PN model, three curves are generated: the cyan horizontal line indicates the values of RR(Brγ\gamma) calculated from fluxes integrated in the whole nebula; the pink and the purple curves show the ratios calculated using the centre and H2 peak configurations, respectively, as a function of w/Dw/D. The colour code used for the models is thus the same as used for the observations in Fig. 3.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Ratio RR(Brγ\gamma) as a function of the ratio w/Dw/D. Curves in each panel represent uniform density model with the TeffT_{\textrm{eff}} indicated. Solid curves uses dust-to-gas ratio of 3×\times10-3 and dashed curves 3×\times10-2. Dots are observations of PNe with a similar temperature (±\pm 10 kK). The colour code indicates the slit position as in Fig 3. The black dashed line indicates the upper value found for the whole nebula configuration.

Observations of PNe with a similar temperature (within ±\pm 10 kK) are included in each of the plots for comparison. Even with the simplicity of these models, the calculated values can represent reasonably well the general behaviour and, in most cases, the magnitude of the observed RR(Brγ\gamma).

For low w/Dw/D, ratios for the centre position are smaller than for those obtained with the whole nebula configuration. The difference is less than one order of magnitude. On the other hand, for the H2 peak configuration, smaller values of w/Dw/D produce larger values of RR(Brγ\gamma), as the slit will be covering progressively less ionized emission, without varying much the molecular emission. A plateau is reached in progressively lower w/Dw/D for increasing TeffT_{\mathrm{eff}}. As seen in Fig 2, even in the neutral region, there is a vestigial H ionization degree. For both configurations, when w/Dw/D gets larger than one (slit covering most to all the nebula) the values tend to the whole nebula value, as should be expected.

For two objects, BD+30o3639 and Hubble 12 (Hb 12), there are a number of observations with different configurations published. For these two objects, there are observations using the all the configurations we discuss previously. The observation are shown individually in the plots of Fig. 5. The models from Fig 4 with Teff=T_{eff}= 50 kK, which is close to the object’s TeffT_{eff}, are also included. The models presented in this section were not developed to fit specific objects. No attempt to match specific characteristics of the object (apart for the close TeffT_{eff}) was done. As mentioned above, these are simplified models. The goal here is only another sanity check, by verifying that the general behaviour and magnitude of the observed effect for individual objects are also reasonably reproduced by the models.

Refer to caption
Refer to caption
Figure 5: Plots as in Fig. 4, where models included are for Teff=T_{eff}= 50 kK and observations are for the ring PN BD+30o3639 in the top panel and for the bipolar PN Hb 12 in the bottom panel (in this panel error bars are not include as they, when available, are smaller than the marker size).

Models with different PN parameters, within typical ranges (see Aleman & Gruenwald, 2011, and references therein) were also studied. In Fig. 4, the differences in RR(Brγ\gamma) due the central star temperature and dust-to-gas ratio are shown. The general behaviour of the curves is similar for different star luminosities, within a typical PNe range. Changing the model luminosity in one order of magnitude for more or less change the curves in a similar amount as the change in dust-to-gas ratio shown. Variation in density within typical PNe values (103-105 cm-3) may account for the differences between observations and models in whole nebula and centre configurations. However, models with high densities (>105 cm-3) produces large differences between the H2 peak RR(Brγ\gamma) calculated and observed. This is natural, as dense models produce very compact nebulae, while the H2 peak observations usually probe sub-structures in more extended PNe, likely more diffuse nebulae.

Molecular hydrogen emission is often associated with dense clumpy shells or torus structures (Kastner et al., 1996; Matsuura et al., 2007; Marquez-Lugo et al., 2015; Akras et al., 2017). For this reason, simulations were also made for PNe models where a diffuse gas is surrounded by a dense shell, as describe in Sect. 3. In Fig. 6, results are shown for shells placed at different distances from the central star. Results are analogous to those from Fig. 4. They also reproduce the observations qualitatively and quantitatively. The comparison with observations shows improvement in the match of observations and models with relation to the uniform density models, especially for centre and whole nebula ratios.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Ratio RR(Brγ\gamma) as a function of the ratio w/Dw/D. Curves in each panel represent shell models with the TeffT_{\textrm{eff}} indicated and the parameters as in Table 1. Curves are presented for models with shells simulated at ionization degree of H0/H = 10-4 (solid thin), 10-3 (dashed), 10-2 (dot-dashed), and 5×\times10-1 (solid thick). Dots are observations of PNe with a similar temperature (within 10 kK). The colour code is the same as in Fig 3. The black dashed line indicates the upper value found for the whole nebula configuration.

Models with shell internal radius at H0/H = 10-4 (solid thin) represents well most whole nebula and centre observations. On the other hand, models with shell at H0/H = 10-3, 10-2, and 5×\times10-1, reproduces well most of the H2 peak observations, as well as some of the other configurations. This may be reflecting the ionization structures being probed by the observations. The H2 peak configuration probes structures farther form the central star, while whole nebula and centre is likely to have a stronger influence of the more ionized emission.

The simulations presented here shows that simple photoionization models can reproduce the general behaviour with w/Dw/D and the range of observed values if they consider the slit configuration.

4.3 On RR(Brγ\gamma) as an H2 Excitation Mechanism Diagnostic

Marquez-Lugo et al. (2015) proposed the diagram RR(H2) vs. RR(Brγ\gamma) to analyse the excitation mechanism of H2. Figure 7 shows this diagram for the data in Table 2. In the top plot, all observations with both ratios available are shown with error bars when available. The loose positive correlation seen by Marquez-Lugo et al. (2015) is also observed here. In the plot, there is indication of two different populations, which become clear in the middle panel, where the observations are separated according to the slit configuration. The segregation in the RR(Brγ\gamma) values for different configurations seen in Fig.  3 is also seen in the diagram. Observations including the whole nebula and with the slit centred exhibit only RR(Brγ\gamma) values smaller than 0.3, as previously shown. Values RR(Brγ\gamma) > 0.3 are obtained by H2 peak observations or other configurations. For both H2 peak and whole nebula, a positive correlation between RR(H2) and RR(Brγ\gamma) is seen. No conclusion can be made for centre observations, as there are only a few points. All configurations show a similar range of RR(H2), which indicates that both H2 lines are produced in the same or very similar regions, as shown in Fig 2.

