This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The dynamics of the focusing NLH with a potential beyond the mass-energy threshold

Shuang Ji College of Science, China Agricultural University,  Beijing,  China,  100193 [email protected] Jing Lu College of Science, China Agricultural University,  Beijing,  China,  100193 [email protected]  and  Fanfei Meng Qiyuan Lab,  Tsinghua University,  Beijing,  China,  100095 [email protected]
Abstract.

In this paper, we study the dynamics of the focusing nonlinear Hartree equation with a Kato potential

itu+ΔuVu=(||γ|u|2)u,xdi\partial_{t}u+\Delta u-Vu=-(|\cdot|^{-\gamma}\ast|u|^{2})u,\quad x\in{\mathbb{R}}^{d}

under some assumptions on the potential VV. We prove the blow up versus global existence dichotomy for solutions beyond the threshold, based on the method from Duyckaerts-Roudenko [6]. Furthermore, our result compensates for the one of in [13] below that threshold.

Key words and phrases:
Kato potential, global existence, blow up, virial identity.

1. Introduction

In this paper, we study the Cauchy problem of the focusing nonlinear Hartree equation with a potential

{itu+ΔuVu=(||γ|u|2)u,u(0)=u0Hx1(d),(t,x)×d,\displaystyle\left\{\begin{aligned} &i\partial_{t}u+\Delta u-Vu=-(|\cdot|^{-\gamma}\ast|u|^{2})u,\\ &u(0)=u_{0}\in{H}_{x}^{1}({\mathbb{R}}^{d}),\end{aligned}\right.\qquad(t,x)\in{\mathbb{R}}\times{\mathbb{R}}^{d}, (NLHV\text{NLH}_{\text{V}})

where u:×du:{\mathbb{R}}\times{\mathbb{R}}^{d}\rightarrow{\mathbb{C}} is the wave function, V:dV:{\mathbb{R}}^{d}\to{\mathbb{R}} is a real-valued potential and \ast denotes the convolution of spacial variable. Here we consider the energy-subcritical case, that is 2<γ<min{4,d}2<\gamma<\min\{4,d\}.

We denote that :=Δ+V\mathcal{H}:=-\Delta+V and

fH˙V1(d)2:=<f,f>=d|f|2dx+dV|f|2dx,fHx1(d).\|f\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}:=<\mathcal{H}f,f>=\int_{{\mathbb{R}}^{d}}|\nabla f|^{2}dx+\int_{{\mathbb{R}}^{d}}V|f|^{2}dx,\quad f\in H_{x}^{1}({\mathbb{R}}^{d}).

The solution to (NLHV\text{NLH}_{\text{V}}) satisfies the laws of mass conservation and energy conservation, which can be expressed respectively by

M(u)=d|u(t,x)|2𝑑x=M(u0),M(u)=\int_{{\mathbb{R}}^{d}}|u(t,x)|^{2}dx=M(u_{0}), (1.1)
EV(u)=12uH˙V1(d)214P(u)=EV(u0),E_{V}(u)=\frac{1}{2}\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-\frac{1}{4}P(u)=E_{V}(u_{0}), (1.2)

where

P(u)=dd|u(x)|2|u(y)|2|xy|γ𝑑x𝑑y=d(|x|γ|u|2)|u|2𝑑x.P(u)=\int_{{\mathbb{R}}^{d}}\int_{{\mathbb{R}}^{d}}\frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|^{\gamma}}dxdy=\int_{{\mathbb{R}}^{d}}(|x|^{-\gamma}\ast|u|^{2})|u|^{2}dx. (1.3)

Before stating our main results, we first recall the literature of the focusing nonlinear Hartree equations with no potential

itu+Δu=μ(||γ|u|2)u,2<γ<min{4,d},xd,\displaystyle i\partial_{t}u+\Delta u=\mu(|\cdot|^{-\gamma}\ast|u|^{2})u,\quad 2<\gamma<\min\{4,d\},\quad x\in{\mathbb{R}}^{d}, (NLH0\text{NLH}_{\text{0}})

which is called focusing if μ<0\mu<0 and defocusing if μ>0\mu>0.

In [7], Gao-Wu investigated the focusing (NLH0)\eqref{NLH0} for γ=3\gamma=3 with u0Hx1(d)u_{0}\in H_{x}^{1}({\mathbb{R}}^{d}) by concentration compactness method. Denote the mass-energy threshold as M(Q)E0(Q),M(Q)E_{0}(Q), where QQ is the ground state of the equation (NLH0\text{NLH}_{\text{0}}) and

E0(u)=12d|u|2𝑑x14P(u)=E0(u0).E_{0}(u)=\frac{1}{2}\int_{{\mathbb{R}}^{d}}|\nabla u|^{2}dx-\frac{1}{4}P(u)=E_{0}(u_{0}).

Their results are as follows.

Theorem 1.1 (Sub-threshold dynamics for (NLH0)\eqref{NLH0}, Gao-Wu [7]).

For (γ,d)=(3,5)(\gamma,d)=(3,5), let the radial u0Hx1(d)u_{0}\in H_{x}^{1}({\mathbb{R}}^{d}) and satisfy M(u0)E0(u0)<M(Q)E0(Q)M(u_{0})E_{0}(u_{0})<M(Q)E_{0}(Q).

  1. (i)

    If u0Lx2(d)u0Lx2(d)<QLx2(d)QLx2(d)\|\nabla u_{0}\|_{L_{x}^{2}({\mathbb{R}}^{d})}||u_{0}||_{L_{x}^{2}({\mathbb{R}}^{d})}<||\nabla Q||_{L_{x}^{2}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})}, then the solution is global and scatters.

  2. (ii)

    If u0Lx2(d)u0Lx2(d)>QLx2(d)QLx2(d)\|\nabla u_{0}\|_{L_{x}^{2}({\mathbb{R}}^{d})}||u_{0}||_{L_{x}^{2}({\mathbb{R}}^{d})}>||\nabla Q||_{L_{x}^{2}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})}, then the solution will blow up in finite time.

For the case beyond the threshold, Yang-Li [27] have established a dichotomy of blow up versus global existence for (NLH0)\eqref{NLH0} by the method from Duyckaerts-Roudenko [6]. Their results are as follows.

Theorem 1.2 (Super-threshold dynamics for (NLH0)\eqref{NLH0}, Yang-Li [27]).

For sc=γ22s_{c}=\frac{\gamma-2}{2} and d3d\geqslant 3, assume I(0)<I(0)<\infty, M(u0)E0(u0)>M(Q)E0(Q)M(u_{0})E_{0}(u_{0})>M(Q)E_{0}(Q) and

(M(u0)E0(u0)M(Q)E0(Q))(1(I(0))232E0(u0)I(0))1.\displaystyle\biggl{(}\frac{M(u_{0})E_{0}(u_{0})}{M(Q)E_{0}(Q)}\biggr{)}\biggl{(}1-\frac{(I^{\prime}(0))^{2}}{32E_{0}(u_{0})I(0)}\biggr{)}\leqslant 1.
  1. (i)

    If [M(u0)]1sc[P(u0)]sc>[M(Q)]1sc[P(Q)]sc\bigl{[}M(u_{0})\bigr{]}^{1-s_{c}}\bigl{[}P(u_{0})\bigr{]}^{s_{c}}>\bigl{[}M(Q)\bigr{]}^{1-s_{c}}\bigr{[}P(Q)\bigl{]}^{s_{c}} and I(0)0I^{\prime}(0)\leqslant 0, then the solution blows up in finite time.

  2. (ii)

    If [M(u0)]1sc[P(u0)]sc<[M(Q)]1sc[P(Q)]sc\bigl{[}M(u_{0})\bigr{]}^{1-s_{c}}\bigl{[}P(u_{0})\bigr{]}^{s_{c}}<\bigl{[}M(Q)\bigr{]}^{1-s_{c}}\bigr{[}P(Q)\bigl{]}^{s_{c}} and I(0)0I^{\prime}(0)\geqslant 0, then the solution exists globally.

For (NLH0)\eqref{NLH0}, Miao-Xu-Zhao studied the well-posedness, ill-posedness, the sharp local well-posedness and the global existence in [22]. After that, they further established the global well-posedness and scattering criteria when γ=2\gamma=2 below the threshold [23]. Li-Miao-Zhang [17] proved that the solution scatters in both time directions when γ=4\gamma=4 and d5d\geqslant 5. A similar result was obtained for spherically symmetric initial data in [21]. Meng [19] used the radial Sobolev embedding and a virial-Morawetz type estimate to study the scattering result of (NLH0)\eqref{NLH0} with (γ,d)=(3,5)(\gamma,d)=(3,5), instead of Kenig-Merle’s concentrated compactness methods [14, 15]. In particular, Miao-Wu-Xu [20] continued the study on the dynamics of the radial solutions at the energy threshold.

Recently, more and more mathematicians have been considerably interested in the dispersive equations with different potentials, which are of paramount physical importance. For example, the Coulomb potential describes the coulomb force between two charged particles in quantum mechanical terms, and the inverse-square potential reveals that the intensity of the action between particles decays linearly with the square of the distance.

There are also many studies on the focusing nonlinear Schrödinger equations with a potential VV. Firstly, Rodnianski-Schlag [25] established the dispersive estimates for solutions to the linear Schrödinger equation in 3D with a time-dependent potential. Later, more and more mathematicians studied the nonlinear Schrödinger equation with a real-valued potential VV

itu+ΔuVu+|u|p1u=0,xd.\displaystyle i\partial_{t}u+\Delta u-Vu+|u|^{p-1}u=0,\quad x\in{\mathbb{R}}^{d}. (NLSV\text{NLS}_{\text{V}})

For the case that VV is the inverse-square potential a/|x|2a/|x|^{2} in (NLSV\text{NLS}_{\text{V}}), Killip-Murphy-Visan-Zheng [16] obtained the scattering and blow up dichotomy below the threshold with a>14a>-\frac{1}{4} and p=3p=3 in 3{\mathbb{R}}^{3}. Then Lu-Miao-Murphy [18] extended their results to dimensions 3d63\leqslant d\leqslant 6. Based on the method from Duyckaerts-Roudenko [6], Deng-Lu-Meng [3] further extended the results of [16] to beyond the threshold. For the case that VV is the Coulomb potential K|x|1K|x|^{-1} in (NLSV\text{NLS}_{\text{V}}), Miao-Zhang-Zheng [24] proved the global existence when K>0K>0, and the scattering theory when K<0K<0 for in 3{\mathbb{R}}^{3}.

