This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The continuity of χ\chi-volume functions over adelic curves

Wenbin LUO
(March 2020)
Résumé

In the setting of Arakelov geometry over adelic curves, we introduce the χ\chi-volume function and show some general properties. This article is dedicated to talk about the continuity of χ\chi-volume function. By discussing its relationship with volume function, we prove its continuity around adelic \mathbb{Q}-ample \mathbb{Q}-Cartier divisors and its continuity in the trivially valued case. The study of the variation of arithmetic Okounkov bodies leads us to its continuous extension on arithmetic surfaces.

1 Introduction

The aim of this paper is to discuss some properties of several asymptotic invariants of arithmetic divisors under the setting of Arakelov geometry over adelic curves.

As a method towards arithmetic geometry, Arakelov geometry is inspired by the idea that when we study an arithmetic variety over Spec\mathrm{Spec}\,\mathbb{Z}, the set of its \mathbb{C}-points which forms a complex variety should be taken into consideration. This can be understood as a "compactification" of Spec\mathrm{Spec}\,\mathbb{Z} by a transcendental point. As the name shows, Arakelov geometry was initiated by Arakelov in order to define an intersection theory on arithmetic surfaces[1]. His incomplete blueprint was completed by Faltings[6] and then generalized to higher dimensional cases by Gillet and Soulé[7].

In this article, in order to proceed with a discussion in a more general setting, instead of number fields, we use the notion of adelic curves introduced by Chen and Moriwaki [4]. We can notice that the function field of a projective curve can be treated equally as a number field in the sense that they both have the product formula. The notion of adele rings of global fields are used to describe those phenomena. Based on this prototype, in order to consider a Arakelov geometry to include them all, an adelic curve is defined to be a field KK together with a set of its absolute values parametrised by a measure space (Ω,𝒜,ν)(\Omega,\mathcal{A},\nu) where 𝒜\mathcal{A} is a σ\sigma-algebra and ν\nu is a measure of Ω\Omega (for the examples mentioned above, the measures would be taken to be just counting measures).

In [4], Chen and Moriwaki generalized a lot of results in arithmetic geometry to the case over adelic curves. One of them is the continuity of volume function of adelic \mathbb{R}-Cartier divisors. In birational geometry, the volume function of a divisor DD on an nn-dimensional variety XX is given by

vol(D)=lim supn+h0(X,nD)nd/d!\mathrm{vol}(D)=\limsup_{n\rightarrow+\infty}\frac{h^{0}(X,nD)}{n^{d}/d!}

to demonstrate the magnitude of the growth of h0(nD)h^{0}(nD) with respect to nn. In classical arithmetic geometry, h0h^{0} is replaced by the number of small sections, and the continuity of the analogous volume function was proved by Moriwaki [10]. In the setting over adelic curves, we choose the positive degree deg^+\widehat{\mathrm{deg}}_{+} (which is gained by taking the maximal Arakelov degree among all its subspaces) of an adelic vector bundle E¯\overline{E} as a sensible analogue of h0h^{0}. In the proof of the continuity of the volume function over adelic curves in [4], as a very useful method to calculate the Arakelov degree, the Harder-Narasimhan filtration is implemented and hence introduced the arithmetic Okounkov bodies which would lead to a generalized Brunn-Minkowski type inequality.

In birational geometry, for a big divisor DD on a projective variety XX, we can construct Okounkov body Δ(D)\Delta(D)(which is a convex body in d\mathbb{R}^{d}) whose volume is exactly the volume of the divisor up to a constant depending on the dimension of the variety solely. In [3], Boucksom and Chen associated filtered (in our case, mainly Harder-Narasimhan filtration) linear series of a big line bundle with a concave function on its Okoukov body. In particular, for each arithmetic big line bundle, we can get its arithmetic volume by calculating the integral of the positive part of the concave function (the use of positive part comes from positive degrees).

Then it’s natural to consider the case if we replace positive degrees by simply Arakelov degrees. This idea inspired us to introduce the χ\chi-volume function by which we wish to give an analogy of Euler characteristics. The ultimate goal of this study is to prove the following formula,

limϵ0vol^χ(D¯+ϵE¯)=vol^χ(D¯)\lim\limits_{\epsilon\rightarrow 0}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\epsilon\overline{E})=\widehat{\mathrm{vol}}_{\chi}(\overline{D}) (1)

where D¯\overline{D} and E¯\overline{E} are adelic \mathbb{R}-Cartier divisors on an arithmetic variety. The definition of adelic \mathbb{R}-Cartier divisors would be given in subsection 3.4. But we only shows some results under certain conditions in this article.

One main method of this paper is to investigate its relationship with arithmetic volume by using a Green function to make the concave transform positive everywhere (in some sense, we are studying the integrablity of the concave transforms). This paper provides several ways to show the existence of this Green function for some certain divisors (mainly ample divisors).

One of the main results is the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) of adelic \mathbb{Q}-Cartier \mathbb{Q}-ample divisor:

\theoname \the\smf@thm.

cf. Theorem 4.1 Let D¯=(D,g)\overline{D}=(D,g) and E¯=(E,h)\overline{E}=(E,h) be elements in Div^(X)\widehat{\mathrm{Div}}_{\mathbb{Q}}(X) such that DD is a \mathbb{Q}-ample \mathbb{Q}-Cartier divisor. Then we can describe the following continuity for vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot):

limn±vol^χ(D¯+1nE¯)=vol^χ(D¯).\lim\limits_{n\rightarrow\pm\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E})=\widehat{\mathrm{vol}}_{\chi}(\overline{D}).

For the case over trivially valued field, i.e. the parametrizing measure space Ω\Omega consists of only one point which is the trivial absolute value, the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) is easily gained as shown in subsection 4.2.

We also give the so-called continuous extension for χ\chi-volume on arithmetic surfaces by introducing vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) which is nothing but the integral of the concave transform over the Okounkov body. We firstly shows that vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) is continuous which would leads us to the following theorem:

\theoname \the\smf@thm (cf. Corollary 5.3).

Assume that dimX=1\dim X=1. Let D¯=(D,g)\overline{D}=(D,g) be an adelic \mathbb{R}-Cartier divisor on XX such that deg(D)>0\mathrm{deg}(D)>0. So we can write D¯\overline{D} as

D¯=α1D¯1+α2D¯2++αnD¯n\overline{D}=\alpha_{1}\overline{D}_{1}+\alpha_{2}\overline{D}_{2}+\cdots+\alpha_{n}\overline{D}_{n}

where D¯i=(Di,gi)\overline{D}_{i}=(D_{i},g_{i}), DD is a Cartier divisor on XX with deg(Di)>0\mathrm{deg}(D_{i})>0, i=1,,n.i=1,\dots,n. Then we have the following continuous extension of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot):

limaiαiaii=1,,nvol^χ(a1D¯1+a2D¯2++anD¯n)=vol^I(D¯)2.\lim\limits_{\begin{subarray}{c}a_{i}\rightarrow\alpha_{i}\\ a_{i}\in\mathbb{Q}\\ i=1,\dots,n\end{subarray}}\widehat{\mathrm{vol}}_{\chi}(a_{1}\overline{D}_{1}+a_{2}\overline{D}_{2}+\cdots+a_{n}\overline{D}_{n})=\frac{\widehat{\mathrm{vol}}_{I}(\overline{D})}{2}.

2 Adelic curves and adelic vector bundles

Let KK be a field and MKM_{K} be the set of all its absolute values. Let (Ω,𝒜,ν)(\Omega,\mathcal{A},\nu) be a measure space where 𝒜\mathcal{A} is a σ\sigma-algebra on Ω\Omega and ν\nu is a measure on (Ω,𝒜)(\Omega,\mathcal{A}). If there exists a ϕ:ΩMK,ω||ω\phi:\Omega\rightarrow M_{K},\omega\mapsto\lvert\cdot\rvert_{\omega} such that for any aK\{0}a\in K\backslash\{0\}, the function

(ωΩ)ln|a|ω(\omega\in\Omega)\mapsto\ln|a|_{\omega}

is 𝒜\mathcal{A}-measurable, integrable with respect to ν\nu, then we call the whole data (K,(Ω,𝒜,ν),ϕ)(K,(\Omega,\mathcal{A},\nu),\phi) an adelic curve. For each ωΩ\omega\in\Omega, we denote by KωK_{\omega} the completion of KK with respect to the absolute value ||ω\lvert\cdot\rvert_{\omega}. Moreover, we say SS is a proper adelic curve if SS satisfies the product formula

ωΩln|a|ων(dω)=0.\int_{\omega\in\Omega}\ln|a|_{\omega}\nu(d\omega)=0.
\exemname \the\smf@thm.

Let KK be a number field and Ω={all places of K}\Omega=\{\text{all places of }K\}. We equip Ω\Omega with discrete σ\sigma-algebra 𝒜\mathcal{A} and ν({ω})=[Kω:ω]\nu(\{\omega\})=[K_{\omega}:\mathbb{Q}_{\omega}] where ωΩ\omega\in\Omega and Kω(resp. ω)K_{\omega}(\text{resp. }\mathbb{Q}_{\omega}) is the completion of K(resp. )K(\text{resp. }\mathbb{Q}) with respect to the absolute value ||ω\lvert\cdot\rvert_{\omega}. Then such an adelic curve S=(K,(Ω,𝒜,ν),ϕ)S=(K,(\Omega,\mathcal{A},\nu),\phi) is a proper adelic curve due to the product formula for number field:

ωΩ|a|ω[Kω:ω]=1\prod\limits_{\omega\in\Omega}\lvert a\rvert_{\omega}^{[K_{\omega}:\mathbb{Q}_{\omega}]}=1

for any aK\{0}a\in K\backslash\{0\}.

\exemname \the\smf@thm.

Let KK be any field and ||0\lvert\cdot\rvert_{0} the trivial valuation on KK, namely |x|0={1x0,0x=0.\lvert x\rvert_{0}=\begin{cases}1&x\not=0,\\ 0&x=0.\end{cases} Let Ω={||0}\Omega=\{\lvert\cdot\rvert_{0}\} and ν({||0})=1\nu(\{\lvert\cdot\rvert_{0}\})=1. This is also a proper adelic curve.

\definame \the\smf@thm.

If the absolute value ||ω\lvert\cdot\rvert_{\omega} on KK satisfies the inequality

|x+y|ωmax{|x|ω,|y|ω}|x+y|_{\omega}\leqslant\max\{|x|_{\omega},|y|_{\omega}\}

for x,yKx,y\in K, we say the norm ||ω\lvert\cdot\rvert_{\omega} is non-Archimedean. Otherwise, we say ||ω\lvert\cdot\rvert_{\omega} is Archimedean. We denote by Ω:={ωΩ||ω is Archimedean}\Omega_{\infty}:=\{\omega\in\Omega\mid\lvert\cdot\rvert_{\omega}\text{ is Archimedean}\} and Ωfin:=ΩΩ\Omega_{\mathrm{fin}}:=\Omega\setminus\Omega_{\infty} the set of infinite places and finite places respectively .

Note that for each ωΩ\omega\in\Omega_{\infty}, Kω=K_{\omega}=\mathbb{R} or \mathbb{C}, and there exists a κ(ω)(0,1]\kappa(\omega)\in(0,1] such that ||κ(ω)=||ω\lvert\cdot\rvert^{\kappa(\omega)}=\lvert\cdot\rvert_{\omega} where ||\lvert\cdot\rvert is the usual absolute value on \mathbb{R} or \mathbb{C}. Normally, we assume that κ(ω)=1\kappa(\omega)=1, which makes ν(Ω)<+\nu(\Omega_{\infty})<+\infty (see Chen and Moriwaki [4, Proposition 3.1.2]).

2.1 Adelic vector bundles

\definame \the\smf@thm.

Let EE be a finitely dimensional vector space over KK. Then a norm family ξ\xi on EE is a set of the form {ω}ωΩ\{\lVert\cdot\rVert_{\omega}\}_{\omega\in\Omega} where each ω\lVert\cdot\rVert_{\omega} is a norm on EKω:=EKKωE_{K_{\omega}}:=E\otimes_{K}K_{\omega}.

  1. (1)

    Let FF be a vector subspace of EE, for each ωΩ\omega\in\Omega, we denote by ω,F\lVert\cdot\rVert_{\omega,F} the restriction of ω\lVert\cdot\rVert_{\omega} on FKω:=FKKωEKω.F_{K_{\omega}}:=F\otimes_{K}K_{\omega}\subset E_{K_{\omega}}. Then we denote by ξ|F\xi|_{F} the norm family {ω,F}ωΩ\{\lVert\cdot\rVert_{\omega,F}\}_{\omega\in\Omega}, which is called the restriction of ξ\xi on FF.

  2. (2)

    Let GG be a quotient space of EE (i.e. there is a surjective map μ:EG\mu:E\twoheadrightarrow G), for each ω\omega, we denote by ω,EKωGKω\lVert\cdot\rVert_{\omega,E_{K_{\omega}}\twoheadrightarrow G_{K_{\omega}}}, the quotient norm of ω\lVert\cdot\rVert_{\omega} on GKωG_{K_{\omega}} through the induced surjective map μω:EKωGKω\mu_{\omega}:E_{K_{\omega}}\twoheadrightarrow G_{K_{\omega}}, i.e.

    sω,EKωGKω=infrEKωμω(r)=srω\|s\|_{\omega,E_{K_{\omega}}\twoheadrightarrow G_{K_{\omega}}}=\inf\limits_{\begin{subarray}{c}r\in E_{K_{\omega}}\\ \mu_{\omega}(r)=s\end{subarray}}\|r\|_{\omega}

    for any sGKωs\in G_{K_{\omega}}. Then we denote the norm family {ω,EKωGKω}ωΩ\{\lVert\cdot\rVert_{\omega,E_{K_{\omega}}\twoheadrightarrow G_{K_{\omega}}}\}_{\omega\in\Omega} by ξEG\xi_{E\twoheadrightarrow G}, which is called the quotient norm family of ξ\xi on GG.

\definame \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be a pair of a finitely dimensional vector space over KK and a norm family on it. Let ξ={ω,}ωΩ\xi^{\vee}=\{\lVert\cdot\rVert_{\omega,*}\}_{\omega\in\Omega} denote the dual norm family on EE^{\vee} where

fω,=supsEKω\{0}|f(s)|ωsω\|f\|_{\omega,*}=\sup\limits_{s\in E_{K_{\omega}}\backslash\{0\}}\frac{|f(s)|_{\omega}}{\|s\|_{\omega}}

for each ωΩ\omega\in\Omega and fEKω=(EKω)f\in E^{\vee}_{K_{\omega}}=(E_{K_{\omega}})^{\vee}. We denote the pair (E,ξ)(E^{\vee},\xi^{\vee}) by E¯\overline{E}^{\vee}.

For the dual norm family defined above, there is an important property worth noting. Let E¯=(E,ξ)\overline{E}=(E,\xi) be a pair of a finitely dimensional vector space over KK and a norm family on it. We say ξ\xi is ultrametric on Ωfin\Omega_{\mathrm{fin}} if for any ωΩfin\omega\in\Omega_{\mathrm{fin}}, the norm ω\lVert\cdot\rVert_{\omega} is ultrametric, i.e. for any x,yEKωx,y\in E_{K_{\omega}}, the following strong triangle inequality holds:

x+yωmax{xω,yω}.\|x+y\|_{\omega}\leqslant\max\{\|x\|_{\omega},\|y\|_{\omega}\}.

It can be verified that the ξ\xi^{\vee} defined above is always ultrametric on Ωfin\Omega_{\mathrm{fin}}.

\definame \the\smf@thm.

Let E¯1=(E1,ξ1={1,ω})\overline{E}_{1}=(E_{1},\xi_{1}=\{\lVert\cdot\rVert_{1,\omega}\}) and E¯2=(E2,ξ2={2,ω})\overline{E}_{2}=(E_{2},\xi_{2}=\{\lVert\cdot\rVert_{2,\omega}\}) be two pairs of finitely dimensional vector space over KK and norm family on it. Then we define the so-called ϵ,π\epsilon,\pi-tensor product of them to be

E¯1ϵ,πE¯2:=(E1E2,ξ1ϵ,πξ2={ω}ωΩ)\overline{E}_{1}\otimes_{\epsilon,\pi}\overline{E}_{2}:=(E_{1}\otimes E_{2},\xi_{1}\otimes_{\epsilon,\pi}\xi_{2}=\{\lVert\cdot\rVert_{\omega}\}_{\omega\in\Omega})

where for each ωΩ\omega\in\Omega and s(E1E2)Kω=(E1)Kω(E2)Kωs\in(E_{1}\otimes E_{2})_{K_{\omega}}=(E_{1})_{K_{\omega}}\otimes(E_{2})_{K_{\omega}},

sω:={infs=ixiyiixi1,ωyi2,ω if ωΩ,sup(f1,f2)(E1)Kω×(E2)Kωf1,f20|s(f1,f2)|ωf11,ω,f21,ω, if ωΩfin.\|s\|_{\omega}:=\begin{cases}\inf\limits_{s=\sum\limits_{i}x_{i}\otimes y_{i}}\sum\limits_{i}\|x_{i}\|_{1,\omega}\|y_{i}\|_{2,\omega}&\text{ if }\omega\in\Omega_{\infty},\\ \sup\limits_{\begin{subarray}{c}(f_{1},f_{2})\in(E_{1})_{K_{\omega}}^{*}\times(E_{2})_{K_{\omega}}^{*}\\ f_{1},f_{2}\not=0\end{subarray}}{\displaystyle\frac{|s(f_{1},f_{2})|_{\omega}}{\|f_{1}\|_{1,\omega,*}\|f_{2}\|_{1,\omega,*}}}&\text{ if }\omega\in\Omega_{\mathrm{fin}}.\end{cases}

Note that the definition for the second case above is sensible because we can view s(E1)Kω(E2)Kωs\in(E_{1})_{K_{\omega}}\otimes(E_{2})_{K_{\omega}} as a bilinear form on the space (E1)Kω×(E2)Kω(E_{1})_{K_{\omega}}^{*}\times(E_{2})_{K_{\omega}}^{*}. Furthermore, ξ1ϵ,πξ2\xi_{1}\otimes_{\epsilon,\pi}\xi_{2} is ultrametric on Ωfin\Omega_{\mathrm{fin}}.

\definame \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be a pair of a vector space over KK of dimension rr and a norm family on it. Then we define its determinant to be

detE¯:=(detE,detξ={ω,det})\mathrm{det}\overline{E}:=(\mathrm{det}E,\mathrm{det}\xi=\{\lVert\cdot\rVert_{\omega,\mathrm{det}}\})

where for any ωΩ\omega\in\Omega and s(detE)Kω=detEKωs\in(\mathrm{det}E)_{K_{\omega}}=\mathrm{det}E_{K_{\omega}}, the determinant norm of ss is given by

sω,det=infs=x1xrx1,,xrEKωx1ωxrω.\|s\|_{\omega,\mathrm{det}}=\inf\limits_{\begin{subarray}{c}s=x_{1}\wedge\cdots\wedge x_{r}\\ x_{1},\cdots,x_{r}\in E_{K_{\omega}}\end{subarray}}\|x_{1}\|_{\omega}\cdots\|x_{r}\|_{\omega}.
\definame \the\smf@thm.

(Adelic vector bundles) Let E¯=(E,ξ)\overline{E}=(E,\xi) be a pair of a finitely dimensional vector space over KK and a norm family on it. We say the norm family ξ\xi is measurable if the function

(ωΩ)aω(\omega\in\Omega)\mapsto\|a\|_{\omega}

is 𝒜\mathcal{A}-measurable with respect to ν\nu for any aE\{0}a\in E\backslash\{0\}. We say the norm family ξ\xi is upper dominated if

sE\{0},Ωlnsω  ν(dω)<+.\forall s\in E\backslash\{0\},\hbox to0.0pt{$\displaystyle\int_{\Omega}\ln\|s\|_{\omega}$\hss}\hbox to0.0pt{$\displaystyle\hskip 5.16663pt\rule[14.42358pt]{4.73611pt}{0.21529pt}$\hss}\phantom{\int_{\Omega}\ln\|s\|_{\omega}}\nu(d\omega)<+\infty.

Moreover, if both ξ\xi and ξ\xi^{\vee} are upper dominated, we say ξ\xi is dominated.

We say E¯\overline{E} is an adelic vector bundle over SS if ξ\xi is both dominated and measurable. Especially when dimK(E)=1\dim_{K}(E)=1, we call E¯\overline{E} an adelic line bundle. Note that we can verify if E¯=(E,ξ)\overline{E}=(E,\xi) and E¯\overline{E}^{\prime} are adelic vector bundles, then

  • (F,ξ|F)(F,\xi|_{F}) and (G,ξEG)(G,\xi_{E\twoheadrightarrow G}) are adelic vector bundles for any vector subspace FEF\subset E and quotient space GG respectively.

  • The determinant det(E¯)\mathrm{det}(\overline{E}) is an adelic line bundle.

  • E¯ϵ,πE¯\overline{E}\otimes_{\epsilon,\pi}\overline{E}^{\prime} is an adelic vector bundle.

