This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\jyear

2021

The Cowen-Douglas Theory for Operator Tuples and Similarity

Kui Ji    Shanshan Ji    Hyun-Kyoung Kwon    Jing Xu
Abstract

We are concerned with the similarity problem for Cowen-Douglas operator tuples. The unitary equivalence counterpart was already investigated in the 1970’s and geometric concepts including vector bundles and curvature appeared in the description. As the Cowen-Douglas conjecture show, the study of the similarity problem has not been so successful until quite recently. The latest results reveal the close correlation between complex geometry, the corona problem, and the similarity problem for single Cowen-Douglas operators. Without making use of the corona theorems that no longer hold in the multi-variable setting, we prove that the single operator results for similarity remain true for Cowen-Douglas operator tuples as well.

keywords:
The Cowen-Douglas class, Similarity, Complex bundles, Curvature inequality
pacs:
[

MSC]Primary 47B13, 32L05; Secondary 32A10, 32A36, 32Q05

1 Introduction

To study equivalence problems for bounded linear operators on Hilbert space to which standard methods do not apply, M. J. Cowen and R. G. Douglas introduced in the late 1970’s, a class of operators with a holomorphic eigenvector bundle structure CD ; CD2 . Prior to the introduction of the Cowen-Douglas class, the discussion on operator equivalence for even the adjoints of various shift operators (the most-mentioned entities in the study of operators) was non-existent. Their influential work connects concepts and results from complex geometry to the fundamental problem of determining operator equivalence. Note that when one considers operators that are defined on finite-dimensional Hilbert space, the well-known Jordan Canonical Form Theorem and the results by C. Pearcy Pearcy and W. Specht Specht give a complete answer to this problem.

For a complex separable Hilbert space \mathcal{H}, let ()\mathcal{L}(\mathcal{H}) denote the algebra of bounded linear operators on \mathcal{H}. For mm\in\mathbb{N}, let 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} and 𝐒=(S1,,Sm)()m\mathbf{S}=(S_{1},\cdots,S_{m})\in\mathcal{L}(\mathcal{H})^{m} be mm-tuples of commuting operators on \mathcal{H}. If there is a unitary operator U()U\in\mathcal{L}(\mathcal{H}) such that U𝐓=𝐒UU\mathbf{T}=\mathbf{S}U, then 𝐓\mathbf{T} and 𝐒\mathbf{S} are said to be unitarily equivalent (denoted by 𝐓u𝐒\mathbf{T}\sim_{u}\mathbf{S}). If there is an invertible operator X()X\in\mathcal{L}(\mathcal{H}) such that X𝐓=𝐒XX\mathbf{T}=\mathbf{S}X, then 𝐓\mathbf{T} and 𝐒\mathbf{S} are similar (denoted by 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S}).

Given 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m}, first define an operator 𝒟𝐓:\mathscr{D}_{\mathbf{T}}:\mathcal{H}\longrightarrow\mathcal{H}\oplus\cdots\oplus\mathcal{H} by

𝒟𝐓h=(T1h,,Tmh),\mathscr{D}_{\mathbf{T}}h=(T_{1}h,\cdots,T_{m}h),

for hh\in\mathcal{H}. Let Ω\Omega be a bounded domain of the mm-dimensional complex plane m\mathbb{C}^{m} and consider w=(w1,,wm)Ωw=(w_{1},\cdots,w_{m})\in\Omega. If one sets 𝐓w:=(T1w1,,Tmwm)\mathbf{T}-w:=(T_{1}-w_{1},\cdots,T_{m}-w_{m}), then it is easily seen that ker𝒟𝐓w=i=1mker(Tiwi).\ker\mathscr{D}_{\mathbf{T}-w}=\bigcap\limits_{i=1}^{m}\ker(T_{i}-w_{i}).

Definition 1.1.

For m,nm,n\in\mathbb{N} and Ωm\Omega\subset\mathbb{C}^{m}, the Cowen-Douglas class nm(Ω)\mathbf{\mathcal{B}}_{n}^{m}(\Omega) consists of mm-tuples of commuting operators 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} satisfying the following conditions:

  • (1)

    ran𝒟𝐓w\text{ran}\mathscr{D}_{\mathbf{T}-w} is closed for all wΩw\in\Omega;

  • (2)

    dimker𝒟𝐓w=n\dim\ker\mathscr{D}_{\mathbf{T}-w}=n for all wΩw\in\Omega; and

  • (3)

    wΩker𝒟𝐓w\bigvee_{w\in\Omega}\ker\mathscr{D}_{\mathbf{T}-w} is dense in \mathcal{H}.

For an mm-tuple of commuting operators 𝐓=(T1,,Tm)nm(Ω),\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathbf{\mathcal{B}}_{n}^{m}(\Omega), M. J. Cowen and R. G. Douglas proved in CD ; CD2 that an associated holomorphic eigenvector bundle 𝐓\mathcal{E}_{\mathbf{T}} over Ω\Omega of rank nn exists, where

𝐓={(w,x)Ω×:xker𝒟𝐓w},π(w,x)=w.\mathcal{E}_{\mathbf{T}}=\{(w,x)\in\Omega\times\mathcal{H}:x\in\ker\mathscr{D}_{\mathbf{T}-w}\},\quad\pi(w,x)=w.

Furthermore, it was shown that two operator tuples 𝐓\mathbf{T} and 𝐓~\widetilde{\mathbf{T}} in nm(Ω)\mathbf{\mathcal{B}}_{n}^{m}(\Omega) are unitarily equivalent if and only if the vector bundles 𝐓\mathcal{E}_{\mathbf{T}} and 𝐓~\mathcal{E}_{\widetilde{\mathbf{T}}} are equivalent as Hermitian holomorphic vector bundles. They also showed that every mm-tuple 𝐓nm(Ω)\mathbf{T}\in\mathcal{B}_{n}^{m}(\Omega) can be realized as the adjoint of an mm-tuple of multiplication operators by the coordinate functions on a Hilbert space of holomorphic functions on Ω={w¯:wΩ}\Omega^{*}=\{\overline{w}:w\in\Omega\}.

For 𝐓nm(Ω),\mathbf{T}\in\mathbf{\mathcal{B}}_{n}^{m}(\Omega), if we let σ={σ1,,σn}\sigma=\{\sigma_{1},\ldots,\sigma_{n}\} be a holomorphic frame of 𝐓\mathcal{E}_{\mathbf{T}} and form the Gram matrix h(w)=(σj(w),σi(w))i,j=1nh(w)=(\langle\sigma_{j}(w),\sigma_{i}(w)\rangle)_{i,j=1}^{n} for wΩ,w\in\Omega, then the curvature 𝒦𝐓\mathcal{K}_{\mathbf{T}} and the corresponding curvature matrix K𝐓K_{\mathbf{T}} with entries K𝐓i,j,1i,jmK_{\mathbf{T}}^{i,j},1\leq i,j\leq m, of the bundle 𝐓\mathcal{E}_{\mathbf{T}} are given by the formulas

𝒦𝐓(w)=i,j=1mw¯j(h1(w)h(w)wi)dwidw¯j,K𝐓i,j(w)=w¯j(h1(w)h(w)wi).\begin{split}\mathcal{K}_{\mathbf{T}}(w)&=-\sum\limits_{i,j=1}^{m}\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}(w)\frac{\partial h(w)}{\partial w_{i}}\right)dw_{i}\wedge d\overline{w}_{j},\\ &K_{\mathbf{T}}^{i,j}(w)=-\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}(w)\frac{\partial h(w)}{\partial w_{i}}\right).\end{split} (1.1)

Note that we omit the notation \mathcal{E} in 𝒦𝕋\mathcal{K}_{\mathbb{T}} without any ambiguity. Since the above formulas depend on the selection of the holomorphic frame, they are also written as 𝒦𝐓(σ)\mathcal{K}_{\mathbf{T}}(\sigma) and K𝐓i,j(σ)K_{\mathbf{T}}^{i,j}(\sigma), respectively, should the need arise. In the special case of 𝐓1m(Ω)\mathbf{T}\in\mathcal{B}_{1}^{m}(\Omega), the curvature of the line bundle 𝐓\mathcal{E}_{\mathbf{T}} can be defined alternately as

𝒦𝐓(w)=i,j=1m2logγ(w)2wiw¯jdwidw¯j,\mathcal{K}_{\mathbf{T}}(w)=-\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\log\|\gamma(w)\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},

where γ\gamma is a non-vanishing holomorphic section of 𝐓\mathcal{E}_{\mathbf{T}}. In BKM , S. Biswas, D. K. Keshari, and G. Misra showed that the curvature matrix K𝐓K_{\mathbf{T}} of any 𝐓1m(Ω)\mathbf{T}\in\mathbf{\mathcal{B}}_{1}^{m}(\Omega) is negative-definite. Moreover, in CD , it was shown that for 𝐓,𝐓~11(Ω)\mathbf{T},\widetilde{\mathbf{T}}\in\mathcal{B}_{1}^{1}(\Omega), 𝐓u𝐓~\mathbf{T}\sim_{u}\widetilde{\mathbf{T}} if and only if 𝒦𝐓=𝒦𝐓~.\mathcal{K}_{\mathbf{T}}=\mathcal{K}_{\widetilde{\mathbf{T}}}. The curvature 𝒦𝕋\mathcal{K}_{\mathbb{T}}, along with certain covariant derivations of the curvature, form a complete set of unitary invariants for an operator 𝕋n1(Ω)\mathbb{T}\in\mathcal{B}_{n}^{1}(\Omega) and this is another main result of CD . In CS , R. E. Curto and N. Salinas established a relationship between the class nm(Ω)\mathcal{B}_{n}^{m}(\Omega) and generalized reproducing kernels to describe when two mm-tuples are unitarily equivalent. A similarity result for Cowen-Douglas operators in geometric terms such as curvature had been much more difficult to obtain. In fact, the work of D. N. Clark and G. Misra in CM2 ; CM showed that the Cowen-Douglas conjecture that similarity can be determined from the behavior of the quotient of the entries of curvature matrices was false.

The corona problem of complex analysis is closely related to operator theory and complex geometry Carleson1962 ; N ; NKN ; NF1970 ; U . In particular, M. Uchiyama characterized the contractive operators that are similar to the adjoint of some multiplication operator in the work U based on the corona theorem due to M. Rosenblum in R . The following lemma given by N. K. Nikolski shows how to use the notion of projections 𝒫(w)\mathcal{P}(w), 𝒫(w)=𝒫(w)2\mathcal{P}(w)=\mathcal{P}(w)^{2}, to solve the corona problem. The space HEE(Ω)H^{\infty}_{E_{*}\rightarrow E}(\Omega) denotes the algebra of bounded analytic functions defined on a domain Ωm\Omega\subset\mathbb{C}^{m} whose function values are bounded linear operators from a Hilbert space EE_{*} to another one EE:

Lemma 1.2 (Nikolski’s Lemma).

Let FHEE(Ω)F\in H^{\infty}_{E_{*}\rightarrow E}(\Omega) satisfy F(z)F(z)>δ2F^{*}(z)F(z)>\delta^{2} for some δ>0\delta>0 and for all zΩz\in\Omega. Then FF is left invertible in HEE(Ω)H^{\infty}_{E_{*}\rightarrow E}(\Omega) (i.e., there exists a GHEE(Ω)G\in H^{\infty}_{E\rightarrow E_{*}}(\Omega) such that GFIGF\equiv I) if and only if there exists a function 𝒫HEE(Ω)\mathcal{P}\in H^{\infty}_{E\rightarrow E}(\Omega) whose values are projections (not necessarily orthogonal) onto F(z)EF(z)E for all zΩz\in\Omega. Moreover, if such an analytic projection 𝒫\mathcal{P} exists, then one can find a left inverse GHEE(Ω)G\in H^{\infty}_{E\rightarrow E_{*}}(\Omega) satisfying Gδ1𝒫\|G\|_{\infty}\leq\delta^{-1}\|\mathcal{P}\|_{\infty}.

For Tn1(𝔻)T\in\mathcal{B}_{n}^{1}(\mathbb{D}), where 𝔻\mathbb{D}\subset\mathbb{C} denotes the unit disk, let Π(w)\Pi(w) denote the orthogonal projection onto ker(Tw)\ker(T-w), for each w𝔻w\in\mathbb{D}. In KT , the third author and S. Treil described when a contraction Tn1(𝔻)T\in\mathcal{B}_{n}^{1}(\mathbb{D}) is similar to nn copies of MzM^{*}_{z}, the adjoint of the shift operator on the Hardy space of the unit disk 𝔻\mathbb{D}, in terms of the curvature matrices. It was proven that Ts1nMzT\sim{s}\bigoplus\limits_{1}^{n}M^{*}_{z} if and only if

Π(w)w𝔖22n(1|w|2)22ψ(w)w¯w,\left\|\frac{\partial\Pi(w)}{\partial w}\right\|^{2}_{\mathfrak{S}_{2}}-\frac{n}{(1-|w|^{2})^{2}}\leq\frac{\partial^{2}\psi(w)}{\partial\overline{w}\partial w},

for some bounded subharmonic function ψ\psi defined on 𝔻\mathbb{D} and for all w𝔻w\in\mathbb{D}. For Tn1(𝔻)T\in\mathcal{B}_{n}^{1}(\mathbb{D}), trace KT=Π(w)w𝔖22\text{trace }K_{T}=-\left\|\frac{\partial\Pi(w)}{\partial w}\right\|_{\mathfrak{S}_{2}}^{2} (see HJK ; JS ), while trace KMz=1(1|w|2)2\text{trace }K_{M^{*}_{z}}=-\frac{1}{(1-|w|^{2})^{2}} for the Hardy shift MzM^{*}_{z}. The result was then generalized to other shift operators in DKT . Note that this is consistent with the curvature inequality result of G. Misra given in M .

The similarity results mentioned above rely, to some extent, on a model theorem and a well-known ¯\overline{\partial}-method that has been used extensively in recent years to solve numerous versions of the corona problem Lars1967 . For a contraction T()T\in\mathcal{L}(\mathcal{H}), the model theory of B. Sz.-Nagy and C. Foiaş provides the canonical model as a complete set of invariants. Model theorems for operator tuples in ()m\mathcal{L}(\mathcal{H})^{m} were also studied under various assumptions NF1970 ; NF . Since one cannot relate the similarity problem to the corona problem easily anymore in the multi-operator setting, we propose an alternative approach in managing the similarity of tuples of operators in nm(Ω)\mathcal{B}_{n}^{m}(\Omega) for m>1m>1.

Inspired by the previous similarity results, we first give a sufficient condition for the similarity between 𝐓1m(𝔹m)\mathbf{T}\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and the adjoint of the operator tuple 𝐌z=(Mz1,Mz2,,Mzm)\mathbf{M}_{z}=(M_{z_{1}},M_{z_{2}},\cdots,M_{z_{m}}) on a weighted Bergman space defined on the unit ball 𝔹m={zm:|z|<1}\mathbb{B}_{m}=\{z\in\mathbb{C}^{m}:|z|<1\} of m\mathbb{C}^{m}. The characterization is given in terms of the defect operator 𝒟𝐓\mathcal{D}_{\mathbf{T}} corresponding to 𝐓\mathbf{T}. Note that there already exist a number of necessary conditions for similarity – it is a sufficient condition that had been hard to obtain. Throughout the paper, 𝐌z=(Mz1,Mz2,,Mzm)\mathbf{M}_{z}=(M_{z_{1}},M_{z_{2}},\cdots,M_{z_{m}}) defined on a Hilbert space \mathcal{H} of holomorphic functions on 𝔹m\mathbb{B}_{m} will denote the tuple of multiplication operators by the coordinate functions

(Mzif)(z)=zif(z),(M_{z_{i}}f)(z)=z_{i}f(z),

for ff\in\mathcal{H} and z𝔹mz\in\mathbb{B}_{m}. It can be checked that 𝐌z1m(𝔹m),\mathbf{M}_{z}^{*}\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}), where 𝐌z=(Mz1,Mz2,,Mzm)\mathbf{M}^{*}_{z}=(M_{z_{1}}^{*},M_{z_{2}}^{*},\cdots,M_{z_{m}}^{*}).

Theorem 1.3.

Let 𝐓=(T1,,Tm)1m(𝔹m)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m})\subset\mathcal{L}(\mathcal{H})^{m} and consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}^{*}_{z}=(M^{*}_{z_{1}},\cdots,M^{*}_{z_{m}}) on a weighted Bergman space k\mathcal{H}_{k}, where k>m+1k>m+1. Suppose that (Ii=1mTiTi)k0(I-\sum\limits_{i=1}^{m}T_{i}^{*}T_{i})^{k}\geq 0 and limjfj(𝐓,𝐓)h=0,h\lim\limits_{j}f_{j}(\mathbf{T}^{*},\mathbf{T})h=0,h\in\mathcal{H}, where fj(z,w)=i=j𝐞i(z)(1z,w)k𝐞i(w)f_{j}(z,w)=\sum\limits_{i=j}^{\infty}\mathbf{e}_{i}(z)(1-\langle z,w\rangle)^{k}\mathbf{e}_{i}(w)^{*}, for an orthonormal basis {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} for k\mathcal{H}_{k}. If there exist a non-vanishing holomorphic section tt of T\mathcal{E}_{\textbf{T}} and a unit vector ζ0ran 𝒟𝐓¯\zeta_{0}\in\overline{\text{ran }\mathcal{D}_{\mathbf{T}}} such that

supw𝔹m𝒟𝐓t(w)2|𝒟𝐓t(w),ζ0|2<,\sup\limits_{w\in\mathbb{B}_{m}}\frac{\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2}}{\lvert\langle\mathcal{D}_{\mathbf{T}}t(w),\zeta_{0}\rangle\rvert^{2}}<\infty,

then 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*}.

Although there is no general corona theorem that works for higher-order domains, a related condition that will be called condition (𝐂)(\mathbf{C}) in Section 3 will play a significant role in the formulation of another sufficient condition for similarity in terms of curvature matrices. The space H(Ω)H^{\infty}(\Omega) denotes the collection of bounded analytic functions defined on the domain Ω\Omega.

Theorem 1.4.

Let 𝐓=(T1,,Tm)nm(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) and consider the operator tuple 𝐌z=(Mz1,,Mzm)n1m(𝔹m)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*})\in\mathcal{B}_{n_{1}}^{m}(\mathbb{B}_{m}) on a Hilbert space K\mathcal{H}_{K} defined on 𝔹m\mathbb{B}_{m} with reproducing kernel K.K. Suppose that n2:=n/n1n_{2}:=n/n_{1}\in\mathbb{N} and that there exist an isometry VV and a Hermitian holomorphic vector bundle \mathcal{E} over 𝔹m\mathbb{B}_{m} such that

VK𝐓,wIw¯JVK𝐌z,wIw¯JIn2=In1K,wIw¯J,I,J0m.VK_{\mathbf{T},w^{I}{\overline{w}}^{J}}V^{*}-K_{\mathbf{M}_{z}^{*},w^{I}{\overline{w}}^{J}}\otimes I_{n_{2}}=I_{n_{1}}\otimes{K}_{\mathcal{E},w^{I}\overline{w}^{J}},\quad I,J\in\mathbb{N}_{0}^{m}.

If the bundle \mathcal{E} satisfies condition (𝐂)(\mathbf{C}) via K\mathcal{H}_{K}, then 𝐓s1n2𝐌z\mathbf{T}\sim_{s}\bigoplus\limits_{1}^{n_{2}}\mathbf{M}_{z}^{*}.

A number of corollaries are given in Section 4. The result of DKT and KT describing contractive Cowen-Douglas operators that are similar to Mz{M}_{z}^{*} using curvature is generalized in the commuting operator tuples setting. Moreover, this description is also used to obtain a sufficient condition for the similarity between arbitrary Cowen-Douglas operator tuples in 1m(Ω)\mathcal{B}_{1}^{m}(\Omega). The space {𝐒}\{\mathbf{S}\}^{\prime} denotes the commutant of the operator tuple 𝐒\mathbf{S}.

Theorem 1.5.

Let 𝐓=(T1,,Tm),𝐒=(S1,,Sm)1m(Ω)\mathbf{T}=(T_{1},\cdots,T_{m}),\mathbf{S}=(S_{1},\cdots,S_{m})\in\mathcal{B}_{1}^{m}(\Omega) be such that {𝐒}H(Ω)\{\mathbf{S}\}^{\prime}\cong H^{\infty}(\Omega). Suppose that

𝒦𝐒(w)𝒦𝐓(w)=i,j=1m2ψ(w)wiw¯jdwidw¯j,wΩ,\mathcal{K}_{\mathbf{S}}(w)-\mathcal{K}_{\mathbf{T}}(w)=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},\,\,\,\,w\in\Omega,

for some ψ(w)=logk=1n|ϕk(w)|2\psi(w)=\log\sum\limits_{k=1}^{n}\lvert\phi_{k}(w)\rvert^{2}, where ϕk\phi_{k} are holomorphic functions defined on Ω\Omega. If there exists an integer lnl\leq n satisfying ϕkϕlH(Ω)\frac{\phi_{k}}{\phi_{l}}\in H^{\infty}(\Omega) for all knk\leq n, then 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S}, and K𝐓K𝐒{K}_{\mathbf{T}}\leq{K}_{\mathbf{S}}. In particular, when m=1m=1, 𝐓\mathbf{T} and 𝐒\mathbf{S} are unitarily equivalent.

The inequalities and identities given in BKM , KT , and M involving curvature matrices are extended as well in the final section.

2 Preliminaries

2.1 Reproducing kernel Hilbert spaces

Let 𝔹m={zm:|z|<1}\mathbb{B}_{m}=\{z\in\mathbb{C}^{m}:\lvert z\rvert<1\} be the open unit ball of m\mathbb{C}^{m}. The space of all holomorphic functions defined on 𝔹m\mathbb{B}_{m} will be denoted as 𝒪(𝔹m)\mathcal{O}(\mathbb{B}_{m}) while H(𝔹m)H^{\infty}(\mathbb{B}_{m}) will stand for the space of all bounded holomorphic functions on 𝔹m\mathbb{B}_{m}. For a function f𝒪(𝔹m)f\in\mathcal{O}(\mathbb{B}_{m}), the radial derivative of ff is defined to be Rf(z)=i=1mzifziRf(z)=\sum\limits_{i=1}^{m}z_{i}\frac{\partial f}{\partial z_{i}}. Once it is set that R0f(z)=f(z)R^{0}f(z)=f(z), we have for every jj\in\mathbb{N}, Rjf(z)=R(Rj1f(z))R^{j}f(z)=R(R^{j-1}f(z)). In particular, for a homogeneous polynomial ff of degree nn, Rf=nf.Rf=nf. We will also need the familiar multi-index notation α=(α1,,αm)0m\alpha=(\alpha_{1},\cdots,\alpha_{m})\in\mathbb{N}_{0}^{m}. As is well-known, |α|=|α1|++|αm|\lvert\alpha\rvert=\lvert\alpha_{1}\rvert+\cdots+\lvert\alpha_{m}\rvert and α!=α1!αm!\alpha!=\alpha_{1}!\cdots\alpha_{m}!. For α,β0m\alpha,\beta\in\mathbb{N}_{0}^{m}, α+β=(α1+β1,,αm+βm)\alpha+\beta=(\alpha_{1}+\beta_{1},\cdots,\alpha_{m}+\beta_{m}) and αβ\alpha\leq\beta whenever αiβi\alpha_{i}\leq\beta_{i} for every 1im.1\leq i\leq m.

The work ARS ; hartz ; ZhaoZhu2008 offer good references for what follows. For a real number kk, one can consider the family of holomorphic function spaces

k={f=α0maαzα𝒪(𝔹m):α0m|aα|2α!|α|!(|α|+1)1k<}.\mathcal{H}_{k}=\left\{f=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}a_{\alpha}z^{\alpha}\in\mathcal{O}(\mathbb{B}_{m}):\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}\lvert a_{\alpha}\rvert^{2}\frac{\alpha!}{\lvert\alpha\rvert!}(\lvert\alpha\rvert+1)^{1-k}<\infty\right\}.

Recall that a reproducing kernel Hilbert space is a Hilbert space \mathcal{H} of functions on a set XX with the property that the evaluation at each xXx\in X is a bounded linear functional on .\mathcal{H}. By the Riesz representation theorem, for each xXx\in X, there exists a function kxk_{x}\in\mathcal{H} such that for all f,f\in\mathcal{H},

f,kx=f(x).\langle f,k_{x}\rangle=f(x).

The function K:X×XK:X\times X\longrightarrow\mathbb{C} defined by K(x,y)=ky(x)K(x,y)=k_{y}(x) is called the reproducing kernel of .\mathcal{H}. When k>0k>0, k\mathcal{H}_{k} is a reproducing kernel Hilbert space with reproducing kernel

K(z,w)=1(1z,w)k.K(z,w)=\frac{1}{(1-\langle z,w\rangle)^{k}}.

If nn\in\mathbb{N} is such that 2n+km>02n+k-m>0, then the space k\mathcal{H}_{k} can also be represented as

k={f𝒪(𝔹m):𝔹m|Rnf|2(1|z|2)2n+km1𝑑V(z)<},\mathcal{H}_{k}=\left\{f\in\mathcal{O}(\mathbb{B}_{m}):\int_{\mathbb{B}_{m}}\lvert R^{n}f\rvert^{2}(1-\lvert z\rvert^{2})^{2n+k-m-1}dV(z)<\infty\right\}, (2.1)

where VV denotes the normalized volume measure on 𝔹m\mathbb{B}_{m}. The spaces k\mathcal{H}_{k} are closely related to the analytic Besov-Sobolev spaces 𝐁pσ(𝔹m)\mathbf{B}_{p}^{\sigma}(\mathbb{B}_{m}). Recall that for n0n\in\mathbb{N}_{0}, 0σ<,1<p<,0\leq\sigma<\infty,1<p<\infty, and n+σ>m/pn+\sigma>m/p, the space 𝐁pσ(𝔹m)\mathbf{B}_{p}^{\sigma}(\mathbb{B}_{m}) contains f𝒪(𝔹m)f\in\mathcal{O}(\mathbb{B}_{m}) with (|α|<n|αfzα(0)|p+𝔹m|Rnf|p(1|z|2)p(n+σ)𝑑λm(z))1p<,(\sum\limits_{\lvert\alpha\rvert<n}\lvert\frac{\partial^{\alpha}f}{\partial z^{\alpha}}(0)\rvert^{p}+\int_{\mathbb{B}_{m}}\lvert R^{n}f\rvert^{p}(1-\lvert z\rvert^{2})^{p(n+\sigma)}d\lambda_{m}(z))^{\frac{1}{p}}<\infty, where dzdz denotes the Lebesgue measure on m\mathbb{C}^{m} and dλm(z)=(1|z|2)m1dzd\lambda_{m}(z)=(1-\lvert z\rvert^{2})^{-m-1}dz is the invariant measure on 𝔹m\mathbb{B}_{m}. Well-known examples in this family of spaces include the Dirichlet space B2(𝔹m)=0=𝐁20(𝔹m)B_{2}(\mathbb{B}_{m})=\mathcal{H}_{0}=\mathbf{B}_{2}^{0}(\mathbb{B}_{m}), the Drury-Arveson space Hm2=1=𝐁21/2(𝔹m)H_{m}^{2}=\mathcal{H}_{1}=\mathbf{B}_{2}^{1/2}(\mathbb{B}_{m}), the Hardy space H2(𝔹m)=m=𝐁2m/2(𝔹m)H^{2}(\mathbb{B}_{m})=\mathcal{H}_{m}=\mathbf{B}_{2}^{m/2}(\mathbb{B}_{m}), and the Bergman space L2(𝔹m)=m+1=𝐁2(m+1)/2(𝔹m)L^{2}(\mathbb{B}_{m})=\mathcal{H}_{m+1}=\mathbf{B}_{2}^{(m+1)/2}(\mathbb{B}_{m}). Moreover, k\mathcal{H}_{k} with 0<k<10<k<1 give weighted Dirichlet-type spaces while those with k>m+1k>m+1 represent weighted Bergman spaces.

