This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The asymptotic dimension of the grand arc graph is infinite

Michael C. Kopreski [email protected]
Abstract.

Let Σ\Sigma be a compact, orientable surface, and let Γ\Gamma be a relation on π0(Σ)\pi_{0}(\partial\Sigma) such that the prescribed arc graph 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is Gromov-hyperbolic and non-trivial. We show that asdim𝒜(Σ,Γ)χ(Σ)1\operatorname{asdim}\mathcal{A}(\Sigma,\Gamma)\geq-\chi(\Sigma)-1, from which we prove that the asymptotic dimension of the grand arc graph is infinite. More generally, we prove that any connected, Gromov-hyperbolic multiarc and curve graph \mathcal{M} preserved by PMod(Σ)\operatorname{PMod}(\Sigma) with bounded geometric intersection over edges has asdimg12χ(Σ)\operatorname{asdim}\mathcal{M}\geq g-\lceil\frac{1}{2}\chi(\Sigma)\rceil, and that a broad class of multiarc and curve graphs on infinite-type surfaces has infinite asymptotic dimension.

1. Introduction

Let Σ\Sigma be a compact, orientable surface with boundary, and let Γ\Gamma be a relation on π0(Σ)\pi_{0}(\partial\Sigma). A simple, essential arc aa in Σ\Sigma is Γ\Gamma-allowed if it joins boundary components in Γ\Gamma. The Γ\Gamma-prescribed arc graph 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is the full subgraph of 𝒜(Σ)\mathcal{A}(\Sigma) spanned by isotopy classes of Γ\Gamma-allowed arcs. We assume throughout that 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is non-trivial, i.e. χ(Σ)1\chi(\Sigma)\leq-1, ΣΣ03\Sigma\neq\Sigma_{0}^{3}, and Γ\Gamma\neq\varnothing.

We suppose 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic. If Σ=Σ04\Sigma=\Sigma_{0}^{4}, then 𝒜(Σ,Γ)𝒜(Σ04)\mathcal{A}(\Sigma,\Gamma)\subset\mathcal{A}(\Sigma_{0}^{4}) is a quasi-tree and asdim𝒜(Σ,Γ)=1\operatorname{asdim}\mathcal{A}(\Sigma,\Gamma)=1. Otherwise, we prove a lower bound:

Theorem 1.1.

If 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic, then χ(Σ)1asdim𝒜(Σ,Γ).-\chi(\Sigma)-1\leq\operatorname{asdim}\mathcal{A}(\Sigma,\Gamma).

For Ω\Omega an infinite-type surface with finite grand splitting, let 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) denote the grand arc graph on Ω\Omega [BNV22]. By applying Theorem 1.1, we obtain the following:

Theorem 1.2.

If 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) is non-empty and connected, then asdim𝒢(Ω)=\operatorname{asdim}\operatorname{\mathcal{G}}(\Omega)=\infty.

More generally, let \mathcal{M} be any connected multiarc and curve graph on a surface Ω\Omega that is preserved by PMod(Ω)\operatorname{PMod}(\Omega), admits a (compact) witness, and in each witness has uniformly bounded geometric intersection over edges.

Theorem 1.3.

If Ω\Omega is compact and \mathcal{M} is δ\delta-hyperbolic, then asdimg(Ω)12χ(Ω)\operatorname{asdim}\mathcal{M}\geq g(\Omega)-\lceil\frac{1}{2}\chi(\Omega)\rceil. If Ω\Omega is infinite-type, then asdim=\operatorname{asdim}\mathcal{M}=\infty.

In Section 2, we use the theory of alignment-preserving maps [DT17] to show that the Gromov boundary 𝒜(Σ,Γ)\partial\mathcal{A}(\Sigma,\Gamma) contains 𝒜(Σ)\partial\mathcal{A}(\Sigma). From results of Gabai [Gab14] and Schleimer [Po17] we obtain a compact subspace Z𝒜(Σ,Γ)Z\subset\partial\mathcal{A}(\Sigma,\Gamma) of dimension χ(Σ)2-\chi(\Sigma)-2. We then prove that asdim𝒜(Σ,Γ)dimZ+1\operatorname{asdim}\mathcal{A}(\Sigma,\Gamma)\geq\dim Z+1, extending a result for proper δ\delta-hyperbolic spaces, whence Theorem 1.1 follows.

In Section 3, we show that witness subsurfaces WΩW\subset\Omega for 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) of arbitrarily large complexity admit prescribing relations Γ\Gamma such that 𝒜(W,Γ)\mathcal{A}(W,\Gamma) quasi-isometrically embeds into 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega), where Ω\Omega is an infinite-type surface with finite grand splitting. In fact, WW may be chosen so that either 𝒜(W,Γ)\mathcal{A}(W,\Gamma) has large coarse rank or it is δ\delta-hyperbolic: Theorem 1.2 thus follows from Theorem 1.1 and the monotonicity of asymptotic dimension.

Section 4 generalizes the techniques in Sections 2 and 3 to a broad class of simplicial graphs, called admissible combinatorial models, which include prescribed arc graphs, the grand arc graph, the 11-skeleton of the marking complex, and many other multiarc and curve graphs. In addition to tools developed in Section 2, we utilize properties of the hierarchically hyperbolic structure of such graphs in the finite-type setting [Kop23a]. Theorem 1.3 follows from the analogous statements for admissible combinatorial models.

Remark.

For the reader interested in only Theorem 1.3 (which does imply Theorem 1.2 and a weaker version of Theorem 1.1, albeit with more technology than necessary), it suffices to read Sections 2.1 and 4.

1.1. Background

An orientable surface Ω\Omega has infinite topological type if its fundamental group is not finitely generated, or equivalently if int(Ω)\operatorname{int}(\Omega) has infinite genus or infinitely many punctures (we typically assume Ω=\partial\Omega=\varnothing). Beginning with a 2009 blog post of Calegari [Cal09], mapping class groups of infinite-type surfaces have been objects of considerable contemporary study: see [AV20, CPV21] for surveys of recent results and open problems.

An infinite-type surface Ω\Omega is classified by its genus and end space, which is obtained as the inverse limit of the complementary components of a compact exhaustion [Ric63]; its mapping class group Mod(Ω)\operatorname{Mod}(\Omega) is a non-compactly generated Polish group. Given mild assumptions, Mann and Rafi [MR20] classify when Mod(Ω)\operatorname{Mod}(\Omega) admits a generating set that is coarsely bounded (CB), or bounded in any left-invariant metric, and hence a well defined quasi-isometry type in the sense of [Ros14]. Mann–Rafi also define a preorder on the ends of Ω\Omega corresponding to topological complexity. We denote by (Ω)\mathscr{M}(\Omega) the non-empty subspace of maximal ends with respect to this preorder.

When Mod(Ω)\operatorname{Mod}(\Omega) is locally CB (and in particular when it is CB-generated), Bar-Natan and Verberne define the grand splitting 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega), a canonical and Mod(Ω)\operatorname{Mod}(\Omega)-invariant partition of (Ω)\mathscr{M}(\Omega) into finitely many disjoint sets Ei𝒮(Ω)E_{i}\in\operatorname{\mathcal{S}}(\Omega), each of which is either a singleton or Cantor set. A grand arc in Ω\Omega is a bi-infinite simple arc converging to ends in distinct sets in the grand splitting [BNV22].

Definition 1.4 (Bar-Natan–Verberne).

Let Ω\Omega be an infinite-type surface. The grand arc graph 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) is the simplicial graph with vertices corresponding to isotopy classes of grand arcs and edges determined by disjointness.

The grand arc graph 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) is a combinatorial model for Ω\Omega which generalizes the ray graph defined by Calegari [Cal09] on S2Cantor setS^{2}\setminus\text{Cantor set} and for surfaces with stable endspace extends the omnipresent arc graph defined by Fanoni–Ghaswala–McLeay [FGM21]. Mod(Ω)\operatorname{Mod}(\Omega) acts naturally on 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) by isometries. Bar-Natan–Verberne classify the δ\delta-hyperbolicity of 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) and show that when 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) is δ\delta-hyperbolic, the action of Mod(Σ)\operatorname{Mod}(\Sigma) is quasi-continuous, extends continuously to 𝒢(Ω)\partial\operatorname{\mathcal{G}}(\Omega), and has loxodromic elements.

