This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Curious Case of Integrator Reach Sets, Part I: Basic Theory

Shadi Haddad, Abhishek Halder, Senior Member, IEEE Shadi Haddad and Abhishek Halder are with the Department of Applied Mathematics, University of California, Santa Cruz, CA 95064, USA, {shhaddad,ahalder}@ucsc.edu
Abstract

This is the first of a two part paper investigating the geometry of the integrator reach sets, and the applications thereof. In this Part I, assuming box-valued input uncertainties, we establish that this compact convex reach set is semialgebraic, translated zonoid, and not a spectrahedron. We derive the parametric as well as the implicit representation of the boundary of this reach set. We also deduce the closed form formula for the volume and diameter of this set, and discuss their scaling with state dimension and time. We point out that these results may be utilized in benchmarking the performance of the reach set over-approximation algorithms.

Keywords: Reach set, integrator, convex geometry, set-valued uncertainty.

I Introduction

Integrators with bounded controls are ubiquitous in systems-control. They appear as Brunovsky normal forms for the feedback linearizable nonlinear systems. They also appear frequently as benchmark problems to demonstrate the performance of the reach set computation algorithms. Despite their prominence, specific results on the geometry of the integrator reach sets are not available in the systems-control literature. Broadly speaking, the existing results come in two flavors. On one hand, very generic statements are known, e.g., these reach sets are compact convex sets whenever the set of initial conditions is compact convex, and the controls take values from a compact (not necessarily convex) set [1]. On the other hand, several numerical toolboxes [2, 3] are available for tight outer approximation of the reach sets over computationally benign geometric families such as ellipsoids and zonotopes. The lack of concrete geometric results imply the absence of ground truth when comparing the efficacy of different algorithms, and one has to content with graphical or statistical (e.g., Monte Carlo) comparisons.

Building on the preliminary results in [4], this paper undertakes a systematic study of the integrator reach sets. In particular, we answer the following basic questions:

  • Q1.

    what kind of compact convex sets are these (Section IV)?

  • Q2.

    how big are these sets (Section V)?

  • Q3.

    how these results on the geometry of integrator reach sets can be applied in practice (Section VI)?

We consider the integrator dynamics having dd states and mm inputs with relative degree vector 𝒓=(r1,r2,,rm)+m\bm{r}=\left(r_{1},r_{2},\ldots,r_{m}\right)^{\top}\in\mathbb{Z}_{+}^{m} (vector of positive integers). In other words, we consider a Brunovsky normal form with mm integrators where the jjth integrator has degree rjr_{j} for j[m]:={1,,m}j\in[m]:=\{1,\ldots,m\}. The dynamics is

𝒙˙=𝑨𝒙+𝑩𝒖,𝒙d,𝒖()𝒰m,\displaystyle\dot{\bm{x}}=\bm{A}\bm{x}+\bm{B}\bm{u},\quad\bm{x}\in\mathbb{R}^{d},\quad\bm{u}(\cdot)\in\mathcal{U}\subset\mathbb{R}^{m}, (1)

where r1+r2++rm=dr_{1}+r_{2}+...+r_{m}=d, the set 𝒰\mathcal{U} is compact, and

𝑨:=blkdiag(𝑨1,,𝑨m),𝑩:=blkdiag(𝒃1,,𝒃m),\displaystyle\!\!\bm{A}\!:=\!{\mathrm{blkdiag}}\!\left(\bm{A}_{1},...,\bm{A}_{m}\right),\quad\!\!\bm{B}\!:=\!{\mathrm{blkdiag}}\!\left(\bm{b}_{1},...,\bm{b}_{m}\right), (2a)
𝑨j:=(𝟎rj×1|𝒆1rj|𝒆2rj||𝒆rj1rj),𝒃j:=𝒆rjrj.\displaystyle\!\!\bm{A}_{j}:=\left(\bm{0}_{r_{j}\times 1}~{}\bm{|}~{}\bm{e}_{1}^{r_{j}}\bm{|}~{}\bm{e}_{2}^{r_{j}}\bm{|}...\bm{|}~{}\bm{e}_{r_{j}-1}^{r_{j}}\right),\qquad\!\!\!\bm{b}_{j}:=\bm{e}_{r_{j}}^{r_{j}}. (2b)

In (2a), the symbol blkdiag(){\mathrm{blkdiag}}\left(\cdot\right) denotes a block diagonal matrix whose arguments constitute its diagonal blocks. In (2b), the notation 𝟎rj×1\bm{0}_{r_{j}\times 1} stands for the rj×1{r_{j}\times 1} column vector of zeros, and 𝒆k\bm{e}_{k}^{\ell} denotes the kkth basis (column) vector in \mathbb{R}^{\ell} for kk\leq\ell. The symbol (||)(...|...|...) denotes horizontal concatenation.

Notice that an integrator that replaces the ones appearing in the system matrices with arbitrary nonzero reals, is always reducible to the normal form (1)-(2) by renaming the variables. For instance, for any a,b{0}a,b\in\mathbb{R}\setminus\{0\}, the system x˙1=ax2,x˙2=bu1,\dot{x}_{1}=ax_{2},\dot{x}_{2}=bu_{1}, is equivalent to x˙1=x~2,x~˙2=u~1,\dot{x}_{1}=\tilde{x}_{2},\dot{\tilde{x}}_{2}=\tilde{u}_{1}, where x~2:=ax2\tilde{x}_{2}:=ax_{2}, u~1:=abu1\tilde{u}_{1}:=abu_{1}.

Let (𝒳0,t)\mathcal{R}\left(\mathcal{X}_{0},t\right) denote the forward reach set of (1) at time t>0t>0, starting from a given compact convex set of initial conditions 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d}, i.e.,

\displaystyle\mathcal{R} (𝒳0,t):=measurable𝒖()𝒰m{𝒙(t)d(1) and (2) hold,\displaystyle\left(\mathcal{X}_{0},t\right):=\!\!\!\bigcup_{\text{measurable}\>\bm{u}(\cdot)\in\mathcal{U}\subset\mathbb{R}^{m}}\!\!\!\big{\{}\bm{x}(t)\in\mathbb{R}^{d}\mid\text{\eqref{IntegratorDyn} and \eqref{defAB} hold},
𝒙(t=0)𝒳0compact convex,𝒰compact}.\displaystyle\qquad\bm{x}(t=0)\in\mathcal{X}_{0}\;\text{compact convex},\quad\mathcal{U}\;\text{compact}\big{\}}. (3)

In words, (𝒳0,t)\mathcal{R}\left(\mathcal{X}_{0},t\right) is the set of all states that the controlled dynamics (1)-(2) can reach at time t>0t>0, starting from the set 𝒳0\mathcal{X}_{0} at t=0t=0, with measurable control 𝒖()𝒰\bm{u}(\cdot)\in\mathcal{U} compact. Formally,

(𝒳0,t)\displaystyle\!\!\mathcal{R}\left(\mathcal{X}_{0},t\right)\! =exp(t𝑨)𝒳00texp((tτ)𝑨)𝑩𝒰dτ\displaystyle=\exp(t\bm{A})\mathcal{X}_{0}\dotplus\!\!\int_{0}^{t}\!\!\!\exp\left((t-\tau)\bm{A}\right)\bm{B}\mathcal{U}\>{\rm{d}}\tau
=exp(t𝑨)𝒳00texp(s𝑨)𝑩𝒰ds,\displaystyle=\exp(t\bm{A})\mathcal{X}_{0}\dotplus\!\!\int_{0}^{t}\!\!\!\exp\left(s\bm{A}\right)\bm{B}\mathcal{U}\>{\rm{d}}s, (4)

where \dotplus denotes the Minkowski sum. The set-valued integral [5] in (4) is defined for any point-to-set function F()F(\cdot), as

0tF(s)ds:=limΔ0i=0t/ΔΔF(iΔ),\displaystyle\int_{0}^{t}F(s){\rm{d}}s:=\lim_{\Delta\downarrow 0}\>\sum_{i=0}^{\lfloor t/\Delta\rfloor}\Delta F(i\Delta), (5)

where the summation symbol Σ\Sigma denotes the Minkowski sum, and \lfloor\cdot\rfloor is the floor operator; see e.g., [1]. Our objective is to study the geometry of (4) in detail.

This paper significantly expands our preliminary works [4, 6]: here we consider multi-input integrators as opposed to the single input case considered in [4]. Even for the single input case, while [4, Thm. 1] derived an exact formula for the volume of the reach set, that formula involved limit and nested sums, and in that sense, was not really a closed-form formula [7] – certainly not amenable for numerical computation. In this paper, we derive closed-form formula for the general multi-input case when the input uncertainty is box-valued, i.e., 𝒰\mathcal{U} is hyperrectangle. In the same setting, the present paper addresses previously unexplored directions: the scaling laws for the volume and diameter of integrator reach sets, exact parametric and implicit equations for the boundary, and the classification of these sets.

The paper is structured as follows. After reviewing some preliminary concepts in Sec. II, we consider the integrator reach set resulting from box-valued input set uncertainty in Sec. III. The results on taxonomy and the boundary of the corresponding reach set are provided in Sec. IV. The results on the size of this set are collected in Sec. V. The application of these results for benchmarking the reach set over-approximation algorithms are discussed in Sec. VI. All proofs are deferred to the Appendix. Sec. VII summarizes the paper, and outlines the directions pursued in its sequel Part II.

II Preliminaries

In the following, we summarize some preliminaries which will be useful in the main body and in the Appendix.

II-1 State transition matrix

For 0s<t0\leq s<t, the state transition matrix 𝚽(t,s)\bm{\Phi}(t,s) associated with (2) is

𝚽(t,s)\displaystyle\bm{\Phi}(t,s) exp(𝑨(ts))\displaystyle\equiv\exp(\bm{A}(t-s))
=blkdiag(exp(𝑨1(ts)),,exp(𝑨m(ts))),\displaystyle={\mathrm{blkdiag}}\left(\exp(\bm{A}_{1}(t-s)),\ldots,\exp(\bm{A}_{m}(t-s))\right),

with each diagonal block is upper triangular. Specifically, the jjth diagonal block of size rj×rjr_{j}\times r_{j} is written element-wise as

exp(𝑨j(ts)):={(ts)k(k)!fork,0otherwise,\displaystyle\exp(\bm{A}_{j}(t-s)):=\begin{cases}\dfrac{(t-s)^{\ell-k}}{(\ell-k)!}&\text{for}\;k\leq\ell,\\ 0&\text{otherwise},\end{cases} (6)

where kk is the row index, \ell is the column index, and k,[rj]k,\ell\in[r_{j}] for each j[m]j\in[m]. The diagonal entries in (6) are unity.

II-2 Support function

The support function h𝒦()h_{\mathcal{K}}(\cdot) of a compact convex set 𝒦d\mathcal{K}\subset\mathbb{R}^{d}, is given by

h𝒦(𝒚):=sup𝒙𝒦𝒚,𝒙,𝒚d,\displaystyle h_{\mathcal{K}}(\bm{y}):=\underset{\bm{x}\in\mathcal{K}}{\sup}~{}\langle\bm{y},\bm{x}\rangle,\quad\bm{y}\in\mathbb{R}^{d}, (7)

where ,\langle\cdot,\cdot\rangle denotes the standard Euclidean inner product. Geometrically, h𝒦(𝒚)h_{\mathcal{K}}(\bm{y}) gives the signed distance of the supporting hyperplane of 𝒦\mathcal{K} with outer normal vector 𝒚\bm{y}, measured from the origin. Furthermore, the supporting hyperplane at 𝒙bdy𝒦\bm{x}^{\text{bdy}}\in\partial\mathcal{K} is 𝒚,𝒙bdy=h𝒦(𝒚)\langle\bm{y},\bm{x}^{\text{bdy}}\rangle=h_{\mathcal{K}}(\bm{y}), and we can write

𝒦={𝒙d𝒚,𝒙h𝒦(𝒚)for all𝒚d}.\mathcal{K}=\big{\{}\bm{x}\in\mathbb{R}^{d}\mid\langle\bm{y},\bm{x}\rangle\leq h_{\mathcal{K}}(\bm{y})\;\text{for all}\;\bm{y}\in\mathbb{R}^{d}\big{\}}.

For compact 𝒦1,𝒦2d\mathcal{K}_{1},\mathcal{K}_{2}\subset\mathbb{R}^{d},

𝒦1𝒦2if and only ifh𝒦1()h𝒦2().\displaystyle\mathcal{K}_{1}\subseteq\mathcal{K}_{2}\quad\text{if and only if}\quad h_{\mathcal{K}_{1}}(\cdot)\leq h_{\mathcal{K}_{2}}(\cdot). (8)

The support function h𝒦(𝒚)h_{\mathcal{K}}\left(\bm{y}\right) is convex in 𝒚\bm{y}. For more details on the support function, we refer the readers to [8, Ch. V].

The support function h𝒦(𝒚)h_{\mathcal{K}}(\bm{y}) uniquely determines the set 𝒦\mathcal{K}. Given matrix-vector pair (𝚪,𝜸)d×d×d(\bm{\Gamma},\bm{\gamma})\in\mathbb{R}^{d\times d}\times\mathbb{R}^{d}, the support function of the affine transform 𝚪𝒦+𝜸\bm{\Gamma}\mathcal{K}+\bm{\gamma} is

h𝚪𝒦+𝜸(𝒚)=𝒚,𝜸+h𝒦(𝚪𝒚).\displaystyle h_{\bm{\Gamma}\mathcal{K}+\bm{\gamma}}(\bm{y})=\langle\bm{y},\bm{\gamma}\rangle+h_{\mathcal{K}}(\bm{\Gamma}^{\top}\bm{y}). (9)

Given a function f:d{+}f:\mathbb{R}^{d}\mapsto\mathbb{R}\cup\{+\infty\}, its Legendre-Fenchel conjugate is

f(𝒚):=sup𝒙domain(f){𝒚,𝒙f(𝒙)},𝒚d.\displaystyle f^{*}(\bm{y}):=\underset{\bm{x}\in\operatorname{domain}(f)}{\sup}\>\{\langle\bm{y},\bm{x}\rangle-f(\bm{x})\},\quad\bm{y}\in\mathbb{R}^{d}. (10)

From (7)-(10), it follows that h𝒦(𝒚)h_{\mathcal{K}}(\bm{y}) is the Legendre-Fenchel conjugate of the indicator function

𝟏𝒦(𝒙):={0if𝒙𝒦,+otherwise.\mathbf{1}_{\mathcal{K}}(\bm{x}):=\begin{cases}0&\text{if}\quad\bm{x}\in\mathcal{K},\\ +\infty&\text{otherwise.}\end{cases}

Since the indicator function of a convex set is a convex function, the biconjugate 𝟏𝒦()=h𝒦()=𝟏𝒦()\mathbf{1}_{\mathcal{K}}^{**}(\cdot)=h_{\mathcal{K}}^{*}(\cdot)=\mathbf{1}_{\mathcal{K}}(\cdot). This will be useful in Section IV.

To proceed further, we introduce some notations. Since 𝒰\mathcal{U} is compact, let

αj:=min𝒖𝒰uj,βj:=max𝒖𝒰uj,j[m],\displaystyle\alpha_{j}:=\underset{\bm{u}\in\mathcal{U}}{\min}\;u_{j},\quad\beta_{j}:=\underset{\bm{u}\in\mathcal{U}}{\max}\;u_{j},\quad j\in[m], (11)

that is, αj\alpha_{j} and βj\beta_{j} are the component-wise minimum and maximum, respectively, of the input vector. Furthermore, let

μj:=βjαj2,νj:=βj+αj2,\displaystyle\mu_{j}:=\frac{\beta_{j}-\alpha_{j}}{2},\quad\nu_{j}:=\frac{\beta_{j}+\alpha_{j}}{2}, (12)

and introduce

𝝃(s):=(μ1𝝃1(s)μm𝝃m(s)),𝝃j(s):=(srj1/(rj1)!srj2/(rj2)!s1),\displaystyle\!\!\bm{\xi}(s):=\!\begin{pmatrix}\mu_{1}\bm{\xi}_{1}(s)\\ \vdots\\ \mu_{m}\bm{\xi}_{m}(s)\end{pmatrix},\;\bm{\xi}_{j}(s):=\!\begin{pmatrix}s^{r_{j}-1}/(r_{j}-1)!\\ s^{r_{j}-2}/(r_{j}-2)!\\ \vdots\\ s\\ 1\end{pmatrix}, (13)

for j[m]j\in[m]. Also, let

𝜻(t0,t)=(μ1𝜻1(t0,t)μ2𝜻2(t0,t)μm𝜻m(t0,t)),𝜻j(t0,t):=t0t𝝃j(s)dsrj,\displaystyle\bm{\zeta}(t_{0},t)=\begin{pmatrix}\mu_{1}\bm{\zeta}_{1}(t_{0},t)\\ \mu_{2}\bm{\zeta}_{2}(t_{0},t)\\ \vdots\\ \mu_{m}\bm{\zeta}_{m}(t_{0},t)\end{pmatrix},\quad\bm{\zeta}_{j}(t_{0},t):=\int_{t_{0}}^{t}\!\bm{\xi}_{j}(s)\>{\rm{d}}s\in\mathbb{R}^{r_{j}}, (14)

for j[m]j\in[m]. When t0=0t_{0}=0, we simplify the notations as

𝜻(t):=𝜻(0,t),𝜻j(t):=𝜻j(0,t)for allj[m].\displaystyle\!\!\!\!\!\!\bm{\zeta}(t):=\bm{\zeta}(0,t),\;\bm{\zeta}_{j}(t):=\bm{\zeta}_{j}(0,t)\;\text{for all}\;j\in[m]. (15)

Using (13) and following (7), we deduce Proposition 1 stated next (proof in Appendix -A).

Proposition 1.

(Support function for compact 𝒰\mathcal{U}) For compact convex 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d}, and compact 𝒰m\mathcal{U}\subset\mathbb{R}^{m}, the support function of the reach set (4) is

h(𝒳0,t)(𝒚)=sup𝒙0𝒳0j=1m𝒚j,exp(t𝑨j)𝒙j0\displaystyle h_{\mathcal{R}\left(\mathcal{X}_{0},t\right)}\left(\bm{y}\right)=\underset{\bm{x}_{0}\in\mathcal{X}_{0}}{\sup}\sum_{j=1}^{m}~{}\langle\bm{y}_{j},\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}\rangle
+0tsup𝒖closure(conv(𝒰))j=1m{𝒚j,𝝃j(s)uj}ds,\displaystyle+\int^{t}_{0}\underset{\bm{u}\in{\rm{closure}}\left({\rm{conv}}\left(\mathcal{U}\right)\right)}{\sup}\sum_{j=1}^{m}~{}\{\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\>u_{j}\}\>{\rm{d}}{s}, (16)

where conv(){\rm{conv}}(\cdot) denotes the convex hull.