2.2 Operator-valued multipliers

As every Hilbert space \mathcal{H} of functions on a set XX comes with a corresponding multiplier algebra

Mult()={f:X:fhfor allh},\text{Mult}(\mathcal{H})=\{f:X\rightarrow\mathbb{C}:fh\in\mathcal{H}\,\,\text{for all}\,\,h\in\mathcal{H}\},

it is natural to consider the multipliers of reproducing kernel Hilbert spaces. For every multiplier fMult()f\in\text{Mult}(\mathcal{H}), there is an associated multiplication operator MfM_{f} defined by Mfh=fhM_{f}h=fh with fMult()=Mf\|f\|_{\text{Mult}(\mathcal{H})}=\|M_{f}\|. In particular, for weighted Bergman spaces k\mathcal{H}_{k} with k>m+1k>m+1, Mult(k)=H(𝔹m)\text{Mult}(\mathcal{H}_{k})=H^{\infty}(\mathbb{B}_{m}). For m2m\geq 2, the multiplier norm on the Drury-Arveson space 1\mathcal{H}_{1} is no longer equal to the supremum norm on the unit ball and therefore, Mult(1)H(𝔹m).\text{Mult}(\mathcal{H}_{1})\subsetneq H^{\infty}(\mathbb{B}_{m}).

Let EE be a Hilbert space. The Hilbert space tensor product kE\mathcal{H}_{k}\otimes E can be regarded as the space of all holomorphic functions f:𝔹mEf:\mathbb{B}_{m}\rightarrow E with Taylor series f(z)=α0maαzαf(z)=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}a_{\alpha}z^{\alpha}, where aαEa_{\alpha}\in E and

α0maα2α!|α|!(|α|+1)1k<.\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}\|a_{\alpha}\|^{2}\frac{\alpha!}{\lvert\alpha\rvert!}(\lvert\alpha\rvert+1)^{1-k}<\infty.

Now, for Hilbert spaces E1E_{1} and E2E_{2}, let Φ:𝔹m(E1,E2)\Phi:\mathbb{B}_{m}\rightarrow\mathcal{L}(E_{1},E_{2}) be an operator-valued function. Given hkE1h\in\mathcal{H}_{k}\otimes E_{1}, we define a function MΦh:𝔹mE2M_{\Phi}h:\mathbb{B}_{m}\rightarrow E_{2} as

MΦh(z)=Φ(z)h(z),z𝔹m.M_{\Phi}h(z)=\Phi(z)h(z),\quad z\in\mathbb{B}_{m}.

Denote by Mult(kE1,kE2)\text{Mult}(\mathcal{H}_{k}\otimes E_{1},\mathcal{H}_{k}\otimes E_{2}) the space of all Φ\Phi for which MΦhkE2M_{\Phi}h\in\mathcal{H}_{k}\otimes E_{2} for every hkE1h\in\mathcal{H}_{k}\otimes E_{1}. An element ΦMult(kE1,kE2)\Phi\in\text{Mult}(\mathcal{H}_{k}\otimes E_{1},\mathcal{H}_{k}\otimes E_{2}) is said to be a multiplier and MΦM_{\Phi} is called an operator of multiplication by Φ\Phi. The space Mult(kE1,kE2)\text{Mult}(\mathcal{H}_{k}\otimes E_{1},\mathcal{H}_{k}\otimes E_{2}) is endowed with the norm Φ=MΦ.\|\Phi\|=\|M_{\Phi}\|. We now list some basic properties of multipliers.

Lemma 2.1.

For a weighted Bergman space k\mathcal{H}_{k} with k>m+1k>m+1 and a Hilbert space EE,

Mult(kE,k)=HE(𝔹m).\text{Mult}(\mathcal{H}_{k}\otimes E,\mathcal{H}_{k}\otimes\mathbb{C})=H_{E\rightarrow\mathbb{C}}^{\infty}(\mathbb{B}_{m}).

Proof: Taking n=0n=0 in (2.1), we have for every FHE(𝔹m)F\in H_{E\rightarrow\mathbb{C}}^{\infty}(\mathbb{B}_{m}) and f(z)gkEf(z)\otimes g\in\mathcal{H}_{k}\otimes E,

MF(f(z)g)k2\displaystyle\|M_{F}(f(z)\otimes g)\|_{\mathcal{H}_{k}\otimes\mathbb{C}}^{2} =\displaystyle= 𝔹m|f(z)F(z)g|2(1|z|2)km1𝑑V(z)\displaystyle\int_{\mathbb{B}_{m}}\lvert f(z)\otimes F(z)g\rvert^{2}(1-\lvert z\rvert^{2})^{k-m-1}dV(z)
\displaystyle\leq F2𝔹m|f(z)|2gE2(1|z|2)km1𝑑V(z)\displaystyle\|F\|_{\infty}^{2}\int_{\mathbb{B}_{m}}\lvert f(z)\rvert^{2}\|g\|_{E}^{2}(1-\lvert z\rvert^{2})^{k-m-1}dV(z)
=\displaystyle= F2f(z)gkE2.\displaystyle\|F\|_{\infty}^{2}\|f(z)\otimes g\|_{\mathcal{H}_{k}\otimes E}^{2}.

This means that MFF,\|M_{F}\|\leq\|F\|_{\infty}, and therefore, FMult(kE,k).F\in\text{Mult}(\mathcal{H}_{k}\otimes E,\mathcal{H}_{k}\otimes\mathbb{C}). Conversely, since Mult(k)H(𝔹m)\text{Mult}(\mathcal{H}_{k})\subset H^{\infty}(\mathbb{B}_{m}), Mult(kE,k)HE(𝔹m).\text{Mult}(\mathcal{H}_{k}\otimes E,\mathcal{H}_{k}\otimes\mathbb{C})\subset H_{E\rightarrow\mathbb{C}}^{\infty}(\mathbb{B}_{m}). The following results are well-known. The first lemma can be found in AM2002 :

Lemma 2.2.

Let Φ:𝔹m(E1,E2)\Phi:\mathbb{B}_{m}\rightarrow\mathcal{L}(E_{1},E_{2}) be an operator-valued function. If ΦMult(KE1,KE2)\Phi\in\text{Mult}(\mathcal{H}_{K}\otimes E_{1},\mathcal{H}_{K}\otimes E_{2}), then

MΦ(K(,w¯)f)=K(,w¯)Φ(w¯)f,w𝔹m,fE2.M_{\Phi}^{*}(K(\cdot,\overline{w})\otimes f)=K(\cdot,\overline{w})\otimes\Phi(\overline{w})^{*}f,\quad w\in\mathbb{B}_{m},f\in E_{2}.

Conversely, if Φ:𝔹m(E1,E2)\Phi:\mathbb{B}_{m}\rightarrow\mathcal{L}(E_{1},E_{2}) and the mapping K(,w¯)fK(,w¯)Φ(w¯)fK(\cdot,\overline{w})\otimes f\mapsto K(\cdot,\overline{w})\otimes\Phi(\overline{w})^{*}f extends to a bounded operator X(KE2,KE1)X\in\mathcal{L}(\mathcal{H}_{K}\otimes E_{2},\mathcal{H}_{K}\otimes E_{1}), then ΦMult(KE1,KE2)\Phi\in\text{Mult}(\mathcal{H}_{K}\otimes E_{1},\mathcal{H}_{K}\otimes E_{2}) and X=MΦ.X=M_{\Phi}^{*}.

Lemma 2.3.

Let 𝐌z,k,Ei\mathbf{M}^{*}_{z,k,E_{i}} be the adjoint of the multiplication tuple (Mz1,,Mzm)(M_{z_{1}},\cdots,M_{z_{m}}) on kEi\mathcal{H}_{k}\otimes E_{i}, i=1,2i=1,2. If ΦMult(kE1,kE2)\Phi\in\text{Mult}(\mathcal{H}_{k}\otimes E_{1},\mathcal{H}_{k}\otimes E_{2}), then

MΦ𝐌z,k,E2=𝐌z,k,E1MΦ.M_{\Phi}^{*}\mathbf{M}^{*}_{z,k,E_{2}}=\mathbf{M}^{*}_{z,k,E_{1}}M_{\Phi}^{*}.

The following lemma, due to J. A. Ball, T. T. Trent, and V. Vinnikov, characterizes Mult(1E1,1E2)\text{Mult}(\mathcal{H}_{1}\otimes E_{1},\mathcal{H}_{1}\otimes E_{2}) for the Drury-Arveson space 1\mathcal{H}_{1}. For the proof and additional results, see BTV2001 ; EP2002 :

Lemma 2.4.

Let Φ:𝔹m(1E1,1E2)\Phi:\mathbb{B}_{m}\rightarrow\mathcal{L}(\mathcal{H}_{1}\otimes E_{1},\mathcal{H}_{1}\otimes E_{2}). Then the following statements are equivalent:

  • (1)

    ΦMult(1E1,1E2)\Phi\in\text{Mult}(\mathcal{H}_{1}\otimes E_{1},\mathcal{H}_{1}\otimes E_{2}) with Φ1.\|\Phi\|\leq 1.

  • (2)

    The kernel

    𝔎Φ(z,w)=IΦ(z)Φ(w)1z,w,\mathfrak{K}_{\Phi}(z,w)=\frac{I-\Phi(z)\Phi(w)^{*}}{1-\langle z,w\rangle},

    is a positive, sesqui-analytic, (E2)\mathcal{L}(E_{2})-valued kernel on 𝔹m×𝔹m\mathbb{B}_{m}\times\mathbb{B}_{m}, i.e., there is an auxiliary Hilbert space \mathcal{H} and a holomorphic (,E2)\mathcal{L}(\mathcal{H},E_{2})-valued function Ψ\Psi on 𝔹m\mathbb{B}_{m} such that for all z,w𝔹m,z,w\in\mathbb{B}_{m},

    𝔎Φ(z,w)=Ψ(z)Ψ(w).\mathfrak{K}_{\Phi}(z,w)=\Psi(z)\Psi(w)^{*}.

2.3 Model theorem

Let 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}=(M_{z_{1}},\cdots,M_{z_{m}}) be the multiplication tuple on a reproducing kernel Hilbert space K\mathcal{H}_{K} defined on 𝔹m\mathbb{B}_{m} such that for every 1im,1\leq i\leq m,

(Mzif)(z)=zif(z),fK,z𝔹m.(M_{z_{i}}f)(z)=z_{i}f(z),\quad f\in\mathcal{H}_{K},z\in\mathbb{B}_{m}.

For an mm-tuple of commuting operators 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} and a multi-index α=(α1,,αm)0m\alpha=(\alpha_{1},\cdots,\alpha_{m})\in\mathbb{N}^{m}_{0}, let 𝐓α=T1α1Tmαm\mathbf{T}^{\alpha}=T_{1}^{\alpha_{1}}\cdots T_{m}^{\alpha_{m}} and 𝐓=(T1,,Tm)\mathbf{T}^{*}=(T_{1}^{*},\cdots,T^{*}_{m}). Suppose that 1/K1/K is a polynomial and that 1K(𝐓,𝐓)0\frac{1}{K}(\mathbf{T}^{*},\mathbf{T})\geq 0, where given a polynomial p(z,ω)=I,JβαI,JzIωJ,β0mp(z,\omega)=\sum\limits_{I,J\leq\beta}\alpha_{I,J}z^{I}\omega^{J},\beta\in\mathbb{N}_{0}^{m}, we let p(𝐓,𝐓)=I,JβαI,J𝐓I𝐓Jp(\mathbf{T}^{*},\mathbf{T})=\sum\limits_{I,J\leq\beta}\alpha_{I,J}\mathbf{T}^{*I}\mathbf{T}^{J}. The defect operator 𝒟𝐓\mathcal{D}_{\mathbf{T}} of 𝐓\mathbf{T} is then defined to be

𝒟𝐓=1K(𝐓,𝐓)12.\mathcal{D}_{\mathbf{T}}=\frac{1}{K}(\mathbf{T}^{*},\mathbf{T})^{\frac{1}{2}}.

We next define a mapping V:𝒩KV:\mathcal{H}\rightarrow\mathcal{N}\subset\mathcal{H}_{K}\otimes\mathcal{H} as

Vh=i𝐞i()𝒟𝐓𝐞i(𝐓)h,Vh=\sum\limits_{i}\mathbf{e}_{i}(\cdot)\otimes\mathcal{D}_{\mathbf{T}}\mathbf{e}_{i}(\mathbf{T}^{*})^{*}h,

for hh\in\mathcal{H}, where 𝒩=ranV¯\mathcal{N}=\overline{ran\,V} and {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} is an orthonormal basis for K\mathcal{H}_{K}. Then according to the result of C. G. Ambrozie, M. Englisˇ\check{s}, and V. Mu¨\ddot{u}ller in AEM , VV is a unitary operator satisfying VTj=MzjVVT_{j}=M_{z_{j}}^{*}V for 1jm1\leq j\leq m. The study of a model theorem for bounded linear operators have been quite extensive and can be found in Agler1982 ; A2 ; AEM ; Athavale1978 ; Athavale1992 ; CV1993 ; CV1995 ; MV1993 ; Pott1999 . The following model theorem for a tuple of commuting operators is stated in AEM :

Theorem 2.5.

Consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}=(M_{z_{1}},\cdots,M_{z_{m}}) on a Hilbert space K\mathcal{H}_{K} of holomorphic functions with reproducing kernel KK such that 1/K1/K is a polynomial. For an orthonormal basis {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} for K\mathcal{H}_{K}, let fj(z,w)=i=j𝐞i(z)1K(z,w)𝐞i(w)f_{j}(z,w)=\sum\limits_{i=j}^{\infty}\mathbf{e}_{i}(z)\frac{1}{K}(z,w)\mathbf{e}_{i}(w)^{*}. Then the following statements are equivalent:

  • (1)

    𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} is unitarily equivalent to the restriction of 𝐌z\mathbf{M}_{z}^{*} to an invariant subspace.

  • (2)

    1K(𝐓,𝐓)0\frac{1}{K}(\mathbf{T}^{*},\mathbf{T})\geq 0 and limjfj(𝐓,𝐓)h=0\lim\limits_{j}f_{j}(\mathbf{T}^{*},\mathbf{T})h=0 for hh\in\mathcal{H}.

3 Similarity in the class nm(Ω)\mathcal{B}_{n}^{m}(\Omega)

We first give a sufficient condition for the similarity between operator tuples 𝐓1m(𝔹m)\mathbf{T}\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and 𝐌z\mathbf{M}_{z}^{*} on a weighted Bergman space by using the defect operator 𝒟𝐓\mathcal{D}_{\mathbf{T}} and the model theorem given previously. We then introduce condition (𝐂)(\mathbf{C}) for Hermitian holomorphic vector bundles (see Subsection 3.2) and use it together with the curvature and its covariant derivatives to characterize similarity in the class nm(Ω)\mathcal{B}_{n}^{m}(\Omega). The similarity of operators inside a specific subclass of nm(Ω)\mathcal{B}_{n}^{m}(\Omega) and the uniqueness of decomposition of Cowen-Douglas operators are then discussed.

3.1 Model theorem and similarity

We start by investigating the eigenvector bundle 𝐓\mathcal{E}_{\mathbf{T}} of 𝐓1m(Ω)\mathbf{T}\in\mathcal{B}_{1}^{m}(\Omega).

Lemma 3.1.

Let T=(T1,,Tm)1m(Ω)()m\textbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}^{m}_{1}(\Omega)\subset\mathcal{L}(\mathcal{H})^{m} and consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}=(M_{z_{1}},\cdots,M_{z_{m}}) on a Hilbert space K\mathcal{H}_{K} of holomorphic functions with reproducing kernel KK such that 1/K1/K is a polynomial. Suppose that 𝐓\mathbf{T} satisfies either one of the equivalent statements in Theorem 2.5. Then for any t(w)ker(𝐓w),t(w)\in\ker(\mathbf{T}-w),

t(w)2=K(w¯,w¯)𝒟𝐓t(w)2.\|t(w)\|^{2}=K(\overline{w},\overline{w})\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2}.

Proof: Let {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} be an orthonormal basis for K\mathcal{H}_{K}. Since t(w)ker(𝐓w)t(w)\in\ker(\mathbf{T}-w), f(𝐓)t(w)=f(w)t(w)f(\mathbf{T})t(w)=f(w)t(w) for every f𝒪(Ω)f\in\mathcal{O}(\Omega). Defining a mapping V:𝒩KV:\mathcal{H}\rightarrow\mathcal{N}\subset\mathcal{H}_{K}\otimes\mathcal{H} as

Vh=i𝐞i()𝒟𝐓𝐞i(𝐓)h,Vh=\sum\limits_{i}\mathbf{e}_{i}(\cdot)\otimes\mathcal{D}_{\mathbf{T}}\mathbf{e}_{i}(\mathbf{T}^{*})^{*}h,

for hh\in\mathcal{H} and 𝒩=ranV¯\mathcal{N}=\overline{\text{ran}\,V}, we have

Vt(w)\displaystyle Vt(w) =\displaystyle= i𝐞i()𝒟𝐓𝐞i(𝐓)t(w)=i𝐞i()𝒟𝐓𝐞i(w¯)t(w)\displaystyle\sum\limits_{i}\mathbf{e}_{i}(\cdot)\otimes\mathcal{D}_{\mathbf{T}}\mathbf{e}_{i}(\mathbf{T}^{*})^{*}t(w)=\sum\limits_{i}\mathbf{e}_{i}(\cdot)\otimes\mathcal{D}_{\mathbf{T}}\mathbf{e}_{i}(\overline{w})^{*}t(w)
=\displaystyle= i𝐞i()𝐞i(w¯)𝒟𝐓t(w)=K(,w¯)𝒟𝐓t(w).\displaystyle\sum\limits_{i}\mathbf{e}_{i}(\cdot)\mathbf{e}_{i}(\overline{w})^{*}\otimes\mathcal{D}_{\mathbf{T}}t(w)=K(\cdot,\overline{w})\otimes\mathcal{D}_{\mathbf{T}}t(w).

From AEM , VV is unitary and the result follows. The next theorem is the first of our main results of the paper.

Theorem 3.2.

Let 𝐓=(T1,,Tm)1m(𝔹m)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m})\subset\mathcal{L}(\mathcal{H})^{m} and consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a weighted Bergman space k\mathcal{H}_{k}, where k>m+1.k>m+1. Suppose that (Ii=1mTiTi)k0(I-\sum\limits_{i=1}^{m}T_{i}^{*}T_{i})^{k}\geq 0 and limjfj(𝐓,𝐓)h=0,h\lim\limits_{j}f_{j}(\mathbf{T}^{*},\mathbf{T})h=0,h\in\mathcal{H}, where fj(z,w)=i=j𝐞i(z)(1z,w)k𝐞i(w)f_{j}(z,w)=\sum\limits_{i=j}^{\infty}\mathbf{e}_{i}(z)(1-\langle z,w\rangle)^{k}\mathbf{e}_{i}(w)^{*}, for an orthonormal basis {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} for k\mathcal{H}_{k}. If there exist a non-vanishing holomorphic section tt of T\mathcal{E}_{\textbf{T}} and a unit vector ζ0ran 𝒟𝐓¯\zeta_{0}\in\overline{\text{ran }\mathcal{D}_{\mathbf{T}}} such that

supw𝔹m𝒟𝐓t(w)2|𝒟𝐓t(w),ζ0|2<,\sup\limits_{w\in\mathbb{B}_{m}}\frac{\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2}}{\lvert\langle\mathcal{D}_{\mathbf{T}}t(w),\zeta_{0}\rangle\rvert^{2}}<\infty, (3.1)

then 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*}.

Proof: Let E=ran 𝒟𝐓¯E=\overline{\text{ran }\mathcal{D}_{\mathbf{T}}} and note by Theorem 2.5 that 𝐓u𝐌z,E|𝒩\mathbf{T}\sim_{u}\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}, where 𝒩\mathcal{N} is an invariant subspace of 𝐌z,E\mathbf{M}_{z,E}^{*}. By Lemma 3.1, we then have

ker(𝐌z,E|𝒩w)={K(,w¯)𝒟𝐓t(w):𝒟𝐓t(w)E}.\ker(\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}-w)=\bigvee\{K(\cdot,\overline{w})\otimes\mathcal{D}_{\mathbf{T}}t(w):\mathcal{D}_{\mathbf{T}}t(w)\in E\}.

Given a unit vector ζ0E\zeta_{0}\in E, one can select an orthonormal basis {ζα}α0\{\zeta_{\alpha}\}_{\alpha\geq 0} of EE to express 𝒟𝐓t(w)\mathcal{D}_{\mathbf{T}}t(w) as 𝒟𝐓t(w)=α0𝒟𝐓t(w),ζαζα.\mathcal{D}_{\mathbf{T}}t(w)=\sum\limits_{\alpha\geq 0}\langle\mathcal{D}_{\mathbf{T}}t(w),\zeta_{\alpha}\rangle\zeta_{\alpha}. If we set

η(w):=𝒟𝐓t(w)𝒟𝐓t(w),ζ0ζ0𝒪(𝔹m)andψ(w):=𝒟𝐓t(w),ζ0𝒪(𝔹m),\eta(w):=\mathcal{D}_{\mathbf{T}}t(w)-\langle\mathcal{D}_{\mathbf{T}}t(w),\zeta_{0}\rangle\zeta_{0}\in\mathcal{O}(\mathbb{B}_{m})\quad\text{and}\quad\psi(w):=\langle\mathcal{D}_{\mathbf{T}}t(w),\zeta_{0}\rangle\in\mathcal{O}(\mathbb{B}_{m}),

then 𝒟𝐓t(w)2=η(w)2+|ψ(w)|2\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2}=\|\eta(w)\|^{2}+|\psi(w)|^{2}.

Now define an operator-valued function FHE(𝔹m)F\in H^{\infty}_{E\rightarrow\mathbb{C}}(\mathbb{B}_{m}) by

F(z¯)(λ):=λη(z)ψ(z),λ,z𝔹m.F^{*}(\overline{z})(\lambda):=\lambda\frac{\eta(z)}{\psi(z)},\quad\lambda\in\mathbb{C},z\in\mathbb{B}_{m}.

Since we know that for a weighted Bergman space k\mathcal{H}_{k} with k>m+1,k>m+1,

Mult(kE,k)=HE(𝔹m),\text{Mult}(\mathcal{H}_{k}\otimes E,\mathcal{H}_{k}\otimes\mathbb{C})=H_{E\rightarrow\mathbb{C}}^{\infty}(\mathbb{B}_{m}),

Lemma 2.2 and condition (3.1) yield

MF(K(,w¯)1)=K(,w¯)F(w¯)(1)=K(,w¯)η(w)ψ(w),w𝔹m.M_{F}^{*}(K(\cdot,\overline{w})\otimes 1)=K(\cdot,\overline{w})\otimes F(\overline{w})^{*}(1)=K(\cdot,\overline{w})\otimes\frac{\eta(w)}{\psi(w)},\quad w\in\mathbb{B}_{m}.

Hence, MFM_{F}^{*} is bounded and for w𝔹mw\in\mathbb{B}_{m},

𝒟𝐓t(w)2\displaystyle\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2} =\displaystyle= η(w)2+|ψ(w)|2\displaystyle\|\eta(w)\|^{2}+|\psi(w)|^{2}
=\displaystyle= |ψ(w)|2(η(w)ψ(w)2+1)\displaystyle|\psi(w)|^{2}\left(\Big{\|}\frac{\eta(w)}{\psi(w)}\Big{\|}^{2}+1\right)
=\displaystyle= |ψ(w)|2(MF(K(,w¯)1)2K(,w¯)2+1).\displaystyle|\psi(w)|^{2}\left(\frac{\|M_{F}^{*}(K(\cdot,\overline{w})\otimes 1)\|^{2}}{\|K(\cdot,\overline{w})\|^{2}}+1\right).

Since ψ(w)𝒪(𝔹m)\psi(w)\in\mathcal{O}(\mathbb{B}_{m}), the definition of curvature from (1.1) then gives

𝒦𝐌z,E|𝒩(w)\displaystyle\mathcal{K}_{\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}}(w) =\displaystyle= i,j=1m2logK(,w¯)𝒟𝐓t(w)2wiw¯jdwidw¯j\displaystyle-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\|K(\cdot,\overline{w})\otimes\mathcal{D}_{\mathbf{T}}t(w)\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2log𝒟𝐓t(w)2wiw¯jdwidw¯ji,j=1m2logK(,w¯)2wiw¯jdwidw¯j\displaystyle-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\|\mathcal{D}_{\mathbf{T}}t(w)\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\|K(\cdot,\overline{w})\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2log(MF(K(,w¯)1)2+K(,w¯)2)wiw¯jdwidw¯j\displaystyle-\sum^{m}_{i,j=1}\frac{\partial^{2}\log(\|M_{F}^{*}(K(\cdot,\overline{w})\otimes 1)\|^{2}+\|K(\cdot,\overline{w})\|^{2})}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2log(I+MFMF)K(,w¯),K(,w¯)wiw¯jdwidw¯j\displaystyle-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\langle(I+M_{F}M_{F}^{*})K(\cdot,\overline{w}),K(\cdot,\overline{w})\rangle}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2log(I+MFMF)12K(,w¯)2wiw¯jdwidw¯j.\displaystyle-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\|(I+M_{F}M_{F}^{*})^{\frac{1}{2}}K(\cdot,\overline{w})\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}.

Finally, let

Y:=(I+MFMF)12.Y:=(I+M_{F}M_{F}^{*})^{\frac{1}{2}}.

Obviously, 0σ(Y)0\notin\sigma(Y) and YK(,w¯)ker(Y𝐌zY1w)YK(\cdot,\overline{w})\in\ker(Y\mathbf{M}_{z}^{*}Y^{-1}-w) so that for any w𝔹m,w\in\mathbb{B}_{m},

𝒦𝐌z,E|𝒩(w)=i,j=1m2log(I+MFMF)12K(,w¯)2wiw¯jdwidw¯j=𝒦Y𝐌zY1(w).\mathcal{K}_{\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}}(w)=-\sum^{m}_{i,j=1}\frac{\partial^{2}\log\|(I+M_{F}M_{F}^{*})^{\frac{1}{2}}K(\cdot,\overline{w})\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}=\mathcal{K}_{Y\mathbf{M}_{z}^{*}Y^{-1}}(w).

This shows that 𝐌z,E|𝒩uY𝐌zY1\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}\sim_{u}Y\mathbf{M}_{z}^{*}Y^{-1} and since 𝐓u𝐌z,E|𝒩\mathbf{T}\sim_{u}\mathbf{M}_{z,E}^{*}|_{\mathcal{N}}, 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*} as claimed.

Remark 3.3.

After an obvious modification of the condition (Ii=1mTiTi)k0(I-\sum_{i=1}^{m}T^{*}_{i}T_{i})^{k}\geq 0 and the form of fjf_{j} tailored to the reproducing kernel KK, Theorem 3.2 can be generalized to any operator tuple 𝐌z\mathbf{M}_{z}^{*} on a reproducing kernel Hilbert space K\mathcal{H}_{K} such that 1/K1/K is a polynomial as long as Mult(K)=H(𝔹m)\text{Mult}(\mathcal{H}_{K})=H^{\infty}(\mathbb{B}_{m}). Moreover, one can use Lemma 2.4 to check the multiplier algebra condition when working on the similarity between a row-contraction 𝐓1m(𝔹m)\mathbf{T}\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on the Drury-Arveson space 1\mathcal{H}_{1}.