In particular, we focus on the case that VV is the Kato potential with a small negative part denoted as

V(x):=min{V(x),0}.V_{-}(x):=\min\{V(x),0\}.

To be precise, we define that the potential class 𝒦0\mathcal{K}_{0} is the closed space of bounded and compactly supported functions endowed with the Kato norm

V𝒦:=(Δ)1V)Lx.\|V\|_{\mathcal{K}}:=\|(-\Delta)^{-1}V)\|_{L_{x}^{\infty}}.

In order to prove the scattering result for (NLSV\text{NLS}_{\text{V}}) with (p,d)=(3,3)(p,d)=(3,3) below the mass-energy threshold, Hong used the concentration compactness method and introduced the following customized assumptions of Kato potential V in [11]

V𝒦0Lx32(3),V\in\mathcal{K}_{0}\cap L_{x}^{\frac{3}{2}}({\mathbb{R}}^{3}), (1.4)

and

V(x)𝒦<4π,\|V_{-}(x)\|_{\mathcal{K}}<4\pi, (1.5)

Hamano-Ikeda [10] studied the energy scattering below the threshold from Dodson-Murphy [4] and the blow up criteria based on an argument of Du-Wu-Zhang [5] when p>1p>1. Later, Wang [26] investigated the blow up and scattering results of (NLSV\text{NLS}_{\text{V}}) beyond the mass-energy threshold when p=3p=3.

Inspired by their results, we want to expand the range of VV to higher dimensions d3d\geqslant 3. We assume that the Kato potential VV satisfies

V𝒦0Lxd2(d),V\in\mathcal{K}_{0}\cap L_{x}^{\frac{d}{2}}({\mathbb{R}}^{d}), (1.6)

and

V(x)𝒦<1Cd,\|V_{-}(x)\|_{\mathcal{K}}<\frac{1}{C_{d}}, (1.7)

where Cd=Γ(d2)/[(2d)2πd2]C_{d}=\Gamma(\frac{d}{2})\big{/}\bigl{[}(2-d)2\pi^{\frac{d}{2}}\bigr{]}.

Remark 1.3.

For the sake of clarity, we explain why the Kato potential VV need to satisfy (1.6) and (1.7). V𝒦0V\in\mathcal{K}_{0} and V(x)𝒦<1/Cd\|V_{-}(x)\|_{\mathcal{K}}<1/C_{d} ensure that the operator \mathcal{H} is positive, which implies that \mathcal{H} is equivalent to Δ-\Delta in the sense of

(1CdV𝒦)uLx2(d)212uLx2(d)2(1+CdV𝒦)uLx2(d)2\displaystyle(1-C_{d}\|V_{-}\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant\|\mathcal{H}^{\frac{1}{2}}u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant(1+C_{d}\|V\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}

(see the specific proof in Lemma 2.2). VLxd/2(d)V\in L_{x}^{d/2}({\mathbb{R}}^{d}) is an additional condition for proving such the equivalence of the Sobolev norm in the sense of fH˙V1(d)fH˙x1(d)\|f\|_{{\dot{H}}_{V}^{1}({\mathbb{R}}^{d})}\sim\|f\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})} when d3d\geqslant 3 (see details in [11]). Then from Beceanu-Goldberg [1], the operator \mathcal{H} has no eigenvalues or nonnegative resonance. Therefore the dispersive estimates and Strichartz estimates are valid by Ionescu-Jerison [12], providing a robust foundation for the dichotomy of blow up versus global existence.

Next we review our previous work and demonstrate our main results in this paper. For completeness and logic, let’s start with a discussion of the Kato potential VV and the mass-energy threshold. Hong [11] has shown a stimulating discussion about the existence of ground state in (NLSV\text{NLS}_{\text{V}}). Later, for the nonlinear Hartree equation with the inverse-potential, Chen-Lu-Meng [2] also discussed the existence of ground state. Based on their methods, we give the similar variational characterization of (NLHV\text{NLH}_{\text{V}}) as follows.

Proposition 1.4 (Variational properties).

Suppose VV satisfies (1.6) and (1.7).

  1. (i)

    If V=0V_{-}=0, then the sequence Q(n)n{Q(\cdot-n)}_{n\in{\mathbb{N}}} maximizes W(u)W(u), where QQ is the ground state of the elliptic equation

    ΔQQ+(||γ|Q|2)Q=0,\Delta Q-Q+(|\cdot|^{-\gamma}\ast|Q|^{2})Q=0, (1.8)

    and

    W(u)=P(u)uH˙V1(d)γuLx2(d)4γ.W(u)=\frac{P(u)}{\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{\gamma}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{4-\gamma}}.
  2. (ii)

    If V0V_{-}\neq 0, then there exists a maximizer 𝒬Hx1(d)\mathcal{Q}\in H_{x}^{1}({\mathbb{R}}^{d}) solving the elliptic equation

    (Δ+V)𝒬+w𝒬2𝒬(||γ|𝒬|2)|𝒬=0,w𝒬2=(4γ)𝒬H˙V1(d)2γ𝒬Lx2(d)2.\displaystyle(-\Delta+V)\mathcal{Q}+w_{\mathcal{Q}}^{2}\mathcal{Q}-(|\cdot|^{-\gamma}\ast|\mathcal{Q}|^{2})|\mathcal{Q}=0,\quad w_{\mathcal{Q}}^{2}=\frac{(4-\gamma)\|\mathcal{Q}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}}{\gamma\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}}. (1.9)

We denote that

={M(u)1scEV(u)scM(Q)1scE0(Q)sc,ifV=0,M(u)1scEV(u)scM(𝒬)1scEV(𝒬)sc,ifV0.\mathcal{M}\mathcal{E}=\left\{\begin{aligned} &\frac{M(u)^{1-s_{c}}E_{V}(u)^{s_{c}}}{M(Q)^{1-s_{c}}E_{0}(Q)^{s_{c}}},\quad&if~{}V_{-}=0,\\ &\frac{M(u)^{1-s_{c}}E_{V}(u)^{s_{c}}}{M(\mathcal{Q})^{1-s_{c}}E_{V}(\mathcal{Q})^{s_{c}}},\quad&if~{}V_{-}\neq 0.\end{aligned}\right.

In [13], we have proved the scattering theory and the blow up result of (NLH) with Kato potential below the threshold. The results are as follows:

Theorem 1.5 ([13]).

For (γ,d)=(3,5)(\gamma,d)=(3,5) in (NLHV\text{NLH}_{\text{V}}), we assume V0V\geqslant 0 and satisfies (1.6) and (1.7). Let u0Hx1(d)u_{0}\in H_{x}^{1}({\mathbb{R}}^{d}) be radial and satisfy <1\mathcal{M}\mathcal{E}<1.

  1. (i)

    If the initial data u0u_{0} satisfies u0H˙V1(d)u0Lx2(d)<QH˙x1(d)QLx2(d),\|u_{0}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}||u_{0}||_{L_{x}^{2}({\mathbb{R}}^{d})}<\|Q\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})}, then uH˙V1(d)uLx2(d)<QH˙x1(d)QLx2(d).\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}||u||_{L_{x}^{2}({\mathbb{R}}^{d})}<\|Q\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})}. Moreover, if xV0\ x\cdot\nabla V\leqslant 0 and xVLx52(d)x\cdot\nabla V\in L_{x}^{\frac{5}{2}}({\mathbb{R}}^{d}), then the global solution scatters in Hx1(d)H_{x}^{1}({\mathbb{R}}^{d}) in both time directions.

  2. (ii)

    If the initial data u0u_{0} satisfies u0H˙V1(d)u0Lx2(d)>QH˙x1(d)QLx2(d),\|u_{0}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}||u_{0}||_{L_{x}^{2}({\mathbb{R}}^{d})}>\|Q\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})}, then uH˙V1(d)uLx2(d)>QH˙x1(d)QLx2(d)\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}||u||_{L_{x}^{2}({\mathbb{R}}^{d})}>\|Q\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})}||Q||_{L_{x}^{2}({\mathbb{R}}^{d})} during the maximal existence time. Moreover, if xVLx52(d)\ x\cdot\nabla V\in L_{x}^{\frac{5}{2}}({\mathbb{R}}^{d}), 2V+xV02V+x\cdot\nabla V\geqslant 0, then either T<+T^{*}<+\infty and

    limtTu(t)Lx2(d)=,\lim_{t\to T^{*}}\|\nabla u(t)\|_{L_{x}^{2}({\mathbb{R}}^{d})}=\infty,

    or T=+T^{*}=+\infty and there exists a time sequence tn+t_{n}\to+\infty such that

    limn+u(tn)Lx2(d)=.\lim_{n\to+\infty}\|\nabla u(t_{n})\|_{L_{x}^{2}({\mathbb{R}}^{d})}=\infty.
Remark 1.6.

In [13], we dismiss the influence of VV_{-} for the assumption that V0V\geqslant 0. So the ground state 𝒬\mathcal{Q} in the result here satisfies the elliptic equation (1.8), which implies that 𝒬\mathcal{Q} is equivalent to QQ under the condition V0V\geqslant 0. Thus we can rewrite the condition <1\mathcal{M}\mathcal{E}<1 as EV(u0)M(u0)<E0(Q)M(Q)E_{V}(u_{0})M(u_{0})<E_{0}(Q)M(Q) in Theorem 1.5.