(see Chen and Moriwaki [4, Proposition 4.1.32]).

2.2 Arakelov degree of adelic vector bundles

Throughout this subsection, S=(K,(Ω,𝒜,ν),ϕ)S=(K,(\Omega,\mathcal{A},\nu),\phi) is a proper adelic curve.

\definame \the\smf@thm.

Let (E,ξ)(E,\xi) be an adelic line bundle over SS. Then we define its Arakelov degree to be

deg^(E,ξ)=Ωlnsων(dω)\widehat{\mathrm{deg}}(E,\xi)=-\int_{\Omega}\ln\lVert s\rVert_{\omega}\nu(d\omega)

where ss is a nonzero element of EE. The definition is independent with the choice of ss because SS is proper.

If (E,ξ)(E,\xi) is an adelic vector bundle (not necessarily of dimension 11) over SS. For any sE\{0}s\in E\backslash\{0\}, we define the degree of ss as

deg^ξ(s):=Ωlnsων(dω)\widehat{\mathrm{deg}}_{\xi}(s):=-\int_{\Omega}\ln\|s\|_{\omega}\nu(d\omega)

and the Arakelov degree of (E,ξ)(E,\xi) as

deg^(E,ξ):={deg^(detE,detξ) if E0, 0 if E=0.\widehat{\mathrm{deg}}(E,\xi):=\begin{cases}\widehat{\mathrm{deg}}(\mathrm{det}E,\mathrm{det}\xi)&\text{ if }E\not=0,\\ \ 0&\text{ if }E=0.\end{cases}
\definame \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle over SS. For any vector subspace FF of EE, we denote by F¯=(F,ξ|F)\overline{F}=(F,\xi|_{F}) the adelic vector subbundle. Then we define the positive degree of E¯\overline{E} to be

deg^+(E¯):=supFEdeg^(F¯).\widehat{\mathrm{deg}}_{+}(\overline{E}):=\sup_{F\subset E}\widehat{\mathrm{deg}}(\overline{F}).

Note that since deg^(0)=0\widehat{\mathrm{deg}}(0)=0, deg^+(E¯)0\widehat{\mathrm{deg}}_{+}(\overline{E})\geqslant 0.

We may expect that the Arakelov degree deg^()\widehat{\mathrm{deg}}(\cdot) defined above are additive with respect to an exact sequence of adelic vector bundles. But this is not true in general. We discuss this issue by introducing the following notions.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle over SS. For each ωΩ\omega\in\Omega, let

Δω(E¯):=inf{detω,det| is norm on EKω, which is either ultrametric or induced by an inner product},\Delta_{\omega}(\overline{E}):=\inf\left\{\frac{\lVert\cdot\rVert^{\prime}_{\mathrm{det}}}{\lVert\cdot\rVert_{\omega,\mathrm{det}}}\middle|\begin{array}[]{l}\lVert\cdot\rVert^{\prime}\text{ is norm on }E_{K_{\omega}}\text{, which is either ultrametric }\\ \text{or induced by an inner product}\end{array}\right\},
δω(E¯):=ω,det,ω,,det\delta_{\omega}(\overline{E}):=\frac{\lVert\cdot\rVert_{\omega,\mathrm{det},*}}{\lVert\cdot\rVert_{\omega,*,\mathrm{det}}}

and

Δ(E¯):=ωΩlnΔω(E¯)ν(dω),\Delta(\overline{E}):=\int_{\omega\in\Omega}\ln\Delta_{\omega}(\overline{E})\nu(d\omega),
δ(E¯):=ωΩlnδω(E¯)ν(dω).\delta(\overline{E}):=\int_{\omega\in\Omega}\ln\delta_{\omega}(\overline{E})\nu(d\omega).

We can give the following estimates for Δω(E¯)\Delta_{\omega}(\overline{E}) which are depending only on the rank of EE. (see Chen and Moriwaki [4, Proposition 1.2.42] and [4, Proposition 1.2.54])

0lnΔω(E¯){rk(E)ln(rk(E)) if ωΩfin,12lnrk(E) if ωΩ.0\leqslant\ln\Delta_{\omega}(\overline{E})\leqslant\begin{cases}\mathrm{rk}(E)\ln(\mathrm{rk}(E))&\text{ if }\omega\in\Omega_{\mathrm{fin}},\\ \displaystyle\frac{1}{2}\ln\mathrm{rk}(E)&\text{ if }\omega\in\Omega_{\mathrm{\infty}}.\end{cases}

The similar estimates for δω(E¯)\delta_{\omega}(\overline{E}) are given by

0lnδω(E¯){0 if ωΩfin,12rk(E)ln(rk(E)) if ωΩ.0\leqslant\ln\delta_{\omega}(\overline{E})\leqslant\begin{cases}0&\text{ if }\omega\in\Omega_{\mathrm{fin}},\\ \displaystyle\frac{1}{2}\mathrm{rk}(E)\ln(\mathrm{rk}(E))&\text{ if }\omega\in\Omega_{\mathrm{\infty}}.\end{cases}

(see Chen and Moriwaki [4, Proposition 1.2.46, Proposition 1.2.47 and Remark 1.2.55]).

\propname \the\smf@thm.

Let (E,ξ)(E,\xi) be an adelic vector bundle. For a flag of vector subspace of EE:

0=E0E1En=E,0=E_{0}\subset E_{1}\subset\cdots\subset E_{n}=E,

we denote by ξi\xi_{i} the restriction norm family of xx on EiE_{i}, and ηi\eta_{i} the quotient norm family of ξi\xi_{i} on Ei/Ei1E_{i}/E_{i-1}, we thus get the following inequality

i=1ndeg^(Ei/Ei1,ηi)\displaystyle\sum\limits_{i=1}^{n}\widehat{\mathrm{deg}}(E_{i}/E_{i-1},\eta_{i})\leqslant deg^(E,ξ)\displaystyle\widehat{\mathrm{deg}}(E,\xi)
\displaystyle\leqslant i=1n(deg^(Ei/Ei1,ηi)Δ(Ei/Ei1,ηi))+Δ(E,ξ).\displaystyle\sum\limits_{i=1}^{n}\left(\widehat{\mathrm{deg}}(E_{i}/E_{i-1},\eta_{i})-\Delta(E_{i}/E_{i-1},\eta_{i})\right)+\Delta(E,\xi).

Moreover, if ξ\xi is ultrametric on Ωfin\Omega_{\mathrm{fin}}, then

i=1ndeg^(Ei/Ei1,ηi)\displaystyle\sum\limits_{i=1}^{n}\widehat{\mathrm{deg}}(E_{i}/E_{i-1},\eta_{i})\leqslant deg^(E,ξ)\displaystyle\widehat{\mathrm{deg}}(E,\xi)
\displaystyle\leqslant i=1n(deg^(Ei/Ei1,ηi)δ(Ei/Ei1,ηi))+δ(E,ξ).\displaystyle\sum\limits_{i=1}^{n}\left(\widehat{\mathrm{deg}}(E_{i}/E_{i-1},\eta_{i})-\delta(E_{i}/E_{i-1},\eta_{i})\right)+\delta(E,\xi).
Démonstration.

See Chen and Moriwaki [4, Proposition 4.3.12]. ∎

\definame \the\smf@thm.

Let (E,ξ)(E,\xi) be an adelic vector bundle over SS. The slope, the maximal slope and the minimal slope of (E,ξ)(E,\xi) is defined respectively as follows:

μ^(E,ξ)\displaystyle\widehat{\mu}(E,\xi) :=deg^(E,ξ)rk(E),\displaystyle:=\frac{\widehat{\mathrm{deg}}(E,\xi)}{\mathrm{rk}(E)},
μ^max(E,ξ)\displaystyle\widehat{\mu}_{\max}(E,\xi) :=sup0FGμ^(F,ξ|F),\displaystyle:=\sup\limits_{0\not=F\subset G}\widehat{\mu}(F,\xi|_{F}),
μ^min(E,ξ)\displaystyle\widehat{\mu}_{\min}(E,\xi) :=infEG0μ^(G,ξEG).\displaystyle:=\inf\limits_{E\twoheadrightarrow G\not=0}\widehat{\mu}(G,\xi_{E\twoheadrightarrow G}).
\remaname \the\smf@thm.

The reason that the above notions are important is that μ^max\widehat{\mu}_{\max} and μ^min\widehat{\mu}_{\min} are the starting and ending points of the decreasing real numbers sequence corresponding to Harder-Narasimhan filtration of (E,ξ)(E,\xi) about which we are going to talk in the next subsection.

Especially in this paper, we care about μ^min\widehat{\mu}_{\min} and its asymptotic version which are essential for the relationship between deg^\widehat{\mathrm{deg}} and deg^+\widehat{\mathrm{deg}}_{+} because of the following fact:

If μ^min(E,ξ)0, then deg^(E,ξ)=deg^+(E,ξ).\text{If }\widehat{\mu}_{\min}(E,\xi)\geqslant 0\text{, then }\widehat{\mathrm{deg}}(E,\xi)=\widehat{\mathrm{deg}}_{+}(E,\xi).

Indeed, if there exists FF a vector subspace of EE such that deg^(F,ξ|F)>deg^(E,ξ)\widehat{\mathrm{deg}}(F,\xi|_{F})>\widehat{\mathrm{deg}}(E,\xi), then consider the following exact sequence

0FEG00\rightarrow F\rightarrow E\rightarrow G\rightarrow 0

where G=E/FG=E/F. Since deg^(F,ξ|F)+deg^(G,ξEG)deg^(E,ξ)\widehat{\mathrm{deg}}(F,\xi|_{F})+\widehat{\mathrm{deg}}(G,\xi_{E\twoheadrightarrow G})\leqslant\widehat{\mathrm{deg}}(E,\xi), one obtains that deg^(G,ξEG)<0\widehat{\mathrm{deg}}(G,\xi_{E\twoheadrightarrow G})<0 which contradicts the fact that μ^min(E,ξ)0\widehat{\mu}_{\min}(E,\xi)\geqslant 0.

\propname \the\smf@thm.

Let (E,ξ)(E,\xi) be an adelic vector bundle on SS and ϕ\phi be an integrable function on Ω\Omega. Then

μ^min(E,exp(ϕ)ξ)=μ^min(E,ξ)+Ωϕ(ω)𝑑ω.\widehat{\mu}_{\min}(E,\exp(-\phi)\xi)=\widehat{\mu}_{\min}(E,\xi)+\int_{\Omega}\phi(\omega)d\omega.
Démonstration.

Firstly, for any adelic vector bundle (F,ξF)(F,\xi_{F}) on SS, we have

μ^(F,exp(ϕ)ξF)=μ^(F,ξF)+Ωϕ(ω)𝑑ω\widehat{\mu}(F,\exp(-\phi)\xi_{F})=\widehat{\mu}(F,\xi_{F})+\int_{\Omega}\phi(\omega)d\omega

because deg^(F,exp(ϕ)ξF)=deg^(F,ξF)+dimK(F)Ωϕ(ω)𝑑ω\widehat{\mathrm{deg}}(F,\exp(-\phi)\xi_{F})=\widehat{\mathrm{deg}}(F,\xi_{F})+\mathrm{dim}_{K}(F)\int_{\Omega}\phi(\omega)d\omega. Then the statement follows from the fact that (ϕ(ω))EG=ϕ(ω)EG(\phi(\omega)\lVert\cdot\rVert)_{E\twoheadrightarrow G}=\phi(\omega)\lVert\cdot\rVert_{E\twoheadrightarrow G} for any non-zero quotient space GG of EE and ωΩ\omega\in\Omega. ∎

2.3 Harder-Narasimhan filtration

\definame \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle over SS. For any vector subspace FEF\subset E, we denote by F¯\overline{F} the adelic vector bundle (F,ξ|F)(F,\xi|_{F}). Then we consider the following \mathbb{R}-filtration

hnt(E¯)=0FE,μ^min(F¯)tF\mathcal{F}_{hn}^{t}(\overline{E})=\sum\limits_{\begin{subarray}{c}0\not=F\subset E,\\ \widehat{\mu}_{\min}(\overline{F})\geqslant t\end{subarray}}F

which is called the Harder-Narasimhan filtration of E¯\overline{E}. We define the i-th slope of E¯\overline{E} by

μ^i(E¯)=sup{tdimK(hnt(E¯)i}\widehat{\mu}_{i}(\overline{E})=\sup\{t\in\mathbb{R}\mid\dim_{K}(\mathcal{F}_{hn}^{t}(\overline{E})\geqslant i\}

for i=1,,r=dimK(E).i=1,\cdots,r=\dim_{K}(E).

\remaname \the\smf@thm.

It’s easy to check that the function

(t)μ^min(hnt(E¯),ξ|hnt(E¯))(t\in\mathbb{R})\mapsto\widehat{\mu}_{\min}(\mathcal{F}_{hn}^{t}(\overline{E}),\xi|_{\mathcal{F}_{hn}^{t}(\overline{E})})

is a right continuous piecewise function with maximum μ^max(E¯)\widehat{\mu}_{\max}(\overline{E}) and minimum μ^min(E¯)\widehat{\mu}_{\min}(\overline{E}).

\propname \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle on SS. Then the inequalities

i=1rμ^i(E¯)deg^(E¯)i=1rμ^i(E¯)+Δ(E¯)\sum\limits_{i=1}^{r}\widehat{\mu}_{i}(\overline{E})\leqslant\widehat{\mathrm{deg}}(\overline{E})\leqslant\sum\limits_{i=1}^{r}\widehat{\mu}_{i}(\overline{E})+\Delta(\overline{E})

holds where r=dimK(E)r=\dim_{K}(E).

Démonstration.

See [4, Proposition 4.3.49 and Proposition 4.3.50]. ∎

\propname \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle on SS and ϕ\phi an integrable function on Ω\Omega. Then

μ^i(E,exp(ϕ)ξ)=μ^i(E,ξ)+ωΩϕ(ω)𝑑ω\widehat{\mu}_{i}(E,\exp(-\phi)\xi)=\widehat{\mu}_{i}(E,\xi)+\int_{\omega\in\Omega}\phi(\omega)d\omega

for each i=1,2,,dimK(E)i=1,2,\dots,\dim_{K}(E).

Démonstration.

For any nonzero vector subspace FF of EE, according to Proposition 2.2, it holds that

μ^min(F,exp(ϕ)ξ|F)=μ^min(F,ξ|F)+ωΩϕ(ω)𝑑ω.\widehat{\mu}_{\min}(F,\exp(-\phi)\xi|_{F})=\widehat{\mu}_{\min}(F,\xi|_{F})+\int_{\omega\in\Omega}\phi(\omega)d\omega.

Then by the construction of the Harder-Narasimhan filtration, the assertion is proved. ∎

2.4 Successive minima

\definame \the\smf@thm.

Let E¯=(E,ξ)\overline{E}=(E,\xi) be an adelic vector bundle over SS and r=dimK(E)r=\dim_{K}(E). We call

νi(E¯):=sup{t:dimK(Span({sEdeg^ξ(s)t}))i}, i=1,,r\nu_{i}(\overline{E}):=\sup\{t\in\mathbb{R}:\dim_{K}(\mathrm{Span}(\{s\in E\mid\widehat{\mathrm{deg}}_{\xi}(s)\geqslant t\}))\geqslant i\},\text{ }i=1,\cdots,r

the ithi^{th}-minimum of E¯\overline{E}.

Since ν1(E¯)ν2(E¯)νr(E¯)\nu_{1}(\overline{E})\geqslant\nu_{2}(\overline{E})\geqslant\cdots\geqslant\nu_{r}(\overline{E}), let νmax(E¯)=ν1(E¯)\nu_{\max}(\overline{E})=\nu_{1}(\overline{E}) and νmin(E¯)=νr(E¯)\nu_{\min}(\overline{E})=\nu_{r}(\overline{E}) denote the maximal minimum and minimal minimum respectively. If E=0E=0, then by convention, we set νmax(E¯):=\nu_{\max}(\overline{E}):=-\infty and νmin(E¯):=+\nu_{\min}(\overline{E}):=+\infty. It’s easy to see that νmin(E¯)0\nu_{\min}(\overline{E})\geqslant 0 if and only if there exists a basis {e1,,er}\{e_{1},\cdots,e_{r}\} of EE such that deg^ξ(ei)0\widehat{\mathrm{deg}}_{\xi}(e_{i})\geqslant 0. In this case, we call EE can be generated by small sections.

\definame \the\smf@thm.

We say the adelic curve SS satisfies the strong Minkowski property of level C\geqslant C where C0C\in\mathbb{R}_{\geqslant 0} if for any adelic vector bundle (E,ξ)(E,\xi) on SS with ξ\xi being ultrametric on Ωfin\Omega_{\mathrm{fin}}, then

νmin(E,ξ)μ^min(E,ξ)Cln(rk(E)).\nu_{\min}(E,\xi)\geqslant\widehat{\mu}_{\min}(E,\xi)-C\ln(\mathrm{rk}(E)).
\propname \the\smf@thm.

For any non-zero adelic vector bundle (E,ξ)(E,\xi) on SS, it holds that

νi(E,ξ)μ^i(E,ξ)\nu_{i}(E,\xi)\leqslant\widehat{\mu}_{i}(E,\xi)

for i=1,,rk(E)i=1,\dots,\mathrm{rk}(E). Moreover if SS satisfies the strong Minkowski property of level C\geqslant C, then

νi(E,ξ)μ^i(E,ξ)Cln(rk(E)).\nu_{i}(E,\xi)\geqslant\widehat{\mu}_{i}(E,\xi)-C\ln(\mathrm{rk}(E)).
Démonstration.

See Chen and Moriwaki [4, Corollary 4.3.77 and Proposition 4.3.79]. ∎

3 Adelic \mathbb{R}-Cartier divisors

Throughout the section, let S=(K,(Ω,𝒜,ν),ϕ)S=(K,(\Omega,\mathcal{A},\nu),\phi) be a proper adelic curve and π:XSpecK\pi:X\rightarrow\mathrm{Spec}K be a morphism of schemes where XX is a geometrically integral projective KK-scheme. For each ωΩ\omega\in\Omega, let XωanX^{\mathrm{an}}_{\omega} denote the Berkovich space associated to Xω:=X×SpecKSpec(Kω)X_{\omega}:=X\times_{\mathrm{Spec}K}\mathrm{Spec}(K_{\omega}). We denote by jωj_{\omega} the specification map from XωanXωX^{\mathrm{an}}_{\omega}\rightarrow X_{\omega} for each ωΩ\omega\in\Omega (for details, see [2]). Note that each xXωanx\in X^{\mathrm{an}}_{\omega} represents a absolute value on κ(jω(x))\kappa(j_{\omega}(x)) extended from ||ω\lvert\cdot\rvert_{\omega}. We denote it by ||x\lvert\cdot\rvert_{x}, and the completion of κ(jω(x))\kappa(j_{\omega}(x)) respect to ||x\lvert\cdot\rvert_{x} by κ^(x)\widehat{\kappa}(x). The Berkovich topology on XωanX^{\mathrm{an}}_{\omega} is actually defined to be the most coarse topology to make every function with form x|f(jω(x))|xx\mapsto|f(j_{\omega}(x))|_{x}(ff is a rational function on XωX_{\omega}) and jωj_{\omega} continuous.

3.1 Green functions and continuous metrics

For a fixed ωΩ\omega\in\Omega, we set 𝒜(Xωan):={jω1(U)UXω is open}\mathscr{A}(X^{\mathrm{an}}_{\omega}):=\{j_{\omega}^{-1}(U)\mid U\subset X_{\omega}\text{ is open}\} where each jω1(U)j_{\omega}^{-1}(U) is called a Zariski open subset of XωanX^{\mathrm{an}}_{\omega}. For any open subset UXωanU\subset X^{\mathrm{an}}_{\omega}, we denote by C0(U)C^{0}(U) the set of all continuous function on UU. Let

Cgen0(Xωan):={(U,f)U𝒜(Xωan) and fC0(U)}/C^{0}_{\mathrm{gen}}(X^{\mathrm{an}}_{\omega}):=\{(U,f)\mid U\in\mathscr{A}(X^{\mathrm{an}}_{\omega})\text{ and }f\in C^{0}(U)\}/\sim

where \sim is an equivalent relationship given by

(U1,f1)(U2,f2) if f1=f2 on U1U2.(U_{1},f_{1})\sim(U_{2},f_{2})\text{ if }f_{1}=f_{2}\text{ on }U_{1}\cap U_{2}\neq\emptyset.

Now we have finished the preparation to define the Green functions on Cartier divisors. Let DD be a Cartier divisor on XX, we denote by DωD_{\omega} the pull-back of DD under XωXX_{\omega}\rightarrow X.

\definame \the\smf@thm.

For any element gωg_{\omega} of Cgen0(Xωan)C^{0}_{\mathrm{gen}}(X^{\mathrm{an}}_{\omega}), if ff is a local equation of DωD_{\omega} on an open subset UXωU\subset X_{\omega}, then gω+ln|f|xCgen0(Xωan)g_{\omega}+\ln|f|_{x}\in C^{0}_{\mathrm{gen}}(X^{\mathrm{an}}_{\omega}). We say gωg_{\omega} is a Green function on DωD_{\omega} if for any ff as above, gω+ln|f|xg_{\omega}+\ln|f|_{x} has a representative defined on jω1(U)j_{\omega}^{-1}(U).