Notation.

We typically denote by Σ\Sigma a compact, orientable surface, and by Ω\Omega an arbitrary orientable surface that may have either finite or infinite topological type.

1.1.1. Prescribed arc graphs, witnesses

Prescribed arc graphs were defined by the author in [Kop23b] as combinatorial models of finite-type surfaces that quasi-isometrically embed into 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega). Excepting trivial cases they are connected and infinite-diameter and their δ\delta-hyperbolicity is fully determined by the prescribing relation Γ\Gamma:

Theorem 1.5 ([Kop23b, Thm. 1.3]).

Assume that 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is non-trivial. Then if χ(Σ)2\chi(\Sigma)\geq-2 or Σ=Σ0n+1\Sigma=\Sigma_{0}^{n+1} and Γ\Gamma is a nn-pointed star then 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic. Otherwise, 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is (uniformly) δ\delta-hyperbolic if and only if Γ\Gamma is not bipartite.

We note that if ΓΓ\Gamma\subset\Gamma^{\prime} then every Γ\Gamma-allowed arc is Γ\Gamma^{\prime}-allowed, which induces a simplicial map ι:𝒜(Σ,Γ)𝒜(Σ,Γ)\iota:\mathcal{A}(\Sigma,\Gamma)\to\mathcal{A}(\Sigma,\Gamma^{\prime}). This map is 33-coarsely surjective [Kop23b, Lem. 2.10]. In particular, since the prescribed arc graph with the complete relation is exactly 𝒜(Σ)\mathcal{A}(\Sigma), 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) always coarsely surjects onto 𝒜(Σ)\mathcal{A}(\Sigma).

A compact, essential (π1\pi_{1}-injective, non-peripheral) non-pants subsurface is a witness for a given combinatorial model if it intersects every vertex. We call a witness WΣW\subset\Sigma for 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) a Γ\Gamma-witness.

1.1.2. Boundaries of non-proper δ\delta-hyperbolic spaces

In general, if 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is non-trivial then it is non-proper, and likewise for any admissible combinatorial model with sufficient complexity. For a geodesic δ\delta-hyperbolic space XX, by X\partial X we always mean the sequential boundary of XX; when XX is non-proper, X\partial X may be non-compact. In this setting, X\partial X does not coincide with the geodesic boundary, but is instead homeomorphic to the quasi-geodesic boundary [Has22]. We will make use of the following statement by Hasegawa, from a construction of Kapovich–Benakli [KB02, Rmk. 2.16]:

Remark 1.6 ([Has22, Prop. 4]).

Fixing x0Xx_{0}\in X, for any zXz\in\partial X there exists a (1+4δ,12δ)(1+4\delta,12\delta)-quasi-geodesic ray ρ:[0,)X\rho:[0,\infty)\to X based at x0x_{0} with [ρ(n)]=z[\rho(n)]=z.

Any quasi-isometry between geodesic δ\delta-hyperbolic spaces XYX\to Y extends to a map XXYYX\cup\partial X\to Y\cup\partial Y that restricts to a homeomorphism on the boundaries (e.g. applying the proof of [DK18, Thm. 11.108]). Given x,yXXx,y\in X\cup\partial X, let (x|y)x0(x|y)_{x_{0}} denote their Gromov product at x0x_{0}. We occassionally omit the basepoint, which is changeable up to bounded error.

1.1.3. Ending laminations

Let χ(Σ)1\chi(\Sigma)\leq-1, hence fix a (finite-area) hyperbolic metric for Σ\Sigma with geodesic boundary. We recall that a geodesic lamination on Σ\Sigma is a closed subset LΣL\subset\Sigma which decomposes (in fact, uniquely) into pair-wise disjoint simple geodesic leaves. LL is minimal if it has no proper sublaminations, or equivalently, if every leaf is dense in LL.

Definition 1.7.

Given a connected subspace XΣX\subset\Sigma with non-trivial π1\pi_{1}-image, if YΣY\subset\Sigma is the smallest essential subsurface containing XX up to isotopy, then YY is filled by XX. If Y=ΣY=\Sigma, then XX is filling.

Definition 1.8.

The space of ending laminations (Σ)\operatorname{\mathcal{EL}}(\Sigma) is the set of filling minimal laminations on Σ\Sigma, equipped with the coarse Hausdorff topology. Similarly, let 0(Σ)\operatorname{\mathcal{EL}}_{0}(\Sigma) denote the space of minimal laminations that fill a subsurface containing Σ\partial\Sigma, again with the coarse Hausdorff topology.

(Σ)\operatorname{\mathcal{EL}}(\Sigma) and 0(Σ)\operatorname{\mathcal{EL}}_{0}(\Sigma) give explicit descriptions for the hyperbolic boundaries of 𝒞(Σ)\mathcal{C}(\Sigma) and 𝒜(Σ)\mathcal{A}(\Sigma), respectively (see [Kla18] and [Po17]):

Theorem 1.9 (Klarreich, Schleimer).

(Σ)𝒞(Σ)\operatorname{\mathcal{EL}}(\Sigma)\cong\partial\mathcal{C}(\Sigma) and 0(Σ)𝒜(Σ)\operatorname{\mathcal{EL}}_{0}(\Sigma)\cong\partial\mathcal{A}(\Sigma).

1.1.4. Markings

In Section 4, we will make use of markings on surfaces in the sense of [MM00]. For an essential simple closed curve aΩa\subset\Omega, let 𝒞(a)\mathcal{C}(a) denote the curve graph of the annulus with core aa and πa\pi_{a} the corresponding (set-valued) subsurface projection.

Definition 1.10.

A marking μ={(ai,ti)}\mu=\{(a_{i},t_{i})\} on a surface Ω\Omega is an essential simple multicurve {ai}\{a_{i}\}, denoted baseμ\operatorname{base}\mu, along with a collection of (possibly empty) diameter 11 subsets ti𝒞(ai)t_{i}\subset\mathcal{C}(a_{i}); for aibaseμa_{i}\in\operatorname{base}\mu, let transμ(ai)=ti\operatorname{trans}_{\mu}(a_{i})=t_{i} denote the associated transversal.

A marking μ\mu is complete if baseμ\operatorname{base}\mu is a pants decomposition and every transversal is non-empty. If μ\mu is complete and for each component (a,t)μ(a,t)\in\mu t=πabt=\pi_{a}b for some simple closed curve bab\neq a disjoint from baseμ{a}\operatorname{base}\mu\setminus\{a\} that intersects aa minimally, then μ\mu is clean.

Let ΔΩ\Delta\subset\Omega be an essential, non-pants subsurface. Like multicurves, markings have a subsurface projection πΔ(μ)𝒞(Δ)\pi_{\Delta}(\mu)\subset\mathcal{C}(\Delta). If Δ\Delta is an annulus parallel to some abaseμa\in\operatorname{base}\mu, then πΔ(μ):=transμ(a)𝒞(Δ)\pi_{\Delta}(\mu)\mathrel{\mathop{:}}=\operatorname{trans}_{\mu}(a)\subset\mathcal{C}(\Delta). Otherwise, πΔ(μ):=πΔ(baseμ)\pi_{\Delta}(\mu)\mathrel{\mathop{:}}=\pi_{\Delta}(\operatorname{base}\mu). We say Δ\Delta intersects μ\mu if and only if πΔ(μ)\pi_{\Delta}(\mu)\neq\varnothing. For an essential simple closed curve cΩc\subset\Omega, again let πc(μ)\pi_{c}(\mu) denote the projection to the annulus with core cc.

Definition 1.11.

Let μ,ν\mu,\nu be two markings on Ω\Omega. Then their geometric intersection number i(μ,ν)i(\mu,\nu) is defined as follows:

i(μ,ν):=i(baseμ,baseν)+abaseμbaseνdiam𝒞(a)(πaμπaν)i(\mu,\nu)\mathrel{\mathop{:}}=i(\operatorname{base}\mu,\operatorname{base}\nu)+\sum_{a\in\operatorname{base}\mu\cup\operatorname{base}\nu}\operatorname{diam}_{\mathcal{C}(a)}(\pi_{a}\mu\cup\pi_{a}\nu)

1.1.5. Alignment-preserving maps

We briefly recall the theory of alignment-preserving maps from [DT17]. Let XX be a geodesic metric space. Then a triple (x,y,z)X3(x,y,z)\in X^{3} is KK-aligned if d(x,y)+d(y,z)d(x,z)+Kd(x,y)+d(y,z)\leq d(x,z)+K. A Lipschitz map between geodesic metric spaces f:XYf:X\to Y is coarsely alignment preserving if there exists K0K\geq 0 for which ff maps any 0-aligned triple in XX to a KK-aligned triple in YY.