Inspired by this result, we want to know what will happen when beyond the threshold. Here we define that

I(t)=d|x|2|u(t,x)|2𝑑x,xuLx2(d).\displaystyle I(t)=\int_{{\mathbb{R}}^{d}}|x|^{2}|u(t,x)|^{2}dx,\quad xu\in L_{x}^{2}({\mathbb{R}}^{d}).

The main theorem of this paper can be concluded as follows.

Theorem 1.7.

Assume that the Kato potential V satisfies (1.6) and (1.7) in (NLHV\text{NLH}_{\text{V}}) with d3d\geqslant 3. Suppose u0Σ:={fHx1(d):xfLx2(d)}u_{0}\in\Sigma:=\left\{f\in H_{x}^{1}({\mathbb{R}}^{d}):xf\in L_{x}^{2}({\mathbb{R}}^{d})\right\}, I(0)<I(0)<\infty, >1\mathcal{M}\mathcal{E}>1 and

(1(I(0))232EV(u0)I(0))1,\displaystyle\mathcal{M}\mathcal{E}\biggl{(}1-\frac{(I^{\prime}(0))^{2}}{32E_{V}(u_{0})I(0)}\biggr{)}\leqslant 1, (1.10)
  1. (i)

    (Blow up) If I(0)0I^{\prime}(0)\leqslant 0, 2V+xV02V+x\cdot\nabla V\geqslant 0, and

    [M(u0)]1sc[P(u0)]sc>[M(𝒬)]1sc[P(𝒬)]sc,\displaystyle\bigl{[}M(u_{0})\bigr{]}^{1-s_{c}}\bigl{[}P(u_{0})\bigr{]}^{s_{c}}>\bigl{[}M(\mathcal{Q})\bigr{]}^{1-s_{c}}\bigr{[}P(\mathcal{Q})\bigl{]}^{s_{c}}, (1.11)

    then u(t,x)u(t,x) blows up in finite time.

  2. (ii)

    (Global existence) If I(0)0I^{\prime}(0)\geqslant 0, 2V+xV02V+x\cdot\nabla V\leqslant 0, and

    [M(u0)]1sc[P(u0)]sc<[M(𝒬)]1sc[P(𝒬)]sc,\displaystyle\bigl{[}M(u_{0})\bigr{]}^{1-s_{c}}\bigl{[}P(u_{0})\bigr{]}^{s_{c}}<\bigl{[}M(\mathcal{Q})\bigr{]}^{1-s_{c}}\bigr{[}P(\mathcal{Q})\bigl{]}^{s_{c}}, (1.12)

    then u(t,x)u(t,x) exists globally. Moreover,

    limtsup[M(u)]1sc[P(u)]sc<[M(𝒬)]1sc[P(𝒬)]sc.\displaystyle\lim_{t\to\infty}\sup\bigl{[}M(u)\bigr{]}^{1-s_{c}}\bigl{[}P(u)\bigr{]}^{s_{c}}<\bigl{[}M(\mathcal{Q})\bigr{]}^{1-s_{c}}\bigl{[}P(\mathcal{Q})\bigr{]}^{s_{c}}. (1.13)

The sketch of blow up: Based on the classical argument from Glassey in [9], if the initial data u0Σu_{0}\in\Sigma, then the solution will blow up in finite time. Then we simplify the problem to prove that for xuLx2(d)xu\in L_{x}^{2}({\mathbb{R}}^{d}),

d2dt2I(t)=d2dt2xuLx2(d)2<0,t[0,T+(u)).\displaystyle\frac{d^{2}}{dt^{2}}I(t)=\frac{d^{2}}{dt^{2}}\|xu\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}<0,\quad\forall~{}t\in\left[0,T_{+}(u)\right).

We make use of z(t)=I(t)z(t)=\sqrt{I(t)}, and prove the claim that z′′(t)<0z^{\prime\prime}(t)<0 in finite time (see details in Section 3.1). So we derive that uu will blow up in finite time.

The sketch of global existence: By the contradiction argument, we prove the lower bound of z(t)z^{\prime}(t) (see details in Section 3.2). Then we use the claim to prove the boundedness (1.13). Combing it with the mass and energy conservation, we eventually obtain the boundedness of uH˙V1(d)\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}, which implies that the solution uu exists globally.

Remark 1.8.

The condition I(0)<I(0)<\infty ensures the existence of I(0)I^{\prime}(0) and I′′(0)I^{\prime\prime}(0) of virial identity, which play important role of proving our main results. The condition >1\mathcal{M}\mathcal{E}>1 implies that our paper is based on (NLHV\text{NLH}_{\text{V}}) beyond the threshold. The condition (1.10) provides an unified estimate of z(0)z^{\prime}(0), which facilitates the proof of blow up and global existence. The condition I(0)0I^{\prime}(0)\leqslant 0 is instrumental in the proof of blow up. The condition I(0)0I^{\prime}(0)\geqslant 0 is used to prove the claim, which is essential for demonstrating global existence. The various forms of the expression 2V+xV2V+x\cdot\nabla V are used to estimate the potential term in I′′(t)I^{\prime\prime}(t) in different conditions.

Outline of this paper: In Section 2, we introduce the local well-posedness, the positivity of the operator \mathcal{H}, variational characterization and the virial identity. In Section 3, with several claims and analysis, we prove our main results, including blow up and global existence.

2. Preliminaries

In this section, we introduce the notation and several fundamental lemmas needed in this paper. The notation ABA\lesssim B means that ACB{A}\leqslant{CB} for some constant C>0C>0. Likewise, if ABAA\lesssim B\lesssim A, we say that ABA\sim B. We use Lxr(d)L_{x}^{r}(\mathbb{R}^{d}) to denote the Lebesgue space of functions f:df:\mathbb{R}^{d}\rightarrow{\mathbb{C}} whose norm

fLxr:=(d|f(x)|r𝑑x)1r\|f\|_{L_{x}^{r}}:=\Big{(}\int_{\mathbb{R}^{d}}|f(x)|^{r}dx\Big{)}^{\frac{1}{r}}

is finite, with the usual modifications when r=r=\infty.

2.1. Local well-posedness

In [13], we have introduced the Strichartz estimates of (NLHV\text{NLH}_{\text{V}}) and proved the local well-posedness by Banach contraction mapping principle. Here we only demonstrate the local well-posedness as follows.

Lemma 2.1 (Local well-posedness, [13]).

Let  V:dV:{\mathbb{R}}^{d}\rightarrow{\mathbb{R}} satisfy (1.6) and (1.7). Then the equation (NLHV\text{NLH}_{\text{V}}) is locally well-posed in Hx1(d)H_{x}^{1}({\mathbb{R}}^{d}) for (γ,d)=(3,5)(\gamma,d)=(3,5).

With the depiction of local well-posedness, we can further discuss the global existence and blow up of (NLHV\text{NLH}_{\text{V}}). Indeed, if we want to discuss the local well-posedness when 2<γ<42<\gamma<4 rather than γ=3\gamma=3 in [13], we only need to make some minor alterations to the proof. Then we can also obtain the similar result. Here we omit the proof.

2.2. The positivity of \mathcal{H}

In this subsection, we discuss the Kato potential VV and the operator \mathcal{H}. Indeed, the operator \mathcal{H} is positive definite when the negative part of VV is sufficiently small. We summarize this as the lemma below.

Lemma 2.2.

For Cd=Γ(d2)/[(2d)2πd2]C_{d}=\Gamma(\frac{d}{2})\big{/}\bigl{[}(2-d)2\pi^{\frac{d}{2}}\bigr{]}, if V𝒦V\in\mathcal{K}, then

dV|u|2𝑑xCdV𝒦uLx2(d)2.\displaystyle\int_{{\mathbb{R}}^{d}}V|u|^{2}dx\leqslant C_{d}\|V\|_{\mathcal{K}}\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.

In particular, if V𝒦<1Cd\|V_{-}\|_{\mathcal{K}}<\frac{1}{C_{d}}, we have

(1CdV𝒦)uLx2(d)212uLx2(d)2=duu¯𝑑x(1+CdV𝒦)uLx2(d)2.\displaystyle(1-C_{d}\|V_{-}\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant\|\mathcal{H}^{\frac{1}{2}}u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}=\int_{{\mathbb{R}}^{d}}\mathcal{H}u\bar{u}dx\leqslant(1+C_{d}\|V\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.
Proof.

We first consider the fundamental solution K(x)K(x) of the Laplace equation Δu=0-\Delta u=0, that is ΔK(x)=δ(x)\Delta K(x)=\delta(x). Then for the equation Δu=f-\Delta u=f, we have

Δu=Δ(Δ)1f=Δ(Kf)=Δ(K)f=f.\displaystyle-\Delta u=-\Delta(-\Delta)^{-1}f=-\Delta(-K\ast f)=-\Delta(-K)\ast f=f.

For d3d\geqslant 3, the fundamental solution of the Laplace equation is K(x)=Cd|x|2dK(x)=C_{d}|x|^{2-d} , where

Cd=Γ(d2)(d2)2πd2.\displaystyle C_{d}=\frac{\Gamma(\frac{d}{2})}{(d-2)2\pi^{\frac{d}{2}}}.