Consider a Green function family g={gω}ωΩg=\{g_{\omega}\}_{\omega\in\Omega} parametrised by Ω\Omega, we say it is a DD-Green function family if for each ωΩ\omega\in\Omega, gωg_{\omega} is a Green function on DωD_{\omega}.

We define Green function like this because we want each Green function uniquely determines a continuous metric on the corresponding line bundle. Before getting into that discussion, we firstly give the definition of continuous metric as follows:

\definame \the\smf@thm.

Let FF be a locally free 𝒪Xω\mathscr{O}_{X_{\omega}}-module of finite rank, a metric on FF is a collection ϕ:={||ϕ(x)}xXωan\phi:=\{\lvert\cdot\rvert_{\phi}(x)\}_{x\in X^{\mathrm{an}}_{\omega}} of norms ||ϕ(x)\lvert\cdot\rvert_{\phi}(x) on F𝒪Xωκ^(x)F\otimes_{\mathscr{O}_{X_{\omega}}}\widehat{\kappa}(x) respectively. Further, we say ϕ\phi is continuous if for any section sF(U)s\in F(U) where UU is a open subset of XωX_{\omega}, the function

(xjω1(U))|s(x)|ϕ(x)(x\in j_{\omega}^{-1}(U))\mapsto\lvert s(x)\rvert_{\phi}(x)

is continuous on jω1(U)j_{\omega}^{-1}(U).

\remaname \the\smf@thm.

Let L=𝒪X(D)L=\mathscr{O}_{X}(D), then a DD-Green function family gg uniquely determines a metric family ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega} such that ϕω\phi_{\omega} is a continuous metric on the line bundle Lω:=𝒪Xω(Dω)L_{\omega}:=\mathscr{O}_{X_{\omega}}(D_{\omega}). More precisely, For each xXωanx\in X^{\mathrm{an}}_{\omega}, we take a local equation ff defining DωD_{\omega} around jω(x)j_{\omega}(x), then for any vLκ^(x)v\in L\otimes\widehat{\kappa}(x), we can write vv as λf(jω(x))\lambda\otimes f(j_{\omega}(x)) where λκ^(x)\lambda\in\widehat{\kappa}(x). The norm ||ϕω\lvert\cdot\rvert_{\phi_{\omega}} is given by

|v|ϕω(x):=exp(g(x)ln|f(jω(x))|x)|λ|x.\lvert v\rvert_{\phi_{\omega}}(x):=\exp(-g(x)-\ln|f(j_{\omega}(x))|_{x})\lvert\lambda\rvert_{x}.

This is well-defined because if f1f_{1} and f2f_{2} are two local equation of DωD_{\omega} around jω(x)j_{\omega}(x), then f1(jω(x))f_{1}(j_{\omega}(x)) and f2(jω(x))f_{2}(j_{\omega}(x)) are differed by an element uu in 𝒪Xω,jω(x)\mathscr{O}_{X_{\omega},j_{\omega}(x)}^{*}. Thus for v=λf1(jω(x))=uλf2(jω(x))v=\lambda\otimes f_{1}(j_{\omega}(x))=u\lambda\otimes f_{2}(j_{\omega}(x)), we have

|f1(jω(x))|x1|λ|x=|f2(jω(x))|x1|uλ|x.|f_{1}(j_{\omega}(x))|_{x}^{-1}\lvert\lambda\rvert_{x}=|f_{2}(j_{\omega}(x))|_{x}^{-1}\lvert u\lambda\rvert_{x}.

The metric ϕω\phi_{\omega} is naturally continuous due to the definition of Berkovich topology.

3.2 Dominance of metric families

\definame \the\smf@thm (Fubini-Study Metric).

Let E¯=(E,ξ)\overline{E}=(E,\xi) be a pair of a vector space over KK of rank nn and a norm family on it. We denote by (E)\mathbb{P}(E) the projective space of EE, and 𝒪E(1)\mathcal{O}_{E}(1) the tautological bundle of (E)\mathbb{P}(E).

For any ωΩ\omega\in\Omega and any point x(E)ωanx\in\mathbb{P}(E)^{\mathrm{an}}_{\omega}, we are going to assign a norm on 𝒪E(1)𝒪(E)κ^(x)\mathcal{O}_{E}(1)\otimes_{\mathcal{O}_{\mathbb{P}(E)}}\widehat{\kappa}(x). For the first step, we assign a norm E¯(x)\lVert\cdot\rVert_{\overline{E}}(x) on EKκ^(x)E\otimes_{K}\widehat{\kappa}(x) by the following rules:

  1. (1)

    if ωΩ\omega\in\Omega_{\infty}, then for any sEKκ^(x)s\in E\otimes_{K}\widehat{\kappa}(x), we define

    sE¯(x)=infs=k1f1++knfn,kiκ^(x),fiEi=1,,ni=1nfiω|ki|ω,\|s\|_{\overline{E}}(x)=\inf\limits_{\begin{subarray}{c}s=k_{1}f_{1}+\dots+k_{n}f_{n},\\ k_{i}\in\widehat{\kappa}(x),f_{i}\in E\\ i=1,\dots,n\end{subarray}}\sum\limits_{i=1}^{n}\|f_{i}\|_{\omega}|k_{i}|_{\omega},
  2. (2)

    if ωΩfin\omega\in\Omega_{\mathrm{fin}}, then for any sEKκ^(x)s\in E\otimes_{K}\widehat{\kappa}(x), we define

    sE¯(x)=supfEKω,f0|f(s)|ωfω,.\|s\|_{\overline{E}}(x)=\sup\limits_{f\in E_{K_{\omega}}^{*},f\neq 0}\frac{|f(s)|_{\omega}}{\|f\|_{\omega,*}}.

We know that 𝒪E(1)\mathcal{O}_{E}(1) is globally generated i.e. EK𝒪(E)𝒪E(1)E\otimes_{K}\mathcal{O}_{\mathbb{P}(E)}\rightarrow\mathcal{O}_{E}(1) is surjective. Thus we can get the surjective homomorphism EK𝒪(E),jω(x)𝒪E(1)𝒪(E)O(E),jω(x)E\otimes_{K}\mathcal{O}_{\mathbb{P}(E),j_{\omega}(x)}\rightarrow\mathcal{O}_{E}(1)\otimes_{\mathcal{O}_{\mathbb{P}(E)}}O_{\mathbb{P}(E),j_{\omega}(x)} which induces the surjective map

EKκ^(x)𝒪E(1)𝒪(E)κ^(x).E\otimes_{K}\widehat{\kappa}(x)\rightarrow\mathcal{O}_{E}(1)\otimes_{\mathcal{O}_{\mathbb{P}(E)}}\widehat{\kappa}(x).

Then we denote by E¯,FS(x)\lVert\cdot\rVert_{\overline{E},\mathrm{FS}}(x) the quotient norm of E¯(x)\lVert\cdot\rVert_{\overline{E}}(x) which is called the Fubini-Study norm. For every ωΩ\omega\in\Omega, the norms described above defines a continuous metric on jω(𝒪E(1))j^{*}_{\omega}(\mathcal{O}_{E}(1)) which is called the Fubini-Study metric of 𝒪E(1)\mathcal{O}_{E}(1) (see Chen and Moriwaki [4, Propostion 2.2.12]).

Let LL be a very ample line bundle on XX. Let (E,ξ)(E,\xi) be a pair of finitely dimensional vector space over KK and a norm family on it. Suppose that there exists a surjective homomorphism of sheaves EK𝒪XLE\otimes_{K}\mathcal{O}_{X}\rightarrow L i.e. there exists a surjective map β:EH0(X,L)\beta:E\rightarrow H^{0}(X,L) because LL is globally generated. Then we consider the morphism X(E)X\rightarrow\mathbb{P}(E) which is the composition of X(H0(X,L))X\rightarrow\mathbb{P}(H^{0}(X,L)) and (H0(X,L))(E)\mathbb{P}(H^{0}(X,L))\rightarrow\mathbb{P}(E). Assume that X(E)X\rightarrow\mathbb{P}(E) is a closed immersion, then we can equip LL with a metric family ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega} such that each ϕω\phi_{\omega} is a pull-back of the Fubini-study metric of 𝒪E(1)\mathcal{O}_{E}(1) under Xωan(E)ωanX^{\mathrm{an}}_{\omega}\rightarrow\mathbb{P}(E)^{\mathrm{an}}_{\omega}. We call ϕ\phi the quotient metric family induced by E¯\overline{E} and β\beta.

\definame \the\smf@thm (Distance between metrics).

Let LL be a line bundle on XX. For each ωΩ\omega\in\Omega, let LωL_{\omega} be the pull-back of LL under XωXX_{\omega}\rightarrow X. If ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega} and ψ={ψω}ωΩ\psi=\{\psi_{\omega}\}_{\omega\in\Omega} are two continuous metric families on LL. Then we define the distance between ϕ\phi and ψ\psi to be

dω(ϕ,ψ):=supxXωan|ϕωψω|(x).d_{\omega}(\phi,\psi):=\sup\limits_{x\in X^{\mathrm{an}}_{\omega}}|\phi_{\omega}-\psi_{\omega}|(x).
\definame \the\smf@thm.

Let LL be an very ample line bundle over XX with a continuous metric family ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega}. Then we say ϕ\phi is dominated if there exists a pair E¯=(E,ξ)\overline{E}=(E,\xi) of finite-dimensional vector space EE and norm family ξ\xi, and a surjective map β:EH0(X,L)\beta:E\rightarrow H^{0}(X,L) inducing a closed immersion X(E)X\rightarrow\mathbb{P}(E) such that the function

ωΩdω(ϕ,ψ)\omega\in\Omega\mapsto d_{\omega}(\phi,\psi)

is ν\nu-dominated where ψ\psi is the quotient metric family induced by E¯\overline{E} and β\beta.

\definame \the\smf@thm.

Let LL be a line bundle over XX with a continuous metric family ϕ\phi. We say ϕ\phi is dominated if there exists two pairs {(Li,ϕi)}i=1,2\{(L_{i},\phi_{i})\}_{i=1,2} of a very ample line bundle and a dominated metric family such that L=L1L2L=L_{1}-L_{2} and ϕ=ϕ1ϕ2\phi=\phi_{1}-\phi_{2}.

\propname \the\smf@thm.

Let LL and LL^{\prime} be line bundles over XX with continuous metric family ϕ\phi and ϕ\phi^{\prime} respectively.

  1. (1)

    If ϕ\phi is dominated, then the dual metric family ϕ-\phi on LL^{\vee} is dominated.

  2. (2)

    If both ϕ\phi and ϕ\phi^{\prime} are dominated, then the tensor product metric family ϕ+ϕ\phi+\phi^{\prime} on LLL\otimes L^{\prime} is dominated.

Démonstration.

See Chen and Moriwaki [4, Proposition 6.1.12]. ∎

\definame \the\smf@thm.

Let (D,g)(D,g) be a pair of a Cartier divisor and a DD-Green function family. Then we say gg is dominated if ϕg\phi_{g} is a dominated metric family of 𝒪X(D)\mathcal{O}_{X}(D).

\theoname \the\smf@thm.

Let LL be a line bundle over XX with a dominated metric family ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega}. For each ωΩ\omega\in\Omega, let ω\lVert\cdot\rVert_{\omega} be the sup norm corresponding to ϕω\phi_{\omega} on H0(X,L)KKωH^{0}(X,L)\otimes_{K}K_{\omega}. Then the norm family ξ={ω}ωΩ\xi=\{\lVert\cdot\rVert_{\omega}\}_{\omega\in\Omega} is dominated.

Démonstration.

See Chen and Moriwaki [4, Theorem 6.1.13]

3.3 Measurability of metric families

Let XanX^{\mathrm{an}} denote the Berkovich space associated to XX equipped with trivial absolute value ||\lvert\cdot\rvert and j:XanXj:X^{\mathrm{an}}\rightarrow X the specification map. We define

X0an:={xXj(x) is closed}.X^{\mathrm{an}}_{0}:=\{x\in X\mid j(x)\text{ is closed}\}.

We consider each point xXx\in X such that dim(j(x)¯)=1\dim(\overline{j_{(}x)})=1. Let F=κ(j(x))F=\kappa(j(x)), then FF is a finitely generated field over KK of transcendental degree 11. Then there exists a positive real number qq satisfies the property that for any absolute value ||\lvert\cdot\rvert on FF over KK, there exists a closed point ξj(x)¯\xi\in\overline{j(x)} such that |s|=exp(qordξ(s))|s|=\exp(-q\mathrm{ord}_{\xi}(s)) for sFs\in F (see Neukirch [11, Proposition II.(3.3)]). Then we call qq the exponent of FF or j(x)¯\overline{j(x)}.

Then set

X1,an:={xXdim(j(x)¯)=1 and the exponent of j(x)¯ is rational}X_{1,\mathbb{Q}}^{\mathrm{an}}:=\{x\in X\mid\dim(\overline{j(x)})=1\text{ and the exponent of }\overline{j(x)}\text{ is rational}\}

and

X1,an:=X0anX1,an.X_{\leqslant 1,\mathbb{Q}}^{\mathrm{an}}:=X_{0}^{\mathrm{an}}\cup X_{1,\mathbb{Q}}^{\mathrm{an}}.
\definame \the\smf@thm.

Let LL be a line bundle over XX with a continuous metric family ϕ\phi. Then we say ϕ\phi is measurable if ϕ={ϕω}ωΩ\phi=\{\phi_{\omega}\}_{\omega\in\Omega} satisfies the following two conditions:

  1. (1)

    For any closed point PP of XX, the norm family {||ϕω(P)}ωΩ\{\lvert\cdot\rvert_{\phi_{\omega}}(P)\}_{\omega\in\Omega} on L𝒪Xκ(P)L\otimes_{\mathcal{O}_{X}}\kappa(P) is measurable.

  2. (2)

    For any point xX1,anx\in X^{\mathrm{an}}_{\leqslant 1,\mathbb{Q}} and any sL𝒪Xκ^(x)s\in L\otimes_{\mathcal{O}_{X}}\widehat{\kappa}(x), the function

    (ωΩ0)|s|ϕω(x)(\omega\in\Omega_{0})\mapsto|s|_{\phi_{\omega}}(x)

    is 𝒜0\mathcal{A}_{0}-measurable.

\definame \the\smf@thm.

Let (D,g)(D,g) be a pair of a Cartier divisor and a DD-Green function family. We say (D,g)(D,g) is measurable if ϕg\phi_{g} is measurable on 𝒪X(D)\mathcal{O}_{X}(D).

\propname \the\smf@thm.

Let LL and LL^{\prime} be line bundles over XX with continuous metric family ϕ\phi and ϕ\phi^{\prime} respectively.

  1. (1)

    If ϕ\phi is measurable, then the dual metric family ϕ-\phi on LL^{\vee} is measurable.

  2. (2)

    If both ϕ\phi and ϕ\phi^{\prime} are measurable, then the tensor product metric family ϕ+ϕ\phi+\phi^{\prime} on LLL\otimes L^{\prime} is measurable.

Démonstration.

See Chen and Moriwaki [4, Proposition 6.1.27]. ∎

3.4 Adelic \mathbb{R}-Cartier divisors

\definame \the\smf@thm.

Let (D,g)(D,g) be a pair of a Cartier divisor on XX and a DD-Green function family. We say (D,g)(D,g) is an adelic Cartier divisor on XX if the associated metric of gg is both dominated and measurable.

We denote by Div^(X)\widehat{\mathrm{Div}}(X) the set of all adelic Cartier divisor on XX. Note that Div^(X)\widehat{\mathrm{Div}}(X) is an abelian group by Proposition 3.2 and Proposition 3.3. For any sK(X)×s\in K(X)^{\times}, the function

ϕω:(xXωan)ln|s(x)|ω\phi_{\omega}:(x\in X^{an}_{\omega})\mapsto\ln|s(x)|_{\omega}

is a Green function on div(s)ω.\mathrm{div}(s)_{\omega}. We can show that the div(s)\mathrm{div}(s)-Green function family {ϕω}ωΩ\{\phi_{\omega}\}_{\omega\in\Omega} is both dominated and measurable. Then we denote by div^(s)\widehat{\mathrm{div}}(s) the adelic Cartier divisor (div(s),{ϕω}ωΩ)(\mathrm{div}(s),\{\phi_{\omega}\}_{\omega\in\Omega}), which is called a principal adelic Cartier divisor. Let PDiv^(X)\widehat{\mathrm{PDiv}}(X) denote the set of all such div^(s)\widehat{\mathrm{div}}(s).

\definame \the\smf@thm.

We denote by Div^(X)\widehat{\mathrm{Div}}_{\mathbb{R}}(X) the \mathbb{R}-vector space Div^(X)\widehat{\mathrm{Div}}(X)\otimes_{\mathbb{Z}}\mathbb{R} modulo the subspace generated by the elements of the form

(0,g1)λ1++(0,gn)λn(0,λ1g1++λngn)(0,g_{1})\otimes\lambda_{1}+\cdots+(0,g_{n})\otimes\lambda_{n}-(0,\lambda_{1}g_{1}+\cdots+\lambda_{n}g_{n})

where λi\lambda_{i}\in\mathbb{R}, i=1,,ni=1,\dots,n. We call the elements in Div^(X)\widehat{\mathrm{Div}}_{\mathbb{R}}(X) the adelic \mathbb{R}-Cartier divisors on XX. Similarly, let PDiv^(X)\widehat{\mathrm{PDiv}}_{\mathbb{R}}(X) denote the subspace of Div^(X)\widehat{\mathrm{Div}}_{\mathbb{R}}(X) generated by PDiv^(X)\widehat{\mathrm{PDiv}}(X). Div^(X)\widehat{\mathrm{Div}}_{\mathbb{Q}}(X) and PDiv^(X)\widehat{\mathrm{PDiv}}_{\mathbb{Q}}(X) can be defined following the same way.

For any \mathbb{R}-Caritier divisor DD, we can define the global section space as follows:

H0(D):={fK(X)×div(f)+D0}{0}.H_{\mathbb{R}}^{0}(D):=\{f\in K(X)^{\times}\mid\mathrm{div}(f)+D\geqslant_{\mathbb{R}}0\}\cup\{0\}.

The conditions of Green function family being dominated and measurable will lead us to the following result:

\theoname \the\smf@thm.

Assume that either the σ\sigma-algebra 𝒜\mathcal{A} is discrete, or the field KK admits a countable subfield which is dense in every KωK_{\omega} with respect to ||ω\lvert\cdot\rvert_{\omega} for every ωΩ\omega\in\Omega. For any (D,g)Div^(X)(D,g)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X) and ωΩ\omega\in\Omega, we consider a norm gω\lVert\cdot\rVert_{g_{\omega}} on H0(D)KKωH^{0}_{\mathbb{R}}(D)\otimes_{K}K_{\omega}

ϕgω:=supxXωan{(exp(gω)|ϕ|ω)(x)}\lVert\phi\rVert_{g_{\omega}}:=\sup_{x\in X^{\mathrm{an}}_{\omega}}\{(\exp(-g_{\omega})|\phi|_{\omega})(x)\}

for ϕH0(D)KKω\phi\in H^{0}_{\mathbb{R}}(D)\otimes_{K}K_{\omega}. Let ξg\xi_{g} denote the norm family {gω}ωΩ\{\lVert\cdot\rVert_{g_{\omega}}\}_{\omega\in\Omega}. Then the pair (H0(D),ξg)(H^{0}_{\mathbb{R}}(D),\xi_{g}) is an adelic vector bundle on SS.

Démonstration.

See Chen and Moriwaki [4, Theorem 6.2.18]. ∎

4 χ\chi-Volume function

In this section, let S=(K,(Ω,𝒜,ν),Φ)S=(K,(\Omega,\mathcal{A},\nu),\Phi) be a proper adelic curve satisfies tensorial minimal slope of level C0C\geqslant 0 i.e. for any two adelic vector bundles E¯\overline{E} and F¯\overline{F} over SS, the followings inequality of minimal slopes holds:

μ^min(E¯ϵ,πF¯)+Cln(dimK(EF))μ^min(E¯)+μ^min(F¯).\widehat{\mu}_{\min}(\overline{E}\otimes_{\epsilon,\pi}\overline{F})+C\ln(\mathrm{dim}_{K}(E\otimes F))\geqslant\widehat{\mu}_{\min}(\overline{E})+\widehat{\mu}_{\min}(\overline{F}).

Let XX be a normal and geometrically integral projective KK-scheme of dimension dd. We also assume that either 𝒜\mathcal{A} is discrete or KK admits a subfield K0K_{0} which is dense in KωK_{\omega} for every ωΩ\omega\in\Omega.

\definame \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor on XX. The volume of (D,g)(D,g) is defined by

vol^(D,g):=lim supn+deg^+(H0(nD),ξng)nd+1/(d+1)!.\widehat{\mathrm{vol}}(D,g):=\limsup\limits_{n\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}_{+}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n^{d+1}/(d+1)!}.