Suppose that f:XYf:X\to Y is a coarsely alignment preserving map between geodesic δ\delta-hyperbolic spaces. Then we define YXX\partial_{Y}X\subset\partial X to be

YX:={[γ]Xγ:+X quasi-geodesic, diamY(fγ(+))=}.\partial_{Y}X\mathrel{\mathop{:}}=\{[\gamma]\in\partial X\;\vline\;\gamma:\mathbb{R}^{+}\to X\text{ quasi-geodesic, }\operatorname{diam}_{Y}(f\gamma(\mathbb{R}^{+}))=\infty\}.
Theorem 1.12 (Dowdall–Taylor, [DT17, Thm. 3.2]).

Let f:XYf:X\to Y be a coarsely surjective, coarsely alignment preserving map between geodesic δ\delta-hyperbolic spaces. Then ff admits an extension to a homeomorphism f:YXY\partial f:\partial_{Y}X\to\partial Y such that if xnωYXx_{n}\to\omega\in\partial_{Y}X, then f(xn)f(ω)f(x_{n})\to\partial f(\omega).

2. Asymptotic dimension of 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma)

When Σ=Σ04\Sigma=\Sigma_{0}^{4}, then 𝒜(Σ,Γ)𝒜(Σ04)\mathcal{A}(\Sigma,\Gamma)\subset\mathcal{A}(\Sigma_{0}^{4}) is an infinite-diameter connected subgraph of a quasi-tree, hence likewise a quasi-tree: asdim𝒜(Σ,Γ)=1\operatorname{asdim}\mathcal{A}(\Sigma,\Gamma)=1. For ΣΣ04\Sigma\neq\Sigma_{0}^{4}, we first prove 0(Σ)𝒜(Σ)𝒜(Σ,Γ)\operatorname{\mathcal{EL}}_{0}(\Sigma)\cong\partial\mathcal{A}(\Sigma)\subset\partial\mathcal{A}(\Sigma,\Gamma) for Γ\Gamma not bipartite.

Lemma 2.1.

If Γ\Gamma is not bipartite then for any ΓΓ\Gamma^{\prime}\supset\Gamma the induced coarse surjection ι:𝒜(Σ,Γ)𝒜(Σ,Γ)\iota:\mathcal{A}(\Sigma,\Gamma)\to\mathcal{A}(\Sigma,\Gamma^{\prime}) is uniformly coarsely alignment-preserving.

Proof.

We first claim that if Γ\Gamma is not bipartite, then geodesics in 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) are uniformly (independent of Γ\Gamma) Hausdorff close to unicorn paths with coarsely the same endpoints, and vice versa. If Γ\Gamma is not bipartite and if Σ=Σ12\Sigma=\Sigma_{1}^{2} then Γ\Gamma is not two loops, then the claim holds by [Kop23b, §3]. If instead Σ=Σ12\Sigma=\Sigma_{1}^{2} and Γ=12\Gamma=\ell_{1}\cup\ell_{2} is two loops, then ι:𝒜(Σ,1)𝒜(Σ,Γ)\iota:\mathcal{A}(\Sigma,\ell_{1})\to\mathcal{A}(\Sigma,\Gamma) is a quasi-isometry by [Kop23b, Lem. 5.2] and we apply the Morse lemma. We observe that if Γ\Gamma is not bipartite then neither is Γ\Gamma^{\prime}.

We claim that for any geodesic γ\gamma between a,b𝒜(Σ,Γ)a,b\in\mathcal{A}(\Sigma,\Gamma), ιγ\iota\gamma is uniformly Hausdorff close to a geodesic between ι(a),ι(b)\iota(a),\iota(b), whence the proof follows. Let γ\gamma^{\prime} be a unicorn path close to γ\gamma, in the sense above. ι\iota is Lipschitz, hence ιγ,ιγ\iota\gamma,\iota\gamma^{\prime} are close; since ιγ\iota\gamma^{\prime} is a unicorn path in 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma^{\prime}), choose a geodesic γ′′\gamma^{\prime\prime} close to ιγ\iota\gamma^{\prime}. By the Morse lemma, there exists a geodesic γ′′′\gamma^{\prime\prime\prime} between ι(a),ι(b)\iota(a),\iota(b) that is close to γ′′\gamma^{\prime\prime}, hence close to ιγ\iota\gamma. ∎

Applying Theorem 1.12, we obtain the desired embedding.

Corollary 2.2.

If Γ\Gamma is not bipartite and ΓΓ\Gamma^{\prime}\supset\Gamma, then there exists an embedding (ι)1:𝒜(Σ,Γ)𝒜(Σ,Γ)(\partial\iota)^{-1}:\partial\mathcal{A}(\Sigma,\Gamma^{\prime})\to\partial\mathcal{A}(\Sigma,\Gamma). ∎

By [Kop23b, §5], if ΣΣ04\Sigma\neq\Sigma_{0}^{4} and 𝒜(Γ,Σ)\mathcal{A}(\Gamma,\Sigma) is δ\delta-hyperbolic, then (i) Σ=Σ0n+1\Sigma=\Sigma_{0}^{n+1}and Γ\Gamma is an nn-pointed star, (ii) Σ=Σ12\Sigma=\Sigma_{1}^{2}and Γ\Gamma is a non-loop edge, or (iii) Γ\Gammais not bipartite. In case (i), by [Kop23b, Lem. 5.4] 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is quasi-isometric to 𝒜(Σ,0)\mathcal{A}(\Sigma,\ell_{0}), where 0\ell_{0} is a single loop and hence not bipartite. Thus for cases (i) and (iii), Corollary 2.2 implies 𝒜(Σ)𝒜(Σ,Γ)\partial\mathcal{A}(\Sigma)\subset\partial\mathcal{A}(\Sigma,\Gamma). In case (ii), every Γ\Gamma-witness is in fact a witness for the usual arc graph: by [Kop23a] 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) and 𝒜(Σ)\mathcal{A}(\Sigma) have the same quasi-isometry type, hence 𝒜(Σ,Γ)𝒜(Σ)\partial\mathcal{A}(\Sigma,\Gamma)\cong\partial\mathcal{A}(\Sigma).

Proposition 2.3.

Let ΣΣ04\Sigma\neq\Sigma_{0}^{4} and 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) be δ\delta-hyperbolic. 𝒜(Σ)0(Σ)\partial\mathcal{A}(\Sigma)\cong\operatorname{\mathcal{EL}}_{0}(\Sigma) embeds canonically into 𝒜(Σ,Γ)\partial\mathcal{A}(\Sigma,\Gamma). ∎

2.1. A lower bound

From [Gab14], we have the following:

Theorem 2.4 (Gabai).

Let SS be the (n+4)(n+4)-times punctured sphere for n0n\geq 0. Then (S)\operatorname{\mathcal{EL}}(S) is homeomorphic to the nn-dimensional Nöbeling space.

For any Σ\Sigma with χ(Σ)2\chi(\Sigma)\leq-2, let n=n(Σ)=χ(Σ)2n=n(\Sigma)=-\chi(\Sigma)-2 and let Γ\Gamma be a prescribing relation such that 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic. We may choose an essential (n+4)(n+4)-punctured sphere SS that contains all of the punctures of Σ\Sigma, thus (S)0(Σ)𝒜(Σ)\operatorname{\mathcal{EL}}(S)\subset\operatorname{\mathcal{EL}}_{0}(\Sigma)\cong\partial\mathcal{A}(\Sigma). Then applying Proposition 2.3 and Theorem 2.4, 𝒜(Σ,Γ)\partial\mathcal{A}(\Sigma,\Gamma) contains the nn-dimension Nöbeling space, and in particular, a compact subspace Z(S)Z\subset\operatorname{\mathcal{EL}}(S) of topological dimension nn by the universal embedding property of Nöbeling spaces [Nöb30].