II-3 Polar dual

The polar dual 𝒦\mathcal{K}^{\circ} of any non-empty set 𝒦d\mathcal{K}\subset\mathbb{R}^{d} is given by

𝒦:={𝒚d𝒚,𝒙1for all𝒙𝒦}.\displaystyle\mathcal{K}^{\circ}:=\{\bm{y}\in\mathbb{R}^{d}\mid\langle\bm{y},\bm{x}\rangle\leq 1\quad\text{for all}\;\bm{x}\in\mathcal{K}\}. (17)

From this definition, it is immediate that 𝒦\mathcal{K}^{\circ} contains the origin, and is a closed convex set. The bipolar (𝒦)=closure(conv(𝒦{𝟎}))\left(\mathcal{K}^{\circ}\right)^{\circ}={\rm{closure}}\left({\rm{conv}}\left(\mathcal{K}\cup\{\bm{0}\}\right)\right). Thus, if 𝒦\mathcal{K} is compact convex and contains the origin, then we have the involution (𝒦)=𝒦\left(\mathcal{K}^{\circ}\right)^{\circ}=\mathcal{K}. From (7) and (17), notice that 𝒦\mathcal{K}^{\circ} is the unit support function ball, i.e., 𝒦={𝒚dh𝒦(𝒚)1}\mathcal{K}^{\circ}=\{\bm{y}\in\mathbb{R}^{d}\mid h_{\mathcal{K}}(\bm{y})\leq 1\}. In Sec. IV-D, we will mention some properties of the polar dual of the integrator reach set.

II-4 Vector measure

Let \mathcal{F} be a σ\sigma-field of the subsets of a set. A countably additive mapping 𝝁~:d\widetilde{\bm{\mu}}:\mathcal{F}\mapsto\mathbb{R}^{d} is termed a vector measure. Here, “countably additive” means that for any sequence {Ωi}i=1\{\Omega_{i}\}_{i=1}^{\infty} of disjoint sets in \mathcal{F} such that their union is in \mathcal{F}, we have 𝝁~(i=1Ωi)=i=1𝝁~(Ωi)<\widetilde{\bm{\mu}}\left(\cup_{i=1}^{\infty}\Omega_{i}\right)=\sum_{i=1}^{\infty}\widetilde{\bm{\mu}}\left(\Omega_{i}\right)<\infty. Some of the early investigations of vector measures were due to Liapounoff [9] and Halmos [10]; relatively recent references are [11, 12].

II-5 Zonotope

A zonotope 𝒵d\mathcal{Z}\subset\mathbb{R}^{d} is a finite Minkowski sum of closed line segments or intervals {Ii}i=1n\{I_{i}\}_{i=1}^{n} where these intervals are imbedded in the ambient Euclidean space d\mathbb{R}^{d}. Explicitly, for some positive integer nn, we write

𝒵\displaystyle\mathcal{Z} :=I1In\displaystyle:=I_{1}\dotplus\ldots\dotplus I_{n}
={𝒙d𝒙=i=1n𝒙i,𝒙iIi,i[n]}.\displaystyle=\bigg{\{}\bm{x}\in\mathbb{R}^{d}\mid\bm{x}=\sum_{i=1}^{n}\bm{x}_{i},\quad\bm{x}_{i}\in I_{i},\quad i\in[n]\bigg{\}}.

Thus, a zonotope is the range of an atomic vector measure. Alternatively, a zonotope can be viewed as the affine image of the unit cube. A compact convex polytope is a zonotope if and only if all its two dimensional faces are centrally symmetric [13, p. 182]. For instance, the cross polytope {𝒙d𝒙11}\{\bm{x}\in\mathbb{R}^{d}\mid\|\bm{x}\|_{1}\leq 1\}, is not a zonotope. Standard references on zonotope include [14, 15], [16, Ch. 2.7].

The set of zonotopes is closed under affine image and Minkowski sum, but not under intersection. In the systems-control literature, a significant body of work exists on computationally efficient over-approximation of reach sets via zonotopes [17, 18, 19] and its variants such as zonotope bundles [20], constrained zonotopes [21], complex zonotopes [22], and polynomial zonotopes [23, 24].

II-6 Variety and ideal

Let p1,,pn[x1,,xd]p_{1},\ldots,p_{n}\in\mathbb{R}[x_{1},\ldots,x_{d}], the vector space of real-valued dd-variate polynomials. The (affine) variety V[x1,,xd](p1,,pn)V_{\mathbb{R}[x_{1},\ldots,x_{d}]}(p_{1},\ldots,p_{n}) is the set of all solutions of the system p1(x1,x2,,xd)==pn(x1,x2,,xd)=0p_{1}(x_{1},x_{2},\ldots,x_{d})=\ldots=p_{n}(x_{1},x_{2},\ldots,x_{d})=0. Given p1,,pn[x1,,xd]p_{1},\ldots,p_{n}\in\mathbb{R}[x_{1},\ldots,x_{d}], the set

I:={i=1nαipiα1,,αn[x1,,xd]}I:=\bigg{\{}\sum_{i=1}^{n}\alpha_{i}p_{i}\mid\alpha_{1},\ldots,\alpha_{n}\in\mathbb{R}[x_{1},\ldots,x_{d}]\bigg{\}}

is called the ideal generated by p1,,pnp_{1},\ldots,p_{n}. We write this symbolically as I=p1,,pnI=\langle\langle p_{1},\ldots,p_{n}\rangle\rangle. Roughly speaking, p1,,pn\langle\langle p_{1},\ldots,p_{n}\rangle\rangle is the set of all polynomial consequences of the given system of nn polynomial equations in dd indeterminates. We refer the readers to [25, Ch. 1] for detailed exposition of these concepts.

III Box-valued Input Uncertainty

In the remaining of this paper, we characterize the exact reach set (3) when input set 𝒰m\mathcal{U}\subset\mathbb{R}^{m} is box-valued, and remark on the quality of approximation for the same when 𝒰\mathcal{U} is arbitrary compact.

When 𝒰m\mathcal{U}\subset\mathbb{R}^{m} is box-valued, denote the reach set (3) as \mathcal{R}^{\Box}, i.e., with a box superscript***For the single input (m=1m=1) case, we drop the box superscript.. In this case, each of the mm single input integrator dynamics with rjr_{j} dimensional state subvectors for j[m]j\in[m], are decoupled from each other. Then (𝒳0,t)d\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)\subset\mathbb{R}^{d} is the Cartesian product of these single input integrator reach sets: j(𝒳0,t)rj\mathcal{R}_{j}\left(\mathcal{X}_{0},t\right)\subset\mathbb{R}^{r_{j}} for j[m]j\in[m], i.e.,

=1×2××m.\displaystyle\mathcal{R}^{\Box}=\mathcal{R}_{1}\times\mathcal{R}_{2}\times\ldots\times\mathcal{R}_{m}. (18)

In what follows, we will sometimes exploit that (18) may also be written asIn general, the Minkowski sum of a given collection of compact convex sets is not equal to their Cartesian product. However, the “factor sets” in (18) belong to disjoint mutually orthogonal rjr_{j} dimensional subspaces, j=1,,mj=1,\ldots,m, which allows writing this Cartesian product as a Minkowski sum. a Minkowski sum 1m\mathcal{R}_{1}\dotplus\ldots\dotplus\mathcal{R}_{m}. Notice that the decoupled dynamics also allows us to write a Minkowski sum decomposition for the set of initial conditions

𝒳0=𝒳10𝒳m0,\mathcal{X}_{0}=\mathcal{X}_{10}\dotplus\ldots\dotplus\mathcal{X}_{m0},

and accordingly, the initial condition subvectors 𝒙j0𝒳j0rj\bm{x}_{j0}\in\mathcal{X}_{j0}\subset\mathbb{R}^{r_{j}} for j[m]j\in[m]. Thus 𝒙0=(𝒙10,,𝒙m0)\bm{x}_{0}=(\bm{x}_{10},\ldots,\bm{x}_{m0})^{\top}.

Since the support function of the Minkowski sum is equal to the sum of the support functions, we have

h(𝒳0,t)(𝒚)=j=1mhj(𝒳j0,t)(𝒚j).\displaystyle h_{\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)}(\bm{y})=\sum_{j=1}^{m}h_{\mathcal{R}_{j}\left(\mathcal{X}_{j0},t\right)}(\bm{y}_{j}). (19)

This leads to the following result (proof in Appendix -B) which will come in handy in the ensuing development.

Theorem 1.

(Support function for box-valued 𝒰\mathcal{U}) For compact convex 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d}, and box-valued input uncertainty set given by

𝒰:=[α1,β1]×[α2,β2]××[αm,βm]m,\displaystyle\mathcal{U}:=\left[\alpha_{1},\beta_{1}\right]\times\left[\alpha_{2},\beta_{2}\right]\times\ldots\times\left[\alpha_{m},\beta_{m}\right]\subset\mathbb{R}^{m}\>, (20)

the support function of the reach set (4) is

h(𝒳0,t)(𝒚)=j=1m{sup𝒙j0𝒳j0𝒚j,exp(t𝑨)𝒙j0\displaystyle h_{\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)}\left(\bm{y}\right)=\sum_{j=1}^{m}\bigg{\{}\underset{\bm{x}_{j0}\in\mathcal{X}_{j0}}{\sup}\langle\bm{y}_{j},\exp\left(t\bm{A}\right)\bm{x}_{j0}\rangle
+νj𝒚j,𝜻j(t)+μj0t|𝒚j,𝝃j(s)|ds}.\displaystyle\qquad\qquad\quad+\nu_{j}\langle\bm{y}_{j},\bm{\zeta}_{j}(t)\rangle+\mu_{j}\int_{0}^{t}\!\lvert\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\rvert\>{\rm{d}}s\bigg{\}}. (21)

The formula (21) upper bounds (16) resulting from the same initial condition and arbitrary compact 𝒰m\mathcal{U}\subset\mathbb{R}^{m} with {αj,βj}j=1m\{\alpha_{j},\beta_{j}\}_{j=1}^{m} related to 𝒰\mathcal{U} via (11). Thus, from (8), the reach set \mathcal{R}^{\Box} with box-valued input uncertainty will over-approximate the reach set \mathcal{R} associated with arbitrary compact 𝒰\mathcal{U}, at any given t>0t>0, provided {αj,βj}j=1m\{\alpha_{j},\beta_{j}\}_{j=1}^{m} are defined as (11).

When 𝒰\mathcal{U} is compact but not box-valued, then we can quantify the quality of the aforesaid over-approximation in terms of the two-sided Hausdorff distance metric dist{\mathrm{dist}} between the convex compact sets ,d\mathcal{R}^{\Box},\mathcal{R}\subset\mathbb{R}^{d}, expressible [13, Thm. 1.8.11] in terms of their support functions h(),h()h_{\mathcal{R}^{\Box}}(\cdot),h_{\mathcal{R}}(\cdot) as

dist(,)=sup𝒚2=1|h(𝒚)h(𝒚)|.\displaystyle{\mathrm{dist}}\left(\mathcal{R}^{\Box},\mathcal{R}\right)=\underset{\|\bm{y}\|_{2}=1}{\sup}\quad\big{|}h_{\mathcal{R}^{\Box}}(\bm{y})-h_{\mathcal{R}}(\bm{y})\big{|}. (22)

Thanks to (8), the absolute value in (22) can be dispensed since \mathcal{R}\subseteq\mathcal{R}^{\Box} with set equality if 𝒰\mathcal{U} is box, in which case h()=h()h_{\mathcal{R}^{\Box}}(\cdot)=h_{\mathcal{R}}(\cdot) and dist=0{\mathrm{dist}}=0.

It is known that [26, Prop. 6.1] the set (𝒳0,t)\mathcal{R}\left(\mathcal{X}_{0},t\right) resulting from a linear time invariant dynamics such as (1)-(2) remains invariant under the closure of convexification of the input set 𝒰\mathcal{U}. Therefore, it is possible that =\mathcal{R}=\mathcal{R}^{\Box} and dist=0{\mathrm{dist}}=0 even when the compact set 𝒰\mathcal{U} is nonconvex. For instance, the reach set (𝒳0,t)\mathcal{R}\left(\mathcal{X}_{0},t\right) resulting from some compact convex 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d} and dynamics (1)-(2) with the nonconvex input uncertainty set {1,1}m\{-1,1\}^{m}, is identical to (𝒳0,t)\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right) resulting from the same 𝒳0\mathcal{X}_{0}, same dynamics, and the box-valued input uncertainty set (20) with αj=1,βj=1\alpha_{j}=-1,\beta_{j}=1 for all j[m]j\in[m].

Likewise, for the same compact convex 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d}, the reach set (𝒳0,t)\mathcal{R}\left(\mathcal{X}_{0},t\right) resulting from (1)-(2) with the nonconvex input set {𝒖m𝒖p1}\{\bm{u}\in\mathbb{R}^{m}\mid\|\bm{u}\|_{p}\leq 1\}, 0<p<10<p<1, is the same as that resulting from the cross-polytope {𝒖m𝒖11}\{\bm{u}\in\mathbb{R}^{m}\mid\|\bm{u}\|_{1}\leq 1\}. More generally, for 0<p<0<p<\infty, suppose p(𝒳0,t)\mathcal{R}_{p}\left(\mathcal{X}_{0},t\right) results from the unit pp norm ball input uncertainty set {𝒖m𝒖p1}\{\bm{u}\in\mathbb{R}^{m}\mid\|\bm{u}\|_{p}\leq 1\}. Let 𝑴(τ):=exp(τ𝑨)𝑩=blkdiag(𝝃1,,𝝃m)\bm{M}^{\top}(\tau):=\exp\left(\tau\bm{A}\right)\bm{B}={\mathrm{blkdiag}}\left(\bm{\xi}_{1},\ldots,\bm{\xi}_{m}\right). If (𝒳0,t)\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right) results from the same 𝒳0\mathcal{X}_{0}, same dynamics, and input uncertainty set (20) with αj=1,βj=1\alpha_{j}=-1,\beta_{j}=1 for all j[m]j\in[m], then using [27, Thm. 1], (22) simplifies to

dist(,p)=sup𝒚2=10t(𝑴(τ)𝒚1𝑴(τ)𝒚q)dτ\displaystyle\!\!\!{\mathrm{dist}}\!\left(\!\mathcal{R}^{\Box},\mathcal{R}_{p}\!\right)\!=\!\!\underset{\|\bm{y}\|_{2}=1}{\sup}\int_{0}^{t}\!\!\!\left(\|\bm{M}(\tau)\bm{y}\|_{1}\!-\!\|\bm{M}(\tau)\bm{y}\|_{q}\right){\rm{d}}\tau (23)

where qq is the Hölder conjugate of max{1,p}\max\{1,p\}, i.e., 1max{1,p}+1q=1\frac{1}{\max\{1,p\}}+\frac{1}{q}=1, and 1<q1<q\leq\infty. In this case, the positive value (23) quantifies the quality of strict over-approximation p\mathcal{R}_{p}\subset\mathcal{R}^{\Box} for 0<p<0<p<\infty. The objective in (23) being positive homogeneous, admits lossless constraint convexification 𝒚21\|\bm{y}\|_{2}\leq 1, and the corresponding maximal valueAs such, (23) has a difference of convex objective, and by the Weierstrass extreme value theorem, the maximum is achieved. for moderate dimensions dd, can be found by direct numerical search.

IV Taxonomy and Boundary

For 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d} compact convex, it is well-known [1, Sec. 2] that the reach set \mathcal{R} given by (3) is compact convex for all t>0t>0 provided 𝒰\mathcal{U} is compact. However, it is not immediate what kind of convex set \mathcal{R} is, even for singleton 𝒳0{𝒙0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\}.

In this Section, we examine the question “what type of compact convex set ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is” when 𝒰\mathcal{U} is box-valued uncertainty set of the form (20). In the same setting, we also derive the equations for the boundary ({𝒙0},t)\partial\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right).

Notice that for non-singleton 𝒳0\mathcal{X}_{0}, the taxonomy question is not well-posed since the classification then will depend on 𝒳0\mathcal{X}_{0}. Also, setting 𝒳0{𝒙0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} in (4), it is apparent that ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) is a translation of the set-valued integral in (4). Thus, classifying ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) amounts to classifying the second summand in (4).

IV-A ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is a Zonoid

A zonoid is a compact convex set that is defined as the range of an atom free vector measure (see Sec. II-4). Affine image of a zonoid is a zonoid. Minkowski sum of zonoids is also a zonoid. We refer the readers to [28, 29, 30],[31, Sec. I] for more details on the properties of a zonoid. By slight abuse of nomenclature, in this paper we use the term zonoid up to translation, i.e., we refer to the translation of zonoids as zonoids (instead of using another term such as “zonoidal translates”).

Let us mention a few examples. Any compact convex symmetric set in 2\mathbb{R}^{2} is a zonoid. In dimensions three or more, all p\ell_{p} norm balls for p2p\geq 2 are zonoids.

An alternative way to think about the zonoid is to view it as the limiting set (convergence with respect to the two-sided Hausdorff distance, see e.g., [4, Appendix B]) of the Minkowski sum of line segments, i.e., the limit of a sequence of zonotopes [28, 14, 15]. Formally, given a Hausdorff convergent sequence of zonotopes {𝒵j}\!\{\mathcal{Z}_{j}\}, the zonoid 𝒵\mathcal{Z}_{\infty} is

𝒵:=limj𝒵j,where𝒵j:=i=1n(j)[𝒂ij,𝒃ij],𝒂ij,𝒃ijd,\mathcal{Z}_{\infty}:=\lim_{j\rightarrow\infty}\mathcal{Z}_{j},\;\text{where}\;\mathcal{Z}_{j}:=\sum_{i=1}^{n(j)}\left[\bm{a}_{ij},\bm{b}_{ij}\right],\quad\bm{a}_{ij},\bm{b}_{ij}\in\mathbb{R}^{d},

for some 𝒂ij𝒃ij\bm{a}_{ij}\leq\bm{b}_{ij} (element-wise vector inequality), and a suitable mapping n:++n:\mathbb{Z}_{+}\mapsto\mathbb{Z}_{+}. Our analysis will make use of this viewpoint in Sec. V-A. Our main result in this subsection is the following.