Refer to caption
Refer to caption
Refer to caption
Figure 7: Diagnostic diagram proposed by Marquez-Lugo et al. (2015). Observations shown are from Table 2. Top: All measurements showing error bars when uncertainties are available. Down/up arrows associated with symbols indicate upper/lower limits. Middle: All measurements classified by slit configuration and object morphology. Error bars are omitted for clarity. Bottom: Only the H2 peak observations are shown. The dot colour code indicates the parameter log(w/D)10{}_{10}(w/D). Observations with small w/Dw/D occupy the region where Marquez-Lugo et al. (2015) attribute to shocks. The black dashed line indicates the upper value found for RR(Brγ\gamma) in the whole nebula configuration.

The bottom plot in Fig. 7 shows that the H2 peak points with both RR(H2) and RR(Brγ\gamma) high values are observed with less nebular area cover by the slit (lower w/Dw/D). From their diagram, Marquez-Lugo et al. (2015) conclude that shock excitation is the dominant mechanism when RR(H2) > 1. They based their conclusion in two arguments: (i) the thermalisation of the H2 emission of such objects (when RR(H2) \sim 10) and (ii), in their words, “that shock-excitation (…) is a much more efficient excitation mechanism than UV fluorescence and thus produces higher levels of emission in the H2 lines”. However, according to the results shown here, taking into consideration the slit position in the photoionization simulations such values can easily be reached. This is not an argument against shock excitation, which cannot be discard, but the results presented here show that the observations with higher RR(Brγ\gamma) are biased by the slit effect and argument (ii) above is not valid. If photoprocesses dominate the H2 excitation, high density gas could explain the high values RR(H2) usually attributed to shocks. Models by Sternberg & Dalgarno (1989) showed that UV excitation (not only shocks) may thermalize the H2 level population for sufficiently high optical depths (see also discussions in Hora & Latter, 1994; Akras et al., 2020a). Marquez-Lugo et al. (2015) suggested to separate UV excitation from shocks do not necessary follows.

5 Conclusions

This paper presented the analysis of the slit configuration effect on the RR(Brγ\gamma) ratio in PNe, using observations and numerical simulations. The main results are:

  • The H2 1-0 S(1) and Brγ\gamma lines are produced in different regions in the nebula, and, therefore, the slit configuration used in the spectroscopic observations strongly affects the RR(Brγ\gamma) ratio.

  • For round and ring-like PNe, RR(Brγ\gamma) ratios obtained with a slit across the entire nebula passing by its centre (centred) provides similar values to those obtained by integrating the line flux over the whole nebula. Similar result is obtained for bipolar PNe when observing with the slit across the equatorial region, perpendicular to the main nebular axis (also considered here centred).

  • The RR(Brγ\gamma) ratios derived from observations in the centred configuration or when the whole nebula is integrated reach only values up to 0.3. Values higher than this are only obtained when the slit is positioned at the H2 peak positions.

  • The RR(Brγ\gamma) ratio measured with the slit at the H2 peak emission depends on the fraction of the nebula covered by the slit. The largest values of RR(Brγ\gamma) are found when the slit covers a small fraction of the nebula.

  • When the slit configuration is taken into account, the simple photoionization models presented here can represent very well the range of values and the general behaviour of the observed RR(Brγ\gamma).

  • The result above shows that the argument that shocks are needed to explain the higher values of RR(Brγ\gamma) is not valid. Therefore, this ratio is not a good indicator of the H2 excitation mechanism as suggested by Marquez-Lugo et al. (2015).

  • All the results showed here demonstrate the importance of considering the slit configuration in studies involving the RR(Brγ\gamma) ratio.

It is important to notice that analogous results could be obtained for shock models if they produce similar H2 and Brγ\gamma emission distribution. It is not the aim of this work to defend photoprocesses over shocks as the dominant H2 excitation mechanism in PNe. Here the focus is on geometrical effects and the intention is just to bring the attention to the effect of the slit configuration.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The author is thankful to S. Akras and H. Monteiro for useful discussions and their suggestions to improve this manuscript. This research has made use of the NASA’s Astrophysics Data System and the SIMBAD database, operated at CDS, Strasbourg, France (Wenger et al., 2000). This work has also made use of the computing facilities available at the Laboratory of Computational Astrophysics of the Universidade Federal de Itajubá (LAC-UNIFEI). The LAC-UNIFEI is maintained with grants from CAPES, CNPq and FAPEMIG.

Data Availability

The data underlying this article are available in the article. Any additional information can be request to the Author.