For the remainder of the section, we will prove the following generalization of a result for proper δ\delta-hyperbolic spaces (e.g. [BL08, Prop. 6.2]):

Proposition 2.5.

Let XX be a geodesic δ\delta-hyperbolic space with ZXZ\subset\partial X compact. Then asdimXdimZ+1\operatorname{asdim}X\geq\dim Z+1.

Since 𝒜(Σ,Γ)\partial\mathcal{A}(\Sigma,\Gamma) contains a n(Σ)n(\Sigma)-dimensional compact subspace for χ(Σ)2\chi(\Sigma)\leq-2, Theorem 1.1 follows (vacuously for χ(Σ)>2\chi(\Sigma)>-2).

By δ\delta-hyperbolic, we mean that geodesic triangles are δ\delta-slim. Let XX be a geodesic δ\delta-hyperbolic space and let ZXZ\subset\partial X be compact. A metric d:X×X[0,)d:\partial X\times\partial X\to[0,\infty) is visual if there exist k1,k2k_{1},k_{2} and a>0a>0 such that

k1a(ξ|ξ)d(ξ,ξ)k2a(ξ|ξ).k_{1}a^{-(\xi|\xi^{\prime})}\leq d(\xi,\xi^{\prime})\leq k_{2}a^{-(\xi|\xi^{\prime})}.

Such metrics always exist [BH99, Prop. III.H.3.21] and are compatible with the usual topology on the (sequential) boundary: d(ξi,ξ)0d(\xi_{i},\xi)\to 0 if and only if (ξi|ξ)(\xi_{i}|\xi)\to\infty, which is equivalent to ξiξ\xi_{i}\to\xi.

Notation.

Where unambiguous, we denote by |xx||xx^{\prime}| the distance between x,xXx,x^{\prime}\in X a metric space. Given a specified basepoint oXo\in X, let |x|:=|ox||x|\mathrel{\mathop{:}}=|ox|.

Definition 2.6.

For (Z,d)(Z,d) a bounded metric space, the hyperbolic cone CoZ\operatorname{Co}Z is the topological cone Z×[0,)/Z×{0}Z\times[0,\infty)/Z\times\{0\} endowed with the following metric. Let μ=π/diam(Z)\mu=\pi/\operatorname{diam}(Z). For any x=(z,t),x=(z,t)CoZx=(z,t),x^{\prime}=(z^{\prime},t^{\prime})\in\operatorname{Co}Z, consider a geodesic triangle o¯x¯x¯H2\bar{o}\bar{x}\bar{x}^{\prime}\subset H^{2} with |o¯x¯|=t,|o¯x¯|=t|\bar{o}\bar{x}|=t,|\bar{o}\bar{x}^{\prime}|=t^{\prime}, and o¯(x¯,x¯)=μ|zz|\angle_{\bar{o}}(\bar{x},\bar{x}^{\prime})=\mu|zz^{\prime}|. Then let |xx|:=|x¯x¯||xx^{\prime}|\mathrel{\mathop{:}}=|\bar{x}\bar{x}^{\prime}|.

This metric is compatible with the usual topology on CoZ\operatorname{Co}Z. In addition, CoZ\operatorname{Co}Z is δ\delta-hyperbolic, ZCoZZ\hookrightarrow\partial\operatorname{Co}Z via the geodesic rays γz:t(z,t)\gamma_{z}:t\mapsto(z,t), and dd is visual for ZCoZZ\subset\partial\operatorname{Co}Z with respect to CoZ\operatorname{Co}Z [Buy06, Prop. 6.1]. We fix o=Z×{0}o=Z\times\{0\} as a basepoint for CoZ\operatorname{Co}Z. Analogously to [Buy06, Prop. 6.2], we have the following:

Lemma 2.7.

Let XX be a geodesic δ\delta-hyperbolic space and let ZXZ\subset\partial X be compact. Then CoZ\operatorname{Co}Z quasi-isometrically embeds into XX.

Proof.

Fix a basepoint x0Xx_{0}\in X and let δ=δ(CoZ)\delta^{\prime}=\delta(\operatorname{Co}Z). Since dd is visual for both XX and CoZ\operatorname{Co}Z, up to rescaling XX we may assume that (z|z)x0(z|z^{\prime})_{x_{0}} and (z|z)o(z|z^{\prime})_{o} are uniformly close for all z,zZz,z^{\prime}\in Z. For each zZz\in Z, fix a representative (κ0,12δ)(\kappa_{0},12\delta)-quasi-geodesic ray ρzz\rho_{z}\in z eminating from x0x_{0} by Remark 1.6, where κ0=1+4δ\kappa_{0}=1+4\delta. Let ι:CoZX\iota:\operatorname{Co}Z\to X be the map (z,t)ρz(t)(z,t)\mapsto\rho_{z}(t).

Since γzz\gamma_{z}\in z is geodesic, (z|γz(t))o>|γz(t)|δ(z|\gamma_{z}(t))_{o}>|\gamma_{z}(t)|-\delta^{\prime} and |γz(t)|=t|\gamma_{z}(t)|=t. Likewise, since ρzz\rho_{z}\in z is (κ0,12δ)(\kappa_{0},12\delta)-quasi-geodesic, (z|ρz(t))x0>|ρz(t)|Mδ(z|\rho_{z}(t))_{x_{0}}>|\rho_{z}(t)|-M-\delta, where M=M(κ0,12δ)M=M(\kappa_{0},12\delta) is the Morse constant, and |ρz(t)|=κz(t)t+Oδ(1)|\rho_{z}(t)|=\kappa_{z}(t)t+O_{\delta}(1) with 1κ0κz(t)κ0\frac{1}{\kappa_{0}}\leq\kappa_{z}(t)\leq\kappa_{0}. Let y=(z,t),y=(z,t)CoZy=(z,t),y^{\prime}=(z^{\prime},t^{\prime})\in\operatorname{Co}Z. By [BS00, Lem. 5.1], we have

|yy|\displaystyle|yy^{\prime}| =|γz(t)γz(t)|\displaystyle=|\gamma_{z}(t)\gamma_{z^{\prime}}(t^{\prime})|
=|γz(t)|+|γz(t)|2min{|γz(t)|,|γz(t)|,(z|z)o}+Oδ(1)\displaystyle=|\gamma_{z}(t)|+|\gamma_{z^{\prime}}(t^{\prime})|-2\min\{|\gamma_{z}(t)|,|\gamma_{z^{\prime}}(t^{\prime})|,(z|z^{\prime})_{o}\}+O_{\delta^{\prime}}(1)
=t+t2min{t,t,(z|z)o}+Oδ(1)\displaystyle=t+t^{\prime}-2\min\{t,t^{\prime},(z|z^{\prime})_{o}\}+O_{\delta^{\prime}}(1)

and similarly,

|ι(y)ι(y)|\displaystyle|\iota(y)\iota(y^{\prime})| =|ρz(t)ρz(t)|\displaystyle=|\rho_{z}(t)\rho_{z^{\prime}}(t^{\prime})|
=κz(t)t+κz(t)t2min{κz(t)t,κz(t)t,(z|z)x0}+Oδ(1).\displaystyle=\kappa_{z}(t)t+\kappa_{z^{\prime}}(t^{\prime})t^{\prime}-2\min\{\kappa_{z}(t)t,\kappa_{z^{\prime}}(t^{\prime})t^{\prime},(z|z^{\prime})_{x_{0}}\}+O_{\delta}(1).

ι\iota is a quasi-isometric embedding. ∎

Applying the argument in [BL08, Prop. 6.5], we obtain that asdimCoZdimZ+1\operatorname{asdim}\operatorname{Co}Z\geq\dim Z+1. Proposition 2.5 then follows from Lemma 2.7. ///\!\!/

3. Asymptotic dimension of 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega)

We prove Theorem 1.2. Let Ω\Omega be a surface of infinite topological type with finite grand splitting 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega).

Definition 3.1.

An essential, connected, compact subsurface ΣΩ\Sigma\subset\Omega is fully separating if every component of Σ\partial\Sigma is separating.

Any compact subsurface can be enlarged to one that is fully separating: e.g. we may glue 11-handles between boundary components adjacent to the same complementary component and take the compact surface filled by the result.

Lemma 3.2.

