This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The breadth of Lie poset algebras

Alex Cameron Department of Mathematics, Muhlenberg College, Allentown, PA, 18104 Vincent E. Coll Department of Mathematics, Lehigh University, Bethlehem, PA, 18015 Jr Department of Mathematics, Lehigh University, Bethlehem, PA, 18015 Nicholas Mayers Department of Mathematics, Lehigh University, Bethlehem, PA, 18015 Nicholas Russoniello Department of Mathematics, Lehigh University, Bethlehem, PA, 18015
Abstract

The breadth of a Lie algebra LL is defined to be the maximal dimension of the image of adx=[x,]:LLad_{x}=[x,-]:L\to L, for xLx\in L. Here, we initiate an investigation into the breadth of three families of Lie algebras defined by posets and provide combinatorial breadth formulas for members of each family.


1 Introduction

Convention: We assume throughout that all Lie algebras are over an algebraically closed field of characteristic zero, k, which we may take, without any loss of generality, to be the complex numbers.

The complete classification of simple Lie algebras, elegantly couched in the language of root systems and Dynkin diagrams, stands in sharp contrast to the solvable case where the Lie algebras are classified only up to dimension six (see [5]). Recent efforts have concentrated on the seemingly more tractable nilpotent case, where the study of nilpotent Lie algebras and their invariants is of topical interest.

One such invariant is the “breadth” of a Lie algebra LL, which is defined to be the maximal dimension of the image of adx=[x,]:LLad_{x}=[x,-]:L\rightarrow L as xx runs through the elements of LL. This Lie-algebraic invariant was introduced by Leedham-Green, Neumann and Weigold ([8], 1969). Some time later, Khuhirun et al. ([7], 2014) characterized nilpotent Lie algebras of breadth one and two and provided a full classification in breadth one. In breadth two, they achieved a succinct classification only up to dimension six. This work was inspired by the recent interest in nilpotent Lie algebras and analogous breadth work of Parmeggani and Stellmacher ([10], 1999) who gave a characterization of finite p-groups of breadth one and two (the breadth of a finite group is the cardinality of its largest conjugacy class). As a capstone to the work in [7], Remm ([11], 2017) used characteristic sequences to complete, in particular, the classification of nilpotent Lie algebras of breadth two. Here, rather than studying Lie algebras with a particular, fixed breadth value, we initiate an investigation into explicit breadth formulas for three families of Lie algebras defined by posets: Lie poset algebras, type-A Lie poset algebras, and nilpotent Lie poset algebras. The last two are subalgebras of the first, but only the last of these is nilpotent.

Lie poset algebras are solvable subalgebras of 𝔤𝔩(n)\mathfrak{gl}(n) which arise naturally from the incidence algebras of posets (cf. [12]) and can be defined as follows. For each poset (𝒫,𝒫)(\mathcal{P},\preceq_{\mathcal{P}}) with 𝒫={1,,n}\mathcal{P}=\{1,\ldots,n\}, one obtains a Lie algebra 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) consisting of |𝒫|×|𝒫||\mathcal{P}|\times|\mathcal{P}| matrices whose i,ji,j-entry can be nonzero if and only if i𝒫j,i\preceq_{\mathcal{P}}j, and the Lie bracket of 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) is given by [X,Y]=XYYX[X,Y]=XY-YX, where juxtaposition denotes standard matrix multiplication. The imposition of various algebraic conditions on the members of 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) yields Lie poset algebras of classical type. For example, if a vanishing trace condition is applied, one obtains a type-A Lie poset algebra, which we denote by 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}). Removing diagonal elements from 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) results in a nilpotent subalgebra of 𝔤𝔩(n)\mathfrak{gl}(n) which, following [9], is denoted by 𝔤(𝒫)\mathfrak{g}^{\prec}(\mathcal{P}) and referred to as a nilpotent Lie poset algebra. See [1, 2, 3, 9].

The organization of the paper is as follows. After covering some preliminaries in Section 2, our main results are detailed in Section 3. Theorem 1 establishes that the breadth of 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) and 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}) is given by the number of relations in 𝒫\mathcal{P}. In Theorem 2, we consider three families of nilpotent Lie poset algebras (corresponding to chains, trees, and grids) to find that the breadth of a member algebra is simply the number of non-covering relations in the algebra’s defining poset. In Theorems 3–6, we examine a three-parameter family of nilpotent Lie poset algebras, 𝔤(𝒫(r0,r1,r2))\mathfrak{g}^{\prec}(\mathcal{P}(r_{0},r_{1},r_{2})), whose underlying posets have Hasse diagrams (see Section 2) which can be described as “expanded double-fan” graphs (see Figure 1). In contrast to previous examples, we show that the breadth of such a nilpotent Lie poset algebra is generally not a function of the number and type of poset relations, but rather is an elementary function of its parameters. Motivated by this discovery, we end Section 3 with a combinatorial obstruction to 𝔤(𝒫)\mathfrak{g}^{\prec}(\mathcal{P}) having breadth equal to the number of non-covering relations in 𝒫\mathcal{P} (see Theorem 7). Finally, in the epilogue, we discuss directions for further research along with some consequences of the aforementioned obstruction result.


Figure 1: Hasse diagram of the poset 𝒫(4,2,3)\mathcal{P}(4,2,3)

2 Preliminaries

A finite poset (𝒫,𝒫)(\mathcal{P},\preceq_{\mathcal{P}}) consists of a finite set 𝒫={1,,n}\mathcal{P}=\{1,\ldots,n\} together with a binary relation 𝒫\preceq_{\mathcal{P}} on 𝒫\mathcal{P} which is reflexive, anti-symmetric, and transitive. We tacitly assume that if x𝒫yx\preceq_{\mathcal{P}}y for x,y𝒫x,y\in\mathcal{P}, then xyx\leq y, where \leq denotes the natural ordering on \mathbb{Z}. When no confusion will arise, we simply denote a poset (𝒫,𝒫)(\mathcal{P},\preceq_{\mathcal{P}}) by 𝒫\mathcal{P}, and 𝒫\preceq_{\mathcal{P}} by \preceq.

Let x,y𝒫x,y\in\mathcal{P}. If xyx\preceq y and xyx\neq y, then we call xyx\preceq y a strict relation and write xyx\prec y. Let Rel(𝒫)Rel(\mathcal{P}) denote the set of strict relations between elements of 𝒫\mathcal{P}, Ext(𝒫)Ext(\mathcal{P}) denote the set of minimal and maximal elements of 𝒫\mathcal{P}, and RelE(𝒫)Rel_{E}(\mathcal{P}) denote the set of strict relations between the elements of Ext(𝒫)Ext(\mathcal{P}).

Example 1.

Consider the poset 𝒫={1,2,3,4}\mathcal{P}=\{1,2,3,4\} with 123,41\prec 2\prec 3,4. We then have

Rel(𝒫)={12,13,14,23,24},Rel(\mathcal{P})=\{1\prec 2,1\prec 3,1\prec 4,2\prec 3,2\prec 4\},
Ext(𝒫)={1,3,4},andRelE(𝒫)={13,14}.Ext(\mathcal{P})=\{1,3,4\},\quad\text{and}\quad Rel_{E}(\mathcal{P})=\{1\prec 3,1\prec 4\}.

For x,y𝒫x,y\in\mathcal{P} satisfying xyx\prec y, we set

[x,y]𝒫={p𝒫|xpy}.[x,y]_{\mathcal{P}}=\{p\in\mathcal{P}~{}|~{}x\preceq p\preceq y\}.

Recall that, if xyx\prec y and there exists no z𝒫z\in\mathcal{P} satisfying xzyx\prec z\prec y, then yy covers xx and xyx\prec y is a covering relation. Using this language, the Hasse diagram of a poset 𝒫\mathcal{P} can be reckoned as the graph whose vertices correspond to elements of 𝒫\mathcal{P} and whose edges correspond to covering relations.

Example 2.

Let 𝒫\mathcal{P} be the poset of Example 1. The Hasse diagram of 𝒫\mathcal{P} is given in Figure 2 below.

1234
Figure 2: Hasse diagram of 𝒫\mathcal{P}, for 𝒫={1,2,3,4}\mathcal{P}=\{1,2,3,4\} with 123,41\prec 2\prec 3,4

Ongoing, the collection of non-covering relations of a poset 𝒫\mathcal{P} will prove important. So, let

RelC¯(𝒫)={pq|pq is not a covering relation of 𝒫}Rel_{\overline{C}}(\mathcal{P})=\{p\prec q~{}|~{}p\prec q\text{ is not a covering relation of }\mathcal{P}\}

and for p𝒫p\in\mathcal{P}, let

RelC¯(𝒫,p)={qrRelC¯(𝒫)|q=p or r=p}.Rel_{\overline{C}}(\mathcal{P},p)=\{q\prec r\in Rel_{\overline{C}}(\mathcal{P})~{}|~{}q=p\text{ or }r=p\}.

Given a subset S𝒫S\subset\mathcal{P}, the induced subposet generated by SS is the poset 𝒫S\mathcal{P}_{S} on SS, where i𝒫Sji\prec_{\mathcal{P}_{S}}j if and only if i𝒫ji\prec_{\mathcal{P}}j.

The following families of posets will be of interest in the sections that follow.

Definition 1.

Let CnC_{n} denote the chain on nn elements; that is, the poset on the set {1,,n}\{1,\ldots,n\}, where

12n.1\prec 2\prec\ldots\prec n.
Remark 1.

For the families of posets defined in Definitions 23, and 4, it is possible to give definitions in which the underlying set of the posets consist of integers {1,,n}\{1,\ldots,n\}, but it is more convenient to use an alternative labeling of the elements.

Definition 2.

Let 𝐦×𝐧\mathbf{m\times n} denote the poset on the set {11,,n1,,1m,,nm}\{1_{1},\ldots,n_{1},\ldots,1_{m},\ldots,n_{m}\} where ijij+1,(i+1)ji_{j}\prec i_{j+1},(i+1)_{j}, for 1in11\leq i\leq n-1 and 1jm11\leq j\leq m-1, njnj+1n_{j}\prec n_{j+1} , for 1jm11\leq j\leq m-1, and im(i+1)mi_{m}\prec(i+1)_{m}, for 1in11\leq i\leq n-1.