References

  • Akras et al. (2015) Akras S., Boumis P., Meaburn J., Alikakos J., López J. A., Gonçalves D. R., 2015, MNRAS, 452, 2911
  • Akras et al. (2017) Akras S., Gonçalves D. R., Ramos-Larios G., 2017, MNRAS, 465, 1289
  • Akras et al. (2020a) Akras S., Gonçalves D. R., Ramos-Larios G., Aleman I., 2020a, MNRAS,
  • Akras et al. (2020b) Akras S., Monteiro H., Aleman I., Farias M. A. F., May D., Pereira C. B., 2020b, MNRAS, 493, 2238
  • Aleman & Gruenwald (2004) Aleman I., Gruenwald R., 2004, ApJ, 607, 865
  • Aleman & Gruenwald (2011) Aleman I., Gruenwald R., 2011, A&A, 528, A74
  • Aleman et al. (2011) Aleman I., Zijlstra A. A., Matsuura M., Gruenwald R., Kimura R. K., 2011, MNRAS, 416, 790
  • Banerjee & Anandarao (1991) Banerjee D. P. K., Anandarao B. G., 1991, A&A, 250, 165
  • Barría & Kimeswenger (2018) Barría D., Kimeswenger S., 2018, MNRAS, 480, 1626
  • Bear & Soker (2017) Bear E., Soker N., 2017, ApJ, 837, L10
  • Beckwith et al. (1978) Beckwith S., Persson S. E., Gatley I., 1978, ApJ, 219, L33
  • Christianto & Seaquist (1998) Christianto H., Seaquist E. R., 1998, AJ, 115, 2466
  • Clyne et al. (2014) Clyne N., Redman M. P., Lloyd M., Matsuura M., Singh N., Meaburn J., 2014, A&A, 569, A50
  • Cuesta & Phillips (2000) Cuesta L., Phillips J. P., 2000, ApJ, 543, 754
  • Davis et al. (2003) Davis C. J., Smith M. D., Stern L., Kerr T. H., Chiar J. E., 2003, MNRAS, 344, 262
  • De Marco et al. (2001) De Marco O., Crowther P. A., Barlow M. J., Clayton G. C., de Koter A., 2001, MNRAS, 328, 527
  • Dinerstein et al. (1988) Dinerstein H. L., Lester D. F., Carr J. S., Harvey P. M., 1988, ApJ, 327, L27
  • Fang et al. (2015) Fang X., Guerrero M. A., Miranda L. F., Riera A., Velázquez P. F., Raga A. C., 2015, MNRAS, 452, 2445
  • Fang et al. (2018) Fang X., Zhang Y., Kwok S., Hsia C.-H., Chau W., Ramos-Larios G., Guerrero M. A., 2018, ApJ, 859, 92
  • Feibelman (1997) Feibelman W. A., 1997, ApJS, 109, 481
  • Ferland et al. (2017) Ferland G. J., et al., 2017, Rev. Mex. Astron. Astrofis., 53, 385
  • Fernandes et al. (2005) Fernandes I. F., Gruenwald R., Viegas S. M., 2005, MNRAS, 364, 674
  • Frew (2008) Frew D. J., 2008, PhD thesis, Department of Physics, Macquarie University, NSW 2109, Australia
  • García-Hernández et al. (2002) García-Hernández D. A., Manchado A., García-Lario P., Domínguez-Tagle C., Conway G. M., Prada F., 2002, A&A, 387, 955
  • Geballe et al. (1991) Geballe T. R., Burton M. G., Isaacman R., 1991, MNRAS, 253, 75
  • Gesicki et al. (2016) Gesicki K., Zijlstra A. A., Morisset C., 2016, A&A, 585, A69
  • Gledhill et al. (2018) Gledhill T. M., Froebrich D., Campbell-White J., Jones A. M., 2018, MNRAS, 479, 3759
  • Grevesse et al. (2010) Grevesse N., Asplund M., Sauval A. J., Scott P., 2010, Ap&SS, 328, 179
  • Guerrero & Miranda (2012) Guerrero M. A., Miranda L. F., 2012, A&A, 539, A47
  • Guerrero et al. (2000) Guerrero M. A., Villaver E., Manchado A., Garcia-Lario P., Prada F., 2000, ApJS, 127, 125
  • Harrington et al. (1997) Harrington J. P., Lame N. J., White S. M., Borkowski K. J., 1997, AJ, 113, 2147
  • Heap & Hintzen (1990) Heap S. R., Hintzen P., 1990, ApJ, 353, 200
  • Henry et al. (1999) Henry R. B. C., Kwitter K. B., Dufour R. J., 1999, ApJ, 517, 782
  • Herald & Bianchi (2004) Herald J. E., Bianchi L., 2004, ApJ, 611, 294
  • Hora & Latter (1994) Hora J. L., Latter W. B., 1994, ApJ, 437, 281
  • Hora et al. (1999) Hora J. L., Latter W. B., Deutsch L. K., 1999, ApJS, 124, 195
  • Hsia et al. (2014) Hsia C.-H., Chau W., Zhang Y., Kwok S., 2014, ApJ, 787, 25
  • Hua (1988) Hua C. T., 1988, A&A, 193, 273
  • Hyung et al. (2001) Hyung S., Aller L. H., Feibelman W. A., Lee W.-B., 2001, AJ, 122, 954
  • Isaacman (1984) Isaacman R., 1984, A&A, 130, 151
  • Kaler & Jacoby (1989) Kaler J. B., Jacoby G. H., 1989, ApJ, 345, 871
  • Kastner et al. (1996) Kastner J. H., Weintraub D. A., Gatley I., Merrill K. M., Probst R. G., 1996, ApJ, 462, 777
  • Kelly & Hrivnak (2005) Kelly D. M., Hrivnak B. J., 2005, ApJ, 629, 1040
  • Kwok et al. (2010) Kwok S., Chong S.-N., Hsia C.-H., Zhang Y., Koning N., 2010, ApJ, 708, 93
  • Latter et al. (2000) Latter W. B., Dayal A., Bieging J. H., Meakin C., Hora J. L., Kelly D. M., Tielens A. G. G. M., 2000, ApJ, 539, 783
  • Lau et al. (2016) Lau R. M., Werner M., Sahai R., Ressler M. E., 2016, ApJ, 833, 115
  • Leal-Ferreira et al. (2011) Leal-Ferreira M. L., Gonçalves D. R., Monteiro H., Richards J. W., 2011, MNRAS, 411, 1395
  • Likkel et al. (2006) Likkel L., Dinerstein H. L., Lester D. F., Kindt A., Bartig K., 2006, AJ, 131, 1515
  • Lopez et al. (1991) Lopez J. A., Falcon L. H., Ruiz M. T., Roth M., 1991, A&A, 241, 526
  • Lopez et al. (1993) Lopez J. A., Tapia M., Roth M., 1993, in Weinberger R., Acker A., eds, IAU Symposium Vol. 155, Planetary Nebulae. p. 208
  • Luhman & Rieke (1996) Luhman K. L., Rieke G. H., 1996, ApJ, 461, 298
  • Lumsden et al. (2001) Lumsden S. L., Puxley P. J., Hoare M. G., 2001, MNRAS, 328, 419