Thus we find the relation (Δ)1f=Kf=dCdf(y)|xy|d2𝑑y(-\Delta)^{-1}f=-K\ast f=\int_{{\mathbb{R}}^{d}}C_{d}\frac{f(y)}{|x-y|^{d-2}}dy. Know that

|V|12(Δ)1|V|12uLx2(d)2\displaystyle\bigl{\|}|V|^{\frac{1}{2}}(-\Delta)^{-1}|V|^{\frac{1}{2}}u\bigr{\|}_{L_{x}^{2}({\mathbb{R}}^{d})}^{2} =d|V(x)||Cd|V(y)|12|xy|d2u(y)dy|2𝑑x\displaystyle=\int_{{\mathbb{R}}^{d}}|V(x)|\biggl{|}C_{d}\frac{|V(y)|^{\frac{1}{2}}}{|x-y|^{d-2}}u(y)dy\biggr{|}^{2}dx
d|V(x)|(Cdd|V(y)||xy|d2𝑑y)(Cdd|u(y)|2|xy|d2𝑑y)𝑑x\displaystyle\leqslant\int_{{\mathbb{R}}^{d}}|V(x)|\biggl{(}C_{d}\int_{{\mathbb{R}}^{d}}\frac{|V(y)|}{|x-y|^{d-2}}dy\biggr{)}\biggl{(}C_{d}\int_{{\mathbb{R}}^{d}}\frac{|u(y)|^{2}}{|x-y|^{d-2}}dy\biggr{)}dx
CdV𝒦dCd|V(x)||xy|d2|u(y)|2𝑑y𝑑x\displaystyle\leqslant C_{d}\|V\|_{\mathcal{K}}\int_{{\mathbb{R}}^{d}}\frac{C_{d}|V(x)|}{|x-y|^{d-2}}|u(y)|^{2}dydx
(CdV𝒦)2uLx2(d)2.\displaystyle\leqslant\bigl{(}C_{d}\|V\|_{\mathcal{K}}\bigr{)}^{2}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.

From the TTTT^{*} argument [8], we set T=|V|12||1T=|V|^{\frac{1}{2}}|\nabla|^{-1}. Then we find

dV|u|2𝑑x=|V|12||1uLx2(d)2CdV𝒦uLx2(d)2.\displaystyle\int_{{\mathbb{R}}^{d}}V|u|^{2}dx=\bigl{\|}|V|^{\frac{1}{2}}|\nabla|^{-1}\nabla u\bigr{\|}_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant C_{d}\|V\|_{\mathcal{K}}\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}. (2.1)

In particular, if V𝒦<1Cd\|V_{-}\|_{\mathcal{K}}<\frac{1}{C_{d}}, combining with (2.1), we have

(1CdV𝒦)uLx2(d)2uLx2(d)2+V12uLx2(d)2(1+CdV𝒦)uLx2(d)2.\displaystyle(1-C_{d}\|V_{-}\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}+\|V^{\frac{1}{2}}u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\leqslant(1+C_{d}\|V\|_{\mathcal{K}})\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.

Then the proof is completed. ∎

2.3. Variational analysis

In view of the proof in [11], we can compute the sharp constant CGNC_{GN} for Gagliardo-Nirenberg inequality, which is crucially used to our later proof. It can be estimated as follows.

P(u)CGNuH˙V1(d)γuLx2(d)4γ,P(u)\leqslant C_{GN}\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{\gamma}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{4-\gamma}, (2.2)

where

CGN=supuHx1(d)\{0}W(u)=supuHx1(d)\{0}P(u)uH˙V1(d)γuLx2(d)4γ.\displaystyle C_{GN}=\sup_{u\in H_{x}^{1}({\mathbb{R}}^{d})\backslash\{0\}}W(u)=\sup_{u\in H_{x}^{1}({\mathbb{R}}^{d})\backslash\{0\}}\frac{P(u)}{\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{\gamma}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{4-\gamma}}.

We know that 𝒬\mathcal{Q} is a strong solution in [11]. Rewrite (2.2) as

[P(u)]2γC𝒬uH˙V1(d)2(uLx2(d)2)4γγ,\displaystyle\bigl{[}P(u)\bigr{]}^{\frac{2}{\gamma}}\leqslant C_{\mathcal{Q}}\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}\bigl{(}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}\bigr{)}^{\frac{4-\gamma}{\gamma}},

where

C𝒬=(CGN)2γ=[P(𝒬)]2γ𝒬H˙V1(d)2𝒬Lx2(d)2(4γ)γ=42γ(4γ)2γγγ𝒬Lx2(d)4γ.\displaystyle C_{\mathcal{Q}}=(C_{GN})^{\frac{2}{\gamma}}=\frac{\bigl{[}P(\mathcal{Q})\bigr{]}^{\frac{2}{\gamma}}}{\|\mathcal{Q}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{\frac{2(4-\gamma)}{\gamma}}}=\frac{4^{\frac{2}{\gamma}}}{(4-\gamma)^{\frac{2-\gamma}{\gamma}}\gamma\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{\frac{4}{\gamma}}}.

Since our paper focus on the long-time dynamical behavior of (NLHV\text{NLH}_{\text{V}}) beyond the mass-energy threshold, the ground state 𝒬\mathcal{Q} is vital to the proof. We show the properties of 𝒬\mathcal{Q} as follows.

Proposition 2.3 (Pohozhaev identities).

For 𝒬\mathcal{Q} in the (1.9), we have

𝒬H˙V1(d)2=γw𝒬24γ𝒬Lx2(d)2,P(𝒬)=4w𝒬24γ𝒬Lx2(d)2,\displaystyle\|\mathcal{Q}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}=\frac{\gamma w_{\mathcal{Q}}^{2}}{4-\gamma}\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},\quad P(\mathcal{Q})=\frac{4w_{\mathcal{Q}}^{2}}{4-\gamma}\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},

and then

P(𝒬)=8γ2EV(𝒬).\displaystyle P(\mathcal{Q})=\frac{8}{\gamma-2}E_{V}(\mathcal{Q}). (2.3)
Proof.

Let QwQ_{w} be a strong solution to the equation

(ΔV)Qww2Qw+(||γ|Qw|2)Qw=0,(\Delta-V)Q_{w}-w^{2}Q_{w}+(|\cdot|^{-\gamma}\ast|Q_{w}|^{2})Q_{w}=0, (2.4)

(i) Multiplying (2.4) by QwQ_{w} and integrating by parts, we have

d(ΔV)QwQwdxw2dQw2dx+d(||γ|Qw|2)Qw2dx=0.\int_{{\mathbb{R}}^{d}}(\Delta-V)Q_{w}\cdot Q_{w}dx-w^{2}\int_{{\mathbb{R}}^{d}}Q_{w}^{2}dx+\int_{{\mathbb{R}}^{d}}(|\cdot|^{-\gamma}\ast|Q_{w}|^{2})Q_{w}^{2}dx=0.

We find

d(ΔV)QwQw𝑑x=d|Qw|2𝑑xdVQw2𝑑x=QwH˙V1(d)2,\displaystyle\int_{{\mathbb{R}}^{d}}(\Delta-V)Q_{w}\cdot Q_{w}dx=-\int_{{\mathbb{R}}^{d}}|\nabla Q_{w}|^{2}dx-\int_{{\mathbb{R}}^{d}}VQ_{w}^{2}dx=-||Q_{w}||_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2},

Then we obtain

P(Qw)=QwH˙V1(d)2+w2QwLx2(d)2P(Q_{w})=||Q_{w}||_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}+w^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2} (2.5)

(ii) Multiplying (2.4) by xQwx\cdot\nabla Q_{w} and integrating by parts, we have

d(ΔV)QwxQwdxdQwxQwdx+d(||γ|Qw|2)QwxQwdx=0.\int_{{\mathbb{R}}^{d}}(\Delta-V)Q_{w}\cdot x\cdot\nabla Q_{w}dx-\int_{{\mathbb{R}}^{d}}Q_{w}\cdot x\cdot\nabla Q_{w}dx+\int_{{\mathbb{R}}^{d}}(|\cdot|^{-\gamma}\ast|Q_{w}|^{2})Q_{w}\cdot x\cdot\nabla Q_{w}dx=0.

For each part, we have

(a)d(ΔV)QwxQwdx=d22QwLx2(d)2+12d(xV+2V)|Qw|2𝑑x,\displaystyle(a)~{}\int_{{\mathbb{R}}^{d}}(\Delta-V)Q_{w}\cdot x\cdot\nabla Q_{w}dx=\frac{d-2}{2}||\nabla Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}+\frac{1}{2}\int_{{\mathbb{R}}^{d}}(x\cdot\nabla V+2V)|Q_{w}|^{2}dx,
(b)dw2QwxQwdx=dw22QwLx2(d)2,\displaystyle(b)~{}\int_{{\mathbb{R}}^{d}}w^{2}Q_{w}\cdot x\cdot\nabla Q_{w}dx=-\frac{dw^{2}}{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},
(c)d(||γ|Qw|2)QwxQwdx=(γ4d2)P(Qw).\displaystyle(c)~{}\int_{{\mathbb{R}}^{d}}(|\cdot|^{-\gamma}\ast|Q_{w}|^{2})Q_{w}\cdot x\cdot\nabla Q_{w}dx=(\frac{\gamma}{4}-\frac{d}{2})P(Q_{w}).