The χ\chi-volume of (D,g)(D,g) is defined by

vol^χ(D,g):=lim supn+deg^(H0(nD),ξng)nd+1/(d+1)!.\widehat{\mathrm{vol}}_{\chi}(D,g):=\limsup\limits_{n\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n^{d+1}/(d+1)!}.

About vol^()\widehat{\mathrm{vol}}(\cdot), we recall the following results.

\theoname \the\smf@thm.

For any (D,g)Div^(X)(D,g)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X), if DD is big, the sequence

{deg^+(H0(nD),ξng)nd+1/(d+1)!}n+\left\{\frac{\widehat{\mathrm{deg}}_{+}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n^{d+1}/(d+1)!}\right\}_{n\in\mathbb{N}_{+}}

converges to vol^(D,g)\widehat{\mathrm{vol}}(D,g).

Démonstration.

See Chen and Moriwaki [4, Theorem 6.4.9]. ∎

\theoname \the\smf@thm (the continuity of volume function).

For any D¯,E¯1,,E¯nDiv^(X)\overline{D},\overline{E}_{1},\dots,\overline{E}_{n}\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X), it holds that

limϵ10,,ϵn0vol^(D¯+ϵ1E¯1++ϵnE¯n)=vol^(D¯).\lim_{\epsilon_{1}\rightarrow 0,\dots,\epsilon_{n}\rightarrow 0}\widehat{\mathrm{vol}}(\overline{D}+\epsilon_{1}\overline{E}_{1}+\cdots+\epsilon_{n}\overline{E}_{n})=\widehat{\mathrm{vol}}(\overline{D}).
Démonstration.

See Chen and Moriwaki [4, Theorem 6.4.24]. ∎

4.1 Several general properties of χ\chi-volume function

The following Lemma shows that we can make a shift on vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) by multiplying the Green function with an integrable function on Ω\Omega.

\lemmname \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor on XX and ϕ\phi be an integrable function on Ω\Omega. Then

vol^χ(D,ϕ+g)=vol^χ(D,g)+(d+1)vol(D)Ωϕ(ω)ν(dω).\widehat{\mathrm{vol}}_{\chi}(D,\phi+g)=\widehat{\mathrm{vol}}_{\chi}(D,g)+(d+1)\mathrm{vol}(D)\int_{\Omega}\phi(\omega)\nu(d\omega).
Démonstration.

By definition, we can do the following calculation that

vol^χ(D,ϕ+g)\displaystyle\widehat{\mathrm{vol}}_{\chi}(D,\phi+g) =lim supn+deg^(H0(nD),exp(nϕ)ξng)nd+1/(d+1)!\displaystyle=\limsup\limits_{n\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\exp(-n\phi)\xi_{ng})}{n^{d+1}/(d+1)!}
=lim supn+deg^(H0(nD),ξng)+ndimK(H0(nD))Ωϕ(ω)ν(dω)nd+1/(d+1)!\displaystyle=\limsup\limits_{n\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})+n\dim_{K}(H^{0}_{\mathbb{R}}(nD))\int_{\Omega}\phi(\omega)\nu(d\omega)}{n^{d+1}/(d+1)!}
=vol^χ(D,g)+(d+1)vol(D)Ωϕ(ω)ν(dω).\displaystyle=\widehat{\mathrm{vol}}_{\chi}(D,g)+(d+1)\mathrm{vol}(D)\int_{\Omega}\phi(\omega)\nu(d\omega).

By this shifting property, we can talk about the relationship between vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) and vol^()\widehat{\mathrm{vol}}(\cdot) mentioned above. For a (D,g)Div^(X)(D,g)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X), we introduce the following asymptotic invariants:

μ^minsup(D,g):=lim supn+μ^min(H0(nD),ξng)n,\displaystyle\widehat{\mu}_{\min}^{\sup}(D,g):=\limsup_{n\rightarrow+\infty}\frac{\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n},
μ^mininf(D,g):=lim infn+μ^min(H0(nD),ξng)n.\displaystyle\widehat{\mu}_{\min}^{\inf}(D,g):=\liminf_{n\rightarrow+\infty}\frac{\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}.

It’s easy to see that if μ^mininf(D,g)>0\widehat{\mu}_{\min}^{\inf}(D,g)>0, then by Remark 2.2,

deg^(H0(nD),ξng)=deg^+(H0(nD),ξng)\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})=\widehat{\mathrm{deg}}_{+}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})

for every sufficiently large nn, thus vol^χ(D,g)=vol^(D,g)\widehat{\mathrm{vol}}_{\chi}(D,g)=\widehat{\mathrm{vol}}(D,g). Moreover if DD is big, we can make this result even better by the replacing μ^mininf()\widehat{\mu}_{\min}^{\inf}(\cdot) with μ^minsup()\widehat{\mu}_{\min}^{\sup}(\cdot).

\propname \the\smf@thm.

For a (D,g)Div^(X)(D,g)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X), if DD is big and μ^minsup(D,g)>0\widehat{\mu}_{\min}^{\sup}(D,g)>0, then

vol^χ(D,g)=vol^(D,g).\widehat{\mathrm{vol}}_{\chi}(D,g)=\widehat{\mathrm{vol}}(D,g).

In general, if μ^minsup(D,g)>\widehat{\mu}_{\min}^{\sup}(D,g)>-\infty, then there exists an integrable function ϕ\phi on Ω\Omega such that

vol^χ(D,g+ϕ)=vol^(D,g+ϕ).\widehat{\mathrm{vol}}_{\chi}(D,g+\phi)=\widehat{\mathrm{vol}}(D,g+\phi).
Démonstration.

By definition, it’s trivial that vol^χ(D,g)vol^(D,g)\widehat{\mathrm{vol}}_{\chi}(D,g)\leqslant\widehat{\mathrm{vol}}(D,g). On the other hand, since μ^minsup(D,g)>0\widehat{\mu}_{\min}^{\sup}(D,g)>0, there exists an increasing sequence {nk+}k+\{n_{k}\in\mathbb{N}_{+}\}_{k\in\mathbb{N}_{+}} such that

μ^min(H0(nkD),ξnkg)>0\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(n_{k}D),\xi_{n_{k}g})>0

for any k+k\in\mathbb{N}_{+}. Then by Remark 2.2, we have

deg^(H0(nkD),ξnkg)=deg^+(H0(nkD),ξnkg).\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(n_{k}D),\xi_{n_{k}g})=\widehat{\mathrm{deg}}_{+}(H^{0}_{\mathbb{R}}(n_{k}D),\xi_{n_{k}g}).

Therefore by definition,

vol^χ(D,g)lim supk+deg^+(H0(nkD),ξnkg)nkd+1/(d+1)!.\widehat{\mathrm{vol}}_{\chi}(D,g)\geqslant\limsup_{k\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}_{+}(H^{0}_{\mathbb{R}}(n_{k}D),\xi_{n_{k}g})}{n_{k}^{d+1}/(d+1)!}.

Note that the right hand side is actually a limit and equals to vol^(D,g)\widehat{\mathrm{vol}}(D,g), so we get the first assertion proved.

If μ^minsup(D,g)>\widehat{\mu}_{\min}^{\sup}(D,g)>-\infty, then take an integrable function ϕ\phi on Ω\Omega such that Ωϕ(ω)𝑑ω>μ^minsup(D,g)\displaystyle\int_{\Omega}\phi(\omega)d\omega>-\widehat{\mu}_{\min}^{\sup}(D,g). By Proposition 2.2, it’s obvious that μ^minsup(D,ϕ+g)>0\widehat{\mu}_{\min}^{\sup}(D,\phi+g)>0. Therefore we obtain the assertion by the first case. ∎

Now we can see that μ^minsup(D,g)\widehat{\mu}_{\min}^{\sup}(D,g) is an essential asymptotic invariant for the study of vol^χ(D,g)\widehat{\mathrm{vol}}_{\chi}(D,g). Actually, the continuity of μ^minsup()\widehat{\mu}_{\min}^{\sup}(\cdot) will lead to the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot). In the following we are going to show some properties of μ^minsup()\widehat{\mu}_{\min}^{\sup}(\cdot).

\definame \the\smf@thm.

For an \mathbb{R}-Cartier divisor DD on XX, we say DD satisfies surjectivity of multiplication maps if the canonical map

H0(nD)H0(mD)H0((n+m)D)H^{0}_{\mathbb{R}}(nD)\otimes H^{0}_{\mathbb{R}}(mD)\rightarrow H^{0}_{\mathbb{R}}((n+m)D)

is surjective for every n,m0n,m\gg 0.

\remaname \the\smf@thm.

If DD is ample or globally generated, then DD satisfies the surjectivity of multiplication maps. For details, see [9, Example 1.2.22 and Example 2.1.29]

\lemmname \the\smf@thm.

For any \mathbb{R}-Cartier adelic divisor (D,g)(D,g) on XX, if DD satisfies the surjectivity of multiplication maps, then the sequence

{μ^min(H0(nD),ξng)n}nN+\left\{\frac{\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}\right\}_{n\in N_{+}}

converges to a number in \mathbb{R}.

Démonstration.

Set μn=μ^min(H0(nD),ξng)\mu_{n}=\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng}). By definition, the canonical map

H0(nD)H0(mD)H0((n+m)D)H^{0}_{\mathbb{R}}(nD)\otimes H^{0}_{\mathbb{R}}(mD)\rightarrow H^{0}_{\mathbb{R}}((n+m)D)

is surjective for every n,m0.n,m\gg 0. Since SS satisfies tensorial minimal slope property of level C0C\geqslant 0, we get the following inequality

μn+mμn+μmCln(rn)Cln(rm)\mu_{n+m}\geqslant\mu_{n}+\mu_{m}-C\ln(r_{n})-C\ln(r_{m})

where rn=dim(H0(nD))r_{n}=\dim(H^{0}_{\mathbb{R}}(nD)).

By [4, Proposition 6.3.15], the sequence {μnn}\big{\{}\displaystyle\frac{\mu_{n}}{n}\big{\}} converges to an element in {+}\mathbb{R}\cup\{+\infty\}. But since μ^minsup(D,g)μ^maxasy(D,g)<+\widehat{\mu}_{\min}^{\sup}(D,g)\leqslant\widehat{\mu}_{\max}^{\mathrm{asy}}(D,g)<+\infty ([4, Proposition 6.2.7 and Proposition 6.4.4]), we get the assertion proved. ∎

\propname \the\smf@thm.

Let D¯=(D,g)\overline{D}=(D,g) and E¯=(E,h)\overline{E}=(E,h) be elements in Div^(X)\widehat{\mathrm{Div}}_{\mathbb{Q}}(X), then we can give the following properties:

  1. (1)

    If DD is a \mathbb{Q}-ample or semiample Cartier divisor for some m+m\in\mathbb{N}_{+}, then for any q+q\in\mathbb{N}_{+}, we have

    μ^minsup(1qD¯)1qμ^minsup(D¯)>.\widehat{\mu}_{\min}^{\sup}(\frac{1}{q}\overline{D})\geqslant\frac{1}{q}\widehat{\mu}_{\min}^{\sup}(\overline{D})>-\infty.
  2. (2)

    If both DD and EE are ample Cartier divisors, then

    μ^minsup(D¯+E¯)=μ^mininf(D¯+E¯)μ^minsup(D¯)+μ^minsup(E¯)=μ^mininf(D¯)+μ^mininf(E¯).\widehat{\mu}_{\min}^{\sup}(\overline{D}+\overline{E})=\widehat{\mu}_{\min}^{\inf}(\overline{D}+\overline{E})\geqslant\widehat{\mu}_{\min}^{\sup}(\overline{D})+\widehat{\mu}_{\min}^{\sup}(\overline{E})=\widehat{\mu}_{\min}^{\inf}(\overline{D})+\widehat{\mu}_{\min}^{\inf}(\overline{E}).
  3. (3)

    If DD is ample Cartier divisor, then

    μ^minsup(nD¯)=μ^mininf(nD¯)=nμ^minsup(D¯)=nμ^mininf(D¯)\widehat{\mu}_{\min}^{\sup}(n\overline{D})=\widehat{\mu}_{\min}^{\inf}(n\overline{D})=n\widehat{\mu}_{\min}^{\sup}(\overline{D})=n\widehat{\mu}_{\min}^{\inf}(\overline{D})

    for any n+n\in\mathbb{N}_{+}.

  4. (4)

    If DD is ample, then

    μ^minsup(nD¯+E¯)nμ^minsup(D¯)+C\widehat{\mu}_{\min}^{\sup}(n\overline{D}+\overline{E})\geqslant n\widehat{\mu}_{\min}^{\sup}(\overline{D})+C

    for some constant CC.

Démonstration.

(1) By the conditions, there exists an integer m+m\in\mathbb{N}_{+} such that mDmD satisfies the surjectivity of multiplication maps, by Lemma 4.1, the sequence

{μ^min(H0(nmD),ξnmg)n}n+\left\{\frac{\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nmD),\xi_{nmg})}{n}\right\}_{n\in\mathbb{N}_{+}}

converges to some μ\mu\in\mathbb{R}. Thus μ^minsup(D¯)μm>\widehat{\mu}_{\min}^{\sup}(\overline{D})\geqslant\frac{\mu}{m}>-\infty. It’s obvious that

μ^minsup(D¯/q)lim supn+μ^min(H0(nD),ξng)nq=1qμ^minsup(D¯).\widehat{\mu}_{\min}^{\sup}(\overline{D}/q)\geqslant\limsup_{n\rightarrow+\infty}\frac{\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{nq}=\frac{1}{q}\widehat{\mu}_{\min}^{\sup}(\overline{D}).

(2) By [9, Example 1.2.22], the canonical homomorphism

H0(nD)H0(nE)H0(n(D+E))H^{0}_{\mathbb{R}}(nD)\otimes H^{0}_{\mathbb{R}}(nE)\rightarrow H^{0}_{\mathbb{R}}(n(D+E))

is surjective for every n0n\gg 0. Then we obtain that

μ^min(H0(n(D+E)),ξn(g+h))μ^min(H0(nD),ξng)+μ^min(H0(nE),ξnh)\displaystyle\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(n(D+E)),\xi_{n(g+h)})\geqslant\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})+\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nE),\xi_{nh})
Cln(dimK(H0(nD))Cln(dimK(H0(nE)).\displaystyle-C\ln(\dim_{K}(H^{0}_{\mathbb{R}}(nD))-C\ln(\dim_{K}(H^{0}_{\mathbb{R}}(nE)).

Taking a quotient over nn on both sides, and let n+n\rightarrow+\infty, we obtain the assertion.

(3) This is obvious.

(4) There exists n0+n_{0}\in\mathbb{N}_{+} such that nD+EnD+E is ample for any nn0n\geqslant n_{0}. Then

μ^minsup(nL¯+E¯)\displaystyle\widehat{\mu}_{\min}^{\sup}(n\overline{L}+\overline{E}) μ^minsup((nn0)D¯)+μ^minsup(n0D¯+E¯)\displaystyle\geqslant\widehat{\mu}_{\min}^{\sup}((n-n_{0})\overline{D})+\widehat{\mu}_{\min}^{\sup}(n_{0}\overline{D}+\overline{E})
=(nn0)μ^minsup(D¯)+μ^minsup(n0D¯+E¯)\displaystyle=(n-n_{0})\widehat{\mu}_{\min}^{\sup}(\overline{D})+\widehat{\mu}_{\min}^{\sup}(n_{0}\overline{D}+\overline{E})

for any n>n0n>n_{0}. ∎

\theoname \the\smf@thm.

Let D¯=(D,g)\overline{D}=(D,g) and E¯=(E,h)\overline{E}=(E,h) be elements in Div^(X)\widehat{\mathrm{Div}}_{\mathbb{Q}}(X) such that DD is a \mathbb{Q}-ample \mathbb{Q}-Cartier divisor. Then we can describe the following continuity for vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot):

limn±vol^χ(D¯+1nE¯)=vol^χ(D¯).\lim\limits_{n\rightarrow\pm\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E})=\widehat{\mathrm{vol}}_{\chi}(\overline{D}).
Démonstration.

Observe that we can assume n>0n>0 because we can just apply the same reasoning to E¯-\overline{E}.

Take a positive integer mm such that mDmD is ample Cartier and mEmE is Cartier. We firstly give an estimate to μ^minsup(D¯+E¯n).\widehat{\mu}_{\min}^{\sup}(\overline{D}+\displaystyle\frac{\overline{E}}{n}).

There exists an n0N+n_{0}\in N_{+} such that nmD+mEnmD+mE is ample Cartier for any nn0n\geqslant n_{0}. Set μ=μ^minsup(mD¯)m\mu=\displaystyle\frac{\widehat{\mu}_{\min}^{\sup}(m\overline{D})}{m}, η=μ^minsup(n0mD¯+mE¯)m\eta=\displaystyle\frac{\widehat{\mu}_{\min}^{\sup}(n_{0}m\overline{D}+m\overline{E})}{m}. Then, by using Proposition 4.1,

μ^minsup(D¯+1nE¯)\displaystyle\widehat{\mu}_{\min}^{\sup}(\overline{D}+\frac{1}{n}\overline{E})\geqslant 1mnμ^minsup(mn(D¯+1nE¯))\displaystyle\frac{1}{mn}\widehat{\mu}_{\min}^{\sup}(mn(\overline{D}+\frac{1}{n}\overline{E}))\geqslant
1n((nn0)μ+η)=(nn0)μn+ηn\displaystyle\frac{1}{n}((n-n_{0})\mu+\eta)=\frac{(n-n_{0})\mu}{n}+\frac{\eta}{n}

for every nn0n\geqslant n_{0}.

Take an integrable function ϕ\phi on Ω\Omega such that

Ωϕ(ω)𝑑ω>infn+{(nn0)μn+ηn}μ.\int_{\Omega}\phi(\omega)d\omega>-\inf_{n\in\mathbb{N}_{+}}\left\{\frac{(n-n_{0})\mu}{n}+\frac{\eta}{n}\right\}\geqslant-\mu.

Thus we obtain that μ^minsup(D¯+1nE¯+(0,ϕ))>0\widehat{\mu}_{\min}^{\sup}(\overline{D}+\frac{1}{n}\overline{E}+(0,\phi))>0 for n0n\gg 0 by Proposition 2.2. Therefore

vol^χ(D¯+1nE¯+(0,ϕ))=vol^(D¯+1nE¯+(0,ϕ))\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E}+(0,\phi))=\widehat{\mathrm{vol}}(\overline{D}+\frac{1}{n}\overline{E}+(0,\phi))

for every n0n\gg 0 due to Lemma 4.1. By the continuity of vol^()\widehat{\mathrm{vol}}(\cdot), we have

limn+vol^χ(D¯+1nE¯+(0,ϕ))=vol^(D¯+(0,ϕ))\displaystyle\lim\limits_{n\rightarrow+\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E}+(0,\phi))=\widehat{\mathrm{vol}}(\overline{D}+(0,\phi)) (2)
=vol^χ(D¯+(0,ϕ))=vol^χ(D¯)+vol(D)A.\displaystyle=\widehat{\mathrm{vol}}_{\chi}(\overline{D}+(0,\phi))=\widehat{\mathrm{vol}}_{\chi}(\overline{D})+\mathrm{vol}(D)A.

On the other hand, set A=(d+1)Ωϕ(ω)𝑑ωA=(d+1)\displaystyle\int_{\Omega}\phi(\omega)d\omega, we can write the left hand side of equation (2) as follows:

limn+vol^χ(D¯+1nE¯+(0,ϕ))\displaystyle\lim\limits_{n\rightarrow+\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E}+(0,\phi)) =limn+(vol^χ(D¯+E¯n)+vol(D+En)A)\displaystyle=\lim\limits_{n\rightarrow+\infty}\left(\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{\overline{E}}{n})+\mathrm{vol}(D+\frac{E}{n})A\right) (3)
=limn+vol^χ(D¯+E¯n)+vol(D)A.\displaystyle=\lim\limits_{n\rightarrow+\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{\overline{E}}{n})+\mathrm{vol}(D)A.