Theorem 2.

The reach set \mathcal{R}^{\Box} given by (3) with 𝒳0{𝐱0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} and 𝒰\mathcal{U} given by (20), is a zonoid.

To appreciate Theorem 2 via the limiting viewpoint mentioned before, let us write

({𝒙0},t)=\displaystyle\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)= exp(t𝑨)𝒙0+j=1mνj𝜻j(t)first term\displaystyle\underbrace{\exp(t\bm{A})\bm{x}_{0}+\displaystyle\sum_{j=1}^{m}\nu_{j}\displaystyle\bm{\zeta}_{j}(t)\vphantom{\displaystyle\sum_{j=1}^{m}\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{i=0}^{n}\frac{t}{n}\mu_{i}\bm{\xi}_{j}(t_{i})\left[-1,1\right]}}_{\textup{first term}}
j=1mlimni=0ntnμj𝝃j(ti)[1,1]second term,\displaystyle\dotplus\underbrace{\displaystyle\sum_{j=1}^{m}\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{i=0}^{n}\frac{t}{n}\mu_{j}\displaystyle\bm{\xi}_{j}(t_{i})\left[-1,1\right]}_{\textup{second term}}, (24)

where all summation symbols denote Minkowski sums. The first term in (24) denotes a translation. In the second term, the outer summation over index jj arises by writing the Cartesian product (18) as the Minkowski sum 1m\mathcal{R}_{1}\dotplus\ldots\dotplus\mathcal{R}_{m}. Furthermore, uniformly discretizing [0,t][0,t] into nn subintervals [(i1)t/n,it/n)[(i-1)t/n,it/n), i=1,,ni=1,\ldots,n, we write 0texp(s𝑨j)𝒃j[μj,μj]ds\int_{0}^{t}\exp(s\bm{A}_{j})\bm{b}_{j}[-\mu_{j},\mu_{j}]{\rm{d}}s as the limit of the Minkowski sum over index ii. Geometrically, the innermost summands in the second term denote non-uniformly rotated and scaled line intervals in j\mathbb{R}^{j}. In other words, the second term in (24) is a Minkowski sum of mm sets, each of these sets being the limit of a sequence of sets {𝒵n}\{\mathcal{Z}_{n}\} comprising of zonotopes

𝒵n:=i=0ntnμj𝝃j(ti)[1,1],\mathcal{Z}_{n}:=\displaystyle\sum_{i=0}^{n}\frac{t}{n}\mu_{j}\bm{\xi}_{j}(t_{i})\left[-1,1\right],

which are the Minkowski sum of n+1n+1 line segments. Since limn𝒵n\lim_{n\rightarrow\infty}\mathcal{Z}_{n} is a zonoid, the second term in (24) is a Minkowski sum of mm zonoids, and is therefore a zonoid [28, Thm. 1.5]. The entire right hand side of (24), then, is translation of a zonoid, and hence a zonoid.

Remark 1.

If 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d} is not singleton, but instead a zonoid, then (𝒳0,t)\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right) is still a (translated) zonoid. To see this, notice from (4) and (21) that

(𝒳0,t)=exp(t𝑨)𝒳0({𝟎},t),\displaystyle\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)=\exp(t\bm{A})\mathcal{X}_{0}\dotplus\mathcal{R}^{\Box}\left(\{\bm{0}\},t\right), (25)

and that exp(t𝐀)𝒳0\exp(t\bm{A})\mathcal{X}_{0}, being linear image of a zonoid, is a zonoid [28, Lemma 1.4]. Thus, (25) being Minkowski sum of zonoids, is a zonoid too [28, Thm. 1.5], up to translation.

In the following, we derive formulae for the boundary (Proposition 2 and Sec. IV-C) and volume (Theorem 5) of the integrator reach set with 𝒳0={𝒙0}\mathcal{X}_{0}=\{\bm{x}_{0}\} (singleton set). From (25), it is clear that one cannot expect similar closed form formulae for arbitrary compact (or even arbitrary compact convex) 𝒳0\mathcal{X}_{0}. In this sense, our closed form formulae are as general as one might hope for. For a specific non-singleton 𝒳0\mathcal{X}_{0}, one can use these formulae to first derive the boundary (resp. volume) of ({𝟎},t)\mathcal{R}^{\Box}\left(\{\bm{0}\},t\right), and then use (25) to get numerical estimates for the boundary (resp. volume) of (𝒳0,t)\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right) (cf. Remark 2).

IV-B ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is Semialgebraic

A set in d\mathbb{R}^{d} is called basic semialgebraic if it can be written as a finite conjunction of polynomial inequalities and equalities, the polynomials being in [x1,,xd]\mathbb{R}\left[x_{1},\ldots,x_{d}\right]. Finite union of basic semialgebraic sets is called a semialgebraic set. A semialgebraic set need not be basic semialgebriac; see e.g., [32, Example 2.2].

Semialgebraic sets are closed under finitely many unions and intersections, complement, topological closure, polynomial mapping including projection [33, 34], and Cartesian product. For details on semialgebraic sets, we refer the readers to [35, Ch. 2]; see [36, Appendix A.4.4] for a short summary.

In Proposition 2 below, we derive a parametric representation of 𝒙bdy({𝒙0},t)\bm{x}^{\text{bdy}}\in\partial\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right), the boundary of the reach set. Then we use this representation to establish semialgebraicity of ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) in Theorem 4 that follows.

Proposition 2.

For relative degree vector 𝐫=(r1,,rm)\bm{r}=(r_{1},\ldots,r_{m})^{\top}, and fixed 𝐱0d\bm{x}_{0}\in\mathbb{R}^{d} comprising of subvectors 𝐱j0rj\bm{x}_{j0}\in\mathbb{R}^{r_{j}} where j[m]j\in[m], consider the reach set (4) with singleton 𝒳0{𝐱0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} and 𝒰\mathcal{U} given by (20). For j[m]j\in[m], define μ1,,μm\mu_{1},\ldots,\mu_{m} and ν1,,νm\nu_{1},\ldots,\nu_{m} as in (11)-(12). Let the indicator function 𝟏k:=1\mathbf{1}_{k\leq\ell}:=1 for kk\leq\ell, and :=0:=0 otherwise. Then the components of

𝒙bdy=(𝒙1bdy𝒙2bdy𝒙mbdy)({𝒙0},t),𝒙jbdyrj,j[m],\bm{x}^{\textup{bdy}}=\begin{pmatrix}\bm{x}^{\textup{bdy}}_{1}\\ \bm{x}^{\textup{bdy}}_{2}\\ \vdots\\ \bm{x}^{\textup{bdy}}_{m}\end{pmatrix}\in\partial\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right),\;\bm{x}^{\textup{bdy}}_{j}\in\mathbb{R}^{r_{j}},\;j\in[m],

admit parametric representation in terms of the parameters (s1,s2,,srj1)(s_{1},s_{2},\ldots,s_{r_{j}-1}) satisfying 0s1s2srj1t0\leq s_{1}\leq s_{2}\leq\ldots\leq s_{r_{j}-1}\leq t. This parameterization is given by

𝒙jbdy(k)==1rj𝟏ktk(k)!𝒙j0()+νjtrjk+1(rjk+1)!\displaystyle\bm{x}^{\textup{bdy}}_{j}\left(k\right)=\sum_{\ell=1}^{r_{j}}\mathbf{1}_{k\leq\ell}\>\frac{t^{\ell-k}}{(\ell-k)!}\>\bm{x}_{j0}(\ell)+\frac{\nu_{j}\>t^{r_{j}-k+1}}{(r_{j}-k+1)!}
±μj(rjk+1)!{(1)rj1trjk+1+2q=1rj1(1)q+1sqrjk+1},\displaystyle\pm\frac{\mu_{j}}{(r_{j}-k+1)!}\bigg{\{}(-1)^{r_{j}-1}\>t^{r_{j}-k+1}+2\sum_{q=1}^{r_{j}-1}\!\!(-1)^{q+1}\>s_{q}^{r_{j}-k+1}\bigg{\}}, (26)

where 𝐱jbdy(k)\bm{x}^{\textup{bdy}}_{j}\left(k\right) denotes the kkth component of the jjth subvector 𝐱jbdy\bm{x}^{\textup{bdy}}_{j} for k[rj]k\in[r_{j}].

The following is a consequence of the ±\pm appearing in (26).

Corollary 3.

The single input integrator reach set j({𝐱0},t)rj\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\subset\mathbb{R}^{r_{j}} has two bounding surfaces for each j[m]j\in[m]. In other words, there exist pjupper,pjlower:rjp_{j}^{\textup{upper}},p_{j}^{\textup{lower}}:\mathbb{R}^{r_{j}}\mapsto\mathbb{R} such that

j({𝒙0},t)={𝒙rjpjupper(𝒙)0,pjlower(𝒙)0},\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)=\{\bm{x}\in\mathbb{R}^{r_{j}}\mid p_{j}^{\textup{upper}}(\bm{x})\leq 0,\;p_{j}^{\textup{lower}}(\bm{x})\leq 0\},

with boundary j({𝐱0},t)={𝐱rjpjupper(𝐱)=0}{𝐱rjpjlower(𝐱)=0}\partial\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)=\{\bm{x}\in\mathbb{R}^{r_{j}}\mid p_{j}^{\textup{upper}}(\bm{x})=0\}\cup\{\bm{x}\in\mathbb{R}^{r_{j}}\mid p_{j}^{\textup{lower}}(\bm{x})=0\}.

Refer to caption
Figure 1: The “almond-shaped” integrator reach set ({𝒙0},t)3\mathcal{R}(\{\bm{x}_{0}\},t)\subset\mathbb{R}^{3} with d=3d=3, m=1m=1, 𝒙0=(0.1,0.2,0.3)\bm{x}_{0}=(0.1,0.2,0.3)^{\top}, 𝒰[α,β]=[1,1]\mathcal{U}\equiv[\alpha,\beta]=[-1,1] at t=2.1t=2.1. The wireframes correspond to the upper and lower surfaces.

During the proof of Theorem 4 below, it will turn out that in fact pjupper,pjlower[x1,,xrj]p_{j}^{\text{upper}},p_{j}^{\text{lower}}\in\mathbb{R}\left[x_{1},\ldots,x_{r_{j}}\right] for all j[m]j\in[m]. In words, pjupper,pjlowerp_{j}^{\text{upper}},p_{j}^{\text{lower}} are real algebraic hypersurfaces for all j[m]j\in[m].

Let us exemplify the parameterization (26) for the case 𝒓=(r1,r2)=(2,3)\bm{r}=(r_{1},r_{2})^{\top}=(2,3)^{\top}. In this case,

(𝒙1bdy(1)𝒙1bdy(2))=(𝒙10(1)+t𝒙10(2)+ν1(t2/2)±μ1(s12t2/2)𝒙10(2)+ν1t±μ1(2s1t)),\displaystyle\!\!\begin{pmatrix}\bm{x}^{\text{bdy}}_{1}(1)\\ \vspace*{-0.05in}\\ \bm{x}^{\text{bdy}}_{1}(2)\end{pmatrix}\!\!=\!\!\begin{pmatrix}\bm{x}_{10}(1)+t\bm{x}_{10}(2)+\nu_{1}(t^{2}/2)\pm\mu_{1}\left(s_{1}^{2}-t^{2}/2\right)\\ \vspace*{-0.05in}\\ \bm{x}_{10}(2)+\nu_{1}t\pm\mu_{1}\left(2s_{1}-t\right)\end{pmatrix}, (27)
(𝒙2bdy(1)𝒙2bdy(2)𝒙2bdy(3))=(𝒙20(1)+t𝒙20(2)+(t2/2)𝒙20(3)+ν2(t3/6)±μ2(t3/6+2s13/62s23/6)𝒙20(2)+t𝒙20(3)+ν2(t2/2)±μ2(t2/2+2s12/22s22/2)𝒙20(3)+ν2t±μ2(t+2s12s2)).\displaystyle\!\!\begin{pmatrix}\bm{x}^{\text{bdy}}_{2}(1)\\ \vspace*{-0.05in}\\ \bm{x}^{\text{bdy}}_{2}(2)\\ \vspace*{-0.05in}\\ \bm{x}^{\text{bdy}}_{2}(3)\end{pmatrix}=\begin{pmatrix}\bm{x}_{20}(1)+t\bm{x}_{20}(2)+(t^{2}/2)\bm{x}_{20}(3)\\ +\nu_{2}(t^{3}/6)\pm\mu_{2}\left(t^{3}/6+2s_{1}^{3}/6-2s_{2}^{3}/6\right)\\ \vspace*{-0.05in}\\ \bm{x}_{20}(2)+t\bm{x}_{20}(3)+\nu_{2}(t^{2}/2)\pm\mu_{2}\left(t^{2}/2\right.\\ \left.+2s_{1}^{2}/2-2s_{2}^{2}/2\right)\\ \vspace*{-0.05in}\\ \bm{x}_{20}(3)+\nu_{2}t\pm\mu_{2}\left(t+2s_{1}-2s_{2}\right)\end{pmatrix}. (28)

In (27), taking plus (resp. minus) signs in each of component gives the parametric representation of the curve p1upper=0p_{1}^{\text{upper}}=0 (resp. p1lower=0p_{1}^{\text{lower}}=0). These curves are as in [4, Fig. 1(a)], and their union defines 1\partial\mathcal{R}_{1}. We note that the parameterization (27) appeared in [37, p. 111].

Likewise, in (28), taking plus (resp. minus) signs in each of component gives the parametric representation of the surface p2upper(𝒙)=0p_{2}^{\text{upper}}(\bm{x})=0 (resp. p2lower=0p_{2}^{\text{lower}}=0). The resulting set 2\mathcal{R}_{2} is the triple integrator reach set, and is shown in Fig. 1.

Now we come to the main result of this subsection.

Theorem 4.

The reach set \mathcal{R}^{\Box} given by (3) with 𝒳0{𝐱0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} and 𝒰\mathcal{U} as in (20), is semialgebraic.

Let us illustrate the bounding curves and surfaces for (27) and (28) respectively, in the implicit form. Eliminating the parameter s1s_{1} from (27) reveals that p1upper,p1lowerp_{1}^{\text{upper}},p_{1}^{\text{lower}} are parabolas. In particular,

p1upper(𝒙1bdy(1),𝒙1bdy(2))=14(𝒙1bdy(2)𝒙10(2)ν1tμ1+t)2\displaystyle p_{1}^{\text{upper}}(\bm{x}^{\text{bdy}}_{1}(1),\bm{x}^{\text{bdy}}_{1}(2))=\frac{1}{4}\left(\frac{\bm{x}^{\text{bdy}}_{1}(2)-\bm{x}_{10}(2)-\nu_{1}t}{\mu_{1}}+t\right)^{\!2}
𝒙1bdy(1)𝒙10(1)t𝒙10(2)ν1t22μ1t22,\displaystyle\quad-\frac{\bm{x}^{\text{bdy}}_{1}(1)-\bm{x}_{10}(1)-t\bm{x}_{10}(2)-\nu_{1}\frac{t^{2}}{2}}{\mu_{1}}-\frac{t^{2}}{2}, (29)

and the formula for p1lower(𝒙1bdy(1),𝒙1bdy(2))p_{1}^{\text{lower}}(\bm{x}^{\text{bdy}}_{1}(1),\bm{x}^{\text{bdy}}_{1}(2)) follows mutatis mutandis.

Similarly, eliminating the parameters s1,s2s_{1},s_{2} from (28) reveals that p2upper,p2lowerp_{2}^{\text{upper}},p_{2}^{\text{lower}} are quartic polynomials. In particular,

p2upper(𝒙2bdy(1),𝒙2bdy(2),𝒙2bdy(3))\displaystyle p_{2}^{\text{upper}}(\bm{x}^{\text{bdy}}_{2}(1),\bm{x}^{\text{bdy}}_{2}(2),\bm{x}^{\text{bdy}}_{2}(3))
=116(𝒙2bdy(3)𝒙20(3)ν2tμ2t)4\displaystyle=\frac{1}{16}\left(\frac{\bm{x}^{\text{bdy}}_{2}(3)-\bm{x}_{20}(3)-\nu_{2}t}{\mu_{2}}-t\right)^{\!4}
+3(𝒙2bdy(2)𝒙20(2)t𝒙20(3)ν2t22μ2t22)2\displaystyle\quad+3\left(\frac{\bm{x}^{\text{bdy}}_{2}(2)-\bm{x}_{20}(2)-t\bm{x}_{20}(3)-\nu_{2}\frac{t^{2}}{2}}{\mu_{2}}-\frac{t^{2}}{2}\right)^{\!2}
6(𝒙2bdy(1)𝒙20(1)t𝒙20(2)t22𝒙20(3)ν2t36μ2t36)\displaystyle\quad-6\left(\frac{\bm{x}^{\text{bdy}}_{2}(1)-\bm{x}_{20}(1)-t\bm{x}_{20}(2)-\frac{t^{2}}{2}\bm{x}_{20}(3)-\nu_{2}\frac{t^{3}}{6}}{\mu_{2}}-\frac{t^{3}}{6}\right)
×(𝒙2bdy(3)𝒙20(3)ν2tμ2t),\displaystyle\qquad\times\left(\frac{\bm{x}^{\text{bdy}}_{2}(3)-\bm{x}_{20}(3)-\nu_{2}t}{\mu_{2}}-t\right), (30)

and again, the formula for p2lower(𝒙2bdy(1),𝒙2bdy(2),𝒙2bdy(3))p_{2}^{\text{lower}}(\bm{x}^{\text{bdy}}_{2}(1),\bm{x}^{\text{bdy}}_{2}(2),\bm{x}^{\text{bdy}}_{2}(3)) follows mutatis mutandis.

A natural question is whether one can generalize the implicitizations as in (29), (30) to arbitrary state dimensions. This is what we address next.