Collecting them all, we have

(dγ2)P(Qw)=(d2)QwH˙V1(d)2+dw2QwLx2(d)2+d(2V+xV)|Qw|2𝑑x.\displaystyle(d-\frac{\gamma}{2})P(Q_{w})=(d-2)||Q_{w}||_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}+dw^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}+\int_{{\mathbb{R}}^{d}}(2V+x\cdot\nabla V)|Q_{w}|^{2}dx. (2.6)

Combining (2.4) and (2.6) together, we find

{QwH˙V1(d)2=γ4γw2QwLx2(d)2+24γd(2V+xV)|Qw|2𝑑x,P(Qw)=44γw2QwLx2(d)2+24γd(2V+xV)|Qw|2𝑑x.\left\{\begin{aligned} &||Q_{w}||_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}=\frac{\gamma}{4-\gamma}w^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}+\frac{2}{4-\gamma}\int_{{\mathbb{R}}^{d}}(2V+x\cdot\nabla V)|Q_{w}|^{2}dx,\\ &P(Q_{w})=\frac{4}{4-\gamma}w^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}+\frac{2}{4-\gamma}\int_{{\mathbb{R}}^{d}}(2V+x\cdot\nabla V)|Q_{w}|^{2}dx.\end{aligned}\right. (2.7)

Indeed, if V=0V=0, then

{QwLx2(d)2=γ4γw2QwLx2(d)2,P(Qw)=44γw2QwLx2(d)2.\left\{\begin{aligned} &||\nabla Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}=\frac{\gamma}{4-\gamma}w^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},\\ &P(Q_{w})=\frac{4}{4-\gamma}w^{2}||Q_{w}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.\end{aligned}\right. (2.8)

Let 𝒬\mathcal{Q} be the ground state given in Proposition 1.4, and

w𝒬2=(4γ)𝒬H˙V1(d)2γ𝒬Lx2(d)2.w_{\mathcal{Q}}^{2}=\frac{(4-\gamma)~{}||\mathcal{Q}||_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}}{\gamma~{}||\mathcal{Q}||_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}}.

From (2.7) we find

d(2V+xV)|𝒬|2𝑑x=0.\int_{{\mathbb{R}}^{d}}(2V+x\cdot\nabla V)|\mathcal{Q}|^{2}dx=0.

Thus we have

𝒬H˙V1(d)2=γw𝒬24γ𝒬Lx2(d)2,P(𝒬)=4w𝒬24γ𝒬Lx2(d)2.\displaystyle\|\mathcal{Q}\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}=\frac{\gamma w_{\mathcal{Q}}^{2}}{4-\gamma}\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},\quad P(\mathcal{Q})=\frac{4w_{\mathcal{Q}}^{2}}{4-\gamma}\|\mathcal{Q}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.

Remark 2.4.

If V=0V_{-}=0, according to Proposition 1.4, the ground state QQ satisfies (1.8). By the similar method, we find the pohozhaev identity

QH˙V1(d)2=γ4γQLx2(d)2,P(Q)=44γQLx2(d)2.\displaystyle\|Q\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}=\frac{\gamma}{4-\gamma}\|Q\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2},\quad P(Q)=\frac{4}{4-\gamma}\|Q\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}.

and then

P(Q)=8γ2EV(Q).\displaystyle P(Q)=\frac{8}{\gamma-2}E_{V}(Q).

2.4. Virial identity

We will discuss the virial identity for that our main results are closely based on the property of it. We have

I(t)=d|x|2|u(t,x)|2𝑑x,\displaystyle I(t)=\int_{{\mathbb{R}}^{d}}|x|^{2}|u(t,x)|^{2}dx,

for xuLx2(d)xu\in L_{x}^{2}({\mathbb{R}}^{d}).

A natural question is that we want to make some estimates for I(t)I(t). By the accurate calculation, we summarize the first and second derivatives of I(t)I(t) as follows, which will be used throughout our proof.

Lemma 2.5.

Assume that u(t,x)u(t,x) is the solution to (NLHV\text{NLH}_{\text{V}}). Then we have

I(t)=4Imdxu¯udx,\displaystyle I^{\prime}(t)=4\mathop{\mathrm{Im}}\int_{{\mathbb{R}}^{d}}x\bar{u}\nabla udx,

and

I′′(t)=\displaystyle I^{\prime\prime}(t)= 8uLx2(d)24dxV|u|2dx2γP(u)\displaystyle~{}8\|\nabla u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}-4\int_{{\mathbb{R}}^{d}}x\cdot\nabla V|u|^{2}dx-2\gamma P(u)
=\displaystyle= 8uH˙V1(d)24dxV|u|2dx8dV|u|2𝑑x2γP(u)\displaystyle~{}8\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-4\int_{{\mathbb{R}}^{d}}x\cdot\nabla V|u|^{2}dx-8\int_{{\mathbb{R}}^{d}}V|u|^{2}dx-2\gamma P(u)
=\displaystyle= 8uH˙V1(d)22γP(u)e(t),\displaystyle~{}8\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-2\gamma P(u)-e(t),

where

e(t):=4d(2V+xV)|u|2𝑑x.e(t):=4\int_{{\mathbb{R}}^{d}}(2V+x\cdot\nabla V)|u|^{2}dx.

Indeed, we incorporate all terms involving the potential VV into e(t)e(t). And e(t)e(t) is entirely dependent on 2V+xV2V+x\cdot\nabla V, which have been provided in Theorem 1.7. So we can primarily focus on estimating the rest terms. We denote that

I′′(t)~=I′′(t)+e(t)=8uH˙V1(d)22γP(u).\displaystyle\widetilde{I^{\prime\prime}(t)}=I^{\prime\prime}(t)+e(t)=8\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-2\gamma P(u). (2.9)

Rewrite (1.2) as

EV(u)=12uH˙V1(d)214P(u).E_{V}(u)=\frac{1}{2}\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-\frac{1}{4}P(u).

Then combining the above two equations, we find

P(u)=12(γ2)(16EV(u)I′′(t)~)\displaystyle P(u)=\frac{1}{2(\gamma-2)}\bigl{(}16E_{V}(u)-\widetilde{I^{\prime\prime}(t)}\bigr{)} (2.10)

and

uH˙V1(d)2=8γEV(u)I′′(t)~4(γ2).\displaystyle\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}=\frac{8\gamma E_{V}(u)-\widetilde{I^{\prime\prime}(t)}}{4(\gamma-2)}. (2.11)

Next, according to (2.10) and (2.11), we come to find the relation between I(t)I^{\prime}(t), P(u)P(u) and uH˙V1(d)2\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}, which is important to our proof of Theorem 1.7.

Lemma 2.6.
(Imxu¯udx)2|x|2|u|2𝑑x(uH˙V1(d)2[P(u)]2γC𝒬[M(u)]4γγ).\displaystyle\biggl{(}\mathop{\mathrm{Im}}\int x\bar{u}\nabla udx\biggr{)}^{2}\leqslant\int|x|^{2}|u|^{2}dx\biggl{(}\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}-\frac{[P(u)]^{\frac{2}{\gamma}}}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\biggr{)}.
Proof.

For eiλ|x|2ue^{i\lambda|x|^{2}}u, we can compute that

|(eiλ|x|2u)|2=\displaystyle\bigl{|}\nabla(e^{i\lambda|x|^{2}}u)\bigr{|}^{2}= [(eiλ|x|2)u+eiλ|x|2u]2\displaystyle~{}\bigl{[}(\nabla e^{i\lambda|x|^{2}})u+e^{i\lambda|x|^{2}}\nabla u\bigr{]}^{2}
=\displaystyle= [(eiλ|x|2)u]2+2(eiλ|x|2)ueiλ|x|2u+[eiλ|x|2u]2\displaystyle~{}\bigl{[}(\nabla e^{i\lambda|x|^{2}})u\bigr{]}^{2}+2(\nabla e^{i\lambda|x|^{2}})u\cdot e^{i\lambda|x|^{2}}\nabla u+\bigl{[}e^{i\lambda|x|^{2}}\nabla u\bigr{]}^{2}
=\displaystyle= [eiλ|x|2(iλ|x|2)u]2+2eiλ|x|2(iλ|x|2)uu+(u)2\displaystyle~{}\bigl{[}e^{i\lambda|x|^{2}}\cdot\nabla(i\lambda|x|^{2})\cdot u\bigr{]}^{2}+2e^{i\lambda|x|^{2}}\cdot\nabla(i\lambda|x|^{2})\cdot u\nabla u+(\nabla u)^{2}
=\displaystyle= [iλ(|x|2)u]2+2iλ|x|2uu+(u)2\displaystyle~{}\bigl{[}i\lambda(\nabla|x|^{2})u\bigr{]}^{2}+2i\lambda\nabla|x|^{2}\cdot u\cdot\nabla u+(\nabla u)^{2}
=\displaystyle= [2λ(Imxx¯)u]2+4λ(Imxx¯)uu+(u)2.\displaystyle~{}\bigl{[}2\lambda(\mathop{\mathrm{Im}}\nabla x\cdot\bar{x})\cdot u\bigr{]}^{2}+4\lambda(\mathop{\mathrm{Im}}\nabla x\cdot\bar{x})\cdot u\cdot\nabla u+(\nabla u)^{2}.

Then we have the H˙V1\dot{H}_{V}^{1} norm of eiλ|x|2ue^{i\lambda|x|^{2}}u, that is

eiλ|x|2uH˙V1(d)=\displaystyle\|e^{i\lambda|x|^{2}}u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}= |(eiλ|x|2u)|2𝑑x+V(x)|eiλ|x|2u|2𝑑x\displaystyle~{}\int\bigl{|}\nabla(e^{i\lambda|x|^{2}}u)\bigr{|}^{2}dx+\int V(x)\bigl{|}e^{i\lambda|x|^{2}}u\bigr{|}^{2}dx
=\displaystyle= 4λ2|x|2|u|2𝑑x+4λImxu¯udx+(|u|2+V|u|2)𝑑x\displaystyle~{}4\lambda^{2}\int|x|^{2}|u|^{2}dx+4\lambda\mathop{\mathrm{Im}}\int x\bar{u}\nabla udx+\int(|\nabla u|^{2}+V|u|^{2})dx
=\displaystyle= 4λ2|x|2|u|2𝑑x+4λImxu¯udx+uH˙V1(d)2.\displaystyle~{}4\lambda^{2}\int|x|^{2}|u|^{2}dx+4\lambda\mathop{\mathrm{Im}}\int x\bar{u}\nabla udx+\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}.

We substitute eiλ|x|2ue^{i\lambda|x|^{2}}u for uu in (2.2), that is

P(eiλ|x|2u)CGNeiλ|x|2uH˙V1(d)γeiλ|x|2uLx2(d)4γ.\displaystyle P(e^{i\lambda|x|^{2}}u)\leqslant C_{GN}\bigl{\|}e^{i\lambda|x|^{2}}u\bigr{\|}_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{\gamma}\bigl{\|}e^{i\lambda|x|^{2}}u\bigr{\|}_{L_{x}^{2}({\mathbb{R}}^{d})}^{4-\gamma}.