Suppose that ΣΩ\Sigma\subset\Omega is a fully separating non-annular witness for 𝒢(Ω)\mathcal{G}(\Omega) and |𝒮(Ω)|=m|\mathcal{S}(\Omega)|=m. There exists a minimally mm-partite relation Γ\Gamma on π0(Σ)\pi_{0}(\partial\Sigma) such that 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) quasi-isometrically embeds into 𝒢(Ω)\mathcal{G}(\Omega). In particular, Γ\Gamma is not bipartite if |𝒮(Ω)|>2|\mathcal{S}(\Omega)|>2.

Proof.

Since Σ\Sigma is a witness for 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega), it must separate distinct sets in 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega). In particular, each boundary component is adjacent to a complementary component containing ends in at most one set in 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega). Color each component cπ0(Σ)c\in\pi_{0}(\partial\Sigma) with the corresponding set e(c)𝒮(Ω)e(c)\in\operatorname{\mathcal{S}}(\Omega), if one exists; let Γ\Gamma be the complete mm-partite relation on these colors (components without a corresponding class are left isolated).

Fix a hyperbolic metric on Σ\Sigma. For each colored boundary component cc, choose a parameterization c:[0,1)Σc:[0,1)\to\Sigma and a simple ray ρc\rho_{c} disjoint from int(Σ)\operatorname{int}(\Sigma) with origin c(0)c(0) and converging to an end in e(c)e(c). Let a𝒜(Σ,Γ)a\in\mathcal{A}(\Sigma,\Gamma) be an arc that terminates on c1,c2π0(Σ)c_{1},c_{2}\in\pi_{0}(\partial\Sigma). Let α\alpha be the geodesic representative for aa with endpoints ci(ti)c_{i}(t_{i}) and define δi=ci|[0,ti]\delta_{i}=c_{i}|_{[0,t_{i}]} to be the subpath of cic_{i} between ci(0)c_{i}(0) and ci(ti)c_{i}(t_{i}). Let α\alpha^{\dagger} denote the extension of α\alpha from both endpoints by δ¯iρci\bar{\delta}_{i}*\rho_{c_{i}}, for i=1,2i=1,2 as appropriate. α\alpha^{\dagger} is a simple arc converging to ends in e(c1),e(c2)e(c_{1}),e(c_{2}) respectively, which are distinct in 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega) by our choice of Γ\Gamma. α\alpha^{\dagger} is a grand arc. The map a[α]a\mapsto[\alpha^{\dagger}] preserves disjointness hence extends to a simplicial (11-Lipschitz) map ψ:𝒜(Σ,Γ)𝒢(Ω)\psi:\mathcal{A}(\Sigma,\Gamma)\to\operatorname{\mathcal{G}}(\Omega).

We show that ψ\psi is a quasi-isometric embedding by constructing a coarse Lipschitz retraction π:𝒢(Ω)𝒜(Σ,Γ)\pi:\operatorname{\mathcal{G}}(\Omega)\to\mathcal{A}(\Sigma,\Gamma). For a grand arc w𝒢(Ω)w\in\operatorname{\mathcal{G}}(\Omega), fix a representative ω\omega that is geodesic in Σ\Sigma. Let ω±\omega^{\pm} denote the first and last intersections of ω\omega with Σ\Sigma and let ω^\hat{\omega} denote the shortest path between ω\omega^{-} and ω+\omega^{+} in (ωΣ)Σ(\omega\cap\Sigma)\cup\partial\Sigma. Since ω\omega converges to maximal ends distinguished by 𝒮(Ω)\operatorname{\mathcal{S}}(\Omega), ω±\omega^{\pm} lie on boundary components with distinct colors: isotoping ω^\hat{\omega} into the interior of Σ\Sigma rel ω±\omega^{\pm}, ω^\hat{\omega} is Γ\Gamma-allowed and we define π:w[ω^]\pi:w\mapsto[\hat{\omega}]. From the constructions of ψ,π\psi,\pi, it is immediate that πψ\pi\psi is identity on 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma). We verify that π\pi is Lipschitz. Let w,w𝒢(Ω)w,w^{\prime}\in\operatorname{\mathcal{G}}(\Omega) be disjoint grand arcs and let π(w)=[ω^]\pi(w)=[\hat{\omega}] and π(w)=[ω^]\pi(w^{\prime})=[\hat{\omega}^{\prime}] as above. Since ω^\hat{\omega} is constructed as a shortest path, it contains at most |π0(Σ)|1|\pi_{0}(\partial\Sigma)|-1 segments that are components of ωΣ\omega\cap\Sigma. Each of these segments intersects ω^\hat{\omega}^{\prime} at most twice and in subsegments of ω^\hat{\omega}^{\prime} parallel to Σ\partial\Sigma, and the same statement holds exchanging ω^\hat{\omega} and ω^\hat{\omega}^{\prime}. Thus i(ω^,ω^)4|π0(Σ)|4i(\hat{\omega},\hat{\omega}^{\prime})\leq 4|\pi_{0}(\partial\Sigma)|-4. Finally, since d([ω^],[ω^])i(ω^,ω^)+1d([\hat{\omega}],[\hat{\omega}^{\prime}])\leq i(\hat{\omega},\hat{\omega}^{\prime})+1 by [Kop23b, Prop. 2.6], we obtain that π\pi is (4|π0(Σ)|3)(4|\pi_{0}(\partial\Sigma)|-3)-Lipschitz. ∎

Witnesses for 𝒢(Σ)\operatorname{\mathcal{G}}(\Sigma) exist [BNV22, Lem. 2.7] and their enlargements are likewise witnesses, hence there exist fully separating witnesses ΣΩ\Sigma\subset\Omega of arbitrarily large complexity. If |𝒮(Ω)|>2|\operatorname{\mathcal{S}}(\Omega)|>2 and Γ\Gamma is chosen as in Lemma 3.2, then 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic by Theorem 1.5 and by Lemma 3.2 and Theorem 1.1 asdim𝒢(Ω)>n\operatorname{asdim}\mathcal{G}(\Omega)>n for all nn.

Suppose instead that |𝒮(Ω)|=2|\operatorname{\mathcal{S}}(\Omega)|=2. If Ω\Omega has infinite genus or infinitely many non-maximal ends, then there exists an infinite collection of pairwise-disjoint annular witnesses separating the sets {e,f}=𝒮(Ω)\{e,f\}=\operatorname{\mathcal{S}}(\Omega). Choosing finite subcollections defines quasi-flats of arbitrarily large dimension [Sch, Exercise 3.13], hence again asdim𝒢(Ω)=\operatorname{asdim}\operatorname{\mathcal{G}}(\Omega)=\infty. Alternatively, 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) contains an asymphoric hierarhically hyperbolic space of arbitrarily high rank, hence has infinite asymptotic dimension [Kop23a, Prop. 1.11].

Finally, suppose that |𝒮(Ω)|=2|\operatorname{\mathcal{S}}(\Omega)|=2 and Ω\Omega has finite genus and finitely many non-maximal ends. Ω\Omega must have at least one infinite set e𝒮(Ω)e\in\operatorname{\mathcal{S}}(\Omega); let f𝒮(Ω)f\in\operatorname{\mathcal{S}}(\Omega) be the other set. For any nn, choose a (n+1)(n+1)-holed sphere ΣΩ\Sigma\subset\Omega with nn boundary components partitioning ee and the remaining component separating ee from ff and any genus or non-maximal ends. Then Σ\Sigma is a fully separating witness for 𝒢(Ω)\operatorname{\mathcal{G}}(\Omega) and Γ\Gamma, defined as in Lemma 3.2, is a nn-pointed star. 𝒜(Σ,Γ)\mathcal{A}(\Sigma,\Gamma) is δ\delta-hyperbolic by Theorem 1.5: we conclude by Lemma 3.2 and Theorem 1.1. ///\!\!/

4. Asymptotic dimension of arbitrary combinatorial models

We generalize the preceding arguments to a broad class of combinatorial models for finite and infinite-type surfaces.

4.1. Admissible combinatorial models

Let Ω\Omega be a orientable surface of finite or infinite type. We first provide an extension of arc and curve systems and markings on Ω\Omega that subsumes both.

Definition 4.1.