IV-C Implicitization of ({𝐱0},t)\partial\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)

To derive the implicit equations for the bounding algebraic hypersurfaces pjupper,pjlower[x1,,xrj]p_{j}^{\text{upper}},p_{j}^{\text{lower}}\in\mathbb{R}\left[x_{1},\ldots,x_{r_{j}}\right] for all j[m]j\in[m], we need to eliminate the parameters (s1,s2,,srj1)\left(s_{1},s_{2},\ldots,s_{r_{j}-1}\right) from (26). For this purpose, it is helpful to write (26) succinctly as

ρj,k±=q=1rj1(1)q+1sqrjk+1,k[rj],\displaystyle\rho_{j,k}^{\pm}=\displaystyle\sum_{q=1}^{r_{j}-1}(-1)^{q+1}\>s_{q}^{r_{j}-k+1},\qquad k\in[r_{j}], (31)

where

ρj,k±:=\displaystyle\rho_{j,k}^{\pm}:= (rjk+1)!2μj{𝒙jbdy(k)=1rj𝟏ktk(k)!𝒙j0()}\displaystyle\frac{(r_{j}-k+1)!}{2\mu_{j}}\bigg{\{}\bm{x}^{\textup{bdy}}_{j}\left(k\right)-\sum_{\ell=1}^{r_{j}}\mathbf{1}_{k\leq\ell}\>\frac{t^{\ell-k}}{(\ell-k)!}\>\bm{x}_{j0}(\ell)\bigg{\}}
12{±(1)rj1trjk+1+νjμjtrjk+1}.\displaystyle-\frac{1}{2}\bigg{\{}\pm(-1)^{r_{j}-1}\>t^{r_{j}-k+1}+\frac{\nu_{j}}{\mu_{j}}\>t^{r_{j}-k+1}\bigg{\}}. (32)

To simplify the rather unpleasant notation ρj,k±\rho_{j,k}^{\pm}, we will only address the m=1m=1 case. In (31), this allows us to replace rjr_{j} by dd, and to drop the subscript jj from the ρ\rho’s. This does not invite any loss of generality in terms of implicitization since post derivation, we can replace dd by rjr_{j} to recover the respective pjp_{j}’s.

With slight abuse of notation, we will also drop the superscript ±\pm from the ρ\rho’s in (31). Recall that the plus (resp. minus) superscript in the ρ\rho’s indicates pjupperp_{j}^{\text{upper}} (resp. pjlowerp_{j}^{\text{lower}}). From (32), it is clear that in either case, the ρj,k\rho_{j,k} is affine in 𝒙jbdy(k)\bm{x}^{\textup{bdy}}_{j}\left(k\right), which is the kkth coordinate of the boundary point for the jjth block. Importantly, for k[rj]k\in[r_{j}], the quantity ρj,k\rho_{j,k} does not depend on any other component of the boundary point than the kkth component. Again, the plus-minus superscripts can be added back post implicitization.

Thus, the notationally simplified version of (31) that suffices for implicitization, is

ρk=q=1d1(1)q+1sqdk+1,k=1,,d,\displaystyle\rho_{k}=\displaystyle\sum_{q=1}^{d-1}(-1)^{q+1}\>s_{q}^{d-k+1},\qquad k=1,\ldots,d, (33)

which is a system of dd homogeneous polynomials in variables (s1,s2,,sd1)\left(s_{1},s_{2},\ldots,s_{d-1}\right). The objective is to derive the implicitized polynomial (ρ1,ρ2,,ρd)\wp(\rho_{1},\rho_{2},\ldots,\rho_{d}) associated with (33).

When d=2d=2, the parameterization (33) becomes

ρ1=s12,ρ2=s1,\displaystyle\rho_{1}=s_{1}^{2},\quad\rho_{2}=s_{1},

and we get degree 2 implicitized polynomial

(ρ1,ρ2)=ρ22ρ1=0.\displaystyle\wp(\rho_{1},\rho_{2})=\rho_{2}^{2}-\rho_{1}=0. (34)

For k=1,2k=1,2, substituting for the ρ1,ρ2\rho_{1},\rho_{2} in (34) from (32) with appropriate plus-minus signs recovers (29).

When d=3d=3, the parameterization (33) becomes

ρ1=s13s23,ρ2=s12s22,ρ3=s1s2,\displaystyle\rho_{1}=s_{1}^{3}-s_{2}^{3},\quad\rho_{2}=s_{1}^{2}-s_{2}^{2},\quad\rho_{3}=s_{1}-s_{2},

elementary algebra gives degree 4 implicitized polynomial

(ρ1,ρ2,ρ3)=ρ344ρ3ρ1+3ρ22=0.\displaystyle\wp(\rho_{1},\rho_{2},\rho_{3})=\rho_{3}^{4}-4\rho_{3}\rho_{1}+3\rho_{2}^{2}=0. (35)

As before, for k=1,2,3k=1,2,3, substituting for the ρ1,ρ2,ρ3\rho_{1},\rho_{2},\rho_{3} in (35) from (32) with appropriate plus-minus signs recovers (30). However, for d=4d=4 or higher, it is practically impossible to derive the implicitization via brute force algebra.

A principled way to implicitize (33) is due to G. Zaimi [38], and starts with defining λk:=ρdk+1\lambda_{k}:=\rho_{d-k+1} for k=1,,dk=1,\ldots,d. Introduce the sequence Ak(s1,s2,,sd1)A_{k}(s_{1},s_{2},\dots,s_{d-1}) via the generating function (see e.g., [39, Ch. 1])

F(τ)=k0Akτk=(1s1τ)(1s3τ)(1s2τ)(1s4τ).\displaystyle F(\tau)=\sum_{k\geq 0}A_{k}\tau^{k}=\frac{(1-s_{1}\tau)(1-s_{3}\tau)\cdots}{(1-s_{2}\tau)(1-s_{4}\tau)\cdots}. (36)

Taking the logarithmic derivative of (36), and then using the generating functions (1sqτ)1=k0(sqτ)k(1-s_{q}\tau)^{-1}=\sum_{k\geq 0}\left(s_{q}\tau\right)^{k} for all q=1,,d1q=1,\ldots,d-1, yields

F(τ)F(τ)=s1k0(s1τ)k+s2k0(s2τ)ks3k0(s3τ)k+.\displaystyle\!\!\frac{F^{\prime}(\tau)}{F(\tau)}=-s_{1}\!\sum_{k\geq 0}\!\left(s_{1}\tau\right)^{k}\!+s_{2}\!\sum_{k\geq 0}\!\left(s_{2}\tau\right)^{k}\!-s_{3}\!\sum_{k\geq 0}\!\left(s_{3}\tau\right)^{k}\!+\ldots. (37)

Integrating (37) with respect to τ\tau, we obtain

F(τ)=exp(k=1dλkkτk).\displaystyle F(\tau)=\exp\left(-\sum_{k=1}^{d}\frac{\lambda_{k}}{k}\tau^{k}\right). (38)

Equating (36) and (38) allows us to compute AkA_{k} as a degree kk polynomial of the λ\lambda’s.

On the other hand, since the generating function (36) is a rational function with denominator polynomial of degree δ:=d12\delta:=\lfloor\frac{d-1}{2}\rfloor, the following Hankel determinant vanishes§§§This result goes back to Kronecker [40]. See also [41, p. 5, Lemma III].

det[Ad2δ+i+j]i,j=0δ=0.\displaystyle{\mathrm{det}}[A_{d-2\delta+i+j}]_{i,j=0}^{\delta}=0. (39)

Substituting the AkA_{k}’s obtained as degree kk polynomials of the λ\lambda’s into (39) gives an implicit polynomial in indeterminate (λ1,,λd)(\lambda_{1},\ldots,\lambda_{d}) of degree (δ+1)(dδ)(\delta+1)(d-\delta). Finally, reverting back the λ\lambda’s to the ρ\rho’s result in the desired implicit polynomial (ρ1,ρ2,,ρd)\wp(\rho_{1},\rho_{2},\ldots,\rho_{d}), which is also of degree (δ+1)(dδ)(\delta+1)(d-\delta).

For instance, when d=3d=3, the relation (39) becomes

det([A1A2A2A3])=0.\displaystyle{\mathrm{det}}\left(\begin{bmatrix}A_{1}&A_{2}\\ A_{2}&A_{3}\end{bmatrix}\right)=0. (40)

In this case, equating (36) and (38) gives

A1=λ1,A2=12λ1212λ2,A3=16λ13+12λ1λ213λ3.A_{1}=-\lambda_{1},\;A_{2}=\frac{1}{2}\lambda_{1}^{2}-\frac{1}{2}\lambda_{2},\;A_{3}=-\frac{1}{6}\lambda_{1}^{3}+\frac{1}{2}\lambda_{1}\lambda_{2}-\frac{1}{3}\lambda_{3}.

Substituting these back in (40) yields the quartic polynomial λ14+3λ224λ3λ1=0\lambda_{1}^{4}+3\lambda_{2}^{2}-4\lambda_{3}\lambda_{1}=0, which under the mapping (λ1,λ2,λ3)(ρ3,ρ2,ρ1)(\lambda_{1},\lambda_{2},\lambda_{3})\mapsto(\rho_{3},\rho_{2},\rho_{1}) recovers (35), and thus (30).

In summary, (39) is the desired implicitization of the bounding hypersurfaces of the single input integrator reach set (up to the change of variables). The Cartesian product of these implicit hypersurfaces gives the implicitization in the multi input case.

IV-D Dual of ({𝐱0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right)

From convex geometry standpoint, it is natural to ask what kind of characterization is possible for the polar dual (see Sec. II-3) of the integrator reach set \mathcal{R} or \mathcal{R}^{\Box}. We know in general that \mathcal{R}^{\circ} will be a closed convex set. Depending on the choice of 𝒙0,𝒰\bm{x}_{0},\mathcal{U} and tt, the set ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) may not contain the origin, and thus the bipolar

(({𝒙0},t))=closure(conv(({𝒙0},t){𝟎})),\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\right)^{\circ\circ}={\rm{closure}}\left({\rm{conv}}\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\cup\{\bm{0}\}\right)\right),

that is, we do not have the involution in general.

Furthermore, since ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is semialgebraic from Sec. IV-B, so must be its polar dual (({𝒙0},t))\left(\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)\right)^{\circ}; see e.g., [36, Ch. 5, Sec. 5.2.2].

Refer to caption
(a) \mathcal{R} with 𝒙0=(0.05,0.05)\bm{x}_{0}=(0.05,0.05)^{\top}.
Refer to caption
(b) \mathcal{R}^{\circ} with 𝒙0=(0.05,0.05)\bm{x}_{0}=(0.05,0.05)^{\top}.
Figure 2: The double integrator reach set ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) and its polar dual (({𝒙0},t))\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\right)^{\circ} at t=2t=2, 𝒰[α,β]=[1,1]\mathcal{U}\equiv[\alpha,\beta]=[-1,1]. The curves pupper,plowerp^{\text{upper}},p^{\text{lower}} defining the reach set boundary (see Corollary 3 and the discussion thereafter) are shown too.

We also know from Sec. IV-A that ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is a zonoid. However, the polar of a zonoid is not a zonoid in general [42, 43], and we should not expect (({𝒙0},t))\left(\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)\right)^{\circ} to be one. Fig. 2 shows ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) and (({𝒙0},t))\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\right)^{\circ} for the double integrator (d=2d=2, m=1m=1).

IV-E Summary of Taxonomy

So far we explained that the compact convex set ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is semialgebraic, and a translated zonoid. Two well-known subclasses of convex semialgebraic sets are the spectrahedra and the spectrahedral shadows. The spectrahedra, a.k.a. linear matrix inequality (LMI) representable sets are affine slices of the symmetric positive semidefinite cone. The spectrahedral shadows, a.k.a. lifted LMI or semidefinite representable sets are the projections of spectrahedra. The spectrahedral shadows subsume the class of spectrahedra; e.g., the set {(x1,x2)2x14+x241}\{(x_{1},x_{2})\in\mathbb{R}^{2}\mid x_{1}^{4}+x_{2}^{4}\leq 1\} is a spectrahedral shadow but not a spectrahedron. The polar duals of spectrahedra are spectrahedral shadows [36, Ch. 5, Sec. 5.5].

We note that \mathcal{R}^{\Box} is not a spectrahedron. To see this, we resort to the contrapositive of [44, Thm. 3.1]. Specifically, the number of intersections made by a generic line passing through an interior point of the dd-dimensional reach set \mathcal{R}^{\Box} with its real algebraic boundary is not equal to the degree of the bounding algebraic hypersurfaces, the latter we know from Sec. IV-C to be (d12+1)(dd12)(\lfloor\frac{d-1}{2}\rfloor+1)(d-\lfloor\frac{d-1}{2}\rfloor). In other words, the \mathcal{R}^{\Box} is not rigidly convex, see [44, Sec. 3.1 and 3.2]. Fig. 3 helps visualize this for m=1m=1. From Fig. 3(a), we observe that a generic line for d=2d=2 has 44 intersections with the bounding real algebraic curves whereas from (29), we know that pupper,plowerp^{\text{upper}},p^{\text{lower}} are degree 22 polynomials. Likewise, Fig. 3(b) reveals that a generic line for d=3d=3 has 66 intersections with the bounding real algebraic surfaces whereas from (30), we know that the polynomials pupper,plowerp^{\text{upper}},p^{\text{lower}} in this case, are of degree 44.

Refer to caption
(a) Real algebraic curves pupper,plowerp^{\text{upper}},\allowbreak p^{\text{lower}} for the double integrator.
Refer to caption
(b) Real algebraic surfaces pupper,plowerp^{\text{upper}},\allowbreak p^{\text{lower}} for the triple integrator.
Figure 3: The bounding polynomials for the double and triple integrator reach sets at t=0.5t=0.5 with 𝒙0=𝟎\bm{x}_{0}=\bm{0} and μ=1\mu=1.
Refer to caption
Figure 4: The summary of taxonomy for the integrator reach set \mathcal{R}^{\Box}.

Could the reach set \mathcal{R}^{\Box} be spectrahedral shadow? Some calculations show that sufficient conditions as in [45] do not seem to hold. However, this remains far from conclusive. We summarize our taxonomy results in Fig. 4; the highlighted region shows where the integrator reach set belongs. To answer whether this highlighted region can be further narrowed down, seems significantly more challenging.

V Size

We next quantify the “size” of the reach set ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) by computing two functionals: its dd-dimensional volume (Sec. V-A), and its diameter or maximum width (Sec. V-B). In Sec. V-C, we discuss how these functionals scale with the state dimension dd.

V-A Volume

The following result gives the volume formula for the integrator reach set \mathcal{R}^{\Box}.

Theorem 5.

Fix 𝐱0d\bm{x}_{0}\in\mathbb{R}^{d}, let 𝒳0{𝐱0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} and 𝒰\mathcal{U} given by (20). Consider the integrator dynamics (1)-(2) with dd states, mm inputs, and relative degree vector 𝐫=(r1,r2,,rm)\bm{r}=(r_{1},r_{2},...,r_{m})^{\top}. Define μ1,,μm\mu_{1},\ldots,\mu_{m} as in (11)-(12). Then the dd-dimensional volume of the integrator reach set (3) at time t>0t>0 is

vol(({𝒙0},t))=2dj=1m{μjrjtrj(rj+1)/2k=1rj1k!(2k+1)!}.\displaystyle{\mathrm{vol}}\!\left(\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)\right)\!=\!2^{d}\displaystyle\prod_{j=1}^{m}\!\bigg{\{}\mu_{j}^{r_{j}}t^{r_{j}(r_{j}+1)/2}\!\prod_{k=1}^{r_{j}-1}\!\dfrac{k!}{(2k+1)!}\bigg{\}}. (41)
Refer to caption
Figure 5: The integrator reach set ({𝒙0},t=4)\mathcal{R}^{\Box}(\{\bm{x}_{0}\},t=4) with m=2m=2, 𝒓=(2,1)\bm{r}=(2,1)^{\top}, 𝒙0=(1,1,0)\bm{x}_{0}=(1,1,0)^{\top}, [α1,β1]=[5,5][\alpha_{1},\beta_{1}]=[-5,5], [α2,β2]=[3,3][\alpha_{2},\beta_{2}]=[-3,3].

For a simple illustration of Theorem 5, consider d=3d=3, m=2m=2 with 𝒓=(2,1)\bm{r}=(2,1)^{\top}. The corresponding reach set ({𝒙0},t)\mathcal{R}^{\Box}(\{\bm{x}_{0}\},t) at t=4t=4 is shown in Fig. 5 for 𝒙0=(1,1,0)\bm{x}_{0}=(1,1,0)^{\top}, 𝒰=[5×5]×[3,3]\mathcal{U}=[-5\times 5]\times[-3,3]. Here μ1=5\mu_{1}=5 and μ2=3\mu_{2}=3.

This reach set, being a direct product of the double integrator reach set 1\mathcal{R}_{1} (cf. Fig. 2) and the single integrator reach set 2={𝒙0(3)}[μ2t,μ2t]\mathcal{R}_{2}=\{\bm{x}_{0}(3)\}\dotplus[-\mu_{2}t,\mu_{2}t], is a cylinderHere, the notation 𝒙0(3)\bm{x}_{0}(3) stands for the third component of vector 𝒙0\bm{x}_{0}.. In [4], we explicitly derived that vol(1)=23μ12t3{\mathrm{vol}}\left(\mathcal{R}_{1}\right)=\frac{2}{3}\mu_{1}^{2}t^{3}, and therefore, the volume of this cylindrical set must be equal to “height of the cylinder ×\times cross sectional area”, i.e.,

2μ2t×23μ12t3=43μ12μ2t4.\displaystyle 2\mu_{2}t\times\frac{2}{3}\mu_{1}^{2}t^{3}=\frac{4}{3}\mu_{1}^{2}\mu_{2}t^{4}.

Indeed, a direct application of the formula (41) recovers the above expression.

Remark 2.