111_{1}121_{2}212_{1}222_{2}313_{1}323_{2}414_{1}424_{2}
Figure 3: Hasse diagram of 𝟐×𝟒\mathbf{2\times 4}
Definition 3.

For m>1m>1, let Tm(n)T_{m}(n) denote the poset on {11,12,22,,m2,,1n,,mnn1}\{1_{1},1_{2},2_{2},\ldots,m_{2},\ldots,1_{n},\ldots,m^{n-1}_{n}\} where
ik(mij)k+1i_{k}\prec(mi-j)_{k+1}, for 1k<n1\leq k<n, 1imk11\leq i\leq m^{k-1}, and 0j<m0\leq j<m.

111_{1}121_{2}222_{2}131_{3}232_{3}333_{3}434_{3}
Figure 4: Hasse diagram of T2(3)T_{2}(3)
Definition 4.

Let 𝒫(r0,r1,r2)\mathcal{P}(r_{0},r_{1},r_{2}) denote the poset on {b1,,br0,m1,,mr1,t1,,tr2}\{b_{1},\ldots,b_{r_{0}},m_{1},\ldots,m_{r_{1}},t_{1},\ldots,t_{r_{2}}\} with

b1,,br0m1,,mr1t1,,tr2.b_{1},\ldots,b_{r_{0}}\prec m_{1},\ldots,m_{r_{1}}\prec t_{1},\ldots,t_{r_{2}}.
Example 3.

Using the notation of Definition 4, the poset of Example 1 is 𝒫(1,1,2)\mathcal{P}(1,1,2).

Let 𝒫\mathcal{P} be a finite poset. The (associative) incidence algebra A(𝒫)=A(𝒫,k)A(\mathcal{P})=A(\mathcal{P},\textbf{k}) is the span over k of elements ei,je_{i,j}, for i,j𝒫i,j\in\mathcal{P} satisfying iji\preceq j, with product given by setting ei,jek,l=ei,le_{i,j}e_{k,l}=e_{i,l} if j=kj=k and 0 otherwise. The trace of an element ci,jei,j\sum c_{i,j}e_{i,j} is ci,i.\sum c_{i,i}.

We can equip A(𝒫)A(\mathcal{P}) with the commutator product [a,b]=abba[a,b]=ab-ba, where juxtaposition denotes the product in A(𝒫)A(\mathcal{P}), to produce the Lie poset algebra 𝔤(𝒫)=𝔤(𝒫,k)\mathfrak{g}(\mathcal{P})=\mathfrak{g}(\mathcal{P},\textbf{k}). If |𝒫|=n|\mathcal{P}|=n, then both A(𝒫)A(\mathcal{P}) and 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) may be regarded as subalgebras of the algebra of n×nn\times n upper-triangular matrices over k. Such a matrix representation is realized by replacing each basis element ei,je_{i,j} by the n×nn\times n matrix Ei,jE_{i,j} containing a 1 in the i,ji,j-entry and 0’s elsewhere. The (associative) product between elements ei,je_{i,j} is then replaced by matrix multiplication between the Ei,jE_{i,j}.

Example 4.

Let 𝒫\mathcal{P} be the poset of Example 1. The matrix form of elements in 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) is illustrated in Figure 5, where the *’s denote potentially non-zero entries from k.

[\@arstrut1234\\1\\20\\3000\\4000\\]\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 3$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 4\\1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*\\2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*\\3$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\4$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*\\$\hfil\kern 5.0pt\crcr}}}}\right]
Figure 5: Matrix form defining 𝔤(𝒫)\mathfrak{g}(\mathcal{P}), for 𝒫={1,2,3,4}\mathcal{P}=\{1,2,3,4\} with 123,41\prec 2\prec 3,4

Restricting 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) to trace-zero matrices yields a subalgebra of the first classical family An1=𝔰𝔩(n)A_{n-1}=\mathfrak{sl}(n) which we refer to as a type-A Lie poset algebra and denote by 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}). Restricting 𝔤(𝒫)\mathfrak{g}(\mathcal{P}) to strictly upper-triangular matrices yields a subalgebra which we refer to as a nilpotent Lie poset algebra and denote by 𝔤(𝒫)\mathfrak{g}^{\prec}(\mathcal{P}).

3 Results

We begin this section with the formal definition of the breadth of a Lie algebra.

Definition 5.

The breadth of a Lie algebra LL is the invariant

b(L)=maxxLrank(adx).b(L)=\max_{x\in L}~{}\textup{rank}(ad_{x}).

The following result describes bounds on the breadth of a Lie algebra and will be useful in what follows – the proofs can be found in [6].

Proposition 1.

If LL is a Lie algebra with center Z(L)Z(L) and derived algebra [L,L][L,L], then

  1. (i)

    b(L)dim([L,L])b(L)\leq\dim([L,L]), and

  2. (ii)

    b(L)dim(L/Z(L))1b(L)\leq\dim(L/Z(L))-1.

3.1 (Type-A) Lie poset algebras

To determine a combinatorial translation of Proposition 1(i) for (type-A) Lie poset algebras, we make use of the following Proposition.

Proposition 2.

If 𝒫\mathcal{P} is a poset and L=𝔤(𝒫)L=\mathfrak{g}(\mathcal{P}) or 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}), then dim([L,L])=|Rel(𝒫)|\dim([L,L])=|Rel(\mathcal{P})|.

Proof.

We claim that

[L,L]=span{Ep,q|pq}.[L,L]=\text{span}\{E_{p,q}~{}|~{}p\prec q\}.

To begin, note that if L=𝔤(𝒫)L=\mathfrak{g}(\mathcal{P}), then a basis for LL is given by

={Ep,q|pq}{Ep,p|p𝒫}.\mathscr{B}=\{E_{p,q}~{}|~{}p\prec q\}\cup\{E_{p,p}~{}|~{}p\in\mathcal{P}\}.

On the other hand, if L=𝔤A(𝒫)L=\mathfrak{g}_{A}(\mathcal{P}), then a basis for LL is given by

={Ep,q|pq}{E1,1Ep,p|p𝒫,1p}.\mathscr{B}=\{E_{p,q}~{}|~{}p\prec q\}\cup\{E_{1,1}-E_{p,p}~{}|~{}p\in\mathcal{P},1\neq p\}.

In either case, since

[Ep1,q1,Ep2,q2]=δq1,p2Ep1,q2δp1,q2Ep2,q1[L,L],[E_{p_{1},q_{1}},E_{p_{2},q_{2}}]=\delta_{q_{1},p_{2}}E_{p_{1},q_{2}}-\delta_{p_{1},q_{2}}E_{p_{2},q_{1}}\in[L,L],
[Ep1,p1,Ep2,q2]=δp1,p2Ep1,q2δp1,q2Ep2,p1[L,L],[E_{p_{1},p_{1}},E_{p_{2},q_{2}}]=\delta_{p_{1},p_{2}}E_{p_{1},q_{2}}-\delta_{p_{1},q_{2}}E_{p_{2},p_{1}}\in[L,L],

and

[Ep1,p1Eq1,q1,Ep2,q2]=δp1,p2Ep1,q2δp1,q2Ep2,p1δq1,p2Eq1,q2+δq1,q2Ep2,q1[L,L],[E_{p_{1},p_{1}}-E_{q_{1},q_{1}},E_{p_{2},q_{2}}]=\delta_{p_{1},p_{2}}E_{p_{1},q_{2}}-\delta_{p_{1},q_{2}}E_{p_{2},p_{1}}-\delta_{q_{1},p_{2}}E_{q_{1},q_{2}}+\delta_{q_{1},q_{2}}E_{p_{2},q_{1}}\in[L,L],

for p1,q1,p2,q2𝒫p_{1},q_{1},p_{2},q_{2}\in\mathcal{P}, and [L,L][L,L] is spanned by {[b1,b2]|b1,b2},\{[b_{1},b_{2}]~{}|~{}b_{1},b_{2}\in\mathscr{B}\}, it follows that

span{Ep,q|pq}[L,L].\text{span}\{E_{p,q}~{}|~{}p\prec q\}\supseteq[L,L].

Now, if p,q𝒫p,q\in\mathcal{P} satisfy pqp\prec q, then 12(Ep,pEq,q),Ep,qL\frac{1}{2}(E_{p,p}-E_{q,q}),E_{p,q}\in L and

[12(Ep,pEq,q),Ep,q]=Ep,q[L,L].\left[\frac{1}{2}(E_{p,p}-E_{q,q}),E_{p,q}\right]=E_{p,q}\in[L,L].

Thus,

span{Ep,q|pq}[L,L]\text{span}\{E_{p,q}~{}|~{}p\prec q\}\subseteq[L,L]

and the claim is established. As dim(span{Ep,q|pq})=|Rel(𝒫)|\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\})=|Rel(\mathcal{P})|, the result follows. ∎

As a consequence of Proposition 2, we obtain the following combinatorial translation of Proposition 1(i) for (type-A) Lie poset algebras.

Proposition 3.

If 𝒫\mathcal{P} is a poset and L=𝔤(𝒫)L=\mathfrak{g}(\mathcal{P}) or 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}), then b(L)|Rel(𝒫)|b(L)\leq|Rel(\mathcal{P})|.

In fact, the bound of Proposition 3 is exact.

Theorem 1.

If 𝒫\mathcal{P} is a poset and L=𝔤(𝒫)L=\mathfrak{g}(\mathcal{P}) or 𝔤A(𝒫)\mathfrak{g}_{A}(\mathcal{P}), then

b(L)=|Rel(𝒫)|.b(L)=|Rel(\mathcal{P})|.
Proof.