  • Manchado et al. (2015) Manchado A., Stanghellini L., Villaver E., García-Segura G., Shaw R. A., García-Hernández D. A., 2015, ApJ, 808, 115
  • Marquez-Lugo et al. (2015) Marquez-Lugo R. A., Guerrero M. A., Ramos-Larios G., Miranda L. F., 2015, MNRAS, 453, 1888
  • Marston et al. (1998) Marston A. P., Bryce M., Lopez J. A., Palmer J. W., Meaburn J., 1998, A&A, 329, 683
  • Mashburn et al. (2016) Mashburn A. L., Sterling N. C., Madonna S., Dinerstein H. L., Roederer I. U., Geballe T. R., 2016, ApJ, 831, L3
  • Mathis et al. (1977) Mathis J. S., Rumpl W., Nordsieck K. H., 1977, ApJ, 217, 425
  • Matsuura et al. (2007) Matsuura M., et al., 2007, MNRAS, 382, 1447
  • Miller et al. (2019) Miller T. R., Henry R. B. C., Balick B., Kwitter K. B., Dufour R. J., Shaw R. A., Corradi R. L. M., 2019, MNRAS, 482, 278
  • Miranda et al. (1997) Miranda L. F., Vazquez R., Torrelles J. M., Eiroa C., Lopez J. A., 1997, MNRAS, 288, 777
  • Miranda et al. (1999) Miranda L. F., Vázquez R., Corradi R. L. M., Guerrero M. A., López J. A., Torrelles J. M., 1999, ApJ, 520, 714
  • Monteiro et al. (2000) Monteiro H., Morisset C., Gruenwald R., Viegas S. M., 2000, ApJ, 537, 853
  • Morisset (2013) Morisset C., 2013, pyCloudy: Tools to manage astronomical Cloudy photoionization code, Astrophysics Source Code Library (ascl:1304.020)
  • O’Dell et al. (2013) O’Dell C. R., Ferland G. J., Henney W. J., Peimbert M., 2013, AJ, 145, 92
  • Otsuka et al. (2013) Otsuka M., Kemper F., Hyung S., Sargent B. A., Meixner M., Tajitsu A., Yanagisawa K., 2013, ApJ, 764, 77
  • Otsuka et al. (2017) Otsuka M., Parthasarathy M., Tajitsu A., Hubrig S., 2017, ApJ, 838, 71
  • Phillips (2003) Phillips J. P., 2003, MNRAS, 344, 501
  • Phillips et al. (1983) Phillips J. P., Reay N. K., White G. J., 1983, MNRAS, 203, 977
  • Phillips et al. (1985) Phillips J. P., White G. J., Harten R., 1985, A&A, 145, 118
  • Pottasch et al. (2009a) Pottasch S. R., Bernard-Salas J., Roellig T. L., 2009a, A&A, 499, 249
  • Pottasch et al. (2009b) Pottasch S. R., Surendiranath R., Bernard-Salas J., Roellig T. L., 2009b, A&A, 502, 189
  • Preite-Martinez et al. (1989) Preite-Martinez A., Acker A., Koeppen J., Stenholm B., 1989, A&AS, 81, 309
  • Preite-Martinez et al. (1991) Preite-Martinez A., Acker A., Koeppen J., Stenholm B., 1991, A&AS, 88, 121
  • Ramos-Larios et al. (2008) Ramos-Larios G., Guerrero M. A., Miranda L. F., 2008, AJ, 135, 1441
  • Ramos-Larios et al. (2012) Ramos-Larios G., Vázquez R., Guerrero M. A., Olguín L., Marquez-Lugo R. A., Bravo-Alfaro H., 2012, MNRAS, 423, 3753
  • Ramos-Larios et al. (2017) Ramos-Larios G., Guerrero M. A., Sabin L., Santamaría E., 2017, MNRAS, 470, 3707
  • Ramsay et al. (1993) Ramsay S. K., Chrysostomou A., Geballe T. R., Brand P. W. J. L., Mountain M., 1993, MNRAS, 263, 695
  • Rudy et al. (2001) Rudy R. J., Lynch D. K., Mazuk S., Puetter R. C., Dearborn D. S. P., 2001, AJ, 121, 362
  • Sahai et al. (2011) Sahai R., Morris M. R., Villar G. G., 2011, AJ, 141, 134
  • Shaw et al. (2006) Shaw R. A., Stanghellini L., Villaver E., Mutchler M., 2006, ApJS, 167, 201
  • Shupe et al. (1995) Shupe D. L., Armus L., Matthews K., Soifer B. T., 1995, AJ, 109, 1173
  • Smith et al. (1981) Smith H. A., Larson H. P., Fink U., 1981, ApJ, 244, 835
  • Stanghellini et al. (2002) Stanghellini L., Villaver E., Manchado A., Guerrero M. A., 2002, ApJ, 576, 285
  • Stanghellini et al. (2007) Stanghellini L., García-Lario P., García-Hernández D. A., Perea-Calderón J. V., Davies J. E., Manchado A., Villaver E., Shaw R. A., 2007, ApJ, 671, 1669
  • Stanghellini et al. (2008) Stanghellini L., Shaw R. A., Villaver E., 2008, ApJ, 689, 194
  • Stanghellini et al. (2016) Stanghellini L., Shaw R. A., Villaver E., 2016, ApJ, 830, 33
  • Stasińska & Szczerba (1999) Stasińska G., Szczerba R., 1999, A&A, 352, 297
  • Sternberg & Dalgarno (1989) Sternberg A., Dalgarno A., 1989, ApJ, 338, 197
  • Storey (1984) Storey J. W. V., 1984, MNRAS, 206, 521
  • Surendiranath et al. (2004) Surendiranath R., Pottasch S. R., García-Lario P., 2004, A&A, 421, 1051
  • Szyszka et al. (2009) Szyszka C., Walsh J. R., Zijlstra A. A., Tsamis Y. G., 2009, ApJ, 707, L32
  • Szyszka et al. (2011) Szyszka C., Zijlstra A. A., Walsh J. R., 2011, MNRAS, 416, 715
  • Treffers et al. (1976) Treffers R. R., Fink U., Larson H. P., Gautier III T. N., 1976, ApJ, 209, 793
  • Tylenda et al. (2003) Tylenda R., Siódmiak N., Górny S. K., Corradi R. L. M., Schwarz H. E., 2003, A&A, 405, 627
  • Vázquez (2012) Vázquez R., 2012, ApJ, 751, 116
  • Vicini et al. (1999) Vicini B., Natta A., Marconi A., Testi L., Hollenbach D., Draine B. T., 1999, A&A, 342, 823
  • Walsh et al. (2018) Walsh J. R., et al., 2018, A&A, 620, A169
  • Webster et al. (1988) Webster B. L., Payne P. W., Storey J. W. V., Dopita M. A., 1988, MNRAS, 235, 533
  • Wenger et al. (2000) Wenger M., et al., 2000, A&AS, 143, 9
  • Yuan et al. (2011) Yuan H. B., Liu X. W., Péquignot D., Rubin R. H., Ercolano B., Zhang Y., 2011, MNRAS, 411, 1035