If the initial set 𝒳0\mathcal{X}_{0} is not singleton, then computing the volume of the \mathcal{R}^{\Box} requires us to compute the volume of a Minkowski sum. Notice that

vol(exp(t𝑨)𝒳0)\displaystyle{\mathrm{vol}}\left(\exp(t\bm{A})\mathcal{X}_{0}\right) =|det(exp(t𝑨))|vol(𝒳0)\displaystyle=|{\mathrm{det}}\left(\exp(t\bm{A})\right)|{\mathrm{vol}}\left(\mathcal{X}_{0}\right)
=exp(trace(t𝑨))vol(𝒳0)\displaystyle=\exp\left({\mathrm{trace}}\left(t\bm{A}\right)\right){\mathrm{vol}}\left(\mathcal{X}_{0}\right)
=exp(j=1mtrace(t𝑨j))vol(𝒳0)\displaystyle=\exp\left(\!\sum_{j=1}^{m}{\mathrm{trace}}\left(t\bm{A}_{j}\right)\!\!\right){\mathrm{vol}}\left(\mathcal{X}_{0}\right)
=vol(𝒳0),\displaystyle={\mathrm{vol}}\left(\mathcal{X}_{0}\right),

since from (2b), trace(𝐀j)=0{\mathrm{trace}}(\bm{A}_{j})=0 for all j=1,,mj=1,\ldots,m. Therefore, combining (4), (41) with the classical Brunn-Minkowski inequality, we obtain a lower bound for vol(){\mathrm{vol}}\left(\mathcal{R}^{\Box}\right) as

(vol((𝒳0,t)))1/d(vol(𝒳0))1/d\displaystyle\left({\mathrm{vol}}\left(\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)\right)\right)^{1/d}\geq\left({\mathrm{vol}}\left(\mathcal{X}_{0}\right)\right)^{1/d}
+2(j=1m{μjrjtrj(rj+1)/2k=1rj1k!(2k+1)!})1/d.\displaystyle\qquad\qquad+2\left(\displaystyle\prod_{j=1}^{m}\bigg{\{}\mu_{j}^{r_{j}}t^{r_{j}(r_{j}+1)/2}\prod_{k=1}^{r_{j}-1}\dfrac{k!}{(2k+1)!}\bigg{\}}\right)^{\!\!1/d}.

The above bound holds for any compact 𝒳0d\mathcal{X}_{0}\subset\mathbb{R}^{d}, not necessarily convex.

V-B Diameter

We now focus on another measure of “size” for the integrator reach set \mathcal{R}^{\Box}, namely its diameter, or maximal width.

By definition, the width [13, p. 42] of (𝒳0,t)\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right), is

w(𝒳0,t)(𝜼):=h(𝒳0,t)(𝜼)+h(𝒳0,t)(𝜼),\displaystyle w_{\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)}(\bm{\eta}):=h_{\mathcal{R}^{\Box}(\mathcal{X}_{0},t)}\left(\bm{\eta}\right)+h_{\mathcal{R}^{\Box}(\mathcal{X}_{0},t)}\left(-\bm{\eta}\right), (42)

where 𝜼𝕊d1\bm{\eta}\in\mathbb{S}^{d-1} (the unit sphere imbedded in d\mathbb{R}^{d}), and the support function h(𝒳0,t)()h_{\mathcal{R}^{\Box}(\mathcal{X}_{0},t)}\left(\cdot\right) is given by (21). In other words, (42) gives the width of \mathcal{R}^{\Box} in the direction 𝜼\bm{\eta}.

For singleton 𝒳0{𝒙0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\}, combining (21) and (42), we have

w({𝒙0},t)(𝜼)\displaystyle w_{\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)}(\bm{\eta}) =0t{|𝜼,𝝃(s)|+|𝜼,𝝃(s)|}ds\displaystyle=\int_{0}^{t}\bigg{\{}\lvert\langle\bm{\eta},\bm{\xi}(s)\rangle\rvert+\lvert\langle-\bm{\eta},\bm{\xi}(s)\rangle\rvert\bigg{\}}\>{\rm{d}}s
=20t|𝜼,𝝃(s)|ds,\displaystyle=2\int_{0}^{t}\lvert\langle\bm{\eta},\bm{\xi}(s)\rangle\rvert\>{\rm{d}}s, (43)

where the last equality follows from the fact that 𝝃(s)\bm{\xi}(s) in (13) is component-wise nonnegative for all 0st0\leq s\leq t.

The diameter of the reach set \mathcal{R}^{\Box} is its maximal width:

diam((𝒳0,t)):=max𝜼𝕊d1w(𝒳0,t)(𝜼).\displaystyle{\rm{diam}}\left(\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)\right):=\underset{\bm{\eta}\in\mathbb{S}^{d-1}}{\max}\>w_{\mathcal{R}^{\Box}\left(\mathcal{X}_{0},t\right)}(\bm{\eta}). (44)

Notice that (43) is a convex function of 𝜼\bm{\eta}; see e.g., [46, p. 79]. Thus, computing (44) amounts to maximizing a convex function over the unit sphere. We next derive a closed form expression for (44).

Theorem 6.

Fix 𝐱0d\bm{x}_{0}\in\mathbb{R}^{d}, let 𝒳0{𝐱0}\mathcal{X}_{0}\equiv\{\bm{x}_{0}\} and 𝒰\mathcal{U} given by (20). Consider the integrator dynamics (1)-(2) with dd states, mm inputs, and relative degree vector 𝐫=(r1,r2,,rm)\bm{r}=(r_{1},r_{2},...,r_{m})^{\top}. Define μ1,,μm\mu_{1},\ldots,\mu_{m} as in (11)-(12). The diameter of the integrator reach set (3) at time t>0t>0 is

diam(({𝒙0},t))=2𝜻(t)2=2(j=1mμj2𝜻j2)12\displaystyle{\rm{diam}}\!\left(\!\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)\!\right)\!=\!2\parallel\!\bm{\zeta}(t)\!\parallel_{2}\>=2\!\left(\displaystyle\sum_{j=1}^{m}\mu_{j}^{2}\|\bm{\zeta}_{j}\|^{2}\!\right)^{\!\!\frac{1}{2}} (45)

wherein 𝛇(t)\bm{\zeta}(t) is defined as in Sec. II-2, and the iith component of the subvector 𝛇j(t)rj\bm{\zeta}_{j}(t)\in\mathbb{R}^{r_{j}} is

0ts(rji)(rji)!ds=trji+1(rji+1)!,i=1,2,,rj.\displaystyle\!\displaystyle\int_{0}^{t}\!\!\dfrac{s^{(r_{j}-i)}}{(r_{j}-i)!}\>{\rm{d}}s=\dfrac{t^{r_{j}-i+1}}{(r_{j}-i+1)!},\quad i=1,2,\ldots,r_{j}. (46)

To illustrate Theorem 6, consider the triple integrator with d=3d=3 and m=1m=1. In this case, 𝒰=[α,β]\mathcal{U}=[\alpha,\beta], μ:=(βα)/2\mu:=(\beta-\alpha)/2, and we can parameterize the unit vector 𝜼𝕊2\bm{\eta}\in\mathbb{S}^{2} as

𝜼(sinθcosϕsinθsinϕcosθ),θ[0,π],ϕ[0,2π).\bm{\eta}\equiv\begin{pmatrix}\sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta\end{pmatrix}\displaystyle,\quad\theta\in[0,\pi],\quad\phi\in[0,2\pi).

Thus (44) reduces to

2μmaxθ[0,π]ϕ[0,2π)0t|s2(sinθcosϕ)/2+ssinθsinϕ+cosθ|ds.2\mu\>\underset{\begin{subarray}{c}\theta\in[0,\pi]\\ \phi\in[0,2\pi)\end{subarray}}{\max}\>\displaystyle\int_{0}^{t}\lvert s^{2}\left(\sin\theta\cos\phi\right)/2+s\sin\theta\sin\phi+\cos\theta\rvert\>{\rm{d}}s.

Furthermore, 𝜻(t)=(t3/6,t2/2,t)\bm{\zeta}(t)=(t^{3}/6,t^{2}/2,t)^{\top}, and we obtain

𝜼max=(sinθmaxsinϕmaxsinθmaxcosϕmaxcosθmax)=±1t4+9t2+36(t23t6),\displaystyle\bm{\eta}^{\max}=\begin{pmatrix}\!\sin\theta^{\max}\sin\phi^{\max}\!\\ \!\sin\theta^{\max}\cos\phi^{\max}\!\\ \!\cos\theta^{\max}\!\end{pmatrix}=\dfrac{\pm 1}{\sqrt{t^{4}+9t^{2}+36}}\begin{pmatrix}t^{2}\\ 3t\\ 6\end{pmatrix},

where ±\pm means that either all components are plus or all minus. Thus, the maximizing tuples (ϕmax,θmax)[0,π]×[0,2π)\left(\phi^{\max},\theta^{\max}\right)\in[0,\pi]\times[0,2\pi) are given by

(ϕmax,θmax)\displaystyle\left(\phi^{\max},\theta^{\max}\right)
={(arctan(3/t),arccos(6/t4+9t2+36)),(π+arctan(3/t),arccos(6/t4+9t2+36)).\displaystyle=\begin{cases}\left(\arctan\left(3/t\right),\arccos\left(6/\sqrt{t^{4}+9t^{2}+36}\right)\right),\\ \left(\pi+\arctan\left(3/t\right),\arccos\left(-6/\sqrt{t^{4}+9t^{2}+36}\right)\right).\end{cases} (47)

Hence, the diameter of the triple integrator reach set at time tt is equal to (μt/3)t4+9t2+36\left(\mu t/3\right)\sqrt{t^{4}+9t^{2}+36}.

Fig. 6 shows how the width of the integrator reach set for d=3d=3, m=1m=1 varies over (ϕ,θ)[0,π]×[0,2π)(\phi,\theta)\in[0,\pi]\times[0,2\pi), which parameterize the unit sphere 𝕊2\mathbb{S}^{2}. The location of the maximizers are given by (47), and are depicted in Fig. 6 via filled black circle and filled black square.

For a visualization of the width and diameter for the double integrator, see [4, Fig. 2].

Refer to caption
Figure 6: The width (43) for the single input triple integrator reach set ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right) is shown as a function of (ϕ,θ)[0,π]×[0,2π)(\phi,\theta)\in[0,\pi]\times[0,2\pi), which parameterize the unit sphere 𝕊2\mathbb{S}^{2}. Here 𝒰=[1,1]\mathcal{U}=[-1,1] and hence μ=1\mu=1. The darker (resp. lighter) hues correspond to the higher (resp. lower) widths. The filled black circle and the filled black square correspond to the maximizers (ϕmax,θmax)\left(\phi^{\max},\theta^{\max}\right) given by (47).

V-C Scaling Laws

We now turn to investigate how the volume and the diameter of the integrator reach set scale with time and the state dimension. While scaling laws reveal limits of performance of engineered systems (see e.g., [47, 48]), they have not been formally investigated in the context of reach sets even though empirical studies are common [20], [49, Table 1], [50, Fig. 4].

For clarity, we focus on the single input case and hence do not notationally distinguish between \mathcal{R} and \mathcal{R}^{\Box}.

V-C1 Scaling of the volume

Fig. 7 plots the volume (41) for the single input (m=1m=1) case against time tt for varying state space dimension dd. In this case, 𝒰=[α,β]\mathcal{U}=[\alpha,\beta], and therefore μ:=(βα)/2\mu:=(\beta-\alpha)/2. As expected, the volume of the reach set increases with time for any fixed dd.

Let us now focus on the scaling of the volume with respect to the state dimension dd. For m=1m=1, using the known asymptotic [51] for k=1d1(2k+1)!/k!\prod_{k=1}^{d-1}(2k+1)!/k!, we find the dd\rightarrow\infty asymptotic for the volume:

vol(d({𝒙0},t))(2μ)dtd(d+1)/2exp(32d2+112)c×2(2d2112)d(d2+112),{\mathrm{vol}}\left(\mathcal{R}_{d}\left(\{\bm{x}_{0}\},t\right)\right)\sim(2\mu)^{d}t^{d(d+1)/2}\dfrac{\exp\left(\frac{3}{2}d^{2}+\frac{1}{12}\right)}{c\times 2^{\left(2d^{2}-\frac{1}{12}\right)}\>d^{\left(d^{2}+\frac{1}{12}\right)}},

where c1.2824c\approx 1.2824\ldots is the Glaisher-Kinkelin constant [52, Sec. 2.15].

Fig. 7 shows that when tt is small, the volume of the larger dimensional reach set stays lower than its smaller dimensional counterpart. In particular, given two state space dimensions d,dd,d^{\prime} with d>dd>d^{\prime}, and all other parameters kept fixed, there exists a critical time tcrt_{\text{cr}} when the volume of the dd dimensional reach set overtakes that of the dd^{\prime} dimensional reach set.

For any d>dd>d^{\prime}, the critical time tcrt_{\text{cr}} satisfies

vol(d({𝒙0},tcr))ddimensional volume=vol(d({𝒙0},tcr))ddimensional volume,\displaystyle\underbrace{{\mathrm{vol}}\left(\mathcal{R}_{d}\left(\{\bm{x}_{0}\},t_{\text{cr}}\right)\right)}_{d\;\text{dimensional volume}}=\underbrace{{\mathrm{vol}}\left(\mathcal{R}_{d^{\prime}}\left(\{\bm{x}_{0}\},t_{\text{cr}}\right)\right)}_{d^{\prime}\;\text{dimensional volume}},

which together with (41) yields

tcr=(2μ)2d+d+1(k=dd1(2k+1)!k!)2(dd)(d+d+1).\displaystyle t_{\text{cr}}=\left(2\mu\right)^{-\frac{2}{d+d^{\prime}+1}}\left(\prod_{k=d^{\prime}}^{d-1}\dfrac{\left(2k+1\right)!}{k!}\right)^{\frac{2}{(d-d^{\prime})(d+d^{\prime}+1)}}. (48)

In particular, for d=d1d^{\prime}=d-1, we get

tcr=(12μ(2d1)!(d1)!)1/d,d=2,3,.\displaystyle t_{\text{cr}}=\left(\frac{1}{2\mu}\frac{(2d-1)!}{(d-1)!}\right)^{1/d},\quad d=2,3,\ldots. (49)

For instance, when μ=1\mu=1, d=3d=3, d=2d^{\prime}=2, we have tcr=(30)1/33.1072t_{\text{cr}}=(30)^{1/3}\approx 3.1072. When μ=1\mu=1, d=4d=4, d=3d^{\prime}=3, we have tcr=(420)1/44.5270t_{\text{cr}}=(420)^{1/4}\approx 4.5270. The dashed vertical lines in Fig. 7 show the critical times given by (49).

Applying Stirling’s approximation n!2πn(n/e)nn!\sim\sqrt{2\pi n}(n/e)^{n}, we obtain the dd\rightarrow\infty asymptotic for (49):

tcr4edμ1d 232d,\displaystyle t_{\text{cr}}\sim\frac{4}{e}\>d\>\mu^{-\frac{1}{d}}\>2^{-\frac{3}{2d}},

where \sim denotes asymptotic equivalence [53, Ch. 1.4], and ee is the Euler number.

Refer to caption
Figure 7: For single input (m=1m=1), the volume of the integrator reach set ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\displaystyle computed from (41) is plotted against time tt\displaystyle for state dimensions d=2,3,,6d=2,3,\ldots,6 with 𝒰=[α,β]=[1,1]\mathcal{U}=[\alpha,\beta]=[-1,1], μ:=(βα)/2=1\mu:=(\beta-\alpha)/2=1. The dashed vertical lines show the critical times given by (49).

V-C2 Scaling of the diameter

Fig. 8 plots the diameter of (45) for the single input (m=1m=1) case against time tt for varying state space dimension dd. As earlier, 𝒰=[α,β]\mathcal{U}=[\alpha,\beta], μ:=(βα)/2\mu:=(\beta-\alpha)/2. As expected, the diameter of the reach set increases with time for any fixed dd.

As dd\rightarrow\infty, the diameter approaches a limiting curve shown by the dotted line in Fig. 8. To derive this limiting curve, notice that for m=1m=1, the formula (45) gives

limddiam(({𝒙0},t))=limd2μj=1d(tjj!)2.\displaystyle\displaystyle\lim_{d\rightarrow\infty}{\rm{diam}}\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\right)=\lim_{d\to\infty}2\mu\sqrt{\sum_{j=1}^{d}\left(\dfrac{t^{j}}{j!}\right)^{2}}. (50)

We write the partial sum

j=1d(tjj!)2=j=1(tjj!)2=:S1j=d+1(tjj!)2=:S2,\displaystyle\sum_{j=1}^{d}\left(\dfrac{t^{j}}{j!}\right)^{2}=\underbrace{\sum_{j=1}^{\infty}\left(\dfrac{t^{j}}{j!}\right)^{2}}_{=:S_{1}}-\underbrace{\sum_{j=d+1}^{\infty}\left(\dfrac{t^{j}}{j!}\right)^{2}}_{=:S_{2}}, (51)

and by ratio test, note that both the sums S1,S2S_{1},S_{2} converge. In particular, S1S_{1} converges to I0(2t)1I_{0}(2t)-1, where I0()I_{0}(\cdot) is the zeroth order modified Bessel function of the first kind. This follows from the very definition of the ν\nuth order modified Bessel function of the first kind, given by

Iν(z):=(z/2)νj=0(z2/4)jj!Γ(ν+j+1),ν,I_{\nu}(z):=\left(z/2\right)^{\nu}\displaystyle\sum_{j=0}^{\infty}\frac{\left(z^{2}/4\right)^{j}}{j!\>\Gamma\left(\nu+j+1\right)},\quad\nu\in\mathbb{R},

where Γ()\Gamma(\cdot) denotes the Gamma function.

On the other hand, using the definition of the generalized hypergeometric functionHere, ()n(\cdot)_{n} denotes the Pochhammer symbol [54, p. 256] or rising factorial.

F21(a1;b1,b2;z):=n=0(a1)n(b1)n(b2)nznn!,{}_{1}F_{2}\left(a_{1};b_{1},b_{2};z\right):=\sum_{n=0}^{\infty}\dfrac{(a_{1})_{n}}{(b_{1})_{n}(b_{2})_{n}}\dfrac{z^{n}}{n!},

we find that

S2=t12(d+1)F2(1;d+2,d+2;t2)((d+1)!)2.S_{2}=\dfrac{t^{2(d+1)}\>_{1}F_{2}\left(1;d+2,d+2;t^{2}\right)}{\left((d+1)!\right)^{2}}.