The first equation follows from Lemma 4.1 and the second equation comes from the continuity of vol()\mathrm{vol}(\cdot). Thus we obtain that limn+vol^χ(D¯+1nE¯)=vol^χ(D¯)\lim\limits_{n\rightarrow+\infty}\widehat{\mathrm{vol}}_{\chi}(\overline{D}+\frac{1}{n}\overline{E})=\widehat{\mathrm{vol}}_{\chi}(\overline{D}) by comparing (2) and (3). ∎

In general, for an \mathbb{R}-divisor DD, the sheaf given by

UH0(U,D):={fK(X)×(div(f)+D)|U0}{0}U\mapsto H^{0}_{\mathbb{R}}(U,D):=\{f\in K(X)^{\times}\mid(\mathrm{div}(f)+D)|_{U}\geqslant_{\mathbb{R}}0\}\cup\{0\}

is a coherent sheaf on XX, we denote this sheaf by 𝒪X(D)\mathscr{O}_{X}(D). We fix ample line bundle L¯1,L2\overline{L}_{1},L_{2}, then there exists m0(D,L1,L2)N+m_{0}(D,L_{1},L_{2})\in N_{+} such that

H0(X,nL1)H0(X,mL2+𝒪X(D))H0(X,nL1+mL2+𝒪X(D))H^{0}(X,nL_{1})\otimes H^{0}(X,mL_{2}+\mathscr{O}_{X}(D))\rightarrow H^{0}(X,nL_{1}+mL_{2}+\mathscr{O}_{X}(D))

is surjective for any n,mm0(D,L1,L2)n,m\geqslant m_{0}(D,L_{1},L_{2}). Moreover, if we equip L1L_{1} and L2L_{2} with dominated and measurable continuous metric families φ1,φ2\varphi_{1},\varphi_{2} respectively, and DD with Green function family gg, then we have the inequality holds:

μ^min(\displaystyle\widehat{\mu}_{\min}( π(nL1+mL2+𝒪X(D),nφ1+mφ2+φg))\displaystyle\pi_{*}(nL_{1}+mL_{2}+\mathscr{O}_{X}(D),n\varphi_{1}+m\varphi_{2}+\varphi_{g}))\geqslant
μ^min(π(nL1,nφ1))+μ^min(π(mL2+𝒪X(D),mϕ2+φg))\displaystyle\widehat{\mu}_{\min}(\pi_{*}(nL_{1},n\varphi_{1}))+\widehat{\mu}_{\min}(\pi_{*}(mL_{2}+\mathscr{O}_{X}(D),m\phi_{2}+\varphi_{g}))
Clnh0(nL1)Clnh0(mL2+𝒪X(D))\displaystyle-C\ln h^{0}(nL_{1})-C\ln h^{0}(mL_{2}+\mathscr{O}_{X}(D))
\propname \the\smf@thm.

Assume that SS satisfies the strong tensorial minimal slope property of level C\geqslant C, let D¯=(D,g)\overline{D}=(D,g) be an ample adelic divisor and E¯=(E,h)\overline{E}=(E,h) be an abitrary adelic divisor. It holds that

  1. (1)
    limndeg^(nD¯+E¯)nd+1/(d+1)!=vol^χ(D,g)\lim_{n\rightarrow\infty}\frac{\widehat{\mathrm{deg}}(n\overline{D}+\overline{E})}{n^{d+1}/(d+1)!}=\widehat{\mathrm{vol}}_{\chi}(D,g)
  2. (2)

    If H0(X,E)0H^{0}(X,E)\not=0, then

    deg^(H0(nD+E),ξng+h)deg^(H0(nD),ξng)Cnd\widehat{\mathrm{deg}}(H^{0}(nD+E),\xi_{ng+h})-\widehat{\mathrm{deg}}(H^{0}(nD),\xi_{ng})\geqslant Cn^{d}
Démonstration.

(1) Since DD is ample, there exists n0+n_{0}\in\mathbb{N}_{+} such that

H0(X,nD)H0(X,mD+E)H0(X,(n+m)D+E)H^{0}(X,nD)\otimes H^{0}(X,mD+E)\rightarrow H^{0}(X,(n+m)D+E)

is surjective for every n,mn0n,m\geqslant n_{0}. Let an:=μ^min(H0(nD+E),ξng+h)a_{n}:=\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD+E),\xi_{ng+h}) and bn:=μ^min(H0(nD),ξng)b_{n}:=\widehat{\mu}_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng}). For any n+n\in\mathbb{N}_{+}, we can write n=kn0+ln=kn_{0}+l where l=0,1,,n01l=0,1,\dots,n_{0}-1, then it holds that

akn0+lk(bn0δ(n0))+alδ(l)a_{kn_{0}+l}\geqslant k(b_{n_{0}}-\delta(n_{0}))+a_{l}-\delta(l)

where δ(n):=Clnmax{dimKH0(nD),dimKH0(nD+E)}\delta(n):=C\ln\max\{\dim_{K}H^{0}(nD),\dim_{K}H^{0}(nD+E)\}. This implies that

lim infnann>.\liminf_{n\rightarrow\infty}\frac{a_{n}}{n}>-\infty.

Thus we can take an integrable function ϕ\phi on Ω\Omega such that

A:=Ωϕ(ω)ν(dω)>min(lim infnann,μ^mininf(D¯)),A:=\int_{\Omega}\phi(\omega)\nu(d\omega)>-\min(\liminf_{n\rightarrow\infty}\frac{a_{n}}{n},\widehat{\mu}_{\min}^{\inf}(\overline{D})),

then

deg^(H0(nD+E),ξng+h)\displaystyle\widehat{\mathrm{deg}}(H^{0}(nD+E),\xi_{ng+h}) +dimKH0(nD+E)A\displaystyle+\dim_{K}H^{0}(nD+E)A
=deg^+(H0(nD+E),ξn(g+ϕ)+h)\displaystyle=\widehat{\mathrm{deg}}_{+}(H^{0}(nD+E),\xi_{n(g+\phi)+h})

and

vol^χ(D¯)+(d+1)vol(D)A=vol^(D¯+(0,ϕ)),\widehat{\mathrm{vol}}_{\chi}(\overline{D})+(d+1)\mathrm{vol}(D)A=\widehat{\mathrm{vol}}(\overline{D}+(0,\phi)),

which proves (1).

(2) For any nonzero element sH0(X,E)s\in H^{0}(X,E), we consider the following exact sequence

0H0(X,nD)sH0(X,nD+E)En00\rightarrow H^{0}(X,nD)\xrightarrow{\cdot s}H^{0}(X,nD+E)\rightarrow E_{n}\rightarrow 0

where EnE_{n} is the cokernel of s\cdot s. Let FnF_{n} be the image of H0(nD)H^{0}_{\mathbb{R}}(nD) through s\cdot s. We denote by F¯n\overline{F}_{n} and E¯n\overline{E}_{n} the adelic vector bundles with restriction and quotient norm families respectively. We can easily see that

deg^\displaystyle\widehat{\mathrm{deg}} (H0(nD+E),ξng+h)deg^(F¯n)+deg^(E¯n)\displaystyle(H^{0}(nD+E),\xi_{ng+h})\geqslant\widehat{\mathrm{deg}}(\overline{F}_{n})+\widehat{\mathrm{deg}}(\overline{E}_{n})
deg^(H0(nD),ξng)+dimK(H0(nD))deg^ξh(s)\displaystyle\geqslant\widehat{\mathrm{deg}}(H^{0}(nD),\xi_{ng})+\dim_{K}(H^{0}(nD))\widehat{\mathrm{deg}}_{\xi_{h}}(s)
+μ^min(H0(nD+E),ξng+h)(dimK(H0(nD+E))dimK(H0(nE))).\displaystyle+\widehat{\mu}_{\min}(H^{0}(nD+E),\xi_{ng+h})(\dim_{K}(H^{0}(nD+E))-\dim_{K}(H^{0}(nE))).

Since |dimKH0(nD+E)dimKH0(nD)|<C0nd1\lvert\dim_{K}H^{0}(nD+E)-\dim_{K}H^{0}(nD)\rvert<C_{0}n^{d-1}, we conclude that

deg^(H0(nD+E),ξng+h)deg^(H0(nD),ξng)Cnd\widehat{\mathrm{deg}}(H^{0}(nD+E),\xi_{ng+h})-\widehat{\mathrm{deg}}(H^{0}(nD),\xi_{ng})\geqslant Cn^{d}

\lemmname \the\smf@thm.

For any (E,h)(E,h), (0,f)Div^(X)(0,f)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X), it holds that

limϵ0vol^χ(E,h+ϵf)=vol^χ(E,h).\lim\limits_{\epsilon\rightarrow 0}\widehat{\mathrm{vol}}_{\chi}(E,h+\epsilon f)=\widehat{\mathrm{vol}}_{\chi}(E,h).
Démonstration.

Set

ϕ(ω)\displaystyle\phi(\omega) =max{|supxXω{fω(x)}|,|supxXω{fω(x)}|},\displaystyle=\mathrm{max}\left\{\big{\lvert}\sup\limits_{x\in X_{\omega}}\{f_{\omega}(x)\}\big{\rvert},\big{\lvert}\sup\limits_{x\in X_{\omega}}\{-f_{\omega}(x)\}\big{\rvert}\right\},

which is an integrable function on Ω\Omega. Then |fω(x)|ϕ(ω)|f_{\omega}(x)|\leqslant\phi(\omega) for any xXωx\in X_{\omega} and ωΩ\omega\in\Omega.

According to [4, Proposition 4.3.17], we have

deg^(H0(nE),en|ϵ|ϕξnh)deg^(H0(nE),ξn(h+ϵf))deg^(H0(nE),en|ϵ|ϕξnh).\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),e^{n|\epsilon|\phi}\xi_{nh})\geqslant\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),\xi_{n(h+\epsilon f)})\geqslant\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),e^{-n|\epsilon|\phi}\xi_{nh}).

Since

deg^(H0(nE),en|ϵ|ϕξnh)\displaystyle\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),e^{n|\epsilon|\phi}\xi_{nh}) =deg^(H0(nE),ξnh)+n|ϵ|dimK(H0(nE))A,\displaystyle=\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),\xi_{nh})+n|\epsilon|\mathrm{dim}_{K}(H^{0}_{\mathbb{R}}(nE))A,
deg^(H0(nE),en|ϵ|ϕξnh)\displaystyle\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),e^{-n|\epsilon|\phi}\xi_{nh}) =deg^(H0(nE),ξnh)n|ϵ|dimK(H0(nE))A\displaystyle=\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),\xi_{nh})-n|\epsilon|\mathrm{dim}_{K}(H^{0}_{\mathbb{R}}(nE))A

where A=Ωϕ(ω)ν(dω)A=\int_{\Omega}\phi(\omega)\nu(d\omega), and dimK(H0(nE))O(nd)\dim_{K}(H^{0}_{\mathbb{R}}(nE))\sim O(n^{d}), one obtains the assertion by the definition of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot). ∎

Our ultimate goal is to extend this discussion to the case where DD is big. As well known that for any ample divisor AA, there exists a m+m\in\mathbb{N}_{+} and an effective divisor NN such that A+NmDA+N\sim mD (see Lazarsfeld [9, Corollary 2.2.7]). In order to associate ample divisors and big divisors, we give the following discussion.

\definame \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor on XX. Then we define the asymptotic ν1\nu_{1} and νmin\nu_{\min} as

νminasy(D,g)\displaystyle\nu_{\min}^{\mathrm{asy}}(D,g) :=lim infn+νmin(H0(nD),ξng)n,\displaystyle:=\liminf\limits_{n\rightarrow+\infty}\frac{\nu_{\min}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n},
ν1asy(D,g)\displaystyle\nu_{1}^{\mathrm{asy}}(D,g) :=lim supn+ν1(H0(nD),ξng)n.\displaystyle:=\limsup\limits_{n\rightarrow+\infty}\frac{\nu_{1}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}.

Note that there are two properties:

  1. (1)

    If νminasy(D,g)>0\nu_{\min}^{\mathrm{asy}}(D,g)>0, then H0(nD)H_{\mathbb{R}}^{0}(nD) can be generated by sections with positive Arakelov degree for every sufficiently large nn.

  2. (2)

    If SS satisfies strong Minkowski’s property of certain level, then

    νminasy(D,g)\displaystyle\nu_{\min}^{\mathrm{asy}}(D,g) =μ^mininf(D,g),\displaystyle=\widehat{\mu}_{\min}^{\inf}(D,g),
    ν1asy(D,g)\displaystyle\nu_{1}^{\mathrm{asy}}(D,g) =μ^maxasy(D,g).\displaystyle=\widehat{\mu}_{\max}^{\mathrm{asy}}(D,g).
\propname \the\smf@thm.

Let D¯=(D,g),E¯=(E,h)Div^(X)\overline{D}=(D,g),\overline{E}=(E,h)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X). If H0(n(DE))0H^{0}_{\mathbb{R}}(n(D-E))\not=0 for n0n\gg 0 and μ^mininf(D)>\widehat{\mu}_{\min}^{\inf}(D)>-\infty, then

vol^χ(D¯)vol^χ(E¯)+(d+1)(vol(E)ν1asy(D¯E¯)+μ^mininf(D)(vol(D)vol(E))).\widehat{\mathrm{vol}}_{\chi}(\overline{D})\geqslant\widehat{\mathrm{vol}}_{\chi}(\overline{E})+(d+1)(\mathrm{vol}(E)\nu_{1}^{\mathrm{asy}}(\overline{D}-\overline{E})+\widehat{\mu}_{\min}^{\inf}(D)(\mathrm{vol}(D)-\mathrm{vol}(E))).
Démonstration.

For any nonzero element sH0(n(DE))s\in H^{0}_{\mathbb{R}}(n(D-E)), we consider the following exact sequence

0H0(nE)sH0(nD)En00\rightarrow H^{0}_{\mathbb{R}}(nE)\xrightarrow{\cdot s}H^{0}_{\mathbb{R}}(nD)\rightarrow E_{n}\rightarrow 0

where EnE_{n} is the cokernel of s\cdot s. Let FnF_{n} be the image of H0(nE)H^{0}_{\mathbb{R}}(nE) under s\cdot s. We denote by F¯n\overline{F}_{n} and E¯n\overline{E}_{n} the adelic vector bundles with restriction and quotient norm families respectively. We can easily see that

deg^(H0(nD),ξng)\displaystyle\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng}) deg^(F¯n)+deg^(E¯n)\displaystyle\geqslant\widehat{\mathrm{deg}}(\overline{F}_{n})+\widehat{\mathrm{deg}}(\overline{E}_{n})
deg^(H0(nE),ξnh)+dimK(H0(nE))deg^ξn(gh)(s)\displaystyle\geqslant\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),\xi_{nh})+\dim_{K}(H^{0}_{\mathbb{R}}(nE))\widehat{\mathrm{deg}}_{\xi_{n(g-h)}}(s)
+μ^min(H0(nD),ξng)(dimK(H0(nD))dimK(H0(nE))).\displaystyle+\widehat{\mu}_{\min}(H^{0}(nD),\xi_{ng})(\dim_{K}(H^{0}_{\mathbb{R}}(nD))-\dim_{K}(H^{0}_{\mathbb{R}}(nE))).

Since ss is abitrary, we can deduce that

deg^\displaystyle\widehat{\mathrm{deg}} (H0(nD),ξng)\displaystyle(H^{0}_{\mathbb{R}}(nD),\xi_{ng})
deg^(H0(nE),ξnh)+dimK(H0(nE))ν1(H0(n(DE)),ξn(gh))\displaystyle\geqslant\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nE),\xi_{nh})+\dim_{K}(H^{0}_{\mathbb{R}}(nE))\nu_{1}(H^{0}_{\mathbb{R}}(n(D-E)),\xi_{n(g-h)})
+μ^min(H0(nD),ξng)(dimK(H0(nD))dimK(H0(nE))).\displaystyle+\widehat{\mu}_{\min}(H^{0}(nD),\xi_{ng})(\dim_{K}(H^{0}_{\mathbb{R}}(nD))-\dim_{K}(H^{0}_{\mathbb{R}}(nE))).

Thus

vol^χ\displaystyle\widehat{\mathrm{vol}}_{\chi} (D¯)=lim supndeg^(H0(nD),ξng)nd+1/(d+1)!\displaystyle(\overline{D})=\limsup_{n\rightarrow\infty}\frac{\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n^{d+1}/(d+1)!}
vol^χ(E¯)+(d+1)(vol(E)ν1asy(n(D¯E¯))+μ^mininf(D)(vol(D)vol(E))).\displaystyle\geqslant\widehat{\mathrm{vol}}_{\chi}(\overline{E})+(d+1)(\mathrm{vol}(E)\nu_{1}^{\mathrm{asy}}(n(\overline{D}-\overline{E}))+\widehat{\mu}_{\min}^{\inf}(D)(\mathrm{vol}(D)-\mathrm{vol}(E))).

\coroname \the\smf@thm.

Let (D,g),(E,h)Div^(X)(D,g),(E,h)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X). If (DE,gh)0(D-E,g-h)\geqslant_{\mathbb{R}}0 and μ^mininf(D,g)>0\widehat{\mu}_{\min}^{\inf}(D,g)>0, then

vol^χ(D,g)vol^χ(E,h).\widehat{\mathrm{vol}}_{\chi}(D,g)\geqslant\widehat{\mathrm{vol}}_{\chi}(E,h).

4.2 The continuity over trivially valued field

Then let us consider the case where KK is trivially valued, i.e. Ω={||0}\Omega=\{\lvert\cdot\rvert_{0}\} and ν({||0})=1\nu(\{\lvert\cdot\rvert_{0}\})=1 where ||0\lvert\cdot\rvert_{0} is the trivial absolute value. In this case, μ^i(E¯)=νi(E¯)\widehat{\mu}_{i}(\overline{E})=\nu_{i}(\overline{E}) for any adelic line bundle E¯\overline{E} with rank rr and i=1,,ri=1,\dots,r.

Let XanX^{\mathrm{an}} denote the analytification of XX with respect to ||0\lvert\cdot\rvert_{0}. For any divisor DD on XX, we can assign a canonical Green function gDcg^{c}_{D} (see Ohnishi [12, Proposition 3.5.1]) which makes νminasy(D,gDc)=νmaxasy(D,gDc)=0\nu_{\min}^{\mathrm{asy}}(D,g^{c}_{D})=\nu_{\max}^{\mathrm{asy}}(D,g^{c}_{D})=0. Moreover the map DgDcD\mapsto g^{c}_{D} is \mathbb{R}-linear (see Ohnishi [12, Proposition 3.5.4]).

\lemmname \the\smf@thm.

Assume that KK is trivially valued. Let (D,gDc+f)(D,g^{c}_{D}+f) be an adelic \mathbb{R}-Cartier divisor on XX, then

νminasy(D,gDc+f)infxXanf(x).\nu_{\min}^{\mathrm{asy}}(D,g^{c}_{D}+f)\geqslant\inf_{x\in X^{\mathrm{an}}}f(x).
Démonstration.

Set μ=infxXanf(x)\mu=\inf\limits_{x\in X^{\mathrm{an}}}f(x). Then since for any n+n\in\mathbb{N}_{+} and sH0(nD)s\in H^{0}_{\mathbb{R}}(nD),

deg^n(gDc+μ)(s)deg^n(gDc+f)(s),\widehat{\mathrm{deg}}_{n(g^{c}_{D}+\mu)}(s)\leqslant\widehat{\mathrm{deg}}_{n(g^{c}_{D}+f)}(s),

we get the assertion proved. ∎

\theoname \the\smf@thm.

Assume that KK is trivially valued. The following continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) holds:

lim|ϵ1|++|ϵn|0vol^χ((D,gDc+f)+ϵ1(E1,gE1c+h1)++ϵn(En,gEnc+hn))\displaystyle\lim\limits_{\lvert\epsilon_{1}\rvert+\cdots+\lvert\epsilon_{n}\rvert\rightarrow 0}\widehat{\mathrm{vol}}_{\chi}((D,g^{c}_{D}+f)+\epsilon_{1}(E_{1},g^{c}_{E_{1}}+h_{1})+\cdots+\epsilon_{n}(E_{n},g^{c}_{E_{n}}+h_{n}))
=vol^χ(D,gDc+f)\displaystyle=\widehat{\mathrm{vol}}_{\chi}(D,g^{c}_{D}+f)

where (D,gDc+f),(E1,gE1c+h1),,(En,gEnc+hn)(D,g^{c}_{D}+f),(E_{1},g^{c}_{E_{1}}+h_{1}),\cdots,(E_{n},g^{c}_{E_{n}}+h_{n}) are adelic \mathbb{R}-Cartier divisors on XX.

Démonstration.

We first observe that

(D,gDc\displaystyle(D,g^{c}_{D} +f)+ϵ1(E1,gE1c+h1)++ϵn(En,gEnc+hn)=\displaystyle+f)+\epsilon_{1}(E_{1},g^{c}_{E_{1}}+h_{1})+\cdots+\epsilon_{n}(E_{n},g^{c}_{E_{n}}+h_{n})=
(D+ϵ1E1++ϵnEn,gD+ϵ1E1++ϵnEnc+f+ϵ1h1++ϵnhn)\displaystyle(D+\epsilon_{1}E_{1}+\cdots+\epsilon_{n}E_{n},g^{c}_{D+\epsilon_{1}E_{1}+\cdots+\epsilon_{n}E_{n}}+f+\epsilon_{1}h_{1}+\cdots+\epsilon_{n}h_{n})

due to the \mathbb{R}-linearity of canonical Green function (see Ohnishi [12, Proposition 3.5.4]). Set

μ=\displaystyle\mu= infxXanf(x)\displaystyle\inf_{x\in X^{\mathrm{an}}}f(x)
ηi=\displaystyle\eta_{i}= infxXanmin{hi(x),hi(x)},\displaystyle\inf_{x\in X^{\mathrm{an}}}\min\{h_{i}(x),-h_{i}(x)\}, i=1,,n.\displaystyle i=1,\dots,n.

