This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

KIAS-P22086

The descendants of the 3d-index

Zhihao Duan Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea [email protected] Stavros Garoufalidis International Center for Mathematics, Department of Mathematics
Southern University of Science and Technology
Shenzhen, China
http://people.mpim-bonn.mpg.de/stavros
[email protected]
 and  Jie Gu School of Physics and Shing-Tung Yau Center
Southeast University, Nanjing 210096, China
[email protected]
(Date: 1 January 2023)
Abstract.

In the study of 3d-3d correspondence occurs a natural qq-Weyl algebra associated to an ideal triangulation of a 3-manifold with torus boundary components, and a module of it. We study the action of this module on the (rotated) 3d-index of Dimofte–Gaiotto–Gukov and we conjecture some structural properties: bilinear factorization in terms of holomorphic blocks, pair of linear qq-difference equations, the determination of the 3d-index in terms of a finite size matrix of rational functions and the asymptotic expansion of the qq-series as qq tends to 1 to all orders. We illustrate our conjectures with computations for the case of the three simplest hyperbolic knots.

Key words and phrases: linear qq-difference equations, qq-holonomic functions, knots, hyperbolic knots, 3-manifolds, Neumann–Zagier matrices, 3d-index, supersymmetric index, BPS counts, line operators, defects, descendants, holomorphic blocks, factorization.

1. Introduction

1.1. The 3D-index and the state-integral

Topological invariants of ideally triangulated 3-manifolds appeared in mathematical physics in relation to complex Chern–Simons theory [2] and its extension in the 3d-3d correspondence [5, 11]. Two of the best-known such invariants are the state-integrals of Andersen–Kashaev [2], which are analytic functions on (,0]\mathbbm{C}\setminus(-\infty,0], and the 3D-index of Dimofte–Gaiotto–Gukov [8, 9], which is a collection of qq-series with integer coefficients parametrized by the integer homology of the boundary of a 3-manifold. Although the state-integrals and the 3D-index are different looking functions, they are closely related on the mathematics side through the theory of holomorphic quantum modular forms developed by Zagier and the second author [22, 21], and on the physics side through the above mentioned 3d-3d correspondence.

The state-integrals and the 3D-index share many common features, stemming from the fact that on the physics side, under the 3d-3d correspondence [10, 26, 9, 7] (see [6] for a review) become the invariants of the dual 3d N=2N=2 superconformal field theory on respectively S3S^{3} and S1×S2S^{1}\times S^{2}, both of which can be obtained by gluing two copies of D2×S1D^{2}\times S^{1} together.

On the mathematics side, both invariants are defined using combinatorial data of ideal triangulations of 3-manifolds whose local weights (namely the Faddeev quantum dilogarithm function, and the tetrahedron index, respectively) satisfy the same linear qq-difference equations, whereas the invariants themselves are given by an integration/summation over variables associated to each tetrahedron.

A common feature to both invariants is their conjectured bilinear factorization in terms of the same holomorphic blocks H(q)H(q), the latter being qq-hypergeometric series defined for |q|1|q|\neq 1. This leads to bilinear expressions for the state-integral in terms of H(q)H(q) times H(q~)H(\tilde{q}) (where q=e2πiτq=e^{2\pi i\tau} and q~=e2πi/τ\tilde{q}=e^{-2\pi i/\tau}) and bilinear expressions for the 3D-index in terms of H(q)H(q) times H(q1)H(q^{-1}). This factorization is well-known in the physics literature [3] and interpreted as partition function of the dual 3d superconformal field theory on D2×S1D^{2}\times S^{1}. They are also partially known for some examples of 3-manifolds in [17, 21]. We emphasize, however, that the bilinear factorization of state-integrals and of the 3D-index is conjectural, and so is the existence of the suitably normalized holomorphic blocks.

Another common feature to state-integrals and the 3D-index is that they are given by integrals/lattice sums where the integrand/summand has a common annihilating ideal. This implies that both state-integrals and the rotated 3D-index satisfy a pair of linear qq-difference equations which are in fact conjectured to be identical, and equal to the homogeneous part of the linear qq-difference equation for the colored Jones polynomial of a knot [19]. The conjectured common linear qq-difference equations for state-integrals and for the 3D-index would also be a consequence of their common holomorphic block factorization. In physics these linear qq-difference equations are interpreted as Ward identities of Wilson-’t Hooft line operators in the dual 3d superconformal field theory [8, 9].

1.2. Descendants

Descendants appeared recently as computable, exponentially small corrections to the asymptotics of the Kashaev invariant of a knot, refining the Volume Conjecture to all orders in perturbation theory to a Quantum Modularity Conjecture [22]. One of the discoveries was that the Kashaev invariant of a knot is a distinguished (σ0,σ1)(\sigma_{0},\sigma_{1})-entry in a square matrix of knot invariants at roots of unity. The rows and columns of the matrix are parametrized with boundary-parabolic PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-representations, with σ0\sigma_{0} denoting the trivial representation and σ1\sigma_{1} denoting the geometric representation of a hyperbolic knot complement. The above mentioned matrix has remarkable algebraic, analytic and arithmetic properties explained in detail in Section 5 of [22], and given explicitly for the 414_{1} and 525_{2} knots in Sections 7.1 and 7.2 of i.b.i.d. The rows of the matrix are supposed to be (q1/2)\mathbbm{Q}(q^{1/2})-linear combinations of fundamental solutions to a linear qq-difference equation (homogeneous for all but the first row), thus the elements in each row are supposed to be descendants of each other. Although the existence of such a matrix is conjectured, its top row was defined in [16] for all knots in terms of the descendant Kashaev invariants of a knot.

The above mentioned matrix has three known realizations, one as functions at roots of unity mentioned above, a second as a matrix of Borel summable asymptotic series and a third as a matrix of q1/2q^{1/2}-series. The idea of descendants can be extended to the matrix of asymptotic series (whose first column are simply the vector of asymptotic series of the perturbative Chern–Simons theory at a PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-flat connection, and the remaining columns being descendants of the first column) as well as to a matrix of qq-series. This extension was done for the case of the 414_{1} and 525_{2} knots by Mariño and two of the authors [13, Eqn.(13),App.A], with the later addition of the trivial PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-representation in [14, Sec.2.2,Sec.4.1].

To summarize, descendants are supposed to be the (q1/2)\mathbbm{Q}(q^{1/2})-span of a fundamental solution to a linear qq-difference equation associated to the quantum invariants. It is becoming clear that this span is a fundamental quantum invariant of 3-manifolds, and we want to present further evidence for this using as an example an important quantum invariant, namely the 3D-index.

1.3. Our conjectures

A detailed study of the 3D-index of a 3-manifold with torus boundary and its structural properties, namely holomorphic block factorization, linear qq-difference equations, computations and asymptotics was recently done in [20].

The goal of the present paper is to extend the properties of the 3D-index by allowing observables, line operators, defects, descendants, all being synonymous names for the same object. On the topological side, an observable is a knot LL in a 3-manifold MM, where in the case of interest to us, M=S3KM=S^{3}\setminus K is the complement of a knot in S3S^{3}. On the algebra side, the conjectural 3d-quantum trace map sends a knot LS3KL\subset S^{3}\setminus K to an element 𝒪\mathcal{O} of a module over a qq-Weyl algebra associated to an ideal triangulation 𝒯\mathcal{T} of MM. We will postpone the description of the 3d-quantum trace map to a subsequent publication. Now 𝒪\mathcal{O} acts on the integrand/summand of the state-integral/3D-index, and by integrating/summing one obtains a state-integral/3D-index with insertion 𝒪\mathcal{O}. On the physics side, 𝒪\mathcal{O} becomes a line-operator supported on a line γ\gamma in the dual 3d N=2N=2 superconformal field theory T2[M]T_{2}[M] under the 3d-3d correspondence [10, 26, 9, 7]. The 3d-3d correspondence can be understood as a consequence of compactifying 6d N=2N=2 A1A_{1} superconformal field theory on the three manifold MM and on 3\mathbbm{R}^{3} with topological twist along MM. The 6d theory has surface operators which can be supported on L×γL\times\gamma, giving rise to the correspondence between the defect LL in MM and the line-operator on γ3\gamma\subset\mathbbm{R}^{3} in T2[M]T_{2}[M] [8, 9]. Our goal is to study the structural properties of the rotated, inserted, 3D-index I𝒯,𝒪rot(q)I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(q). Although this is a ×\mathbbm{Z}\times\mathbbm{Z} matrix, we will see that it is determined from the uninserted rotated 3D-index I𝒯rot(q)I^{\mathrm{rot}}_{\mathcal{T}}(q) in terms of a pair of linear qq-difference equations and a finite size invertible matrix with coefficients in the field (q1/2)\mathbbm{Q}(q^{1/2}); see Conjectures 3.3 and 3.6 below, illustrated by examples in Section 4.

We emphasize that our paper concerns conjectural structural properties of topological invariants, such as the rotated inserted 3D-index, and not mathematical proofs. Nevertheless the structure of these invariants is rich, and leads to startling predictions and numerical conformations (see eg. Equation (36) below).

2. Algebras of 3-dimensional ideal triangulations

We recall here a qq-Weyl algebra associated to an ideal triangulation 𝒯\mathcal{T} which was first considered by Dimofte on the context of the 3d-3d correspondence, and it was introduced as an attempt to quantize the SL2()\mathrm{SL}_{2}(\mathbbm{C})-character variety of an ideally triangulated 3-manifold MM using the symplectic structure of the Neumann–Zagier matrices, and following the ideas of Hamiltonian reduction of symplectic phase-spaces [5]. Similar ideas appeared in subsequent work [11].

We fix an ideal triangulation 𝒯\mathcal{T} of MM with NN ideal tetrahedra. This defines a qq-Weyl algebra 𝕎q(𝒯)=(q)z^j,z^j|j=1,,N\mathbbm{W}_{q}(\mathcal{T})=\mathbbm{Q}(q)\langle\widehat{z}_{j},\widehat{z}_{j}^{\prime}\,|\,j=1,\dots,N\rangle of Laurent variables z^j,z^j\widehat{z}_{j},\widehat{z}_{j}^{\prime} that commute except in the following instance z^jz^j=qz^jz^j\widehat{z}_{j}\widehat{z}_{j}^{\prime}=q\widehat{z}_{j}^{\prime}\widehat{z}_{j} for j=1,,Nj=1,\dots,N. A more symmetric way is to introduce three invertible variables z^,z^,z^′′\widehat{z},\widehat{z}^{\prime},\widehat{z}^{{}^{\prime\prime}} which satisfy the relations

z^z^=qz^z^,z^z^′′=qz^′′z^,z^′′z^=qz^z^′′,z^z^z^′′=q\widehat{z}\widehat{z}^{\prime}=q\widehat{z}^{\prime}\widehat{z},\qquad\widehat{z}^{\prime}\widehat{z}^{\prime\prime}=q\widehat{z}^{\prime\prime}\widehat{z}^{\prime},\qquad\widehat{z}^{\prime\prime}\widehat{z}=q\widehat{z}\widehat{z}^{\prime\prime},\qquad\widehat{z}\widehat{z}^{\prime}\widehat{z}^{\prime\prime}=-q (1)