Thus, according to C𝒬=(CGN)2γC_{\mathcal{Q}}=(C_{GN})^{\frac{2}{\gamma}},

C𝒬uLx2(d)2(4γ)γ[4λ2|x|2|u|2𝑑x+4λImxu¯udx+uH˙V1(d)2][P(u)]2γ0\displaystyle C_{\mathcal{Q}}\|u\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{\frac{2(4-\gamma)}{\gamma}}\bigl{[}4\lambda^{2}\int|x|^{2}|u|^{2}dx+4\lambda\mathop{\mathrm{Im}}\int x\bar{u}\nabla udx+\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}^{2}\bigr{]}-[P(u)]^{\frac{2}{\gamma}}\geqslant 0 (2.12)

for any λ\lambda\in{\mathbb{R}}. We find that the left side of (2.12) is a quadratic function in λ\lambda. The discriminant of this function in λ\lambda must be negative, which yields Lemma 2.6. ∎

Remark 2.7.

In order to describe more visually, we rewrite Lemma 2.6 by (2.10) and (2.11). It follows that

[I(t)]216I(t)[8γEV(u)I′′(t)~4(γ2)1C𝒬[M(u)]4γγ(16EV(u)I′′(t)~2(γ2))2γ].\displaystyle[I^{\prime}(t)]^{2}\leqslant 16I(t)\biggl{[}\frac{8\gamma E_{V}(u)-\widetilde{I^{\prime\prime}(t)}}{4(\gamma-2)}-\frac{1}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\biggl{(}\frac{16E_{V}(u)-\widetilde{I^{\prime\prime}(t)}}{2(\gamma-2)}\biggr{)}^{\frac{2}{\gamma}}\biggr{]}. (2.13)

We denote that

f(x)=2γγ2EV(u)14(γ2)x1C𝒬[M(u)]4γγ(16EV(u)x2(γ2))2γ\displaystyle f(x)=\frac{2\gamma}{\gamma-2}E_{V}(u)-\frac{1}{4(\gamma-2)}x-\frac{1}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\biggl{(}\frac{16E_{V}(u)-x}{2(\gamma-2)}\biggr{)}^{\frac{2}{\gamma}}

for any x(,16EV(u)]x\in\left(-\infty,16E_{V}(u)\right]. Thus, (2.13) can be simplified as

[I(t)]216I(t)f(I′′(t)~).\displaystyle[I^{\prime}(t)]^{2}\leqslant 16I(t)f(\widetilde{I^{\prime\prime}(t)}). (2.14)

3. Proof of the Main Theorem

In this section, we will prove the main results in Theorem 1.7.

Let z(t)=I(t)z(t)=\sqrt{I(t)}. By (2.14), we have

[z(t)]2=[I(t)]24I(t)4f(I′′(t)~).\displaystyle[z^{\prime}(t)]^{2}=\frac{[I^{\prime}(t)]^{2}}{4I(t)}\leqslant 4f(\widetilde{I^{\prime\prime}(t)}). (3.1)

It indicates that z(0)z^{\prime}(0) can be estimated by f(I′′(t)~)f(\widetilde{I^{\prime\prime}(t)}). Actually, the condition I(0)I^{\prime}(0) in Theorem 1.7 is closely related to z(0)z^{\prime}(0). Thus, by (3.1), we first need to discuss the property of f(x)f(x) to pave the way for proving our main results.

We can compute that

f(x)=14(γ2)+1C𝒬[M(u)]4γγ2γ[12(γ2)]2γ[16EV(u)x]2γ1.\displaystyle f^{\prime}(x)=-\frac{1}{4(\gamma-2)}+\frac{1}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\cdot\frac{2}{\gamma}\cdot\bigl{[}\frac{1}{2(\gamma-2)}\bigr{]}^{\frac{2}{\gamma}}\bigl{[}16E_{V}(u)-x\bigr{]}^{\frac{2}{\gamma}-1}.

Since 2γ1<0(sc>0)\frac{2}{\gamma}-1<0~{}(s_{c}>0), f(x)f(x) is decreasing on (,x0)(-\infty,x_{0}) and increasing on (x0,16EV(u))(x_{0},16E_{V}(u)), where x0x_{0} satisfies

14(γ2)=1C𝒬[M(u)]4γγ2γ[12(γ2)]2γ[16EV(u)x0]2γ1.\displaystyle\frac{1}{4(\gamma-2)}=\frac{1}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\cdot\frac{2}{\gamma}\cdot\bigl{[}\frac{1}{2(\gamma-2)}\bigr{]}^{\frac{2}{\gamma}}\bigl{[}16E_{V}(u)-x_{0}\bigr{]}^{\frac{2}{\gamma}-1}. (3.2)

Then

f(x0)=\displaystyle f(x_{0})= 2γγ2EV(u)14(γ2)x01C𝒬[M(u)]4γγ(16EV(u)x02(γ2))2γ\displaystyle~{}\frac{2\gamma}{\gamma-2}E_{V}(u)-\frac{1}{4(\gamma-2)}x_{0}-\frac{1}{C_{\mathcal{Q}}[M(u)]^{\frac{4-\gamma}{\gamma}}}\biggl{(}\frac{16E_{V}(u)-x_{0}}{2(\gamma-2)}\biggr{)}^{\frac{2}{\gamma}}
=\displaystyle= 2γγ2EV(u)14(γ2)x014(γ2)γ2(16EV(u)x0)\displaystyle~{}\frac{2\gamma}{\gamma-2}E_{V}(u)-\frac{1}{4(\gamma-2)}x_{0}-\frac{1}{4(\gamma-2)}\cdot\frac{\gamma}{2}\cdot(16E_{V}(u)-x_{0})
=\displaystyle= x08.\displaystyle~{}\frac{x_{0}}{8}.

Using (2.10), (2.11) and the expression of C𝒬C_{\mathcal{Q}}, we rewrite (3.2) as

(M(u)M(𝒬))1sc(EV(u)116x0EV(𝒬))sc=(1x016EV(u))=1\displaystyle\biggl{(}\frac{M(u)}{M(\mathcal{Q})}\biggr{)}^{1-s_{c}}\biggl{(}\frac{E_{V}(u)-\frac{1}{16}x_{0}}{E_{V}(\mathcal{Q})}\biggr{)}^{s_{c}}=\mathcal{M}\mathcal{E}\biggl{(}1-\frac{x_{0}}{16E_{V}(u)}\biggr{)}=1 (3.3)

for x0(,16EV(u)]x_{0}\in\left(-\infty,16E_{V}(u)\right]. Then >1\mathcal{M}\mathcal{E}>1 is equivalent to x00x_{0}\geqslant 0. We can also rewrite (1.10) as

[z(0)]2x02=4f(x0).\displaystyle[z^{\prime}(0)]^{2}\geqslant\frac{x_{0}}{2}=4f(x_{0}). (3.4)

3.1. The proof of blow up.

Using the Hardy inequality

0[1x0xg(ξ)𝑑ξ]p𝑑x(pp1)p0gp(x)𝑑x,g(x)0,p>1,\int_{0}^{\infty}\biggl{[}\frac{1}{x}\int_{0}^{x}g(\xi)d\xi\biggr{]}^{p}dx\leqslant\biggl{(}\frac{p}{p-1}\biggr{)}^{p}\int_{0}^{\infty}g^{p}(x)dx,\quad g(x)\geqslant 0,\quad p>1,

and the conservation of mass, we have

u0Lx2(d)2=d|u(x,t)|2𝑑xxu(t)Lx2(d)u(t)H˙x1(d)0,tT+(u),\displaystyle\|u_{0}\|_{L_{x}^{2}({\mathbb{R}}^{d})}^{2}=\int_{{\mathbb{R}}^{d}}|u(x,t)|^{2}dx\leqslant\|xu(t)\|_{L_{x}^{2}({\mathbb{R}}^{d})}\|u(t)\|_{\dot{H}_{x}^{1}({\mathbb{R}}^{d})}\to 0,\quad t\to T_{+}(u),

where we have used the fact that u0Σu_{0}\in\Sigma implies the corresponding solution uu belongs to Σ\Sigma. On the basis of Glassey’s classical argument [9], our proof of blow up is to prove

I′′(t)<0,t[0,T+(u)).\displaystyle I^{\prime\prime}(t)<0,\quad\forall~{}t\in\left[0,T_{+}(u)\right).

To that end, we demonstrate z′′(t)z^{\prime\prime}(t) for that z(t)=I(t)z(t)=\sqrt{I(t)}.

Firstly, we make some equivalent transformation to the conditions about the blow up in Theorem 1.7. The assumption I(0)0I^{\prime}(0)\leqslant 0 implies z(0)0z^{\prime}(0)\leqslant 0. According to (2.3) and (3.3), the assumption (1.11) implies that

[M(u0)M(𝒬)]1sc[γ28P(u0)EV(𝒬)]>1=[M(u)M(𝒬)]1sc[EV(u)116x0EV(𝒬)]sc.\displaystyle\biggr{[}\frac{M(u_{0})}{M(\mathcal{Q})}\biggl{]}^{1-s_{c}}\biggr{[}\frac{\frac{\gamma-2}{8}P(u_{0})}{E_{V}(\mathcal{Q})}\biggl{]}>1=\biggr{[}\frac{M(u)}{M(\mathcal{Q})}\biggl{]}^{1-s_{c}}\biggl{[}\frac{E_{V}(u)-\frac{1}{16}x_{0}}{E_{V}(\mathcal{Q})}\biggr{]}^{s_{c}}.