Hence according to the lemma above,

infxXan(f+ϵ1h1++\displaystyle\inf_{x\in X^{\mathrm{an}}}(f+\epsilon_{1}h_{1}+\cdots+ ϵnhn)(x)\displaystyle\epsilon_{n}h_{n})(x)\geqslant
infxXanf(x)+infxXanϵ1h1(x)\displaystyle\inf_{x\in X^{\mathrm{an}}}f(x)+\inf_{x\in X^{\mathrm{an}}}\epsilon_{1}h_{1}(x) ++infxXanϵnhn(x)\displaystyle+\cdots+\inf_{x\in X^{\mathrm{an}}}\epsilon_{n}h_{n}(x)\geqslant
μ+|ϵ1|η1++|ϵn|ηn.\displaystyle\mu+\lvert\epsilon_{1}\rvert\eta_{1}+\cdots+\lvert\epsilon_{n}\rvert\eta_{n}.

Therefore νminasy((D,gDc+f)+ϵ1(E1,gE1c+h1)++ϵn(En,gEnc+hn))\nu_{\min}^{\mathrm{asy}}((D,g^{c}_{D}+f)+\epsilon_{1}(E_{1},g^{c}_{E_{1}}+h_{1})+\cdots+\epsilon_{n}(E_{n},g^{c}_{E_{n}}+h_{n})) is uniformly bounded from below for |ϵ1|++|ϵn|0\lvert\epsilon_{1}\rvert+\cdots+\lvert\epsilon_{n}\rvert\ll 0. Then we obtain the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) due to the continuity of vol^()\widehat{\mathrm{vol}}(\cdot) and vol()\mathrm{vol}(\cdot). ∎

5 Applications of arithmetic Okounkov bodies

The arithmetic Okounkov body of an adelic divisor (D,g)(D,g) is introduced in [4] as a concave function on the Okounkov body of DD, which can be used to calculate the volume of (D,g)(D,g), we are going to see more applications in this section.

5.1 Construction of concave transforms

This subsection generally rephrases the section 3 of chapter 6 in [4]. Let XX be a normal, geometrically integral, projective KK-scheme of dimension dd and admits a regular rational point xx. For an adelic \mathbb{R}-Cartier divisor (D,g)(D,g) on XX, we can view that H0(nD)K(X)Frac(𝒪X,x)Frac(𝒪^X,x)K((T1,,Td))H^{0}_{\mathbb{R}}(nD)\subset K(X)\subset\mathrm{Frac}(\mathcal{O}_{X,x})\subset\mathrm{Frac}(\widehat{\mathcal{O}}_{X,x})\subset K((T_{1},...,T_{d})).

Let En=H0(nD)E_{n}=H^{0}_{\mathbb{R}}(nD), then we can consider the graded algebra

E:=nEnK((T1,,Td))[Y].E:=\mathop{\oplus}\limits_{n\in\mathbb{N}}E_{n}\subset K((T_{1},...,T_{d}))[Y].

We denote by gr(n,α)gr(n,\alpha) the vector subspace of EE generated by TαYnT^{\alpha}Y^{n} where (n,α)×d(n,\alpha)\in\mathbb{N}\times\mathbb{Z}^{d}, then E=(n,α)×dgr(n,α).E=\mathop{\oplus}\limits_{(n,\alpha)\in\mathbb{N}\times\mathbb{Z}^{d}}gr(n,\alpha).

Set

ΓD:\displaystyle\Gamma_{D}: ={(n,α)×d0gr(n,α)},\displaystyle=\{(n,\alpha)\in\mathbb{N}\times\mathbb{Z}^{d}\mid 0\not=gr(n,\alpha)\},
ΓD,n:={αd(n,α)ΓD}\displaystyle\Gamma_{D,n}:=\{\alpha\in\mathbb{Z}^{d}\mid(n,\alpha)\in\Gamma_{D}\}

and Δ(D)\Delta(D) be the closure of {n1α(n,α)ΓD}\{n^{-1}\alpha\mid(n,\alpha)\in\Gamma_{D}\} in d\mathbb{R}^{d}, which is called the Okounkov body of DD. If let η\eta be the Lesbegue measure on d\mathbb{R}^{d}, then η(Δ(D))=vol(D)\eta(\Delta(D))=\mathrm{vol}(D).

Then we start to give the construction of the concave transforms. Let ||\lvert\cdot\rvert denote the trivial absolute value on KK For each nn\in\mathbb{N}, we denote by n\mathcal{F}_{n} the Harder-Narasimhan \mathbb{R}-filtration of (H0(nD),ξng)(H^{0}_{\mathbb{R}}(nD),\xi_{ng}). Then we can define a norm n\lVert\cdot\rVert_{\mathcal{F}_{n}} on EnE_{n} over (K,||)(K,\lvert\cdot\rvert) by

xn=eλn(x)\lVert x\rVert_{\mathcal{F}_{n}}=e^{-\lambda_{\mathcal{F}_{n}}(x)}

for xEnx\in E_{n} where λn(x):=sup{t|xnt}\lambda_{\mathcal{F}_{n}}(x):=\sup\{t\in\mathbb{R}|x\in\mathcal{F}_{n}^{t}\}. Actually, the graded normed linear series V:=n+(En,n)V_{\bullet}:=\mathop{\oplus}\limits_{n\in\mathbb{N}_{+}}(E_{n},\lVert\cdot\rVert_{\mathcal{F}_{n}}) contains all the information we need to construct the concave transform.

We equip d\mathbb{Z}^{d} with lexicographic order, then set

𝒢(n)α:=βΓn,βαgr(n,β)\mathcal{G}(n)_{\leqslant\alpha}:=\mathop{\oplus}\limits_{\beta\in\Gamma_{n},\beta\leqslant\alpha}gr(n,\beta)

and

𝒢(n)<α:=βΓn,β<αgr(n,β).\mathcal{G}(n)_{<\alpha}:=\mathop{\oplus}\limits_{\beta\in\Gamma_{n},\beta<\alpha}gr(n,\beta).

Now we can view gr(n,α)gr(n,\alpha) as the quotient space of 𝒢(n)α\mathcal{G}(n)_{\leqslant\alpha} over 𝒢(n)<α\mathcal{G}(n)_{<\alpha}. Thus we can give a quotient norm (n,α)\lVert\cdot\rVert_{(n,\alpha)} of n\lVert\cdot\rVert_{\mathcal{F}_{n}} on gr(n,α)gr(n,\alpha).

Set g(D,g)(n,α)=lns(n,α)g_{(D,g)}(n,\alpha)=-\ln\lVert s\rVert_{(n,\alpha)} where sgr(n,α)\{0}s\in gr(n,\alpha)\backslash\{0\}. Since gr(n,α)gr(n,\alpha) is of dimension 11 and KK is trivially valued, g(n,α)g(n,\alpha) is thus well-defined. We going to show that if we denote by δ\delta the function that maps n+n\in\mathbb{N}_{+} to Cln(#Γn)C\ln(\#\Gamma_{n}), then gg is δ\delta-suppperadditive i.e. for any (n,α),(m,α)Γ(n,\alpha),(m,\alpha)\in\Gamma, we have

g(D,g)(n+m,α+β)g(D,g)(n,α)+g(D,g)(m,β)δ(n)δ(m).g_{(D,g)}(n+m,\alpha+\beta)\geqslant g_{(D,g)}(n,\alpha)+g_{(D,g)}(m,\beta)-\delta(n)-\delta(m).

Take non-zero elements ee and ff of gr(n,α)gr(n,\alpha) and gr(m,β)gr(m,\beta) respectively, then since XX is geometrically integral, efef is a non-zero element of gr(m+n,α+β)gr(m+n,\alpha+\beta). Thus

g(D,g)(m+n,α+β)\displaystyle g_{(D,g)}(m+n,\alpha+\beta) =λn+m(ef)\displaystyle=\lambda_{\mathcal{F}_{n+m}}(ef)
=sup{tefn+mt}\displaystyle=\sup\{t\in\mathbb{R}\mid ef\in\mathcal{F}_{n+m}^{t}\}
λn(e)+λn(f)δ(n)δ(m)\displaystyle\geqslant\lambda_{\mathcal{F}_{n}}(e)+\lambda_{\mathcal{F}_{n}}(f)-\delta(n)-\delta(m)

where the last inequality comes from the fact that nt1Fmt2n+mt1+t2δ(n)δ(m)\mathcal{F}_{n}^{t_{1}}\cdot F_{m}^{t_{2}}\subset\mathcal{F}_{n+m}^{t_{1}+t_{2}-\delta(n)-\delta(m)} for any t1,t2t_{1},t_{2}\in\mathbb{R} (see Chen and Moriwaki [4, Proposition 6.3.25]).

So far we finished the preparation of the construction, in order to show how g(D,g)g_{(D,g)} is related with the concave transform, we give the following theorem firstly.

\theoname \the\smf@thm.

There exists a concave function G(D,g):Δ(D)G_{(D,g)}:\Delta(D)\rightarrow\mathbb{R} called the concave transform of gg such that for any continuous function ff on \mathbb{R} with compact support, the following holds:

limn+1#ΓnαΓnf(n1g(D,g)(n,α))=1η(Δ(D))xΔ(D)f(G(D,g)(x))𝑑x.\lim\limits_{n\rightarrow+\infty}\frac{1}{\#\Gamma_{n}}\sum\limits_{\alpha\in\Gamma_{n}}f(n^{-1}g_{(D,g)}(n,\alpha))=\frac{1}{\eta(\Delta(D))}\int_{x\in\Delta(D)^{\circ}}f(G_{(D,g)}(x))dx.
Démonstration.

See Chen and Moriwaki [4, Theorem 6.3.16]

Here we roughly give the construction of G(D,g)G_{(D,g)}: We define

g~(D,g)(u):=lim supn+g(D,g)(nu)n\widetilde{g}_{(D,g)}(u):=\limsup\limits_{n\rightarrow+\infty}\frac{g_{(D,g)}(nu)}{n}

for any uΓu\in\Gamma. One can show that g~(D,g)\widetilde{g}_{(D,g)} satisfies following properties:

  1. (1)

    g~(D,g)(u)=limn+g(D,g)(nu)n\widetilde{g}_{(D,g)}(u)=\lim\limits_{n\rightarrow+\infty}\displaystyle\frac{g_{(D,g)}(nu)}{n},

  2. (2)

    g~(D,g)(n,γ)g(D,g)(n,γ)δ(n)\widetilde{g}_{(D,g)}(n,\gamma)\geqslant g_{(D,g)}(n,\gamma)-\delta(n),

  3. (3)

    g~(D,g)(u1+u2)g~(D,g)(u1)+g~(D,g)(u2)\widetilde{g}_{(D,g)}(u_{1}+u_{2})\geqslant\widetilde{g}_{(D,g)}(u_{1})+\widetilde{g}_{(D,g)}(u_{2}).

For any tt\in\mathbb{R}, set Γ(D,g)t:={(n,α)Γ|g~(D,g)(n,α)nt}\Gamma^{t}_{(D,g)}:=\{(n,\alpha)\in\Gamma|\widetilde{g}_{(D,g)}(n,\alpha)\geqslant nt\}. Then we can similarly define the convex body corresponding to Γ(D,g)t\Gamma^{t}_{(D,g)} as

Δ(Γ(D,g)t)={n1α(n,α)Γ(D,g)t}¯.\Delta(\Gamma^{t}_{(D,g)})=\overline{\{n^{-1}\alpha\mid(n,\alpha)\in\Gamma^{t}_{(D,g)}\}}.

As the family {Δ(Γ(D,g)t)}t\{\Delta(\Gamma^{t}_{(D,g)})\}_{t\in\mathbb{R}} of convex bodies is decreasing, the concave transform is given by G(D,g)(x)=sup{t|xΔ(Γ(D,g)t)}G_{(D,g)}(x)=\sup\{t\in\mathbb{R}|x\in\Delta(\Gamma^{t}_{(D,g)})\}.

Next we are going to see its relationship with our main goal. Let rn:=#Γn=dimK(H0(nD))r_{n}:=\#\Gamma_{n}=\dim_{K}(H_{\mathbb{R}}^{0}(nD)) and {α1,α2,,αrn}\{\alpha_{1},\alpha_{2},\cdots,\alpha_{r_{n}}\} be the sorted sequence of {αd(n,α)Γ}\{\alpha\in\mathbb{Z}^{d}\mid(n,\alpha)\in\Gamma\} by lexicographic order. Then we have the flag

0𝒢(n)α1𝒢(n)αrn=En.0\subsetneq\mathcal{G}(n)_{\leqslant\alpha_{1}}\subsetneq\cdots\subsetneq\mathcal{G}(n)_{\leqslant\alpha_{r_{n}}}=E_{n}. (4)

Since (K,||)(K,\lvert\cdot\rvert) is spherically complete, by [4, Proposition 1.2.30] , we can find an orthogonal basis 𝐞={e1,,ern}{\bf e}=\{e_{1},\dots,e_{r_{n}}\} of EnE_{n} compatible with the above flag i.e. 𝐞\bf e satisfies the following two properties:

  1. (1)

    #𝐞𝒢(n)αi=i\#{\bf e}\cap\mathcal{G}(n)_{\leqslant\alpha_{i}}=i for i=1,,rni=1,\dots,r_{n}.

  2. (2)

    For any x=λ1e1++λrnernEnx=\lambda_{1}e_{1}+\cdots+\lambda_{r_{n}}e_{r_{n}}\in E_{n} where λiK\lambda_{i}\in K for i=1,,rni=1,\dots,r_{n}, it holds that

    xnmaxλi0i=1,,rn{ei}.\lVert x\rVert_{\mathcal{F}_{n}}\geqslant\max\limits_{\begin{subarray}{c}\lambda_{i}\neq 0\\ i=1,\dots,r_{n}\end{subarray}}\{\lVert e_{i}\rVert\}.

We can even assume that eigr(n,αi)e_{i}\in gr(n,\alpha_{i}) for i=1,,rni=1,\dots,r_{n}. Then by the property (2) above, we have ei(n,α)=ein\|e_{i}\|_{(n,\alpha)}=\|e_{i}\|_{\mathcal{F}_{n}} which implies that the sorted sequence of {lnei}1in={g(D,g)(n,α)}αΓn\{-\ln\|e_{i}\|\}_{1\leqslant i\leqslant n}=\{g_{(D,g)}(n,\alpha)\}_{\alpha\in\Gamma_{n}} is identified with {μ^i(En,ξng)}1irn\{\widehat{\mu}_{i}(E_{n},\xi_{ng})\}_{1\leqslant i\leqslant r_{n}}.

Note that by [4, Proposition 6.2.16, Proposition 6.4.4 and Lemma 6.4.17], we have

supxΔ(D)G(D,g)(x)=μ^maxasy(D,g):=lim supn+μ^max(H0(nD),ξng)n<+.\sup\limits_{x\in\Delta(D)^{\circ}}G_{(D,g)}(x)=\widehat{\mu}_{\max}^{\mathrm{asy}}(D,g):=\limsup_{n\rightarrow+\infty}\frac{\widehat{\mu}_{\max}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}<+\infty.

Thus we can deduce that

\theoname \the\smf@thm.

For a (D,g)Div^(X)(D,g)\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X) with DD being big and μ^mininf(D,g)>\widehat{\mu}_{\min}^{\inf}(D,g)>-\infty, it holds that

limn+1nd/d!1irnμ^i(H0(nD),ξng)n=xΔ(D)G(D,g)(x)𝑑x.\lim\limits_{n\rightarrow+\infty}\frac{1}{n^{d}/d!}\sum\limits_{1\leqslant i\leqslant r_{n}}\frac{\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}=\int_{x\in\Delta(D)^{\circ}}G_{(D,g)}(x)dx.
Démonstration.

See Chen and Moriwaki [4, Remark 6.3.27]. ∎

\coroname \the\smf@thm.

For a (D,g)Div(X)(D,g)\in\mathrm{Div}_{\mathbb{R}}(X), if DD is big and μ^mininf(D,g)>\widehat{\mu}_{\min}^{\inf}(D,g)>-\infty, then

vol^χ(D,g)=(d+1)xΔ(D)G(D,g)(x)𝑑x.\widehat{\mathrm{vol}}_{\chi}(D,g)=(d+1)\int_{x\in\Delta(D)^{\circ}}G_{(D,g)}(x)dx.
Démonstration.

Let rn=dimK(H0(nD))r_{n}=\dim_{K}(H^{0}_{\mathbb{R}}(nD)). By Proposition 2.3,

|deg^(H0(nD),ξng)i=1rnμ^i(H0(nD),ξng)|12rnln(rn)ν(Ω),\left|\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})-\sum\limits_{i=1}^{r_{n}}\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})\right|\leq\frac{1}{2}r_{n}\mathrm{ln}(r_{n})\nu(\Omega_{\infty}),

it follows that

lim supn+deg^(H0(nD),ξng)nd+1/(d+1)!\displaystyle\limsup\limits_{n\rightarrow+\infty}\frac{\widehat{\mathrm{deg}}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n^{d+1}/(d+1)!} =lim supn+1nd+1/(d+1)!i=1rnμ^i(H0(nD),ξng)\displaystyle=\limsup\limits_{n\rightarrow+\infty}\frac{1}{n^{d+1}/(d+1)!}\sum\limits_{i=1}^{r_{n}}\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})
=(d+1)limn+1nd/d!i=1rnμ^i(H0(nD),ξng)n\displaystyle=(d+1)\lim\limits_{n\rightarrow+\infty}\frac{1}{n^{d}/d!}\sum\limits_{i=1}^{r_{n}}\frac{\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})}{n}
=(d+1)Δ(D)G(D,g)(x)𝑑x.\displaystyle=(d+1)\int_{\Delta(D)}G_{(D,g)}(x)dx.

As an application of above result, we can reduce the study of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) to concave functions on convex bodies in d\mathbb{R}^{d}.

5.2 Variation of concave transforms

In this subsection, we keep the same assumption and notations as in previous subsection. We are going to mainly study the variation of infxΔ(D)G(D,g)(x)\inf\limits_{x\in\Delta(D)^{\circ}}G_{(D,g)}(x) which would lead to the integrablity of the concave transform under certain circumstances.

\lemmname \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor. Then for any ζ\zeta\in\mathbb{R} we have ζinfxΔ(D)G(D,g)(x)\zeta\leq\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x) if and only if Δ(Γ(D,g)ζ)=Δ(D)\Delta(\Gamma_{(D,g)}^{\zeta})=\Delta(D).

Démonstration.

This comes from the construction of G(D,g)(x)G_{(D,g)}(x) i.e.

G(D,g)(x)=sup{t|xΔ(Γ(D,g)t)}.G_{(D,g)}(x)=\sup\{t\in\mathbb{R}|x\in\Delta(\Gamma_{(D,g)}^{t})\}.

for any xΔ(D)x\in\Delta(D) and the fact that {Γ(D,g)t}t\{\Gamma_{(D,g)}^{t}\}_{t\in\mathbb{R}} is a decreasing family of convex bodies, we obtain that xΓ(D,g)tx\in\Gamma_{(D,g)}^{t}. ∎

\lemmname \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor and ϕ\phi be an integrable function on Ω\Omega. Then

G(D,g+ϕ)(x)=G(D,g)+ωΩϕ(ω)𝑑ω.G_{(D,g+\phi)}(x)=G_{(D,g)}+\int_{\omega\in\Omega}\phi(\omega)d\omega.
Démonstration.

Set A=ωΩϕ(ω)𝑑ωA=\displaystyle\int_{\omega\in\Omega}\phi(\omega)d\omega. Since for each n+n\in\mathbb{N}_{+},

{μ^i(H0(nD),ξng+nϕ)}1irn={μ^i(H0(nD),ξng)+nA}1irn\{\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng+n\phi})\}_{1\leqslant i\leqslant r_{n}}=\{\widehat{\mu}_{i}(H^{0}_{\mathbb{R}}(nD),\xi_{ng})+nA\}_{1\leqslant i\leqslant r_{n}}

is identified with the sorted sequence {g(D,g+ϕ)(n,α)}αΓn\{g_{(D,g+\phi)}(n,\alpha)\}_{\alpha\in\Gamma_{n}}, it follows that

g(D,g+ϕ)(x)=g(D,g)(x)+nA.g_{(D,g+\phi)}(x)=g_{(D,g)}(x)+nA.

By the construction decribed in previous subsection of concave transform, g~(D,g+ϕ)(x)=g~(D,g)(x)+nA\widetilde{g}_{(D,g+\phi)}(x)=\widetilde{g}_{(D,g)}(x)+nA which would lead to G(D,g+ϕ)(x)=G(D,g)(x)+AG_{(D,g+\phi)}(x)=G_{(D,g)}(x)+A for each xΔ(D)x\in\Delta(D). ∎

\propname \the\smf@thm.

Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor on XX and α+\alpha\in\mathbb{R}_{+}. The following homogeneity holds:

αinfxΔ(D)G(D,g)(x)=infxΔ(αD)G(αD,αg)(x).\alpha\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x)=\inf\limits_{x\in\Delta(\alpha D)}G_{(\alpha D,\alpha g)}(x).
Démonstration.