(hence z^z^z^′′\widehat{z}\widehat{z}^{\prime}\widehat{z}^{\prime\prime} is in the center and it is invariant under cyclic permutations), and then 𝕎q(𝒯)\mathbbm{W}_{q}(\mathcal{T}) is simply the tensor product of one algebra per tetrahedron. The combinatorics of the edge-gluing equations of MM have symplectic properties discovered by Neumann–Zagier [24, 23]. Using those properties, Dimofte [5] and later Gang et al [11] (see also [1, Eqn.(10)]) consider the quotient

(𝒯)=𝕎q(𝒯)/(𝕎q(𝒯)(Lagrangians)+(edge equations)𝕎q(𝒯))\mathcal{M}(\mathcal{T})=\mathbbm{W}_{q}(\mathcal{T})/(\mathbbm{W}_{q}(\mathcal{T})(\text{Lagrangians})+(\text{edge equations})\mathbbm{W}_{q}(\mathcal{T})) (2)

of 𝕎q(𝒯)\mathbbm{W}_{q}(\mathcal{T}) by the left 𝕎q(𝒯)\mathbbm{W}_{q}(\mathcal{T})-ideal generated by the Lagrangian equations

z^1+z^1=0,(z^′′)1+z^1=0,z^1+z^′′1=0\widehat{z}^{\prime-1}+\widehat{z}-1=0,\qquad(\widehat{z}^{{}^{\prime\prime}})^{-1}+\widehat{z}^{\prime}-1=0,\qquad\widehat{z}^{-1}+\widehat{z}^{{}^{\prime\prime}}-1=0 (3)

(one per each tetrahedron) plus the right ideal generated by the edge equations. This strange quotient (𝒯)\mathcal{M}(\mathcal{T}), which is no longer a module over a qq-Weyl algebra, but only a (q1/2)\mathbbm{Q}(q^{1/2})-vector space is a natural object that indeed annihilates the rotated 3D-index as we will see shortly.

3. The rotated 3D-index and its descendants

3.1. Definition

For simplicity, in the paper we will focus on the action of the quantum torus 𝕎q(𝒯)\mathbbm{W}_{q}(\mathcal{T}) on the 3D-index I𝒯I_{\mathcal{T}}, and in fact in its rotated form I𝒯rotI^{\mathrm{rot}}_{\mathcal{T}} explained to us by Tudor Dimofte and studied extensively in [20]. To begin with, we fix an ideal triangulation 𝒯\mathcal{T} with NN tetrahedra of a 3-manifold MM whose torus boundary is marked by a pair of a meridian and longitude. The building block of the 3D-index is the tetrahedron index IΔ(m,e)(q)[[q1/2]]I_{\Delta}(m,e)(q)\in\mathbbm{Z}[[q^{1/2}]] defined by

IΔ(m,e)(q)=n=(e)+(1)nq12n(n+1)(n+12e)m(q;q)n(q;q)n+eI_{\Delta}(m,e)(q)=\sum_{n=(-e)_{+}}^{\infty}(-1)^{n}\frac{q^{\frac{1}{2}n(n+1)-\left(n+\frac{1}{2}e\right)m}}{(q;q)_{n}(q;q)_{n+e}} (4)

where e+=max{0,e}e_{+}=\max\{0,e\} and (q;q)n=i=1n(1qi)(q;q)_{n}=\prod_{i=1}^{n}(1-q^{i}). If we wish, we can sum in the above equation over the integers, with the understanding that 1/(q;q)n=01/(q;q)_{n}=0 for n<0n<0.

The rotated 3D-index is given by

I𝒯rot(n,n)(q)=kNS𝒯(k,n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)=\sum_{k\in\mathbbm{Z}^{N}}S_{\mathcal{T}}(k,n,n^{\prime})(q) (5)

where

S𝒯(k,n,n)(q)=(q1/2)νk(nn)νλqkN(n+n)/2j=1NIΔ(λj′′(nn)bjk,λj(nn)+ajk)(q)S_{\mathcal{T}}(k,n,n^{\prime})(q)=(-q^{1/2})^{\mathbf{\nu}\cdot k-(n-n^{\prime})\nu_{\lambda}}q^{k_{N}(n+n^{\prime})/2}\prod_{j=1}^{N}I_{\Delta}(\lambda^{\prime\prime}_{j}(n-n^{\prime})-b_{j}\cdot k,-\lambda_{j}(n-n^{\prime})+a_{j}\cdot k)(q) (6)

is assembled out of a product of tetrahedra indicies IΔI_{\Delta} evaluated to linear forms that depend on the Neumann–Zagier matrices (A|B)(A|B) of 𝒯\mathcal{T}. The detailed definition of the Neumann–Zagier matrices is given in Appendix C.

Note that the degree δ(IΔ(m,e))\delta(I_{\Delta}(m,e)) of the tetrahedron index is a nonnegative piecewise quadratic function of (m,e)(m,e)

δ(IΔ(m,e))=12(m+(m+e)++(m)+e++(e)+(em)++max{0,m,e}).\delta(I_{\Delta}(m,e))=\frac{1}{2}\left(m_{+}(m+e)_{+}+(-m)_{+}e_{+}+(-e)_{+}(-e-m)_{+}+\max\{0,m,-e\}\right)\,. (7)

It follows that for 1-efficient triangulations (see [15]) the degree of the summand in (5) is bounded below by a positive constant times max{|k1|,|k2|,,|kN|}\max\{|k_{1}|,|k_{2}|,\dots,|k_{N}|\}, thus the sum in (5) is a well-defined element of ((q1/2))\mathbbm{Z}((q^{1/2})).

The topological invariance of the 3D-index is a bit subtle, since the definition requires 1-efficient ideal triangulations, and the latter are not known to be connected under 2–3 Pachner moves. Nonetheless, in [15], it was shown that the 3D-index (and likewise, its rotated version) is a topological invariant of cusped hyperbolic 3-manifolds. An alternative proof of this fact was given in [18], where the rotated 3D-index was reformulated in terms of a meromorphic function of two variables.

3.2. Factorization and holomorphic blocks

From its very definition as a sum of proper qq-hypergeometric series, it follows that I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q) is a qq-holonomic function of nn and nn^{\prime} [27, 25]. But more is true. The rotated 3D-index factorizes into a sum of a product of pairs of colored holomorphic blocks. This holomorphic block factorization is a well-known phenomenon explained in [3], and most recently in [20] whose presentation we will follow. Let us recall how this works. We can assemble the collection I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q) of qq-series indexed by pairs of integers into a ×\mathbbm{Z}\times\mathbbm{Z} matrix I𝒯rot(q)I^{\mathrm{rot}}_{\mathcal{T}}(q) whose (n,n)(n,n^{\prime}) entry is I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q). Then, in [20] we explained the origin of the following conjecture for the rotated 3D-index.

Conjecture 3.1.

For every 11-efficient triangulation 𝒯\mathcal{T} there exists a palindromic linear qq-difference operator A^𝒯\widehat{A}_{\mathcal{T}} of order rr with a fundamental solution ×r\mathbbm{Z}\times r matrix H𝒯(q)H_{\mathcal{T}}(q) and a symmetric, invertible r×rr\times r matrix B𝒯B_{\mathcal{T}} with rational entries such that

I𝒯rot(q)=H𝒯(q)B𝒯H𝒯(q1)t.I^{\mathrm{rot}}_{\mathcal{T}}(q)=H_{\mathcal{T}}(q)B_{\mathcal{T}}H_{\mathcal{T}}(q^{-1})^{t}\,. (8)

When the triangulation is fixed and clear, we will drop it from the notation. If we denote the (n,α)(n,\alpha) entry of H𝒯(q)H_{\mathcal{T}}(q) whose (n,α)(n,\alpha) entry by hn(α)(q)h^{(\alpha)}_{n}(q), these functions are the so-called colored holomorphic blocks. It follows that the matrix H(q)H(q) is a (properly normalized) fundamental solution to a pair of qq-difference equations

A^𝒯(M+,L+)H(q)=0,A^𝒯(M,L)H(q1)=0,\widehat{A}_{\mathcal{T}}(M_{+},L_{+})H(q)=0,\qquad\widehat{A}_{\mathcal{T}}(M_{-},L_{-})H(q^{-1})=0, (9)

where the operators act respectively by

M+hn(α)(q)=qnhn(α)(q),L+hn(α)(q)=hn+1(α)(q)Mhn(α)(q1)=qnhn(α)(q1),Lhn(α)(q1)=hn+1(α)(q1).\begin{gathered}M_{+}h_{n}^{(\alpha)}(q)=q^{n}h_{n}^{(\alpha)}(q),\quad L_{+}h_{n}^{(\alpha)}(q)=h_{n+1}^{(\alpha)}(q)\\ M_{-}h_{n}^{(\alpha)}(q^{-1})=q^{-n}h_{n}^{(\alpha)}(q^{-1}),\quad L_{-}h_{n}^{(\alpha)}(q^{-1})=h_{n+1}^{(\alpha)}(q^{-1}).\end{gathered} (10)

Consequently the rotated 3D-index satisfies a pair of (left and right) linear qq-difference equations

A^𝒯(M+,L+)I𝒯rot=A^𝒯(M,L)I𝒯rot=0\widehat{A}_{\mathcal{T}}(M_{+},L_{+})I^{\mathrm{rot}}_{\mathcal{T}}=\widehat{A}_{\mathcal{T}}(M_{-},L_{-})I^{\mathrm{rot}}_{\mathcal{T}}=0 (11)

acting in a decoupled way on each of the rows and columns of I𝒯rotI^{\mathrm{rot}}_{\mathcal{T}}.

The factorization (8) of the rotated 3D-index and the left and right linear qq-difference equations (11) imply the following.

Corollary 3.2.

(of Conjecture 3.1) The rotated 3D-index I𝒯rot(q)I^{\mathrm{rot}}_{\mathcal{T}}(q) is uniquely determined by

  • (1)

    the r×rr\times r matrix I𝒯rot(q)[r]I^{\mathrm{rot}}_{\mathcal{T}}(q)[r] and

  • (2)

    the pair of linear qq-difference equations (11).

Here, I𝒯rot(q)[r]I^{\mathrm{rot}}_{\mathcal{T}}(q)[r] denotes the r×rr\times r matrix (I𝒯rot(n,n)(q))(I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)) for 0n,nr10\leq n,n^{\prime}\leq r-1.

The holomorphic blocks satisfy the symmetry

h𝒯,n(α)(q)=h𝒯,n(α)(q)h^{(\alpha)}_{\mathcal{T},n}(q)=h^{(\alpha)}_{\mathcal{T},-n}(q) (12)

for all α\alpha and all integers nn, which together with Equation (8) implies the symmetries

I𝒯rot(n,n)(q)=I𝒯rot(n,n)(q)=I𝒯rot(n,n)(q)=I𝒯rot(n,n)(q),I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)=I^{\mathrm{rot}}_{\mathcal{T}}(n,-n^{\prime})(q)=I^{\mathrm{rot}}_{\mathcal{T}}(-n,n^{\prime})(q)=I^{\mathrm{rot}}_{\mathcal{T}}(-n,-n^{\prime})(q)\,, (13)

and

I𝒯rot(n,n)(q1)=I𝒯rot(n,n)(q),I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q^{-1})=I^{\mathrm{rot}}_{\mathcal{T}}(n^{\prime},n)(q)\,, (14)

for the rotated 3D-index.