3.2 Complex bundles and similarity

Denote by {σi}i=1n\{\sigma_{i}\}_{i=1}^{n} an orthonormal basis for n\mathbb{C}^{n} and let a Hilbert space \mathcal{H} on Ω\Omega and analytic vector valued functions {fi}i=1n\{f_{i}\}_{i=1}^{n} over Ω\Omega be given, where Ωm\Omega\subset\mathbb{C}^{m}. Let \mathcal{E} be an nn-dimensional Hermitian holomorphic vector bundle over Ω\Omega, f1,,fnf_{1},\ldots,f_{n} be nn holomorphic cross-sections of \mathcal{E} which form a frame for \mathcal{E} on Ω\Omega. For wΩw\in\Omega, set (w)={f1(w),,fn(w)}\mathcal{E}(w)=\bigvee\{f_{1}(w),\ldots,f_{n}(w)\} and E=wΩ{f1(w),,fn(w)}E=\bigvee_{w\in\Omega}\{f_{1}(w),\ldots,f_{n}(w)\}. We will say that condition (𝐂)(\mathbf{C}) holds for the Hermitian holomorphic vector bundle \mathcal{E} via \mathcal{H} if there exist functions FHnE(Ω)F\in H^{\infty}_{\mathbb{C}^{n}\rightarrow E}(\Omega) and GHEn(Ω)G\in H^{\infty}_{E\rightarrow\mathbb{C}^{n}}(\Omega) such that F#(w¯)(σi):=F(w)(σi)=fi(w)F^{\#}(\overline{w})(\sigma_{i}):=F(w)(\sigma_{i})=f_{i}(w), G#(w¯)(fi(w)):=G(w)(fi(w))G^{\#}(\overline{w})(f_{i}(w)):=G(w)(f_{i}(w)), (F#)Mult(E,n)(F^{\#})^{*}\in\text{Mult}(\mathcal{H}\otimes E,\mathcal{H}\otimes\mathbb{C}^{n}), (G#)Mult(n,E)(G^{\#})^{*}\in\text{Mult}(\mathcal{H}\otimes\mathbb{C}^{n},\mathcal{H}\otimes E), and G#(w¯)F#(w¯)IG^{\#}(\overline{w})F^{\#}(\overline{w})\equiv I for all wΩ.w\in\Omega. Using the curvature and covariant derivatives of complex bundles as well as condition (𝐂)(\mathbf{C}), we give a similarity description in the class nm(𝔹m)\mathcal{B}_{n}^{m}(\mathbb{B}_{m}).

Lemma 3.4.

Let 1\mathcal{E}_{1} and 2\mathcal{E}_{2} be Hermitian holomorphic bundles over Ωm\Omega\subset\mathbb{C}^{m} of rank n1n_{1} and of n2n_{2}, respectively. Then for any I,J0mI,J\in\mathbb{N}_{0}^{m},

K12,wIw¯J=K1,wIw¯JIn2+In1K2,wIw¯J.{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{I}\overline{w}^{J}}={K}_{\mathcal{E}_{1},w^{I}\overline{w}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{I}\overline{w}^{J}}.

Proof: Let {ϕ1,ϕ2,,ϕn1}\{\phi_{1},\phi_{2},\ldots,\phi_{n_{1}}\} and {γ1,γ2,,γn2}\{\gamma_{1},\gamma_{2},\ldots,\gamma_{n_{2}}\} be holomorphic frames of 1\mathcal{E}_{1} and of 2\mathcal{E}_{2}, respectively. Then {ϕ1γ1,ϕ1γ2,,ϕn1γ1,,ϕn1γn2}\{\phi_{1}\otimes\gamma_{1},\phi_{1}\otimes\gamma_{2},\ldots,\phi_{n_{1}}\otimes\gamma_{1},\ldots,\phi_{n_{1}}\otimes\gamma_{n_{2}}\} is a holomorphic frame of 12\mathcal{E}_{1}\otimes\mathcal{E}_{2} and h12=h1h2h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}=h_{\mathcal{E}_{1}}\otimes h_{\mathcal{E}_{2}} so that

K12\displaystyle{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}
=\displaystyle= (w¯j(h121h12wi))i,j=1m\displaystyle\left(\frac{\partial}{\partial\overline{w}_{j}}\left(h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}^{-1}\frac{\partial h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}}{\partial w_{i}}\right)\right)_{i,j=1}^{m}
=\displaystyle= (w¯j[(h11h21)(h1wih2+h1h2wi)])i,j=1m\displaystyle\left(\frac{\partial}{\partial\overline{w}_{j}}\left[(h^{-1}_{\mathcal{E}_{1}}\otimes h^{-1}_{\mathcal{E}_{2}})\left(\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{i}}\otimes h_{\mathcal{E}_{2}}+h_{\mathcal{E}_{1}}\otimes\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{i}}\right)\right]\right)_{i,j=1}^{m}
=\displaystyle= (w¯j[(h11h21)(h1wih2)])i,j=1m+(w¯j[(h11h21)(h1h2wi)])i,j=1m\displaystyle\left(\frac{\partial}{\partial\overline{w}_{j}}\left[(h^{-1}_{\mathcal{E}_{1}}\otimes h^{-1}_{\mathcal{E}_{2}})\left(\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{i}}\otimes h_{\mathcal{E}_{2}}\right)\right]\right)_{i,j=1}^{m}+\left(\frac{\partial}{\partial\overline{w}_{j}}\left[(h^{-1}_{\mathcal{E}_{1}}\otimes h^{-1}_{\mathcal{E}_{2}})\left(h_{\mathcal{E}_{1}}\otimes\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{i}}\right)\right]\right)_{i,j=1}^{m}
=\displaystyle= (w¯j(h11h1wih21h2))i,j=1m+(w¯j(h11h1h21h2wi))i,j=1m\displaystyle\left(\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{i}}\otimes h^{-1}_{\mathcal{E}_{2}}h_{\mathcal{E}_{2}}\right)\right)_{i,j=1}^{m}+\left(\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}_{\mathcal{E}_{1}}h_{\mathcal{E}_{1}}\otimes h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{i}}\right)\right)_{i,j=1}^{m}
=\displaystyle= K1In2+In1K2.\displaystyle{K}_{\mathcal{E}_{1}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2}}.

It follows that for ej=(0,,1,,0)0me_{j}=(0,\cdots,1,\cdots,0)\in\mathbb{N}_{0}^{m} with 11 in the jj-th position,

K12,wej\displaystyle{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{e_{j}}} =\displaystyle= K12wj+[h121h12wj,K12]\displaystyle\frac{\partial{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}}{\partial w_{j}}+\left[h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}^{-1}\frac{\partial h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}}{\partial w_{j}},\,\,{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}\right]
=\displaystyle= wj(K1In2+In1K2)\displaystyle\frac{\partial}{\partial w_{j}}\Big{(}{K}_{\mathcal{E}_{1}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2}}\Big{)}
+[h11h1wjIn2+In1h21h2wj,K1In2+In1K2]\displaystyle\quad+\left[h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}\otimes I_{n_{2}}+I_{n_{1}}\otimes h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}},\,\,{K}_{\mathcal{E}_{1}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2}}\right]
=\displaystyle= [K1wj+h11h1wjK1K1h11h1wj]In2\displaystyle\left[\frac{\partial{K}_{\mathcal{E}_{1}}}{\partial w_{j}}+h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}{K}_{\mathcal{E}_{1}}-{K}_{\mathcal{E}_{1}}h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}\right]\otimes I_{n_{2}}
+In1[K2wj+h21h2wjK2K2h21h2wj]\displaystyle\quad+I_{n_{1}}\otimes\left[\frac{\partial{K}_{\mathcal{E}_{2}}}{\partial w_{j}}+h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}}{K}_{\mathcal{E}_{2}}-{K}_{\mathcal{E}_{2}}h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}}\right]
=\displaystyle= K1,wejIn2+In1K2,wej,\displaystyle{K}_{\mathcal{E}_{1},w^{e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{e_{j}}},

and

K12,w¯ej=K12w¯j=w¯j(K1In2+In1K2)=K1,w¯ejIn2+In1K2,w¯ej.{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},\overline{w}^{e_{j}}}=\frac{\partial{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}}{\partial\overline{w}_{j}}=\frac{\partial}{\partial\overline{w}_{j}}\Big{(}{K}_{\mathcal{E}_{1}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2}}\Big{)}={K}_{\mathcal{E}_{1},\overline{w}^{e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},\overline{w}^{e_{j}}}.

Next, if

K12,wJ=K1,wJIn2+In1K2,wJandK12,w¯J=K1,w¯JIn2+In1K2,w¯J{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{J}}={K}_{\mathcal{E}_{1},w^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{J}}\,\,\text{and}\,\,{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},\overline{w}^{J}}={K}_{\mathcal{E}_{1},\overline{w}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},\overline{w}^{J}}

holds for some J0mJ\in\mathbb{N}_{0}^{m}, then

K12,wJ+ej\displaystyle{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{J+e_{j}}} =\displaystyle= K12,wJwj+[h121h12wj,K12,wJ]\displaystyle\frac{\partial{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{J}}}{\partial w_{j}}+\left[h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}^{-1}\frac{\partial h_{\mathcal{E}_{1}\otimes\mathcal{E}_{2}}}{\partial w_{j}},\,\,{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{J}}\right]
=\displaystyle= wj(K1,wJIn2+In1K2,wJ)\displaystyle\frac{\partial}{\partial w_{j}}\Big{(}{K}_{\mathcal{E}_{1},w^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{J}}\Big{)}
+[h11h1wjIn2+In1h21h2wj,K1,wJIn2+In1K2,wJ]\displaystyle\quad+\left[h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}\otimes I_{n_{2}}+I_{n_{1}}\otimes h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}},\,\,{K}_{\mathcal{E}_{1},w^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{J}}\right]
=\displaystyle= [K1,wJwj+h11h1wjK1,wJK1,wJh11h1wj]In2\displaystyle\left[\frac{\partial{K}_{\mathcal{E}_{1},w^{J}}}{\partial w_{j}}+h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}{K}_{\mathcal{E}_{1},w^{J}}-{K}_{\mathcal{E}_{1},w^{J}}h^{-1}_{\mathcal{E}_{1}}\frac{\partial h_{\mathcal{E}_{1}}}{\partial w_{j}}\right]\otimes I_{n_{2}}
+In1[K2,wJwj+h21h2wjK2,wJK2,wJh21h2wj]\displaystyle\quad+I_{n_{1}}\otimes\left[\frac{\partial{K}_{\mathcal{E}_{2},w^{J}}}{\partial w_{j}}+h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}}{K}_{\mathcal{E}_{2},w^{J}}-{K}_{\mathcal{E}_{2},w^{J}}h^{-1}_{\mathcal{E}_{2}}\frac{\partial h_{\mathcal{E}_{2}}}{\partial w_{j}}\right]
=\displaystyle= K1,wJ+ejIn2+In1K2,wJ+ej,\displaystyle{K}_{\mathcal{E}_{1},w^{J+e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{J+e_{j}}},

and

K12,w¯J+ej\displaystyle{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},\overline{w}^{J+e_{j}}} =\displaystyle= K12,w¯Jw¯j\displaystyle\frac{\partial{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},\overline{w}^{J}}}{\partial\overline{w}_{j}}
=\displaystyle= w¯j(K1,w¯JIn2+In1K2,w¯J)\displaystyle\frac{\partial}{\partial\overline{w}_{j}}\left({K}_{\mathcal{E}_{1},\overline{w}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},\overline{w}^{J}}\right)
=\displaystyle= K1,w¯J+ejIn2+In1K2,w¯J+ej,\displaystyle{K}_{\mathcal{E}_{1},\overline{w}^{J+e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},\overline{w}^{J+e_{j}}},

for any ej=(0,,1,,0)0m.e_{j}=(0,\cdots,1,\cdots,0)\in\mathbb{N}_{0}^{m}. Hence,

K12,wJ=K1,wJIn2+In1K2,wJandK12,w¯J=K1,w¯JIn2+In1K2,w¯J{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{J}}={K}_{\mathcal{E}_{1},w^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{J}}\,\,\text{and}\,\,{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},\overline{w}^{J}}={K}_{\mathcal{E}_{1},\overline{w}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},\overline{w}^{J}}

for all J0mJ\in\mathbb{N}_{0}^{m}. Since without loss of generality, we have for I,Jej0m,I,J-e_{j}\in\mathbb{N}_{0}^{m},

K12,wIw¯Jej=K1,wIw¯JejIn2+In1K2,wIw¯Jej,{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{I}\overline{w}^{J-e_{j}}}={K}_{\mathcal{E}_{1},w^{I}\overline{w}^{J-e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{I}\overline{w}^{J-e_{j}}},

it is easy to see that

K12,wIw¯J\displaystyle{K}_{\mathcal{E}_{1}\otimes\mathcal{E}_{2},w^{I}\overline{w}^{J}} =\displaystyle= w¯j(K1,wIw¯JejIn2+In1K2,wIw¯Jej)\displaystyle\frac{\partial}{\partial\overline{w}_{j}}\left({K}_{\mathcal{E}_{1},w^{I}\overline{w}^{J-e_{j}}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{I}\overline{w}^{J-e_{j}}}\right)
=\displaystyle= K1,wIw¯JIn2+In1K2,wIw¯J.\displaystyle{K}_{\mathcal{E}_{1},w^{I}\overline{w}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E}_{2},w^{I}\overline{w}^{J}}.

We are now ready to prove our second main theorem of the paper.

Theorem 3.5.

Let 𝐓=(T1,,Tm)nm(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) and consider the operator tuple 𝐌z=(Mz1,,Mzm)n1m(𝔹m)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*})\in\mathcal{B}_{n_{1}}^{m}(\mathbb{B}_{m}) on a Hilbert space K\mathcal{H}_{K} defined on 𝔹m\mathbb{B}_{m} with reproducing kernel K.K. Suppose that n2:=n/n1n_{2}:=n/n_{1}\in\mathbb{N} and that there exist an isometry VV and a Hermitian holomorphic vector bundle \mathcal{E} over 𝔹m\mathbb{B}_{m} such that

VK𝐓,wIw¯JVK𝐌z,wIw¯JIn2=In1K,wIw¯J,I,J0m.VK_{\mathbf{T},w^{I}{\overline{w}}^{J}}V^{*}-K_{\mathbf{M}_{z}^{*},w^{I}{\overline{w}}^{J}}\otimes I_{n_{2}}=I_{n_{1}}\otimes{K}_{\mathcal{E},w^{I}\overline{w}^{J}},\quad I,J\in\mathbb{N}_{0}^{m}. (3.2)

If the bundle \mathcal{E} satisfies condition (𝐂)(\mathbf{C}) via K\mathcal{H}_{K}, then 𝐓s1n2𝐌z\mathbf{T}\sim_{s}\bigoplus\limits_{1}^{n_{2}}\mathbf{M}_{z}^{*}.

Proof: First, from (3.2)(\ref{07}) and the definition of condition (C)(\textbf{C}), we know that \mathcal{E} is n2n_{2}-dimensional Hermitian holomorphic vector bundle. Without losing generality, assume that {f1,,fn2}\{f_{1},\ldots,f_{n_{2}}\} is a frame of \mathcal{E}. It is easy to see that the Hermitian holomorphic vector bundle 𝐌z\mathcal{E}_{\mathbf{M}^{*}_{z}}\otimes\mathcal{E} is expressed as

(𝐌z)(w)=1in11jn2{K(,w¯)σ~ifj(w)},w𝔹m,(\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E})(w)=\bigvee\limits_{1\leq i\leq n_{1}\atop 1\leq j\leq n_{2}}\{K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes f_{j}(w)\},\quad w\in\mathbb{B}_{m},

where {σ~i}i=1n1\{\widetilde{\sigma}_{i}\}_{i=1}^{n_{1}} is an orthonormal basis for n1\mathbb{C}^{n_{1}}. By Lemma 3.4 and (3.2)(\ref{07}), we then have for some isometry VV and for all I,J0mI,J\in\mathbb{N}_{0}^{m},

K𝐌z,wIw¯J=K𝐌z,wIw¯JIn2+In1K,wIw¯J=VK𝐓,wIw¯JV.{K}_{\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E},w^{I}{\overline{w}}^{J}}={K}_{\mathcal{E}_{\mathbf{M}_{z}^{*},}w^{I}{\overline{w}}^{J}}\otimes I_{n_{2}}+I_{n_{1}}\otimes{K}_{\mathcal{E},w^{I}{\overline{w}}^{J}}=V{K}_{\mathcal{E}_{\mathbf{T}},w^{I}\overline{w}^{J}}V^{*}.

It is also proven in CD3 that 𝐌z\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E} is congruent to 𝐓\mathcal{E}_{\mathbf{T}}, that is, there is a unitary operator UU such that

U(𝐌z)(w)=𝐓(w),w𝔹m.U(\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E})(w)=\mathcal{E}_{\mathbf{T}}(w),\quad w\in\mathbb{B}_{m}. (3.3)

Next, since the Hermitian holomorphic vector bundle \mathcal{E} satisfies condition (𝐂)(\mathbf{C}), for the holomorphic frame {f1,,fn2}\{f_{1},\ldots,f_{n_{2}}\} of \mathcal{E}, there exist FHn2E(𝔹m)F\in H^{\infty}_{\mathbb{C}^{n_{2}}\rightarrow E}(\mathbb{B}_{m}) and GHEn2(𝔹m)G\in H^{\infty}_{E\rightarrow\mathbb{C}^{n_{2}}}(\mathbb{B}_{m}) such that G#(w¯)F#(w¯)=IG^{\#}(\overline{w})F^{\#}(\overline{w})=I for every w𝔹mw\in\mathbb{B}_{m}, where E=w𝔹m{f1(w),,fn2(w)}.E=\bigvee_{w\in\mathbb{B}_{m}}\{f_{1}(w),\ldots,f_{n_{2}}(w)\}. A proof similar to the one used in Lemma 2.2 then implies that for (F#)Mult(KE,Kn2)(F^{\#})^{*}\in\text{Mult}(\mathcal{H}_{K}\otimes E,\mathcal{H}_{K}\otimes\mathbb{C}^{n_{2}}),

M(F#)(K(,w¯)σ~iσj)\displaystyle M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}) =\displaystyle= K(,w¯)σ~iF#(w¯)(σj)\displaystyle K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F^{\#}(\overline{w})(\sigma_{j})
=\displaystyle= K(,w¯)σ~iF(w)(σj)\displaystyle K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F(w)(\sigma_{j})
=\displaystyle= K(,w¯)σ~ifj(w),\displaystyle K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes f_{j}(w),

where {σj}j=1n2\{\sigma_{j}\}_{j=1}^{n_{2}} is an orthonormal basis for n2\mathbb{C}^{n_{2}}. In addition, for fKf\in\mathcal{H}_{K} and gEg\in E,

M(F#)(f(z)g)\displaystyle M_{(F^{\#})^{*}}\left(f(z)\otimes g\right) =\displaystyle= (F#(z))(i=0f(z),eieig)\displaystyle(F^{\#}(z))^{*}\left(\sum\limits_{i=0}^{\infty}\langle f(z),e_{i}\rangle e_{i}\otimes g\right)
=\displaystyle= i=1f(z),ei(F#(z))(eig)\displaystyle\sum\limits_{i=1}^{\infty}\langle f(z),e_{i}\rangle(F^{\#}(z))^{*}(e_{i}\otimes g)
=\displaystyle= i=1f(z),eiei(F#(z))g\displaystyle\sum\limits_{i=1}^{\infty}\langle f(z),e_{i}\rangle e_{i}\otimes(F^{\#}(z))^{*}g
=\displaystyle= f(z)(F#(z))g,\displaystyle f(z)\otimes(F^{\#}(z))^{*}g,

where {ei}i=0\{e_{i}\}_{i=0}^{\infty} is an orthonormal basis for K\mathcal{H}_{K}. Hence,

f(z)g,M(F#)(K(,w¯)σ~iσj)\displaystyle\Big{\langle}f(z)\otimes g,M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j})\Big{\rangle}
=\displaystyle= M(F#)(f(z)g),K(,w¯)σ~iσj\displaystyle\Big{\langle}M_{(F^{\#})^{*}}(f(z)\otimes g),K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}\Big{\rangle}
=\displaystyle= f(z)(F#(z))g,K(,w¯)σ~iσj\displaystyle\Big{\langle}f(z)\otimes(F^{\#}(z))^{*}g,K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}\Big{\rangle}
=\displaystyle= f(z)k=1n2(F#(z))g,σkσk,K(,w¯)σ~iσj\displaystyle\Big{\langle}f(z)\otimes\sum\limits_{k=1}^{n_{2}}\langle(F^{\#}(z))^{*}g,\sigma_{k}\rangle\sigma_{k},K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}\Big{\rangle}
=\displaystyle= k=1n2f(z)(F#(z))g,σkσk,K(,w¯)σ~iσj\displaystyle\sum\limits_{k=1}^{n_{2}}\Big{\langle}f(z)\langle(F^{\#}(z))^{*}g,\sigma_{k}\rangle\otimes\sigma_{k},K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}\Big{\rangle}
=\displaystyle= k=1n2f(z)(F#(z))g,σk,K(,w¯)σ~iσk,σj\displaystyle\sum\limits_{k=1}^{n_{2}}\left\langle f(z)\langle(F^{\#}(z))^{*}g,\sigma_{k}\rangle,K(\cdot,\overline{w})\widetilde{\sigma}_{i}\right\rangle\Big{\langle}\sigma_{k},\sigma_{j}\Big{\rangle}
=\displaystyle= f(w)(F#(w¯))g,σj,σ~i\displaystyle\left\langle f({w})\langle(F^{\#}(\overline{w}))^{*}g,\sigma_{j}\rangle,\widetilde{\sigma}_{i}\right\rangle
=\displaystyle= f(w),σ~i(F#(w¯))g,σj\displaystyle\langle f({w}),\widetilde{\sigma}_{i}\rangle\langle(F^{\#}(\overline{w}))^{*}g,\sigma_{j}\rangle
=\displaystyle= f(z),K(,w¯)σ~ig,F#(w¯)σj\displaystyle\langle f(z),K(\cdot,\overline{w})\widetilde{\sigma}_{i}\rangle\langle g,F^{\#}(\overline{w})\sigma_{j}\rangle
=\displaystyle= f(z)g,K(,w¯)σ~iF#(w¯)σj.\displaystyle\langle f(z)\otimes g,K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F^{\#}(\overline{w})\sigma_{j}\rangle.

This shows that M(F#)(K(,w¯)σ~iσj)=K(,w¯)σ~iF#(w¯)(σj).M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j})=K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F^{\#}(\overline{w})(\sigma_{j}).

Furthermore, since K=w𝔹m{K(,w¯)ξ:ξn1}\mathcal{H}_{K}=\bigvee\limits_{w\in\mathbb{B}^{m}}\{K(\cdot,\overline{w})\xi:\xi\in\mathbb{C}^{n_{1}}\}, we have ran M(F#)=KE\text{ran }M^{*}_{(F^{\#})^{*}}=\mathcal{H}_{K}\otimes E and M(F#)=F#<.\|M^{*}_{(F^{\#})^{*}}\|=\|F^{\#}\|<\infty. Combining these results and taking into account the operator M(G#):KEKn2M^{*}_{(G^{\#})^{*}}:\mathcal{H}_{K}\otimes E\longrightarrow\mathcal{H}_{K}\otimes\mathbb{C}^{n_{2}}, we obtain

M(G#)M(F#)(K(,w¯)σ~iσj)\displaystyle M^{*}_{(G^{\#})^{*}}M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j}) =\displaystyle= M(G#)(K(,w¯)σ~iF#(w¯)(σj))\displaystyle M^{*}_{(G^{\#})^{*}}\left(K(\cdot,\overline{w}\right)\widetilde{\sigma}_{i}\otimes F^{\#}(\overline{w})(\sigma_{j}))
=\displaystyle= K(,w¯)σ~iG#(w¯)F#(w¯)(σj)\displaystyle K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes G^{\#}(\overline{w})F^{\#}(\overline{w})(\sigma_{j})
=\displaystyle= K(,w¯)σ~iσj,\displaystyle K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j},

for 1in11\leq i\leq n_{1} and 1jn2.1\leq j\leq n_{2}. Therefore, M(G#)M(F#)IM^{*}_{(G^{\#})^{*}}M^{*}_{(F^{\#})^{*}}\equiv I so that M(F#)M^{*}_{(F^{\#})^{*}} is an invertible operator satisfying

M(F#)(𝐌𝐳In2(w))=(𝐌z)(w),w𝔹m.M^{*}_{(F^{\#})^{*}}(\mathcal{E}_{\mathbf{\mathbf{M}_{z}^{*}}\otimes I_{n_{2}}}(w))=(\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E})(w),\quad w\in\mathbb{B}^{m}.

From this and (3.3)(\ref{08}), we conclude that the invertible operator UM(F#)UM^{*}_{(F^{\#})^{*}} establishes the similarity between 𝐓\mathbf{T} and 1n2𝐌z\bigoplus\limits_{1}^{n_{2}}\mathbf{M}_{z}^{*}.

The following corollary should be compared to M. Uchiyama’s result in U . It is already known that the result holds for weighted Bergman spaces k\mathcal{H}_{k}, k>m+1k>m+1:

Corollary 3.6.

Let 𝐓=(T1,,Tm)1m(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a Hilbert space K\mathcal{H}_{K} such that Mult(K)=H(𝔹m)\text{Mult}(\mathcal{H}_{K})=H^{\infty}(\mathbb{B}_{m}). If 𝐓=𝐌z\mathcal{E}_{\mathbf{T}}=\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E} for some Hermitian holomorphic vector bundle \mathcal{E} over 𝔹m\mathbb{B}_{m}, where (w)=f(w)\mathcal{E}(w)=\bigvee f(w) and ff is bounded by positive constants, then 𝐓s𝐌z.\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*}.

Remark 3.7.

Condition (𝐂)(\mathbf{C}) is related to the corona theorem. Let 𝐓=(T1,,Tm)1m(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and consider the operator tuple 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a Hilbert space K\mathcal{H}_{K} defined on 𝔹m\mathbb{B}_{m}. Suppose that 𝐓=𝐌z\mathcal{E}_{\mathbf{T}}=\mathcal{E}_{\mathbf{M}_{z}^{*}}\otimes\mathcal{E} for some Hermitian holomorphic vector bundle \mathcal{E} over 𝔹m\mathbb{B}_{m}, where (w)=f(w)\mathcal{E}(w)=\bigvee f(w) is such that f(w)=(f1(w),f2(w),,fn(w))Tf(w)=(f_{1}(w),f_{2}(w),\cdots,f_{n}(w))^{T} and fjMult(K),1jnf_{j}\in\text{Mult}(\mathcal{H}_{K}),1\leq j\leq n. Let there exist a constant δ>0\delta>0 satisfying

δ(j=1n|fj(w)|2)12,w𝔹m,\delta\leq\left(\sum_{j=1}^{n}|f_{j}(w)|^{2}\right)^{\frac{1}{2}},\quad w\in\mathbb{B}_{m}, (3.4)

and a function FHE(𝔹m)F\in H^{\infty}_{\mathbb{C}\rightarrow E}(\mathbb{B}_{m}) such that

F#(w¯)(λ):=F(w)(λ)(w)=λf(w) and (F#)Mult(KE,K),F^{\#}(\overline{w})(\lambda):=F(w)(\lambda)(w)={\lambda}f(w)\text{ and }(F^{\#})^{*}\in\text{Mult}(\mathcal{H}_{K}\otimes E,\mathcal{H}_{K}\otimes\mathbb{C}),

for λ\lambda\in\mathbb{C} and E=w𝔹mf(w)E=\bigvee\limits_{w\in\mathbb{B}_{m}}f(w). Then condition (3.4) implies the existence of g1,gnMult(K)g_{1},\cdots g_{n}\in\text{Mult}(\mathcal{H}_{K}) such that

j=1ngj(w)fj(w)=1,w𝔹m.\sum_{j=1}^{n}g_{j}(w)f_{j}(w)=1,\quad w\in\mathbb{B}_{m}.

Setting G=(g1,g2,,gn)G=(g_{1},g_{2},\cdots,g_{n}), one can proceed as in the proof of Theorem 3.5 to conclude that 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}^{*}_{z}.

Corollary 3.8.