Then by (2.10), we get

I′′(0)~<x0.\displaystyle\widetilde{I^{\prime\prime}(0)}<x_{0}. (3.5)

Since 2V+xV02V+x\cdot\nabla V\geqslant 0, we find e(0)0e(0)\geqslant 0. Then I′′(0)~=I′′(0)+e(0)<x0\widetilde{I^{\prime\prime}(0)}=I^{\prime\prime}(0)+e(0)<x_{0} yields that I′′(0)<x0I^{\prime\prime}(0)<x_{0}. Thus, we have

z′′(0)=\displaystyle z^{\prime\prime}(0)= 1z(0)(I′′(0)2(z(0))2)\displaystyle~{}\frac{1}{z(0)}\bigl{(}\frac{I^{\prime\prime}(0)}{2}-(z^{\prime}(0))^{2}\bigr{)}
<\displaystyle< 1z(0)(x02(z(0))2)\displaystyle~{}\frac{1}{z(0)}\bigl{(}\frac{x_{0}}{2}-(z^{\prime}(0))^{2}\bigr{)}
\displaystyle\leqslant 1z(0)(x02x02)=0.\displaystyle~{}\frac{1}{z(0)}\bigl{(}\frac{x_{0}}{2}-\frac{x_{0}}{2}\bigr{)}=0.

We  claim  that

𝒛′′(𝒕)<𝟎,𝒕[𝟎,𝑻+(𝒖)).\displaystyle\bm{z^{\prime\prime}(t)<0,\quad\forall~{}t\in\left[0,T_{+}(u)\right)}. (3.6)

Indeed, if the claim holds, we assume that T+(u)=T_{+}(u)=\infty. By z(0)<0z^{\prime}(0)<0 and z′′(t)<0z^{\prime\prime}(t)<0, we have z(1)<0z^{\prime}(1)<0. Then

z(t)=\displaystyle z(t)= 1tz(s)𝑑s+z(1)\displaystyle~{}\int_{1}^{t}z^{\prime}(s)ds+z(1)
\displaystyle\leqslant 1tz(1)𝑑s+z(1)\displaystyle~{}\int_{1}^{t}z^{\prime}(1)ds+z(1)
\displaystyle\leqslant z(1)(t1)+z(1).\displaystyle~{}z^{\prime}(1)(t-1)+z(1).

For tt\to\infty, z(t)<0z(t)<0 is contradicted to z(t)>0z(t)>0. Thus T+(u)<T_{+}(u)<\infty, which implies that z(t)z(t) will approach 0 in a finite time.

Now we come to prove the claim (3.6). If the claim does not hold, there exists t0=sup{t(0,T+(u)),z′′(0)0}t_{0}=\sup\{t\in(0,T_{+}(u)),z^{\prime\prime}(0)\geqslant 0\} satisfying z′′(t)<0z^{\prime\prime}(t)<0 for any t[0,t0)t\in\left[0,t_{0}\right). And by the continuity of z′′(t)z^{\prime\prime}(t), we have

z′′(t0)=0.z^{\prime\prime}(t_{0})=0.

Using z(0)0z^{\prime}(0)\leqslant 0 and (3.4), we have

z(t)<z(0)0,t[0,t0],\displaystyle z^{\prime}(t)<z^{\prime}(0)\leqslant 0,\quad\forall~{}t\in[0,t_{0}],

and

4f(x0)[z(0)]2[z(t)]2,t[0,t0].\displaystyle 4f(x_{0})\leqslant[z^{\prime}(0)]^{2}\leqslant[z^{\prime}(t)]^{2},\quad\forall~{}t\in[0,t_{0}].

Combining with (3.1), we obtain f(I′′(t)~)>f(x0)f(\widetilde{I^{\prime\prime}(t)})>f(x_{0}) for any t[0,t0]t\in[0,t_{0}]. Then I′′(t)~x0\widetilde{I^{\prime\prime}(t)}\neq x_{0} for any t[0,t0]t\in[0,t_{0}]. According to (3.5) and the continuity of I′′(t)~\widetilde{I^{\prime\prime}(t)}, we have

I′′(t)~<x0,t[0,t0].\displaystyle\widetilde{I^{\prime\prime}(t)}<x_{0},\quad\forall~{}t\in[0,t_{0}]. (3.7)

Furthermore, 2V+xV02V+x\cdot\nabla V\geqslant 0 yields that e(t)0e(t)\geqslant 0. From (2.9), We find

I′′(t)=I′′(t)~e(t)<x0,t[0,t0].\displaystyle I^{\prime\prime}(t)=\widetilde{I^{\prime\prime}(t)}-e(t)<x_{0},\quad\forall~{}t\in[0,t_{0}].

Therefore,

z′′(t0)=\displaystyle z^{\prime\prime}(t_{0})= 1z(t0)(I′′(t0)2(z(t0))2)\displaystyle~{}\frac{1}{z(t_{0})}\bigl{(}\frac{I^{\prime\prime}(t_{0})}{2}-(z^{\prime}(t_{0}))^{2}\bigr{)}
<\displaystyle< 1z(t0)(x02(z(t0))2)\displaystyle~{}\frac{1}{z(t_{0})}\bigl{(}\frac{x_{0}}{2}-(z^{\prime}(t_{0}))^{2}\bigr{)}
\displaystyle\leqslant 1z(t0)(x02x02)=0,\displaystyle~{}\frac{1}{z(t_{0})}\bigl{(}\frac{x_{0}}{2}-\frac{x_{0}}{2}\bigr{)}=0,

which is contradicted to z′′(t0)=0z^{\prime\prime}(t_{0})=0. Thus the claim holds.

Consequently, the proof of Part (i)(i) in Theorem 1.7 is completed.

3.2. Global existence.

We first convert the conditions related to the global existence equivalently. The assumption I(0)0I^{\prime}(0)\geqslant 0 implies z(0)0z^{\prime}(0)\geqslant 0. The assumption (1.12) implies

I′′(0)~>x0.\widetilde{I^{\prime\prime}(0)}>x_{0}.

Furthermore, 2V+xV02V+x\cdot\nabla V\leqslant 0 ensures that e(t)0e(t)\leqslant 0. Then

I′′(x0)=I′′(0)~e(0)>x0.I^{\prime\prime}(x_{0})=\widetilde{I^{\prime\prime}(0)}-e(0)>x_{0}.

Using (3.4) and z(0)0z^{\prime}(0)\geqslant 0, we derive

z(0)x02.\displaystyle z^{\prime}(0)\geqslant\sqrt{\frac{x_{0}}{2}}. (3.8)

This leads to the existence of t10t_{1}\geqslant 0 such that

z(t1)>x02=2f(x0).\displaystyle z^{\prime}(t_{1})>\sqrt{\frac{x_{0}}{2}}=2\sqrt{f(x_{0})}. (3.9)

If z(0)z^{\prime}(0) strictly exceeds x02\sqrt{\frac{x_{0}}{2}}, we can choose t1=0t_{1}=0. If z(0)=x02z^{\prime}(0)=\sqrt{\frac{x_{0}}{2}}, we find

z′′(0)=1z(0)(I′′(0)2(z(0))2)>1z(0)(x02(z(0))2)=0.\displaystyle z^{\prime\prime}(0)=~{}\frac{1}{z(0)}\bigl{(}\frac{I^{\prime\prime}(0)}{2}-(z^{\prime}(0))^{2}\bigr{)}>~{}\frac{1}{z(0)}\bigl{(}\frac{x_{0}}{2}-(z^{\prime}(0))^{2}\bigr{)}=0.

Then for small t1>0t_{1}>0, we can select a small parameter ε1>0{\varepsilon}_{1}>0 such that

z(t1)=2f(x0)+2ε1.\displaystyle z^{\prime}(t_{1})=2\sqrt{f(x_{0})}+2{\varepsilon}_{1}.

We claim that

𝒛(𝒕)>𝟐𝒇(𝒙𝟎)+𝟐𝜺𝟏,𝒕𝒕𝟏.\displaystyle\bm{z^{\prime}(t)>2\sqrt{f(x_{0})}+2{\varepsilon}_{1},\quad\forall~{}t\geqslant t_{1}}. (3.10)

Indeed, if the claim does not hold, there exists t2=inf{t>t1:z(t)2f(x0)+ε1}t_{2}=\inf\{t>t_{1}:z^{\prime}(t)\leqslant 2\sqrt{f(x_{0})}+{\varepsilon}_{1}\}. By the continuity of z(t)z^{\prime}(t), we have

z(t2)=2f(x0)+ε1\displaystyle z^{\prime}(t_{2})=2\sqrt{f(x_{0})}+{\varepsilon}_{1} (3.11)

and

z(t)2f(x0)+ε1,t[t1,t2].\displaystyle z^{\prime}(t)\geqslant 2\sqrt{f(x_{0})}+{\varepsilon}_{1},\quad\forall~{}t\in[t_{1},t_{2}]. (3.12)

According to (3.1), we rewrite (3.12) as

(2f(x0)+ε1)2(z(t))24f(I′′(t)~),t[t1,t2],\displaystyle(2\sqrt{f(x_{0})}+{\varepsilon}_{1})^{2}\leqslant(z^{\prime}(t))^{2}\leqslant 4f(\widetilde{I^{\prime\prime}(t)}),\quad\forall~{}t\in[t_{1},t_{2}], (3.13)

we find that f(I′′(t)~)>f(x0)f(\widetilde{I^{\prime\prime}(t)})>f(x_{0}) for all t[t1,t2]t\in[t_{1},t_{2}]. Hence

I′′(t)~x0,t[t1,t2].\displaystyle\widetilde{I^{\prime\prime}(t)}\neq x_{0},\quad\forall~{}t\in[t_{1},t_{2}].

Combining with I′′(0)~>x0\widetilde{I^{\prime\prime}(0)}>x_{0}, we get

I′′(t)~>x0,t[t1,t2].\displaystyle\widetilde{I^{\prime\prime}(t)}>x_{0},\quad\forall~{}t\in[t_{1},t_{2}].