Take an integrable function ϕ\phi on Ω\Omega such that ωΩϕ(ω)𝑑ω=1.\displaystyle\int_{\omega\in\Omega}\phi(\omega)d\omega=1. For any tt\in\mathbb{R}, set

Ht(D,g):=vol^(D,gtϕ)\displaystyle H_{t}(D,g):=\widehat{\mathrm{vol}}(D,g-t\phi) =xΔ(D)max{G(D,gtϕ)(x),0}𝑑x\displaystyle=\int_{x\in\Delta(D)^{\circ}}\max\{G_{(D,g-t\phi)}(x),0\}dx
=xΔ(D)max{G(D,g)(x)t,0}𝑑x.\displaystyle=\int_{x\in\Delta(D)^{\circ}}\max\{G_{(D,g)}(x)-t,0\}dx.

It’s easy to see that

ddtHt(D,g)=η(Δ(Γ(D,g)t))\frac{d}{dt}H_{t}(D,g)=-\eta(\Delta(\Gamma^{t}_{(D,g)})) (5)

where η\eta is the Lebesgue measure on d\mathbb{R}^{d}.

Apply (5) to (αD,αg)(\alpha D,\alpha g), we obtain

ddtHαt(αD,αg)=αη(Δ(Γ(αD,αg)αt)).\frac{d}{dt}H_{\alpha t}(\alpha D,\alpha g)=-\alpha\eta(\Delta(\Gamma^{\alpha t}_{(\alpha D,\alpha g)})). (6)

On the other hand, since

Hαt(αD,αg)=vol^(αD,αgαtϕ)=αd+1vol^(D,gtϕ)=αd+1Ht(D,g),H_{\alpha t}(\alpha D,\alpha g)=\widehat{\mathrm{vol}}(\alpha D,\alpha g-\alpha t\phi)=\alpha^{d+1}\widehat{\mathrm{vol}}(D,g-t\phi)=\alpha^{d+1}H_{t}(D,g),

we can deduce that

ddtHαt(αD,αg)=αd+1η(Δ(Γ(D,g)t)).\frac{d}{dt}H_{\alpha t}(\alpha D,\alpha g)=-\alpha^{d+1}\eta(\Delta(\Gamma_{(D,g)}^{t})). (7)

Thus

η(Δ(Γ(αD,αg)t))=αdη(Δ(Γ(D,g)t)).\eta(\Delta(\Gamma^{t}_{(\alpha D,\alpha g)}))=\alpha^{d}\eta(\Delta(\Gamma^{t}_{(D,g)})). (8)

Take a real number tt such that tinfxΔ(D)G(D,g)(x)t\leq\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x). Then Δ(Γ(D,g)t)=Δ(D)\Delta(\Gamma_{(D,g)}^{t})=\Delta(D) follows from Lemma 5.2. Then by the fact that

η(Δ(αD))=vol(αD)=αdvol(D)=αdη(Δ(D))\eta(\Delta(\alpha D))=\mathrm{vol}(\alpha D)=\alpha^{d}\mathrm{vol}(D)=\alpha^{d}\eta(\Delta(D))

and (8), it holds that

Δ(Γ(αD,αg)αt)=Δ(αD).\Delta(\Gamma^{\alpha t}_{(\alpha D,\alpha g)})=\Delta(\alpha D).

Hence αtinfxΔ(αD)G(αD,αg)(x)\alpha t\leq\inf\limits_{x\in\Delta(\alpha D)}G_{(\alpha D,\alpha g)}(x). As tt is arbitrary, in consequence,

αinfxΔ(D)G(D,g)(x)infxΔ(αD)G(αD,αg)(x).\alpha\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x)\leqslant\inf\limits_{x\in\Delta(\alpha D)}G_{(\alpha D,\alpha g)}(x).

At last, we replace α\alpha by 1α\displaystyle\frac{1}{\alpha} and (D,g)(D,g) by (αD,αg)(\alpha D,\alpha g), we get the other direction of the above inequality. ∎

\definame \the\smf@thm.

For any D¯Div^(X)\overline{D}\in\widehat{\mathrm{Div}}_{\mathbb{R}}(X) such that DD is big and GD¯(x)G_{\overline{D}}(x) is bounded from below, we define the following alternative of vol^χ(D¯)\widehat{\mathrm{vol}}_{\chi}(\overline{D}):

vol^I(D¯):=xΔ(D)GD¯(x)𝑑x.\widehat{\mathrm{vol}}_{I}(\overline{D}):=\int_{x\in\Delta(D)}G_{\overline{D}}(x)dx.
\remaname \the\smf@thm.

By Corollary 5.1, we know that if μ^mininf(D,g)>\widehat{\mu}_{\min}^{\inf}(D,g)>-\infty (for example DD is ample, see lemma 4.1), then

vol^χ(D,g)=(d+1)vol^I(D,g).\widehat{\mathrm{vol}}_{\chi}(D,g)=(d+1)\widehat{\mathrm{vol}}_{I}(D,g). (9)

Moreover, if infxΔ(D)GD¯(x)0\inf\limits_{x\in\Delta(D)}G_{\overline{D}}(x)\geqslant 0, then

vol^(D,g)=(d+1)vol^I(D,g).\widehat{\mathrm{vol}}(D,g)=(d+1)\widehat{\mathrm{vol}}_{I}(D,g).

Then we can actually see that (9) also holds for \mathbb{Q}-ample \mathbb{Q}-Cartier divisors due to Proposition 4.1. In details, there exists a integrable function ϕ\phi on Ω\Omega such that μ^minsup(D,g+ϕ)>0\widehat{\mu}_{\min}^{\sup}(D,g+\phi)>0 and infxΔ(D)G(D,g+ϕ)(x)>0\inf\limits_{x\in\Delta(D)}G_{(D,g+\phi)}(x)>0, then

vol^χ(D,g+ϕ)=vol^(D,g+ϕ)=(d+1)vol^I(D,g+ϕ).\widehat{\mathrm{vol}}_{\chi}(D,g+\phi)=\widehat{\mathrm{vol}}(D,g+\phi)=(d+1)\widehat{\mathrm{vol}}_{I}(D,g+\phi).

By removing ϕ\phi from above equations, we get (9) due to the shifting property and Lemma 5.2.

\propname \the\smf@thm.

Let D¯=(D,g)\overline{D}=(D,g) be an adelic \mathbb{R}-Cartier divisor. If DD is big and infxΔ(D)GD¯(x)>\inf\limits_{x\in\Delta(D)}G_{\overline{D}}(x)>-\infty, then

vol^I(αD¯)=αd+1vol^I(D¯)\widehat{\mathrm{vol}}_{I}(\alpha\overline{D})=\alpha^{d+1}\widehat{\mathrm{vol}}_{I}(\overline{D})

for any α+\alpha\in\mathbb{R}_{+}.

Démonstration.

Take an integrable function ϕ\phi on Ω\Omega such that

ωΩϕ(ω)𝑑ω>infxΔ(D)GD¯(x).\int_{\omega\in\Omega}\phi(\omega)d\omega>-\inf\limits_{x\in\Delta(D)}G_{\overline{D}}(x).

Then

vol^I(D¯)+vol(D)ωΩϕ(ω)𝑑ω=vol^I(D¯+(0,ϕ))=1d+1vol^(D¯+(0,ϕ)).\widehat{\mathrm{vol}}_{I}(\overline{D})+\mathrm{vol}(D)\int_{\omega\in\Omega}\phi(\omega)d\omega=\widehat{\mathrm{vol}}_{I}(\overline{D}+(0,\phi))=\frac{1}{d+1}\widehat{\mathrm{vol}}(\overline{D}+(0,\phi)). (10)

By Proposition 5.2, we know that

ωΩαϕ(ω)𝑑ω>infxΔ(αD)GαD¯(x).\int_{\omega\in\Omega}\alpha\phi(\omega)d\omega>-\inf\limits_{x\in\Delta(\alpha D)}G_{\alpha\overline{D}}(x).

Thus

vol^I(αD¯)+\displaystyle\widehat{\mathrm{vol}}_{I}(\alpha\overline{D})+ vol(αD)ωΩαϕ(ω)𝑑ω=\displaystyle\mathrm{vol}(\alpha D)\int_{\omega\in\Omega}\alpha\phi(\omega)d\omega= (11)
vol^I(αD¯+(0,αϕ))=1d+1vol^(αD¯+(0,αϕ)).\displaystyle\widehat{\mathrm{vol}}_{I}(\alpha\overline{D}+(0,\alpha\phi))=\frac{1}{d+1}\widehat{\mathrm{vol}}(\alpha\overline{D}+(0,\alpha\phi)).

By the fact that vol^(αD¯)=αd+1vol^(D¯)\widehat{\mathrm{vol}}(\alpha\overline{D})=\alpha^{d+1}\widehat{\mathrm{vol}}(\overline{D}) and vol(αD)=αdvol(D)\mathrm{vol}(\alpha D)=\alpha^{d}\mathrm{vol}(D), we deduce the result from (10) and (11). ∎

The following inequalities about vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) mainly derived from Chen [5], especially the key lemma can be found in [5, Theorem 2.3].

\lemmname \the\smf@thm.

Let Δ1\Delta_{1} and Δ2\Delta_{2} be convex bodies in d\mathbb{R}^{d}, G1G_{1}, G2G_{2} and GG be upper bounded measurable functions on Δ1\Delta_{1}, Δ2\Delta_{2} and Δ1+Δ2\Delta_{1}+\Delta_{2} respectively. Further, we assume that GG is positive and G(x+y)G1(x)+G2(y)G(x+y)\geqslant G_{1}(x)+G_{2}(y). Then it holds that

Δ1+Δ2G(x)𝑑xη(Δ1+Δ2)Δ1G1(x)𝑑xη(Δ1)+Δ2G2(x)𝑑xη(Δ2)\frac{\displaystyle\int_{\Delta_{1}+\Delta_{2}}G(x)dx}{\eta(\Delta_{1}+\Delta_{2})}\geqslant\frac{\displaystyle\int_{\Delta_{1}}G_{1}(x)dx}{\eta(\Delta_{1})}+\frac{\displaystyle\int_{\Delta_{2}}G_{2}(x)dx}{\eta(\Delta_{2})}

where η\eta is the Lebesgue measure on d\mathbb{R}^{d}.

Démonstration.

Let Z1Z_{1} be a random variable on the uniformly distributed probability space (Δ1,μμ(Δ1))(\Delta_{1},\displaystyle\frac{\mu}{\mu(\Delta_{1})}) and Z2Z_{2} be a random variable on the uniformly distributed probablity space (Δ2,μμ(Δ2))(\Delta_{2},\displaystyle\frac{\mu}{\mu(\Delta_{2})}). Then the inequality comes from the following inequality for expectations:

𝔼[G(Z1+Z2)]𝔼[G1(Z1)]+𝔼[G2(Z2)].\mathbb{E}[G(Z_{1}+Z_{2})]\geqslant\mathbb{E}[G_{1}(Z_{1})]+\mathbb{E}[G_{2}(Z_{2})].

\theoname \the\smf@thm.

Let (D1,g1)(D_{1},g_{1}) and (D2,g2)(D_{2},g_{2}) be two \mathbb{R}-Cartier adelic divisors on XX. We assume that

  1. (1)

    both D1D_{1} and D2D_{2} are big,

  2. (2)

    infxΔ(D1)G(D1,g1)(x)>\inf\limits_{x\in\Delta(D_{1})}G_{(D_{1},g_{1})}(x)>-\infty and infxΔ(D2)G(D2,g2)(x)>\inf\limits_{x\in\Delta(D_{2})}G_{(D_{2},g_{2})}(x)>-\infty.

Then the following inequality holds:

vol^I(D1,g1)vol(D1)+vol^I(D2,g2)vol(D2)Δ(D1)+Δ(D2)G(D1+D2,g1+g2)(x)𝑑xvol(Δ(D1)+Δ(D2)).\frac{\widehat{\mathrm{vol}}_{I}(D_{1},g_{1})}{\mathrm{vol}(D_{1})}+\frac{\widehat{\mathrm{vol}}_{I}(D_{2},g_{2})}{\mathrm{vol}(D_{2})}\leqslant\frac{\displaystyle\int_{\Delta(D_{1})+\Delta(D_{2})}G_{(D_{1}+D_{2},g_{1}+g_{2})}(x)dx}{\mathrm{vol}(\Delta(D_{1})+\Delta(D_{2}))}.

In particular, if dim(X)=1\dim(X)=1, then

vol^I(D1,g1)vol(D1)+vol^I(D2,g2)vol(D2)vol^I(D1+D2,g1+g2)vol(D1+D2).\frac{\widehat{\mathrm{vol}}_{I}(D_{1},g_{1})}{\mathrm{vol}(D_{1})}+\frac{\widehat{\mathrm{vol}}_{I}(D_{2},g_{2})}{\mathrm{vol}(D_{2})}\leqslant\frac{\widehat{\mathrm{vol}}_{I}(D_{1}+D_{2},g_{1}+g_{2})}{\mathrm{vol}(D_{1}+D_{2})}.
Démonstration.

By [4, Proposition 6.3.28] , we have the following two facts that

  1. (1)

    Δ(D1)+Δ(D2)Δ(D1+D2)\Delta(D_{1})+\Delta(D_{2})\subset\Delta(D_{1}+D_{2}),

  2. (2)

    G(D1,g1)(x)+G(D2,g2)(y)G(D1+D2,g1+g2)(x+y)G_{(D_{1},g_{1})}(x)+G_{(D_{2},g_{2})}(y)\leqslant G_{(D_{1}+D_{2},g_{1}+g_{2})}(x+y) for any xΔ(D1)x\in\Delta(D_{1}) and yΔ(D2)y\in\Delta(D_{2}).

Then it follows from Theorem 5.1 and Lemma 5.2 that

vol^I(D1,g1)vol(D1)+vol^I(D2,g2)vol(D2)Δ(D1)+Δ(D2)G(D1+D2,g1+g2)(x)𝑑xvol(Δ(D1)+Δ(D2)).\frac{\widehat{\mathrm{vol}}_{I}(D_{1},g_{1})}{\mathrm{vol}(D_{1})}+\frac{\widehat{\mathrm{vol}}_{I}(D_{2},g_{2})}{\mathrm{vol}(D_{2})}\leqslant\frac{\displaystyle\int_{\Delta(D_{1})+\Delta(D_{2})}G_{(D_{1}+D_{2},g_{1}+g_{2})}(x)dx}{\mathrm{vol}(\Delta(D_{1})+\Delta(D_{2}))}.

To obtain the second inequality, it suffices to show that

Δ(D1)+Δ(D2)=Δ(D1+D2).\Delta(D_{1})+\Delta(D_{2})=\Delta(D_{1}+D_{2}).

In the case where dim(X)=1\dim(X)=1, the Okoukov bodies Δ(D1)\Delta(D_{1}), Δ(D2)\Delta(D_{2}) and Δ(D1+D2)\Delta(D_{1}+D_{2}) are bounded intervals of \mathbb{R}. Note that Δ(D1)+Δ(D2)Δ(D1+D2)\Delta(D_{1})+\Delta(D_{2})\subset\Delta(D_{1}+D_{2}) and

vol(D1+D2)=deg(D1+D2)=deg(D1)+deg(D2)=vol(D1)+vol(D2),\mathrm{vol}(D_{1}+D_{2})=\mathrm{deg}(D_{1}+D_{2})=\mathrm{deg}(D_{1})+\mathrm{deg}(D_{2})=\mathrm{vol}(D_{1})+\mathrm{vol}(D_{2}),

it follows that Δ(D1)+Δ(D2)=Δ(D1+D2)\Delta(D_{1})+\Delta(D_{2})=\Delta(D_{1}+D_{2}). ∎

5.3 Applications on arithmetic surfaces

Now we focus on the case of arithmetic surfaces over adelic curves, i.e. dimX=1\dim X=1. There is one thing worth noting that for any \mathbb{R}-Cartier divisor DD on XX, if deg(D)>0\mathrm{deg}(D)>0, then we can write DD in the form of

D=λ1D1+λ2D2++λnDnD=\lambda_{1}D_{1}+\lambda_{2}D_{2}+\cdots+\lambda_{n}D_{n}

where DiD_{i} are ample Cartier divisors and λi\lambda_{i} are positive real numbers. This is just due to Nakai criterion for \mathbb{R}-divisors (see Lazarsfeld [9, Theorem 2.3.18]). Or you can just see Theorem 6 for specifically the curve case. By the fact that any Cartier divisor admits a Green function on it, we can write (D,g)(D,g) in the form of

(D,g)=λ1(D1,g1)+λ2(D2,g2)++λn(Dn,gn).(D,g)=\lambda_{1}(D_{1},g_{1})+\lambda_{2}(D_{2},g_{2})+\cdots+\lambda_{n}(D_{n},g_{n}).
\propname \the\smf@thm.

Assume that dimX=1\dim X=1. Let (D,g)(D,g) be an adelic \mathbb{R}-Cartier divisor. If deg(D)>0\mathrm{deg}(D)>0 then

infxΔ(D)G(D,g)(x)>.\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x)>-\infty.
Démonstration.

As discussed above, we can write (D,g)(D,g) in the form of

(D,g)=λ1(D1,g1)+λ2(D2,g2)++λn(Dn,gn).(D,g)=\lambda_{1}(D_{1},g_{1})+\lambda_{2}(D_{2},g_{2})+\cdots+\lambda_{n}(D_{n},g_{n}).

Since DiD_{i} is ample Cartier for i=1,,ni=1,\dots,n, by Lemma 4.1, we have μ^mininf(Di,gi)>\widehat{\mu}_{\min}^{\inf}(D_{i},g_{i})>-\infty which implies that

infxΔ(D)G(Di,gi)(x)>\inf\limits_{x\in\Delta(D)}G_{(D_{i},g_{i})}(x)>-\infty

for each i=1,,ni=1,\dots,n. Moreover, by the homogeneity described in Proposition 5.2, we get that

infxΔ(λiD)G(λiDi,λigi)(x)>.\inf\limits_{x\in\Delta(\lambda_{i}D)}G_{(\lambda_{i}D_{i},\lambda_{i}g_{i})}(x)>-\infty.

Since we have the two following facts that

  1. (1)

    Δ(λ1D1)+Δ(λ2D2)=Δ(λ1D1+λ2D2)\Delta(\lambda_{1}D_{1})+\Delta(\lambda_{2}D_{2})=\Delta(\lambda_{1}D_{1}+\lambda_{2}D_{2}),

  2. (2)

    For any xΔ(λ1D1)x\in\Delta(\lambda_{1}D_{1}) and yΔ(λ2D2)y\in\Delta(\lambda_{2}D_{2}), it holds that

    G(λ1D1,λ1g1)(x)+G(λ2D2,λ2g2)(y)G(λ1D1+λ2D2,λ1g1+λ2g2)(x+y).G_{(\lambda_{1}D_{1},\lambda_{1}g_{1})}(x)+G_{(\lambda_{2}D_{2},\lambda_{2}g_{2})}(y)\leqslant G_{(\lambda_{1}D_{1}+\lambda_{2}D_{2},\lambda_{1}g_{1}+\lambda_{2}g_{2})}(x+y).

One obtains that

infxΔ(λ1D1+λ2D2)G(λ1D1+λ2D2,λ1g1+λ2g2)\displaystyle\inf\limits_{x\in\Delta(\lambda_{1}D_{1}+\lambda_{2}D_{2})}G_{(\lambda_{1}D_{1}+\lambda_{2}D_{2},\lambda_{1}g_{1}+\lambda_{2}g_{2})} (x)\displaystyle(x)\geqslant
infxΔ(λ1D1)G(λ1D1,λ1g1)(x)\displaystyle\inf\limits_{x\in\Delta(\lambda_{1}D_{1})}G_{(\lambda_{1}D_{1},\lambda_{1}g_{1})}(x) +infxΔ(λ2D2)G(λ2D2,λ2g2)(x)>.\displaystyle+\inf\limits_{x\in\Delta(\lambda_{2}D_{2})}G_{(\lambda_{2}D_{2},\lambda_{2}g_{2})}(x)>-\infty.

Then proceeding by induction on nn, we obtain the assertion. ∎

Now we know that for any ample \mathbb{R}-Cartier divisor DD on arithmetic surface XX, vol^I(D,g)\widehat{\mathrm{vol}}_{I}(D,g) is well defined. In the following, we are going to prove the continuity of vol^I()\widehat{\mathrm{vol}}_{I}(\cdot).

\propname \the\smf@thm.

Assume that dimX=1\dim X=1. Let (D,g)(D,g) be an \mathbb{R}-Cartier adelic divisor such that vol^I(D,g)>0\widehat{\mathrm{vol}}_{I}(D,g)>0 and (E,h)(E,h) be an \mathbb{R}-Cartier adelic divisor. Then there exists a positive integer n0n_{0} such that vol^I(n(D,g)+(E,h))>0\widehat{\mathrm{vol}}_{I}(n(D,g)+(E,h))>0 for nn0n\geqslant n_{0}.

Démonstration.

Take an integer n0n_{0} such that deg(n0D+E)>0\mathrm{deg}(n_{0}D+E)>0. Then there exists a non-negative integrable function ϕ\phi on Ω\Omega such that vol^I(n0D+E,n0g+h+ϕ)0\widehat{\mathrm{vol}}_{I}(n_{0}D+E,n_{0}g+h+\phi)\geqslant 0.