Considering Proposition 3, it suffices to show that

|Rel(𝒫)|b(L).|Rel(\mathcal{P})|\leq b(L). (1)

To establish (1), we construct xLx\in L satisfying Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all p,q𝒫p,q\in\mathcal{P} such that pqp\prec q. Consider

x=1i𝒫i(E1,1Ei,i)L.x=\sum_{1\neq i\in\mathcal{P}}i(E_{1,1}-E_{i,i})\in L.

Note that

[x,E1,p]=(p+1i𝒫i)E1,p0,[x,E_{1,p}]=\left(p+\sum_{1\neq i\in\mathcal{P}}i\right)E_{1,p}\neq 0,

for all p1p\neq 1 satisfying 1p1\prec p, and

[x,Ep,q]=(qp)Ep,q0,[x,E_{p,q}]=(q-p)E_{p,q}\neq 0,

for all p,q𝒫p,q\in\mathcal{P} satisfying p1p\neq 1 and pqp\prec q. Thus,

im(adx){Ep,q|pq}\text{im}(ad_{x})\supset\{E_{p,q}~{}|~{}p\prec q\}

so that

|Rel(𝒫)|=dim(span{Ep,q|pq})rank(adx)b(L).|Rel(\mathcal{P})|=\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\})\leq\textup{rank}(ad_{x})\leq b(L).

The result follows. ∎

Example 5.

If 𝒫\mathcal{P} is the poset of Example 1, i.e., 𝒫={1,2,3,4}\mathcal{P}=\{1,2,3,4\} with 123,41\prec 2\prec 3,4, then

b(𝔤(𝒫))=b(𝔤A(𝒫))=|Rel(𝒫)|=5.b(\mathfrak{g}(\mathcal{P}))=b(\mathfrak{g}_{A}(\mathcal{P}))=|Rel(\mathcal{P})|=5.

3.2 Nilpotent Lie poset algebras

To determine a combinatorial translation of Proposition 1 for nilpotent Lie poset algebras we make use of the following Proposition.

Proposition 4.

If 𝒫\mathcal{P} is a poset and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

  1. (i)

    dim([L,L])=|RelC¯(𝒫)|\dim([L,L])=|Rel_{\overline{C}}(\mathcal{P})|, and

  2. (ii)

    dim(L/Z(L))=|{pq|pqRelE(𝒫)}|\dim(L/Z(L))=|\{p\prec q~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|.

Proof.

(i) We claim that

[L,L]=span{Ep,q|pqRelC¯(𝒫)}.[L,L]=\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}.

If p,q𝒫p,q\in\mathcal{P} and pqp\prec q is not a covering relation, then there exists r𝒫r\in\mathcal{P} such that prqp\prec r\prec q and

[Ep,r,Er,q]=Ep,q[L,L];[E_{p,r},E_{r,q}]=E_{p,q}\in[L,L];

that is,

span{Ep,q|pqRelC¯(𝒫)}[L,L].\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}\subseteq[L,L].

Now, since [L,L][L,L] is generated by the [Ep1,q1,Ep2,q2][E_{p_{1},q_{1}},E_{p_{2},q_{2}}], for p1,p2,q1,q2𝒫p_{1},p_{2},q_{1},q_{2}\in\mathcal{P} such that p1q1p_{1}\prec q_{1} and p2q2p_{2}\prec q_{2}, and [Ep1,q1,Ep2,q2]=δq1,p2Ep1,q2δp1,q2Ep2,q1[E_{p_{1},q_{1}},E_{p_{2},q_{2}}]=\delta_{q_{1},p_{2}}E_{p_{1},q_{2}}-\delta_{p_{1},q_{2}}E_{p_{2},q_{1}}, it follows that elements x[L,L]x\in[L,L] must be of the form

x=pqRelC¯(𝒫)ap,qEp,q;x=\sum_{p\prec q\in Rel_{\overline{C}}(\mathcal{P})}a_{p,q}E_{p,q};

that is,

[L,L]span{Ep,q|pqRelC¯(𝒫)}.[L,L]\subseteq\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}.

This establishes the claim. As dim(span{Ep,q|pqRelC¯(𝒫)})=|RelC¯(𝒫)|\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\})=|Rel_{\overline{C}}(\mathcal{P})|, the result follows.

(ii) We claim that

Z(L)=span{Ep,q|pqRelE(𝒫)}.Z(L)=\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{E}(\mathcal{P})\}.

Evidently, Ep,qZ(L)E_{p,q}\in Z(L), for pqRelE(𝒫)p\prec q\in Rel_{E}(\mathcal{P}), so span{Ep,q|pqRelE(𝒫)}Z(L).\{E_{p,q}~{}|~{}p\prec q\in Rel_{E}(\mathcal{P})\}\subseteq Z(L). Now, take z=ijzi,jEi,jZ(L)z=\sum_{i\prec j}z_{i,j}E_{i,j}\in Z(L). If p,q𝒫p,q\in\mathcal{P} satisfy pqp\prec q with qq non-maximal, then there exists r𝒫r\in\mathcal{P} such that qrq\prec r and

[z,Eq,r]=kqzk,qEk,rrkzr,kEq,k=0;[z,E_{q,r}]=\sum_{k\prec q}z_{k,q}E_{k,r}-\sum_{r\prec k}z_{r,k}E_{q,k}=0;

in particular, zp,q=0z_{p,q}=0. If p,q𝒫p,q\in\mathcal{P} satisfy pqp\prec q with pp non-minimal, then there exists r𝒫r\in\mathcal{P} such that rpr\prec p and

[z,Er,p]=krzk,rEk,ppkzp,kEr,k=0;[z,E_{r,p}]=\sum_{k\prec r}z_{k,r}E_{k,p}-\sum_{p\prec k}z_{p,k}E_{r,k}=0;

in particular, zp,q=0z_{p,q}=0. Therefore, zp,q=0z_{p,q}=0, for all p,q𝒫p,q\in\mathcal{P} such that pqp\prec q and either pp is non-minimal or qq is non-maximal. This establishes the claim, and so we have

L/Z(L)=span{Ep,q|pq}/span{Ep,q|pqRelE(𝒫)}L/Z(L)=\text{span}\{E_{p,q}~{}|~{}p\prec q\}/\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{E}(\mathcal{P})\}
=span{Ep,q|pqRelE(𝒫)}.=\text{span}\{E_{p,q}~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}.

As dim(span{Ep,q|pqRelE(𝒫)})=|{Ep,q|pqRelE(𝒫)}|\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\})=|\{E_{p,q}~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|, the result follows. ∎

As a consequence of Proposition 4, we obtain the following combinatorial translation of Proposition 1 for nilpotent Lie poset algebras.

Proposition 5.

If 𝒫\mathcal{P} is a poset and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

  1. (i)

    b(L)|RelC¯(𝒫)|b(L)\leq|Rel_{\overline{C}}(\mathcal{P})|, and

  2. (ii)

    b(L)|{pq|pqRelE(𝒫)}|1b(L)\leq|\{p\prec q~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|-1.

Using Proposition 5, the following Theorem establishes exact breadth values for nilpotent Lie poset algebras corresponding to the posets Cn,C_{n}, 𝟐×𝐧,\mathbf{2\times n}, and Tm(n).T_{m}(n). In each case, the breadth of the respective algebra is equal to the number of non-covering relations in the associated poset 𝒫\mathcal{P}.

Theorem 2.
  1. (a)

    If 𝒫=Cn\mathcal{P}=C_{n} and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n1)(n2)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(n-2)}{2}.
  2. (b)

    If 𝒫=𝟐×𝐧\mathcal{P}=\mathbf{2\times n} and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n1)(3n4)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(3n-4)}{2}.
  3. (c)

    If 𝒫=𝒫=Tm(n)\mathcal{P}=\mathcal{P}=T_{m}(n) and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n2)mn+1+(1n)mn+m2(m1)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-2)m^{n+1}+(1-n)m^{n}+m^{2}}{(m-1)^{2}}.
Proof.

We will prove part (a). The proofs of parts (b) and (c) are relegated to the Appendix.

First, we show that b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|. Considering Proposition 5(i), it suffices to show that

|RelC¯(𝒫)|b(L).|Rel_{\overline{C}}(\mathcal{P})|\leq b(L). (2)

To establish (2), we construct xLx\in L satisfying Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all p,q𝒫p,q\in\mathcal{P} such that pqRelC¯(𝒫)p\prec q\in Rel_{\overline{C}}(\mathcal{P}). Consider

x=i=1n1Ei,i+1.x=\sum_{i=1}^{n-1}E_{i,i+1}.

If 1p1\prec p is not a covering relation, then 1p1p1\prec p-1\prec p and

[x,E1,p1]=E1,pim(adx).[x,-E_{1,p-1}]=E_{1,p}\in\text{im}(ad_{x}).

If 1pq1\neq p\prec q is not a covering relation, then pq1qp\prec q-1\prec q and

[x,i=0p1Epi,q1i]=i=0p1Epi,qij=0p2Epj1,q1j=i=0p1Epi,qij=1p1Epj,qj=Ep,qim(adx).\left[x,-\sum_{i=0}^{p-1}E_{p-i,q-1-i}\right]=\sum_{i=0}^{p-1}E_{p-i,q-i}-\sum_{j=0}^{p-2}E_{p-j-1,q-1-j}=\sum_{i=0}^{p-1}E_{p-i,q-i}-\sum_{j=1}^{p-1}E_{p-j,q-j}=E_{p,q}\in\text{im}(ad_{x}).

Thus,

im(adx){Ep,q|pqRelC¯(𝒫)}\text{im}(ad_{x})\supset\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}

so that

|RelC¯(𝒫)|=dim(span{Ep,q|pqRelC¯(𝒫)})rank(adx)b(L).|Rel_{\overline{C}}(\mathcal{P})|=\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\})\leq\textup{rank}(ad_{x})\leq b(L).

It follows that b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|.

Now, we show that

|RelC¯(𝒫)|=(n1)(n2)2.|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(n-2)}{2}.