Let us finally mention that the colored holomorphic blocks can be computed by the limit as x1x\to 1

I𝒯rot(n,n)(q)=limx1αB𝒯(α)(qnx1;q1)B𝒯(α)(qnx;q).I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)=\lim_{x\rightarrow 1}\sum_{\alpha}B^{(\alpha)}_{\mathcal{T}}(q^{-n^{\prime}}x^{-1};q^{-1})B^{(\alpha)}_{\mathcal{T}}(q^{n}x;q)\,. (15)

of the xx-deformed holomorphic blocks B𝒯(α)(x;q)B^{(\alpha)}_{\mathcal{T}}(x;q) and the latter can be determined from a factorization of an appropriate state-integral.

3.3. Descendants

There is an important (q)\mathbbm{Q}(q)-linear action of 𝕎q(𝒯)\mathbbm{W}_{q}(\mathcal{T}) on the set of functions S𝒯(k,n,n)(q)S_{\mathcal{T}}(k,n,n^{\prime})(q) giving rise to a map

𝕎q(𝒯)((q1/2))N×2\mathbbm{W}_{q}(\mathcal{T})\to\mathbbm{Z}((q^{1/2}))^{\mathbbm{Z}^{N}\times\mathbbm{Z}^{2}} (16)

which descends to a push-forward (q1/2)\mathbbm{Q}(q^{1/2})-linear map

(𝒯)((q1/2))2,𝒪I𝒯,𝒪rot.\mathcal{M}(\mathcal{T})\to\mathbbm{Z}((q^{1/2}))^{\mathbbm{Z}^{2}},\qquad\mathcal{O}\mapsto I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}\,. (17)

Concretely, when 𝒪=j=1Nz^jαj(z^j′′)βj\mathcal{O}=\prod_{j=1}^{N}\widehat{z}_{j}^{\alpha_{j}}(\widehat{z}_{j}^{{}^{\prime\prime}})^{\beta_{j}}, we have

I𝒯,𝒪rot(n,n)(q)=kN(𝒪S𝒯)(k,n,n)(q),I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(n,n^{\prime})(q)=\sum_{k\in\mathbbm{Z}^{N}}(\mathcal{O}\circ S_{\mathcal{T}})(k,n,n^{\prime})(q)\,, (18)

where

(𝒪S𝒯)(k,n,n)(q)\displaystyle(\mathcal{O}\circ S_{\mathcal{T}})(k,n,n^{\prime})(q) =(q1/2)νk(nn)νλqkN(n+n)/2+L𝒪(n,n,k)\displaystyle=(-q^{1/2})^{\mathbf{\nu}\cdot k-(n-n^{\prime})\nu_{\lambda}}q^{k_{N}(n+n^{\prime})/2+L_{\mathcal{O}}(n,n^{\prime},k)} (19)
×j=1NIΔ(λj′′(nn)bjk+βj,λj(nn)+ajkαj)(q),\displaystyle\times\prod_{j=1}^{N}I_{\Delta}(\lambda^{\prime\prime}_{j}(n-n^{\prime})-b_{j}\cdot k+\beta_{j},-\lambda_{j}(n-n^{\prime})+a_{j}\cdot k-\alpha_{j})(q)\,,
L𝒪(n,n,k)=12j=1N(αj(λj′′nλj′′nbjk)+βj(λjn+λjn+ajk)αjβj)L_{\mathcal{O}}(n,n^{\prime},k)=\frac{1}{2}\sum_{j=1}^{N}\big{(}\alpha_{j}(\lambda^{\prime\prime}_{j}n-\lambda^{\prime\prime}_{j}n^{\prime}-b_{j}\cdot k)+\beta_{j}(-\lambda_{j}n+\lambda_{j}n^{\prime}+a_{j}\cdot k)-\alpha_{j}\beta_{j}\big{)} (20)

This action was written down explicitly in [1, Eqn.(104)]. The symmetries of the tetrahedron index [8, Eqns.(136)] imply that the three Lagrangian operators given in Equation (3) annihilate S𝒯(k,n,n)(q)S_{\mathcal{T}}(k,n,n^{\prime})(q), and thus the sum I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q). In addition, the insertion i\mathcal{E}_{i} corresponding to the ii-th edge (for i=1,,N1i=1,\dots,N-1) when quantized as in [5] satisfies

(iS𝒯)(k,n,n)=qS𝒯(kei,n,n)(\mathcal{E}_{i}\circ S_{\mathcal{T}})(k,n,n^{\prime})=qS_{\mathcal{T}}(k-e_{i},n,n^{\prime}) (21)

Summing over kk, this implies that iq\mathcal{E}_{i}-q annihilates I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q). Thus, I𝒯,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(n,n^{\prime})(q) is well-defined for all 𝒪(𝒯)\mathcal{O}\in\mathcal{M}(\mathcal{T}), justifying the strange quotient given in Equation (2). Note that the action of the edge operators considered in [5] differs by factor of qq from that of [1, Eqn.(130)].

Our conjecture relates the colored holomorphic blocks and the rotated 3D-index of 𝒯\mathcal{T} to those of (𝒯,𝒪)(\mathcal{T},\mathcal{O}). Simply put, it asserts that inserting 𝒪\mathcal{O} simply changes the invariants (((q1/2))\mathbbm{Z}((q^{1/2}))-series) by multiplication of a matrix of rational functions, and changes the left qq-difference equation whereas it preserves the right one. This implies that the (q1/2)\mathbbm{Q}(q^{1/2})-span of the collection {I𝒯,𝒪rot(q)|𝒪(𝒯)}\{I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(q)\,|\,\mathcal{O}\in\mathcal{M}(\mathcal{T})\} is a finite dimensional (q1/2)\mathbbm{Q}(q^{1/2})-vector space.

Fix a 1-efficient ideal triangulation 𝒯\mathcal{T} of a 1-cusped 3-manifold MM.

Conjecture 3.3.

For every 𝒪(𝒯)\mathcal{O}\in\mathcal{M}(\mathcal{T})

  • (a)

    there exists a linear qq-difference operator A^𝒯,𝒪\widehat{A}_{\mathcal{T},\mathcal{O}} with a fundamental solution matrix H𝒯,𝒪(q)H_{\mathcal{T},\mathcal{O}}(q) such that

    I𝒯,𝒪rot(q)=H𝒯,𝒪(q)B𝒯H𝒯(q1)t,I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(q)=H_{\mathcal{T},\mathcal{O}}(q)B_{\mathcal{T}}H_{\mathcal{T}}(q^{-1})^{t}\,, (22)
  • (b)

    there exists Q𝒯,𝒪(q)GLr((q1/2))Q_{\mathcal{T},\mathcal{O}}(q)\in\mathrm{GL}_{r}(\mathbbm{Q}(q^{1/2})) such that

    I𝒯,𝒪rot[r]=Q𝒯,𝒪Irot[r],H𝒯,𝒪[r]=Q𝒯,𝒪H[r].I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}[r]=Q_{\mathcal{T},\mathcal{O}}I^{\mathrm{rot}}[r],\qquad H_{\mathcal{T},\mathcal{O}}[r]=Q_{\mathcal{T},\mathcal{O}}H[r]\,. (23)

The above conjecture implies the following.

Corollary 3.4.

(of Conjecture 3.3) The rotated 3D-index I𝒯,𝒪rot(q)I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(q) is uniquely determined by

  • (1)

    the r×rr\times r matrices I𝒯rot(q)[r]I^{\mathrm{rot}}_{\mathcal{T}}(q)[r] and Q𝒯,𝒪(q)Q_{\mathcal{T},\mathcal{O}}(q)

  • (2)

    the pair of linear qq-difference equations A^𝒯,𝒪\widehat{A}_{\mathcal{T},\mathcal{O}} and A^𝒯\widehat{A}_{\mathcal{T}}.

Another corollary of the above conjecture concerns the descendants of the rotated 3D-index, analogous to the descendants of the colored Jones polynomial of a knot defined in [16] and the descendants of the holomorphic blocks defined in [13, Eqn.(13), App.A]. To phrase it, let

DI𝒯rot=Span(q1/2){I𝒯rot(n,n)(q)|n,n}DI^{\mathrm{rot}}_{\mathcal{T}}=\text{Span}_{\mathbbm{Q}(q^{1/2})}\{I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)\,|\,n,n^{\prime}\in\mathbbm{Z}\} (24)

denote the (q1/2)\mathbbm{Q}(q^{1/2})-span of the elements I𝒯rot(n,n)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime}) of the ring ((q1/2))\mathbbm{Q}((q^{1/2})). Note that DI𝒯rotDI^{\mathrm{rot}}_{\mathcal{T}} is a finite dimensional vector space over the field (q1/2)\mathbbm{Q}(q^{1/2}). Likewise, one defines I𝒯,𝒪rotI^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}. The next corollary justifies the title of the paper.

Corollary 3.5.

(of Conjecture 3.3) We have:

𝒪(𝒯)DI𝒯,𝒪rot=DI𝒯rot.\cup_{\mathcal{O}\in\mathcal{M}(\mathcal{T})}DI^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}=DI^{\mathrm{rot}}_{\mathcal{T}}\,. (25)

In other words, the descendants DI𝒯,𝒪rotDI^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}} of the rotated 3D-index DI𝒯rotDI^{\mathrm{rot}}_{\mathcal{T}} are expressed effectively by a finite-size matrix with entries in (q1/2)\mathbbm{Q}(q^{1/2}).

We now formulate a relative version of the AJ-Conjecture. Let A^(M,L)|q=1=A(M,L)\widehat{A}(M,L)|_{q=1}=A(M,L) denote the classical limit of a linear qq-difference equation. The AJ-Conjecture [12] relates the classical limit of the A^\widehat{A}-polynomial with the AA-polynomial of a knot given in [4].

Conjecture 3.6.

For every 𝒪(𝒯)\mathcal{O}\in\mathcal{M}(\mathcal{T}), we have

A𝒯,𝒪(M,L)=MA𝒯(M,L)A_{\mathcal{T},\mathcal{O}}(M,L)=_{M}A_{\mathcal{T}}(M,L) (26)

where =M=_{M} means equality up to multiplication by a nonzero function of MM.

3.4. Asymptotics

A consequence of Conjecture (3.3) (and Equation (22)) is that the all-order asymptotics of the colored holomorphic blocks h𝒯,𝒪,n(α)(q)h^{(\alpha)}_{\mathcal{T},\mathcal{O},n}(q) and the I𝒯,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T},\mathcal{O}}(n,n^{\prime})(q) are a (q)\mathbbm{Q}(q)-linear combination of those of h𝒯,n(α)(q)h^{(\alpha)}_{\mathcal{T},n}(q) and I𝒯rot(n,n)(q)I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q), respectively. The asymptotics of the latter were studied in detail in [20]. A corollary of this and Conjecture 3.6 is a resolution and an explanation from first principles, of the quantum length conjecture of [1].

4. Examples

In this section we illustrate our conjectures with the case of the three simplest hyperbolic knots, the 414_{1} (figure eight) knot, the 525_{2} knot and the (2,3,7)(-2,3,7) pretzel knot.