Let Tn1(𝔻)T\in\mathcal{B}_{n}^{1}(\mathbb{D}) and S=(Mz,K)n11(𝔻)S=(M_{z}^{*},\mathcal{H}_{K})\in\mathcal{B}_{n_{1}}^{1}(\mathbb{D}). If

Mult(K)=H(𝔻)andTuS,\text{Mult}(\mathcal{H}_{K})=H^{\infty}(\mathbb{D})\quad\text{and}\quad\mathcal{E}_{T}\sim_{u}\mathcal{E}_{S}\otimes\mathcal{E},

for some Hermitian holomorphic vector bundle \mathcal{E} of rank n2:=n/n1n_{2}:=n/{n_{1}}, then Tsi=1n2ST\sim_{s}\bigoplus\limits_{i=1}^{n_{2}}S if and only if \mathcal{E} satisfies condition (𝐂)(\mathbf{C}) via K\mathcal{H}_{K}.

Proof: Suppose first that there exists a bounded invertible operator XX such that X(i=1n2S)=TX.X(\bigoplus\limits_{i=1}^{n_{2}}S)=TX. Then X:Sn2SX:\mathcal{E}_{S}\otimes\mathbb{C}^{n_{2}}\longrightarrow\mathcal{E}_{S}\otimes\mathcal{E} satisfies

X(K(,w¯)σ~iσj)=K(,w¯)σ~ifj(w),X(K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes\sigma_{j})=K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes f_{j}(w),

for a holomorphic frame {f1,,fn2}\{f_{1},\cdots,f_{n_{2}}\} of \mathcal{E} and orthonormal bases {σ~j}i=1n1\{\widetilde{\sigma}_{j}\}_{i=1}^{n_{1}} and {σj}j=1n2\{\sigma_{j}\}_{j=1}^{n_{2}} for n1\mathbb{C}^{n_{1}} and for n2\mathbb{C}^{n_{2}}, respectively. Note that since XX is a bounded linear operator, the fif_{i} are uniformly bounded on 𝔻.\mathbb{D}. Thus, we can define a function FHn2E(𝔻)F\in H^{\infty}_{\mathbb{C}^{n_{2}}\rightarrow E}(\mathbb{D}) as

F(w)σj=fj(w),1jn2,F(w)\sigma_{j}=f_{j}(w),\quad 1\leq j\leq n_{2},

where E=w𝔻{fj(w):1jn2}.E=\bigvee\limits_{w\in\mathbb{D}}\{f_{j}(w):1\leq j\leq n_{2}\}. Obviously, the function F#F^{\#} defined on 𝔻\mathbb{D} as F#(w):=F(w¯)F^{\#}(w):=F(\overline{w}) is such that (F#)HEn2(𝔻).(F^{\#})^{*}\in H^{\infty}_{E\rightarrow\mathbb{C}^{n_{2}}}(\mathbb{D}). Moreover, since Mult(KE,Kn2)=HEn2(𝔻),\text{Mult}(\mathcal{H}_{K}\otimes E,\mathcal{H}_{K}\otimes\mathbb{C}^{n_{2}})=H^{\infty}_{E\rightarrow\mathbb{C}^{n_{2}}}(\mathbb{D}),

(F#)Mult(KE,Kn2).(F^{\#})^{*}\in\text{Mult}(\mathcal{H}_{K}\otimes E,\mathcal{H}_{K}\otimes\mathbb{C}^{n_{2}}).

Next, note from Theorem 3.5 that

M(F#)(K(,w¯)σi~σj)=K(,w¯)σ~iF#(w¯)σj=K(,w¯)σ~iF(w)σj=K(,w¯)σ~ifj(w),\begin{array}[]{llll}M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\widetilde{\sigma_{i}}\otimes\sigma_{j})&=&K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F^{\#}(\overline{w})\sigma_{j}\\ &=&K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes F(w)\sigma_{j}\\ &=&K(\cdot,\overline{w})\widetilde{\sigma}_{i}\otimes f_{j}(w),\end{array}

and that the operator M(F#)M^{*}_{(F^{\#})^{*}} has dense range. Since XX is invertible, this means that X=M(F#)X=M^{*}_{(F^{\#})^{*}}. Furthermore, for every h=K(,w¯)ξKh=K(\cdot,\overline{w})\xi\in\mathcal{H}_{K}, gn2g\in\mathbb{C}^{n_{2}} and w𝔻,w\in\mathbb{D}, there exists a δ>0\delta>0 such that

XX(hg),hg=M(F#)M(F#)(hg),hg=h2F(w)F(w)g,gδ2g2h2.\begin{array}[]{llll}\langle X^{*}X(h\otimes g),h\otimes g\rangle&=&\Big{\langle}M_{(F^{\#})^{*}}M^{*}_{(F^{\#})^{*}}(h\otimes g),h\otimes g\Big{\rangle}\\ &=&\|h\|^{2}\langle F^{*}(w)F(w)g,g\rangle\\ &\geq&\delta^{2}\|g\|^{2}\|h\|^{2}.\end{array}

It follows that since FHn2E(𝔻)F\in H^{\infty}_{\mathbb{C}^{n_{2}}\rightarrow E}(\mathbb{D}) and F(w)F(w)δ2>0F^{*}(w)F(w)\geq\delta^{2}>0, there exists a function GHEn2(𝔻)G\in H^{\infty}_{E\rightarrow\mathbb{C}^{n_{2}}}(\mathbb{D}) such that G(w)F(w)IG(w)F(w)\equiv I, that is, G#(w¯)F#(w¯)=IG^{\#}(\overline{w})F^{\#}(\overline{w})=I, for every w𝔻w\in\mathbb{D}.

Conversely, if the complex bundle \mathcal{E} satisfies condition (𝐂)(\mathbf{C}), then there is a holomorphic frame {f1,,fn2}\{f_{1},\cdots,f_{n_{2}}\} of \mathcal{E} and functions FHn2E(𝔻)F\in H^{\infty}_{\mathbb{C}^{n_{2}}\rightarrow E}(\mathbb{D}) and GHEn2(𝔻)G\in H^{\infty}_{E\rightarrow\mathbb{C}^{n_{2}}}(\mathbb{D}) such that

F(w)σi=fi(w)andG#(w¯)F#(w¯)I,F(w)\sigma_{i}=f_{i}(w)\quad\text{and}\quad G^{\#}(\overline{w})F^{\#}(\overline{w})\equiv I,

for all w𝔻w\in\mathbb{D}, 1in21\leq i\leq n_{2}, and an orthonormal basis {σ1,,σn2}\{\sigma_{1},\cdots,\sigma_{n_{2}}\} of n2\mathbb{C}^{n_{2}}. Another application of Theorem 3.5 yields a bounded invertible operator M(F#):(i=1n2S)(w)(S)(w)M^{*}_{(F^{\#})^{*}}:\left(\mathcal{E}_{\oplus_{i=1}^{n_{2}}S}\right)(w)\rightarrow(\mathcal{E}_{S}\otimes\mathcal{E})(w). Now, since TuS\mathcal{E}_{T}\sim_{u}\mathcal{E}_{S}\otimes\mathcal{E}, there is a unitary operator UU such that U((S)(w))=T(w)U\Big{(}\big{(}\mathcal{E}_{S}\otimes\mathcal{E}\big{)}(w)\Big{)}=\mathcal{E}_{T}(w) for w𝔻.w\in\mathbb{D}. Then, UM(F#)UM^{*}_{(F^{\#})^{*}} is a bounded invertible operator establishing the similarity between TT and i=1n2S\bigoplus\limits_{i=1}^{n_{2}}S.

The Dirichlet space 𝒟\mathcal{D} consists of all analytic functions f(z)=n=0anznf(z)=\sum\limits_{n=0}^{\infty}a_{n}z^{n} defined on the unit disk 𝔻\mathbb{D}\subset\mathbb{C} satisfying f=n=0(n+1)|an|2<.\|f\|=\sum\limits_{n=0}^{\infty}(n+1)|a_{n}|^{2}<\infty. It is well-known that the reproducing kernel of 𝒟\mathcal{D} is given as K(z,w)=1w¯zlog11w¯zK(z,w)=\frac{1}{\overline{w}z}\log\frac{1}{1-\overline{w}z}, for w,z𝔻w,z\in\mathbb{D}. Research on similarity on the Dirichlet space 𝒟\mathcal{D} can be found in HKK2016 , for instance. Using the results of Luo2022 , we now give a sufficient condition for a Cowen-Douglas operator to be similar to MzM_{z}^{*} on 𝒟\mathcal{D}.

Corollary 3.9.

Let T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}) and consider the operator Mz11(𝔻)M_{z}^{*}\in\mathcal{B}_{1}^{1}(\mathbb{D}) on the Dirichlet space 𝒟\mathcal{D}. Suppose that T=Mz\mathcal{E}_{T}=\mathcal{E}_{M_{z}^{*}}\otimes\mathcal{E} for some Hermitian holomorphic vector bundle \mathcal{E} over 𝔻\mathbb{D}, where (w)=f(w)\mathcal{E}(w)=\bigvee f(w) and f(w)=(f1(w),,fn(w))Tf(w)=(f_{1}(w),\cdots,f_{n}(w))^{T} for fjH(𝔻)f_{j}\in H^{\infty}(\mathbb{D}). If

𝔻|f(z)|2|fj(z)|2U(z)𝑑A(z)f𝒟2,f𝒟,\int_{\mathbb{D}}|f(z)|^{2}|f_{j}^{{}^{\prime}}(z)|^{2}U(z)dA(z)\lesssim\|f\|^{2}_{\mathcal{D}},\quad f\in\mathcal{D},

where

U(z)=𝕋log|1w¯zzw|2|dw|2π(1|w|2)+𝕋1|z|2|1w¯z|2|dw|2π,z𝔻,U(z)=\displaystyle\int_{\mathbb{T}}\log\left|\frac{1-\overline{w}z}{z-w}\right|^{2}\frac{|dw|}{2\pi(1-|w|^{2})}+\int_{\mathbb{T}}\frac{1-|z|^{2}}{|1-\overline{w}z|^{2}}\frac{|dw|}{2\pi},\quad z\in\mathbb{D},

and dAdA is the normalized area measure, then TsMz.T\sim_{s}M_{z}^{*}.

In order to investigate similarity between tuples of irreducible operators in the Cowen-Douglas class nm(𝔹m)\mathcal{B}_{n}^{m}(\mathbb{B}_{m}), we introduce a subclass denoted nm(𝔹m)\mathcal{F}\mathcal{B}_{n}^{m}(\mathbb{B}_{m}). The subclass nm(𝔹m)\mathcal{F}\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) is the collection of all 𝐓=(T1,,Tm)nm(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) of the form

𝐓=((T1,1T~1,2T~1,n1T~1,n0T1,2T~2,n1T~2,n00T1,n1T~n1,n000T1,n),,(Tm,1T~1,2T~1,n1T~1,n0Tm,2T~2,n1T~2,n00Tm,n1T~n1,n000Tm,n)),\mathbf{T}=\left(\scriptsize\begin{pmatrix}T_{1,1}&\widetilde{T}_{1,2}&\cdots&\widetilde{T}_{1,n-1}&\widetilde{T}_{1,n}\\ 0&T_{1,2}&\cdots&\widetilde{T}_{2,n-1}&\widetilde{T}_{2,n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&T_{1,n-1}&\widetilde{T}_{n-1,n}\\ 0&0&\cdots&0&T_{1,n}\\ \end{pmatrix},\cdots,\scriptsize\begin{pmatrix}T_{m,1}&\widetilde{T}_{1,2}&\cdots&\widetilde{T}_{1,n-1}&\widetilde{T}_{1,n}\\ 0&T_{m,2}&\cdots&\widetilde{T}_{2,n-1}&\widetilde{T}_{2,n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&T_{m,n-1}&\widetilde{T}_{n-1,n}\\ 0&0&\cdots&0&T_{m,n}\\ \end{pmatrix}\right),

where 𝐓i=(T1,i,,Tm,i)1m(𝔹m)\mathbf{T}_{i}=(T_{1,i},\cdots,T_{m,i})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and the T~i,i+1\widetilde{T}_{i,i+1}, 1in11\leq i\leq n-1, are non-zero operators such that Tk,iT~i,i+1=T~i,i+1Tk,i+1T_{k,i}\widetilde{T}_{i,i+1}=\widetilde{T}_{i,i+1}T_{k,i+1} for all 1km1\leq k\leq m. The class n1(Ω)\mathcal{FB}_{n}^{1}(\Omega) was defined in JJDG , and in JKSX ; JJD , the corresponding similarity question was considered. We now give a sufficient condition for the similarity between 𝐓\mathbf{T} and 𝐒\mathbf{S}, where

𝐒=((S1,1S~1,2S~1,n1S~1,n0S1,2S~2,n1S~2,n00S1,n1S~n1,n000S1,n),,(Sm,1S~1,2S~1,n1S~1,n0Sm,2S~2,n1S~2,n00Sm,n1S~n1,n000Sm,n))\mathbf{S}=\left(\scriptsize\begin{pmatrix}S_{1,1}&\widetilde{S}_{1,2}&\cdots&\widetilde{S}_{1,n-1}&\widetilde{S}_{1,n}\\ 0&S_{1,2}&\cdots&\widetilde{S}_{2,n-1}&\widetilde{S}_{2,n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&S_{1,n-1}&\widetilde{S}_{n-1,n}\\ 0&0&\cdots&0&S_{1,n}\\ \end{pmatrix},\cdots,\scriptsize\begin{pmatrix}S_{m,1}&\widetilde{S}_{1,2}&\cdots&\widetilde{S}_{1,n-1}&\widetilde{S}_{1,n}\\ 0&S_{m,2}&\cdots&\widetilde{S}_{2,n-1}&\widetilde{S}_{2,n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&S_{m,n-1}&\widetilde{S}_{n-1,n}\\ 0&0&\cdots&0&S_{m,n}\\ \end{pmatrix}\right)

is in nm(𝔹m)\mathcal{F}\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) and 𝐒i=(S1,i,,Sm,i)\mathbf{S}_{i}=(S_{1,i},\cdots,S_{m,i}) is in 1m(𝔹m)\mathcal{B}^{m}_{1}(\mathbb{B}_{m}) for 1in1\leq i\leq n.

Theorem 3.10.

Let 𝐓,𝐒nm(𝔹m)\mathbf{T},\mathbf{S}\in\mathcal{FB}^{m}_{n}(\mathbb{B}_{m}), where 𝐒iu(𝐌z,ki)\mathbf{S}_{i}\sim_{u}({\mathbf{M}}^{*}_{z},\mathcal{H}_{k_{i}}) for some ki>m+1k_{i}>m+1 and for all 1in1\leq i\leq n. Suppose that the following conditions hold:

  1. (1)

    𝒦𝐒1(w)𝒦𝐓1(w)=i,j=1m2ψ(w)wiw¯jdwidw¯j,\mathcal{K}_{\mathbf{S}_{1}}(w)-\mathcal{K}_{\mathbf{T}_{1}}(w)=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j}, where ψ(w)=logf(w)2\psi(w)=\log\|f(w)\|^{2} for some analytic vector valued function ff over 𝔹m\mathbb{B}_{m}.

  2. (2)

    Condition (𝐂)(\mathbf{C}) holds for the Hermitian holomorphic vector bundle \mathcal{E}, with =f(w)\mathcal{E}=\bigvee f(w), via ki\mathcal{H}_{k_{i}}, 1in1\leq i\leq n.

  3. (3)

    There exist functions {ϕi}i=1n1GL(H(𝔹m))\{\phi_{i}\}^{n-1}_{i=1}\subset GL({H}^{\infty}(\mathbb{B}_{m})) such that for all 1i<jn1\leq i<j\leq n and w𝔹mw\in\mathbb{B}_{m},

    k=ij1|ϕk(w)|2T~i,jtj(w),ti(w)tj(w)2=S~i,jKj(,w¯),Ki(,w¯)Kj(,w¯)2,\prod\limits_{k=i}^{j-1}|\phi_{k}(w)|^{2}\frac{\langle\widetilde{T}_{i,j}t_{j}(w),t_{i}(w)\rangle}{\|t_{j}(w)\|^{2}}=\frac{\langle\widetilde{S}_{i,j}K_{j}(\cdot,\overline{w}),{K}_{i}(\cdot,\overline{w})\rangle}{\|{K}_{j}(\cdot,\overline{w})\|^{2}},

    where tn(w)ker(𝐓nw)t_{n}(w)\in\ker(\mathbf{T}_{n}-w), Kn(,w¯)ker(𝐒nw),K_{n}(\cdot,\overline{w})\in\ker(\mathbf{S}_{n}-w), ti(w)=T~i,i+1ti+1(w)t_{i}(w)=\widetilde{T}_{i,i+1}t_{i+1}(w), and Ki(,w¯)=S~i,i+1Ki+1(,w¯){K}_{i}(\cdot,\overline{w})=\widetilde{S}_{i,i+1}{K}_{i+1}(\cdot,\overline{w}) for 1in1.1\leq i\leq n-1.

  4. (4)

    Tk,iT~i,j=T~i,jTk,jT_{k,i}\widetilde{T}_{i,j}=\widetilde{T}_{i,j}T_{k,j} and Sk,iS~i,j=S~i,jSk,jS_{k,i}\widetilde{S}_{i,j}=\widetilde{S}_{i,j}S_{k,j} for all 1i<jn1\leq i<j\leq n and 1km1\leq k\leq m.

Then 𝐒s𝐓.\mathbf{S}\sim_{s}\mathbf{T}.

Proof: We can assume from condition (1) that 𝐓1=𝐒1\mathcal{E}_{\mathbf{T}_{1}}=\mathcal{E}_{\mathbf{S}_{1}}\otimes\mathcal{E}, where (w)=f(w)\mathcal{E}(w)=\bigvee f(w) for analytic vector valued function ff over 𝔹m\mathbb{B}_{m}. Furthermore, t1(w)=K1(,w¯)f(w)\|t_{1}(w)\|=\|K_{1}(\cdot,\overline{w})\otimes f(w)\| for some t1(w)ker(𝐓1w)t_{1}(w)\in\ker(\mathbf{T}_{1}-w). Note also that if we let j=i+1j=i+1 in condition (3), then

|ϕi(w)|2ti(w)2ti+1(w)2=Ki(,w¯)2Ki+1(,w¯)2.|\phi_{i}(w)|^{2}\frac{\|t_{i}(w)\|^{2}}{\|t_{i+1}(w)\|^{2}}=\frac{\|K_{i}(\cdot,\overline{w})\|^{2}}{\|K_{i+1}(\cdot,\overline{w})\|^{2}}. (3.5)

Thus, for 2in2\leq i\leq n,

ti(w)2=k=1i1|ϕk(w)|2Ki(,w¯)2t1(w)2K1(,w¯)2=k=1i1|ϕk(w)|2Ki(,w¯)2K1(,w¯)f(w)2K1(,w¯)2=k=1i1|ϕk(w)|2Ki(,w¯)2f(w)2.\begin{array}[]{llll}\|t_{i}(w)\|^{2}&=&\frac{\prod\limits_{k=1}^{i-1}|\phi_{k}(w)|^{2}\|K_{i}(\cdot,\overline{w})\|^{2}\|t_{1}(w)\|^{2}}{\|K_{1}(\cdot,\overline{w})\|^{2}}\\ &=&\frac{\prod\limits_{k=1}^{i-1}|\phi_{k}(w)|^{2}\|K_{i}(\cdot,\overline{w})\|^{2}\|K_{1}(\cdot,\overline{w})\otimes f(w)\|^{2}}{\|K_{1}(\cdot,\overline{w})\|^{2}}\\ &=&\prod\limits_{k=1}^{i-1}|\phi_{k}(w)|^{2}\|K_{i}(\cdot,\overline{w})\|^{2}\|f(w)\|^{2}.\end{array}

By using the Rigidity Theorem given in CD , we now define the isometries WiW_{i}, 1in1\leq i\leq n, by

W1t1(w):=K1(,w¯)f(w) and Witi(w):=k=1i1ϕk(w)Ki(,w¯)f(w).W_{1}t_{1}(w):=K_{1}(\cdot,\overline{w})\otimes f(w)\,\,\text{ and }\,\,W_{i}t_{i}(w):=\prod\limits_{k=1}^{i-1}\phi_{k}(w)K_{i}(\cdot,\overline{w})\otimes f(w). (3.6)

Then, for 1im1\leq i\leq m,

(Ti,1T~1,2T~1,n0Ti,2T~2,n00Ti,n)u(Mzi|𝒩1W1T~1,2W2W1T~1,nWn0Mzi|𝒩2W2T~2,nWn00Mzi|𝒩n),\small\begin{pmatrix}T_{i,1}&\widetilde{T}_{1,2}&\cdots&\widetilde{T}_{1,n}\\ 0&T_{i,2}&\cdots&\widetilde{T}_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&T_{i,n}\\ \end{pmatrix}\sim_{u}\small\begin{pmatrix}M^{*}_{z_{i}}|_{\mathcal{N}_{1}}&W_{1}\widetilde{T}_{1,2}W^{*}_{2}&\cdots&W_{1}\widetilde{T}_{1,n}W^{*}_{n}\\ 0&M^{*}_{z_{i}}|_{\mathcal{N}_{2}}&\cdots&W_{2}\widetilde{T}_{2,n}W^{*}_{n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&M^{*}_{z_{i}}|_{\mathcal{N}_{n}}\\ \end{pmatrix}, (3.7)

where 𝒩j=ranWj¯\mathcal{N}_{j}=\overline{\text{ran}W_{j}} for 1jn1\leq j\leq n. Moreover,

ker(𝐌z|𝒩1w)={K1(,w¯)f(w)}\ker(\mathbf{M}^{*}_{z}|_{\mathcal{N}_{1}}-w)=\bigvee\left\{K_{1}(\cdot,\overline{w})\otimes f(w)\right\}

and

ker(𝐌z|𝒩jw)={k=1j1ϕk(w)Kj(,w¯)f(w)},\ker(\mathbf{M}^{*}_{z}|_{\mathcal{N}_{j}}-w)=\bigvee\left\{\prod\limits_{k=1}^{j-1}\phi_{k}(w)K_{j}(\cdot,\overline{w})\otimes f(w)\right\},

for 2jn2\leq j\leq n and w𝔹mw\in\mathbb{B}_{m}. Since 𝐒iu(𝐌z,ki)\mathbf{S}_{i}\sim_{u}(\mathbf{M}^{*}_{z},\mathcal{H}_{k_{i}}) for 1in1\leq i\leq n,

𝒦𝐒i𝒦𝐓i=𝒦𝐒i𝒦𝐌z|𝒩i=𝒦𝐒i(𝒦𝐒i+𝒦)=i,j=1m2ψ(w)wiw¯jdwidw¯j,\mathcal{K}_{\mathbf{S}_{i}}-\mathcal{K}_{\mathbf{T}_{i}}=\mathcal{K}_{\mathbf{S}_{i}}-\mathcal{K}_{\mathbf{M}^{*}_{z}|_{\mathcal{N}_{i}}}=\mathcal{K}_{\mathbf{S}_{i}}-(\mathcal{K}_{\mathbf{S}_{i}}+\mathcal{K}_{\mathcal{E}})=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},

where ψ(w)=logf(w)2\psi(w)=\log\|f(w)\|^{2}. Next, by condition (2) and Lemma 2.2, there is a multiplier (F#)Mult(kiE,ki)(F^{\#})^{*}\in\text{Mult}(\mathcal{H}_{k_{i}}\otimes E,\mathcal{H}_{k_{i}}\otimes\mathbb{C}) with FHE(𝔹m)F\in H^{\infty}_{\mathbb{C}\rightarrow E}(\mathbb{B}_{m}) that satisfies

M(F#)(Ki(,w¯)λ)=Ki(,w¯)F#(w¯)(λ)=Ki(,w¯)λf(w),λ,M^{*}_{(F^{\#})^{*}}(K_{i}(\cdot,\overline{w})\otimes\lambda)=K_{i}(\cdot,\overline{w})\otimes F^{\#}(\overline{w})(\lambda)=K_{i}(\cdot,\overline{w})\otimes\lambda f(w),\quad\lambda\in\mathbb{C},

and a GHE(𝔹m)G\in H^{\infty}_{E\rightarrow\mathbb{C}}(\mathbb{B}_{m}) so that

M(G#)M(F#)(K(,w¯)1)=M(G#)(Ki(,w¯)F#(w¯)(1))=Ki(,w¯)G#(w¯)F#(w¯)(1)=Ki(,w¯)1,\begin{array}[]{llll}M^{*}_{(G^{\#})^{*}}M^{*}_{(F^{\#})^{*}}(K(\cdot,\overline{w})\otimes 1)&=&M^{*}_{(G^{\#})^{*}}(K_{i}(\cdot,\overline{w})\otimes F^{\#}(\overline{w})(1))\\ &=&K_{i}(\cdot,\overline{w})\otimes G^{\#}(\overline{w})F^{\#}(\overline{w})(1)\\ &=&K_{i}(\cdot,\overline{w})\otimes 1,\end{array}

where E=w𝔹mf(w).E=\bigvee\limits_{w\in\mathbb{B}_{m}}f(w). Then there exist invertible operators Xi(Ki,𝒩i),1in,X_{i}\in\mathcal{L}(\mathcal{H}_{K_{i}},\mathcal{N}_{i}),1\leq i\leq n, such that Xi𝐒i=𝐌z|𝒩iXi=Wi𝐓iWiXi.X_{i}\mathbf{S}_{i}=\mathbf{M}^{*}_{z}|_{\mathcal{N}_{i}}X_{i}=W_{i}\mathbf{T}_{i}W_{i}^{\ast}X_{i}. It then follows for some g𝒪(𝔹m)g\in\mathcal{O}(\mathbb{B}_{m}), that

X1K1(,w¯)=g(w)K1(,w¯)f(w)andXiKi(,w¯)=g(w)k=1i1ϕk(w)Ki(,w¯)f(w),X_{1}K_{1}(\cdot,\overline{w})=g(w)K_{1}(\cdot,\overline{w})\otimes f(w)\,\,\text{and}\,\,X_{i}K_{i}(\cdot,\overline{w})=g(w)\prod\limits_{k=1}^{i-1}\phi_{k}(w)K_{i}(\cdot,\overline{w})\otimes f(w), (3.8)

for all 2in2\leq i\leq n and w𝔹mw\in\mathbb{B}_{m}. A direct calculation shows that for 1in11\leq i\leq n-1,

XiS~i,i+1=WiT~i,i+1Wi+1Xi+1.X_{i}\widetilde{S}_{i,i+1}=W_{i}\widetilde{T}_{i,i+1}W^{*}_{i+1}X_{i+1}.