Appendix A Values and references of the H2 Observations Used in the Text

Table 2 lists the H2 observations from the literature used in this paper. Column 1 shows the name of the PN and the code for the position observed according to the authors of the original paper, cited in Column 10. Column 2 and 3 gives the stellar temperature and its reference, respectively. RR(H2) and RR(Brγ\gamma), with errors when available, are given in Columns 4 to 7. The slit width and position used in the H2 observation are given in Columns 8 and 9, respectively. The PN morphological classification, the value assumed for its diameter, and their references are given in Column 11 to 13.

Most of the stellar temperature values are of Zanstra temperatures, with preference given for values inferred from He II lines. If effective temperatures are determined from direct star observations, preference is given for such value. If those are not available, then values determined from other methods are used.

The morphology listed in the table is a general classification based on the published literature cited in Table 2 (which is listed below). The objects with ring morphology in which a bipolar structure is not clear are considered here in the class of round nebulae. Whether such nebula is really round or torus-like (thus bipolar) will not affect the result given that the ionization structure is being taken in account during the current analysis.

Table 2: Observations Database
Object TT_{\star} TT_{\star} RR(H2) RR(H2) RR(Brγ\gamma) RR(Brγ\gamma) ww Slit H2 Morph. DD DD
(103 K) Ref. Error Error (arcsec) Position Ref. (arcsec) Ref.
BD+30o3639 45.7 Ph03 0.060 0.017 10.0 Whole Be78 R 6.0 Ha97
BD+30o3639 45.7 Ph03 1.4 0.6 0.026 0.005 5.0 Other Ge91 R 6.0 Ha97
BD+30o3639 OE 45.7 Ph03 4.9 1.2 0.698 0.079 1.0 H2 Peak Ho99 R 6.0 Ha97
BD+30o3639 N Ring 45.7 Ph03 0.033 0.016 1.0 Other Ho99 R 6.0 Ha97
BD+30o3639 H2 Lobe 45.7 Ph03 5.6 1.2 3.238 0.569 1.0 H2 Peak Ho99 R 6.0 Ha97
BD+30o3639 Core 45.7 Ph03 1.4 0.015 2.4 Other Lu01 R 6.0 Ha97
BD+30o3639 Nebula 45.7 Ph03 0.062 2.4 Centre Lu01 R 6.0 Ha97
BD+30o3639 H2 Zone 45.7 Ph03 2.5 0.424 2.4 H2 Peak Lu01 R 6.0 Ha97
BD+30o3639 E 45.7 Ph03 3.6 0.4 0.726 0.351 1.8 H2 Peak Li06 R 6.0 Ha97
Cn 3-1 53.6 Ph03 < 0.015 1.8 Other Li06 B 3.0 Mi97
Hb 5 131.0 Ph03 < 0.200 5.0 Other We88 B 18.0 Ty03
Hb 5 up 131.0 Ph03 13.1 2.0 0.1500 0.010 2.0 Other Da03 B 18.0 Ty03
Hb 5 cen 131.0 Ph03 2.6 1.0 0.100 0.010 2.0 Other Da03 B 18.0 Ty03
Hb 5 dn 131.0 Ph03 12.2 2.0 0.270 0.010 2.0 Other Da03 B 18.0 Ty03
Hb 12 45.5 Ph03 0.111 0.019 10.0 Whole Be78 B 5.0 ML15
Hb 12 45.5 Ph03 1.0 0.2 1.629 0.273 3.6 H2 Peak Di88 B 5.0 ML15
Hb 12 45.5 Ph03 2.3 0.1 0.579 0.018 3.1 H2 Peak Ra93 B 5.0 ML15
Hb 12 Core 45.5 Ph03 < 0.003 1.0 Other HL96 B 5.0 ML15
Hb 12 3.7” E 45.5 Ph03 2.1 1.009 1.0 H2 Peak HL96 B 5.0 ML15
Hb 12 3.7” E 2” S 45.5 Ph03 2.1 0.847 1.0 H2 Peak HL96 B 5.0 ML15
Hb 12 central 1 45.5 Ph03 1.9 0.4 0.018 0.002 3.6 Other LR96 B 5.0 ML15
Hb 12 central 2 45.5 Ph03 1.8 0.2 0.038 0.002 3.6 Centre LR96 B 5.0 ML15
Hb 12 west 45.5 Ph03 2.5 0.6 1.175 0.142 3.6 H2 Peak LR96 B 5.0 ML15
Hb 12 east 45.5 Ph03 1.6 0.2 0.423 0.033 3.6 H2 Peak LR96 B 5.0 ML15
Hb 12 PA -5o Ring 45.5 Ph03 0.8 0.2 0.148 0.030 0.75 Other ML15 B 5.0 ML15
Hb 12 PA -5o Envelope 45.5 Ph03 2.1 0.4 0.251 0.028 0.75 Other ML15 B 5.0 ML15
He 2-111 196.9 PM89 1.000 5.0 Other We88 B 74.0 Lo93
He 2-114 135.0 KJ89 > 1.000 5.0 Other We88 B 25.0 We88
He 3-1357 45.6 Ot17 1.5 0.094 4.5 Whole GH02 B 1.4 GH02
Hf 48 Hen 2-60 219.4 PM91 > 1.000 5.0 Other We88 B 21.0 We88
Hu 1-2 111.0 Ph03 0.039 1.2 Centre Lu01 B 11.0 Fa15
IC 418 Centre 44.5 Ph03 < 0.042 5.0 Other St84 E 15.0 RL12
IC 2003 99.8 Ph03 < 0.030 5.0 Other Ge91 R 8.6 Fe97
IC 2003 Center 99.8 Ph03 0.034 0.040 1.0 Other Ho99 R 8.6 Fe97
IC 2003 99.8 Ph03 0.053 0.031 1.8 Centre Li06 R 8.6 Fe97
IC 2165 190.0 Ph03 > 1.0 0.020 5.0 Other Ge91 R 8.0 Mi18
IC 2165 190.0 Ph03 < 0.030 1.8 Centre Li06 R 8.0 Mi18
IC 4406 Centre 96.8 Ph03 1.351 5.0 Other St84 B 30.0 St84
IC 4997 62.0 Ph03 < 0.200 10.0 Whole Be78 B 2.2 ML15
IC 4997 62.0 Ph03 > 3.0 0.012 0.005 5.0 Whole Ge91 B 2.2 ML15
IC 5117 82.6 Ph03 0.120 0.060 12.0 Whole Is84 M 1.1 Hs14
IC 5117 82.6 Ph03 3.7 1.3 0.110 0.011 5.0 Whole Ge91 M 1.1 Hs14