A cleanly marked arc and curve system ω\omega on Ω\Omega is the union of an arc system α\alpha and a marking μ\mu on Ω\Omega such that:

  1. (i)

    α,baseμ\alpha,\operatorname{base}\mu are disjoint, and

  2. (ii)

    the maximal submarking μ\mu^{\prime} with only non-empty transversals is complete and clean in each component of Ω(ωμ)\Omega\setminus(\omega\setminus\mu^{\prime}) that it intersects.

A marking which satisfies the above is locally clean.

Let baseω=αbaseμ\operatorname{base}\omega=\alpha\cup\operatorname{base}\mu denote the underlying arc and curve system. For a component abaseωa\in\operatorname{base}\omega, let transω(a):=transμ(a)\operatorname{trans}_{\omega}(a)\mathrel{\mathop{:}}=\operatorname{trans}_{\mu}(a) if abaseμa\in\operatorname{base}\mu, else \varnothing if aαa\in\alpha. We define the geometric intersection of ω=αμ\omega=\alpha\cup\mu and ω=αμ\omega^{\prime}=\alpha^{\prime}\cup\mu^{\prime} to be

i(ω,ω):=i(baseω,baseω)+abaseμbaseμdiam𝒞(a)(πaωπaω)i(\omega,\omega^{\prime})\mathrel{\mathop{:}}=i(\operatorname{base}\omega,\operatorname{base}\omega^{\prime})+\sum_{a\in\operatorname{base}\mu\cup\operatorname{base}\mu^{\prime}}\operatorname{diam}_{\mathcal{C}(a)}(\pi_{a}\omega\cup\pi_{a}\omega^{\prime})

where πa(ω):=πaαπaμ\pi_{a}(\omega)\mathrel{\mathop{:}}=\pi_{a}\alpha\cup\pi_{a}\mu and likewise for ω\omega^{\prime}. An essential, non-pants subsurface intersects ω\omega if and only if it intersects α\alpha or μ\mu.

Notation.

Let 𝒮(Ω)\mathcal{MS}(\Omega) denote the set of cleanly marked arc and curve systems on Ω\Omega.

Definition 4.2.

A multiarc and curve graph 𝒜\mathcal{A} on Ω\Omega is a simplicial graph whose vertices are arc and curve systems on Ω\Omega. Likewise, a marking graph \mathcal{M} on Ω\Omega is a simplicial graph whose vertices are locally clean markings. Most generally, a combinatorial model for Ω\Omega is a simplicial graph whose vertices are cleanly marked arc and curve systems on Ω\Omega.

4.1.1. Witness projections

Let ΣΩ\Sigma\subset\Omega be a compact, essential, non-pants, non-annular subsurface. Let 𝒮(Ω,Σ)𝒮(Ω)\mathcal{MS}(\Omega,\Sigma)\subset\mathcal{MS}(\Omega) denote the subset of cleanly marked arc and curve systems intersecting Σ\Sigma. We construct a projection ρΣ:𝒮(Ω,Σ)𝒮(Σ)\rho_{\Sigma}:\mathcal{MS}(\Omega,\Sigma)\to\mathcal{MS}(\Sigma) as follows (see e.g. [Sch, §5.2]). Let ι:ΣΩ\iota:\Sigma\hookrightarrow\Omega be the inclusion map, let p:ΩΣΩp:\Omega_{\Sigma}\to\Omega be the covering space associated to π1(Σ)imι<π1(Ω)\pi_{1}(\Sigma)\cong\operatorname{im}\iota_{*}<\pi_{1}(\Omega) with Gromov closure Ω¯Σ\overline{\Omega}_{\Sigma}. Let ι~:ΣΩΣ\tilde{\iota}:\Sigma\hookrightarrow\Omega_{\Sigma} be the (unique) lift of ι\iota, and ι¯\bar{\iota} its inclusion into Ω¯Σ\overline{\Omega}_{\Sigma}. Fix any homeomorphism σ:Ω¯ΣΣ\sigma:\overline{\Omega}_{\Sigma}\to\Sigma that is a homotopy inverse for ι¯\bar{\iota}; note that σ\sigma is unique up to homotopy, hence isotopy.

ΩΣ{\Omega_{\Sigma}}Ω¯Σ{{\overline{\Omega}}_{\Sigma}}Σ{\Sigma}Ω{\Omega}p\scriptstyle{p}σ\scriptstyle{\sigma}ι\scriptstyle{\iota}ι~\scriptstyle{\tilde{\iota}}

Given ω𝒮(Ω,Σ)\omega\in\mathcal{MS}(\Omega,\Sigma), let ρΣ(ω)\rho_{\Sigma}(\omega) be the isotopy class defined by the closures of non-peripheral components of σp1(ω)\sigma p^{-1}(\omega). In particular, ρΣ\rho_{\Sigma} preserves (only) essential curves in Σ\Sigma: if abaseρΣ(ω)a\in\operatorname{base}\rho_{\Sigma}(\omega) is a curve component then aωa\in\omega and aa is essential in Σ\Sigma; if transω(a)=πab\operatorname{trans}_{\omega}(a)=\pi_{a}b then likewise bΣb\subset\Sigma since ω\omega is cleanly marked and we again assign transversal πab\pi_{a}b.

One verifies that ρΣ(ω)\rho_{\Sigma}(\omega) is cleanly marked and independent of the choice of representative for ω\omega and σ\sigma. Likewise, ρΣ\rho_{\Sigma} is independent of the choice of embedding of Σ\Sigma: if ι:ΣΩ\iota^{\prime}:\Sigma\hookrightarrow\Omega is isotopic to ι\iota, then the lift ι¯\bar{\iota}\,^{\prime} is isotopic to ι¯\bar{\iota} and thus a homotopy inverse for σ\sigma.

The natural action of PMod(Σ)\operatorname{PMod}(\Sigma) on 𝒮(Σ)\mathcal{MS}(\Sigma) defines an action of Mod(Σ,Σ)PMod(Σ)\operatorname{Mod}(\Sigma,\partial\Sigma)\twoheadrightarrow\operatorname{PMod}(\Sigma). Similarly, Mod(Σ,Σ)𝒮(Ω,Σ)\operatorname{Mod}(\Sigma,\partial\Sigma)\curvearrowright\mathcal{MS}(\Omega,\Sigma) via the homomorphism Mod(Σ,Σ)PMod(Ω)\operatorname{Mod}(\Sigma,\partial\Sigma)\to\operatorname{PMod}(\Omega) obtained by extending by identity.

Lemma 4.3.

ρΣ:𝒮(Ω,Σ)𝒮(Σ)\rho_{\Sigma}:\mathcal{MS}(\Omega,\Sigma)\to\mathcal{MS}(\Sigma) is Mod(Σ,Σ)\operatorname{Mod}(\Sigma,\partial\Sigma)-equivariant.

Proof.

Let φ0Mod(Σ,Σ)\varphi_{0}\in\operatorname{Mod}(\Sigma,\partial\Sigma), fixing a representative. Let φPMod(Ω)\varphi\in\operatorname{PMod}(\Omega) be its extension by identity; since φ\varphi is (compactly) supported in Σ\Sigma, it lifts to a quasi-isometry on ΩΣ\Omega_{\Sigma} that extends to a homeomorphism φ¯\overline{\varphi} on Ω¯Σ\overline{\Omega}_{\Sigma}. Since ι¯φ0=φ¯ι¯\overline{\iota}\varphi_{0}=\overline{\varphi}\,\overline{\iota} and σ,ι¯\sigma,\overline{\iota} are homotopy inverses, φ0σ\varphi_{0}\sigma and σφ¯\sigma\overline{\varphi} are homotopic and thus isotopic. For ω𝒮(Ω,Σ)\omega\in\mathcal{MS}(\Omega,\Sigma), σp1(φω)¯=σφ¯p1(ω)¯\sigma\overline{p^{-1}(\varphi\omega)}=\sigma\overline{\varphi}\overline{p^{-1}(\omega)} is isotopic to φ0σp1(ω)¯\varphi_{0}\sigma\overline{p^{-1}(\omega)}, whence the claim follows. ∎

Corollary 4.4.