For p{1,,n1}p\in\{1,\ldots,n-1\} there are np1n-p-1 elements q𝒫q\in\mathcal{P} such that pqRelC¯(𝒫)p\prec q\in Rel_{\overline{C}}(\mathcal{P}). Thus,

|RelC¯(𝒫)|=p=1n1np1=i=1n2i=(n1)(n2)2.|Rel_{\overline{C}}(\mathcal{P})|=\sum_{p=1}^{n-1}n-p-1=\sum_{i=1}^{n-2}i=\frac{(n-1)(n-2)}{2}.

Remark 2.

It appears that Theorem 2 (b) holds more generally; that is, if 𝒫=𝐦×𝐧\mathcal{P}=\mathbf{m\times n} with m<4m<4 or n<4n<4 and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|. We conjecture that this is so (see Conjecture 1).

It is important to note that the breadth of 𝔤(𝒫)\mathfrak{g}^{\prec}(\mathcal{P}) is not always given by |RelC¯(𝒫)||Rel_{\overline{C}}(\mathcal{P})|. For example, the smallest poset 𝒫\mathcal{P} one finds satisfying b(𝔤(𝒫))<|RelC¯(𝒫)|b(\mathfrak{g}^{\prec}(\mathcal{P}))<|Rel_{\overline{C}}(\mathcal{P})| is 𝒫=𝒫(2,1,2)\mathcal{P}=\mathcal{P}(2,1,2). In what follows, we show that for the family of posets 𝒫(r0,r1,r2)\mathcal{P}(r_{0},r_{1},r_{2}) the breadth of the corresponding nilpotent Lie poset algebra can be given by either of the upper bounds established in Proposition 5 but can also be strictly less than both.

Remark 3.

If 𝒫=𝒫(1,n,1)\mathcal{P}=\mathcal{P}(1,n,1), then 𝔤(𝒫)\mathfrak{g}^{\prec}(\mathcal{P}) is a generalized Heisenberg Lie algebra.

Recall from Definition 4 that 𝒫(r0,r1,r2)={b1,,br0,m1,,mr1,t1,,tr2}\mathcal{P}(r_{0},r_{1},r_{2})=\{b_{1},\ldots,b_{r_{0}},m_{1},\ldots,m_{r_{1}},t_{1},\ldots,t_{r_{2}}\} with

b1,,br0m1,,mr1t1,,tr2.b_{1},\ldots,b_{r_{0}}\prec m_{1},\ldots,m_{r_{1}}\prec t_{1},\ldots,t_{r_{2}}.

Set 𝔤(r0,r1,r2)=𝔤(𝒫(r0,r1,r2))\mathfrak{g}(r_{0},r_{1},r_{2})=\mathfrak{g}^{\prec}(\mathcal{P}(r_{0},r_{1},r_{2})).

Theorem 3.

If L=𝔤(r0,r1,r2)L=\mathfrak{g}(r_{0},r_{1},r_{2}) with r1r0r_{1}\geq r_{0} or r1r2r_{1}\geq r_{2}, then b(L)=r0r2b(L)=r_{0}r_{2}.

Proof.

Let 𝒫=𝒫(r0,r1,r2)\mathcal{P}=\mathcal{P}(r_{0},r_{1},r_{2}). We assume that r1r0r_{1}\geq r_{0}, the other case following via a symmetric argument. Note that

RelC¯(𝒫)=RelE(𝒫)={bitj|1ir0,1jr2}Rel_{\overline{C}}(\mathcal{P})=Rel_{E}(\mathcal{P})=\{b_{i}\prec t_{j}~{}|~{}1\leq i\leq r_{0},1\leq j\leq r_{2}\}

from which it follows

dim([L,L])=|RelC¯(𝒫)|=r0r2.\dim([L,L])=|Rel_{\overline{C}}(\mathcal{P})|=r_{0}r_{2}.

Thus, by Proposition 5(i), to establish the result it suffices to construct xLx\in L such that Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all pqRelE(𝒫)p\prec q\in Rel_{E}(\mathcal{P}). Consider x=i=1r0Ebi,mix=\sum_{i=1}^{r_{0}}E_{b_{i},m_{i}}. Since

[x,Emi,tj]=Ebi,tjim(adx),[x,E_{m_{i},t_{j}}]=E_{b_{i},t_{j}}\in\text{im}(ad_{x}),

for 1ir01\leq i\leq r_{0} and 1jr21\leq j\leq r_{2}, it follows that the given xLx\in L has the desired properties. Therefore,

im(adx){Ep,q|pqRelE(𝒫)}\text{im}(ad_{x})\supset\{E_{p,q}~{}|~{}p\prec q\in Rel_{E}(\mathcal{P})\}

so that

r0r2=|RelC¯(𝒫)|=dim(span{Ep,q|pqRelE(𝒫)})rank(adx)b(L).r_{0}r_{2}=|Rel_{\overline{C}}(\mathcal{P})|=\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{E}(\mathcal{P})\})\leq\textup{rank}(ad_{x})\leq b(L).

The result follows. ∎

To determine a formula for b(𝔤(r0,r1,r2))b(\mathfrak{g}(r_{0},r_{1},r_{2})) when r1<r0,r2r_{1}<r_{0},r_{2}, we study the matrix of adxad_{x}, denoted MxM_{x}, for a general element x𝔤(r0,r1,r2)x\in\mathfrak{g}(r_{0},r_{1},r_{2}). First, fix the basis (r0,r1,r2)\mathscr{B}(r_{0},r_{1},r_{2}) of 𝔤(r0,r1,r2)\mathfrak{g}(r_{0},r_{1},r_{2}) given by

{Ebi,mj|1ir0,1jr1}{Emi,tj|1ir1,1jr2}{Ebi,tj|1ir0,1jr2}.\{E_{b_{i},m_{j}}~{}|~{}1\leq i\leq r_{0},~{}1\leq j\leq r_{1}\}\cup\{E_{m_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},~{}1\leq j\leq r_{2}\}\cup\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{0},~{}1\leq j\leq r_{2}\}.

Then every element of 𝔤(r0,r1,r2)\mathfrak{g}(r_{0},r_{1},r_{2}) can be written as

x=g=1r0h=1r1abg,mhEbg,mh+i=1r1j=1r2ami,tjEmi,tj+k=1r0l=1r2abk,tlEbk,tl.x=\sum_{g=1}^{r_{0}}\sum_{h=1}^{r_{1}}a_{b_{g},m_{h}}E_{b_{g},m_{h}}+\sum_{i=1}^{r_{1}}\sum_{j=1}^{r_{2}}a_{m_{i},t_{j}}E_{m_{i},t_{j}}+\sum_{k=1}^{r_{0}}\sum_{l=1}^{r_{2}}a_{b_{k},t_{l}}E_{b_{k},t_{l}}.

To study MxM_{x}, it will be helpful to partition (r0,r1,r2)\mathscr{B}(r_{0},r_{1},r_{2}) into three ordered subsets:

  • B1={Eb1,m1,Eb2,m1,,Ebr0,m1,,Eb1,mr1,Eb2,mr1,,Ebr0,mr1}B_{1}=\{E_{b_{1},m_{1}},E_{b_{2},m_{1}},\ldots,E_{b_{r_{0}},m_{1}},\ldots,E_{b_{1},m_{r_{1}}},E_{b_{2},m_{r_{1}}},\ldots,E_{b_{r_{0}},m_{r_{1}}}\}

  • B2={Em1,t1,Em2,t1,,Emr1,t1,,Em1,tr2,Em2,tr2,,Emr1,tr2}B_{2}=\{E_{m_{1},t_{1}},E_{m_{2},t_{1}},\ldots,E_{m_{r_{1}},t_{1}},\ldots,E_{m_{1},t_{r_{2}}},E_{m_{2},t_{r_{2}}},\ldots,E_{m_{r_{1}},t_{r_{2}}}\}

  • B3={Eb1,t1,Eb2,t1,,Ebr0,t1,,Eb1,tr2,Eb2,tr2,,Ebr0,tr2}.B_{3}=\{E_{b_{1},t_{1}},E_{b_{2},t_{1}},\ldots,E_{b_{r_{0}},t_{1}},\ldots,E_{b_{1},t_{r_{2}}},E_{b_{2},t_{r_{2}}},\ldots,E_{b_{r_{0}},t_{r_{2}}}\}.

Ordering the columns of MxM_{x} as B1,B2,B3B_{1},B_{2},B_{3} and the rows as B3,B2,B1B_{3},B_{2},B_{1}, the matrix has the following form:

[\@arstrut\\-am1,t1Ir0-am2,t1Ir0-amr1,t1Ir0A000\\-am1,t2Ir0-am2,t2Ir0-amr1,t2Ir00A00\\\\-am1,tr2Ir0-am2,tr2Ir0-amr1,tr2Ir000A0\\0000000\\] ,\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{1}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{1}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{1}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{2}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{2}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{2}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ddots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{r_{2}}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{r_{2}}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{r_{2}}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt\crcr}}}}\right]$}},
Figure 6: MxM_{x}

where Ir0I_{r_{0}} is the r0×r0r_{0}\times r_{0} identity matrix and

A= [\@arstrut\\ab1,m1ab1,m2ab1,mr1\\ab2,m1ab2,m2ab2,mr1\\\\abr0,m1abr0,m2abr0,mr1\\] .A=\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{1},m_{1}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{1},m_{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{1},m_{r_{1}}}\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{2},m_{1}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{2},m_{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{2},m_{r_{1}}}\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{r_{0}},m_{1}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{r_{0}},m_{2}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle a_{b_{r_{0}},m_{r_{1}}}\\$\hfil\kern 5.0pt\crcr}}}}\right]$}}.
Figure 7: Matrix form of AA

Focusing on the section of the matrix MxM_{x} corresponding to columns B1B_{1}, illustrated below,

[\@arstrut\\am1,t1Ir0am2,t1Ir0amr1,t1Ir0\\am1,t2Ir0am2,t2Ir0amr1,t2Ir0\\\\am1,tr2Ir0am2,tr2Ir0amr1,tr2Ir0\\000\\]\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{1}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{1}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{1}}I_{r_{0}}\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{2}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{2}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{2}}I_{r_{0}}\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\vdots\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{1},t_{r_{2}}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{2},t_{r_{2}}}I_{r_{0}}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-a_{m_{r_{1}},t_{r_{2}}}I_{r_{0}}\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt\crcr}}}}\right]
Figure 8: Restriction of MxM_{x} to columns B1B_{1}

it is clear that the matrix MxM_{x} can be row reduced in such a way that there are sr0sr_{0} rows with a nonzero entry in a unique column in B1B_{1}, for 0sr10\leq s\leq r_{1}, and the remaining rows contain zeros in the columns of B1B_{1}. Further, such a row reduction can be accomplished by performing block row operations, where the row labeled by Ebi,tjE_{b_{i},t_{j}} is multiplied by a constant cc and added to the row labeled by Ebi,tkE_{b_{i},t_{k}}, for some 1jkr21\leq j\neq k\leq r_{2} and for all 1ir01\leq i\leq r_{0}.