4.1. The 414_{1} knot and its rotated 3D-index

The complement of the 414_{1} knot has an ideal triangulation with two tetrahedra. Using the gluing equation matrices

𝐆=(22001011),𝐆=(11110011),𝐆′′=(00220113),\mathbf{G}=\begin{pmatrix}2&2\\ 0&0\\ 1&0\\ 1&1\\ \end{pmatrix},\qquad\mathbf{G}^{\prime}=\begin{pmatrix}1&1\\ 1&1\\ 0&0\\ 1&-1\\ \end{pmatrix},\qquad\mathbf{G}^{\prime\prime}=\begin{pmatrix}0&0\\ 2&2\\ 0&-1\\ 1&-3\\ \end{pmatrix},\qquad (27)

with the conventions explained in Appendix C, we obtain the matrices

A=(1110),B=(1101),ν=(00)A=\begin{pmatrix}1&1\\ 1&0\end{pmatrix},B=\begin{pmatrix}-1&-1\\ 0&-1\end{pmatrix},\nu=\begin{pmatrix}0\\ 0\end{pmatrix} (28)

in terms of which, the rotated 3D-index is given by

I41rot(n,n)(q)=k1,k2qk2(n+n)/2IΔ(k1,k1+k2)(q)IΔ(k1+k2n+n,k1n+n)(q)I^{\mathrm{rot}}_{4_{1}}(n,n^{\prime})(q)=\sum_{k_{1},k_{2}\in\mathbbm{Z}}q^{k_{2}(n+n^{\prime})/2}I_{\Delta}(k_{1},k_{1}+k_{2})(q)I_{\Delta}(k_{1}+k_{2}-n+n^{\prime},k_{1}-n+n^{\prime})(q) (29)

where IΔI_{\Delta} is the tetrahedron index given in (4). (The above formula agrees with [1, Eqn.(108)] after a shift k1k1k2k_{1}\mapsto k_{1}-k_{2}). Using Equation (7), it follows that the degree of the summand in (29) is bounded below by a positive constant times max{|k1|,|k2|}\max\{|k_{1}|,|k_{2}|\}, thus the sum in (29) is a well-defined element of ((q1/2))\mathbbm{Z}((q^{1/2})).

4.2. Factorization

In this section we briefly summarize the properties of the rotated 3D-index of the 414_{1} knot following [20], namely its factorization in terms of colored holomorphic blocks, the linear qq-difference equation, their symmetries and their asymptotics. All the functions in this section involve the knot 414_{1}, which we suppress from the notation.

The rotated 3D-index is given by [20, Prop.9]

I41rot(n,n)(q)=12h41,n(1)(q1)h41,n(0)(q)+12h41,n(0)(q1)h41,n(1)(q)(n,n)I^{\mathrm{rot}}_{4_{1}}(n,n^{\prime})(q)=-\frac{1}{2}h_{4_{1},n^{\prime}}^{(1)}(q^{-1})h_{4_{1},n}^{(0)}(q)+\frac{1}{2}h_{4_{1},n^{\prime}}^{(0)}(q^{-1})h_{4_{1},n}^{(1)}(q)\,\qquad(n,n^{\prime}\in\mathbbm{Z}) (30)

with the colored holomorphic blocks h41,n(0)(q)h^{(0)}_{4_{1},n}(q) and h41n(1)(q)h^{(1)}_{4_{1}n}(q) given in the Appendix A.

The colored holomorphic blocks satisfy the symmetries

h41,n(0)(q1)=h41,n(0)(q),h41,n(1)(q1)=h41,n(1)(q),h_{4_{1},n}^{(0)}(q^{-1})=h_{4_{1},n}^{(0)}(q),\qquad h_{4_{1},n}^{(1)}(q^{-1})=-h_{4_{1},n}^{(1)}(q)\,, (31)

and

h41,n(α)(q)=h41,n(α)(q),α=0,1,h_{4_{1},-n}^{(\alpha)}(q)=h_{4_{1},n}^{(\alpha)}(q),\qquad\alpha=0,1\,, (32)

and the linear qq-difference equation [20, Eqn.(63)]

P41,0(qn,q)hn(α)(q)+P41,1(qn,q)hn+1(α)(q)+P41,2(qn,q)hn+2(α)(q)=0(α=0,1,n)P_{4_{1},0}(q^{n},q)h^{(\alpha)}_{n}(q)+P_{4_{1},1}(q^{n},q)h^{(\alpha)}_{n+1}(q)+P_{4_{1},2}(q^{n},q)h^{(\alpha)}_{n+2}(q)=0\qquad(\alpha=0,1,\,\,n\in\mathbbm{Z}) (33)

where

P41,0(x,q)\displaystyle P_{4_{1},0}(x,q) =q2x2(q3x21),\displaystyle=q^{2}x^{2}(q^{3}x^{2}-1)\,, (34)
P41,1(x,q)\displaystyle P_{4_{1},1}(x,q) =q1/2(1q2x2)(1qxqx2q3x2q3x3+q4x4),\displaystyle=-q^{1/2}(1-q^{2}x^{2})(1-qx-qx^{2}-q^{3}x^{2}-q^{3}x^{3}+q^{4}x^{4})\,,
P41,2(x,q)\displaystyle P_{4_{1},2}(x,q) =q3x2(1+qx2).\displaystyle=q^{3}x^{2}(-1+qx^{2})\,.

We denote the corresponding operator of the qq-difference equation (33) by A^41(x,σ,q)=j=02P41,j(x,q)σj\widehat{A}_{4_{1}}(x,\sigma,q)=\sum_{j=0}^{2}P_{4_{1},j}(x,q)\sigma^{j}.

4.3. Defects

We now consider two defects. The first one is the element

𝒪=y^1z^1+y^1z^1(𝒯)\mathcal{O}=-\widehat{y}^{-1}-\widehat{z}^{-1}+\widehat{y}^{-1}\widehat{z}^{-1}\in\mathcal{M}(\mathcal{T}) (35)

from [1, Eqn.(81)]. Computing the values of I41rot(n,n)(q)I^{\mathrm{rot}}_{4_{1}}(n,n^{\prime})(q) and I41,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(n,n^{\prime})(q) for 0n,n10\leq n,n^{\prime}\leq 1 up to O(q121)O(q^{121}), we find out that the 2×22\times 2 matrices

I41rot(q)[2]=(18q9q2+18q3+46q4+90q5+62q6+10q7+q1/2+q1/2q3/2+6q5/2+20q7/2+29q9/2+25q11/2+q1/2+q1/2q3/2+6q5/2+20q7/2+29q9/2+2q+2q2+7q3+8q4+3q522q667q7+)I^{\mathrm{rot}}_{4_{1}}(q)[2]=\\ \begin{pmatrix}1-8q-9q^{2}+18q^{3}+46q^{4}+90q^{5}+62q^{6}+10q^{7}+\dots&-q^{-1/2}+q^{1/2}-q^{3/2}+6q^{5/2}+20q^{7/2}+29q^{9/2}+25q^{11/2}+\dots\\ -q^{-1/2}+q^{1/2}-q^{3/2}+6q^{5/2}+20q^{7/2}+29q^{9/2}+\dots&2q+2q^{2}+7q^{3}+8q^{4}+3q^{5}-22q^{6}-67q^{7}+\dots\end{pmatrix}

and

I41,𝒪rot(q)[2]=(3+15q+24q215q369q4174q5183q6165q7+2q1/2q1/2+4q3/27q5/234q7/264q9/2+q3/2q1/2q1/2+q3/25q5/226q7/248q9/2+12q4q29q317q413q5+10q6+77q7+)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(q)[2]=\\ \begin{pmatrix}-3+15q+24q^{2}-15q^{3}-69q^{4}-174q^{5}-183q^{6}-165q^{7}+\dots&2q^{-1/2}-q^{1/2}+4q^{3/2}-7q^{5/2}-34q^{7/2}-64q^{9/2}+\dots\\ q^{-3/2}-q^{-1/2}-q^{1/2}+q^{3/2}-5q^{5/2}-26q^{7/2}-48q^{9/2}+\dots&-1-2q-4q^{2}-9q^{3}-17q^{4}-13q^{5}+10q^{6}+77q^{7}+\dots\end{pmatrix}

satisfy

(q1)I41,𝒪rot(q)[2](Irot(q)41[2])1=(2qq1/2q1/2q1+q1)+O(q121)(q-1)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(q)[2](I^{\mathrm{rot}}(q)_{4_{1}}[2])^{-1}=\begin{pmatrix}2-q&-q^{1/2}\\ q^{1/2}&-q-1+q^{-1}\end{pmatrix}+O(q^{121}) (36)

illustrating the dramatic collapse of the qq-series into short rational functions of q1/2q^{1/2}. This implies that the matrix Q41,𝒪(q)Q_{4_{1},\mathcal{O}}(q) is given by

Q41,𝒪(q)=1q1(2qq1/2q1/2q1+q1)Q_{4_{1},\mathcal{O}}(q)=\frac{1}{q-1}\begin{pmatrix}2-q&-q^{1/2}\\ q^{1/2}&-q-1+q^{-1}\end{pmatrix} (37)

with det(Q41,𝒪)(q)=1+2q1\det(Q_{4_{1},\mathcal{O}})(q)=1+2q^{-1}.

After computing the values of I41,𝒪rot(n,0)(q)+O(q120)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(n,0)(q)+O(q^{120}) for n=0,,10n=0,\dots,10 and finding a short linear recursion among three consecutive values, and further interpolating for all nn, we found out that the left A^\widehat{A}-polynomial of I41,𝒪rot(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(q) is given by A^41,𝒪(x,σ,q)=j=02P41,𝒪,j(x,q)σj\widehat{A}_{4_{1},\mathcal{O}}(x,\sigma,q)=\sum_{j=0}^{2}P_{4_{1},\mathcal{O},j}(x,q)\sigma^{j} where

P41,𝒪,0(x,q)\displaystyle P_{4_{1},\mathcal{O},0}(x,q) =q3/2x2(1+q3x2)(1+qx+q3x2),\displaystyle=q^{3/2}x^{2}(-1+q^{3}x^{2})(1+qx+q^{3}x^{2})\,, (38)
P41,𝒪,1(x,q)\displaystyle P_{4_{1},\mathcal{O},1}(x,q) =(1+qx)(1+qx)\displaystyle=(-1+qx)(1+qx)
(1+xqxqx2q3x2qx32q3x3q5x3q3x4q5x4+q4x5q5x5+q6x6),\displaystyle(1+x-qx-qx^{2}-q^{3}x^{2}-qx^{3}-2q^{3}x^{3}-q^{5}x^{3}-q^{3}x^{4}-q^{5}x^{4}+q^{4}x^{5}-q^{5}x^{5}+q^{6}x^{6})\,,
P41,𝒪,2(x,q)\displaystyle P_{4_{1},\mathcal{O},2}(x,q) =q7/2x2(1+qx2)(1+x+qx2).\displaystyle=q^{7/2}x^{2}(-1+qx^{2})(1+x+qx^{2})\,.

The A^41,𝒪\widehat{A}_{4_{1},\mathcal{O}} polynomial is palindromic, and together with the skew-symmetry of the Q41,𝒪(q)Q_{4_{1},\mathcal{O}}(q) matrix, it follows that the colored holomorphic blocks h41,𝒪,n(0)(q)h^{(0)}_{4_{1},\mathcal{O},n}(q) and h41,𝒪,n(1)(q)h^{(1)}_{4_{1},\mathcal{O},n}(q) satisfy the symmetries (31) and (32).