Therefore, (51) evaluates to

S1S2=I0(2t)1t12(d+1)F2(1;d+2,d+2;t2)((d+1)!)2.\displaystyle\!\!\!S_{1}\!-\!S_{2}=I_{0}(2t)-1-\dfrac{t^{2(d+1)}\>_{1}F_{2}\left(1;d+2,d+2;t^{2}\right)}{\left((d+1)!\right)^{2}}\!. (52)

Combining (50), (51), (52), and using the continuity of the square root function on [0,)[0,\infty), we deduce that

limddiam(({𝒙0},t))\displaystyle\!\!\!\!\!\displaystyle\lim_{d\rightarrow\infty}{\rm{diam}}\left(\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\right) =2μlimd(S1S2)\displaystyle=2\mu\sqrt{\lim_{d\to\infty}\left(S_{1}-S_{2}\right)}
=2μI0(2t)1.\displaystyle=2\mu\sqrt{I_{0}(2t)-1}. (53)

That limdS2\lim_{d\rightarrow\infty}S_{2} exists and equals to zero, follows from (51) and the continuity of the square:

limdS2=limj(tjj!)2=(limjtjj!)2=0.\lim_{d\rightarrow\infty}S_{2}=\lim_{j\rightarrow\infty}\left(\frac{t^{j}}{j!}\right)^{\!\!2}=\left(\lim_{j\rightarrow\infty}\frac{t^{j}}{j!}\right)^{\!\!2}=0.

To see the last equality, let aj:=tj/j!a_{j}:=t^{j}/j!. By the ratio test, limsupj|aj+1/aj|=limjt/j=0<1\underset{j\rightarrow\infty}{\lim\sup}|a_{j+1}/a_{j}|=\underset{j\rightarrow\infty}{\lim}t/j=0<1, hence {aj}\{a_{j}\} is a Cauchy sequence and limjaj=0\underset{j\rightarrow\infty}{\lim}a_{j}=0.

The dotted line in Fig. 8 is the curve (53).

Refer to caption
Figure 8: For single input (m=1m=1), the diameter of the integrator reach set ({𝒙0},t)\mathcal{R}\left(\{\bm{x}_{0}\},t\right)\displaystyle computed from (45) is plotted against time tt\displaystyle for state dimensions d=2,3,,6d=2,3,\ldots,6 with 𝒰=[α,β]=[1,1]\mathcal{U}=[\alpha,\beta]=[-1,1], μ:=(βα)/2=1\mu:=(\beta-\alpha)/2=1. As dd\to\infty\displaystyle, the diameter converges to 2μI0(2t)12\mu\sqrt{I_{0}(2t)-1}\displaystyle, shown by the dotted line.

VI Benchmarking Over-approximations of Integrator Reach Sets

In practice, a standard approach for safety and performance verification is to compute “tight” over-approximation of the reach sets of the underlying controlled dynamical system. Several numerical toolboxes such as [3, 2] are available which over-approximate the reach sets using simple geometric shapes such as zonotopes and ellipsoids. Depending on the interpretation of the qualifier “tight”, different optimization problems ensue, e.g., minimum volume outer-approximation [55, 56, 57, 58, 59, 60, 61, 62].

Refer to caption
Figure 9: (Top) Zonotopic over-approximations of the double integrator reach sets; (bottom) the ratio of the volume of the single input integrator reach set (t)\mathcal{R}(t) and that of its zonotopic over-approximation approx(t)\mathcal{R}_{\text{approx}}(t) for d=2,3,4d=2,3,4, plotted against time t[0,1]t\in[0,1]. The results are computed using the CORA toolbox with μ=1\mu=1, 𝒳0={𝟎}\mathcal{X}_{0}=\{\bm{0}\}.

One potential application of our results in Sec. V is to help quantify the conservatism in different over-approximation algorithms by taking the integrator reach set as a benchmark case. For instance, Fig. 9 shows the conservatism in zonotopic over-approximations approx(t)\mathcal{R}_{\text{approx}}(t) of the single input integrator reach sets ({𝟎},t)approx({𝟎},t)\mathcal{R}(\{\bm{0}\},t)\subseteq\mathcal{R}_{\text{approx}}(\{\bm{0}\},t) for d=2,3,4d=2,3,4 with 0t10\leq t\leq 1 and μ=1\mu=1, computed using the CORA toolbox [2, 63]. To quantify the conservatism, we used the volume formula (41) for computing the ratio of the volumes vol()/vol(approx)[0,1]{\mathrm{vol}}(\mathcal{R})/{\mathrm{vol}}(\mathcal{R}_{\text{approx}})\in[0,1]. The results shown in Fig. 9 were obtained by setting the zonotope order 5050 in the CORA toolbox, which means that the number of zonotopic segments used by CORA for over-approximation was 50d\leq 50d. As expected, increasing the zonotope order improves the accuracy at the expense of computational speed, but among the different dimensional volume ratio curves, trends similar to Fig. 9 remain. It is possible [31, Thm. 1.1, 1.2] to compute the optimal zonotope order as function of the desired approximation accuracy (i.e., desired Hausdorff distance from the zonoid).

For the numerical results shown in Fig. 9, we found the diameters of the over-approximating zonotopes for d=2,3,4d=2,3,4, to be the same as that of the true diameters given by (45) for all times.

Refer to caption
Figure 10: (Top) Ellipsoidal over-approximations of the double integrator reach sets; (bottom) the ratio of the volume (left) and diameter (right) of the single input integrator reach set (t)\mathcal{R}(t) and that of its ellipsoidal over-approximation approx(t)\mathcal{R}_{\text{approx}}(t) for d=2,3,4d=2,3,4, plotted against time t[0,1]t\in[0,1]. Two different ellipsoidal over-approximations are shown: one (in red) based on the S procedure, and the other (in blue) obtained by scaling the maximum volume inner ellipsoid (MVIE) of the intersection of a parameterized family of ellipsoids. The results are computed for μ=1\mu=1, 𝒳0={𝟎}\mathcal{X}_{0}=\{\bm{0}\}.

Fig. 10 depicts the conservatism in ellipsoidal over-approximations approx(t)\mathcal{R}_{\text{approx}}(t) of the single input integrator reach sets ({𝟎},t)approx({𝟎},t)\mathcal{R}(\{\bm{0}\},t)\subseteq\mathcal{R}_{\text{approx}}(\{\bm{0}\},t) for d=2,3,4d=2,3,4 with 0t10\leq t\leq 1 and μ=1\mu=1, following the algorithms in ellipsoidal toolbox [3]. Specifically, the reach set at time tt, is over-approximated by the intersection of a carefully constructed parameterized family of ellipsoids (𝒒(t),𝑸i(t)(t))\mathcal{E}\left(\bm{q}(t),\bm{Q}_{\bm{\ell}_{i}(t)}(t)\right) defined as

{𝒙d(𝒙𝒒(t))(𝑸i(t)(t))1(𝒙𝒒(t))1},\displaystyle\{\bm{x}\in\mathbb{R}^{d}\mid\left(\bm{x}-\bm{q}(t)\right)\left(\bm{Q}_{\bm{\ell}_{i}(t)}(t)\right)^{-1}\left(\bm{x}-\bm{q}(t)\right)^{\top}\leq 1\},

for unit vectors i(0)d\bm{\ell}_{i}(0)\in\mathbb{R}^{d}, i=1,,Ni=1,\ldots,N. The choice of i(0)\bm{\ell}_{i}(0) determines i(t):=exp(𝑨t)i(0)\bm{\ell}_{i}(t):=\exp(-\bm{A}^{\top}t)\bm{\ell}_{i}(0), which in turn parameterizes the d×dd\times d symmetric positive definite shape matrix 𝑸i(t)(t)\bm{Q}_{\bm{\ell}_{i}(t)}(t); we refer the readers to [64, Ch. 3.2], [37, Ch. 3] where the corresponding evolution equations were derived using optimal control. The center vectors 𝒒(t)d\bm{q}(t)\in\mathbb{R}^{d}, and the shape matrices 𝑸i(t)(t)\bm{Q}_{\bm{\ell}_{i}(t)}(t) for this parameterized family of ellipsoids are constructed such that i=1N(𝒒(t),𝑸i(t)(t))\cap_{i=1}^{N}\mathcal{E}\left(\bm{q}(t),\bm{Q}_{\bm{\ell}_{i}(t)}(t)\right) is guaranteed to be a superset of the reach set at time tt for any finite NN, and for NN\rightarrow\infty, recovers the reach set at that time.

For the results shown in Fig. 10, we used N=20N=20 randomly chosen unit vectors i(0)d\bm{\ell}_{i}(0)\in\mathbb{R}^{d}. Ideally, one would like to compute the (unique) minimum volume outer ellipsoid (MVOE), a.k.a. the Löwner-John ellipsoid [65, 66] of the convex set i=120(𝒒(t),𝑸i(t)(t))\cap_{i=1}^{20}\mathcal{E}\left(\bm{q}(t),\bm{Q}_{\bm{\ell}_{i}(t)}(t)\right), which is a semi-infinite programming problem [46, Ch. 8.4.1], and has no known exact semidefinite programming (SDP) reformulation. We computed two different relaxations of this problem: one based on the S procedure [67, Ch. 3.7.2], and the other by homothetic scaling of the maximum volume inner ellipsoid (MVIE) [65, Thm. III] of the set i=120(𝒒(t),𝑸i(t)(t))\cap_{i=1}^{20}\mathcal{E}\left(\bm{q}(t),\bm{Q}_{\bm{\ell}_{i}(t)}(t)\right). Both of these lead to solving SDP problems, and both are guaranteed to contain the Löwner-John ellipsoid of the intersection of the parameterized family of ellipsoids. These suboptimal (w.r.t. the MVOE criterion) solutions, computed using cvx [68], are shown in Fig. 10.

Fig. 10 shows that the S procedure entail less conservatism compared to the MVIE scaling, in terms of volume. While the volume ratio trends in Fig. 10 are similar to that observed in Fig. 9, the approximation quality is lower. In light of the results in Sec. IV-A, this is not surprising: the integrator reach sets being zonoids (i.e., Hausdorff limit of zonotopes), the zonotopic outer-approximations are expected to perform better than other over-approximating shape primitives.

The main point here is that our results in Sec. V provide the ground truth for the size of the integrator reach set, thereby help benchmarking the performance of reach set approximation algorithms.

VII Epilogue

Recap

The present paper initiates a systematic study of integrator reach set. When the input uncertainty set is hyperrectangle, we showed that the corresponding compact convex reach set \mathcal{R}^{\Box} is in fact semialgebraic (Sec. IV-B) as well as a zonoid (range of an atom free vector measure) up to translation (Sec. IV-A). We derived the equation of its boundary in both parametric (Proposition 2) and implicit form (Sec. IV-C). We obtained the closed form formula for the volume (Sec. V-A) and diameter (Sec. V-B) of these reach sets. We also derived the scaling laws (Sec. V-C) for these quantities. We pointed out that these results may be used to benchmark the performance of set over-approximation algorithms (Sec. VI).

What Next

In the sequel Part II, we will show how the ideas presented herein enable computing the reach sets for feedback linearizable systems. The focus will be in computing the reach set in transformed state coordinates associated with the normal form, and to map that set back to original state coordinates under diffeomorphism. This, however, requires nontrivial extension of the basic theory presented here (especially those in Proposition 2 and Sec IV-C) since we will need to handle time-dependent set-valued uncertainty in transformed control input even when the original control takes values from a set that is not time-varying.

-A Proof of Proposition 1

Since support function is distributive over sum, we have

h(𝒳0,t)(𝒚)\displaystyle h_{\mathcal{R}(\mathcal{X}_{0},t)}\left(\bm{y}\right) =sup𝒙0𝒳0𝒚,exp(t𝑨)𝒙0\displaystyle=\underset{\bm{x}_{0}\in\mathcal{X}_{0}}{\sup}\langle\bm{y},\exp\left(t\bm{A}\right)\bm{x}_{0}\rangle
+h0texp(s𝑨)𝑩𝒰ds(𝒚).\displaystyle\quad\qquad+h_{\int_{0}^{t}\exp(s\bm{A})\bm{B}\mathcal{U}{\rm{d}}s}(\bm{y}). (54)

The block diagonal structure of the matrix 𝑨\bm{A} in (2) implies

sup𝒙0𝒳0𝒚,exp(t𝑨)𝒙0=sup𝒙0𝒳0j=1m𝒚j,exp(t𝑨j)𝒙j0.\displaystyle\!\underset{\bm{x}_{0}\in\mathcal{X}_{0}}{\sup}\langle\bm{y},\exp\left(t\bm{A}\right)\bm{x}_{0}\rangle\!=\!\underset{\bm{x}_{0}\in\mathcal{X}_{0}}{\sup}\sum_{j=1}^{m}\langle\bm{y}_{j},\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}\rangle. (55)

Following the definition of support function and [4, Proposition 1], we then have

h0texp(s𝑨)𝑩𝒰ds(𝒚)=0thexp(s𝑨)𝑩𝒰(𝒚)ds\displaystyle h_{\int_{0}^{t}\exp(s\bm{A})\bm{B}\>\mathcal{U}\>{\rm{d}}s}(\bm{y})=\int_{0}^{t}\!\!h_{\exp(s\bm{A})\bm{B}\>\mathcal{U}}\>(\bm{y})\;{\rm{d}}{s}
=0tsup𝒖𝒰𝒚,exp(s𝑨)𝑩𝒖ds\displaystyle\quad=\int_{0}^{t}\underset{\bm{u}\in\mathcal{U}}{\sup}~{}\langle\bm{y},\exp(s\bm{A})\bm{B}\bm{u}\rangle~{}{\rm{d}}s
=0tsup𝒖closure(conv(𝒰))j=1m{𝒚j,𝝃j(s)uj}ds.\displaystyle\quad=\int^{t}_{0}\underset{\bm{u}\in{\rm{closure}}\left({\rm{conv}}\left(\mathcal{U}\right)\right)}{\sup}~{}\sum_{j=1}^{m}~{}\{\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle u_{j}\}\>{\rm{d}}{s}. (56)

The last equality in (-A) follows from (13), and from the fact [26, Prop. 6.1] that the reach set remains invariant under the closure of convexification of the input set 𝒰\mathcal{U}. Substituting (55) and (-A) in (54) yields (16). \blacksquare

-B Proof of Theorem 1

Since the uncertainties in (20) along different input co-ordinate axes are mutually independent, the support function of the reach set is of the form (19). Therefore, in this case, (16) takes the form

h(𝒳0,t)(𝒚)=\displaystyle h_{\mathcal{R}(\mathcal{X}_{0},t)}\left(\bm{y}\right)= j=1m{sup𝒙j0𝒳j0𝒚j,exp(t𝑨j)𝒙j0\displaystyle\sum_{j=1}^{m}\bigg{\{}\underset{\bm{x}_{j0}\in\mathcal{X}_{j0}}{\sup}\langle\bm{y}_{j},\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}\rangle
+0tsupuj[αj,βj]𝒚j,𝝃j(s)ujds}.\displaystyle+\int^{t}_{0}\underset{u_{j}\in\mathcal{[}\alpha_{j},\beta_{j}]}{\sup}\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\>u_{j}\>{\rm{d}}{s}\bigg{\}}. (57)

The optimizer ujoptu_{j}^{\text{opt}} of the integrand in the RHS of (57), for j[m]j\in[m], can be written in terms of the Heaviside unit step function H()H(\cdot) as

ujopt\displaystyle u_{j}^{\text{opt}} =αj+(βjαj)H(𝒚j,𝝃j)\displaystyle=\alpha_{j}+(\beta_{j}-\alpha_{j})H(\langle\bm{y}_{j},\bm{\xi}_{j}\rangle)
=αj+(βjαj)×12(1+sgn(𝒚j,𝝃j)),\displaystyle=\alpha_{j}+(\beta_{j}-\alpha_{j})\times\frac{1}{2}\left(1+{\rm{sgn}}\left(\langle\bm{y}_{j},\bm{\xi}_{j}\rangle\right)\right),

where sgn(){\rm{sgn}}(\cdot) denotes the signum function. Therefore,

supuj[αj,βj]𝒚j,𝝃j(s)uj=νj𝒚j,𝝃j(s)+μj|𝒚j,𝝃j(s)|\displaystyle\underset{u_{j}\in\mathcal{[}\alpha_{j},\beta_{j}]}{\sup}\!\!\!\!\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle u_{j}=\nu_{j}\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle+\mu_{j}|\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle| (58)

for 0st0\leq s\leq t. Substituting (58) back in (57) and integrating over ss completes the proof. \blacksquare

-C Proof of Theorem 2

For s[0,t]s\in[0,t], let the vector measure 𝝁~\widetilde{\bm{\mu}} be defined as d𝝁~(s):=𝝃(s)ds{\rm{d}}\widetilde{\bm{\mu}}(s):=\bm{\xi}(s){\rm{d}}s where 𝝃(s)\bm{\xi}(s) is given by (13). Then 0t|𝒚,𝝃(s)|ds\int_{0}^{t}|\langle\bm{y},\bm{\xi}(s)\rangle|{\rm{d}}s is exactly in the form of a support function of a zonoid (see e.g., [28, Sec. 2]). Using the one-to-one correspondence between a compact convex set and its support function, the corresponding set is a zonoid.

From (9) and (21), ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is the translation of a set with support function 0t|𝒚,𝝃(s)|ds\int_{0}^{t}|\langle\bm{y},\bm{\xi}(s)\rangle|{\rm{d}}s, i.e., the translation of a zonoid. Thus, ({𝒙0},t)\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) is a zonoid. \blacksquare

-D Proof of Proposition 2

From Sec. II-2, the supporting hyperplane at any 𝒙bdy({𝒙0},t)\bm{x}^{\textup{bdy}}\in\partial\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right) with outward normal 𝒚d\bm{y}\in\mathbb{R}^{d} is 𝒚,𝒙bdy=h({𝒙0},t)(𝒚)\langle\bm{y},\bm{x}^{\textup{bdy}}\rangle=h_{\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)}(\bm{y}), and the Legendre-Fenchel conjugate

h({𝒙0},t)(𝒙bdy)=0.\displaystyle h_{\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)}^{*}\left(\bm{x}^{\textup{bdy}}\right)=0. (59)

For j[m]j\in[m], let 𝒚\bm{y} comprise of subvectors 𝒚jrj\bm{y}_{j}\in\mathbb{R}^{r_{j}}. Since the Cartesian product (18) is equivalent to the Minkowski sum 1m\mathcal{R}_{1}\dotplus\ldots\dotplus\mathcal{R}_{m}, and the support function of Minkowski sum is the sum of support functions of the summand sets [13, p. 48], we have

h({𝒙0},t)(𝒚)\displaystyle h_{\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)}(\bm{y}) =j=1mhj({𝒙0},t)(𝒚j)\displaystyle=\sum_{j=1}^{m}h_{\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)}(\bm{y}_{j})
h({𝒙0},t)(𝒙bdy)\displaystyle\Rightarrow h_{\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)}^{*}\left(\bm{x}^{\textup{bdy}}\right) =j=1mhj({𝒙0},t)(𝒙jbdy),\displaystyle=\sum_{j=1}^{m}h_{\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)}^{*}\left(\bm{x}^{\textup{bdy}}_{j}\right), (60)

wherein the last line follows from the property that the Legendre-Fenchel conjugate of a separable sum equals to the sum of the Legendre-Fenchel conjugates [46, p. 95].