IC 5117 82.6 Ph03 0.093 0.009 3.0 Whole Ru01 M 1.1 Hs14
IC 5117 82.6 Ph03 6.0 1.1 0.097 0.044 1.8 Whole Li06 M 1.1 Hs14
IC 5217 78.2 Ph03 < 0.008 1.8 Other Li06 B 6.6 Hy01
J900 106.0 Ph03 0.210 0.060 12.0 Whole Is84 R 10.0 Sh95
J900 106.0 Ph03 0.148 0.022 1.8 Centre Li06 R 10.0 Sh95
K 3-60 185.0 Lu01 0.128 1.2 Whole Lu01 I 1.0 St16
K 3-67 59.2 Lu01 0.019 1.2 Centre Lu01 B 2.5 Sa11
K 4-48 125.0 Lu01 8.9 0.523 1.2 Other Lu01 ? 2.2 St08
LMC SMP-06 140 Ma16 0.098 0.006 0.75 Whole Ma16 E 0.67 Sh06
LMC SMP-47 150 Ma16 9.4 0.8 0.321 0.009 0.75 Whole Ma16 E 0.45 Sh06
LMC SMP-62 100 Ma16 > 2.9 0.014 0.002 0.45 Other Ma16 E 0.59 Sh06
LMC SMP-73 135 Ma16 22.5 6.1 0.275 0.037 0.75 Whole Ma16 E 0.31 Sh06
LMC SMP-85 46 Ma16 1.7 0.4 0.033 0.005 0.75 Whole Ma16 U <0.163 HB04
LMC SMP-99 124 Ma16 0.037 0.010 0.75 Other Ma16 B 0.82 St07
M 1-4 40.3 Ph03 < 0.02 1.8 Centre Li06 R 7.4 Sa11
M 1-6 34.5 Ph03 < 0.07 1.8 Centre Li06 B 3.4 Sa11
M 1-11 32.0 Ot13 2.7 0.058 1.2 Centre Lu01 R 2.0 Ot13
M 1-11 32.0 Ot13 2.5 0.2 0.085 0.006 1.0 Centre Ot13 R 2.0 Ot13
M 1-13 118.1 PM91 7.7 2.5 1.667 0.767 1.8 Other Li06 B 12.0 Li06
M 1-74 58.0 Ph03 2.8 0.061 1.2 Whole Lu01 U 1.0 SS99
Table 1: (Cont) Observations Database
Object T\star T\star RR(H2) RR(H2) RR(Brγ\gamma) RR(Brγ\gamma) ww Slit H2 Morph. DD DD
(103 K) Ref. Error Error (arcsec) Position Ref. (arcsec) Ref.
M 1-75 Lobes 200.0 Hu88 12.4 3.7 8.300 2.033 0.75 H2 Peak ML15 M 18.0 Gu00
M 1-75 Ring 200.0 Hu88 12.3 2.8 1.760 0.179 0.75 H2 Peak ML15 M 18.0 Gu00
M 1-75 Centre 200.0 Hu88 0.477 0.037 0.75 Other ML15 M 18.0 Gu00
M 2-9 43.3 Ph03 > 3.9 0.254 8.0 Centre Ph85 B 10.0 HL94
M 2-9 Core 43.3 Ph03 < 0.001 0.8 Other HL94 B 10.0 HL94
M 2-9 N knot 43.3 Ph03 5.0 0.150 0.8 Other HL94 B 10.0 HL94
M 2-9 Lobe I 43.3 Ph03 9.1 3.030 0.8 H2 Peak HL94 B 10.0 HL94
M 2-9 Lobe M 43.3 Ph03 10.3 5.882 0.8 H2 Peak HL94 B 10.0 HL94
M 2-9 Lobe O 43.3 Ph03 9.1 19.61 0.8 H2 Peak HL94 B 10.0 HL94
M 4-17 PA 130o All 127.0 St02 6.5 1.0 3.070 0.436 0.75 Other ML15 B 24.0 Gu00
M 4-17 PA 40o Ring 127.0 St02 8.7 2.0 5.300 0.986 0.75 H2 Peak ML15 B 24.0 Gu00
M 4-17 PA 40o Centre 127.0 St02 7.7 0.6 2.100 0.123 0.75 Other ML15 B 24.0 Gu00
Me 2-1 180.0 Ph03 < 0.170 5.0 Centre St84 R 8.7 Su04
Me 2-1 180.0 Ph03 < 0.050 1.8 Centre Li06 R 8.7 Su04
MyCn 18 51.6 Ph03 < 0.200 5.0 Other We88 B 6.0 Cl14
Mz 1 139.0 KJ89 > 1.000 5.0 Other We88 B 58.4 Ma98
NGC 40 W Lobe 33.8 Ph03 6.1 4.7 0.069 0.018 1.0 Other Ho99 B 45.0 LF11
NGC 40 W 33.8 Ph03 > 2.4 0.058 0.030 1.8 Other Li06 B 45.0 LF11
NGC 40 E 33.8 Ph03 < 0.040 1.8 Other Li06 B 45.0 LF11
NGC 1535 Centre 76.3 Ph03 < 0.450 5.0 Other St84 R 35.0 BA91
NGC 2346 100.0 Ma15 5.000 5.0 Other We88 B 47.0 Vi99
NGC 2346 W filament 100.0 Ma15 12.2 4.4 25.875 16.253 1.0 H2 Peak Ho99 B 47.0 Vi99
NGC 2346 W 100.0 Ma15 14.3 11.494 3.5 H2 Peak Vi99 B 47.0 Vi99
NGC 2346 E 100.0 Ma15 14.9 21.277 3.5 H2 Peak Vi99 B 47.0 Vi99
NGC 2346 S 100.0 Ma15 > 11.1 > 6.250 3.5 Other Vi99 B 47.0 Vi99
NGC 2440 200.0 HH90 0.160 0.040 12.0 Other Is84 B 80.0 CP00
NGC 2440 200.0 HH90 > 13.5 0.270 0.022 5.0 Other Ge91 B 80.0 CP00
NGC 2440 NE Clump 200.0 HH90 11.7 8.5 8.200 4.220 1.0 H2 Peak Ho99 B 80.0 CP00
NGC 2440 N Lobe 200.0 HH90 8.4 6.2 0.207 0.039 1.0 Other Ho99 B 80.0 CP00
NGC 2440 E Lobe 200.0 HH90 0.627 0.205 1.0 Other Ho99 B 80.0 CP00
NGC 2792 Centre 114.2 Ph03 < 0.130 5.0 Centre St84 R 10.0 Po09
NGC 2818 20” S 215.0 Ph03 > 3.420 5.0 Other St84 B 57.1 Va12
NGC 2818 30” E 215.0 Ph03 > 3.540 5.0 Other St84 B 57.1 Va12
NGC 2818 215.0 Ph03 35.000 5.0 Other We88 B 57.1 Va12
NGC 2899 270.0 Fr08 3.000 5.0 Other We88 B 60.0 Lo01
NGC 3132 Centre 80.1 Ph03 > 3.820 5.0 Other St84 R 90.0 Mo00
NGC 3132 20” N 80.1 Ph03 > 4.290 5.0 H2 Peak St84 R 90.0 Mo00
NGC 3132 20” E 80.1 Ph03 10.0 > 10.480 5.0 H2 Peak St84 R 90.0 Mo00
NGC 3132 80.1 Ph03 10.50 5.0 Other We88 R 90.0 Mo00
NGC 3242 Centre 89.9 Ph03 < 0.080 5.0 Other St84 R 20.0 BK18
NGC 3242 15” E 89.9 Ph03 < 0.170 5.0 Other St84 R 20.0 BK18
NGC 3242 89.9 Ph03 < 0.007 5.0 Other Ge91 R 20.0 BK18
NGC 4071 118.0 Ph03 > 1.000 5.0 Other We88 B 66.7 Be17
NGC 5189 109.8 Ph03 > 1.000 5.0 Other We88 P 210.0 Be17
NGC 6072 Centre 147.0 Ph03 > 4.210 5.0 Other St84 M 67.0 Kw10
NGC 6072 20”E 147.0 Ph03 > 5.710 5.0 Other St84 M 67.0 Kw10