Let ϕPMod(Σ)\phi\in\operatorname{PMod}(\Sigma). Then there exists ψPMod(Ω)\psi\in\operatorname{PMod}(\Omega) preserving 𝒮(Ω,Σ)\mathcal{MS}(\Omega,\Sigma) such that for any ω𝒮(Ω,Σ)\omega\in\mathcal{MS}(\Omega,\Sigma), ϕρΣ(ω)=ρΣ(ψω)\phi\rho_{\Sigma}(\omega)=\rho_{\Sigma}(\psi\omega). ∎

Given a combinatorial model \mathcal{M} on Ω\Omega, let V(),E()V(\mathcal{M}),E(\mathcal{M}) denote its vertex and edge sets, respectively. If Σ\Sigma is a witness for \mathcal{M} then V()𝒮(Ω,Σ)V(\mathcal{M})\subset\mathcal{MS}(\Omega,\Sigma) and ρΣ\rho_{\Sigma} defines a projection V()𝒮(Σ)V(\mathcal{M})\to\mathcal{MS}(\Sigma).

Definition 4.5.

A connected combinatorial model \mathcal{M} on Ω\Omega is admissible if

  1. (i)

    \mathcal{M} admits a (compact) witness,

  2. (ii)

    PMod(Ω)\operatorname{PMod}(\Omega) preserves V()V(\mathcal{M}) and extends to an action on \mathcal{M}, and

  3. (iii)

    for any non-annular witness ΔΩ\Delta\subset\Omega, there exists LΔL_{\Delta} such that if (a,b)E()(a,b)\in E(\mathcal{M}), then i(ρΔ(a),ρΔ(b))LΔi(\rho_{\Delta}(a),\rho_{\Delta}(b))\leq L_{\Delta}.

Remark 4.6.

When Ω\Omega is finite-type, it deformation retracts to a compact witness Ω¯\overline{\Omega}. Since in addition i(ρΔ(a),ρΔ(b))i(a,b)=i(ρΩ¯(a),ρΩ¯(b))i(\rho_{\Delta}(a),\rho_{\Delta}(b))\leq i(a,b)=i(\rho_{\overline{\Omega}}(a),\rho_{\overline{\Omega}}(b)), (i) is tautological and in (iii) we may choose LΔ=LΩ¯L_{\Delta}=L_{\overline{\Omega}} to be uniform.

Admissible combinatorial models include many familiar graphs, including the curve graph 𝒞Ω\mathcal{C}\Omega, the 11-skeleton 𝒞(Ω)(1)\mathcal{MC}(\Omega)^{(1)} of Masur–Minsky’s marking complex, and the prescribed arc graphs and grand arc graph discussed above.

4.1.2. Combinatorial models on witnesses

Let ΣΩ\Sigma\subset\Omega be a non-annular witness for an admissible combinatorial model \mathcal{M} on Ω\Omega. We construct an admissible combinatorial model Σ\mathcal{M}_{\Sigma} on Σ\Sigma for which the projection ρΣ\rho_{\Sigma} restricts to a Lipschitz map Σ\mathcal{M}\to\mathcal{M}_{\Sigma}, along with a Lipschitz coarse section ι:Σ\iota:\mathcal{M}_{\Sigma}\to\mathcal{M}. It follows that Σ\mathcal{M}_{\Sigma} quasi-isometrically embeds into \mathcal{M}.

Let V(Σ)=ρΣ(V())V(\mathcal{M}_{\Sigma})=\rho_{\Sigma}(V(\mathcal{M})) and let (a,b)E(Σ)(a,b)\in E(\mathcal{M}_{\Sigma}) if and only if aba\neq b and there exist a~ρΣ1(a),b~ρΣ1(b)\tilde{a}\in\rho_{\Sigma}^{-1}(a),\tilde{b}\in\rho_{\Sigma}^{-1}(b) such that (a~,b~)E()(\tilde{a},\tilde{b})\in E(\mathcal{M}). It is immediate that ρΣ:V()V(Σ)\rho_{\Sigma}:V(\mathcal{M})\to V(\mathcal{M}_{\Sigma}) extends to a surjective 11-Lipschitz map ρΣ:Σ\rho_{\Sigma}:\mathcal{M}\to\mathcal{M}_{\Sigma}, hence in particular since \mathcal{M} is connected so is Σ\mathcal{M}_{\Sigma}. Likewise, since \mathcal{M} satisfies Definition 4.5(iii), so does Σ\mathcal{M}_{\Sigma} for uniform L=LΣL=L_{\Sigma}. By Corollary 4.4 PMod(Σ)\operatorname{PMod}(\Sigma) acts naturally on Σ\mathcal{M}_{\Sigma}, hence Σ\mathcal{M}_{\Sigma} is admissible.

Fix any Mod(Σ,Σ)\operatorname{Mod}(\Sigma,\partial\Sigma)-equivariant section ι:V(Σ)V()\iota:V(\mathcal{M}_{\Sigma})\to V(\mathcal{M}), and let a~=ι(a)ρΣ1(a)\tilde{a}=\iota(a)\in\rho_{\Sigma}^{-1}(a). We show that ι\iota is Lipschitz, hence extends to a Lipschitz coarse section ι:Σ\iota:\mathcal{M}_{\Sigma}\to\mathcal{M} for ρΣ\rho_{\Sigma}. Since for any (a,b)E(Σ)(a,b)\in E(\mathcal{M}_{\Sigma}), i(a,b)Li(a,b)\leq L, there are finitely many Mod(Σ,Σ)\operatorname{Mod}(\Sigma,\partial\Sigma)-orbits of edges in Σ\mathcal{M}_{\Sigma}. Let

M=max(a,b)E(Σ)/Gd(a~,b~)M=\max_{(a,b)\in E(\mathcal{M}_{\Sigma})/G}d_{\mathcal{M}}(\tilde{a},\tilde{b})

where G=Mod(Σ,Σ)G=\operatorname{Mod}(\Sigma,\partial\Sigma). Then ι\iota is MM-Lipschitz. We have shown:

Proposition 4.7.

Let ΣΩ\Sigma\subset\Omega be a non-annular witness for an admissible combinatorial model \mathcal{M} on Ω\Omega. There exists an admissible combinatorial model Σ\mathcal{M}_{\Sigma} on Σ\Sigma which quasi-isometrically embeds into \mathcal{M}. ∎

4.2. Asymptotic dimension lower bounds

We first consider the asymptotic dimension of admissible combinatorial models on Σ\Sigma, a finite-type surface. Up to deformation retraction, we assume Σ\Sigma is compact.

Remark 4.8.

If Σ\Sigma is a (closed) torus, then any admissible combinatorial model is quasi-isometric to the curve graph, hence a quasi-tree with asdim=1\operatorname{asdim}=1. Otherwise, if Σ\Sigma admits a non-empty admissible combinatorial model (and in particular, a witness subsurface), then χ(Σ)1\chi(\Sigma)\leq-1 and Σ≇Σ03\Sigma\not\cong\Sigma_{0}^{3}.

4.2.1. Marking graphs and rank

It suffices to consider admissible marking graphs, in the sense of the following lemma:

Lemma 4.9.

Let \mathcal{M} be an admissible combinatorial model on a compact surface Σ≇Σ1\Sigma\not\cong\Sigma_{1}. Then there exists an admissible marking graph \mathcal{M}^{\prime} on Σ\Sigma with an identical witness set and a PMod(Σ)\operatorname{PMod}(\Sigma)-equivariant quasi-isometry \mathcal{M}\to\mathcal{M}^{\prime} which coarsely preserves witness subsurface projection.

For a simple closed curve aΣa\subset\Sigma, let da(ω,ω):=diam𝒞(a)(πaωπaω)d_{a}(\omega,\omega^{\prime})\mathrel{\mathop{:}}=\operatorname{diam}_{\mathcal{C}(a)}(\pi_{a}\omega\cup\pi_{a}\omega^{\prime}). Then da(ω,ω)d_{a}(\omega,\omega^{\prime}) is bounded in terms of i(ω,ω)i(\omega,\omega^{\prime}) uniformly in aa (see [Wat16, Thm. 2.10], e.g.).

Proof.

Let ω=ναV()\omega=\nu\cup\alpha\in V(\mathcal{M}). From [Kop23a, §3], we construct a canonical set of locally clean markings μbaseω\mu_{\operatorname{base}\omega} corresponding to the arc and curve system baseω\operatorname{base}\omega such that

  1. (i)

    for μμbaseω\mu\in\mu_{\operatorname{base}\omega}, baseνμ\operatorname{base}\nu\subset\mu with empty transversals, and

  2. (ii)

    an essential, non-pants subsurface intersects μμbaseω\mu\in\mu_{\operatorname{base}\omega} if and only if it intersects baseω\operatorname{base}\omega.