Note that Tk,iT~i,j=T~i,jTk,jT_{k,i}\widetilde{T}_{i,j}=\widetilde{T}_{i,j}T_{k,j} and Sk,iS~i,j=S~i,jSk,jS_{k,i}\widetilde{S}_{i,j}=\widetilde{S}_{i,j}S_{k,j} for all 1i<jn1\leq i<j\leq n and 1km1\leq k\leq m. Moreover, there exist functions ϕi,j,φi,j𝒪(𝔹m)\phi_{i,j},\varphi_{i,j}\in\mathcal{O}(\mathbb{B}_{m}) such that T~i,jtj(w)=ϕi,j(w)ti(w)\widetilde{T}_{i,j}t_{j}(w)=\phi_{i,j}(w)t_{i}(w) and S~i,jKj(,w¯)=φi,j(w)Ki(,w¯).\widetilde{S}_{i,j}K_{j}(\cdot,\overline{w})=\varphi_{i,j}(w)K_{i}(\cdot,\overline{w}). Therefore, for 1i<jn1\leq i<j\leq n, we get from condition (3) and (3.5) that

k=ij1|ϕk(w)|2ϕi,j(w)ti(w)2tj(w)2=φi,j(w)Ki(,w¯)2Kj(,w¯)2\prod_{k=i}^{j-1}|\phi_{k}(w)|^{2}\frac{\phi_{i,j}(w)\|t_{i}(w)\|^{2}}{\|t_{j}(w)\|^{2}}=\frac{\varphi_{i,j}(w)\|K_{i}(\cdot,\overline{w})\|^{2}}{\|K_{j}(\cdot,\overline{w})\|^{2}}

and

k=ij1|ϕk(w)|2ti(w)2tj(w)2=Ki(,w¯)2Kj(,w¯)2,\prod_{k=i}^{j-1}|\phi_{k}(w)|^{2}\frac{\|t_{i}(w)\|^{2}}{\|t_{j}(w)\|^{2}}=\frac{\|K_{i}(\cdot,\overline{w})\|^{2}}{\|K_{j}(\cdot,\overline{w})\|^{2}},

that is, ϕi,j=φi,j\phi_{i,j}=\varphi_{i,j}. Moreover, by (3.6) and (3.8),

W1T~1,lWlXlKl(,w¯)=W1T~1,lWl(g(w)k=1l1ϕk(w)Kj(,w¯)f(w))=g(w)W1T~1,ltl(w)=g(w)W1(ϕ1,l(w)t1(w))=g(w)ϕ1,l(w)(Kl(,w¯)f(w))=X1(ϕ1,l(w)K1(,w¯))=X1S~1,lKl(,w¯),\begin{array}[]{llll}W_{1}\widetilde{T}_{1,l}W^{*}_{l}X_{l}K_{l}(\cdot,\overline{w})&=&W_{1}\widetilde{T}_{1,l}W^{*}_{l}\left(g(w)\prod\limits_{k=1}^{l-1}\phi_{k}(w)K_{j}(\cdot,\overline{w})\otimes f(w)\right)\\ &=&g(w)W_{1}\widetilde{T}_{1,l}t_{l}(w)\\ &=&g(w)W_{1}(\phi_{1,l}(w)t_{1}(w))\\ &=&g(w)\phi_{1,l}(w)\left(K_{l}(\cdot,\overline{w})\otimes f(w)\right)\\ &=&X_{1}(\phi_{1,l}(w)K_{1}(\cdot,\overline{w}))\\ &=&X_{1}\widetilde{S}_{1,l}K_{l}(\cdot,\overline{w}),\end{array}

and

WiT~i,jWjXjKj(,w¯)=WiT~i,jWj(g(w)k=1j1ϕk(w)Kj(,w¯)f(w))=g(w)WiT~i,jtj(w)=g(w)Wi(ϕi,j(w)ti(w))=g(w)ϕi,j(w)(k=1i1ϕk(w)Ki(,w¯)f(w))=Xi(ϕi,j(w)Ki(,w¯))=XiS~i,jKj(,w¯),\begin{array}[]{llll}W_{i}\widetilde{T}_{i,j}W^{*}_{j}X_{j}K_{j}(\cdot,\overline{w})&=&W_{i}\widetilde{T}_{i,j}W^{*}_{j}\left(g(w)\prod\limits_{k=1}^{j-1}\phi_{k}(w)K_{j}(\cdot,\overline{w})\otimes f(w)\right)\\ &=&g(w)W_{i}\widetilde{T}_{i,j}t_{j}(w)\\ &=&g(w)W_{i}(\phi_{i,j}(w)t_{i}(w))\\ &=&g(w)\phi_{i,j}(w)\left(\prod\limits_{k=1}^{i-1}\phi_{k}(w)K_{i}(\cdot,\overline{w})\otimes f(w)\right)\\ &=&X_{i}(\phi_{i,j}(w)K_{i}(\cdot,\overline{w}))\\ &=&X_{i}\widetilde{S}_{i,j}K_{j}(\cdot,\overline{w}),\end{array}

for 1<ln1<l\leq n and 2i<jn2\leq i<j\leq n. Hence, the operator X:=diag(X1,,Xn)X:=\text{diag}(X_{1},\cdots,X_{n}) is invertible and

(Mzi|𝒩1W1T~1,2W2W1T~1,nWn0Mzi|𝒩2W2T~2,nWn00Mzi|𝒩n)(X1X2Xn)=(X1X2Xn)(Si,1S~1,2S~1,n0Si,2S~2,n00Si,n),\begin{array}[]{llll}&&\scriptsize\begin{pmatrix}M^{*}_{z_{i}}|_{\mathcal{N}_{1}}&W_{1}\widetilde{T}_{1,2}W^{*}_{2}&\cdots&W_{1}\widetilde{T}_{1,n}W^{*}_{n}\\ 0&M^{*}_{z_{i}}|_{\mathcal{N}_{2}}&\cdots&W_{2}\widetilde{T}_{2,n}W^{*}_{n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&M^{*}_{z_{i}}|_{\mathcal{N}_{n}}\\ \end{pmatrix}\scriptsize\begin{pmatrix}X_{1}&&&\\ &X_{2}&&\\ &&\ddots&\\ &&&X_{n}\\ \end{pmatrix}\\ &=&\scriptsize\begin{pmatrix}X_{1}&&&\\ &X_{2}&&\\ &&\ddots&\\ &&&X_{n}\\ \end{pmatrix}\scriptsize\begin{pmatrix}S_{i,1}&\widetilde{S}_{1,2}&\cdots&\widetilde{S}_{1,n}\\ 0&S_{i,2}&\cdots&\widetilde{S}_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&S_{i,n}\\ \end{pmatrix},\end{array}

for all 1im1\leq i\leq m. From this and (3.7), we conclude that 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S}.

3.3 Uniqueness of strongly irreducible decomposition up to similarity

When the Hilbert space \mathcal{H} is finite-dimensional, the Jordan canonical form theorem indicates that every operator on \mathcal{H} can be uniquely written as a direct sum of strongly irreducible operators up to similarity. Is there a corresponding analogue when one considers operators on an infinite-dimensional complex separable Hilbert space \mathcal{H}? The notion of a unicellular operator was introduced in MSB1956 ; MSB1968 and it was shown in GEK1967-2 ; GEK1967 that dissipative operators can be written as a direct sum of unicellular operators. In BNF1979 ; BNF1975 ; NF1970 ; NF1970-3 ; NF1972 ; NF , every C0C_{0}-operator on a complex separable Hilbert space was proven to be similar to a Jordan operator. Furthermore, in DH1990 , every bitriangular operator was shown to be quasisimilar to a Jordan operator. The concepts of strong irreducibility and of Banach irreducibility introduced in Gilfeather and JS2006 , respectively, turned out to be equivalent. In Halmos , the set of irreducible operators was proven to be dense in ()\mathcal{L}(\mathcal{H}) in the sense of Hilbert-Schmidt norm approximations. For the class n1(Ω)\mathcal{B}_{n}^{1}(\Omega), the work Y. Cao-J. S. Fang-C. L. Jiang CFJ2002 , C. L. Jiang J2004 , and C. L. Jiang-X. Z. Guo-K. Ji JGJ involve the K0K_{0}-group of the commutant algebra as an invariant to show that an operator in n1(Ω)\mathcal{B}_{n}^{1}(\Omega) has a unique strong irreducible decomposition up to similarity.

Let T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}) be an nn-hypercontraction. Denote by n1\mathcal{H}_{n}^{1} the Hilbert space of analytic functions on the unit disk 𝔻\mathbb{D} with reproducing kernel K(z,w)=1(1zw¯)n,K(z,w)=\frac{1}{(1-z\overline{w})^{n}}, for z,w𝔻z,w\in\mathbb{D}. The results in DKT and HJK show that i=1kT\bigoplus\limits_{i=1}^{k}T is similar to the backward shift operator i=1kMz\bigoplus\limits_{i=1}^{k}M_{z}^{*} on i=1kn1\bigoplus\limits_{i=1}^{k}\mathcal{H}_{n}^{1} if and only if there exists a bounded subharmonic function φ\varphi defined on 𝔻\mathbb{D} such that

trace Ki=1kMz(w)trace Ki=1kT(w)=kKMz(w)kKT(w)2φ(w)ww¯,w𝔻.\text{trace }{K}_{\bigoplus\limits_{i=1}^{k}M_{z}^{*}}(w)-\text{trace }{K}_{\bigoplus\limits_{i=1}^{k}T}(w)=k{K}_{M_{z}^{*}}(w)-k{K}_{T}(w)\leq\frac{\partial^{2}\varphi(w)}{\partial w\partial\overline{w}},\quad w\in\mathbb{D}.

Note here that if i=1kTsi=1kMz\bigoplus\limits_{i=1}^{k}T\sim_{s}\bigoplus\limits_{i=1}^{k}M_{z}^{*}, then TsMzT\sim_{s}M_{z}^{*}.

We start with some definitions given in Gilfeather ; Halmos .

Definition 3.11.

Let {T}={X():XT=TX}\{T\}^{\prime}=\{X\in\mathcal{L}(\mathcal{H}):XT=TX\} be the commutant of T()T\in\mathcal{L}(\mathcal{H}). The operator TT is called strongly irreducible if {T}\{T\}^{\prime} does not have any nontrivial idempotents. It is called irreducible if {T}\{T\}^{\prime} does not any contain nontrivial self-adjoint idempotents.

Definition 3.12.

Consider T=(Mz,K,K)n1(Ω)T=(M^{*}_{z},\mathcal{H}_{K},K)\in\mathcal{B}_{n}^{1}(\Omega), where K\mathcal{H}_{K} is an analytic function space with reproducing kernel KK. Suppose that TT has a strongly irreducible decomposition, that is,

T=i=1tTi(ri),T=\bigoplus\limits_{i=1}^{t}T_{i}^{(r_{i})},

where each Tini1(Ω)T_{i}\in\mathcal{B}_{n_{i}}^{1}(\Omega) is strongly irreducible and TisTjT_{i}\nsim_{s}T_{j} for iji\neq j. It is said to have a unique strongly irreducible decomposition up to similarity, if for any operator T~\widetilde{T} that is similar to TT with a strongly irreducible decomposition

T~=i=1sT~i(li),\widetilde{T}=\bigoplus\limits_{i=1}^{s}\widetilde{T}_{i}^{(l_{i})},
  • (1)

    t=st=s; and

  • (2)

    there is a permutation π\pi on {1,2,,t}\{1,2,\cdots,t\} such that TisT~π(i)T_{i}\sim_{s}\widetilde{T}_{\pi(i)} and ri=lπ(i), 1itr_{i}=l_{\pi(i)},\ 1\leq i\leq t.

Proposition 3.13.

Let T=T1Tk,S=S1Skn1(Ω)T=T_{1}\oplus\cdots\oplus T_{k},S^{*}=S_{1}^{*}\oplus\cdots\oplus S_{k}^{*}\in\mathcal{B}_{n}^{1}(\Omega), where SiS_{i}^{*} is the adjoint of the operator of multiplication by zz on a reproducing kernel Hilbert space Ki\mathcal{H}_{K_{i}} with reproducing kernel KiK_{i} and SiS_{i}^{*} is strongly irreducible for 1ik1\leq i\leq k. Suppose that there exist an isometry VV and a Hermitian holomorphic vector bundle \mathcal{E} over Ω\Omega for which condition (𝐂)(\mathbf{C}) holds such that

VKT,wiw¯jV=KS,wiw¯j+K,wiw¯jIn,0i,jn1.VK_{{T},w^{i}\overline{w}^{j}}V^{*}=K_{{S^{*}},w^{i}\overline{w}^{j}}+K_{\mathcal{E},w^{i}\overline{w}^{j}}\otimes I_{n},\quad 0\leq i,j\leq n-1.

Then, there is a permutation π\pi on {1,,k}\{1,\cdots,k\} such that SisTπ(i)S^{*}_{i}\sim_{s}T_{\pi(i)} for 1ik.1\leq i\leq k.

Proof: Note first that T,Sn1(Ω)T,S^{*}\in\mathcal{B}_{n}^{1}(\Omega). By Lemma 3.4, we have

VKT,wiw¯jV=KS,wiw¯j+K,wiw¯jIn=KS,wiw¯j,0i,jn1.VK_{{T},w^{i}\overline{w}^{j}}V^{*}=K_{{S^{*}},w^{i}\overline{w}^{j}}+K_{\mathcal{E},w^{i}\overline{w}^{j}}\otimes I_{n}=K_{\mathcal{E}_{S^{*}}\otimes\mathcal{E},w^{i}\overline{w}^{j}},\quad 0\leq i,j\leq n-1.

From CD , we also know that T\mathcal{E}_{T} is congruent to S\mathcal{E}_{S^{*}}\otimes\mathcal{E}. Moreover, an operator Tn1(Ω)T\in\mathcal{B}_{n}^{1}(\Omega) has an unique irreducible decomposition up to unitary equivalence as is shown in JJ . In CD , it is proven that operators in n1(Ω)\mathcal{B}_{n}^{1}(\Omega) are unitary equivalent if and only if their holomorphic eigenvector bundles are equivalent. Since operators S1,,SkS_{1}^{*},\cdots,S_{k}^{*} are strongly irreducible, there is a permutation π\pi on {1,,k}\{1,\cdots,k\} so that Si\mathcal{E}_{S_{i}^{*}}\otimes\mathcal{E} is congruent to Tπ(i)\mathcal{E}_{T_{\pi(i)}}, that is, there are unitary operators Ui,1ik,U_{i},1\leq i\leq k, such that

Ui(Si)(w)=Tπ(i)(w),wΩ.U_{i}(\mathcal{E}_{S_{i}^{*}}\otimes\mathcal{E})(w)=\mathcal{E}_{T_{\pi(i)}}(w),\quad w\in\Omega.

Now since the complex bundle \mathcal{E} satisfies condition (𝐂)(\mathbf{C}), we obtain from Theorem 3.5 an invertible operator M(F#)M^{*}_{(F^{\#})^{*}} with FHE(Ω)F\in H^{\infty}_{\mathbb{C}\rightarrow E}(\Omega) such that

M(F#)(Si(w))=(Si)(w),wΩ.M^{*}_{(F^{\#})^{*}}(\mathcal{E}_{S_{i}^{*}}(w))=(\mathcal{E}_{S_{i}^{*}}\otimes\mathcal{E})(w),\quad w\in\Omega.

Hence, the operator UiM(F#)U_{i}M^{*}_{(F^{\#})^{*}} is invertible and

(UiM(F#))(Si(w))=Tπ(i)(w),wΩ,(U_{i}M^{*}_{(F^{\#})^{*}})(\mathcal{E}_{S_{i}^{*}}(w))=\mathcal{E}_{T_{\pi(i)}}(w),\quad w\in\Omega,

so that SisTπ(i)S_{i}^{*}\sim_{s}T_{\pi(i)} for 1ik.1\leq i\leq k.

Remark 3.14.

As in the proof of Theorem 3.5, Proposition 3.13 shows that TT is similar to SS^{*}. The result remains valid for operator tuples in nm(Ω)\mathcal{B}_{n}^{m}(\Omega) possessing a unique irreducible decomposition up to unitary equivalence.

4 Applications of Theorem 3.2

Theorem 3.2 yields several sufficient conditions involving curvature for the similarity of certain adjoints of multiplication tuples. For m>1m>1, let Ω\Omega be a bounded domain in m\mathbb{C}^{m}. The space 𝒞2(Ω)\mathcal{C}^{2}(\Omega) consists of functions defined on Ω\Omega whose second order partial derivatives are continuous. The reader is referred to LAA ; PL ; KO for the following definitions and results.

Definition 4.1.

A function u𝒞2(Ω)u\in\mathcal{C}^{2}(\Omega) is said to be pluriharmonic if it satisfies the m2m^{2} differential equations 2uwiw¯j=0\frac{\partial^{2}u}{\partial w_{i}\partial\overline{w}_{j}}=0 for 1i,jm.1\leq i,j\leq m.

Definition 4.2.

A real-valued function u:Ω{}(u)u:\Omega\rightarrow\mathbb{R}\cup\{-\infty\}(u\not\equiv-\infty) is said to be plurisubharmonic if

  • (1)

    u(z)u(z) is upper-semicontinuous on Ω\Omega; and

  • (2)

    for each z0Ωz_{0}\in\Omega and some z1mz_{1}\in\mathbb{C}^{m} that is dependent on z0z_{0}, the function u(z0+λz1)u(z_{0}+\lambda z_{1}) is subharmonic with respect to λ\lambda\in\mathbb{C}.

Definition 4.3.

A non-negative function g:m[0,+)g:\mathbb{R}^{m}\rightarrow[0,+\infty) is called log-plurisubharmonic if the function logg\log g is plurisubharmonic.

Lemma 4.4.

If ff is a pluriharmonic function on Ω\Omega, then both log|f|\log|f| and |f|p(0<p<)|f|^{p}(0<p<\infty) are plurisubharmonic functions on Ω\Omega.

Lemma 4.5.

A real-valued function f𝒞2(Ω)f\in\mathcal{C}^{2}(\Omega) is plurisubharmonic if and only if (2f(w)wiw¯j)i,j=1m0\left(\frac{\partial^{2}f(w)}{\partial w_{i}\partial\overline{w}_{j}}\right)_{i,j=1}^{m}\geq 0 for every wΩw\in\Omega.

Lemma 4.6.

Let φ:2\varphi:\mathbb{R}^{2}\rightarrow\mathbb{R} be a convex function of two variables, increasing in each variable. If FF and GG are plurisubharmonic functions, then φ(F,G)\varphi(F,G) is also plurisubharmonic.

Lemma 4.7.

Let ff and gg be log-plurisubharmonic functions. Then f+gf+g is also log-plurisubharmonic.

Proof: Since the mapping klog(1+ek)k\mapsto\log(1+e^{k}) is convex,

φ(x,y):=log(ex+ey)=x+log(1+eyx)\varphi(x,y):=\log(e^{x}+e^{y})=x+\log(1+e^{y-x})

is also a convex function of two variables, increasing in each variable. Since F:=logfF:=\log f and G:=loggG:=\log g are plurisubharmonic, by Lemma 4.6,

φ(F,G)=log(eF+eG)=log(f+g)\varphi(F,G)=\log(e^{F}+e^{G})=\log(f+g)

is plurisubharmonic. Finally, we need the following definition of an n-hypercontraction given in MV1993 :

Definition 4.8.

Let 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} be an mm-tuple of commuting operators. Define an operator 𝐌𝐓:()()\mathbf{M}_{\mathbf{T}}:\mathcal{L}(\mathcal{H})\rightarrow\mathcal{L}(\mathcal{H}) by

𝐌𝐓(X)=i=1mTiXTi,X().\mathbf{M}_{\mathbf{T}}(X)=\sum_{i=1}^{m}T_{i}^{*}XT_{i},\quad X\in\mathcal{L}(\mathcal{H}).

An mm-tuple 𝐓()m\mathbf{T}\in\mathcal{L}(\mathcal{H})^{m} is called an nn-hypercontraction if

𝐓(l):=(I𝐌𝐓)l(I)0,\triangle_{\mathbf{T}}^{(l)}:=(I-\mathbf{M}_{\mathbf{T}})^{l}(I)\geq 0,

for all integers ll with 1ln1\leq l\leq n. The special case of a 11-hypercontraction corresponds to the usual row contraction.

Note that since 𝐌𝐓l(X)\mathbf{M}_{\mathbf{T}}^{l}(X) =α0m|α|=ll!α!𝐓αX𝐓α=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}\atop|\alpha|=l}\frac{l!}{\alpha!}\mathbf{T}^{*\alpha}X\mathbf{T}^{\alpha} for all l0l\geq 0, one has

𝐓(l)=j=0l(1)j(lj)𝐌𝐓j(I)=|α|l(1)|α|l!α!(l|α|)!𝐓α𝐓α.\triangle_{\mathbf{T}}^{(l)}=\sum\limits_{j=0}^{l}(-1)^{j}{l\choose j}\mathbf{M}_{\mathbf{T}}^{j}(I)=\sum\limits_{|\alpha|\leq l}(-1)^{|\alpha|}\frac{l!}{\alpha!(l-|\alpha|)!}\mathbf{T}^{*\alpha}\mathbf{T}^{\alpha}.

We now give a necessary and sufficient condition for the similarity of certain operator tuples in 1m(𝔹m)\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) in terms of curvature and plurisubharmonic functions.

Theorem 4.9.

Let 𝐓=(T1,,Tm)1m(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) be an operator tuple on a Hilbert space K\mathcal{H}_{K} with reproducing kernel K(z,w)=i=0a(i)(z1w¯1++zmw¯m)i,K(z,w)=\sum\limits_{i=0}^{\infty}a(i)(z_{1}\overline{w}_{1}+\cdots+z_{m}\overline{w}_{m})^{i}, where a(i)>0.a(i)>0. Consider 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a weighted Bergman space k\mathcal{H}_{k} with k>m+1k>m+1. Suppose that 𝐓\mathbf{T} is kk-hypercontractive and that limjfj(𝐓,𝐓)h=0,hK\lim\limits_{j}f_{j}(\mathbf{T}^{*},\mathbf{T})h=0,h\in\mathcal{H}_{K}, for fj(z,w)=i=j𝐞i(z)(1z,w)k𝐞i(w)f_{j}(z,w)=\sum\limits_{i=j}^{\infty}\mathbf{e}_{i}(z)(1-\langle z,w\rangle)^{k}\mathbf{e}_{i}(w)^{*} and an orthonormal basis {𝐞i}i=0\{\mathbf{e}_{i}\}_{i=0}^{\infty} for k\mathcal{H}_{k}. Then 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*} if and only if there exists a bounded plurisubharmonic function ψ\psi such that

𝒦𝐌z(w)𝒦𝐓(w)=i,j=1m2ψ(w)wiw¯jdwidw¯j,w𝔹m.\mathcal{K}_{\mathbf{M}_{z}^{*}}(w)-\mathcal{K}_{\mathbf{T}}(w)=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},\quad w\in\mathbb{B}_{m}. (4.1)

Proof: If 𝐓\mathbf{T} and 𝐌z\mathbf{M}_{z}^{*} are similar, then there is a bounded invertible operator XX such that X𝐓=𝐌zX.X\mathbf{T}=\mathbf{M}_{z}^{*}X. If γ\gamma is a non-vanishing holomorphic section of 𝐓\mathcal{E}_{\mathbf{T}}, then γ~=Xγ\widetilde{\gamma}=X{\gamma} is an non-vanishing holomorphic section of 𝐌z\mathcal{E}_{\mathbf{M}_{z}^{*}}, and there are constants aa and bb such that

0<ah𝐓(w)h𝐌z(w)=γ(w)γ~(w)2b,w𝔹m.0<a\leq\frac{h_{\mathbf{T}}(w)}{h_{\mathbf{M}_{z}^{*}}(w)}=\Big{\Arrowvert}\frac{\gamma(w)}{\widetilde{\gamma}(w)}\Big{\Arrowvert}^{2}\leq b,\quad w\in\mathbb{B}_{m}.

Since γ(w)γ~(w)\frac{\gamma(w)}{\widetilde{\gamma}(w)} is pluriharmonic, Lemma 4.4 shows that ψ(w):=logγ(w)γ~(w)2\psi(w):=\log\|\frac{\gamma(w)}{\widetilde{\gamma}(w)}\|^{2} is a bounded plurisubharmonic function.

For the converse, let γ\gamma and γ~\widetilde{\gamma} be non-vanishing holomorphic sections of 𝐓\mathcal{E}_{\mathbf{T}} and 𝐌z\mathcal{E}_{\mathbf{M}_{z}^{*}}, respectively. Since

𝒦𝐌z(w)𝒦𝐓(w)=i,j=1m2logγ(w)γ~(w)2wiw¯jdwidw¯j,\mathcal{K}_{\mathbf{M}_{z}^{*}}(w)-\mathcal{K}_{\mathbf{T}}(w)=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\log\|\frac{\gamma(w)}{\widetilde{\gamma}(w)}\|^{2}}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},

condition (4.1) gives

2wiw¯j(logγ(w)γ~(w)2eψ(w))=0,\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\left(\log\frac{\|\frac{\gamma(w)}{\widetilde{\gamma}(w)}\|^{2}}{e^{\psi(w)}}\right)=0,

for all 1i,jm1\leq i,j\leq m. Therefore, there exists a non-zero function ϕ𝒪(𝔹m)\phi\in\mathcal{O}(\mathbb{B}_{m}) such that

γ(w)ϕ(w)γ~(w)2=e|ψ(w)|.\left\|\frac{\gamma(w)}{\phi(w)\widetilde{\gamma}(w)}\right\|^{2}=e^{|\psi(w)|}.

Since the function ψ\psi is bounded on 𝔹m\mathbb{B}_{m}, there exist constants m~\widetilde{m} and M~\widetilde{M} such that

0<m~γ(w)2ϕ(w)γ~(w)2M~,w𝔹m.0<\widetilde{m}\leq\frac{\|\gamma(w)\|^{2}}{\|\phi(w)\widetilde{\gamma}(w)\|^{2}}\leq\widetilde{M},\quad w\in\mathbb{B}_{m}. (4.2)

Note that since h𝐓(w)=K(w¯,w¯)=α0ma(|α|)|α|!α!wαw¯α=α0mρ(α)wαw¯αh_{\mathbf{T}}(w)=K(\overline{w},\overline{w})=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}a(|\alpha|)\frac{|\alpha|!}{\alpha!}w^{\alpha}\overline{w}^{\alpha}=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}\rho(\alpha)w^{\alpha}\overline{w}^{\alpha},

𝐓α𝐓α𝐞β={ρ(βα)ρ(β)𝐞β,for αβ,0, otherwise,\mathbf{T}^{*\alpha}\mathbf{T}^{\alpha}\mathbf{e}_{\beta}=\begin{cases}\frac{\rho(\beta-\alpha)}{\rho(\beta)}\mathbf{e}_{\beta},\quad\text{for }\alpha\leq\beta,\\ 0,\,\,\,\quad\quad\quad\quad\text{ otherwise,}\end{cases}

where ρ(α)=a(|α|)|α|!α!\rho(\alpha)=a(|\alpha|)\frac{|\alpha|!}{\alpha!} and {𝐞α}α0m\{{\mathbf{e}}_{\alpha}\}_{\alpha\in\mathbb{N}_{0}^{m}} denotes an orthonormal basis for K\mathcal{H}_{K}. Since the reproducing kernel K~(z,w)\widetilde{K}(z,w) on a weighted Bergman space k\mathcal{H}_{k} with k>m+1k>m+1 satisfies 1K~(w¯,w¯)=i=0kb(i)|w|2i\frac{1}{\widetilde{K}}(\overline{w},\overline{w})=\sum\limits_{i=0}^{k}b(i)|w|^{2i}, where b(i)=(1)ik!i!(ki)!b(i)=\frac{(-1)^{i}k!}{i!(k-i)!}, a direct calculation yields

1K~(𝐓,𝐓)𝐞β=α0m|α|kb(|α|)|α|!α!𝐓α𝐓α𝐞β=α0m|α|kαβb(|α|)|α|!α!ρ(βα)ρ(β)𝐞β=α0m|α|kαβb(|α|)a(|βα|)a(|β|)|α|!|βα|!β!α!|β|!(βα)!𝐞β.\begin{array}[]{lll}\frac{1}{\widetilde{K}}(\mathbf{T}^{*},\mathbf{T})\mathbf{e}_{\beta}&=&\sum\limits_{\mbox{\tiny$\begin{array}[]{c}\alpha\in\mathbb{N}_{0}^{m}\\ |\alpha|\leq k\end{array}$}}b(|\alpha|)\frac{|\alpha|!}{\alpha!}\mathbf{T}^{*\alpha}\mathbf{T}^{\alpha}\mathbf{e}_{\beta}\\ &=&\sum\limits_{\mbox{\tiny$\begin{array}[]{c}\alpha\in\mathbb{N}_{0}^{m}\\ |\alpha|\leq k\\ \alpha\leq\beta\end{array}$}}b(|\alpha|)\frac{|\alpha|!}{\alpha!}\frac{\rho(\beta-\alpha)}{\rho(\beta)}\mathbf{e}_{\beta}\\ &=&\sum\limits_{\mbox{\tiny$\begin{array}[]{c}\alpha\in\mathbb{N}_{0}^{m}\\ |\alpha|\leq k\\ \alpha\leq\beta\end{array}$}}b(|\alpha|)\frac{a(|\beta-\alpha|)}{a(|\beta|)}\frac{|\alpha|!|\beta-\alpha|!\beta!}{\alpha!|\beta|!(\beta-\alpha)!}\mathbf{e}_{\beta}.\end{array}

Then,

1K~(𝐓,𝐓)𝐞β={i=0sb(i)a(si)a(s)𝐞β,ifβ=(s,0,,0),0sk,i=0kb(i)a(si)a(s)𝐞β,ifβ=(s,0,,0),s>k.\frac{1}{\widetilde{K}}(\mathbf{T}^{*},\mathbf{T})\mathbf{e}_{\beta}=\begin{cases}\sum\limits_{i=0}^{s}b(i)\frac{a(s-i)}{a(s)}\mathbf{e}_{\beta},\quad\text{if}\,\,\beta=(s,0,\cdots,0),0\leq s\leq k,\\ \sum\limits_{i=0}^{k}b(i)\frac{a(s-i)}{a(s)}\mathbf{e}_{\beta},\quad\text{if}\,\,\beta=(s,0,\cdots,0),s>k.\end{cases}

Note that since 1K~(𝐓,𝐓)0\frac{1}{\widetilde{K}}(\mathbf{T}^{*},\mathbf{T})\geq 0 and a(s)>0a(s)>0 for every s0s\geq 0, i=0sb(i)a(si)0\sum\limits_{i=0}^{s}b(i)a(s-i)\geq 0 when 0sk0\leq s\leq k and i=0kb(i)a(si)0\sum\limits_{i=0}^{k}b(i)a(s-i)\geq 0 otherwise. Moreover,

h𝐓(w)h𝐌z(w)=(j=0kb(j)|w|2j)(i=0a(i)|w|2i)=l=0kj=0lb(j)a(lj)|w|2l+l=k+1j=0kb(j)a(lj)|w|2l.\begin{array}[]{lll}\frac{h_{\mathbf{T}}(w)}{h_{\mathbf{M}_{z}^{*}}(w)}&=&\left(\sum\limits_{j=0}^{k}b(j)|w|^{2j}\right)\left(\sum\limits_{i=0}^{\infty}a(i)|w|^{2i}\right)\\ &=&\sum\limits_{l=0}^{k}\sum\limits_{j=0}^{l}b(j)a(l-j)|w|^{2l}+\sum\limits_{l=k+1}^{\infty}\sum\limits_{j=0}^{k}b(j)a(l-j)|w|^{2l}.\end{array}

We next claim that there exists a constant MM^{\prime} such that for all w𝔹m,w\in\mathbb{B}_{m},

0<h𝐓(w)h𝐌z(w)=γ(w)γ~(w)2M.0<\frac{h_{\mathbf{T}}(w)}{h_{\mathbf{M}_{z}^{*}}(w)}=\left\|\frac{\gamma(w)}{\widetilde{\gamma}(w)}\right\|^{2}\leq M^{\prime}.