Therefore, combining (59) and (60), we obtain

j=1minf𝒚jrj{𝒙jbdy+exp(t𝑨j)𝒙j0+νj𝜻j(t),𝒚j\displaystyle\sum_{j=1}^{m}\>\underset{\bm{y}_{j}\in\mathbb{R}^{r_{j}}}{\inf}\!\bigg{\{}\!\langle-\bm{x}^{\textup{bdy}}_{j}+\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}+\nu_{j}\bm{\zeta}_{j}(t),\bm{y}_{j}\rangle
+μj0t|𝒚j,𝝃j(s)|ds}=0.\displaystyle\qquad\qquad\qquad\qquad\qquad+\mu_{j}\!\!\int_{0}^{t}\!\!|\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle|\>{\rm{d}}s\!\bigg{\}}=0. (61)

For j[m]j\in[m], since each objective in (61) involves an integral of the absolute value of a polynomial in ss of degree rj1r_{j}-1, that polynomial can have at most rj1r_{j}-1 roots in the interval [0,t][0,t], i.e., can have at most rj1r_{j}-1 sign changes in that interval. If all rj1r_{j}-1 roots of the aforesaid polynomial are in [0,t][0,t], we denote these roots as s1s2srj1s_{1}\leq s_{2}\leq\ldots\leq s_{r_{j}-1}, and write

0t|𝒚j,𝝃j(s)|ds=±0s1𝒚j,𝝃j(s)dss1s2𝒚j,𝝃j(s)ds\displaystyle\int_{0}^{t}\!\!|\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle|\>{\rm{d}}s=\pm\int_{0}^{s_{1}}\!\!\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\>{\rm{d}}s\mp\int_{s_{1}}^{s_{2}}\!\!\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\>{\rm{d}}s
±±(1)rj1srj1t𝒚j,𝝃j(s)ds\displaystyle\qquad\qquad\qquad\qquad\quad\pm\ldots\pm(-1)^{r_{j}-1}\int_{s_{r_{j}-1}}^{t}\!\!\langle\bm{y}_{j},\bm{\xi}_{j}(s)\rangle\>{\rm{d}}s
=𝒚j,±𝜻j(0,s1)𝜻j(s1,s2)±±(1)rj1𝜻j(srj1,t).\displaystyle=\langle\bm{y}_{j},\pm\bm{\zeta}_{j}(0,s_{1})\mp\bm{\zeta}_{j}(s_{1},s_{2})\pm\ldots\pm(-1)^{r_{j}-1}\bm{\zeta}_{j}(s_{r_{j}-1},t)\rangle. (62)

Notice that even if the number of roots in [0,t][0,t] is strictly less than******this may happen either because there are repeated roots in [0,t][0,t], or because some real roots exist outside [0,t][0,t], or because some roots are complex conjugates, or a combination of the previous three. rj1r_{j}-1, the expression (62) is generic in the sense the corresponding summand integrals become zero. Thus, combining (61) and (62), we arrive at

j=1minf𝒚jrj𝒙jbdy+exp(t𝑨j)𝒙j0+νj𝜻j(t)±μj𝜻j(0,s1)\displaystyle\sum_{j=1}^{m}\>\underset{\bm{y}_{j}\in\mathbb{R}^{r_{j}}}{\inf}\langle-\bm{x}^{\textup{bdy}}_{j}+\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}+\nu_{j}\bm{\zeta}_{j}(t)\pm\mu_{j}\bm{\zeta}_{j}(0,s_{1})
μj𝜻j(s1,s2)±±μj(1)rj1𝜻j(srj1,t),𝒚j=0.\displaystyle\mp\mu_{j}\bm{\zeta}_{j}(s_{1},s_{2})\pm\ldots\pm\mu_{j}(-1)^{r_{j}-1}\bm{\zeta}_{j}(s_{r_{j}-1},t),\bm{y}_{j}\rangle=0. (63)

The left hand side of (63) being the sum of the infimum values of linear functions, can achieve zero if and only if each of those infimum equals to zero, i.e., if and only if

𝒙jbdy=exp(t𝑨j)𝒙j0+νj𝜻j(t)±μj𝜻j(0,s1)μj𝜻j(s1,s2)\displaystyle\bm{x}^{\textup{bdy}}_{j}=\exp\left(t\bm{A}_{j}\right)\bm{x}_{j0}+\nu_{j}\bm{\zeta}_{j}(t)\pm\mu_{j}\bm{\zeta}_{j}(0,s_{1})\mp\mu_{j}\bm{\zeta}_{j}(s_{1},s_{2})
±±(1)rj1μj𝜻j(srj1,t).\displaystyle\qquad\quad\pm\ldots\pm(-1)^{r_{j}-1}\mu_{j}\bm{\zeta}_{j}(s_{r_{j}-1},t). (64)

Using (6), (13) and (14), we simplify (64) to (26), thereby completing the proof. \blacksquare

-E Proof of Corollary 3

From (26), we get two different parametric representations of 𝒙jbdy\bm{x}_{j}^{\text{bdy}} in terms of (s1,s2,,srj1)(s_{1},s_{2},\ldots,s_{r_{j}-1}). One parametric representation results from the choice of positive sign for the ±\pm appearing in (26), and another for the choice of negative sign for the same. Denoting the implicit representation corresponding to the parametric representation (26) with ++ (resp. -) sign as pjupper(𝒙)=0p_{j}^{\textup{upper}}(\bm{x})=0 (resp. pjlower(𝒙)=0p_{j}^{\textup{lower}}(\bm{x})=0), the result follows. \blacksquare

-F Proof of Theorem 4

We notice that (26) gives polynomial parameterizations of the components of 𝒙jbdy\bm{x}_{j}^{\text{bdy}} for all j[m]j\in[m]. In particular, for each k[rj]k\in[r_{j}], the right hand side of (26) is a homogeneous polynomial in rj1r_{j}-1 parameters (s1,s2,,srj1)(s_{1},s_{2},\ldots,s_{r_{j}-1}) of degree rjk+1r_{j}-k+1. By polynomial implicitization [25, p. 134], the corresponding implicit equations pjupper(𝒙jbdy)=0p_{j}^{\text{upper}}\left(\bm{x}_{j}^{\text{bdy}}\right)=0 (when fixing plus sign for ±\pm in (26)) and pjlower(𝒙jbdy)=0p_{j}^{\text{lower}}\left(\bm{x}_{j}^{\text{bdy}}\right)=0 (when fixing minus sign for ±\pm in (26)), must define affine varieties V[x1,,xrj](pjupper),V[x1,,xrj](pjlower)V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}(p_{j}^{\text{upper}}),V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}(p_{j}^{\text{lower}}) in [x1,,xd]\mathbb{R}\left[x_{1},\ldots,x_{d}\right].

Specifically, denote the right hand sides of (26) as g1±,,grj±g_{1}^{\pm},\ldots,g_{r_{j}}^{\pm} for all j[m]j\in[m], where the superscripts indicate that either all gg’s are chosen with plus signs, or all with minus signs. Then write (26) as

𝒙jbdy(1)\displaystyle\bm{x}^{\text{bdy}}_{j}(1) =g1±(s1,s2,,srj1),\displaystyle=g_{1}^{\pm}\left(s_{1},s_{2},\ldots,s_{r_{j}-1}\right),
\displaystyle\;\;\vdots
𝒙jbdy(rj)\displaystyle\bm{x}^{\text{bdy}}_{j}(r_{j}) =grj±(s1,s2,,srj1).\displaystyle=g_{r_{j}}^{\pm}\left(s_{1},s_{2},\ldots,s_{r_{j}-1}\right).

Now for each j[m]j\in[m], consider the ideal

Ij±:=\displaystyle I_{j}^{\pm}:= 𝒙jbdy(1)g1±,𝒙jbdy(2)g2±,,𝒙jbdy(rj)grj±\displaystyle\langle\langle\bm{x}^{\text{bdy}}_{j}(1)-g_{1}^{\pm},\bm{x}^{\text{bdy}}_{j}(2)-g_{2}^{\pm},\ldots,\bm{x}^{\text{bdy}}_{j}(r_{j})-g_{r_{j}}^{\pm}\rangle\rangle
[s1,s2,,srj1,x1,x2,,xrj],\displaystyle\subseteq\mathbb{R}[s_{1},s_{2},\ldots,s_{r_{j}-1},x_{1},x_{2},\ldots,x_{r_{j}}],

and let Ij,rj1±:=Ij±[x1,,xrj]I_{j,r_{j}-1}^{\pm}:=I_{j}^{\pm}\cap\mathbb{R}[x_{1},...,x_{r_{j}}] be the (rj1)(r_{j}-1)th elimination ideal of Ij±I_{j}^{\pm}. Then for each j[m]j\in[m], the variety

V(Ij,rj1+)=V[x1,,xrj](pjupper).V\left(I_{j,r_{j}-1}^{+}\right)=V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}(p_{j}^{\text{upper}}).

Likewise, the variety V(Ij,rj1)=V[x1,,xrj](pjlower)V\left(I_{j,r_{j}-1}^{-}\right)=V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}(p_{j}^{\text{lower}}).

Thus, the algebraic boundary (i.e., the Zariski closure of the Euclidean boundary) of j\mathcal{R}_{j} is

j=V[x1,,xrj](pjupper)V[x1,,xrj](pjlower).\partial\mathcal{R}_{j}=V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}\left(p_{j}^{\text{upper}}\right)\cup V_{\mathbb{R}[x_{1},...,x_{r_{j}}]}\left(p_{j}^{\text{lower}}\right).

Therefore, j:={𝒙rjpjupper(𝒙)0,pjlower(𝒙)0}\mathcal{R}_{j}:=\{\bm{x}\in\mathbb{R}^{r_{j}}\mid p_{j}^{\textup{upper}}(\bm{x})\leq 0,\;p_{j}^{\textup{lower}}(\bm{x})\leq 0\} is semialgebraic for all j[m]j\in[m].

Since the Cartesian product of semialgebraic sets is semialgebraic, the statement follows from (18). \blacksquare

-G Proof of Theorem 5

We organize the proof in three steps.
Step 1: From (18), we have

vol(({𝒙0},t))\displaystyle{\mathrm{vol}}\left(\mathcal{R}^{\Box}\left(\{\bm{x}_{0}\},t\right)\right) =vol(1×2××m)\displaystyle={\mathrm{vol}}\left(\mathcal{R}_{1}\times\mathcal{R}_{2}\times\ldots\times\mathcal{R}_{m}\right)
=j=1mvol(j({𝒙0},t)).\displaystyle=\displaystyle\prod_{j=1}^{m}{\mathrm{vol}}\left(\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\right). (65)

Step 2: Motivated by (65), we focus on deriving the rjr_{j}-dimensional volume of j({𝒙0},t)\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right). For this purpose, we proceed as in [4] by uniformly discretizing the interval [0,t][0,t] into nn subintervals [(i1)t/n,it/n)[(i-1)t/n,it/n), i=1,,ni=1,\ldots,n, with (n+1)(n+1) breakpoints {ti}i=0n\{t_{i}\}_{i=0}^{n}, where ti:=it/nt_{i}:=it/n for i=0,1,,ni=0,1,\ldots,n.

From (24), we then have

vol(j({𝒙0},t))=vol(limni=0ntnexp(ti𝑨j)𝒃j[μj,μj])\displaystyle{\mathrm{vol}}\left(\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\right)={\mathrm{vol}}\left(\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{i=0}^{n}\frac{t}{n}\exp\left(t_{i}\bm{A}_{j}\right)\bm{b}_{j}[-\mu_{j},\mu_{j}]\right)
=limn(tn)rjvol(i=0nexp(ti𝑨j)𝒃j[μj,μj])\displaystyle=\!\displaystyle\lim_{n\rightarrow\infty}\!\left(\dfrac{t}{n}\right)^{\!\!r_{j}}\!\!{\mathrm{vol}}\left(\displaystyle\sum_{i=0}^{n}\exp\left(t_{i}\bm{A}_{j}\right)\bm{b}_{j}[-\mu_{j},\mu_{j}]\right)
=trjlimn1nrjvol(i=0nμj𝝃j(ti)[1,1]),\displaystyle=t^{r_{j}}\displaystyle\lim_{n\rightarrow\infty}\dfrac{1}{n^{r_{j}}}{\mathrm{vol}}\left(\displaystyle\sum_{i=0}^{n}\mu_{j}\bm{\xi}_{j}(t_{i})[-1,1]\right), (66)

where 𝝃j\bm{\xi}_{j} was defined in (13). We recognize that the set i=0nμj𝝃j(ti)[1,1]\sum_{i=0}^{n}\mu_{j}\bm{\xi}_{j}(t_{i})[-1,1] in (66) is a Minkowski sum of n+1n+1 intervals, i.e., is a zonotope imbedded in rj\mathbb{R}^{r_{j}}, wherein each interval is rotated and scaled in rj\mathbb{R}^{r_{j}} via different linear transformations exp(ti𝑨j)\exp(t_{i}\bm{A}_{j}), i=0,1,,ni=0,1,\ldots,n.

Using the formula for the volume of zonotopes [15, eqn. (57)], [69, exercise 7.19], we can write (66) as

vol\displaystyle\mathrm{vol} (j({𝒙0},t))=(2μjt)rjlimn1nrj×\displaystyle\left(\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\right)=(2\mu_{j}t)^{r_{j}}\displaystyle\lim_{n\rightarrow\infty}\dfrac{1}{n^{r_{j}}}\>\times
0i1<i2<<irjndet(𝝃j(ti1)|𝝃j(ti2)||𝝃j(tirj)).\displaystyle\displaystyle\sum_{0\leq i_{1}<i_{2}<\ldots<i_{r_{j}}\leq n}\!\!\!\!{\mathrm{det}}\left(\bm{\xi}_{j}(t_{i_{1}})|\bm{\xi}_{j}(t_{i_{2}})|\ldots|\bm{\xi}_{j}(t_{i_{r_{j}}})\right). (67)

To compute the summand determinants in (67), let

Δj(i1,i2,,irj):=det(𝝃j(ti1)|𝝃j(ti2)||𝝃j(tirj)),\Delta_{j}\left(i_{1},i_{2},\ldots,i_{r_{j}}\right):={\mathrm{det}}\left(\bm{\xi}_{j}(t_{i_{1}})|\bm{\xi}_{j}(t_{i_{2}})|\ldots|\bm{\xi}_{j}(t_{i_{r_{j}}})\right),

where 0i1<i2<<irjn0\leq i_{1}<i_{2}<\ldots<i_{r_{j}}\leq n. In the matrix list notation, let us use the vertical bars |||\cdot| to denote the absolute value of determinant. From (13), Δj(i1,i2,,irj)\Delta_{j}\left(i_{1},i_{2},\ldots,i_{r_{j}}\right) equals

|(i1t/n)rj1(rj1)!(i2t/n)rj1(rj1)!(irjt/n)rj1(rj1)!(i1t/n)rj2(rj2)!(i2t/n)rj2(rj2)!(irjt/n)rj2(rj2)!i1t/ni2t/nirjt/n111|\displaystyle\begin{vmatrix}\dfrac{\left(i_{1}t/n\right)^{r_{j}-1}}{(r_{j}-1)!}&\dfrac{\left(i_{2}t/n\right)^{r_{j}-1}}{(r_{j}-1)!}&\ldots&\dfrac{\left(i_{r_{j}}t/n\right)^{r_{j}-1}}{(r_{j}-1)!}\\ &&&\\ \dfrac{\left(i_{1}t/n\right)^{r_{j}-2}}{(r_{j}-2)!}&\dfrac{\left(i_{2}t/n\right)^{r_{j}-2}}{(r_{j}-2)!}&\ldots&\dfrac{\left(i_{r_{j}}t/n\right)^{r_{j}-2}}{(r_{j}-2)!}\\ &&&\\ \vdots&\vdots&\vdots&\vdots\\ &&&\\ i_{1}t/n&i_{2}t/n&\ldots&i_{r_{j}}t/n\\ &&&\\ 1&1&\ldots&1\end{vmatrix}
=(t/n)1+2++(rj1)1!×2!××(rj1)!|i1rj1i2rj1irjrj1i1rj2i2rj2irjrj2i1i2irj111|,\displaystyle=\dfrac{(t/n)^{1+2+\ldots+(r_{j}-1)}}{1!\times 2!\times\ldots\times(r_{j}-1)!}\begin{vmatrix}i_{1}^{r_{j}-1}&i_{2}^{r_{j}-1}&\ldots&i_{r_{j}}^{r_{j}-1}\\ &&&\\ i_{1}^{r_{j}-2}&i_{2}^{r_{j}-2}&\ldots&i_{r_{j}}^{r_{j}-2}\\ &&&\\ \vdots&\vdots&\vdots&\vdots\\ &&&\\ i_{1}&i_{2}&\ldots&i_{r_{j}}\\ &&&\\ 1&1&\ldots&1\end{vmatrix},
=(t/n)rj(rj1)/2k=1rj1k!|111i1i2irji1rj2i2rj2irjrj2i1rj1i2rj1irjrj1|,\displaystyle=\dfrac{(t/n)^{r_{j}(r_{j}-1)/2}}{\displaystyle\prod_{k=1}^{r_{j}-1}k!}\begin{vmatrix}1&1&\ldots&1\\ &&&\\ i_{1}&i_{2}&\ldots&i_{r_{j}}\\ &&&\\ \vdots&\vdots&\vdots&\vdots\\ &&&\\ i_{1}^{r_{j}-2}&i_{2}^{r_{j}-2}&\ldots&i_{r_{j}}^{r_{j}-2}\\ &&&\\ i_{1}^{r_{j}-1}&i_{2}^{r_{j}-1}&\ldots&i_{r_{j}}^{r_{j}-1}\\ \end{vmatrix}, (68)

where we used the properties of elementary row operations.