Then again, there could exist a constant CC such that

I′′(t)~x0+ε1C,t[t1,t2].\displaystyle\widetilde{I^{\prime\prime}(t)}\geqslant x_{0}+\frac{\sqrt{{\varepsilon}_{1}}}{C},\quad\forall~{}t\in[t_{1},t_{2}]. (3.14)

If I′′(t)~x0+1\widetilde{I^{\prime\prime}(t)}\geqslant x_{0}+1, then (3.14) holds for CC large enough. If x0<I′′(t)~x0+1x_{0}<\widetilde{I^{\prime\prime}(t)}\leqslant x_{0}+1, by the Taylor equation of ff around x=x0x=x_{0}, there exists a>0a>0 such that

f(x)=f(x0)+a(xx0)2when|xx0|1.\displaystyle f(x)=f(x_{0})+a(x-x_{0})^{2}~{}\rm{when}~{}|\mathit{x-x}_{0}|\leqslant 1.

Substituting this equality for (3.13) with x=I′′(t)~x=\widetilde{I^{\prime\prime}(t)}, we have

(2f(x0)+ε1)2(z(t))24f(x0)+4a(I′′(t)~x0)2.\displaystyle(2\sqrt{f(x_{0})}+{\varepsilon}_{1})^{2}\leqslant(z^{\prime}(t))^{2}\leqslant 4f(x_{0})+4a(\widetilde{I^{\prime\prime}(t)}-x_{0})^{2}. (3.15)

Combining (3.14) and (3.15), we obtain C=2a(4(f(x0))12+ε1)12C=2\sqrt{a}(4(f(x_{0}))^{\frac{1}{2}}+{\varepsilon}_{1})^{-\frac{1}{2}}. Thus (3.14) holds.

By (3.14) and e(t)0e(t)\leqslant 0, we find

x0+ε1CI′′(t)~=I′′(t)+e(t)I′′(t),t[t1,t2].\displaystyle x_{0}+\frac{\sqrt{{\varepsilon}_{1}}}{C}\leqslant\widetilde{I^{\prime\prime}(t)}=I^{\prime\prime}(t)+e(t)\leqslant I^{\prime\prime}(t),\quad\forall~{}t\in[t_{1},t_{2}]. (3.16)

However, by (3.11) and (3.16) we have

z′′(t2)=\displaystyle z^{\prime\prime}(t_{2})= 1z(t2)(I′′(t2)2(z(t2))2)\displaystyle~{}\frac{1}{z(t_{2})}\bigl{(}\frac{I^{\prime\prime}(t_{2})}{2}-(z^{\prime}(t_{2}))^{2}\bigr{)}
\displaystyle\geqslant 1z(t2)(ε12C4ε1f(x0)ε12)\displaystyle~{}\frac{1}{z(t_{2})}\bigl{(}\frac{\sqrt{{\varepsilon}_{1}}}{2C}-4{\varepsilon}_{1}\sqrt{f(x_{0})}-{\varepsilon}_{1}^{2}\bigr{)}
>\displaystyle> 1z(t2)ε4C,\displaystyle~{}\frac{1}{z(t_{2})}\frac{\sqrt{{\varepsilon}}}{4C},

where ε<ε1{\varepsilon}<{\varepsilon}_{1} is small enough. Then we get z′′(t2)>0z^{\prime\prime}(t_{2})>0, which contradicts with (3.11) and (3.12). So we obtain the claim.

Next we use the claim (3.10) to prove (1.13) in Theorem 1.7. We note that (3.14) holds for all t[t1,T+(u))t\in\left[t_{1},T_{+}(u)\right). Hence, we obtain

[M(u)]1sc[P(u)]sc=\displaystyle[M(u)]^{1-s_{c}}[P(u)]^{s_{c}}= [M(u)]1sc[12(γ2)(16EV(u))I′′(t)~]sc\displaystyle~{}[M(u)]^{1-s_{c}}[\frac{1}{2(\gamma-2)}(16E_{V}(u))-\widetilde{I^{\prime\prime}(t)}]^{s_{c}}
\displaystyle\leqslant [M(u)]1sc[12(γ2)(16EV(u))x0ε1C]sc\displaystyle~{}[M(u)]^{1-s_{c}}[\frac{1}{2(\gamma-2)}(16E_{V}(u))-x_{0}-\frac{\sqrt{{\varepsilon}_{1}}}{C}]^{s_{c}}
<\displaystyle< [M(u)]1sc[12(γ2)(16EV(u)x0)]sc\displaystyle~{}[M(u)]^{1-s_{c}}[\frac{1}{2(\gamma-2)}(16E_{V}(u)-x_{0})]^{s_{c}}
=\displaystyle= [M(𝒬)]1sc[P(𝒬)]sc.\displaystyle~{}[M(\mathcal{Q})]^{1-s_{c}}[P(\mathcal{Q})]^{s_{c}}.

Then by mass and energy conservation, we have

uH˙V1(d)=2EV(u)+12P(u)2EV(u)+M(𝒬)1scscP(𝒬)M(u0)1scsc<A\displaystyle\|u\|_{\dot{H}_{V}^{1}({\mathbb{R}}^{d})}=2E_{V}(u)+\frac{1}{2}P(u)\leqslant 2E_{V}(u)+\frac{M(\mathcal{Q})^{\frac{1-s_{c}}{s_{c}}}P(\mathcal{Q})}{M(u_{0})^{\frac{1-s_{c}}{s_{c}}}}<A

for all t[t1,T+(u))t\in\left[t_{1},T_{+}(u)\right), where constant AA depending on M(u0)M(u_{0}), EV(u0)E_{V}(u_{0}), M(𝒬)M(\mathcal{Q}) and EV(𝒬)E_{V}(\mathcal{Q}). So u(t,x)u(t,x) exists globally.

Acknowledgement The author Jing Lu was supported by the National Natural Science Foundation of China (No. 12101604).

References

  • [1] M. Beceanu, M. Goldberg, Schrödinger dispersive estimate for a scaling-critical class of potentials, Commun. Math. Phys., 314 (2012), no. 2, 471–481.
  • [2] Y. Chen,J. Lu,F. Meng, Focusing nonlinear Hartree equation with inverse-square potential, Math. Nachr., 293 (2020), 2271–2298.
  • [3] M. Deng, J. Lu, F. Meng, Focusing intercritical NLS with inverse-square potential. Appl. Anal., 102 (2021), no. 6, 1798–1807.
  • [4] B. Dodson, J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Am. Math. Soc., 145 (2017), no. 11, 4859–4867.
  • [5] D. Du, Y. Wu, and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 36 (2016), no. 7, 3639–3650.
  • [6] T. Duyckaerts, S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Commun. Math. Phys. , 334 (2015), 1573-1615.
  • [7] Y. Gao, H. Wu, Scattering for the focusing H˙12\dot{H}^{\frac{1}{2}}-critical Hartree equation in energy space, Nonlinear Anal-Theor., 73 (2010), no. 4, 1043-1056.
  • [8] J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), no. 1, 50-68.
  • [9] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), no. 9, 1794-1797.
  • [10] M. Hamano, M. Ikeda, Global dynamics below the ground state for the focusing Schrödinger equation with a potential, J. Evol. Equ., 20 (2020), no. 3, 1131-1172.
  • [11] Y. Hong, Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pur. Appl. Anal., 15 (2016), no. 5, 1571-1601.
  • [12] A. Ionescu, D. Jerison, On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13 (2003), no. 5, 1029-1081.
  • [13] S. Ji, J. Lu, Blow up versus scattering below the mass-energy threshold for the focusing NLH with a potential, arXiv:2412.00448.
  • [14] C. Kenig, F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. math., 166 (2006), no. 3, 645–675.
  • [15] C. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), no. 2, 147–212.
  • [16] R. Killip, J. Murphy, M. Visan, and J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimension, Differ. Integral Equ., 30 (2017), no. 3-4, 161–206.
  • [17] D. Li, C. Miao, and X. Zhang, The focusing energy-critical Hartree equation, J. Differ. Equations, 246 (2009), no. 3, 1139-1163.
  • [18] J. Lu, C. Miao, and J. Murphy, Scattering in H1H^{1} for the inter-critical NLS with an inverse-square potential, J. Differ. Equations, 264 (2018), no. 5, 3174–3211.
  • [19] F. Meng, A new proof of scattering for the 5D radial focusing Hartree equation, Appl. Anal., 101 (2022), no. 13, 4412-4431.
  • [20] C. Miao, Y. Wu, and G. Xu, Dynamics for the focusing, energy-critical nonlinear Hartree equation, Forum. Math., 27 (2015), no. 1, 373-447.
  • [21] C. Miao, G. Xu, and L. Zhao, Global wellposedness, scattering and blowup for the energy-critical, focusing Hartree equation in the radial case, Colloq. Math., 114 (2007), 213-236.
  • [22] C. Miao, G. Xu, and L. Zhao, The Cauchy problem of the Hartree equation, J. Partial Differ. Eq., 21 (2008), no. 1, 22.
  • [23] C. Miao, G. Xu, and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pure. Appl., 91 (2009), no. 1, 49-79.
  • [24] C. Miao, J. Zhang, and J. Zheng, A nonlinear Schrödinger equation with Coulomb potential, Acta. Math. Sci., 42 (2022), no. 6, 2230-2256.
  • [25] I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. math., 155 (2004), 451–513.
  • [26] Y. Wang, Scattering and blowup beyond the mass-energy threshold for the cubic NLS with a potential, Colloq. Math., 172 (2023), 143-163.
  • [27] L. Yang, X. Li, Y. Wu, and L. Caccetta, Global well-posedness and blow-up for the Hartree equation, Acta. Math. Sci., 37 (2017), no. 4, 941-948.