NGC 6072 20”W 147.0 Ph03 > 6.180 5.0 Other St84 M 67.0 Kw10
NGC 6153 Centre 97.1 Ph03 < 0.110 5.0 Other St84 B 17.0 Yu11
NGC 6153 10” E 97.1 Ph03 < 0.050 5.0 H2 Peak St84 B 17.0 Yu11
NGC 6153 10” W 97.1 Ph03 < 0.080 5.0 H2 Peak St84 B 17.0 Yu11
NGC 6210 61.1 Ph03 0.050 0.020 5.0 Other Is84 I 15.0 Po09b
NGC 6210 61.1 Ph03 < 0.010 5.0 Other Ge91 I 15.0 Po09b
NGC 6210 61.1 Ph03 < 0.007 1.8 Other Li06 I 15.0 Po09b
NGC 6302 200.0 Sz09 0.084 7.5 Other Ph83 B 97.0 Sz11
NGC 6302 200.0 Sz09 > 3.0 0.090 0.030 5.0 Other Ge91 B 97.0 Sz11
NGC 6302 up2 200.0 Sz09 3.5 0.9 1.300 0.200 2.0 Other Da03 B 97.0 Sz11
NGC 6302 up 200.0 Sz09 3.2 0.7 0.160 0.040 2.0 Other Da03 B 97.0 Sz11
NGC 6302 cen 200.0 Sz09 6.7 1.4 0.100 0.010 2.0 Other Da03 B 97.0 Sz11
NGC 6302 dn 200.0 Sz09 3.9 0.6 0.140 0.010 2.0 Other Da03 B 97.0 Sz11
NGC 6302 dn2 200.0 Sz09 2.1 0.8 0.600 0.100 2.0 Other Da03 B 97.0 Sz11
NGC 6302 dn3 200.0 Sz09 12.6 2.0 3.900 0.400 2.0 Other Da03 B 97.0 Sz11
Table 1: (Cont) Observations Database
Object T\star T\star RR(H2) RR(H2) RR(Brγ\gamma) RR(Brγ\gamma) ww Slit H2 Morph. DD DD
(103 K) Ref. Error Error (arcsec) Position Ref. (arcsec) Ref.
NGC 6445 up 182.7 Ph03 10.2 2.0 2.000 0.100 2.0 H2 Peak Da03 B 42.0 Da03
NGC 6445 cen 182.7 Ph03 8.3 3.0 1.200 0.100 2.0 H2 Peak Da03 B 42.0 Da03
NGC 6445 dn 182.7 Ph03 0.370 0.020 2.0 H2 Peak Da03 B 42.0 Da03
NGC 6445 dn2 182.7 Ph03 9.8 1.0 1.400 0.100 2.0 H2 Peak Da03 B 42.0 Da03
NGC 6537 250.0 KJ89 > 3.8 0.060 0.010 5.0 Other Ge91 B 50.0 Da03
NGC 6537 up 250.0 KJ89 4.2 1.8 0.140 0.010 2.0 Other Da03 B 50.0 Da03
NGC 6537 cen 250.0 KJ89 8.4 2.5 0.100 0.010 2.0 Other Da03 B 50.0 Da03
NGC 6537 dn 250.0 KJ89 4.0 1.8 0.130 0.010 2.0 Other Da03 B 50.0 Da03
NGC 6572 66.8 Ph03 < 0.025 10.0 Centre Be78 B 7.0 Mi99
NGC 6572 66.8 Ph03 < 0.004 5.0 Other Ge91 B 7.0 Mi99
NGC 6720 120.6 Ph03 3.238 0.500 10.0 H2 Peak Be78 R 88.0 OD03
NGC 6720 L 120.6 Ph03 9.0 2.3 3.303 0.362 1.0 H2 Peak Ho99 R 88.0 OD03
NGC 6772 119.9 Ph03 > 1.000 5.0 Other We88 R 90.0 Fa18
NGC 6778 96.9 Ph03 < 1.000 5.0 Other We88 B 20.0 GM12
NGC 6790 74.0 Ph03 < 0.170 10.0 Whole Be78 R 1.8 ZK91
NGC 6881 PA 137o 95.6 Ph03 7.5 0.109 0.75 Other RL08 B 9.0 RL08
Central
NGC 6881 PA 137o 95.6 Ph03 4.308 0.75 Other RL08 B 9.0 RL08
H2 Lobes
NGC 6881 PA 137o 95.6 Ph03 0.855 0.75 Other RL08 B 9.0 RL08
Ion. Lobes
NGC 6881 PA 113o 95.6 Ph03 6.5 12.222 0.75 H2 Peak RL08 B 9.0 RL08
H2 Lobes
NGC 6881 PA 113o 95.6 Ph03 5.7 0.919 0.75 Other RL08 B 9.0 RL08
Ion. Lobes
NGC 6886 up 129.0 Ph03 6.1 0.6 0.170 0.010 2.0 H2 Peak Da03 B 6.0 Da03
NGC 6886 cen 129.0 Ph03 10.5 2.0 0.110 0.010 2.0 Other Da03 B 6.0 Da03
NGC 6886 dn 129.0 Ph03 5.8 0.5 0.170 0.010 2.0 H2 Peak Da03 B 6.0 Da03
NGC 7009 87.8 Ph03 < 1.000 5.0 Other We88 B 50.0 Wa18
NGC 7027 198.0 La00 > 4.1 0.070 0.022 7.0 Other Sm81 M 7.3 La16
NGC 7027 198.0 La00 22.4 9.2 0.056 0.006 5.0 Other Ge91 M 7.3 La16
NGC 7027 NW 198.0 La00 13.2 7.2 0.357 0.025 1.0 H2 Peak Ho99 M 7.3 La16
H2 Lobe
NGC 7027 W Lobe 198.0 La00 0.051 0.014 1.0 Other Ho99 M 7.3 La16
NGC 7027 198.0 La00 0.096 1.2 Other Lu01 M 7.3 La16
NGC 7048 up2 119.5 Ph03 19.2 2.4 15.000 6.000 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7048 up 119.5 Ph03 12.7 2.0 13.000 3.000 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7048 cen 119.5 Ph03 12.3 1.8 10.000 1.800 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7048 dn 119.5 Ph03 20.0 2.5 18.000 3.000 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7048 dn2 119.5 Ph03 10.4 1.9 8.700 1.800 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7048 dn3 119.5 Ph03 14.5 0.8 26.000 2.000 2.0 H2 Peak Da03 B 60.0 Da03
NGC 7293 5 ’N 108.5 Ph03 > 2.190 5.0 H2 Peak St84 R 1300.0 He99
NGC 7293 7 ’E 108.5 Ph03 > 1.470 5.0 H2 Peak St84 R 1300.0 He99
NGC 7293 7 ’W 108.5 Ph03 > 4.470 5.0 H2 Peak St84 R 1300.0 He99
NGC 7662 109.9 Ph03 0.130 5.0 Other Is84 R 35.0 BK18
NGC 7662 109.9 Ph03 > 1.0 < 0.020 5.0 Other Ge91 R 35.0 BK18
SwSt 1 35.5 Ph03 0.042 0.6 Centre DM01 R 1.3 DM01
SwSt 1 35.5 Ph03 > 8.0 0.057 0.028 1.8 Whole Li06 R 1.3 DM01
Vy 1-2 99.8 Ph03 < 0.030 1.8 Other Li06 B 3.0 Ak15
Vy 2-2 Core 59.5 Ph03 0.035 0.010 1.0 Whole Ho99 U 0.5 CS98
Vy 2-2 59.5 Ph03 > 7.0 0.032 0.017 1.8 Whole Li06 U 0.5 CS98