Notice that the determinant appearing in the last step of (68) is the Vandermonde determinant (see e.g., [70, p. 37])

1a<brj(ibia).\displaystyle\displaystyle\prod_{1\leq a<b\leq r_{j}}\left(i_{b}-i_{a}\right). (69)

Combining (67), (68) and (69), we obtain

vol\displaystyle\mathrm{vol} (j({𝒙0},t))=(2μj)rjtrj(rj+1)/2k=1rj1k!limn1nrj(rj+1)/2×\displaystyle\left(\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\right)=\dfrac{(2\mu_{j})^{r_{j}}t^{r_{j}(r_{j}+1)/2}}{\displaystyle\prod_{k=1}^{r_{j}-1}k!}\displaystyle\lim_{n\rightarrow\infty}\dfrac{1}{n^{r_{j}(r_{j}+1)/2}}\>\times
0i1<i2<<irjn1a<brj(ibia).\displaystyle\displaystyle\sum_{0\leq i_{1}<i_{2}<\ldots<i_{r_{j}}\leq n}\quad\displaystyle\prod_{1\leq a<b\leq r_{j}}\left(i_{b}-i_{a}\right). (70)

Step 3: Our next task is to simplify (70). Observe that the sum

0i1<i2<<irjn1a<brj(ibia),\displaystyle\displaystyle\sum_{0\leq i_{1}<i_{2}<\ldots<i_{r_{j}}\leq n}\quad\displaystyle\prod_{1\leq a<b\leq r_{j}}\left(i_{b}-i_{a}\right), (71)

returns a polynomial in nn of degree rj(rj+1)/2r_{j}(r_{j}+1)/2, and hence the limit in (70) is always well-defined. Specifically, the limit extracts the leading coefficient of this polynomial.

Let us denote the leading coefficient of the sum (71) as c(rj)c(r_{j}). By the Euler-Maclaurin formula [71], [72, Chap. II.10]:

c(rj)=0y1<y2<<yrj11α<βrj(yayb)a=1rjdya.\displaystyle\!\!\!\!c(r_{j})=\!\!\!\displaystyle\int\limits_{0\leq y_{1}<y_{2}<\ldots<y_{r_{j}}\leq 1}\;\prod\limits_{1\leq\alpha<\beta\leq r_{j}}\!\!(y_{a}-y_{b})\cdot\prod\limits_{a=1}^{r_{j}}{\rm{d}}y_{a}. (72)

One way to unpack (72) is to write it as a sum over the symmetric permutation group 𝔖rj\mathfrak{S}_{r_{j}} of the finite set [rj][r_{j}], i.e.,

c(rj)=σ𝔖rjsgn(σ)1k=1rj(σ1+σ2++σk),\!\!c(r_{j})=\displaystyle\sum_{\sigma\in\mathfrak{S}_{r_{j}}}\text{sgn}(\sigma)\displaystyle\frac{1}{\prod_{k=1}^{r_{j}}(\sigma_{1}+\sigma_{2}+...+\sigma_{k})},

where sgn(σ):=(1)ν\text{sgn}(\sigma):=(-1)^{\nu}, ν:={#(i,j)i<j,σ(i)>σ(j)}\nu:=\{\#(i,j)\mid i<j,\sigma(i)>\sigma(j)\}, and #\# stands for “the number of”. We will now prove that

c(rj)=k=1rj1(k!)2(2k+1)!.\displaystyle c(r_{j})=\displaystyle\prod_{k=1}^{r_{j}-1}\dfrac{\left(k!\right)^{2}}{(2k+1)!}. (73)

To this end, we write rj!c(rj)r_{j}!\cdot c(r_{j}) as an integral over [0,1]rj[0,1]^{r_{j}}:

rj!c(rj)=[0,1]rj1a<brj|yayb|dy1dyrj.\displaystyle r_{j}!\cdot c(r_{j})=\int_{[0,1]^{r_{j}}}\prod_{1\leq a<b\leq r_{j}}|y_{a}-y_{b}|\>{\rm{d}}y_{1}...{\rm{d}}y_{r_{j}}. (74)

In 1955, de Bruijn [73, see toward the end of Sec. 9] used certain Pfaffians to evaluate

[0,1]rj1a<brj|yayb|dy1dyrj\displaystyle\int_{[0,1]^{r_{j}}}\prod_{1\leq a<b\leq r_{j}}|y_{a}-y_{b}|\>{\rm{d}}y_{1}...{\rm{d}}y_{r_{j}}
=\displaystyle= rj!{1!×2!××(rj1)!}21!×3!××(2rj1)!,rj=2,3,,\displaystyle\frac{r_{j}!\cdot\{1!\times 2!\times...\times(r_{j}-1)!\}^{2}}{1!\times 3!\times...\times(2r_{j}-1)!},\quad r_{j}=2,3,\ldots,

which upon substitution in (74), indeed yields (73).

Combining (70) and (73), we arrive at

vol(j({𝒙0},t))\displaystyle\!\!\!\mathrm{vol}\left(\mathcal{R}_{j}\left(\{\bm{x}_{0}\},t\right)\right) =(2μj)rjtrj(rj+1)/2k=1rj1k!c(rj)\displaystyle=\dfrac{(2\mu_{j})^{r_{j}}t^{r_{j}(r_{j}+1)/2}}{\displaystyle\prod_{k=1}^{r_{j}-1}k!}c(r_{j})
=(2μj)rjtrj(rj+1)/2k=1rj1k!(2k+1)!.\displaystyle=(2\mu_{j})^{r_{j}}t^{r_{j}(r_{j}+1)/2}\displaystyle\prod_{k=1}^{r_{j}-1}\dfrac{k!}{(2k+1)!}. (75)

Finally, substituting (75) in (65), and recalling that r1+r2++rm=dr_{1}+r_{2}+\ldots+r_{m}=d, the expression (41) follows. \blacksquare

-H Proof of Theorem 6

From (13), the subvector 𝝃j(s)\bm{\xi}_{j}(s), where j[m]j\in[m], is component-wise nonnegative for all s[0,t]s\in[0,t].

Therefore, by triangle inequality, we have

0t|𝜼,𝝃(s)|ds0tj=1m|𝜼j|,μj𝝃j(s)=|𝜼|,𝜻(t),\displaystyle\!\int_{0}^{t}\!\lvert\langle\bm{\eta},\bm{\xi}(s)\rangle\rvert\>{\rm{d}}s\leq\!\int_{0}^{t}\!\sum_{j=1}^{m}\langle\lvert\bm{\eta}_{j}\rvert,\mu_{j}\bm{\xi}_{j}(s)\rangle=\langle|\bm{\eta}|,\bm{\zeta}(t)\rangle, (76)

where |𝜼j||\bm{\eta}_{j}| denotes the jjth subvector with component-wise absolute values. Let us call |𝜼||\bm{\eta}| as the “absolute unit vector”.

The upper bound in (76) is convex in 𝜼\bm{\eta}, and is maximized by an absolute unit vector collinear with 𝜻(t)\bm{\zeta}(t) given by

𝜼=±𝜻(t)𝜻(t)2,\displaystyle\bm{\eta}=\pm\dfrac{\bm{\zeta}(t)}{\parallel\bm{\zeta}(t)\parallel_{2}}, (77)

i.e., the unit vectors associated with 𝜻(t)\bm{\zeta}(t) up to plus-minus sign permutations among its components.

Out of the 2d2^{d} unit vectors given by (77), the “all plus” and “all minus” unit vectors achieve equality in (76), and hence must be the maximizers of (43). The inequality (76) remains strict for the remaining 2d22^{d}-2 unit vectors in (77), thus are suboptimal for (43). Therefore, the maximizers in (44) are

𝜼max=𝜻(t)/𝜻(t)2,𝜻(t)/𝜻(t)2,\bm{\eta}^{\max}=\bm{\zeta}(t)/\parallel\bm{\zeta}(t)\parallel_{2},\quad-\bm{\zeta}(t)/\parallel\bm{\zeta}(t)\parallel_{2},

which upon substitution in (43), results in (45). \blacksquare

References

  • [1] P. Varaiya, “Reach set computation using optimal control,” in Verification of Digital and Hybrid Systems.   Springer, 2000, pp. 323–331.
  • [2] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems, 2015.
  • [3] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox (ET),” in Proceedings of the 45th IEEE Conference on Decision and Control.   IEEE, 2006, pp. 1498–1503.
  • [4] S. Haddad and A. Halder, “The convex geometry of integrator reach sets,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 4466–4471.
  • [5] R. J. Aumann, “Integrals of set-valued functions,” Journal of Mathematical Analysis and Applications, vol. 12, no. 1, pp. 1–12, 1965.
  • [6] S. Haddad and A. Halder, “Boundary and taxonomy of integrator reach sets,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 4133–4138.
  • [7] J. M. Borwein and R. E. Crandall, “Closed forms: what they are and why we care,” Notices of the AMS, vol. 60, no. 1, pp. 50–65, 2013.
  • [8] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I: Fundamentals.   Springer Science & Business media, 2013, vol. 305.
  • [9] A. A. Liapounoff, “Sur les fonctions-vecteurs completement additives,” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, vol. 4, no. 6, pp. 465–478, 1940.
  • [10] P. R. Halmos, “The range of a vector measure,” Bulletin of the American Mathematical Society, vol. 54, no. 4, pp. 416–421, 1948.
  • [11] J. Diestel and B. Faires, “On vector measures,” Transactions of the American Mathematical Society, vol. 198, pp. 253–271, 1974.
  • [12] N. Dinculeanu, Vector measures.   Elsevier, 2014.
  • [13] R. Schneider, Convex bodies: the Brunn–Minkowski theory.   Cambridge University Press, 2014, no. 151.
  • [14] P. McMullen, “On zonotopes,” Transactions of the American Mathematical Society, vol. 159, pp. 91–109, 1971.
  • [15] G. Shephard, “Combinatorial properties of associated zonotopes,” Canadian Journal of Mathematics, vol. 26, no. 2, pp. 302–321, 1974.
  • [16] H. S. M. Coxeter, Regular polytopes.   Courier Corporation, 1973.
  • [17] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in International Workshop on Hybrid Systems: Computation and Control.   Springer, 2005, pp. 291–305.
  • [18] A. Girard and C. Le Guernic, “Zonotope/hyperplane intersection for hybrid systems reachability analysis,” in International Workshop on Hybrid Systems: Computation and Control.   Springer, 2008, pp. 215–228.
  • [19] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233–249, 2010.
  • [20] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient computation of reachable sets,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference.   IEEE, 2011, pp. 6814–6821.
  • [21] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz, “Constrained zonotopes: A new tool for set-based estimation and fault detection,” Automatica, vol. 69, pp. 126–136, 2016.
  • [22] A. S. Adimoolam and T. Dang, “Using complex zonotopes for stability verification,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 4269–4274.
  • [23] M. Althoff, “Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets,” in Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 2013, pp. 173–182.
  • [24] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A novel set representation for reachability analysis,” IEEE Transactions on Automatic Control, 2020.
  • [25] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra.   Springer Science & Business Media, 2013.
  • [26] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations.   Springer Science & Business Media, 1999, vol. 43.
  • [27] S. Haddad and A. Halder, “Certifying the intersection of reach sets of integrator agents with set-valued input uncertainties,” IEEE Control Systems Letters, 2022.
  • [28] E. D. Bolker, “A class of convex bodies,” Transactions of the American Mathematical Society, vol. 145, pp. 323–345, 1969.
  • [29] R. Schneider and W. Weil, “Zonoids and related topics,” in Convexity and its Applications.   Springer, 1983, pp. 296–317.
  • [30] P. Goodey and W. Wolfgang, “Zonoids and generalisations,” in Handbook of Convex Geometry.   Elsevier, 1993, pp. 1297–1326.
  • [31] J. Bourgain, J. Lindenstrauss, and V. Milman, “Approximation of zonoids by zonotopes,” Acta Mathematica, vol. 162, no. 1, pp. 73–141, 1989.
  • [32] C. Vinzant, “The geometry of spectrahedra,” in Sum of Squares: Theory and Applications.   American Mathematical Society, 2020, pp. 11–36.
  • [33] A. Tarski, “A decision method for elementary algebra and geometry,” in Quantifier elimination and cylindrical algebraic decomposition.   Springer, 1998, pp. 24–84.
  • [34] A. Seidenberg, “A new decision method for elementary algebra,” Annals of Mathematics, pp. 365–374, 1954.
  • [35] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry.   Springer Science & Business Media, 2013, vol. 36.
  • [36] G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidefinite optimization and convex algebraic geometry.   SIAM, 2012.
  • [37] A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes: Theory and Computation.   Springer, 2014, vol. 85.
  • [38] G. Zaimi, “A polynomial implicitization,” MathOverflow. [Online]. Available: https://mathoverflow.net/q/381335
  • [39] H. S. Wilf, generatingfunctionology.   CRC Press, 2005.
  • [40] L. Kronecker, Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen.   Buchdruckerei der Königl. Akademie der Wissenschaften (G. Vogt), 1881.
  • [41] R. Salem, Algebraic numbers and Fourier analysis.   Wadsworth Publishing Company, 1983.
  • [42] R. Schneider, “Zonoids whose polars are zonoids,” Proceedings of the American Mathematical Society, vol. 50, no. 1, pp. 365–368, 1975.
  • [43] Y. Lonke, “On zonoids whose polars are zonoids,” Israel Journal of Mathematics, vol. 102, no. 1, pp. 1–12, 1997.
  • [44] J. W. Helton and V. Vinnikov, “Linear matrix inequality representation of sets,” Communications on Pure and Applied Mathematics, vol. 60, no. 5, pp. 654–674, 2007.
  • [45] J. W. Helton and J. Nie, “Semidefinite representation of convex sets,” Mathematical Programming, vol. 122, no. 1, pp. 21–64, 2010.
  • [46] S. P. Boyd and L. Vandenberghe, Convex optimization.   Cambridge University Press, 2004.
  • [47] L.-L. Xie and P. R. Kumar, “A network information theory for wireless communication: Scaling laws and optimal operation,” IEEE transactions on information theory, vol. 50, no. 5, pp. 748–767, 2004.
  • [48] F. Xue, P. R. Kumar et al., “Scaling laws for ad hoc wireless networks: an information theoretic approach,” Foundations and Trends® in Networking, vol. 1, no. 2, pp. 145–270, 2006.
  • [49] C. Fan, J. Kapinski, X. Jin, and S. Mitra, “Locally optimal reach set over-approximation for nonlinear systems,” in 2016 International Conference on Embedded Software (EMSOFT).   IEEE, 2016, pp. 1–10.
  • [50] Y. Meng, D. Sun, Z. Qiu, M. T. B. Waez, and C. Fan, “Learning density distribution of reachable states for autonomous systems,” in Conference on Robot Learning.   PMLR, 2022, pp. 124–136.
  • [51] OEIS Foundation Inc., “The On-Line Encyclopedia of Integer Sequences,” http://oeis.org/A107254, 2019.
  • [52] S. R. Finch, Mathematical constants.   Cambridge University Press, 2003.
  • [53] N. G. De Bruijn, Asymptotic methods in analysis.   Courier Corporation, 1981, vol. 4.
  • [54] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables.   US Government Printing Office, 1970, vol. 55.
  • [55] F. C. Schweppe, Uncertain dynamic systems.   Prentice Hall, 1973.
  • [56] F. Chernousko, “Optimal guaranteed estimates of indeterminacies with the aid of ellipsoids, I,” Engineering Cybernetics, vol. 18, no. 3, pp. 1–9, 1980.
  • [57] ——, “Guaranteed ellipsoidal estimates of uncertainties in control problems,” IFAC Proceedings Volumes, vol. 14, no. 2, pp. 869–874, 1981.
  • [58] D. Maksarov and J. Norton, “State bounding with ellipsoidal set description of the uncertainty,” International Journal of Control, vol. 65, no. 5, pp. 847–866, 1996.
  • [59] C. Durieu, E. Walter, and B. Polyak, “Multi-input multi-output ellipsoidal state bounding,” Journal of Optimization Theory and Applications, vol. 111, no. 2, pp. 273–303, 2001.
  • [60] T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005.
  • [61] A. Halder, “On the parameterized computation of minimum volume outer ellipsoid of Minkowski sum of ellipsoids,” in 2018 IEEE Conference on Decision and Control (CDC).   IEEE, 2018, pp. 4040–4045.
  • [62] ——, “Smallest ellipsoid containing p-sum of ellipsoids with application to reachability analysis,” IEEE Transactions on Automatic Control, 2020.
  • [63] “CORA: A tool for continuous reachability analysis,” https://tumcps.github.io/CORA/, accessed: 2021-02-14.
  • [64] A. Kurzhanskiĭ and I. Vályi, Ellipsoidal calculus for estimation and control.   Nelson Thornes, 1997.
  • [65] F. John, “Extremum problems with inequalities as subsidiary conditions,” Studies and Essays: Courant Anniversary Volume, presented to R. Courant on his 60th Birthday, pp. 187–204, 1948.
  • [66] M. Henk, “Löwner-John ellipsoids,” Documenta Math, vol. 95, p. 106, 2012.
  • [67] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory.   SIAM, 1994.
  • [68] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1,” http://cvxr.com/cvx, Mar 2014.
  • [69] G. M. Ziegler, Lectures on polytopes.   Springer Science & Business Media, 2012, vol. 152.
  • [70] R. A. Horn and C. R. Johnson, Matrix analysis.   Cambridge University Press, 2012.
  • [71] T. M. Apostol, “An elementary view of Euler’s summation formula,” The American Mathematical Monthly, vol. 106, no. 5, pp. 409–418, 1999.
  • [72] E. Hairer and G. Wanner, Analysis by its History.   Springer Science & Business Media, 2006, vol. 2.
  • [73] N. De Bruijn, “On some multiple integrals involving determinants,” J. Indian Math. Soc, vol. 19, pp. 133–151, 1955.