When we set q=1q=1, we obtain

A^41,𝒪(x,σ,1)=2(x21)(x2+x+1)A^41(x,σ,1)\widehat{A}_{4_{1},\mathcal{O}}(x,\sigma,1)=2(x^{2}-1)(x^{2}+x+1)\widehat{A}_{4_{1}}(x,\sigma,1) (39)

confirming Conjecture 3.6.

Equation (37) and the recursion (38) imply that for all integers nn and nn^{\prime}, I41,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(n,n^{\prime})(q) is a (q1/2)\mathbbm{Q}(q^{1/2})-linear combination of the three qq-series I41rot(0,0)(q)I^{\mathrm{rot}}_{4_{1}}(0,0)(q), I41rot(0,1)(q)I^{\mathrm{rot}}_{4_{1}}(0,1)(q) and I41rot(1,0)(q)I^{\mathrm{rot}}_{4_{1}}(1,0)(q). For instance, Equation (23) implies that

I41,𝒪rot(0,0)(q)=1q1((2q)I41rot(0,0)(q)q12I41rot(0,1)(q))I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(0,0)(q)=\tfrac{1}{q-1}((2-q)I^{\mathrm{rot}}_{4_{1}}(0,0)(q)-q^{\tfrac{1}{2}}I^{\mathrm{rot}}_{4_{1}}(0,1)(q)) (40)

and likewise for other values of I41,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(n,n^{\prime})(q). This reduces the problem of the asymptotic expansion of I41,𝒪rot(n,n)(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}}(n,n^{\prime})(q) for q=e2πiτq=e^{2\pi i\tau} to all orders in τ\tau as τ\tau tends to zero in a ray (nearly vertically, horizontally, or otherwise) to the problem of the asymptotics of colored holomorphic blocks and of the rotated 3D-index. This problem was studied in detail and solved in the work of Wheeler and the second author [20, Sec.5.7,5.8] for the 414_{1} knot.

As a second example, consider the element

𝒪2=y^1(𝒯).\mathcal{O}_{2}=\widehat{y}^{-1}\in\mathcal{M}(\mathcal{T})\,. (41)

Repeating the above computations, we find out that the matrix Q41,𝒪2(q)Q_{4_{1},\mathcal{O}_{2}}(q) is given by

Q41,𝒪2(q)=1q1(1q1/2q1/2q2+2q+1q1)Q_{4_{1},\mathcal{O}_{2}}(q)=\frac{1}{q-1}\begin{pmatrix}-1&q^{1/2}\\ -q^{1/2}&-q^{2}+2q+1-q^{-1}\end{pmatrix} (42)

with det(Q41,𝒪2)(q)=1+q1\det(Q_{4_{1},\mathcal{O}_{2}})(q)=1+q^{-1}, and that the left A^\widehat{A}-polynomial of I41,𝒪2rot(q)I^{\mathrm{rot}}_{4_{1},\mathcal{O}_{2}}(q) is given by A^41,𝒪2(x,σ,q)=j=02P41,𝒪2,j(x,q)σj\widehat{A}_{4_{1},\mathcal{O}_{2}}(x,\sigma,q)=\sum_{j=0}^{2}P_{4_{1},\mathcal{O}_{2},j}(x,q)\sigma^{j} where

P41,𝒪2,0(x,q)\displaystyle P_{4_{1},\mathcal{O}_{2},0}(x,q) =q3/2x2(1+q2x)(1+q2x),\displaystyle=q^{3/2}x^{2}(-1+q^{2}x)(1+q^{2}x)\,, (43)
P41,𝒪2,1(x,q)\displaystyle P_{4_{1},\mathcal{O}_{2},1}(x,q) =(1+q3x2)(1qxq2x2q4x2q4x3+q6x4),\displaystyle=(-1+q^{3}x^{2})(1-qx-q^{2}x^{2}-q^{4}x^{2}-q^{4}x^{3}+q^{6}x^{4})\,,
P41,𝒪2,2(x,q)\displaystyle P_{4_{1},\mathcal{O}_{2},2}(x,q) =q7/2x2(1+qx)(1+qx).\displaystyle=q^{7/2}x^{2}(-1+qx)(1+qx)\,.

In this case, we lose the Weyl-invariance symmetry of the colored holomorphic blocks, but we retain the AJ Conjecture 3.6 since

A^41,𝒪2(x,σ,1)=(x21)A^41(x,σ,1).\widehat{A}_{4_{1},\mathcal{O}_{2}}(x,\sigma,1)=(x^{2}-1)\widehat{A}_{4_{1}}(x,\sigma,1)\,. (44)

4.4. The 525_{2} knot and its rotated 3D-index

The complement of the 525_{2} knot has an ideal triangulation with three tetrahedra. Using the gluing equation matrices

𝐆=(111000111100321),𝐆=(020101101000121),𝐆′′=(101121000010103),\mathbf{G}=\begin{pmatrix}1&1&1\\ 0&0&0\\ 1&1&1\\ -1&0&0\\ 3&2&1\\ \end{pmatrix},\qquad\mathbf{G}^{\prime}=\begin{pmatrix}0&2&0\\ 1&0&1\\ 1&0&1\\ 0&0&0\\ 1&2&1\\ \end{pmatrix},\qquad\mathbf{G}^{\prime\prime}=\begin{pmatrix}1&0&1\\ 1&2&1\\ 0&0&0\\ 0&1&0\\ -1&0&3\\ \end{pmatrix},\qquad (45)

with the conventions explained in Appendix C, we obtain the matrices

A=(111101100),B=(121020010),ν=(000).A=\begin{pmatrix}1&-1&1\\ -1&0&-1\\ -1&0&0\end{pmatrix},\quad B=\begin{pmatrix}1&-2&1\\ 0&2&0\\ 0&1&0\end{pmatrix},\quad\nu=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}\,. (46)

The rotated 3D-index is given by

I52rot(n,n)(q)=\displaystyle I^{\mathrm{rot}}_{5_{2}}(n,n^{\prime})(q)= k1,k2,k3qk3(n+n)/2IΔ(k1k2,k3+k2+nn)\displaystyle\sum_{k_{1},k_{2},k_{3}\in\mathbbm{Z}}q^{k_{3}(n+n^{\prime})/2}I_{\Delta}(k_{1}-k_{2},k_{3}+k_{2}+n-n^{\prime}) (47)
×IΔ(k1+2k2n+n,k3+2k12k2+nn)IΔ(k3+k1k2+nn,k22n+2n).\displaystyle\times I_{\Delta}(-k_{1}+2k_{2}-n+n^{\prime},k_{3}+2k_{1}-2k_{2}+n-n^{\prime})I_{\Delta}(k_{3}+k_{1}-k_{2}+n-n^{\prime},k_{2}-2n+2n^{\prime})\,.

Equation (7) implies that the degree of the summand in (47) is bounded below by a positive constant times max{|k1|,|k2|,|k3|}\max\{|k_{1}|,|k_{2}|,|k_{3}|\}, thus the sum in (47) is a well-defined element of ((q1/2))\mathbbm{Z}((q^{1/2})).

4.5. Factorization

The 525_{2} knot has three colored holomorphic blocks hn(α)(q)h^{(\alpha)}_{n}(q) for α=0,1,2\alpha=0,1,2, nn an integer and qq a complex number |q|1|q|\neq 1, whose definition in terms of qq-hypergeometric series was given in [20, App.A] and reproduced for the convenience of the reader in Appendix B. The rotated 3D-index is given by [20, Prop.13]

I52rot(n,n)(q)=12h52,n(0)(q1)h52,n(2)(q)h52,n(1)(q1)h52,n(1)(q)12h52,n(2)(q1)h52,n(0)(q).I^{\mathrm{rot}}_{5_{2}}(n,n^{\prime})(q)=-\frac{1}{2}h_{5_{2},n^{\prime}}^{(0)}(q^{-1})h_{5_{2},n}^{(2)}(q)-h_{5_{2},n^{\prime}}^{(1)}(q^{-1})h_{5_{2},n}^{(1)}(q)-\frac{1}{2}h_{5_{2},n^{\prime}}^{(2)}(q^{-1})h_{5_{2},n}^{(0)}(q)\,. (48)

The colored holomorphic blocks satisfy the symmetries

h52,n(α)(q)=h52,n(α)(q),α=0,1,2.h_{5_{2},-n}^{(\alpha)}(q)=h_{5_{2},n}^{(\alpha)}(q),\qquad\alpha=0,1,2\,. (49)

and the linear qq-difference equation [20, Eqn.(63)]

P52,0(qn,q)hn(α)(q)+P52,1(qn,q)hn1(α)(q)+P52,2(qn,q)hn2(α)(q)+P52,3(qn,q)hn3(α)(q)\displaystyle P_{5_{2},0}(q^{n},q)h^{(\alpha)}_{n}(q)+P_{5_{2},1}(q^{n},q)h^{(\alpha)}_{n-1}(q)+P_{5_{2},2}(q^{n},q)h^{(\alpha)}_{n-2}(q)+P_{5_{2},3}(q^{n},q)h^{(\alpha)}_{n-3}(q) =0,\displaystyle=0\,, (50)

for all α=0,1,2\alpha=0,1,2 and all integers nn, where [20, Eqn.(126)]

P52,0(x,q)\displaystyle P_{5_{2},0}(x,q) =q2x2(1q2x)(1+q2x)(1q5x2),\displaystyle=-q^{-2}x^{2}(1-q^{-2}x)(1+q^{-2}x)(1-q^{-5}x^{2})\,, (51)
P52,1(x,q)\displaystyle P_{5_{2},1}(x,q) =q3/2x3(1q1x)(1+q1x)(1q5x2)\displaystyle=q^{3/2}x^{-3}(1-q^{-1}x)(1+q^{-1}x)(1-q^{-5}x^{2})
(1q1xq1x2q4x2+q2x2+q3x2+q2x3+q5x3+q5x4+q5x4q6x5),\displaystyle\quad\cdot(1-q^{-1}x-q^{-1}x^{2}-q^{-4}x^{2}+q^{-2}x^{2}+q^{-3}x^{2}+q^{-2}x^{3}+q^{-5}x^{3}+q^{-5}x^{4}+q^{-5}x^{4}-q^{-6}x^{5})\,,
P52,2(x,q)\displaystyle P_{5_{2},2}(x,q) =q5x5(1q2x)(1+q2x)(1q1x2)\displaystyle=q^{5}x^{-5}(1-q^{-2}x)(1+q^{-2}x)(1-q^{-1}x^{2})
(1q2xq2xq2x2q5x2+q4x3+q7x3q5x3q6x3+q7x4q9x5),\displaystyle\quad\cdot(1-q^{-2}x-q^{-2}x-q^{-2}x^{2}-q^{-5}x^{2}+q^{-4}x^{3}+q^{-7}x^{3}-q^{-5}x^{3}-q^{-6}x^{3}+q^{-7}x^{4}-q^{-9}x^{5})\,,
P52,3(x,q)\displaystyle P_{5_{2},3}(x,q) =q112x5(1q1x)(1+q1x)(1q1x2).\displaystyle=q^{\frac{11}{2}}x^{-5}(1-q^{-1}x)(1+q^{-1}x)(1-q^{-1}x^{2})\,.

4.6. Defects

We now consider two defects 𝒪1\mathcal{O}_{1} and 𝒪2\mathcal{O}_{2} given by

𝒪1\displaystyle\mathcal{O}_{1} =z^1\displaystyle=\widehat{z}_{1} (52)
𝒪2\displaystyle\mathcal{O}_{2} =z^1+z^3.\displaystyle=\widehat{z}_{1}+\widehat{z}_{3}\,.