Having performed the described block row operations, the remaining (r2s)(r_{2}-s) blocks of nonzero rows of MxM_{x} labeled by elements of the form Ebi,tjE_{b_{i},t_{j}}, for 1ir01\leq i\leq r_{0} and fixed jj, with entries of 0 in the columns of B1B_{1} must be of the form

[\@arstrut\\00c1Ac2Acr2A0\\] ,\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\\$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle c_{1}A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle c_{2}A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\ldots$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle c_{r_{2}}A$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\$\hfil\kern 5.0pt\crcr}}}}\right]$}},
Figure 9: Remaining nonzero rows of MxM_{x}

where clkc_{l}\in\textup{{k}}, for 1lr21\leq l\leq r_{2}. Such collections of rows can consist of at most rank(A)r1\text{rank}(A)\leq r_{1} linearly independent rows. Therefore, we have that the rank of MxM_{x} is bounded above by

sr0+r1(r2s)=s(r0r1)+r1r2,sr_{0}+r_{1}(r_{2}-s)=s(r_{0}-r_{1})+r_{1}r_{2},

for 0sr10\leq s\leq r_{1}; that is, we are led to the following Theorem.

Theorem 4.

If L=𝔤(r0,r1,r2)L=\mathfrak{g}(r_{0},r_{1},r_{2}) with r1<r0,r2r_{1}<r_{0},r_{2}, then

b(L)r1(r0r1)+r1r2=r1(r0+r2r1).b(L)\leq r_{1}(r_{0}-r_{1})+r_{1}r_{2}=r_{1}(r_{0}+r_{2}-r_{1}).

In fact, the bound of Theorem 4 is exact.

Theorem 5.

If L=𝔤(r0,r1,r2)L=\mathfrak{g}(r_{0},r_{1},r_{2}) with r1<r0,r2r_{1}<r_{0},r_{2}, then

b(L)=r1(r0+r2r1).b(L)=r_{1}(r_{0}+r_{2}-r_{1}).
Proof.

Considering Theorem 4, it suffices to construct an element xLx\in L for which rank(adx)r1(r0+r2r1)\text{rank}(ad_{x})\geq r_{1}(r_{0}+r_{2}-r_{1}). Consider

x=i=1r1(Ebi,miEmi,ti).x=\sum_{i=1}^{r_{1}}(E_{b_{i},m_{i}}-E_{m_{i},t_{i}}).

Since

[x,Emi,tj]=Ebi,tjim(adx),[x,E_{m_{i},t_{j}}]=E_{b_{i},t_{j}}\in\text{im}(ad_{x}),

for 1ir11\leq i\leq r_{1} and 1jr21\leq j\leq r_{2}, and

[x,Ebi,mj]=Ebi,tjim(adx),[x,E_{b_{i},m_{j}}]=E_{b_{i},t_{j}}\in\text{im}(ad_{x}),

for 1ir01\leq i\leq r_{0} and 1jr11\leq j\leq r_{1}, it follows that

{Ebi,tj|1ir1,1jr2}{Ebi,tj|1ir0,1jr1}im(adx).\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},1\leq j\leq r_{2}\}\cup\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{0},1\leq j\leq r_{1}\}\subseteq\text{im}(ad_{x}).

As

|{Ebi,tj|1ir1,1jr2}|=r1r2,|\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},1\leq j\leq r_{2}\}|=r_{1}r_{2},
|{Ebi,tj|1ir0,1jr1}|=r0r1,|\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{0},1\leq j\leq r_{1}\}|=r_{0}r_{1},

and

|{Ebi,tj|1ir1,1jr2}{Ebi,tj|1ir0,1jr1}|=|{Ebi,tj|1ir1,1jr1}|=r12,|\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},1\leq j\leq r_{2}\}\cap\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{0},1\leq j\leq r_{1}\}|=|\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},1\leq j\leq r_{1}\}|=r_{1}^{2},

we find that

|{Ebi,tj|1ir1,1jr2}{Ebi,tj|1ir0,1jr1}|=r0r1+r1r2r12=r1(r0+r2r1).|\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{1},1\leq j\leq r_{2}\}\cup\{E_{b_{i},t_{j}}~{}|~{}1\leq i\leq r_{0},1\leq j\leq r_{1}\}|=r_{0}r_{1}+r_{1}r_{2}-r_{1}^{2}=r_{1}(r_{0}+r_{2}-r_{1}).

Thus,

r1(r0+r2r1)rank(adx)b(L).r_{1}(r_{0}+r_{2}-r_{1})\leq\textup{rank}(ad_{x})\leq b(L).

The result follows. ∎

Combining Theorems 3 and 5 we arrive at the following.

Theorem 6.

If L=𝔤(r0,r1,r2)L=\mathfrak{g}(r_{0},r_{1},r_{2}), then

b(L)={r1(r0+r2r1),r1<r0,r2;r0r2,r1r0 or r1r2.b(L)=\begin{cases}r_{1}(r_{0}+r_{2}-r_{1}),&r_{1}<r_{0},r_{2};\\ r_{0}r_{2},&r_{1}\geq r_{0}\text{ or }r_{1}\geq r_{2}.\end{cases}
Remark 4.

Let L=𝔤(r0,r1,r2)L=\mathfrak{g}(r_{0},r_{1},r_{2}). Note that

  • if r1=1r_{1}=1, then

    b(L)=r0+r21=|{pq|pqRelE(𝒫)}|1=dim(L/Z(L))1b(L)=r_{0}+r_{2}-1=|\{p\prec q~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|-1=\dim(L/Z(L))-1

    and

    b(L)=r0+r21r0r2=|{pq|pqRelC¯(𝒫)}|=dim([L,L]),b(L)=r_{0}+r_{2}-1\leq r_{0}r_{2}=|\{p\prec q~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}|=\dim([L,L]), (3)

    where the inequality in (3) is strict for r0,r2>1r_{0},r_{2}>1.

  • if 1<r1<r0,r21<r_{1}<r_{0},r_{2}, then

    b(L)=r1(r0+r2r1)<r1(r0+r2)1=|{pq|pqRelE(𝒫)}|1=dim(L/Z(L))1b(L)=r_{1}(r_{0}+r_{2}-r_{1})<r_{1}(r_{0}+r_{2})-1=|\{p\prec q~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|-1=\dim(L/Z(L))-1

    and

    b(L)=r1(r0+r2r1)<r0r2=|{pq|pqRelC¯(𝒫)}|=dim([L,L]);b(L)=r_{1}(r_{0}+r_{2}-r_{1})<r_{0}r_{2}=|\{p\prec q~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}|=\dim([L,L]); (4)

    the fact that the inequality in (4) is strict follows by noting that

    r0r2=|{(bi,tj)|1ir0,1jr2}|r_{0}r_{2}=|\{(b_{i},t_{j})~{}|~{}1\leq i\leq r_{0},~{}1\leq j\leq r_{2}\}|

    and

    r1(r0+r2r1)=|{(bi,tj)|1ir0,1jr2}{(bi,tj)|r1+1ir0,r1+1jr2}|.r_{1}(r_{0}+r_{2}-r_{1})=|\{(b_{i},t_{j})~{}|~{}1\leq i\leq r_{0},~{}1\leq j\leq r_{2}\}-\{(b_{i},t_{j})~{}|~{}r_{1}+1\leq i\leq r_{0},~{}r_{1}+1\leq j\leq r_{2}\}|.
  • if r1r0r_{1}\geq r_{0} or r1r2r_{1}\geq r_{2}, then

    b(L)=r0r2r1(r0+r2)1=|{pq|pqRelE(𝒫)}|1=dim(L/Z(L))1b(L)=r_{0}r_{2}\leq r_{1}(r_{0}+r_{2})-1=|\{p\prec q~{}|~{}p\prec q\notin Rel_{E}(\mathcal{P})\}|-1=\dim(L/Z(L))-1 (5)

    and

    b(L)=r0r2=|{pq|pqRelC¯(𝒫)}|=dim([L,L]),b(L)=r_{0}r_{2}=|\{p\prec q~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}|=\dim([L,L]),

    where the inequality in (5) is strict when either r0>1r_{0}>1, r2>1r_{2}>1, or r1>r0,r2r_{1}>r_{0},r_{2}.

Considering Proposition 2 and Remark 4, it would be interesting to characterize those posets 𝒫\mathcal{P} for which L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}) satisfies b(L)=dim([L,L])=|RelC¯(𝒫)|b(L)=\dim([L,L])=|Rel_{\overline{C}}(\mathcal{P})|. The following Theorem provides an obstruction to a poset 𝒫\mathcal{P} having the aforementioned property.

Theorem 7.

Given a poset 𝒫\mathcal{P}, let 𝒬\mathcal{Q} denote an induced subposet of 𝒫\mathcal{P} such that [x,y]𝒫𝒬[x,y]_{\mathcal{P}}\subset\mathcal{Q}, for all x,y𝒬x,y\in\mathcal{Q} satisfying x𝒬yx\prec_{\mathcal{Q}}y. If

b(𝔤(𝒬))<dim([𝔤(𝒬),𝔤(𝒬)]),b(\mathfrak{g}^{\prec}(\mathcal{Q}))<\dim([\mathfrak{g}^{\prec}(\mathcal{Q}),\mathfrak{g}^{\prec}(\mathcal{Q})]),

then

b(𝔤(𝒫))<dim([𝔤(𝒫),𝔤(𝒫)]).b(\mathfrak{g}^{\prec}(\mathcal{P}))<\dim([\mathfrak{g}^{\prec}(\mathcal{P}),\mathfrak{g}^{\prec}(\mathcal{P})]).
Proof.