Since vol^I(D,g)>0\widehat{\mathrm{vol}}_{I}(D,g)>0, there exist an integer m0m_{0} such that for mm0m\geqslant m_{0}\in\mathbb{N}, it holds that vol^I(D,gϕm)>0\widehat{\mathrm{vol}}_{I}(D,g-\frac{\phi}{m})>0. Hence vol^I(mD,mgϕ)=md+1vol^I(D,gϕm)>0\widehat{\mathrm{vol}}_{I}(mD,mg-\phi)=m^{d+1}\widehat{\mathrm{vol}}_{I}(D,g-\frac{\phi}{m})>0.

We can therefore get that

vol^I((m+n0)D+E,(m+n0)g+h)vol((m+n0)D+E)>vol^I(n0D+E,n0g+h+ϕ)vol(n0D+E)0\frac{\widehat{\mathrm{vol}}_{I}((m+n_{0})D+E,(m+n_{0})g+h)}{\mathrm{vol}((m+n_{0})D+E)}>\frac{\widehat{\mathrm{vol}}_{I}(n_{0}D+E,n_{0}g+h+\phi)}{\mathrm{vol}(n_{0}D+E)}\geqslant 0

by Theorem 5.2. Thus vol^I(nD+E,ng+h)0\widehat{\mathrm{vol}}_{I}(nD+E,ng+h)\geqslant 0 for any nm0+n0n\geqslant m_{0}+n_{0}. ∎

\theoname \the\smf@thm.

Assume that dimX=1\dim X=1. For any \mathbb{R}-Cartier divisors D¯=(D,g),E¯1,,E¯n\overline{D}=(D,g),\overline{E}_{1},\dots,\overline{E}_{n}, if deg(D)>0\mathrm{deg}(D)>0, then

lim|ϵ1|++|ϵn|0vol^I(D¯+ϵ1E¯1++ϵnE¯n)=vol^I(D¯).\lim\limits_{\lvert\epsilon_{1}\rvert+\cdots+\lvert\epsilon_{n}\rvert\rightarrow 0}\widehat{\mathrm{vol}}_{I}(\overline{D}+\epsilon_{1}\overline{E}_{1}+\cdots+\epsilon_{n}\overline{E}_{n})=\widehat{\mathrm{vol}}_{I}(\overline{D}).
Démonstration.

By Lemma 4.1, there exists a Green function gg^{\prime} on DD such that vol^I(D,g)>0\widehat{\mathrm{vol}}_{I}(D,g^{\prime})>0. Then there exists a sufficiently large aa\in\mathbb{N} such that vol^I(a(D,g)±E¯i)>0\widehat{\mathrm{vol}}_{I}(a(D,g^{\prime})\pm\overline{E}_{i})>0 for any i=1,,ni=1,\dots,n due to Proposition 5.3.

If we set ϵ=|ϵ1|++|ϵn|\epsilon=\lvert\epsilon_{1}\rvert+\cdots+\lvert\epsilon_{n}\rvert, then for ϵ1\epsilon\ll 1, the inequality

vol^I(D+aϵD,g+aϵg)vol(D+aϵD)\displaystyle\frac{\widehat{\mathrm{vol}}_{I}(D+a\epsilon D,g+a\epsilon g^{\prime})}{\mathrm{vol}(D+a\epsilon D)}\geqslant
vol^I(D¯+ϵ1E¯1++ϵnE¯n)vol(D+ϵ1E1++ϵnEn)vol^I(DaϵD,gaϵg)vol(DaϵD)\displaystyle\frac{\widehat{\mathrm{vol}}_{I}(\overline{D}+\epsilon_{1}\overline{E}_{1}+\cdots+\epsilon_{n}\overline{E}_{n})}{\mathrm{vol}(D+\epsilon_{1}E_{1}+\cdots+\epsilon_{n}E_{n})}\geqslant\frac{\widehat{\mathrm{vol}}_{I}(D-a\epsilon D,g-a\epsilon g^{\prime})}{\mathrm{vol}(D-a\epsilon D)}

holds by Theorem 5.2.

Since

vol^I(D+aϵD,g+aϵg)\displaystyle\widehat{\mathrm{vol}}_{I}(D+a\epsilon D,g+a\epsilon g^{\prime}) =vol^I((1+aϵ)D,(1+aϵ)g+aϵ(gg))\displaystyle=\widehat{\mathrm{vol}}_{I}((1+a\epsilon)D,(1+a\epsilon)g+a\epsilon(g^{\prime}-g))
=(1+aϵ)d+1vol^I(D,g+aϵ1+aϵ(gg))\displaystyle=(1+a\epsilon)^{d+1}\widehat{\mathrm{vol}}_{I}(D,g+\frac{a\epsilon}{1+a\epsilon}(g^{\prime}-g))

for ϵ\epsilon small enough, we obtain that limϵ0vol^I(D+aϵD,g+aϵg)=vol^I(D,g)\lim\limits_{\epsilon\rightarrow 0}\widehat{\mathrm{vol}}_{I}(D+a\epsilon D,g+a\epsilon g^{\prime})=\widehat{\mathrm{vol}}_{I}(D,g) by Lemma 4.1.

We can run the similar process to get that limϵ0vol^I(DaϵD,gaϵg)=vol^I(D,g)\lim\limits_{\epsilon\rightarrow 0}\widehat{\mathrm{vol}}_{I}(D-a\epsilon D,g-a\epsilon g^{\prime})=\widehat{\mathrm{vol}}_{I}(D,g). The continuity of vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) is thus proved. ∎

\remaname \the\smf@thm.

Someone may wonder whether we can deduce the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) from the continuity of vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) in the case where XX is of dimension 11. Obviously, if μ^minsup(D,g)>\widehat{\mu}_{\min}^{\sup}(D,g)>-\infty for any (D,g)Div(X)(D,g)\in\mathrm{Div}_{\mathbb{R}}(X) with deg(D)>0\mathrm{deg}(D)>0, then the answer is yes.

But even we already have the result that infxΔ(D)G(D,g)(x)>\inf\limits_{x\in\Delta(D)}G_{(D,g)}(x)>-\infty, we can not show that vol^I(D,g)=2vol^χ(D,g)\widehat{\mathrm{vol}}_{I}(D,g)=2\widehat{\mathrm{vol}}_{\chi}(D,g) from the weak convergence in Theorem 5.1.

Assume that {rn}n\{r_{n}\}_{n\in\mathbb{N}} is a strictly increasing sequence of postivie integers. For any xx, we denote by δx\delta_{x} the measure with mass 11 on the point XX. Then the sequence of empirical measures {ηn:=1rnδrn+rn1rnδ1}\{\eta_{n}:=\displaystyle\frac{1}{r_{n}}\delta_{-r_{n}}+\displaystyle\frac{r_{n}-1}{r_{n}}\delta_{1}\} weakly converges to η=δ1\eta=\delta_{1} which is of compact support. This is simply due to the difference between weak convergence and convergence. Take f(x)=xf(x)=x, then limn+f(x)ηn(dx)=limn+(rnrn+rn1rn)=0\lim\limits_{n\rightarrow+\infty}\displaystyle\int_{\mathbb{R}}f(x)\eta_{n}(dx)=\lim\limits_{n\rightarrow+\infty}{\big{(}\displaystyle\frac{-r_{n}}{r_{n}}+\displaystyle\frac{r_{n}-1}{r_{n}}\big{)}}=0, but f(x)η(dx)=1\displaystyle\int_{\mathbb{R}}f(x)\eta(dx)=1.

Instead of the continuity of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot), we can view vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) as a continous extension of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) by the following corollary.

\coroname \the\smf@thm.

Assume that dimX=1\dim X=1. Let D¯=(D,g)\overline{D}=(D,g) be an adelic \mathbb{R}-Cartier divisor on XX such that deg(D)>0\mathrm{deg}(D)>0. So we can write D¯\overline{D} as

D¯=α1D¯1+α2D¯2++αnD¯n\overline{D}=\alpha_{1}\overline{D}_{1}+\alpha_{2}\overline{D}_{2}+\cdots+\alpha_{n}\overline{D}_{n}

where D¯i=(Di,gi)\overline{D}_{i}=(D_{i},g_{i}), DiD_{i} is an ample Cartier divisor with αi>0\alpha_{i}>0, i=1,,n.i=1,\dots,n. Then we can view vol^I()\widehat{\mathrm{vol}}_{I}(\cdot) as a continuous extension of vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) according to the following formula:

limaiαiaii=1,,nvol^χ(a1D¯1+a2D¯2++anD¯n)=vol^I(D¯)2.\lim\limits_{\begin{subarray}{c}a_{i}\rightarrow\alpha_{i}\\ a_{i}\in\mathbb{Q}\\ i=1,\dots,n\end{subarray}}\widehat{\mathrm{vol}}_{\chi}(a_{1}\overline{D}_{1}+a_{2}\overline{D}_{2}+\cdots+a_{n}\overline{D}_{n})=\frac{\widehat{\mathrm{vol}}_{I}(\overline{D})}{2}.
Démonstration.

This is due to the fact that vol^χ()\widehat{\mathrm{vol}}_{\chi}(\cdot) agrees with 12vol^I()\displaystyle\frac{1}{2}\widehat{\mathrm{vol}}_{I}(\cdot) for any adelic \mathbb{Q}-Cartier \mathbb{Q}-ample divisor and the continuity of vol^I()\widehat{\mathrm{vol}}_{I}(\cdot). ∎

6 Appendix

This part is dedicated to give proofs for some results in algebraic geometry, especially the surjectivity of multiplication maps for ample divisors which is just taken from [9]. Then we apply this property to Okounkov bodies.

\lemmname \the\smf@thm.

Let XX be a projective scheme and DD an ample Cartier divisor on XX. Then any coherent sheaf \mathcal{F} on XX admits a (possibly non-terminating) resolution:

𝒪X(p1D)𝒪X(p0D)0\dots\rightarrow\oplus\mathcal{O}_{X}(-p_{1}D)\rightarrow\oplus\mathcal{O}_{X}(-p_{0}D)\rightarrow\mathcal{F}\rightarrow 0

where 0<p0<p1<0<p_{0}<p_{1}<\cdots.

Démonstration.

Since DD is ample, we have 𝒪X(p0D)\mathcal{F}\otimes\mathcal{O}_{X}(p_{0}D) is globally generated for some p00p_{0}\gg 0. Then we can get a surjective map 𝒪X𝒪X(p0D)\oplus\mathcal{O}_{X}\rightarrow\mathcal{F}\otimes\mathcal{O}_{X}(p_{0}D) which induces the surjective map 𝒪X(p0D)\oplus\mathcal{O}_{X}(-p_{0}D)\rightarrow\mathcal{F}. For the kernal of the map, we can apply the same process the get p1p_{1}, and then continue. ∎

\lemmname \the\smf@thm.

Let XX be a projective scheme. Consider a resolution of coherent sheaves:

0n100.0\rightarrow\mathcal{F}_{n}\rightarrow\cdots\rightarrow\mathcal{F}_{1}\rightarrow\mathcal{F}_{0}\rightarrow\mathcal{F}\rightarrow 0.

If

Hk(X,0)=Hk+1(X,1)==Hk+n(X,n)=0,H^{k}(X,\mathcal{F}_{0})=H^{k+1}(X,\mathcal{F}_{1})=\cdots=H^{k+n}(X,\mathcal{F}_{n})=0,

then Hk(X,)=0H^{k}(X,\mathcal{F})=0.

\theoname \the\smf@thm.

Let XX be a projective scheme, and let DD and EE be ample Cartier divisors and BB a Cartier divisor on XX. Then there exists an N+N\in\mathbb{N}_{+} which is related to DD and EE, such that for every n,mNn,m\geqslant N, the multiplication map

H0(nD)H0(mE+B)H0(nD+mE+B)H^{0}(nD)\otimes H^{0}(mE+B)\rightarrow H^{0}(nD+mE+B)

is surjective.

Démonstration.

Let ΔX×X\Delta\subset X\times X denote the image of XX under the diagonal morphism. Consider the exact sequence of sheaves on X×XX\times X:

0Δ𝒪X×X𝒪Δ0.0\longrightarrow\mathcal{I}_{\Delta}\longrightarrow\mathcal{O}_{X\times X}\longrightarrow\mathcal{O}_{\Delta}\longrightarrow 0.

Set (nD,mE+B)=p1(nD)+p2(mE+B)(nD,mE+B)=p_{1}^{*}(nD)+p_{2}^{*}(mE+B). Denote by 𝒪X×X(nD,mE+B)\mathcal{O}_{X\times X}(nD,mE+B) the structure sheaf of (nD,mE+B)(nD,mE+B), and set

Δ(nD,mE+B)\displaystyle\mathcal{I}_{\Delta}(nD,mE+B) :=Δ𝒪X×X(nD,mE+B),\displaystyle:=\mathcal{I}_{\Delta}\otimes\mathcal{O}_{X\times X}(nD,mE+B),
𝒪Δ(nD,mE+B)\displaystyle\mathcal{O}_{\Delta}(nD,mE+B) :=𝒪Δ𝒪X×X(nD,mE+B).\displaystyle:=\mathcal{O}_{\Delta}\otimes\mathcal{O}_{X\times X}(nD,mE+B).

Then there exists an exact sequence of sheaves on X×XX\times X that

0Δ(nD,mE+B)𝒪X×X(nD,mE+B)𝒪Δ(nD,mE+B)00\longrightarrow\mathcal{I}_{\Delta}(nD,mE+B)\longrightarrow\mathcal{O}_{X\times X}(nD,mE+B)\longrightarrow\mathcal{O}_{\Delta}(nD,mE+B)\longrightarrow 0

which leads to the exact sequence

0\displaystyle 0\rightarrow H0(X×X,Δ(nD,mE+B))H0(X×X,𝒪X×X(nD,mE+B))\displaystyle H^{0}(X\times X,\mathcal{I}_{\Delta}(nD,mE+B))\rightarrow H^{0}(X\times X,\mathcal{O}_{X\times X}(nD,mE+B))\rightarrow
H0(X×X,𝒪Δ(nD,mE+B))H1(X×X,Δ(nD,mE+B)) .\displaystyle H^{0}(X\times X,\mathcal{O}_{\Delta}(nD,mE+B))\rightarrow H^{1}(X\times X,\mathcal{I}_{\Delta}(nD,mE+B))\rightarrow...\text{ }.

Since H0(X×X,𝒪X×X(nD,mE+B))=H0(X,nD)H0(X,mE+B)H^{0}(X\times X,\mathcal{O}_{X\times X}(nD,mE+B))=H^{0}(X,nD)\otimes H^{0}(X,mE+B) by Künneth formula and H0(X×X,𝒪Δ(nD,mE+B))=H0(X,nD+mE+B)H^{0}(X\times X,\mathcal{O}_{\Delta}(nD,mE+B))=H^{0}(X,nD+mE+B), it suffices to show that H1(X×X,Δ(nD,mE+B))=0H^{1}(X\times X,\mathcal{I}_{\Delta}(nD,mE+B))=0 for every n,m0n,m\gg 0.

By Lemma 6, we can construct a resolution with the form

𝒪X×X(p1D,p2E)𝒪X×X(p0D,p0E)Δ0\cdots\rightarrow\oplus\mathcal{O}_{X\times X}(-p_{1}D,-p_{2}E)\rightarrow\oplus\mathcal{O}_{X\times X}(-p_{0}D,-p_{0}E)\rightarrow\mathcal{I}_{\Delta}\rightarrow 0

where 0<p0<p1<0<p_{0}<p_{1}<\cdots.

Thus it suffices to show that

Hi+1(X×X,𝒪X×X((npi)D,(mpi)E+B))=0H^{i+1}\left(X\times X,\mathcal{O}_{X\times X}\big{(}(n-p_{i})D,(m-p_{i})E+B\big{)}\right)=0

for any i0i\geqslant 0 and n,m0n,m\gg 0. For idimX×Xi\geqslant\dim X\times X, this is trivial due to Grothendieck’s vanishing theorem. In the case that i<dimX×Xi<\dim X\times X, by Künneth formula, we have

Hi+1(X×X,𝒪X×X((npi)D,(mpi)E+B))\displaystyle H^{i+1}\left(X\times X,\mathcal{O}_{X\times X}\big{(}(n-p_{i})D,(m-p_{i})E+B\big{)}\right) =\displaystyle=
j+k=i+1Hj(X,(npi)D)\displaystyle\mathop{\oplus}\limits_{j+k=i+1}H^{j}(X,(n-p_{i})D)\otimes Hk(X,(mpi)E+B).\displaystyle H^{k}(X,(m-p_{i})E+B).

As an application of Serre’s vanishing theorem in [8, Proposition 5.3], we know that there exists an N+N\in\mathbb{N}_{+} such that for n>Nn>N, Hl(X,(npi)D)=0H^{l}(X,(n-p_{i})D)=0 for any l>0l>0 and i<dimX×Xi<\dim X\times X.

Therefore we deduce the surjectivity of multiplication map. ∎

\theoname \the\smf@thm.

Let XX be an integral projective curve, and DD an \mathbb{R}-divisor with positive degree. Then we can write DD in the form of

D=a1D1++amDmD=a_{1}D_{1}+\cdots+a_{m}D_{m}

where DiD_{i} are ample divisors and ai>0a_{i}>0.

Démonstration.

Assume that D=n1P1++nrPrD=n_{1}P_{1}+\cdots+n_{r}P_{r} where PiP_{i} are closed points on XX. Then we proceed by induction on rr. We may further assume that

n1n2nr.n_{1}\geqslant n_{2}\geqslant\cdots\geqslant n_{r}.

In the case that r=1r=1, it’s trivial. In the following we assume that r>1r>1. If nr0n_{r}\geqslant 0, then we are done because DD is already in desired form. If nr<0n_{r}<0, set D=n1P1++nr1Pr1D^{\prime}=n_{1}P_{1}+\cdots+n_{r-1}P_{r-1}. Then deg(D)>deg(D)>0\mathrm{deg}(D^{\prime})>\mathrm{deg}(D)>0, by the induction hypothesis, we can write DD^{\prime} in the form that

D=a1D1++amDmD^{\prime}=a_{1}D_{1}+\cdots+a_{m}D_{m}

where DiD_{i} are ample and ai>0a_{i}>0.

Then take rational numbers λi<ai/|nr|\lambda_{i}<a_{i}/\lvert n_{r}\rvert for i=1,,mi=1,\cdots,m such that

i=1mλideg(Di)>deg(Pr).\sum\limits_{i=1}^{m}\lambda_{i}\mathrm{deg}(D_{i})>\mathrm{deg}(P_{r}).

This can be acheived because deg(D)=i=1maideg(Di)>nrdeg(Pr).\mathrm{deg}(D^{\prime})=\sum\limits_{i=1}^{m}a_{i}\mathrm{deg}(D_{i})>-n_{r}\mathrm{deg}(P_{r}). Then we can write DD in the form that

D=i=1m(ai|nr|λi)Di+|nr|(i=1mλiDiPr).D=\sum\limits_{i=1}^{m}(a_{i}-\lvert n_{r}\rvert\lambda_{i})D_{i}+\lvert n_{r}\rvert\left(\sum\limits_{i=1}^{m}\lambda_{i}D_{i}-P_{r}\right).

Références

  • [1] S. J. Arakelov – «  Intersection theory of divisors on an arithmetic surface  », Mathematics of the USSR-Izvestiya 8 (1974), no. 6, p. 1167–1180.
  • [2] V. G. BerkovichSpectral theory and analytic geometry over non-archimedean fields, no. 33, American Mathematical Soc., 2012.
  • [3] S. Boucksom et H. Chen – «  Okounkov bodies of filtered linear series  », Compositio Mathmatica 147 (2011), no. 4, p. 1205–1229.
  • [4] H. Chen et A. MoriwakiArakelov geometry over adelic curves, Lecture Notes in Mathematics, vol. 2258, 2019.
  • [5] H. Chen – «  Hodge index inequality in geometry and arithmetic: a probabilistic approach  », Journal de l’École polytechnique - Mathématiques 3 (2016), p. 231 – 262.
  • [6] G. Faltings – «  Calculus on arithmetic surfaces  », Annals of Mathematics 119 (1984), no. 2, p. 387–424.
  • [7] H. Gillet et C. Soulé – «  Intersection sur les variétés d’arakelov  », Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 299 (1984), p. 563–566.
  • [8] R. HartshorneAlgebraic geometry, vol. 52, Springer Science & Business Media, 2013.
  • [9] R. LazarsfeldPositivity in algebraic geometry, classical setting: Line bundles and linear series, vol. 52, Springer, 2004.
  • [10] A. Moriwaki – «  Continuity of volumes on arithmetic varieties  », Journal of Algebraic Geometry 18 (2009), no. 3, p. 407–457.
  • [11] J. NeukirchAlgebraic number theory, Grundlehren der Mathematischen Wissenschaften, vol. 322, Springer-Verlag, Berlin, 1999.
  • [12] T. Ohnishi – «  Volume function over a trivially valued field  », arXiv preprint arXiv:1905.05447 (2019).