If not, then γ(w)γ~(w)2\left\|\frac{\gamma(w)}{\widetilde{\gamma}(w)}\right\|^{2}\rightarrow\infty as |w|1|w|\rightarrow 1 so that by (4.2), 1|ϕ(w)|0\frac{1}{|\phi(w)|}\rightarrow 0 as |w|1.|w|\rightarrow 1. The maximum modulus principle would then imply that 1|ϕ(w)|=0\frac{1}{|\phi(w)|}=0, a contradiction.

Finally, we have from Lemma 3.1 that h𝐓(w)h𝐌z(w)=𝒟𝐓γ~(w)2,\frac{h_{\mathbf{T}}(w)}{h_{\mathbf{M}_{z}^{*}}(w)}=\|\mathcal{D}_{\mathbf{T}}\widetilde{\gamma}(w)\|^{2}, where 𝒟𝐓=1K~(𝐓,𝐓)12\mathcal{D}_{\mathbf{T}}=\frac{1}{\widetilde{K}}(\mathbf{T}^{*},\mathbf{T})^{\frac{1}{2}} denotes the defect operator corresponding to 𝐓\mathbf{T} and

supw𝔹m𝒟𝐓γ~(w)2|𝒟𝐓γ~(w),ζ0|2Ma(0)b(0)<,\sup\limits_{w\in\mathbb{B}_{m}}\frac{\|\mathcal{D}_{\mathbf{T}}\widetilde{\gamma}(w)\|^{2}}{|\langle\mathcal{D}_{\mathbf{T}}\widetilde{\gamma}(w),\zeta_{0}\rangle|^{2}}\leq\frac{M^{\prime}}{a(0)b(0)}<\infty,

for some unit vector ζ0ran 𝒟𝐓¯\zeta_{0}\in\overline{\text{ran }\mathcal{D}_{\mathbf{T}}}. Using Theorem 3.2, we then conclude that 𝐓s𝐌z\mathbf{T}\sim_{s}\mathbf{M}_{z}^{*}.

The notion of curvature can also be used to describe the similarity of non-contractions as the following results show.

Proposition 4.10.

Let T11(𝔻)()T\in\mathcal{B}_{1}^{1}(\mathbb{D})\in\mathcal{L}(\mathcal{H}). Suppose that {ϕj}j=0mH(𝔻)\{\phi_{j}\}_{j=0}^{m}\subset H^{\infty}(\mathbb{D}) for m>2m>2, 2|ϕj(w)|2>m(m+1)|ϕj(w)|2,2|\phi_{j}(w)|^{2}>m(m+1)|\phi_{j}^{\prime}(w)|^{2}, and

KMz(w)KT(w)=2ww¯log[(1|w|2)j=0m|ϕj(w)|2+1],w𝔻,{K}_{M_{z}^{*}}(w)-{K}_{T}(w)=\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\left[(1-|w|^{2})\sum_{j=0}^{m}|\phi_{j}(w)|^{2}+1\right],\quad w\in\mathbb{D},

where MzM_{z} is the operator of multiplication by zz on the Hardy space H2(𝔻)H^{2}(\mathbb{D}). Then TsMzT\sim_{s}M_{z}^{*} but TT is not a contraction.

Proof: Set ϕj(w):=i=0ajiwi\phi_{j}(w):=\sum\limits_{i=0}^{\infty}a_{ji}w^{i} and M:=max{ϕ0H2,ϕ1H2,,ϕmH2}.M:=\max\{\|\phi_{0}\|_{H^{2}},\|\phi_{1}\|_{H^{2}},\ldots,\|\phi_{m}\|_{H^{2}}\}. Denote by {ei}i=0\{e_{i}\}_{i=0}^{\infty} an orthonormal basis for the space \mathcal{H} and define an operator XX as Xen:=j=0majnejXe_{n}:=\sum\limits_{j=0}^{m}a_{jn}e_{j} for n0n\geq 0. Let y=n=0bnen.y=\sum\limits_{n=0}^{\infty}b_{n}e_{n}\in\mathcal{H}. Then,

X=supy=1Xy=supy=1Xn=0bnen=supy=1j=0mn=0bnajnej(n=0bn2)12j=0m(n=0ajn2)12(m+1)M,\begin{array}[]{lll}\|X\|&=&\sup\limits_{\|y\|=1}\|Xy\|=\sup\limits_{\|y\|=1}\left\|X\sum\limits_{n=0}^{\infty}b_{n}e_{n}\right\|\\ &=&\sup\limits_{\|y\|=1}\left\|\sum\limits_{j=0}^{m}\sum\limits_{n=0}^{\infty}b_{n}a_{jn}e_{j}\right\rVert\\ &\leq&\left(\sum\limits_{n=0}^{\infty}b^{2}_{n}\right)^{\frac{1}{2}}\sum\limits_{j=0}^{m}\left(\sum\limits_{n=0}^{\infty}a^{2}_{jn}\right)^{\frac{1}{2}}\leq(m+1)M,\end{array}

and therefore, XX is bounded. For a non-vanishing holomorphic section K(z,w¯)=11zwK(z,\overline{w})=\frac{1}{1-zw} of Mz\mathcal{E}_{M_{z}^{*}}, we have

XK(z,w¯)=i=0wiX(zi)=j=0m(i=0ajiwi)zj=j=0mϕj(w)zj.XK(z,\overline{w})=\sum_{i=0}^{\infty}w^{i}X(z^{i})=\sum_{j=0}^{m}\left(\sum_{i=0}^{\infty}a_{ji}w^{i}\right)z^{j}=\sum_{j=0}^{m}\phi_{j}(w)z^{j}.

This implies that XK(,w¯)2=j=0m|ϕj(w)|2\|XK(\cdot,\overline{w})\|^{2}=\sum\limits_{j=0}^{m}|\phi_{j}(w)|^{2} and hence,

KMz(w)KT(w)=2ww¯log[(1|w|2)i=0m|ϕi(w)|2+1]=2ww¯log(XK(,w¯)2K(,w¯)2+1).\begin{array}[]{lll}{K}_{M_{z}^{*}}(w)-{K}_{T}(w)&=&\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\left[(1-|w|^{2})\sum\limits_{i=0}^{m}|\phi_{i}(w)|^{2}+1\right]\\ &=&\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\left(\frac{\|XK(\cdot,\overline{w})\|^{2}}{\|K(\cdot,\overline{w})\|^{2}}+1\right).\end{array} (4.3)

The operator YY defined by Y:=(I+XX)12Y:=(I+X^{*}X)^{\frac{1}{2}} is invertible and KT=KYMzY1{K}_{T}={K}_{YM_{z}^{*}Y^{-1}}. Therefore, TuYMzY1T\sim_{u}YM_{z}^{*}Y^{-1}, and hence, TsMzT\sim_{s}M_{z}^{*}.

Suppose now that TT is a contraction. For w𝔻w\in\mathbb{D}, set

𝔑(w):=(1|w|2)i=0m|ϕi(w)|2.\mathfrak{N}(w):=(1-|w|^{2})\sum_{i=0}^{m}|\phi_{i}(w)|^{2}.

Since for every 0jm0\leq j\leq m,

|ϕj(w)ϕj(w)|2>m(m+1)2>4,\left|\frac{\phi_{j}(w)}{\phi^{\prime}_{j}(w)}\right|^{2}>\frac{m(m+1)}{2}>4,

we have |ϕj(w)ϕj(w)+w|2>1|\frac{\phi_{j}(w)}{\phi^{\prime}_{j}(w)}+w|^{2}>1, that is, |ϕj(w)|2|(wϕj(w))|2<0.|\phi^{\prime}_{j}(w)|^{2}-|(w\phi_{j}(w))^{\prime}|^{2}<0. Then,

2𝔑(w)ww¯=2ww¯[(1|w|2)j=0m|ϕj(w)|2]=j=0m(|ϕj(w)|2|(wϕj(w))|2)<0.\frac{\partial^{2}\mathfrak{N}(w)}{\partial w\partial\overline{w}}=\frac{\partial^{2}}{\partial w\partial\overline{w}}\left[(1-|w|^{2})\sum_{j=0}^{m}|\phi_{j}(w)|^{2}\right]=\sum_{j=0}^{m}\left(|\phi^{\prime}_{j}(w)|^{2}-|(w\phi_{j}(w))^{\prime}|^{2}\right)<0. (4.4)

Similarly, since |ϕj(w)ϕj(w)|2<2m(m+1)|\frac{\phi_{j}^{\prime}(w)}{\phi_{j}(w)}|^{2}<\frac{2}{m(m+1)} for 0jm0\leq j\leq m, it follows that for all w𝔻,w\in\mathbb{D},

0i<jm|ϕjϕjϕiϕi|220i<jm(|ϕjϕj|2+|ϕiϕi|2)<20i<jm4m(m+1)=44(1|w|2)2.\begin{array}[]{lll}\sum\limits_{0\leq i<j\leq m}|\frac{\phi_{j}^{\prime}}{\phi_{j}}-\frac{\phi_{i}^{\prime}}{\phi_{i}}|^{2}&\leq&2\sum\limits_{0\leq i<j\leq m}\left(|\frac{\phi_{j}^{\prime}}{\phi_{j}}|^{2}+|\frac{\phi_{i}^{\prime}}{\phi_{i}}|^{2}\right)\\ &<&2\sum\limits_{0\leq i<j\leq m}\frac{4}{m(m+1)}=4\leq\frac{4}{(1-|w|^{2})^{2}}.\end{array}

Therefore, for all w𝔻,w\in\mathbb{D},

0i<jm|ϕiϕjϕiϕj|2(k=0m|ϕk|2)20i<jm|ϕjϕjϕiϕi|2(|ϕiϕj|+|ϕjϕi|)2140i<jm|ϕjϕjϕiϕi|2<1(1|w|2)2.\begin{array}[]{lll}\sum\limits_{0\leq i<j\leq m}\frac{|\phi_{i}\phi_{j}^{\prime}-\phi_{i}^{\prime}\phi_{j}|^{2}}{(\sum\limits_{k=0}^{m}|\phi_{k}|^{2})^{2}}&\leq&\sum\limits_{0\leq i<j\leq m}\frac{|\frac{\phi_{j}^{\prime}}{\phi_{j}}-\frac{\phi_{i}^{\prime}}{\phi_{i}}|^{2}}{(|\frac{\phi_{i}}{\phi_{j}}|+|\frac{\phi_{j}}{\phi_{i}}|)^{2}}\\ &\leq&\frac{1}{4}\sum\limits_{0\leq i<j\leq m}|\frac{\phi_{j}^{\prime}}{\phi_{j}}-\frac{\phi_{i}^{\prime}}{\phi_{i}}|^{2}<\frac{1}{(1-|w|^{2})^{2}}.\end{array}

Then,

2log𝔑(w)ww¯\displaystyle\frac{\partial^{2}\log\mathfrak{N}(w)}{\partial w\partial\overline{w}} =\displaystyle= 1(1|w|2)2+(i=0m|ϕi|2)(i=0m|ϕi|2)(i=0mϕiϕi¯)(i=0mϕiϕi¯)(i=0m|ϕi|2)2\displaystyle-\frac{1}{(1-|w|^{2})^{2}}+\frac{(\sum\limits_{i=0}^{m}|\phi_{i}|^{2})(\sum\limits_{i=0}^{m}|\phi^{\prime}_{i}|^{2})-(\sum\limits_{i=0}^{m}\phi^{\prime}_{i}\overline{\phi_{i}})(\sum\limits_{i=0}^{m}\phi_{i}\overline{\phi^{\prime}_{i}})}{(\sum\limits_{i=0}^{m}|\phi_{i}|^{2})^{2}}
=\displaystyle= 1(1|w|2)2+0i<jm|ϕiϕjϕiϕj|2(i=0m|ϕi|2)2\displaystyle-\frac{1}{(1-|w|^{2})^{2}}+\sum\limits_{0\leq i<j\leq m}\frac{|\phi_{i}\phi_{j}^{\prime}-\phi_{i}^{\prime}\phi_{j}|^{2}}{(\sum\limits_{i=0}^{m}|\phi_{i}|^{2})^{2}}
<\displaystyle< 0.\displaystyle 0.

However, since 2log𝔑(w)ww¯=𝔑(w)2𝔑(w)ww¯𝔑(w)w𝔑(w)w¯𝔑2(w)<0,\frac{\partial^{2}\log\mathfrak{N}(w)}{\partial w\partial\overline{w}}=\frac{\mathfrak{N}(w)\frac{\partial^{2}\mathfrak{N}(w)}{\partial w\partial\overline{w}}-\frac{\partial\mathfrak{N}(w)}{\partial w}\frac{\partial\mathfrak{N}(w)}{\partial\overline{w}}}{\mathfrak{N}^{2}(w)}<0,

𝔑(w)2𝔑(w)ww¯𝔑(w)w𝔑(w)w¯<0.\mathfrak{N}(w)\frac{\partial^{2}\mathfrak{N}(w)}{\partial w\partial\overline{w}}-\frac{\partial\mathfrak{N}(w)}{\partial w}\frac{\partial\mathfrak{N}(w)}{\partial\overline{w}}<0. (4.5)

Finally, by (4.3)–(4.5), it is easy to see that

KMz(w)KT(w)=𝔑(w)2𝔑(w)ww¯𝔑(w)w𝔑(w)w¯+2𝔑(w)ww¯(𝔑(w)+1)2<0.{K}_{M_{z}^{*}}(w)-{K}_{T}(w)=\frac{\mathfrak{N}(w)\frac{\partial^{2}\mathfrak{N}(w)}{\partial w\partial\overline{w}}-\frac{\partial\mathfrak{N}(w)}{\partial w}\frac{\partial\mathfrak{N}(w)}{\partial\overline{w}}+\frac{\partial^{2}\mathfrak{N}(w)}{\partial w\partial\overline{w}}}{(\mathfrak{N}(w)+1)^{2}}<0.

This contradicts the result given in M that for a contraction T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}), KMzKT{K}_{M_{z}^{*}}\geq{K}_{T}.

Corollary 4.11.

Let T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}) and denote by MzM_{z} the operator of multiplication by zz on the Hardy space H2(𝔻)H^{2}(\mathbb{D}). Suppose that ϕ𝒪(𝔻)\phi\in\mathcal{O}(\mathbb{D}) is such that for all w𝔻w\in\mathbb{D}, |ϕ(w)|2>|ϕ(w)||\phi(w)|^{2}>|\phi^{\prime}(w)|. If

KMz(w)KT(w)=(|ϕ(w)|4|ϕ(w)|2)+|ϕ(w)+wϕ(w)|2[|ϕ(w)|2(1|w|2)+1]2,w𝔻,{K}_{M_{z}^{*}}(w)-{K}_{T}(w)=-\frac{(|\phi(w)|^{4}-|\phi^{\prime}(w)|^{2})+|\phi(w)+w\phi^{\prime}(w)|^{2}}{[|\phi(w)|^{2}(1-|w|^{2})+1]^{2}},\,\,\,\,w\in\mathbb{D},

then TsMzT\sim_{s}M_{z}^{*}, but TT is not a contraction.

Corollary 4.12.

Let T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}) and denote by MzM_{z} be the operator of multiplication by zz on the Hardy space H2(𝔻)H^{2}(\mathbb{D}). Suppose that φ𝒪(𝔻)\varphi\in\mathcal{O}(\mathbb{D}) is such that for all w𝔻w\in\mathbb{D}, |φ(w)|>2|φ(w)|.|\varphi(w)|>2|\varphi^{\prime}(w)|. If

KMz(w)KT(w)=2ww¯log[(1|w|2)|φ(w)|2+1],w𝔻,{K}_{M_{z}^{*}}(w)-{K}_{T}(w)=\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\left[(1-|w|^{2})|\varphi(w)|^{2}+1\right],\,\,\,\,w\in\mathbb{D},

then TsMzT\sim_{s}M_{z}^{*}, but TT is not a contraction.

In the following theorem, we will use log-plurisubharmonic functions to give a sufficient condition for the similarity of tuples in 1m(Ω)\mathcal{B}_{1}^{m}(\Omega). For an mm-tuple 𝐓=(T1,,Tm)()m,\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m}, let {𝐓}:=j=1m{Tj}.\{\mathbf{T}\}^{\prime}:=\bigcap\limits_{j=1}^{m}\{T_{j}\}^{\prime}.

Theorem 4.13.

Let 𝐓=(T1,,Tm),𝐒=(S1,,Sm)1m(Ω)\mathbf{T}=(T_{1},\cdots,T_{m}),\mathbf{S}=(S_{1},\cdots,S_{m})\in\mathcal{B}_{1}^{m}(\Omega) be such that {𝐒}H(Ω)\{\mathbf{S}\}^{\prime}\cong H^{\infty}(\Omega). Suppose that

𝒦𝐒(w)𝒦𝐓(w)=i,j=1m2ψ(w)wiw¯jdwidw¯j,wΩ,\mathcal{K}_{\mathbf{S}}(w)-\mathcal{K}_{\mathbf{T}}(w)=\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}dw_{i}\wedge d\overline{w}_{j},\,\,\,\,w\in\Omega,

for some ψ(w)=logk=1n|ϕk(w)|2\psi(w)=\log\sum\limits_{k=1}^{n}|\phi_{k}(w)|^{2}, where ϕk𝒪(Ω).\phi_{k}\in\mathcal{O}(\Omega). If there exists an integer lnl\leq n satisfying ϕkϕlH(Ω)\frac{\phi_{k}}{\phi_{l}}\in H^{\infty}(\Omega) for all knk\leq n, then 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S}, and K𝐓K𝐒{K}_{\mathbf{T}}\leq{K}_{\mathbf{S}}. In particular, when m=1m=1, 𝐓\mathbf{T} and 𝐒\mathbf{S} are unitarily equivalent.

Proof: Since ϕk𝒪(Ω)\phi_{k}\in\mathcal{O}(\Omega) for all 1kn1\leq k\leq n, i,j=1m2log|ϕk(w)|2wiw¯j=0.\sum\limits_{i,j=1}^{m}\frac{\partial^{2}\log|\phi_{k}(w)|^{2}}{\partial w_{i}\partial\overline{w}_{j}}=0. Therefore, by Lemmas 4.5 and 4.7, k=1n|ϕk(w)|2\sum\limits_{k=1}^{n}|\phi_{k}(w)|^{2} is log-plurisubharmonic, and

K𝐒(w)K𝐓(w)=(2ψ(w)wiw¯j)i,j=1m0.{K}_{\mathbf{S}}(w)-{K}_{\mathbf{T}}(w)=\left(\frac{\partial^{2}\psi(w)}{\partial w_{i}\partial\overline{w}_{j}}\right)_{i,j=1}^{m}\geq 0.

Now let tt be a non-vanishing holomorphic section of 𝐒\mathcal{E}_{\mathbf{S}}. Since {𝐒}H(Ω)\{\mathbf{S}\}^{\prime}\cong H^{\infty}(\Omega) and {ϕkϕl}k=1nH(Ω)\{\frac{\phi_{k}}{\phi_{l}}\}_{k=1}^{n}\subset H^{\infty}(\Omega) for some lnl\leq n, we assume without loss of generality that l=nl=n. Then there exist bounded operators Xi{𝐒},1in1X_{i}\in\{\mathbf{S}\}^{\prime},1\leq i\leq n-1, such that

Xit(w)=ϕi(w)ϕn(w)t(w).X_{i}t(w)=\frac{\phi_{i}(w)}{\phi_{n}(w)}t(w).

Define a linear operator X:1n1X:\mathcal{H}\rightarrow\bigoplus\limits_{1}^{n-1}\mathcal{H} as

Xh=i=1n1Xih,Xh=\bigoplus\limits_{i=1}^{n-1}X_{i}h,

for hh\in\mathcal{H}. Since

X2=suph=1Xh2=suph=1(i=1n1Xih2)i=1n1Xi2<,\|X\|^{2}=\sup_{\|h\|=1}\|Xh\|^{2}=\sup_{\|h\|=1}\left(\sum\limits_{i=1}^{n-1}\|X_{i}h\|^{2}\right)\leq\sum\limits_{i=1}^{n-1}\|X_{i}\|^{2}<\infty,

XX is a bounded linear operator. Furthermore, for any wΩw\in\Omega,

𝒦𝐒(w)𝒦𝐓(w)\displaystyle\mathcal{K}_{\mathbf{S}}(w)-\mathcal{K}_{\mathbf{T}}(w)
=\displaystyle= i,j=1m2wiw¯jlog[|ϕn(w)|2(i=1n1|ϕi(w)ϕn(w)|2+1)]dwidw¯j\displaystyle\sum\limits_{i,j=1}^{m}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\log\left[|\phi_{n}(w)|^{2}\left(\sum\limits_{i=1}^{n-1}|\frac{\phi_{i}(w)}{\phi_{n}(w)}|^{2}+1\right)\right]dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2wiw¯jlog(|ϕn(w)|2×i=1n1|ϕi(w)ϕn(w)|2t(w)2+t(w)2t(w)2)dwidw¯j\displaystyle\sum\limits_{i,j=1}^{m}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\log\left(|\phi_{n}(w)|^{2}\times\frac{\sum\limits_{i=1}^{n-1}|\frac{\phi_{i}(w)}{\phi_{n}(w)}|^{2}\|t(w)\|^{2}+\|t(w)\|^{2}}{\|t(w)\|^{2}}\right)dw_{i}\wedge d\overline{w}_{j}
=\displaystyle= i,j=1m2wiw¯jlog(Xt(w)2t(w)2+1)dwidw¯j.\displaystyle\sum\limits_{i,j=1}^{m}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\log\left(\frac{\|Xt(w)\|^{2}}{\|t(w)\|^{2}}+1\right)dw_{i}\wedge d\overline{w}_{j}.

Letting Y:=(I+XX)12Y:=(I+X^{*}X)^{\frac{1}{2}}, we see that YY is invertible and that 𝒦𝐓=𝒦Y𝐒Y1.\mathcal{K}_{\mathbf{T}}=\mathcal{K}_{Y\mathbf{S}Y^{-1}}. Hence, 𝐓uY𝐒Y1\mathbf{T}\sim_{u}Y\mathbf{S}Y^{-1} so that indeed, 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S}.

5 On the Cowen-Douglas conjecture

In CD , M. J. Cowen and R. G. Douglas proved that for T11(Ω)T\in\mathcal{B}_{1}^{1}(\Omega), where Ω\Omega\subset\mathbb{C}, the curvature 𝒦T\mathcal{K}_{T} is a complete unitary invariant. Let T,S11(𝔻)T,S\in\mathcal{B}_{1}^{1}(\mathbb{D}) and suppose that the closure 𝔻¯\overline{\mathbb{D}} of 𝔻\mathbb{D} is a KK-spectral set for TT and SS. The Cowen-Douglas conjecture states that TT and SS are similar if and only if

lim|w|1KTi,i(w)/KSi,i(w)=1.\lim\limits_{|w|\rightarrow 1}{K}_{T}^{i,i}(w)/{K}_{S}^{i,i}(w)=1.

Although the results of D. N. Clark and G. Misra in CM2 ; CM show that the Cowen-Douglas conjecture is false, the connection between similarity and properties of holomorphic vector bundles merits further investigation especially since a one-sided implication of the conjecture holds is some specific cases. We describe a class of operators in 11(𝔻)\mathcal{B}_{1}^{1}(\mathbb{D}) for which the Cowen-Douglas conjecture is true.

Example 5.1.

Let T11(𝔻)T\in\mathcal{B}_{1}^{1}(\mathbb{D}) and for λ2\lambda\geq 2, consider MzM_{z}^{*} on a weighted Bergman space K\mathcal{H}_{K} with reproducing kernel K(z,w)=1(1zw¯)λK(z,w)=\frac{1}{(1-z\overline{w})^{\lambda}}. Suppose that T=Mz,\mathcal{E}_{T}=\mathcal{E}_{M_{z}^{*}}\otimes\mathcal{E}, where (w)=f(w)\mathcal{E}(w)=\bigvee f(w), and f(w)2\|f(w)\|^{2} is a polynomial in |w|2|w|^{2}. If condition (𝐂)(\mathbf{C}) holds for the Hermitian holomorphic vector bundle \mathcal{E}, then it follows from Lemma 3.4 and Theorem 3.5 that TsMzT\sim_{s}M_{z}^{*}.

Now, a direct calculation shows that

KT(w)KMz(w)=1+2ww¯logf(w)22ww¯log1(1|w|2)λ=1+(1|w|2)2λ2ww¯logf(w)2.\frac{{K}_{T}(w)}{{K}_{M_{z}^{*}}(w)}=1+\frac{\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\|f(w)\|^{2}}{\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\frac{1}{(1-|w|^{2})^{\lambda}}}=1+\frac{(1-|w|^{2})^{2}}{\lambda}\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\|f(w)\|^{2}.

Since f(w)2\|f(w)\|^{2} is a polynomial in |w|2|w|^{2}, 2ww¯logf(w)2\frac{\partial^{2}}{\partial w\partial\overline{w}}\log\|f(w)\|^{2} is bounded above. Hence, lim|w|1KT(w)/KMz(w)=1.\lim\limits_{|w|\rightarrow 1}{K}_{T}(w)/{K}_{M_{z}^{*}}(w)=1.

Remark 5.2.