Computing the 3×33\times 3 matrix of the rotated 3D-index with and without insertion up to O(q81)O(q^{81}), and dividing one matrix by another, we found out that the corresponding 3×33\times 3 matrices Q𝒪j(q)+O(q81)Q_{\mathcal{O}_{j}}(q)+O(q^{81}) for j=1,2j=1,2 are given by

I52,𝒪1rot(q)[3](I52rot(q)[3])1=1(1q2)(1q3)(q2q3q4q1/2q3/2+q7/2+2q9/2+2q11/2q13/2q7q3/2q5/2q7/21q+q3+2q4+2q5q6q13/21q2q1q5/2+2q3/2+2q1/2+q1/2q5/2+q7/2q3)+O(q81)I^{\mathrm{rot}}_{5_{2},\mathcal{O}_{1}}(q)[3](I^{\mathrm{rot}}_{5_{2}}(q)[3])^{-1}=\frac{1}{(1-q^{2})(1-q^{3})}\cdot\\ \begin{pmatrix}-q^{2}-q^{3}-q^{4}&q^{1/2}-q^{3/2}+q^{7/2}+2q^{9/2}+2q^{11/2}-q^{13/2}&-q^{7}\\ -q^{3/2}-q^{5/2}-q^{7/2}&1-q+q^{3}+2q^{4}+2q^{5}-q^{6}&-q^{13/2}\\ -1-q^{-2}-q^{-1}&-q^{-5/2}+2q^{-3/2}+2q^{-1/2}+q^{1/2}-q^{5/2}+q^{7/2}&-q^{3}\end{pmatrix}+O(q^{81}) (53)

and

I52,𝒪2rot(q)[3](I52rot(q)[3])1=1(1q2)(1q3)(q2q2q3+q5q1/2+q5/2+q7/2+q9/2+q11/2q13/2q7q1/2q3/2q7/24q1qq2q3+q4+5q52q6q11/22q13/22+q4+q3q22q1q9/22q7/24q5/2+2q3/2+4q1/2+4q1/2q3/22q5/2+2q7/21+qq22q3)+O(q81)I^{\mathrm{rot}}_{5_{2},\mathcal{O}_{2}}(q)[3](I^{\mathrm{rot}}_{5_{2}}(q)[3])^{-1}=\frac{1}{(1-q^{2})(1-q^{3})}\cdot\\ \begin{pmatrix}-q-2q^{2}-q^{3}+q^{5}&q^{1/2}+q^{5/2}+q^{7/2}+q^{9/2}+q^{11/2}-q^{13/2}&-q^{7}\\ -q^{-1/2}-q^{3/2}-q^{7/2}&4-q^{-1}-q-q^{2}-q^{3}+q^{4}+5q^{5}-2q^{6}&q^{11/2}-2q^{13/2}\\ -2+q^{-4}+q^{-3}-q^{-2}-2q^{-1}&q^{-9/2}-2q^{-7/2}-4q^{-5/2}+2q^{-3/2}+4q^{-1/2}+4q^{1/2}-q^{3/2}-2q^{5/2}+2q^{7/2}&1+q-q^{2}-2q^{3}\end{pmatrix}+O(q^{81}) (54)

illustrating Corollary 3.5 of Conjecture 3.3.

4.7. The (2,3,7)(-2,3,7)-pretzel knot

As a final experiment, we studied the rotated 3D-index of the (2,3,7)(-2,3,7) pretzel-knot. This knot is interesting in several ways, and exhibits behavior of general hyperbolic knots. The complement of the (2,3,7)(-2,3,7)-pretzel knot is geometrically similar to that of the 525_{2} knot, i.e., both are obtained by the gluing of three three ideal tetrahedra, only put together in a combinatorially different way. Thus, the 525_{2} and (2,3,7)(-2,3,7) pretzel knots have the same cubic trace field, and the same real volume. But the similarities end there. The 525_{2} knots has three boundary parabolic PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-representations, all Galois conjugate to the geometric one. On the other hand, one knows from [22] and [21] that the (2,3,7)(-2,3,7)-pretzel knot has 6 colored holomorphic blocks, corresponding to the fact that the (2,3,7)(-2,3,7)-pretzel knot has 6 boundary parabolic representations, three coming from the Galois orbit of the geometric PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-representation (defined over the cubic trace field of discriminant 23-23) and three more coming from the Galois orbit of a PSL2()\mathrm{PSL}_{2}(\mathbbm{C})-representation defined over the totally real abelian field (cos(2π/7))\mathbbm{Q}(\cos(2\pi/7)). Although [21] gives explicit expressions for the 6×66\times 6 matrices of the holomorphic blocks (inside and outside the unit disk), the colored holomorphic blocks have not been computed, partly due to the complexity of the calculation.

Going back to the 3D-index of the (2,3,7)(-2,3,7) knot, the gluing equation matrices are

𝐆=(1111000110011118),𝐆=(100022100000112),𝐆′′=(0102100022003510),\mathbf{G}=\begin{pmatrix}1&1&1\\ 1&0&0\\ 0&1&1\\ 0&0&-1\\ -1&1&-18\\ \end{pmatrix},\qquad\mathbf{G}^{\prime}=\begin{pmatrix}1&0&0\\ 0&2&2\\ 1&0&0\\ 0&0&0\\ 1&-1&-2\\ \end{pmatrix},\qquad\mathbf{G}^{\prime\prime}=\begin{pmatrix}0&1&0\\ 2&1&0\\ 0&0&2\\ 2&0&0\\ 35&1&0\\ \end{pmatrix},\qquad (55)

with the conventions explained in Appendix C, from which we obtain that

A=(011122001),B=(110212200),ν=(120).A=\begin{pmatrix}0&1&1\\ 1&-2&-2\\ 0&0&-1\end{pmatrix},\quad B=\begin{pmatrix}-1&1&0\\ 2&-1&-2\\ 2&0&0\end{pmatrix},\quad\nu=\begin{pmatrix}1\\ -2\\ 0\end{pmatrix}\,. (56)

The rotated 3D-index is given by

I(2,3,7)rot(n,n)(q)=\displaystyle I^{\mathrm{rot}}_{(-2,3,7)}(n,n^{\prime})(q)= k1,k2,k3(q1/2)k12k2n+nqk3(n+n)/2IΔ(k12k22k3+17n17n,k2+nn)\displaystyle\sum_{k_{1},k_{2},k_{3}\in\mathbbm{Z}}(-q^{1/2})^{k_{1}-2k_{2}-n+n^{\prime}}q^{k_{3}(n+n^{\prime})/2}I_{\Delta}(k_{1}-2k_{2}-2k_{3}+17n-17n^{\prime},k_{2}+n-n^{\prime}) (57)
×IΔ(k1+k2+nn,k12k2n+n)IΔ(2k2+nn,k12k2k3+8n8n).\displaystyle\times I_{\Delta}(-k_{1}+k_{2}+n-n^{\prime},k_{1}-2k_{2}-n+n^{\prime})I_{\Delta}(2k_{2}+n-n^{\prime},k_{1}-2k_{2}-k_{3}+8n-8n^{\prime})\,.

So, in our final experiment we computed the rotated 3D-index of the (2,3,7)(-2,3,7) pretzel-knot, and more precisely the 6×66\times 6 matrix I(2,3,7)rot(q)[6]I^{\mathrm{rot}}_{(-2,3,7)}(q)[6]. To give an idea of what this involves, the leading term of the above matrix is

I(2,3,7)rot(q)[6]=(1q9/2q19q87/2q78q245/2q9/26q2q27/2q38q145/2q117q17q27/2qq45/2q57q203/2q75/2q34q45/2q4q63/2q76q66q125/2q51q63/2q2q81/2q205/2q99q175/2q68q81/2q6)I^{\mathrm{rot}}_{(-2,3,7)}(q)[6]=\begin{pmatrix}1&-q^{-9/2}&q^{-19}&-q^{-87/2}&q^{-78}&-q^{-245/2}\\ -q^{9/2}&6q^{2}&-q^{-27/2}&q^{-38}&-q^{-145/2}&q^{-117}\\ q^{17}&-q^{27/2}&q&-q^{-45/2}&q^{57}&-q^{-203/2}\\ -q^{75/2}&q^{34}&-q^{45/2}&q^{4}&-q^{-63/2}&q^{-76}\\ q^{66}&-q^{125/2}&q^{51}&-q^{63/2}&q^{2}&-q^{-81/2}\\ -q^{205/2}&q^{99}&-q^{175/2}&q^{68}&-q^{81/2}&q^{6}\end{pmatrix} (58)

and this alone required an internal truncation of the summand of (57) up to O(q103)O(q^{103}). For safety, we computed up to O(q160)O(q^{160}) and we found out that the last computed coefficients of I(2,3,7)rot(q)[6]I^{\mathrm{rot}}_{(-2,3,7)}(q)[6] were given by

(3099301802486871q15815368338814987064q315/239577501827964202q158717771103116611523q315/27908419005020915850q1581907856058463675359575q315/22510483414752309q315/23797180920247821q15846280099948395184q315/2661349858819489021q1586373738664932074312q315/21164148757149541167314q158830392595916755q1581589679235709546q315/25002197250330240q15859052244117713785q315/24279809698340893447q15825447538708964750026q315/221883932028960q315/252039830772006q158208430252255007q315/25021231467477637q158203334247925102214q315/214980307260595602909q15868212497673q15814703374329q315/2986065940989q1581182082042782q315/23294633659679268q158225454885754595400q315/27690268q315/227909767q158486018210q315/212829067397q1583046756706011q315/21068804228132263q158)\begin{pmatrix}3099301802486871q^{158}&15368338814987064q^{315/2}&39577501827964202q^{158}&-717771103116611523q^{315/2}&-7908419005020915850q^{158}&1907856058463675359575q^{315/2}\\ -2510483414752309q^{315/2}&3797180920247821q^{158}&46280099948395184q^{315/2}&-661349858819489021q^{158}&6373738664932074312q^{315/2}&1164148757149541167314q^{158}\\ -830392595916755q^{158}&-1589679235709546q^{315/2}&5002197250330240q^{158}&-59052244117713785q^{315/2}&4279809698340893447q^{158}&-25447538708964750026q^{315/2}\\ 21883932028960q^{315/2}&52039830772006q^{158}&-208430252255007q^{315/2}&5021231467477637q^{158}&-203334247925102214q^{315/2}&-14980307260595602909q^{158}\\ 68212497673q^{158}&-14703374329q^{315/2}&-986065940989q^{158}&1182082042782q^{315/2}&3294633659679268q^{158}&225454885754595400q^{315/2}\\ 7690268q^{315/2}&27909767q^{158}&-486018210q^{315/2}&-12829067397q^{158}&3046756706011q^{315/2}&1068804228132263q^{158}\end{pmatrix}

On the other hand, the determinant of I(2,3,7)rot(q)[6]I^{\mathrm{rot}}_{(-2,3,7)}(q)[6] to that precision was given by

det(I(2,3,7)rot(q)[6])=q15(1q)2(1q2)4(1q3)4(1q4)2+O(q160).\det(I^{\mathrm{rot}}_{(-2,3,7)}(q)[6])=q^{-15}(1-q)^{2}(1-q^{2})^{4}(1-q^{3})^{4}(1-q^{4})^{2}+O(q^{160})\,. (59)