Since for a poset 𝒫\mathcal{P}^{\prime} one has

[𝔤(𝒫),𝔤(𝒫)]=span{Ep,q|pqRelC¯(𝒫)},[\mathfrak{g}^{\prec}(\mathcal{P}^{\prime}),\mathfrak{g}^{\prec}(\mathcal{P}^{\prime})]=\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P}^{\prime})\},

it follows that

b(𝔤(𝒫))<dim([𝔤(𝒫),𝔤(𝒫)])b(\mathfrak{g}^{\prec}(\mathcal{P}^{\prime}))<\dim([\mathfrak{g}^{\prec}(\mathcal{P}^{\prime}),\mathfrak{g}^{\prec}(\mathcal{P}^{\prime})])

if and only if for all y𝔤(𝒫)y\in\mathfrak{g}^{\prec}(\mathcal{P}^{\prime}) there exists pyqyRelC¯(𝒫)p^{y}\prec q^{y}\in Rel_{\overline{C}}(\mathcal{P}^{\prime}) such that Epy,qyim(ady)E_{p^{y},q^{y}}\notin\text{im}(ad_{y}). Thus, for any y𝔤(𝒬)y\in\mathfrak{g}^{\prec}(\mathcal{Q}) there exists q1yq2yRelC¯(𝒬)q^{y}_{1}\prec q^{y}_{2}\in Rel_{\overline{C}}(\mathcal{Q}) such that Eq1y,q2yim(ady)E_{q^{y}_{1},q^{y}_{2}}\notin\text{im}(ad_{y}).

Given x𝔤(𝒫)x\in\mathfrak{g}^{\prec}(\mathcal{P}), let x𝒬x_{\mathcal{Q}} denote its restriction to 𝔤(𝒬)\mathfrak{g}^{\prec}(\mathcal{Q}); that is, expressing xx in terms of the basis elements Ei,j𝔤(𝒫)E_{i,j}\in\mathfrak{g}^{\prec}(\mathcal{P}), for i𝒫ji\prec_{\mathcal{P}}j, we form x𝒬x_{\mathcal{Q}} by removing all terms involving basis elements Ei,jE_{i,j} for i𝒫\𝒬i\in\mathcal{P}\backslash\mathcal{Q} or j𝒫\𝒬j\in\mathcal{P}\backslash\mathcal{Q}. Take an arbitrary x𝔤(𝒫)x\in\mathfrak{g}^{\prec}(\mathcal{P}). We claim that Eq1x𝒬,q2x𝒬im(adx)E_{q^{x_{\mathcal{Q}}}_{1},q^{x_{\mathcal{Q}}}_{2}}\notin\text{im}(ad_{x}). Assume, toward contradiction, that Eq1x𝒬,q2x𝒬im(adx)E_{q^{x_{\mathcal{Q}}}_{1},q^{x_{\mathcal{Q}}}_{2}}\in\text{im}(ad_{x}). Then there exists p𝔤(𝒫)p^{*}\in\mathfrak{g}^{\prec}(\mathcal{P}) such that [x,p]=Eq1x𝒬,q2x𝒬[x,p^{*}]=E_{q^{x_{\mathcal{Q}}}_{1},q^{x_{\mathcal{Q}}}_{2}}. Note that for any p𝔤(𝒫)p\in\mathfrak{g}^{\prec}(\mathcal{P}) we have [x,p]=S1+S2[x,p]=S_{1}+S_{2}, where

S1=ijRelC¯(𝒬)ai,jpEi,jandS2=ijRelC¯(𝒫)i𝒫\𝒬 or j𝒫\𝒬ai,jpEi,j.S_{1}=\sum_{i\prec j\in Rel_{\overline{C}}(\mathcal{Q})}a^{p}_{i,j}E_{i,j}\quad\quad\text{and}\quad\quad S_{2}=\sum_{\begin{subarray}{c}i\prec j\in Rel_{\overline{C}}(\mathcal{P})\\ i\in\mathcal{P}\backslash\mathcal{Q}\text{ or }j\in\mathcal{P}\backslash\mathcal{Q}\end{subarray}}a^{p}_{i,j}E_{i,j}.

Further, it must be the case that [x𝒬,p𝒬]=S1[x_{\mathcal{Q}},p_{\mathcal{Q}}]=S_{1}. If not, then there would exist i,j𝒬i,j\in\mathcal{Q} and k𝒫\𝒬k\in\mathcal{P}\backslash\mathcal{Q} such that ikji\prec k\prec j, contradicting our assumption that [i,j]𝒫𝒬[i,j]_{\mathcal{P}}\subseteq\mathcal{Q}. Therefore, [x𝒬,p𝒬]=Eq1x𝒬,q2x𝒬im(adx𝒬)[x_{\mathcal{Q}},p^{*}_{\mathcal{Q}}]=E_{q^{x_{\mathcal{Q}}}_{1},q^{x_{\mathcal{Q}}}_{2}}\in\text{im}(ad_{x_{\mathcal{Q}}}), but this contradicts that

b(𝔤(𝒬)<dim([𝔤(𝒬),𝔤(𝒬)]).b(\mathfrak{g}^{\prec}(\mathcal{Q})<\dim([\mathfrak{g}^{\prec}(\mathcal{Q}),\mathfrak{g}^{\prec}(\mathcal{Q})]).

The result follows. ∎

Remark 5.

One can show that if 𝒫=𝟒×𝟒\mathcal{P}=\mathbf{4}\times\mathbf{4} and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then b(L)<|RelC¯(𝒫)|b(L)<|Rel_{\overline{C}}(\mathcal{P})|. Considering Theorem 7, it follows that if 𝒫=𝐧×𝐦\mathcal{P}=\mathbf{n}\times\mathbf{m} with n,m>3n,m>3, then b(L)<|RelC¯(𝒫)|b(L)<|Rel_{\overline{C}}(\mathcal{P})|.

4 Epilogue

In this article, we focused on determining combinatorial methods for the computation of the breadth of Lie poset algebras and nilpotent Lie poset algebras. For Lie poset algebras, we found that in general breadth is given by the number of relations in the underlying poset; algebraically this value corresponds to the dimension of the associated algebra’s derived algebra. In the case of nilpotent Lie poset algebras, we found that for some special families of posets the breadth is also given by the dimension of the algebra’s derived algebra. However, we also found families of posets for which the breadth of the associated nilpotent Lie poset algebra is strictly less than the dimension of its derived algebra. Considering the above findings, the following question seems worth pursuing.

Question: Does there exist a combinatorial characterization of those posets 𝒫\mathcal{P} for which

()𝔤(𝒫)=dim([𝔤(𝒫),𝔤(𝒫)])=RelC¯(𝒫)?(\ast)~{}~{}~{}\mathfrak{g}^{\prec}(\mathcal{P})=\dim([\mathfrak{g}^{\prec}(\mathcal{P}),\mathfrak{g}^{\prec}(\mathcal{P})])=Rel_{\overline{C}}(\mathcal{P})~{}?

Theorem 7 provides an obstruction to posets having Property ()(\ast) and can be used to show that many well-known families posets do not have this property. For example,

  • 𝐧×𝐦\mathbf{n}\times\mathbf{m}, for n,m>3n,m>3,

  • the positive root poset of type AnA_{n}, for n>6n>6,

  • the positive root poset of type BnB_{n} or CnC_{n}, for n>3n>3, and

  • the positive root poset of type DnD_{n}, for n>4n>4,

On the other hand, data suggests the following conjecture.

Conjecture 1.

If 𝒫=𝐧×𝟑\mathcal{P}=\mathbf{n}\times\mathbf{3} or the Boolean lattice BnB_{n}, for n1n\geq 1, and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then b(L)=dim([L,L])b(L)=\dim([L,L]).

Other than focusing on families of posets, one could also consider how Property ()(\ast) behaves under various poset operations. Unfortunately, this is also seemingly wild. For example, recall that the Cartesian product of two posets (𝒫,𝒫)(\mathcal{P},\preceq_{\mathcal{P}}) and (𝒬,𝒬)(\mathcal{Q},\preceq_{\mathcal{Q}}) is the poset (𝒫×𝒬,𝒫×𝒬)(\mathcal{P}\times\mathcal{Q},\preceq_{\mathcal{P}\times\mathcal{Q}}) on the set {(p,q)|p𝒫,q𝒬}\{(p,q)~{}|~{}p\in\mathcal{P},~{}q\in\mathcal{Q}\} such that (p,q)𝒫×𝒬(p,q)(p,q)\preceq_{\mathcal{P}\times\mathcal{Q}}(p^{\prime},q^{\prime}) if p𝒫pp\preceq_{\mathcal{P}}p^{\prime} and q𝒬qq\preceq_{\mathcal{Q}}q^{\prime}. Interestingly, one finds that

  • the cartesian product of two posets with Property ()(\ast) can have Property ()(\ast). For example, taking the cartesian product of the 3-chain with itself.

  • the cartesian product of two posets with Property ()(\ast) can not have Property ()(\ast). For example, taking the cartesian product of the 4-chain with itself.

  • using Theorem 7, if one of 𝒫\mathcal{P} or 𝒬\mathcal{Q} does not have Property ()(\ast), then 𝒫×𝒬\mathcal{P}\times\mathcal{Q} cannot have Property ()(\ast).