One can consider 𝐓=(T1,,Tm)1m(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) and 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a weighted Bergman space k\mathcal{H}_{k} with k>m+1k>m+1 to obtain an operator tuple analogue of Example 5.1. Under the same assumptions on \mathcal{E}, 𝐓s𝐌z\mathbf{T}\sim_{s}{\mathbf{M}^{*}_{z}}. Moreover, as |w|1,|w|\rightarrow 1,

K𝐓i,i(w)K𝐒i,i(w)=2wiw¯ilogf(w)2(1|w|2)k2wiw¯ilog1(1|w|2)k=1+(1|w|2)2k(1|w|2+|wi|2)2wiw¯ilogf(w)21.\frac{K^{i,i}_{\mathbf{T}}(w)}{K^{i,i}_{\mathbf{S}}(w)}=\frac{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\frac{\|f(w)\|^{2}}{(1-|w|^{2})^{k}}}{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\frac{1}{(1-|w|^{2})^{k}}}=1+\frac{(1-|w|^{2})^{2}}{k(1-|w|^{2}+|w_{i}|^{2})}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\|f(w)\|^{2}\rightarrow 1.

We next show that the Cowen-Douglas conjecture is false for tuples of commuting operators. As in CM , we construct operator tuples in nm(𝔹m)\mathcal{B}^{m}_{n}(\mathbb{B}_{m}) for which the Cowen-Douglas conjecture holds; nevertheless, they are not similar. We begin with the following lemma given in HJX :

Lemma 5.3.

Let 𝐓=(T1,,Tm),𝐒=(S1,,Sm)()m\mathbf{T}=(T_{1},\cdots,T_{m}),\mathbf{S}=(S_{1},\cdots,S_{m})\in\mathcal{L}(\mathcal{H})^{m} be mm-tuples of unilateral shift operators with nonzero weight sequences given by {λα(1),,λα(m)}α0m\{\lambda_{\alpha}^{(1)},\cdots,\lambda_{\alpha}^{(m)}\}_{\alpha\in\mathbb{N}_{0}^{m}} and {λ~α(1),,λ~α(m)}α0m\{\widetilde{\lambda}_{\alpha}^{(1)},\cdots,\widetilde{\lambda}_{\alpha}^{(m)}\}_{\alpha\in\mathbb{N}_{0}^{m}}, respectively. Then 𝐓s𝐒\mathbf{T}\sim_{s}\mathbf{S} if and only if there exist constants C1C_{1} and C2C_{2} such that

0<C1|k=0lλα+kei(i)/k=0lλ~α+kei(i)|C2,0<C_{1}\leq\left|\prod\limits_{k=0}^{l}\lambda_{\alpha+ke_{i}}^{(i)}/\prod\limits_{k=0}^{l}\widetilde{\lambda}_{\alpha+ke_{i}}^{(i)}\right|\leq C_{2},

for every l0l\in\mathbb{N}_{0}, α0m\alpha\in\mathbb{N}_{0}^{m}, and 1im1\leq i\leq m.

Example 5.4.

Consider the operator tuples 𝐌z=(Mz1,,Mzm)\mathbf{M}_{z}^{*}=(M_{z_{1}}^{*},\cdots,M_{z_{m}}^{*}) on a reproducing kernel Hilbert space K\mathcal{H}_{K} with reproducing kernel K(z,w)=1log(1z,w)1z,wK(z,w)=\frac{1-\log(1-\langle z,w\rangle)}{1-\langle z,w\rangle} and on the Drury-Arveson space 1\mathcal{H}_{1} with reproducing kernel K~(z,w)=11z,w\widetilde{K}(z,w)=\frac{1}{1-\langle z,w\rangle}. To simplify the notation, we will set 𝐓\mathbf{T} to be 𝐌z\mathbf{M}_{z}^{*} on K\mathcal{H}_{K} while 𝐓~\widetilde{\mathbf{T}} will denote the tuple on 1\mathcal{H}_{1}. Since K~(w¯,w¯)=11|w|2=α0m|α|!α!wαw¯α\widetilde{K}(\overline{w},\overline{w})=\frac{1}{1-|w|^{2}}=\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}\frac{|\alpha|!}{\alpha!}w^{\alpha}\overline{w}^{\alpha},

K(w¯,w¯)\displaystyle K(\overline{w},\overline{w}) =\displaystyle= 1log(1|w|2)1|w|2\displaystyle\frac{1-\log(1-|w|^{2})}{1-|w|^{2}}
=\displaystyle= i=0|w|2i(1j=0(1)j(|w|2)j+1j+1)\displaystyle\sum\limits_{i=0}^{\infty}|w|^{2i}\left(1-\sum\limits_{j=0}^{\infty}\frac{(-1)^{j}(-|w|^{2})^{j+1}}{j+1}\right)
=\displaystyle= 1+n=1(1+i=1n1i)|w|2n\displaystyle 1+\sum\limits_{n=1}^{\infty}\left(1+\sum\limits_{i=1}^{n}\frac{1}{i}\right)|w|^{2n}
=\displaystyle= α0m(1+i=1|α|1i)|α|!α!wαw¯α.\displaystyle\sum\limits_{\alpha\in\mathbb{N}_{0}^{m}}\left(1+\sum\limits_{i=1}^{|\alpha|}\frac{1}{i}\right)\frac{|\alpha|!}{\alpha!}w^{\alpha}\overline{w}^{\alpha}.

Now set ρ~(α)=|α|!α!\widetilde{\rho}(\alpha)=\frac{|\alpha|!}{\alpha!} and ρ(α)=(1+i=1|α|1i)|α|!α!\rho(\alpha)=\left(1+\sum\limits_{i=1}^{|\alpha|}\frac{1}{i}\right)\frac{|\alpha|!}{\alpha!}. Let {𝐞α}\{\mathbf{e}_{\alpha}\} and {𝐞α~}\{\widetilde{\mathbf{e}_{\alpha}}\} denote orthonormal bases for K\mathcal{H}_{K} and 1\mathcal{H}_{1}, respectively. From the relation between reproducing kernels and weight sequences, we have

Ti𝐞α=ρ(α)ρ(α+ei)𝐞α+ei,Ti𝐞α=ρ(αei)ρ(α)𝐞αei,T^{*}_{i}\mathbf{e}_{\alpha}=\sqrt{\frac{\rho(\alpha)}{\rho(\alpha+e_{i})}}\mathbf{e}_{\alpha+e_{i}},\quad T_{i}\mathbf{e}_{\alpha}=\sqrt{\frac{\rho(\alpha-e_{i})}{\rho(\alpha)}}\mathbf{e}_{\alpha-e_{i}},

and

T~i𝐞~α=ρ~(α)ρ~(α+ei)𝐞~α+ei,T~i𝐞~α=ρ~(αei)ρ~(α)𝐞~αei,\widetilde{T}_{i}\widetilde{\mathbf{e}}_{\alpha}=\sqrt{\frac{\widetilde{\rho}(\alpha)}{\widetilde{\rho}(\alpha+e_{i})}}\widetilde{\mathbf{e}}_{\alpha+e_{i}},\quad\quad\widetilde{T}_{i}\widetilde{\mathbf{e}}_{\alpha}=\sqrt{\frac{\widetilde{\rho}(\alpha-e_{i})}{\widetilde{\rho}(\alpha)}}\widetilde{\mathbf{e}}_{\alpha-e_{i}},

for 1im1\leq i\leq m and ei=(0,,1,,0)0me_{i}=(0,\cdots,1,\cdots,0)\in\mathbb{N}_{0}^{m} with 11 in the ii-th position. Therefore, for every α0m\alpha\in\mathbb{N}_{0}^{m} and 1im1\leq i\leq m,

k=0l1ρ(α+kei)ρ(α+(k+1)ei)k=0l1ρ~(α+kei)ρ~(α+(k+1)ei)=ρ(α)ρ~(α+lei)ρ(α+lei)ρ~(α)=1+i=1|α|1i1+i=1|α|+l1i0asl,\frac{\prod\limits_{k=0}^{l-1}\sqrt{\frac{\rho(\alpha+ke_{i})}{\rho(\alpha+(k+1)e_{i})}}}{\prod\limits_{k=0}^{l-1}\sqrt{\frac{\widetilde{\rho}(\alpha+ke_{i})}{\widetilde{\rho}(\alpha+(k+1)e_{i})}}}=\sqrt{\frac{\rho(\alpha)\widetilde{\rho}(\alpha+le_{i})}{\rho(\alpha+le_{i})\widetilde{\rho}(\alpha)}}=\sqrt{\frac{1+\sum\limits_{i=1}^{|\alpha|}\frac{1}{i}}{1+\sum\limits_{i=1}^{|\alpha|+l}\frac{1}{i}}}\rightarrow 0\quad\text{as}\,\,l\rightarrow\infty,

and by Lemma 5.3, 𝐓\mathbf{T} and 𝐓~\widetilde{\mathbf{T}} are not similar.

On the other hand, the definition of curvature yields

𝒦𝐓(w)=i,j=1m2wiw¯jlog1log(1|w|2)1|w|2dwidw¯j,\mathcal{K}_{\mathbf{T}}(w)=-\sum\limits_{i,j=1}^{m}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\log\frac{1-\log(1-|w|^{2})}{1-|w|^{2}}dw_{i}\wedge d\overline{w}_{j},

and

𝒦𝐓~(w)=i,j=1m2wiw¯jlog11|w|2dwidw¯j.\mathcal{K}_{\widetilde{\mathbf{T}}}(w)=-\sum\limits_{i,j=1}^{m}\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{j}}\log\frac{1}{1-|w|^{2}}dw_{i}\wedge d\overline{w}_{j}.

Then as |w|1|w|\rightarrow 1,

K𝐓i,i(w)K𝐌zi,i(w)\displaystyle\frac{K^{i,i}_{\mathbf{T}}(w)}{K^{i,i}_{\mathbf{M}_{z}^{*}}(w)} =\displaystyle= 2wiw¯ilog1log(1|w|2)1|w|22wiw¯ilog11|w|2\displaystyle\frac{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\frac{1-\log(1-|w|^{2})}{1-|w|^{2}}}{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\frac{1}{1-|w|^{2}}}
=\displaystyle= 1+2wiw¯ilog(1log(1|w|2))2wiw¯ilog11|w|2\displaystyle 1+\frac{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\left(1-\log(1-|w|^{2})\right)}{\frac{\partial^{2}}{\partial w_{i}\partial\overline{w}_{i}}\log\frac{1}{1-|w|^{2}}}
=\displaystyle= 1+11log(1|w|2)|wi|21|w|2+|wi|2(1log(1|w|2))2\displaystyle 1+\frac{1}{1-\log(1-|w|^{2})}-\frac{\frac{|w_{i}|^{2}}{1-|w|^{2}+|w_{i}|^{2}}}{\left(1-\log(1-|w|^{2})\right)^{2}}
\displaystyle\rightarrow 1.\displaystyle 1.

6 Further generalizations of single Cowen-Douglas operator results

In this section, we extend additional results given for a single Cowen-Douglas operator to a tuple of commuting operators.

6.1 Inequalities involving the trace of curvature

In M , G. Misra gave the curvature inequality for contractions in 11(𝔻)\mathcal{B}_{1}^{1}(\mathbb{D}). Later in BKM , S. Biswas, D. K. Keshari, and G. Misra generalized the result and presented the following curvature matrix inequality for mm-tuples in 1m(𝔹m)\mathcal{B}_{1}^{m}(\mathbb{B}_{m}):

Lemma 6.1.

Let 𝐓1m(𝔹m)\mathbf{T}\in\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) be a row-contraction and consider 𝐌z{\mathbf{M}^{*}_{z}} on the Dury-Arveson space 1\mathcal{H}_{1}. Then K𝐓(w)K𝐌z(w)K_{\mathbf{T}}(w)\leq K_{\mathbf{M}_{z}^{*}}(w) for w𝔹mw\in\mathbb{B}_{m}.

The above inequality implies that one can use the curvature matrix to determine whether a tuple of operators in 1m(𝔹m)\mathcal{B}_{1}^{m}(\mathbb{B}_{m}) is a row-contraction. We derive an analogous curvature matrix inequality for an nn-hypercontraction in nm(𝔹m)\mathcal{B}^{m}_{n}(\mathbb{B}_{m}). We first show that the trace of the curvature matrix for 𝐓=(T1,,Tm)nm(Ω)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\Omega) is independent of the choice of the holomorphic frame of 𝐓\mathcal{E}_{\mathbf{T}}.

Proposition 6.2.

Let 𝐓=(T1,,Tm)nm(Ω)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\Omega). Suppose that σ={σ1,,σn}\sigma=\{\sigma_{1},\ldots,\sigma_{n}\} and σ~={σ~1,,σ~n}\widetilde{\sigma}=\{\widetilde{\sigma}_{1},\ldots,\widetilde{\sigma}_{n}\} are holomorphic frames of 𝐓\mathcal{E}_{\mathbf{T}}. Then

K𝐓i,j(σ~)=ϕ1K𝐓i,j(σ)ϕandtrace K𝐓(σ)=trace K𝐓(σ~),K_{\mathbf{T}}^{i,j}(\widetilde{\sigma})=\phi^{-1}K_{\mathbf{T}}^{i,j}(\sigma)\phi\quad\text{and}\quad\text{trace }{K}_{\mathbf{T}}(\sigma)=\text{trace }{K}_{\mathbf{T}}(\widetilde{\sigma}),

for some invertible holomorphic matrix-valued function ϕ\phi on Ω\Omega.

Proof: Since σ\sigma and σ~\widetilde{\sigma} are holomorphic frames of 𝐓\mathcal{E}_{\mathbf{T}}, there is an invertible holomorphic matrix ϕ=(ϕij)i,j=1n\phi=(\phi_{ij})_{i,j=1}^{n} such that for all wΩw\in\Omega, (σ~1(w),,σ~n(w))=(σ1(w),,σn(w))ϕ(w).(\widetilde{\sigma}_{1}(w),\cdots,\widetilde{\sigma}_{n}(w))=(\sigma_{1}(w),\cdots,\sigma_{n}(w))\phi(w). Therefore,

h~(w)=(σ~j(w),σ~i(w))i,j=1n=(k=1nϕkj(w)σk(w),k=1nϕki(w)σk(w))i,j=1n=ϕ(w)h(w)ϕ(w).\begin{array}[]{lll}\widetilde{h}(w)&=&(\langle\widetilde{\sigma}_{j}(w),\widetilde{\sigma}_{i}(w)\rangle)_{i,j=1}^{n}\\ &=&\left(\left\langle\sum\limits_{k=1}^{n}\phi_{kj}(w)\sigma_{k}(w),\sum\limits_{k=1}^{n}\phi_{ki}(w)\sigma_{k}(w)\right\rangle\right)_{i,j=1}^{n}\\ &=&{\phi^{*}}(w)h(w)\phi(w).\end{array}

Since ϕ\phi is holomorphic and invertible,

K𝐓i,j(σ~)(w)=w¯j[(ϕ(w)h(w)ϕ(w))1wi(ϕ(w)h(w)ϕ(w))]=[ϕ1(w)h1(w)w¯jh(w)wiϕ(w)+ϕ1(w)h1(w)2h(w)wiw¯jϕ(w)]=ϕ1(w)K𝐓i,j(σ)(w)ϕ(w).\begin{array}[]{lll}K_{\mathbf{T}}^{i,j}(\widetilde{\sigma})(w)&=&-\frac{\partial}{\partial\overline{w}_{j}}\left[\left({\phi^{*}}(w)h(w)\phi(w)\right)^{-1}\frac{\partial}{\partial w_{i}}\left({\phi^{*}}(w)h(w)\phi(w)\right)\right]\\[4.0pt] &=&-\left[\phi^{-1}(w)\frac{\partial h^{-1}(w)}{\partial\overline{w}_{j}}\frac{\partial h(w)}{\partial w_{i}}\phi(w)+\phi^{-1}(w)h^{-1}(w)\frac{\partial^{2}h(w)}{\partial w_{i}\partial\overline{w}_{j}}\phi(w)\right]\\[4.0pt] &=&\phi^{-1}(w)K_{\mathbf{T}}^{i,j}(\sigma)(w)\phi(w).\end{array}

This shows that K𝐓i,j(σ~)(w)K_{\mathbf{T}}^{i,j}(\widetilde{\sigma})(w) is similar to K𝐓i,j(σ)(w)K_{\mathbf{T}}^{i,j}(\sigma)(w) and that

traceK𝐓i,j(σ~)(w)=traceK𝐓i,j(σ)(w).\text{trace}\;K_{\mathbf{T}}^{i,j}(\widetilde{\sigma})(w)=\text{trace}\;K_{\mathbf{T}}^{i,j}(\sigma)(w).

Thus, for all wΩw\in\Omega,

trace K𝐓(σ~)(w)=\displaystyle\text{trace }{K}_{\mathbf{T}}(\widetilde{\sigma})(w)= i,j=1mtrace (w¯j(h~1(w)h~(w)wi))\displaystyle-\sum\limits_{i,j=1}^{m}\text{trace }\left(\frac{\partial}{\partial\overline{w}_{j}}\left(\widetilde{h}^{-1}(w)\frac{\partial\widetilde{h}(w)}{\partial w_{i}}\right)\right)
=\displaystyle= i,j=1mtrace (w¯j(h1(w)h(w)wi))\displaystyle-\sum\limits_{i,j=1}^{m}\text{trace }\left(\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}(w)\frac{\partial h(w)}{\partial w_{i}}\right)\right)
=\displaystyle= trace K𝐓(σ)(w).\displaystyle\text{trace }{K}_{\mathbf{T}}(\sigma)(w).

In MV1993 , V. Müller and F.-H. Vasilescu gave the following description of when an nn-hypercontraction is unitarily equivalent to an adjoint of a multiplication tuple. Let 𝐌z,n,E\mathbf{M}^{*}_{z,n,E} denote the operator tuple 𝐌z\mathbf{M}_{z}^{*} on the space nE\mathcal{H}_{n}\otimes E:

Lemma 6.3.

Let 𝐓=(T1,,Tm)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{L}(\mathcal{H})^{m} be an mm-tuple of commuting operators and let nn be a positive integer. Then there is a Hilbert space EE and an 𝐌z,n,E\mathbf{M}^{*}_{z,n,E}-invariant subspace 𝒩\mathcal{N} of nE\mathcal{H}_{n}\otimes E such that 𝐓\mathbf{T} is unitarily equivalent to 𝐌z,n,E|𝒩\mathbf{M}^{*}_{z,n,E}|_{\mathcal{N}} if and only if 𝐓\mathbf{T} is an nn-hypercontraction with lims𝐌𝐓s(I)=0\lim\limits_{s\rightarrow\infty}\mathbf{M}_{\mathbf{T}}^{s}(I)=0 in the strong operator topology.

Another important tool for our work in the current section comes from the following result by D. K. Keshari in D :

Lemma 6.4.

Let \mathcal{E} be a Hermitian holomorphic vector bundle of rank nn over Ω\Omega. Then the curvature matrices of the determinant bundle det\det\mathcal{E} and of the vector bundle \mathcal{E} satisfy the equality

Kdet=trace K.{K}_{\det\mathcal{E}}=\text{trace }{K}_{\mathcal{E}}.

We now give a corresponding curvature inequality that holds for a tt-hypercontractive tuple in the class nm(𝔹m)\mathcal{B}_{n}^{m}(\mathbb{B}_{m}).

Theorem 6.5.

Let tt\in\mathbb{N}. For a tt-hypercontraction 𝐓=(T1,,Tm)nm(𝔹m)\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\mathbb{B}_{m}),

Kdet𝐓Kdet1n𝐌z,t,K_{\det\mathcal{E}_{\mathbf{T}}}\leq K_{\det\mathcal{E}_{\bigoplus\limits_{1}^{n}\mathbf{M}_{z,t}^{*}}},

where 𝐌z,t{\mathbf{M}_{z,t}^{*}} is on the space t\mathcal{H}_{t} with reproducing kernel K(z,w)=1(1z,w)tK(z,w)=\frac{1}{(1-\langle z,w\rangle)^{t}}.

Proof: Since 𝐓nm(𝔹m)\mathbf{T}\in\mathcal{B}_{n}^{m}(\mathbb{B}_{m}) is a tt-hypercontraction, by Lemma 6.3, there exist a Hilbert space EE and an 𝐌z,t,E\mathbf{M}^{*}_{z,t,E}-invariant subspace 𝒩tE\mathcal{N}\subset\mathcal{H}_{t}\otimes E such that 𝐓u𝐌z,t,E|𝒩\mathbf{T}\sim_{u}\mathbf{M}^{*}_{z,t,E}|_{\mathcal{N}}. Let

K(,w¯)e(α,w)ker(𝐌z,t,E|𝒩w)=i=1nker(Mzi|𝒩wi).K(\cdot,\overline{w})\otimes e(\alpha,w)\in\ker(\mathbf{M}^{*}_{z,t,E}|_{\mathcal{N}}-w)=\bigcap\limits_{i=1}^{n}\ker(M_{z_{i}}^{*}|_{\mathcal{N}}-w_{i}).

If we denote by {a(α)zα}α0m\{a(\alpha)z^{\alpha}\}_{\alpha\in\mathbb{N}_{0}^{m}} an orthonormal basis for tE,\mathcal{H}_{t}\otimes E, then for every fE(w)f\in E(w), α0m\alpha^{\prime}\in\mathbb{N}_{0}^{m}, and 1im1\leq i\leq m,

0=\displaystyle 0= (Mziwi)α0ma(α)e(α,w)zαwα,a(α)fzα\displaystyle\langle(M_{z_{i}}^{*}-w_{i})\sum_{\alpha\in\mathbb{N}_{0}^{m}}a(\alpha)\otimes e(\alpha,w)z^{\alpha}w^{\alpha},a(\alpha^{\prime})\otimes fz^{\alpha^{\prime}}\rangle
=\displaystyle= α0ma(α)e(α,w)zαwα,a(α+ei)fzα+ei\displaystyle\sum_{\alpha\in\mathbb{N}_{0}^{m}}\langle a(\alpha)\otimes e(\alpha,w)z^{\alpha}w^{\alpha},\,\,a(\alpha^{\prime}+e_{i})\otimes fz^{\alpha^{\prime}+e_{i}}\rangle
α0ma(α)e(α,w)zαwα+ei,a(α)fzα\displaystyle\qquad\qquad\qquad\qquad\qquad-\sum_{\alpha\in\mathbb{N}_{0}^{m}}\langle a(\alpha)\otimes e(\alpha,w)z^{\alpha}w^{\alpha+e_{i}},a(\alpha^{\prime})\otimes fz^{\alpha^{\prime}}\rangle
=\displaystyle= a(α+ei)e(α+ei,w)zα+eiwα+ei,a(α+ei)fzα+ei\displaystyle\langle a(\alpha^{\prime}+e_{i})\otimes e(\alpha^{\prime}+e_{i},w)z^{\alpha^{\prime}+e_{i}}w^{\alpha^{\prime}+e_{i}},a(\alpha^{\prime}+e_{i})\otimes fz^{\alpha^{\prime}+e_{i}}\rangle
a(α)e(α,w)zαwα+ei,a(α)fzα\displaystyle\qquad\qquad\qquad\qquad\qquad-\langle a(\alpha^{\prime})\otimes e(\alpha^{\prime},w)z^{\alpha^{\prime}}w^{\alpha^{\prime}+e_{i}},a(\alpha^{\prime})\otimes fz^{\alpha^{\prime}}\rangle
=\displaystyle= e(α+ei,w)e(α,w),fwα+ei.\displaystyle\langle e(\alpha^{\prime}+e_{i},w)-e(\alpha^{\prime},w),f\rangle w^{\alpha^{\prime}+e_{i}}.

Hence, for every α,β0m\alpha,\beta\in\mathbb{N}_{0}^{m}, e(α,w)=e(β,w)e(\alpha,w)=e(\beta,w), so that we can set e(w):=e(α,w)e(w):=e(\alpha,w). Then for all w𝔹m,w\in\mathbb{B}_{m},

ker(𝐌z,t,E|𝒩w)={K(,w¯)e(w),e(w)E(w)}.\ker(\mathbf{M}^{*}_{z,t,E}|_{\mathcal{N}}-w)=\bigvee\{K(\cdot,\overline{w})\otimes e(w),e(w)\in E(w)\}.

Since dimker(𝐌z,t,E|𝒩w)=dimker(𝐓w)=n,\dim\ker(\mathbf{M}^{*}_{z,t,E}|_{\mathcal{N}}-w)=\dim\ker(\mathbf{T}-w)=n, we can assume that {K(,w¯)ei(w)}i=1n\{K(\cdot,\overline{w})\otimes e_{i}(w)\}_{i=1}^{n} is a basis for ker(𝐌z,t,E|𝒩w)\ker(\mathbf{M}^{*}_{z,t,E}|_{\mathcal{N}}-w) and (w)=1inei(w)\mathcal{E}(w)=\bigvee\limits_{1\leq i\leq n}e_{i}(w). Therefore,

h(w)=K(w¯,w¯)(ej(w),ei(w))i,j=1n=K(w¯,w¯)h(w),h(w)=K(\overline{w},\overline{w})\Bigg{(}\langle e_{j}(w),e_{i}(w)\rangle\Bigg{)}_{i,j=1}^{n}=K(\overline{w},\overline{w})h_{\mathcal{E}}(w),

and

Kdet𝐓=(2log(K(w¯,w¯))nw¯jwi2log(deth(w))w¯jwi)i,j=1m=Kdet1n𝐌z,t+Kdet.K_{\det\mathcal{E}_{\mathbf{T}}}=\left(-\frac{\partial^{2}\log(K(\overline{w},\overline{w}))^{n}}{\partial\overline{w}_{j}\partial w_{i}}-\frac{\partial^{2}\log\left(\det h_{\mathcal{E}}(w)\right)}{\partial\overline{w}_{j}\partial w_{i}}\right)_{{i,j=1}}^{m}=K_{\det\mathcal{E}_{\bigoplus\limits_{1}^{n}\mathbf{M}_{z,t}^{*}}}+K_{\det\mathcal{E}}.

Finally, since it is known from BKM that KdetK_{\det\mathcal{E}} is negative definite, the proof is complete. We next show that the result of HJK holds for the multi-operator case as well. For 𝐓=(T1,,Tm)nm(Ω)()m\mathbf{T}=(T_{1},\cdots,T_{m})\in\mathcal{B}_{n}^{m}(\Omega)\subset\mathcal{L}(\mathcal{H})^{m}, one defines a projection-valued function Π:Ω()\Pi:\Omega\rightarrow\mathcal{L}(\mathcal{H}) that assigns to each wΩ,w\in\Omega, an orthogonal projection Π(w)\Pi(w) onto ker(𝐓w)\ker(\mathbf{T}-w). Define an operator Γ(w):ker(𝐓w)n\Gamma^{*}(w):\ker(\mathbf{T}-w)\rightarrow\mathbb{C}^{n} by

Γ(w)(f)=f(w),\Gamma^{*}(w)(f)=f(w),

where fker(𝐓w).f\in\ker(\mathbf{T}-w). Then, h(w)=Γ(w)Γ(w)h(w)=\Gamma^{*}(w)\Gamma(w) and Π(w)=Γ(w)h1(w)Γ(w).\Pi(w)=\Gamma(w)h^{-1}(w)\Gamma^{*}(w).

Theorem 6.6.

Let 𝐓nm(Ω)\mathbf{T}\in\mathcal{B}_{n}^{m}(\Omega) and let Π(w)\Pi(w) be an orthogonal projection onto ker(𝐓w)\ker(\mathbf{T}-w). Then for wΩ,w\in\Omega,

i=1mΠ(w)wi𝔖22=trace K𝐓(w),\sum\limits_{i=1}^{m}\bigg{\|}\frac{\partial\Pi(w)}{\partial w_{i}}\bigg{\|}_{\mathfrak{S}_{2}}^{2}=-\text{trace }K_{\mathbf{T}}(w),

where 𝔖2\mathfrak{S}_{2} denotes the Hilbert-Schmidt class of operators.