But more reassuring was the fact that repeating the computation of I(2,3,7),𝒪rot(q)[6]I^{\mathrm{rot}}_{(-2,3,7),\mathcal{O}}(q)[6] for the insertion z^2\widehat{z}_{2} (corresponding to the second shape), we found out that the new matrix had equally big coefficients of qq-series, but the quotient

Q(2,3,7),𝒪(q)=I(2,3,7),𝒪rot(q)[6](I(2,3,7)rot(q)[6])1Q_{(-2,3,7),\mathcal{O}}(q)=I^{\mathrm{rot}}_{(-2,3,7),\mathcal{O}}(q)[6](I^{\mathrm{rot}}_{(-2,3,7)}(q)[6])^{-1}

had entries short rational functions

Q(2,3,7),𝒪(q)+O(q160)=1(1q3)(1q4)(0q1/2(q2+1)q19(q21)2(q2+1)q77/2(q4q21)q74(q41)2q221/2q15/2(q4+q3+2q2+q+1)(q1)2(q4+q3+2q2+q+1)q23/2(q+1)(q2+1)2q37(q2+1)(q31)2q131/2(q2+1)00q37/2(q2+1)(q21)2(q2+1)q39/2(q4q21)q55(q41)2q183/2q89/2(q4+q3+2q2+q+1)(q1)2q39(q4+q3+2q2+q+1)q51/2(q+1)(q2+1)2(q2+1)(q31)2q57/2(q2+1)00q147/2(q2+1)q58(q21)2(q2+1)q71/2(q4+q2+1)(q41)2q73/2q235/2(q4+q3+2q2+q+1)(q1)2q112(q4+q3+2q2+q+1)q197/2(q+1)(q2+1)2q75(q2+1)(q31)2q89/2(q2+1)0)Q_{(-2,3,7),\mathcal{O}}(q)+O(q^{160})=\frac{1}{(1-q^{3})(1-q^{4})}\cdot\\ \begin{pmatrix}\vspace{0.2cm}0&q^{-1/2}(q^{2}+1)&q^{-19}(q^{2}-1)^{2}(q^{2}+1)&q^{-77/2}(-q^{4}-q^{2}-1)&q^{-74}(q^{4}-1)^{2}&q^{-221/2}\\ \vspace{0.2cm}q^{15/2}(q^{4}+q^{3}+2q^{2}+q+1)&(q-1)^{2}(q^{4}+q^{3}+2q^{2}+q+1)&-q^{-23/2}(q+1)(q^{2}+1)^{2}&q^{-37}(q^{2}+1)(q^{3}-1)^{2}&q^{-131/2}(q^{2}+1)&0\\ \vspace{0.2cm}0&q^{37/2}(q^{2}+1)&(q^{2}-1)^{2}(q^{2}+1)&q^{-39/2}(-q^{4}-q^{2}-1)&q^{-55}(q^{4}-1)^{2}&q^{-183/2}\\ \vspace{0.2cm}q^{89/2}(q^{4}+q^{3}+2q^{2}+q+1)&(q-1)^{2}q^{39}(q^{4}+q^{3}+2q^{2}+q+1)&-q^{51/2}(q+1)(q^{2}+1)^{2}&(q^{2}+1)(q^{3}-1)^{2}&q^{-57/2}(q^{2}+1)&0\\ \vspace{0.2cm}0&q^{147/2}(q^{2}+1)&q^{58}(q^{2}-1)^{2}(q^{2}+1)&-q^{71/2}(q^{4}+q^{2}+1)&(q^{4}-1)^{2}&q^{-73/2}\\ \vspace{0.2cm}q^{235/2}(q^{4}+q^{3}+2q^{2}+q+1)&(q-1)^{2}q^{112}(q^{4}+q^{3}+2q^{2}+q+1)&-q^{197/2}(q+1)(q^{2}+1)^{2}&q^{75}(q^{2}+1)(q^{3}-1)^{2}&q^{89/2}(q^{2}+1)&0\end{pmatrix}

Surely this cancellation is not an accident, and it is a confirmation that our computational method and Corollary 3.5 of Conjecture 3.3 are correct.

Incidentally, the 3×33\times 3 matrices I(2,3,7),𝒪rot(q)[3]I^{\mathrm{rot}}_{(-2,3,7),\mathcal{O}}(q)[3] and I(2,3,7),𝒪rot(q)[3]I^{\mathrm{rot}}_{(-2,3,7),\mathcal{O}}(q)[3] obey no rationality property similar to Equation (4.7), as one would not expect.

Acknowledgements

The authors wish to thank Tudor Dimofte, Rinat Kashaev, Marcos Mariño, Campbell Wheeler and Don Zagier for many enlightening conversations. ZD would like to thank International Center for Mathematics, SUSTech for hospitality where this work was initiated. ZD is supported by KIAS individual Grant PG076902.

Appendix A The holomorphic blocks of the 414_{1} knot

The 414_{1} knot has two colored holomorphic blocks of the 414_{1} knot given by qq-hypergeometric formulas in [20, Prop.8] as follows:

h41,n(0)(q)=(1)nq|n|(2|n|+1)/2k=0(1)kqk(k+1)/2+|n|k(q;q)k(q;q)k+2|n|,h_{4_{1},n}^{(0)}(q)=(-1)^{n}q^{|n|(2|n|+1)/2}\sum_{k=0}^{\infty}(-1)^{k}\frac{q^{k(k+1)/2+|n|k}}{(q;q)_{k}(q;q)_{k+2|n|}}\,, (60)

and

h41,n(1)(q)\displaystyle h^{(1)}_{4_{1},n}(q) =(1)nq|n|(2|n|+1)/2k=0(4E1(q)+=1k+2|n|1+q1q+=1k1+q1q)(1)kqk(k+1)/2+|n|k(q;q)k(q,q)k+2|n|\displaystyle=(-1)^{n}q^{|n|(2|n|+1)/2}\sum_{k=0}^{\infty}\left(-4E_{1}(q)+\sum_{\ell=1}^{k+2|n|}\frac{1+q^{\ell}}{1-q^{\ell}}+\sum_{\ell=1}^{k}\frac{1+q^{\ell}}{1-q^{\ell}}\right)(-1)^{k}\frac{q^{k(k+1)/2+|n|k}}{(q;q)_{k}(q,q)_{k+2|n|}} (61)
2(1)nq|n|(2|n|1)/2k=02|n|1(1)kqk(k+1)/2|n|k(q1,q1)2|n|1k(q;q)k,\displaystyle\quad-2(-1)^{n}q^{|n|(2|n|-1)/2}\sum_{k=0}^{2|n|-1}(-1)^{k}\frac{q^{k(k+1)/2-|n|k}(q^{-1},q^{-1})_{2|n|-1-k}}{(q;q)_{k}}\,,

for |q|1|q|\neq 1. Here, for a positive integer \ell, we define E(q)=ζ(1)2+s=1s1qs1qs,E_{\ell}(q)=\frac{\zeta(1-\ell)}{2}+\sum_{s=1}^{\infty}s^{\ell-1}\frac{q^{s}}{1-q^{s}}\,, (where ζ(s)\zeta(s) is the Riemann zeta function), analytic for |q|<1|q|<1 and extended to |q|>1|q|>1 by the symmetry E(q1)=E(q)E_{\ell}(q^{-1})=-E_{\ell}(q).

Appendix B The holomorphic blocks of the 525_{2} knot

The 525_{2} knot has three colored holomorphic blocks h52,n(α)(q)h^{(\alpha)}_{5_{2},n}(q) for α=0,1,2\alpha=0,1,2. They were given explicitly in [20, Lem.12], and we copy the answer for the benefit of the reader. Using the qq-harmonic functions

Hn(q)=j=1nqj1qj,Hn(2)(q)=j=1nqj(1qj)2H_{n}(q)=\sum_{j=1}^{n}\frac{q^{j}}{1-q^{j}},\qquad H^{(2)}_{n}(q)=\sum_{j=1}^{n}\frac{q^{j}}{(1-q^{j})^{2}} (62)

we have:

h52,n(0)(q)\displaystyle h_{5_{2},n}^{(0)}(q) =(1)nq|n|/2k=0q|n|k(q1;q1)k(q;q)k+2|n|(q;q)k+|n|,\displaystyle=(-1)^{n}q^{|n|/2}\sum_{k=0}^{\infty}\frac{q^{|n|k}}{(q^{-1};q^{-1})_{k}(q;q)_{k+2|n|}(q;q)_{k+|n|}}\,, (63)
h52,n(1)(q)\displaystyle h_{5_{2},n}^{(1)}(q) =(1)nq|n|/2k=0q|n|k(q;q)k+2|n|(q1;q1)k(q;q)k+|n|\displaystyle=-(-1)^{n}q^{|n|/2}\sum_{k=0}^{\infty}\frac{q^{|n|k}}{(q;q)_{k+2|n|}(q^{-1};q^{-1})_{k}(q;q)_{k+|n|}} (64)
×(k+|n|143E1(q)+Hk(q)+Hk+|n|(q)+Hk+2|n|(q))\displaystyle\qquad\times\left(k+|n|-\frac{1}{4}-3E_{1}(q)+H_{k}(q)+H_{k+|n|}(q)+H_{k+2|n|}(q)\right)
+qn2/2k=0|n|1(q1,q1)|n|1k(q1,q1)k(q;q)k+|n|,\displaystyle\quad+q^{-n^{2}/2}\sum_{k=0}^{|n|-1}\frac{(q^{-1},q^{-1})_{|n|-1-k}}{(q^{-1},q^{-1})_{k}(q;q)_{k+|n|}}\,,

and

h52,n(2)(q)\displaystyle h_{5_{2},n}^{(2)}(q) =(1)nq|n|/2k=0q|n|k(q1;q1)k(q;q)k+|n|(q;q)k+2|n|\displaystyle=(-1)^{n}q^{|n|/2}\sum_{k=0}^{\infty}\frac{q^{|n|k}}{(q^{-1};q^{-1})_{k}(q;q)_{k+|n|}(q;q)_{k+2|n|}} (65)
×(E2(q)+18Hk(2)(q)Hk+|n|(2)(q)Hk+2|n|(2)(q)\displaystyle\qquad\times\Bigg{(}E_{2}(q)+\frac{1}{8}-H_{k}^{(2)}(q)-H_{k+|n|}^{(2)}(q)-H_{k+2|n|}^{(2)}(q)
(k+|n|143E1(q)+Hk(q)+Hk+|n|(q)+Hk+2|n|(q))2)\displaystyle\qquad\qquad-\bigg{(}k+|n|-\frac{1}{4}-3E_{1}(q)+H_{k}(q)+H_{k+|n|}(q)+H_{k+2|n|}(q)\bigg{)}^{2}\Bigg{)}
+2qn2/2k=0|n|1(q1,q1)|n|1k(q1,q1)k(q;q)k+|n|\displaystyle+2q^{-n^{2}/2}\sum_{k=0}^{|n|-1}\frac{(q^{-1},q^{-1})_{|n|-1-k}}{(q^{-1},q^{-1})_{k}(q;q)_{k+|n|}}
×(|n|343E1(q)+Hk(q)+Hk+|n|(q)+H|n|k1(q))\displaystyle\qquad\times\Bigg{(}|n|-\frac{3}{4}-3E_{1}(q)+H_{k}(q)+H_{k+|n|}(q)+H_{|n|-k-1}(q)\Bigg{)}
2(1)nq|n|/2k=0|n|1q|n|k(q1;q1)2|n|k1(q1;q1)|n|k1(q1;q1)k,\displaystyle-2(-1)^{n}q^{-|n|/2}\sum_{k=0}^{|n|-1}q^{-|n|k}\frac{(q^{-1};q^{-1})_{2|n|-k-1}(q^{-1};q^{-1})_{|n|-k-1}}{(q^{-1};q^{-1})_{k}}\,,

for |q|1|q|\neq 1.