Given two posets 𝒫\mathcal{P} and 𝒬\mathcal{Q}, one encounters similar outcomes to that of the Cartesian product with respect to Property ()(\ast) when forming the ordinal sum 𝒫𝒬\mathcal{P}\oplus\mathcal{Q}, ordinal product 𝒫𝒬\mathcal{P}\otimes\mathcal{Q}, and the poset 𝒫^\widehat{\mathcal{P}} constructed from 𝒫\mathcal{P} by adjoining a new minimal and maximal element (see [13] for the definitions of these operations). It would seem that the only poset operations which behave nicely with respect to Property ()(\ast) are forming the dual poset and the disjoint sum of a collection of posets. Recall that given posets 𝒫\mathcal{P} and 𝒬\mathcal{Q}

  • the dual of 𝒫\mathcal{P}, denoted 𝒫\mathcal{P}^{*}, is the poset on 𝒫\mathcal{P} where i𝒫ji\preceq_{\mathcal{P}^{*}}j if and only if j𝒫ij\preceq_{\mathcal{P}}i, for all i,j𝒫i,j\in\mathcal{P}.

  • the disjoint sum of 𝒫\mathcal{P} and 𝒬\mathcal{Q} is the poset 𝒫+𝒬\mathcal{P}+\mathcal{Q} on the disjoint sum of 𝒫\mathcal{P} and 𝒬\mathcal{Q}, where s𝒫+𝒬ts\preceq_{\mathcal{P}+\mathcal{Q}}t if either

    1. (i)

      s,t𝒫s,t\in\mathcal{P} and s𝒫ts\preceq_{\mathcal{P}}t, or

    2. (ii)

      s,t𝒬s,t\in\mathcal{Q} and s𝒬ts\preceq_{\mathcal{Q}}t.

For these operations it is straightforward to verify that

  • 𝒫\mathcal{P} has Property ()(\ast) if and only if 𝒫\mathcal{P}^{*} has Property ()(\ast), and

  • 𝒫+𝒬\mathcal{P}+\mathcal{Q} has Property ()(\ast) if and only if both 𝒫\mathcal{P} and 𝒬\mathcal{Q} have Property ()(\ast).

The above observations seem to suggest that a combinatorial characterization of Property ()(\ast), if existent, would be very interesting.

5 Appendix

In this appendix, we prove parts (b) and (c) of Theorem 2.

Theorem 2.
  1. (a)

    If 𝒫=Cn\mathcal{P}=C_{n} and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n1)(n2)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(n-2)}{2}.
  2. (b)

    If 𝒫=𝟐×𝐧\mathcal{P}=\mathbf{2\times n} and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n1)(3n4)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(3n-4)}{2}.
  3. (c)

    If 𝒫=𝒫=Tm(n)\mathcal{P}=\mathcal{P}=T_{m}(n) and L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then

    b(L)=|RelC¯(𝒫)|=(n2)mn+1+(1n)mn+m2(m1)2.b(L)=|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-2)m^{n+1}+(1-n)m^{n}+m^{2}}{(m-1)^{2}}.

We break the proofs of parts (b) and (c) into two lemmas.

Lemma 1.

For each of the following posets 𝒫\mathcal{P}, if L=𝔤(𝒫)L=\mathfrak{g}^{\prec}(\mathcal{P}), then b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|.

  1. (a)

    𝒫=𝟐×𝐧\mathcal{P}=\mathbf{2\times n}

  2. (b)

    𝒫=Tm(n)\mathcal{P}=T_{m}(n).

Proof.

In both cases, considering Proposition 5(i), to establish the result it suffices to show that

|RelC¯(𝒫)|b(L).|Rel_{\overline{C}}(\mathcal{P})|\leq b(L).

(a) For 𝒫=𝟐×𝐧\mathcal{P}=\mathbf{2\times n}, to show that |RelC¯(𝒫)|b(L)|Rel_{\overline{C}}(\mathcal{P})|\leq b(L) we construct xLx\in L such that Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all pqRelC¯(𝒫)p\prec q\in Rel_{\overline{C}}(\mathcal{P}). Consider

x=i=1n1Ei1,(i+1)1+Ei2,(i+1)2.x=\sum_{i=1}^{n-1}E_{i_{1},(i+1)_{1}}+E_{i_{2},(i+1)_{2}}.

There are 4 groups of elements to consider. \\*

Group 1: E11,pkE_{1_{1},p_{k}}, for 11pk1_{1}\prec p_{k}, for k=1,2k=1,2. If 11pkRelC¯(𝒫)1_{1}\prec p_{k}\in Rel_{\overline{C}}(\mathcal{P}), then 11(p1)kpk1_{1}\prec(p-1)_{k}\prec p_{k} and

[x,E11,(p1)k]=E11,pkim(adx).[x,-E_{1_{1},(p-1)_{k}}]=E_{1_{1},p_{k}}\in\text{im}(ad_{x}).

Group 2: E12,p2E_{1_{2},p_{2}}, for 12p21_{2}\prec p_{2}. If 12p2RelC¯(𝒫)1_{2}\prec p_{2}\in Rel_{\overline{C}}(\mathcal{P}), then 12(p1)2p21_{2}\prec(p-1)_{2}\prec p_{2} and

[x,E12,(p1)2]=E12,p2im(adx).[x,-E_{1_{2},(p-1)_{2}}]=E_{1_{2},p_{2}}\in\text{im}(ad_{x}).

Group 3: Ep1,qkE_{p_{1},q_{k}}, for p1qkp_{1}\prec q_{k} where k=1,2k=1,2 and p1p\neq 1. If p1qkRelC¯(𝒫)p_{1}\prec q_{k}\in Rel_{\overline{C}}(\mathcal{P}), then p1(q1)kqkp_{1}\prec(q-1)_{k}\prec q_{k} and

[x,i=0p1E(pi)1,(q1i)k]=i=0p1E(pi)1,(qi)ki=0p2E(p1i)1,(q1i)k=Ep1,qkim(adx).\left[x,-\sum_{i=0}^{p-1}E_{(p-i)_{1},(q-1-i)_{k}}\right]=\sum_{i=0}^{p-1}E_{(p-i)_{1},(q-i)_{k}}-\sum_{i=0}^{p-2}E_{(p-1-i)_{1},(q-1-i)_{k}}=E_{p_{1},q_{k}}\in\text{im}(ad_{x}).

Group 4: Ep2,q2E_{p_{2},q_{2}}, for p2q2p_{2}\prec q_{2} where p1p\neq 1. If p2q2RelC¯(𝒫)p_{2}\prec q_{2}\in Rel_{\overline{C}}(\mathcal{P}), then p2(q1)2q2p_{2}\prec(q-1)_{2}\prec q_{2} and

[x,i=0p1E(pi)2,(q1i)2]=i=0p1E(pi)2,(qi)2i=0p2E(p1i)2,(q1i)2=Ep2,q2im(adx).\left[x,-\sum_{i=0}^{p-1}E_{(p-i)_{2},(q-1-i)_{2}}\right]=\sum_{i=0}^{p-1}E_{(p-i)_{2},(q-i)_{2}}-\sum_{i=0}^{p-2}E_{(p-1-i)_{2},(q-1-i)_{2}}=E_{p_{2},q_{2}}\in\text{im}(ad_{x}).

Thus,

im(adx){Ep,q|pqRelC¯(𝒫)}\text{im}(ad_{x})\supset\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}

so that

|RelC¯(𝒫)|=dim(span{Ep,q|pqRelC¯(𝒫)})rank(adx)b(L).|Rel_{\overline{C}}(\mathcal{P})|=\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\})\leq\textup{rank}(ad_{x})\leq b(L).

It follows that b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|.

(b) For 𝒫=Tm(n)\mathcal{P}=T_{m}(n), evidently the result holds for n=1,2n=1,2. For n>2n>2, to show that |RelC¯(𝒫)|b(L)|Rel_{\overline{C}}(\mathcal{P})|\leq b(L) we construct xLx\in L such that Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all pqRelC¯(𝒫)p\prec q\in Rel_{\overline{C}}(\mathcal{P}). Consider

x=k=1n1i=1mk1j=0m1Eik,(mij)k+1.x=\sum_{k=1}^{n-1}\sum_{i=1}^{m^{k-1}}\sum_{j=0}^{m-1}E_{i_{k},(mi-j)_{k+1}}.

Note that x=Ep,qx=\sum E_{p,q}, where the sum is over all covering relations pqp\prec q in 𝒫\mathcal{P}. Also note that

{pq|pqRelC¯(𝒫)}={ikjl|lk>1 and mlk(i1)+1jmlki}.\{p\prec q~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}=\{i_{k}\prec j_{l}~{}|~{}l-k>1\text{ and }m^{l-k}(i-1)+1\leq j\leq m^{l-k}i\}.

We will show that Ep,qim(adx)E_{p,q}\in\text{im}(ad_{x}), for all pqRelC¯(𝒫)p\prec q\in Rel_{\overline{C}}(\mathcal{P}), in n2n-2 steps.

Step 0: ikjni_{k}\prec j_{n}. If ikjnRelC¯(𝒫)i_{k}\prec j_{n}\in Rel_{\overline{C}}(\mathcal{P}), then there exists 0lm10\leq l\leq m-1 such that ik(mil)k+1jni_{k}\prec(mi-l)_{k+1}\prec j_{n} and

[x,E(mil)k+1,jn]=Eik,jnim(adx).[x,E_{(mi-l)_{k+1},j_{n}}]=E_{i_{k},j_{n}}\in\text{im}(ad_{x}).

Step d: ikjndi_{k}\prec j_{n-d}. If ikjndRelC¯(𝒫)i_{k}\prec j_{n-d}\in Rel_{\overline{C}}(\mathcal{P}), then there exists 0lm10\leq l\leq m-1 such that ik(mil)k+1jndi_{k}\prec(mi-l)_{k+1}\prec j_{n-d} and

[x,E(mil)k+1,jnd]=Eik,jndt=0m1E(mil)k+1,(mjt)nd+1im(adx).[x,E_{(mi-l)_{k+1},j_{n-d}}]=E_{i_{k},j_{n-d}}-\sum_{t=0}^{m-1}E_{(mi-l)_{k+1},(mj-t)_{n-d+1}}\in\text{im}(ad_{x}).