Proof: From Π(w)=Γ(w)h1(w)Γ(w),\Pi(w)=\Gamma(w)h^{-1}(w)\Gamma^{*}(w), we have for wΩw\in\Omega,

Π(w)w¯jΠ(w)wi=\displaystyle\frac{\partial\Pi(w)}{\partial\overline{w}_{j}}\frac{\partial\Pi(w)}{\partial w_{i}}= Γ(w)[h1(w)w¯jh(w)wih1(w)+h1(w)2h(w)w¯jwih1(w)\displaystyle\Gamma(w)\Bigg{[}\frac{\partial h^{-1}(w)}{\partial\overline{w}_{j}}\frac{\partial h(w)}{\partial w_{i}}h^{-1}(w)+h^{-1}(w)\frac{\partial^{2}h(w)}{\partial\overline{w}_{j}\partial w_{i}}h^{-1}(w)
+h1(w)w¯jh(w)h1(w)wi+h1(w)h(w)w¯jh1(w)wi]Γ(w)\displaystyle\quad+\frac{\partial h^{-1}(w)}{\partial\overline{w}_{j}}h(w)\frac{\partial h^{-1}(w)}{\partial w_{i}}+h^{-1}(w)\frac{\partial h(w)}{\partial\overline{w}_{j}}\frac{\partial h^{-1}(w)}{\partial w_{i}}\Bigg{]}\Gamma^{*}(w)
=\displaystyle= Γ(w)[w¯j(h1(w)h(w)wi)h1(w)\displaystyle\Gamma(w)\Bigg{[}\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}(w)\frac{\partial h(w)}{\partial w_{i}}\right)h^{-1}(w)
+w¯j(h1(w)h(w))h1(w)wj]Γ(w)\displaystyle\quad+\frac{\partial}{\partial\overline{w}_{j}}\left(h^{-1}(w)h(w)\right)\frac{\partial h^{-1}(w)}{\partial w_{j}}\Bigg{]}\Gamma^{*}(w)
=\displaystyle= Γ(w)w¯j[h1(w)h(w)wi]h1(w)Γ(w)\displaystyle\Gamma(w)\frac{\partial}{\partial\overline{w}_{j}}\left[h^{-1}(w)\frac{\partial h(w)}{\partial w_{i}}\right]h^{-1}(w)\Gamma^{*}(w)
=\displaystyle= Γ(w)[K𝐓i,j(w)h1(w)]Γ(w).\displaystyle-\Gamma(w)[K_{\mathbf{T}}^{i,j}(w)h^{-1}(w)]\Gamma^{*}(w).

Hence,

Π(w)wi𝔖22=trace (Π(w)w¯iΠ(w)wi)=trace ([K𝐓i,i(w)h1(w)]Γ(w)Γ(w))=trace K𝐓i,i(w).\begin{array}[]{lll}\left\|\frac{\partial\Pi(w)}{\partial w_{i}}\right\|_{\mathfrak{S}_{2}}^{2}&=&\text{trace }\left(\frac{\partial\Pi(w)}{\partial\overline{w}_{i}}\frac{\partial\Pi(w)}{\partial w_{i}}\right)\\ &=&-\text{trace }\left([K_{\mathbf{T}}^{i,i}(w)h^{-1}(w)]\Gamma^{*}(w)\Gamma(w)\right)\\ &=&-\text{trace }K_{\mathbf{T}}^{i,i}(w).\end{array}

6.2 Final Remark

For T1,T2()T_{1},T_{2}\in\mathcal{L}(\mathcal{H}), the Rosenblum operator σT1,T2:()()\sigma_{T_{1},T_{2}}:\mathcal{L}(\mathcal{H})\rightarrow\mathcal{L}(\mathcal{H}) is defined as

σT1,T2(X)=T1XXT2,X().\sigma_{T_{1},T_{2}}(X)=T_{1}X-XT_{2},\quad X\in\mathcal{L}(\mathcal{H}).

In Gilfeather , F. Gilfeather showed that an operator T()T\in\mathcal{L}(\mathcal{H}) is strongly irreducible if there is no non-trivial idempotent in {T}\{T\}^{\prime}. The following relationship between strong irreducibility and the class 21(Ω)\mathcal{FB}_{2}^{1}(\Omega) is given in JJDG :

Lemma 6.7.

An operator T=(T1T1,20T2)21(Ω)T=\begin{pmatrix}T_{1}\,\,&T_{1,2}\\ 0\,\,&T_{2}\end{pmatrix}\in\mathcal{F}\mathcal{B}_{2}^{1}(\Omega) is strongly irreducible if and only if T1,2 ran σT1,T2.T_{1,2}\notin\text{ ran }\sigma_{T_{1},T_{2}}.

We conclude with an example illustrating the complexity of the similarity problem. It implies that the trace of the curvature matrix is not always a proper similarity invariant for the class nm(Ω)\mathcal{B}^{m}_{n}(\Omega). Let T1T_{1} and T2T_{2} be backward shift operators on Hilbert spaces K1\mathcal{H}_{K_{1}} and K2\mathcal{H}_{K_{2}} defined on the unit disk 𝔻\mathbb{D} with reproducing kernels K1(z,w)=11w¯zK_{1}(z,w)=\frac{1}{1-\overline{w}z} and K2(z,w)=1(1w¯z)3K_{2}(z,w)=\frac{1}{(1-\overline{w}z)^{3}}, respectively.

Example 6.8.

Consider T~=(T100T2)21(𝔻)\widetilde{T}=\begin{pmatrix}T_{1}\,\,&0\\ 0\,\,&T_{2}\end{pmatrix}\in\mathcal{B}_{2}^{1}(\mathbb{D}) and T=(T1T1,20T2)21(𝔻)T=\begin{pmatrix}T_{1}\,&T_{1,2}\\ 0\,&T_{2}\end{pmatrix}\in\mathcal{F}\mathcal{B}_{2}^{1}(\mathbb{D}). Suppose that

T1,2 ran σT1,T2(X)={T1XXT2:X(K2,K1)}.T_{1,2}\notin\text{ ran }\sigma_{T_{1},T_{2}}(X)=\{T_{1}X-XT_{2}:~{}X\in\mathcal{L}(\mathcal{H}_{K_{2}},\mathcal{H}_{K_{1}})\}.

Let us first note that t1(w):=K1(,w¯)ker(T1w)t_{1}(w):=K_{1}(\cdot,\overline{w})\in\ker(T_{1}-w) and t2(w):=K2(,w¯)ker(T2w)t_{2}(w):=K_{2}(\cdot,\overline{w})\in\ker(T_{2}-w). It can be easily checked that {t1,t1+t2}\{t_{1},t_{1}^{\prime}+t_{2}\} is a holomorphic frame of T\mathcal{E}_{T} and that

hT(w)=(11|w|2w11|w|2w¯11|w|22w¯w11|w|2+1(1|w|2)3).\begin{array}[]{lllll}h_{T}(w)&=&\left(\begin{array}[]{ccccc}\frac{1}{1-|w|^{2}}&\frac{\partial}{\partial w}\frac{1}{1-|w|^{2}}\\ \frac{\partial}{\partial\overline{w}}\frac{1}{1-|w|^{2}}&\quad\frac{\partial^{2}}{\partial\overline{w}\partial w}\frac{1}{1-|w|^{2}}+\frac{1}{(1-|w|^{2})^{3}}\end{array}\right).\\ \end{array}

It follows that dethT(w)=2(1|w|2)4.\det h_{T}(w)=\frac{2}{(1-|w|^{2})^{4}}. Now by Lemma 6.4, we know that trace KT(w)=Kdet T(w)=4(1|w|2)2.\text{trace }{K}_{T}(w)={K}_{\text{det }{\mathcal{E}}_{T}}(w)=-\frac{4}{(1-|w|^{2})^{2}}. On the other hand, trace KT~(w)=KT1(w)+KT2(w)=4(1|w|2)2,\text{trace }{K}_{\widetilde{T}}(w)={K}_{T_{1}}(w)+{K}_{T_{2}}(w)=-\frac{4}{(1-|w|^{2})^{2}}, so that trace KT=trace KT~.\text{trace }{K}_{T}=\text{trace }{K}_{\widetilde{T}}.

Now, since T1,2 ran σT1,T2T_{1,2}\notin\text{ ran }\sigma_{T_{1},T_{2}}, it follows from Lemma 6.7 that TT is strongly irreducible. Thus, {T}\{T\}^{\prime} has no non-trivial idempotent elements. If TT and T~\widetilde{T} were indeed similar, then there has to be an invertible operator X()X\in\mathcal{L}(\mathcal{H}) such that T=X1T~XT=X^{-1}\widetilde{T}X. If we set Y:=(IK1000),Y:=\Big{(}\begin{smallmatrix}I_{\mathcal{H}_{K_{1}}}&0\\ 0\,\,&0\end{smallmatrix}\Big{)}, then Y{T~}Y\in\{\widetilde{T}\}^{\prime} and X1YXX^{-1}YX is a non-trivial idempotent. However,

(X1YX)T=X1YT~X=X1T~YX=(X1T~X)(X1YX)=T(X1YX),(X^{-1}YX)T=X^{-1}Y\widetilde{T}X=X^{-1}\widetilde{T}YX=(X^{-1}\widetilde{T}X)(X^{-1}YX)=T(X^{-1}YX),

so that X1YX{T}X^{-1}YX\in\{T\}^{\prime}, and this is a contradiction. Hence, TT and T~\widetilde{T} are not similar.

7 Statements and Declarations

  1. 1.

    Funding: The research leading to these results received funding from Hebei Normal University under Grant Agreement No. CXZZSS2019061 and from the National Science Foundation of China under Grant Agreement No. 11922108.

  2. 2.

    Conflicts of Interest/Competing Interests: The authors have no relevant financial or non-financial interests to disclose.

References

  • (1) Agler, J.: The Arveson extension theorem and coanalytic models. Integral Equations Operator Theory 𝟓\mathbf{5}, 608-631 (1982). https://doi.org/10.1007/BF01694057
  • (2) Agler, J.: Hypercontractions and subnormality. J. Operator Theory 𝟏𝟑\mathbf{13}(2), 203-217 (1985).
  • (3) Agler, J., McCarthy, J.E.: Pick Interpolation and Hilbert Function Spaces. vol. 44 of Graduate Studies in Mathematics. American Mathematical Society. Providence, RI (2002). https://doi.org/10.1090/gsm/044
  • (4) Aĭzenberg, L.A.: Pluriharmonic functions. Dokl. Akad. Nauk SSSR 𝟏𝟐𝟒\mathbf{124}, 967-969 (1959).
  • (5) Ambrozie, C.-G., Englisˇ\check{s}, M., Mu¨\ddot{u}ller, V.: Operator tuples and analytic models over general domains in n\mathbb{C}^{n}. J. Operator Theory 47(2), 287-302 (2002). https://doi.org/10.1006/jnth.2001.2714
  • (6) Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for the Drury-Arveson Hardy space and othe Besov-Sobolev spaces on complex balls. Adv. Math. 𝟐𝟏𝟖\mathbf{218}(4), 1107-1180 (2008). https://doi.org/10.1016/J.AIM.2008.03.001
  • (7) Athavale, A.: Holomorphic kernels and commuting operators. Trans. Amer. Math. Soc. 𝟑𝟎𝟒\mathbf{304}(1), 101-110 (1987). https://doi.org/10.1090/S0002-9947-1987-0906808-6
  • (8) Athavale, A.: Model theory on the unit ball in m\mathbb{C}^{m}. J. Operator Theory 𝟐𝟕\mathbf{27}(2), 347-358 (1992). https://doi.org/10.2307/24714668
  • (9) Ball, J.A., Trent, T.T., Vinnikov, V.: Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In: vol. 122 of Oper. Theory Adv. Appl. pp. 89-138. Birkha¨\ddot{a}user, Basel (2001). http://dx.doi.org/10.1007/978-3-0348-8283-5_\_4
  • (10) Beatrous Jr., F.: Estimates for derivatives of holomorphic functions in pseudoconvex domains. Math. Z. 𝟏𝟗𝟏\mathbf{191}(1), 91-116 (1986). https://doi.org/10.1016/j.jmaa.2006.06.090
  • (11) Bercovici, H., Foiaş, C., Kérchy, L., Sz.-Nagy, B.: Compléments à l’étude des opérateurs de classe C0C_{0}. IV. Acta Sci. Math. (Szeged) 𝟒𝟏\mathbf{41}(1)(2), 29-31 (1979).
  • (12) Bercovici, H., Sz.-Nagy, B., Foiaş, C.: Compléments à l’étude des opérateurs de classe C0C_{0}. III. Acta Sci. Math. (Szeged) 𝟑𝟕\mathbf{37}(3)(4), 313-322 (1975).
  • (13) Biswas, S., Keshari, D.K., Misra, G.: Infinitely divisible metrics and curvature inequalities for operators in the Cowen-Douglas class. J. Lond. Math. Soc. 𝟖𝟖\mathbf{88}(2), 941-956 (2013). https://doi.org/10.1112/jlms/jdt045
  • (14) Brodskiĭ, M.S.: On Jordan cells of infinite-dimensional operators. Dokl. Akad. Nauk SSSR 𝟏𝟏𝟏\mathbf{111}, 926-929 (1956).
  • (15) Brodskiĭ, M.S.: Decomposition of a dissipative operator with an imaginary kernel component into unicellular operators. Funct. Anal. Appl. 𝟐\mathbf{2}(3), 254-256 (1968). https://doi.org/10.1007/bf01076127
  • (16) Cao, Y., Fang, J.S., Jiang, C.L.: K-groups of Banach algebras and strongly irreducible decompositions of operators. J. Operator Theory 𝟒𝟖\mathbf{48}(2), 235-253 (2002). https://doi.org/10.1007/bfb0071311
  • (17) Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. of Math. 𝟕𝟔\mathbf{76}(2), 547-559 (1962). https://doi.org/10.2307/1970375
  • (18) Clark, D.N., Misra, G.: On curvature and similarity. Michigan Math. J. 𝟑𝟎\mathbf{30}(3), 361-367 (1983). https://doi.org/10.1307/mmj/1029002911
  • (19) Clark, D.N., Misra, G.: On weighted shifts, curvature, and similarity. J. Lond. Math. Soc. 𝟑𝟏\mathbf{31}(2), 357-368 (1985). https://doi.org/10.1112/jlms/s2-31.2.357
  • (20) Cowen, M.J., Douglas, R.G.: Complex geometry and operator theory. Acta. Math. 𝟏𝟒𝟏\mathbf{141}(1), 187-261 (1978). https://doi.org/10.1007/BF02545748
  • (21) Cowen, M.J., Douglas, R.G.: Operators possessing an open set of eigenvalues. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980); vol. 35 of Colloq. Math. Soc. János Bolyai, pp. 323-341. North-Holland, Amsterdam (1983).
  • (22) Cowen, M.J., Douglas, R.G.: Equivalence of connections. Adv. Math. 𝟓𝟔\mathbf{56}(1), 39-91 (1985). https://doi.org/10.1016/0001-8708(85)90084-2
  • (23) Curto, R.E., Salinas, N.: Generalized Bergman kernels and the Cowen-Douglas theory. Amer. J. Math. 𝟏𝟎𝟔\mathbf{106}(2), 447-488 (1984). https://doi.org/10.2307/2374310
  • (24) Curto, R.E., Vasilescu, F.H.: Standard operator models in the polydisc. Indiana Univ. Math. J. 𝟒𝟐\mathbf{42}(3), 791-810 (1993). https://doi.org/10.1512/iumj.1993.42.42035
  • (25) Curto, R.E., Vasilescu. F.H.: Standard operator models in the polydisc. II. Indiana Univ. Math. J. 𝟒𝟒\mathbf{44}(3), 727-746 (1995). https://doi.org/10.1512/iumj.1995.44.2005
  • (26) Davidson, K.R., Herrero, D.A.: The Jordan form of a bitriangular operator. J. Funct. Anal. 𝟗𝟒\mathbf{94}(1), 27-73 (1990). https://doi.org/10.1016/0022-1236(90)90027-I
  • (27) Douglas, R.G., Kwon, H.K., Treil, S: Similarity of nn-hypercontractions and backward Bergman shifts. J. Lond. Math. Soc. 𝟖𝟖\mathbf{88}(3), 637-648 (2013). https://doi.org/10.1112/jlms/jdt035
  • (28) Eschmeier, J., Putinar, M.: Spherical contractions and interpolation problems on the unit ball. J. Reine Angew. Math. 𝟓𝟒𝟐\mathbf{542}, 219-236 (2002). http://dx.doi.org/10.1515/crll.2002.007
  • (29) Fuhrmann, P.A.: On the corona theorem and its application to spectral problems in Hilbert space. Trans. Amer. Math. Soc. 𝟏𝟑𝟐\mathbf{132}, 55-66 (1968). https://doi.org/10.1090/S0002-9947-1968-0222701-7
  • (30) Gilfeather, F.: Strong reducibility of operators. Indiana Univ. Math. J. 𝟐𝟐\mathbf{22}(4), 393-397 (1972). https://dx.doi.org/10.1512/iumj.1973.22.22032
  • (31) Halmos, P.R.: Irreducible operators. Michigan Math. J. 𝟏𝟓\mathbf{15}, 215-223 (1968). https://doi.org/10.1307/mmj/1028999975
  • (32) Hartz, M.: An invitation to the Drury-Arveson space. Preprint at https://arxiv.org/abs/2204.01559 (2022).
  • (33) Hörmander, L.: Generators for some rings of analytic functions. Bull. Amer. Math. Soc. 𝟕𝟑\mathbf{73}, 943-949 (1967). https://doi.org/10.1090/S0002-9904-1967-11860-3
  • (34) Hou, Y.L., Ji, K., Ji, S.S., Xu, J.: Geometry of holomorphic vector bundles and similarity of commuting operator tuples. Preprint at https://arxiv.org/abs/1801.01680 (2018).
  • (35) Hou, Y.L., Ji. K., Kwon, H.K.: The trace of the curvature determines similarity. Studia Math. 𝟐𝟑𝟔\mathbf{236}(2), 193-200 (2017). https://doi.org/10.4064/sm8588-9-2016
  • (36) Hou, Y.L., Ji, S.S., Xu, J.: On the NN-hypercontractions and similarity of multivariable weighted shifts. Preprint at https://arxiv.org/abs/2208.08387 (2022).
  • (37) Ji, K., Ji, S.S.: A note on unitary equivalence of operators acting on reproducing kernel Hilbert spaces. Preprint at https://arxiv.org/abs/2111.15011 (2022).
  • (38) Ji, K., Jiang, C.L., Keshari, D.K., Misra, G.: Rigidity of the flag structure for a class of Cowen-Douglas operators. J. Funct. Anal. 𝟐𝟕𝟐\mathbf{272}(7), 2899-2932 (2017). https://doi.org/10.1016/j.jfa.2016.12.019
  • (39) Ji, K., Kwon, H.K., Sarkar, J., Xu, J.: A subclass of the Cowen-Douglas class and similarity. Math. Nachr. 𝟐𝟗𝟓\mathbf{295}(11), 2197-2222 (2022). http://dx.doi.org/10.1002/mana.202000326
  • (40) Ji, K., Sarkar, J.: Similarity of quotient Hilbert modules in the Cowen-Douglas class. Eur. J. Math. 𝟓\mathbf{5}(4), 1331-1351 (2019). https://doi.org/10.1007/S40879-018-0297-Y
  • (41) Jiang, C.L.: Similarity classification of Cowen-Douglas operators. Canad. J. Math. 𝟓𝟔\mathbf{56}(4), 742-775 (2004). https://doi.org/10.4153/CJM-2004-034-8
  • (42) Jiang, C.L., Guo, X.Z., Ji, K.: K-group and similarity classification of operators. J. Funct. Anal. 𝟐𝟐𝟓\mathbf{225}(1), 167-192 (2005). https://doi.org/10.1016/j.jfa.2004.12.008
  • (43) Jiang, C.L., Ji, K.: Similarity classification of holomorphic curves. Adv. Math. 𝟐𝟏𝟓\mathbf{215}, 446-468 (2007). https://doi.org/10.1016/j.aim.2007.03.015
  • (44) Jiang, C.L., Ji, K., Keshari, D.K.: Geometric similarity invariants of Cowen-Douglas operators. Preprint at https://arxiv.org/abs/1901.03993 (2019).
  • (45) Jiang, Z.J., Sun, S.L.: On completely irreducible operators. Translated from Acta Sci. Natur. Univ. Jilin 𝟒\mathbf{4} (1992); Front. Math. China 𝟏\mathbf{1}(4), 569-581 (2006). https://doi.org/10.1007/s11464-006-0028-4
  • (46) Keshari, D.K.: Trace formulae for curvature of jet bundles over planar domains. Complex Anal. Oper. Theory 𝟖\mathbf{8}(8), 1723-1740 (2014). https://doi.org/10.1007/s11785-014-0361-7
  • (47) Kisilevs’kiĭ, G.È.: Cyclic subspaces of dissipative operators. Dokl. Akad. Nauk SSSR 𝟏𝟕𝟑\mathbf{173}, 1006-1009 (1967). https://doi.org/10.1007/978-3-0348-8789-2_\_12
  • (48) Kisilevs’kiĭ, G.È.: A generalization of the Jordan theory to a certain class of linear operators in Hilbert space. Dokl. Akad. Nauk SSSR 𝟏𝟕𝟔\mathbf{176}, 768-770 (1967). https://doi.org/10.1016/S0016-5085(08)80553-7
  • (49) Kwon, H.K.: Similarity to the backward shift operator on the Dirichlet space. J. Operator Theory 𝟕𝟔\mathbf{76}(1), 133-140 (2016). https://doi.org/10.7900/jot.2015sep19.2079
  • (50) Kwon, H.K., Treil, S.: Similarity of operators and geometry of eigenvector bundles. Publ. Mat. 𝟓𝟑\mathbf{53}(2), 417-438 (2009). https://doi.org/10.5565/PUBLMAT_\_53209_\_06
  • (51) Lelong, P.: Les fonctions plurisousharmoniques. Ann. Sci. Éc. Norm. Supér. 𝟔𝟐\mathbf{62}(3), 301-338 (1945). https://doi.org/10.24033/asens.927
  • (52) Lin, Q.: Operator theoretical realization of some geometric notions. Trans. Amer. Math. Soc. 𝟑𝟎𝟓\mathbf{305}(1), 353-367 (1988). https://doi.org/10.2307/2001057
  • (53) Luo, S.B.: Corona theorem for the Dirichlet-type space. J. Geom. Anal. 𝟑𝟐\mathbf{32}: Article No. 74 (2022). https://doi.org/10.1007/s12220-021-00814-x
  • (54) Misra, G.: Curvature inequalities and extremal properties of bundle shifts. J. Operator Theory 𝟏𝟏\mathbf{11}(2), 305-317 (1984).
  • (55) Müller, V.: Models for operators using weighted shifts. J. Operator Theory 𝟐𝟎\mathbf{20}(1), 3-20 (1988).
  • (56) Müller, V., Vasilescu, F.H.: Standard models for some commuting multioperators. Proc. Amer. Math. Soc. 𝟏𝟏𝟕\mathbf{117}(4), 979-989 (1993). https://doi.org/10.2307/2159525
  • (57) Nikolski, N.K.: Treatise on the Shift Operator. vol. 273 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Spectral Function Theory. Springer-Verlag, Berlin (1986). With an appendix by S.V. Hruščev [S.V. Khrushchëv] and V.V. Peller. Translated from the Russian by Jaak Peetre. https://doi.org/10.1007/978-3-642-70151-1
  • (58) Nikolski, N.K.: Operators, Functions, and Systems: an Easy Reading, Vol. 1: Hardy, Hankel, and Toeplitz. Vol. 92 of Mathematical surveys and monographs. Amer. Math. Soc. Providence, RI (2002). Translated from the French by Andreas Hartmann. http://dx.doi.org/10.1090/surv/092
  • (59) Oka, K.: Sur les fonctions analytiques de plusieurs variables. VI., Domaines pseudoconvexes. Tohoku Math. J. 𝟒𝟗\mathbf{49}, 15-52 (1942).
  • (60) Pearcy, C.: A complete set of unitary invariants for operators generating finite WW^{*}-algebras of type I. Pacific J. Math. 𝟏𝟐\mathbf{12}, 1405-1416 (1962). http://dx.doi.org/10.2140/pjm.1962.12.1405
  • (61) Pott, S.: Standard models under polynomial positivity conditions. J. Operator Theory 𝟒𝟏\mathbf{41}(2), 365-389 (1999).
  • (62) Rosenblum, M.: A corona theorem for countably many functions. Integral Equations Operator Theory 𝟑\mathbf{3}(1), 125-137 (1980). https://doi.org/10.1007/bf01682874
  • (63) Specht, W.: Zur Theorie der Matrizen II. Iber. Deutsch. Math. Verein. 𝟓𝟎\mathbf{50}, 19-23 (1940).
  • (64) Sz.-Nagy, B., Foiaş, C.: Modèle de Jordan pour une classe de l’espace de Hilbert. Acta Sci. Math. (Szeged) 𝟑𝟏\mathbf{31}, 91-115 (1970).
  • (65) Sz.-Nagy, B., Foiaş, C.: Compléments à l’étude des opérateurs de classe C0C_{0}. Acta Sci. Math. (Szeged) 𝟑𝟏,\mathbf{31}, 287-296 (1970).
  • (66) Sz.-Nagy, B., Foiaş, C.: Compléments à l’étude des opérateurs de classe C0C_{0}. II., Acta Sci. Math. (Szeged) 𝟑𝟑,\mathbf{33}, 113-116 (1972).
  • (67) Sz.-Nagy, B., Foiaş, C.: The function model of a contraction and the space L1/H01L^{1}/H_{0}^{1}. Acta Sci. Math. (Szeged) 𝟒𝟏,\mathbf{41}, 403-410 (1979). https://doi.org/10.1007/s00125-015-3621-9
  • (68) Tolokonnikov, V.A.: Estimates in Carleson’s corona theorem and finitely generated ideals of the algebra H. Funktsional. Anal. i Prilozhen. 𝟏𝟒\mathbf{14}(4), 85-86 (1980). https://doi.org/10.1007/bf01078318
  • (69) Tolokonnikov, V.A.: Estimates in the Carleson corona theorem, ideals of the algebra HH^{\infty}, a problem of Sz.-Nagy. In: Investigations on Linear Operators and the Theory of Functions, XI. In vol. 113 of Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) pp. 178-198 (1981). https://doi.org/10.1007/BF01882580
  • (70) Treil, S.R.: Angles between co-invariant subspaces, and the operator corona problem. The Szőkefalvi-Nagy problem. Dokl. Akad. Nauk SSSR 𝟑𝟎𝟐\mathbf{302}(5), 1063-1068 (1988).
  • (71) Trent, T.T.: A new estimate for the vector valued corona problem. J. Funct. Anal. 𝟏𝟖𝟗\mathbf{189}(1), 267-282 (2002). https://doi.org/10.1006/jfan.2001.3842
  • (72) Uchiyama, A.: Corona theorems for countably many functions and estimates for their solutions. Preprint, UCLA (1980).
  • (73) Uchiyama, M.: Curvatures and similarity of operators with holomorphic eigenvectors. Trans. Amer. Math. Soc. 𝟑𝟏𝟗\mathbf{319}(1), 405-415 (1990). https://doi.org/10.1090/s0002-9947-1990-0968421-4
  • (74) Varopoulos, N.Th.: BMO functions and the ¯\overline{\partial}-equation. Pacific J. Math. 𝟕𝟏\mathbf{71}(1), 221-273 (1977).
  • (75) Vasilescu, F.H.: An operator-valued Poisson kernel. J. Funct. Anal. 𝟏𝟏𝟎\mathbf{110}(1), 47-72 (1992). https://doi.org/10.1016/0022-1236(92)90042-H
  • (76) Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of n\mathbb{C}^{n}. Me´\acute{e}m. Soc. Math. Fr. 𝟏𝟏𝟓\mathbf{115} (2008). https://doi.org/10.24033/msmf.427