Appendix C NZ matrices and the 3D-index

Since there are various formulas for the 3D-index in the literature, let us present our conventions briefly.

Let 𝒯\mathcal{T} be an ideal triangulation with NN tetrahedra of a 1-cusped hyperbolic 3-manifold MM equipped with a symplectic basis μ\mu and λ\lambda of H1(M,)H_{1}(\partial M,\mathbbm{Z}) and such that λ\lambda is the homological longitude. Then the edge gluing equations together with the peripheral equations are encoded by three (N+2)×N(N+2)\times N matrices 𝐆\mathbf{G}, 𝐆\mathbf{G}^{\prime} and 𝐆′′\mathbf{G}^{\prime\prime} whose rows are indexed by the edges, the meridian and the longitude and the columns indexed by tetrahedra. The gluing equations in logarithmic form are given by

j=1N(𝐆ijlogzj+𝐆ijlogzj+𝐆ij′′logzj′′)=πi𝜼i,i=1,,N+2\sum_{j=1}^{N}\big{(}\mathbf{G}_{ij}\log z_{j}+\mathbf{G}^{\prime}_{ij}\log z^{\prime}_{j}+\mathbf{G}^{\prime\prime}_{ij}\log z^{\prime\prime}_{j}\big{)}=\pi i\,\,\boldsymbol{\eta}_{i},\qquad i=1,\dots,N+2 (66)

where 𝜼=(2,,2,0,0)tN+2\boldsymbol{\eta}=(2,\dots,2,0,0)^{t}\in\mathbbm{Z}^{N+2}.

If we eliminate the variable zz^{\prime} in each tetrahedron using zzz′′=1zz^{\prime}z^{\prime\prime}=-1, we obtain the matrices 𝐀=𝐆𝐆\mathbf{A}=\mathbf{G}-\mathbf{G}^{\prime}, 𝐁=𝐆′′𝐆\mathbf{B}=\mathbf{G}^{\prime\prime}-\mathbf{G}^{\prime} and the vector 𝝂=(2,,2,0,0)t𝐆(1,,1)t\boldsymbol{\nu}=(2,\dots,2,0,0)^{t}-\mathbf{G}^{\prime}(1,\dots,1)^{t}, and the gluing equations take the form

j=1N(𝐀ijlogzj+𝐁ijlogzj′′)=πi𝝂i,i=1,,N+2.\sum_{j=1}^{N}\big{(}\mathbf{A}_{ij}\log z_{j}+\mathbf{B}_{ij}\log z^{\prime\prime}_{j}\big{)}=\pi i\,\,\boldsymbol{\nu}_{i},\qquad i=1,\dots,N+2\,. (67)

Let 𝐚j\mathbf{a}_{j} and 𝐛j\mathbf{b}_{j} denote the jj-th column of 𝐀\mathbf{A} and 𝐁\mathbf{B}, respectively. For integers mm and ee, consider the vector 𝐤=(k1,,kN1,0,e,m/2)\mathbf{k}=(k_{1},\dots,k_{N-1},0,e,-m/2). Then, the 3D-index of [8] is given by [8] (see also [15, Sec.4.5])

I𝒯(m,e)(q)=k1,,kN1(q1/2)𝝂𝐤j=1NIΔ(𝐛j𝐤,𝐚j𝐤)(q)I_{\mathcal{T}}(m,e)(q)=\sum_{k_{1},\dots,k_{N-1}\in\mathbbm{Z}}(-q^{1/2})^{\boldsymbol{\nu}\cdot\mathbf{k}}\prod_{j=1}^{N}I_{\Delta}(-\mathbf{b}_{j}\cdot\mathbf{k},\mathbf{a}_{j}\cdot\mathbf{k})(q) (68)

and the rotated 3D-index is given by [20, Sec.2.1]

I𝒯rot(n,n)(q)=eI𝒯(nn,e)(q)qe(n+n)/2.I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)=\sum_{e\in\mathbbm{Z}}I_{\mathcal{T}}(n-n^{\prime},e)(q)q^{e(n+n^{\prime})/2}\,. (69)

Let us define the N×NN\times N matrices AA and BB obtained by removing the NN and N+2N+2 rows of 𝐀\mathbf{A} and 𝐁\mathbf{B}, respectively. In other words, the rows of AA and BB correspond to the first N1N-1 edge gluing equations and the meridian gluing equation, respectively. Let (λ1,,λN)(\lambda_{1},\dots,\lambda_{N}) and (λ1′′,,λN′′)(\lambda^{\prime\prime}_{1},\dots,\lambda^{\prime\prime}_{N}) denote half the last row of 𝐀\mathbf{A} and 𝐁\mathbf{B} respectively. We assume that these are vectors of integers and this can be arranged by adding, if necessary, an integer multiple of some of the first NN rows of 𝐀\mathbf{A} and 𝐁\mathbf{B} to the last row. Let aja_{j} and bjb_{j} denote the jj-th column of AA and BB, respectively, and let k=(k1,,kN)k=(k_{1},\dots,k_{N}). Let νN\nu\in\mathbbm{Z}^{N} be obtained from 𝝂N+2\boldsymbol{\nu}\in\mathbbm{Z}^{N+2} by removing the NN-th and the N+2N+2 entry of it, and let νλ\nu_{\lambda} denote half of the last entry of 𝝂\boldsymbol{\nu}.

Then, combining (68) and (69) (where we rename its summation variable from ee to kNk_{N}) we obtain that

I𝒯rot(n,n)(q)=kN(q1/2)νk(nn)νλqkN(n+n)/2j=1NIΔ(λj′′(nn)bjk,λj(nn)+ajk)(q).I^{\mathrm{rot}}_{\mathcal{T}}(n,n^{\prime})(q)=\sum_{k\in\mathbbm{Z}^{N}}(-q^{1/2})^{\mathbf{\nu}\cdot k-(n-n^{\prime})\nu_{\lambda}}q^{k_{N}(n+n^{\prime})/2}\prod_{j=1}^{N}I_{\Delta}(\lambda^{\prime\prime}_{j}(n-n^{\prime})-b_{j}\cdot k,-\lambda_{j}(n-n^{\prime})+a_{j}\cdot k)(q)\,. (70)

References

  • [1] Prarit Agarwal, Dongmin Gang, Sangmin Lee, and Mauricio Romo. Quantum trace map for 3-manifolds and a length conjecture. Preprint 2022, arXiv:2203.15985.
  • [2] Jørgen Ellegaard Andersen and Rinat Kashaev. A TQFT from Quantum Teichmüller theory. Comm. Math. Phys., 330(3):887–934, 2014.
  • [3] Christopher Beem, Tudor Dimofte, and Sara Pasquetti. Holomorphic blocks in three dimensions. J. High Energy Phys., (12):177, front matter+118, 2014.
  • [4] Daryl Cooper, Marc Culler, Henry Gillet, Daryl Long, and Peter Shalen. Plane curves associated to character varieties of 33-manifolds. Invent. Math., 118(1):47–84, 1994.
  • [5] Tudor Dimofte. Quantum Riemann surfaces in Chern-Simons theory. Adv. Theor. Math. Phys., 17(3):479–599, 2013.
  • [6] Tudor Dimofte. 3d superconformal theories from three-manifolds. In New dualities of sypersymmetric gauge theories, Math. Phys. Stud., pages 339–373. Springer, Cham, 2016.
  • [7] Tudor Dimofte, Maxime Gabella, and Alexander B. Goncharov. K-Decompositions and 3d Gauge Theories. JHEP, 11:151, 2016.
  • [8] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. 3-manifolds and 3d indices. Adv. Theor. Math. Phys., 17(5):975–1076, 2013.
  • [9] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. Gauge theories labelled by three-manifolds. Comm. Math. Phys., 325(2):367–419, 2014.
  • [10] Tudor Dimofte, Sergei Gukov, and Lotte Hollands. Vortex Counting and Lagrangian 3-manifolds. Lett. Math. Phys., 98:225–287, 2011.
  • [11] Dongmin Gang, Nakwoo Kim, Mauricio Romo, and Masahito Yamazaki. Aspects of defects in 3d-3d correspondence. J. High Energy Phys., (10):062, front matter+99, 2016.
  • [12] Stavros Garoufalidis. On the characteristic and deformation varieties of a knot. In Proceedings of the Casson Fest, volume 7 of Geom. Topol. Monogr., pages 291–309 (electronic). Geom. Topol. Publ., Coventry, 2004.
  • [13] Stavros Garoufalidis, Jie Gu, and Marcos Mariño. The resurgent structure of quantum knot invariants. Comm. Math. Phys., 386(1):469–493, 2021.
  • [14] Stavros Garoufalidis, Jie Gu, Marcos Mariño, and Campbell Wheeler. Resurgence of Chern-Simons theory at the trivial flat connection. Preprint 2021, arXiv:2111.04763.
  • [15] Stavros Garoufalidis, Craig Hodgson, Hyam Rubinstein, and Henry Segerman. 1-efficient triangulations and the index of a cusped hyperbolic 3-manifold. Geom. Topol., 19(5):2619–2689, 2015.
  • [16] Stavros Garoufalidis and Rinat Kashaev. The descendant colored Jones polynomials. Preprint 2021, arXiv:2108.07553.
  • [17] Stavros Garoufalidis and Rinat Kashaev. From state integrals to qq-series. Math. Res. Lett., 24(3):781–801, 2017.
  • [18] Stavros Garoufalidis and Rinat Kashaev. A meromorphic extension of the 3D index. Res. Math. Sci., 6(1):Paper No. 8, 34, 2019.
  • [19] Stavros Garoufalidis and Thang T.Q. Lê. The colored Jones function is qq-holonomic. Geom. Topol., 9:1253–1293 (electronic), 2005.
  • [20] Stavros Garoufalidis and Campbell Wheeler. Periods, the meromorphic 3D-index and the Turaev–Viro invariant. Preprint 2022, arXiv:2209.02843.
  • [21] Stavros Garoufalidis and Don Zagier. Knots and their related qq-series. Preprint 2021.
  • [22] Stavros Garoufalidis and Don Zagier. Knots, perturbative series and quantum modularity. Preprint 2021, arXiv:2111.06645.
  • [23] Walter Neumann. Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 33-manifolds. In Topology ’90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pages 243–271. de Gruyter, Berlin, 1992.
  • [24] Walter Neumann and Don Zagier. Volumes of hyperbolic three-manifolds. Topology, 24(3):307–332, 1985.
  • [25] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A=BA=B. A K Peters, Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth, With a separately available computer disk.
  • [26] Yuji Terashima and Masahito Yamazaki. SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls. JHEP, 08:135, 2011.
  • [27] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and “qq”) multisum/integral identities. Invent. Math., 108(3):575–633, 1992.