References for the H2 observations: Be78: Beckwith et al. (1978), Da03: Davis et al. (2003), Di88: Dinerstein et al. (1988), DM01: De Marco et al. (2001), Ge91: Geballe et al. (1991), GH02: García-Hernández et al. (2002), HL94: Hora & Latter (1994), Ho99: Hora et al. (1999), Is84: Isaacman (1984), Li06: Likkel et al. (2006), LR96: Luhman & Rieke (1996), Lu01: Lumsden et al. (2001), Ma16: Mashburn et al. (2016), ML15: Marquez-Lugo et al. (2015), Ot13: Otsuka et al. (2013), Ph83: Phillips et al. (1983), Ph85: Phillips et al. (1985), Ra93: Ramsay et al. (1993), RL08: Ramos-Larios et al. (2008), Ru01: Rudy et al. (2001), Sm81: Smith et al. (1981), St84: Storey (1984), Vi99: Vicini et al. (1999), We88: Webster et al. (1988).

References for TT_{\star}: Fr08: Frew (2008), HH90: Heap & Hintzen (1990), Hu88: Hua (1988), KJ89: Kaler & Jacoby (1989), La00: Latter et al. (2000), Lu01: Lumsden et al. (2001), Ma15: Manchado et al. (2015), Ma16: Mashburn et al. (2016), Ot13: Otsuka et al. (2013), Ot17: Otsuka et al. (2017), Ph03: Phillips (2003), PM89: Preite-Martinez et al. (1989), PM91: Preite-Martinez et al. (1991), St02: Stanghellini et al. (2002), Sz09: Szyszka et al. (2009).

References for DD: Ak15: Akras et al. (2015), BA91: Banerjee & Anandarao (1991), BK18: Barría & Kimeswenger (2018), Be17: Bear & Soker (2017), Cl14: Clyne et al. (2014), CS98: Christianto & Seaquist (1998), CP00: Cuesta & Phillips (2000), Da03: Davis et al. (2003), DM01: De Marco et al. (2001), Fa15: Fang et al. (2015), Fa18: Fang et al. (2018), Fe97: Feibelman (1997), GH02: García-Hernández et al. (2002), GM12: Guerrero & Miranda (2012), Gu00: Guerrero et al. (2000), Ha97: Harrington et al. (1997), He99: Henry et al. (1999), HB04: Herald & Bianchi (2004), HL94: Hora & Latter (1994), Hs14: Hsia et al. (2014), Hy01: Hyung et al. (2001), Kw10: Kwok et al. (2010), La16: Lau et al. (2016), LF11: Leal-Ferreira et al. (2011), Li06: Likkel et al. (2006), Lo93: Lopez et al. (1993), Lo01: Lopez et al. (1991), ML15: Marquez-Lugo et al. (2015), Ma98: Marston et al. (1998), Mi18: Miller et al. (2019), Mi97: Miranda et al. (1997), Mi99: Miranda et al. (1999) Mo00: Monteiro et al. (2000), OD03: O’Dell et al. (2013), Ot13: Otsuka et al. (2013), Po09: Pottasch et al. (2009b), Po09b: Pottasch et al. (2009a), RL08: Ramos-Larios et al. (2008), RL12: Ramos-Larios et al. (2012), Sa11: Sahai et al. (2011), Sh06: Shaw et al. (2006), Sh95: Shupe et al. (1995), St07: Stanghellini et al. (2007), St08: Stanghellini et al. (2008), St16: Stanghellini et al. (2016), SS99: Stasińska & Szczerba (1999), St84: Storey (1984), Su04: Surendiranath et al. (2004), Sz11: Szyszka et al. (2011), Ty03: Tylenda et al. (2003), Va12: Vázquez (2012), Vi99: Vicini et al. (1999), Wa18: Walsh et al. (2018), We88: Webster et al. (1988), Yu11: Yuan et al. (2011).