As a consequence of Step 𝐝𝟏\mathbf{d-1} we may conclude that t=0m1E(mil)k+1,(mjt)nd+1im(adx)\sum_{t=0}^{m-1}E_{(mi-l)_{k+1},(mj-t)_{n-d+1}}\in\text{im}(ad_{x}). So, Eik,jndim(adx)E_{i_{k},j_{n-d}}\in\text{im}(ad_{x}).

Thus,

im(adx){Ep,q|pqRelC¯(𝒫)}\text{im}(ad_{x})\supset\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\}

so that

|RelC¯(𝒫)|=dim(span{Ep,q|pqRelC¯(𝒫)})rank(adx)b(L).|Rel_{\overline{C}}(\mathcal{P})|=\dim(\text{span}\{E_{p,q}~{}|~{}p\prec q\in Rel_{\overline{C}}(\mathcal{P})\})\leq\textup{rank}(ad_{x})\leq b(L).

It follows that b(L)=|RelC¯(𝒫)|b(L)=|Rel_{\overline{C}}(\mathcal{P})|. ∎

Lemma 2.
  1. (a)

    If 𝒫=𝟐×𝐧\mathcal{P}=\mathbf{2\times n}, then

    |RelC¯(𝒫)|=(n1)(3n4)2.|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-1)(3n-4)}{2}.
  2. (b)

    If 𝒫=Tm(n)\mathcal{P}=T_{m}(n), then

    |RelC¯(𝒫)|=(n2)mn+1+(1n)mn+m2(m1)2.|Rel_{\overline{C}}(\mathcal{P})|=\frac{(n-2)m^{n+1}+(1-n)m^{n}+m^{2}}{(m-1)^{2}}.
Proof.

(a) By induction. Let 𝒫n=𝟐×𝐧\mathcal{P}_{n}=\mathbf{2\times n} and

f(n)=|RelC¯(𝒫n)|.f(n)=|Rel_{\overline{C}}(\mathcal{P}_{n})|.

For n=1n=1, direct computation shows that f(1)=0f(1)=0. Assume the result holds for 1n11\leq n-1. Note that one can form 𝒫n\mathcal{P}_{n} from 𝒫n1\mathcal{P}_{n-1} by adjoining a new maximal element n2n_{2} satisfying (n1)2n2(n-1)_{2}\prec n_{2} as well as a new element n1n_{1} satisfying (n1)1n1n2(n-1)_{1}\prec n_{1}\prec n_{2}. Thus,

f(n)=f(n1)+|RelC¯(𝒫n,n2)|+|RelC¯(𝒫n,n1)|,f(n)=f(n-1)+|Rel_{\overline{C}}(\mathcal{P}_{n},n_{2})|+|Rel_{\overline{C}}(\mathcal{P}_{n},n_{1})|,

where

|RelC¯(𝒫n,n2)|=|{j1n2|1jn1}{j2n2|1jn2}|=2n3|Rel_{\overline{C}}(\mathcal{P}_{n},n_{2})|=|\{j_{1}\prec n_{2}~{}|~{}1\leq j\leq n-1\}\cup\{j_{2}\prec n_{2}~{}|~{}1\leq j\leq n-2\}|=2n-3

and

|RelC¯(𝒫n,n1)|=|{j1n2|1jn2}|=n2;|Rel_{\overline{C}}(\mathcal{P}_{n},n_{1})|=|\{j_{1}\prec n_{2}~{}|~{}1\leq j\leq n-2\}|=n-2;

that is,

f(n)=(n2)(3n7)2+2n3+n2=(n1)(3n4)2.f(n)=\frac{(n-2)(3n-7)}{2}+2n-3+n-2=\frac{(n-1)(3n-4)}{2}.

The result follows.

(b) Let 𝒫n=Tm(n)\mathcal{P}_{n}=T_{m}(n),

f1(n)=|RelC¯(𝒫n)|,f_{1}(n)=|Rel_{\overline{C}}(\mathcal{P}_{n})|,

and

f2(n)=(n2)mn+1+(1n)mn+m2(m1)2.f_{2}(n)=\frac{(n-2)m^{n+1}+(1-n)m^{n}+m^{2}}{(m-1)^{2}}.

By definition we have that f1(1)=f1(2)=0f_{1}(1)=f_{1}(2)=0,

f2(1)=(12)m1+1+(11)m1+m2(m1)2=(1)m2+(0)m+m2(m1)2=m2+m2(m1)2=0(m1)2=0,f_{2}(1)=\frac{(1-2)m^{1+1}+(1-1)m^{1}+m^{2}}{(m-1)^{2}}=\frac{(-1)m^{2}+(0)m+m^{2}}{(m-1)^{2}}=\frac{-m^{2}+m^{2}}{(m-1)^{2}}=\frac{0}{(m-1)^{2}}=0,

and

f2(2)=(22)m2+1+(12)m2+m2(m1)2=(0)m3+(1)m2+m2(m1)2=m2+m2(m1)2=0(m1)2=0.f_{2}(2)=\frac{(2-2)m^{2+1}+(1-2)m^{2}+m^{2}}{(m-1)^{2}}=\frac{(0)m^{3}+(-1)m^{2}+m^{2}}{(m-1)^{2}}=\frac{-m^{2}+m^{2}}{(m-1)^{2}}=\frac{0}{(m-1)^{2}}=0.

Thus, f1(n)=f2(n)f_{1}(n)=f_{2}(n), for n=1,2n=1,2. For n>2n>2, note that the induced poset defined by 𝒫n\{11}\mathcal{P}_{n}\backslash\{1_{1}\} is the disjoint sum of mm copies of 𝒫n1\mathcal{P}_{n-1}. Consequently,

f1(n)=mf1(n1)+|RelC¯(𝒫n,11)|,f_{1}(n)=mf_{1}(n-1)+|Rel_{\overline{C}}(\mathcal{P}_{n},1_{1})|,

where

|RelC¯(𝒫n,11)|=|{11ik|2<kn,1imk1}|=k=2n1mk=m2(mn21m1);|Rel_{\overline{C}}(\mathcal{P}_{n},1_{1})|=|\{1_{1}\prec i_{k}~{}|~{}2<k\leq n,1\leq i\leq m^{k-1}\}|=\sum_{k=2}^{n-1}m^{k}=m^{2}\left(\frac{m^{n-2}-1}{m-1}\right);

that is,

f1(n)=mf1(n1)+m2(mn21m1).f_{1}(n)=mf_{1}(n-1)+m^{2}\left(\frac{m^{n-2}-1}{m-1}\right).

Now, note that

mf2(n1)+m2(mn21m1)=m((n3)mn+(2n)mn1+m2(m1)2)+m2(mn21m1)mf_{2}(n-1)+m^{2}\left(\frac{m^{n-2}-1}{m-1}\right)=m\left(\frac{(n-3)m^{n}+(2-n)m^{n-1}+m^{2}}{(m-1)^{2}}\right)+m^{2}\left(\frac{m^{n-2}-1}{m-1}\right)
=(n3)mn+1+(2n)mn+m3(m1)2+mnm2m1=\frac{(n-3)m^{n+1}+(2-n)m^{n}+m^{3}}{(m-1)^{2}}+\frac{m^{n}-m^{2}}{m-1}
=(n3)mn+1+(2n)mn+m3(m1)2+mn+1mnm3+m2(m1)2=\frac{(n-3)m^{n+1}+(2-n)m^{n}+m^{3}}{(m-1)^{2}}+\frac{m^{n+1}-m^{n}-m^{3}+m^{2}}{(m-1)^{2}}
=(n2)mn+1+(1n)mn+m2(m1)2=f2(n).=\frac{(n-2)m^{n+1}+(1-n)m^{n}+m^{2}}{(m-1)^{2}}=f_{2}(n).

Therefore, since f1(n)f_{1}(n) and f2(n)f_{2}(n) satisfy the same initial conditions and recursive relation, they are equal. ∎

Combining the results of Lemmas 1 and 2 establishes the remaining cases of Theorem 2.

References

  • [1] V. Coll and N. Mayers. “The index of Lie poset algebras.” J. Combin. Theory Ser. A, 177, 2021.
  • [2] V. Coll, N. Mayers, and N. Russoniello. “The index of nilpotent Lie poset algebras.” Linear Algebra Appl., 605: 118 – 129, 2020.
  • [3] V. Coll and M. Gerstenhaber. “Cohomology of Lie semidirect products and poset algebras.” J. Lie Theory, 26(1): 79–95, 2016.
  • [4] J. Dixmier. “Enveloping Algebras.” Vol. 14. Newnes, 1977.
  • [5] W.A. de Graaf. “Classification of solvable Lie algebras.” Exp. Math., 14(1): 15–25, 2005.
  • [6] B. Khuhirun. “Classification of nilpotent Lie algebras with small breadth.” Doctoral Dissertation, North Carolina State University. ProQuest Dissertations Publishing, 2014.
  • [7] B. Khuhirun, K. Misra, and E. Stitzinger. “On nilpotent Lie algebras of small breadth.” J. Algebra, 444: 328–338, 2015.
  • [8] C. R. Leedham-Green, P.Neumann, and J. Wiegold. “The breadth and the class of a finite p-group.” J. Lond. Math. Soc., 2(1): 409–420, 1969.
  • [9] L. Lampret and A. Vavpetič. “(Co)homology of Lie algebras via algebraic Morse theory.” J. Algebra, 463: 254–277, 2016.
  • [10] G. Parmeggiani and B. Stellmacher.“p-Groups of small breadth.” J. Algebra, 213(1): 52–68, 1999.
  • [11] E. Remm. “Breadth and characteristic sequence of nilpotent Lie algebras.” Comm. Algebra, 45(7): 2956–2966, 2017.
  • [12] G. Rota. “On the foundations of combinatorial theory I. Theory of Möbius functions.” Probab. Theory Related Fields, 2(4): 340–368, 1964.
  • [13] R. Stanley. “Enumerative Combinatorics, vol. 1.” Cambridge Stud. Adv. Math., vol. 49, Cambridge University Press, Cambridge, 1997