Moreover, there exists MM such that for any ω,ωV()\omega,\omega^{\prime}\in V(\mathcal{M})

  1. (iii)

    i(ω,μ)<Mi(\omega,\mu)<M for μμbaseω\mu\in\mu_{\operatorname{base}\omega},111This fact is not stated in [Kop23a], but follows from the construction of μbaseω\mu_{\operatorname{base}\omega}. and

  2. (iv)

    if (ω,ω)E()(\omega,\omega^{\prime})\in E(\mathcal{M}) then i(μ,μ)<Mi(\mu,\mu^{\prime})<M for any μμbaseω,μμbaseω\mu\in\mu_{\operatorname{base}\omega},\mu^{\prime}\in\mu_{\operatorname{base}\omega^{\prime}}.

Obtain the set μω\mu_{\omega} by adding the transversals in ν\nu to each μμbaseω\mu\in\mu_{\operatorname{base}\omega}. Note that μ\mu remains locally clean: else, there is a component in ν\nu bounding an essential, non-pants subsurface disjoint from μ\mu but not from baseω\operatorname{base}\omega, contradicting property (ii). Likewise (iii) still holds for μω\mu_{\omega}.

Let V()=ωμωV(\mathcal{M}^{\prime})=\bigcup_{\omega\in\mathcal{M}}\mu_{\omega} and let (μ,μ)E()(\mu,\mu^{\prime})\in E(\mathcal{M}^{\prime}) if and only if μμω,μμω\mu\in\mu_{\omega},\mu^{\prime}\in\mu_{\omega^{\prime}} for some (ω,ω)E()(\omega,\omega^{\prime})\in E(\mathcal{M}). We prove that \mathcal{M}^{\prime} is admissible and ωμω\omega\mapsto\mu_{\omega} is the desired (coarse) quasi-isometry. By applying the arguments in [Kop23a] it suffices to verify (ii) and (iv) for the sets μω\mu_{\omega}, replacing baseω\operatorname{base}\omega with ω\omega and baseω\operatorname{base}\omega^{\prime} with ω\omega^{\prime}, as well as the property

  1. (v)

    if μωμω\mu_{\omega}\cap\mu_{\omega^{\prime}}\neq\varnothing, then i(ω,ω)i(\omega,\omega^{\prime}) is uniformly bounded.

(ii) for μbaseω\mu_{\operatorname{base}\omega} implies the same for μω\mu_{\omega}, except for annuli parallel to curves in baseν\operatorname{base}\nu; since νμω\nu\subset\mu\cap\omega for μμω\mu\in\mu_{\omega}, (ii) holds for μω\mu_{\omega}. Let ω=να\omega=\nu\cup\alpha and ω=να\omega^{\prime}=\nu^{\prime}\cup\alpha^{\prime}. Suppose (ω,ω)E()(\omega,\omega^{\prime})\in E(\mathcal{M}) and μμω,μμω\mu\in\mu_{\omega},\mu^{\prime}\in\mu_{\omega^{\prime}}. Since (iv) holds for μbaseω,μbaseω\mu_{\operatorname{base}\omega},\mu_{\operatorname{base}\omega^{\prime}}, it suffices that da(μ,μ)d_{a}(\mu,\mu^{\prime}) is uniformly bounded for aννa\in\nu\cup\nu^{\prime}; by (ii), if μ\mu projects to 𝒞(a)\mathcal{C}(a) then so does ω\omega, and likewise for μ\mu^{\prime} and ω\omega^{\prime}. i(μ,ω),i(μ,ω)<Mi(\mu,\omega),i(\mu^{\prime},\omega^{\prime})<M, hence each pair has uniformly close projections if non-empty: da(μ,μ)d_{a}(\mu,\mu^{\prime}) is bounded in terms of da(ω,ω)<LΣd_{a}(\omega,\omega^{\prime})<L_{\Sigma}.

Finally, if μμωμω\mu\in\mu_{\omega}\cap\mu_{\omega^{\prime}}, then [Kop23a, §3.2] implies that i(baseω,baseω)i(\operatorname{base}\omega,\operatorname{base}\omega^{\prime}) is uniformly bounded. For any aννa\in\nu\cup\nu^{\prime}, we show that da(ω,ω)d_{a}(\omega,\omega^{\prime}) is also uniformly bounded. By construction, if ω\omega or ω\omega^{\prime} has non-empty projection to 𝒞(a)\mathcal{C}(a) then so does μ\mu. Since i(ω,μ),i(ω,μ)<Mi(\omega,\mu),i(\omega^{\prime},\mu)<M, we conclude as above. ∎

In particular, by [Kop23a] any admissible marking graph (hence likewise any admissible combinatorial model) \mathcal{M} on a compact surface Σ\Sigma is an asymphoric hierarchically hyperbolic space with respect to subsurface projections to witness curve graphs. Let 𝒳\mathscr{X} denote the collection of witness subsurfaces for \mathcal{M}. Then in particular the rank ν\nu of (,𝒳)(\mathcal{M},\mathscr{X}) corresponds to the largest cardinality of a set of pairwise disjoint, connected surfaces in 𝒳\mathscr{X}. Since (,𝒳)(\mathcal{M},\mathscr{X}) is asymphoric, asdimν\operatorname{asdim}\mathcal{M}\geq\nu [BHS21, Thm. 1.15] and \mathcal{M} is δ\delta-hyperbolic if and only if ν=1\nu=1 [BHS21, Cor. 2.15]. The lower bound here will prove sufficient except when ν=1\nu=1; we note that an identical bound can be achieved by explicitly constructing quasi-flats.

4.2.2. The δ\delta-hyperbolic case

Adapting the arguments in Section 2, we prove the following:

Theorem 4.10.

Let Σ\Sigma be a genus gg compact surface, possibly with boundary. If \mathcal{M} is a (non-empty) δ\delta-hyperbolic admissible combinatorial model on Σ\Sigma, then asdimg12χ(Σ)\operatorname{asdim}\mathcal{M}\geq g-\lceil\frac{1}{2}\chi(\Sigma)\rceil.

If ΣΣ1\Sigma\cong\Sigma_{1}, then the claim is immediate by Remark 4.8. Otherwise, we may assume \mathcal{M} is an admissible marking graph by Lemma 4.9. Let 𝒳\mathscr{X}^{\mathcal{M}} denote the collection of witness subsurfaces for \mathcal{M}. For any \mathcal{M}^{\prime} an admissible marking graph on Σ\Sigma with 𝒳𝒳\mathscr{X}^{\mathcal{M}}\supset\mathscr{X}^{\mathcal{M}^{\prime}}, there exists a functorial canonical coarse surjection ι:\iota:\mathcal{M}\to\mathcal{M}^{\prime} such that πWι\pi_{W}\circ\iota is uniformly coarsely πW\pi_{W} for any W𝒳W\in\mathscr{X}^{\mathcal{M}^{\prime}} [Kop23a, §2.1]. In particular, 𝒳𝒞(1)(Σ)\mathscr{X}^{\mathcal{MC}^{(1)}(\Sigma)} is every essential, non-peripheral subsurface in Σ\Sigma and 𝒳𝒞Σ={Σ}\mathscr{X}^{\mathcal{C}\Sigma}=\{\Sigma\}, hence we have canonical maps 𝒞(1)(Σ)𝒞Σ\mathcal{MC}^{(1)}(\Sigma)\to\mathcal{M}\to\mathcal{C}\Sigma.

Lemma 4.11.

Let ,\mathcal{M},\mathcal{M}^{\prime} be admissible marking graphs on Σ\Sigma, a compact surface, such that 𝒳𝒳\mathscr{X}^{\mathcal{M}}\supset\mathscr{X}^{\mathcal{M}^{\prime}}, and let ι:\iota:\mathcal{M}\to\mathcal{M}^{\prime} be the canonical coarse surjection. If \mathcal{M} is δ\delta-hyperbolic, then ι\iota is coarsely alignment-preserving.

We note that if \mathcal{M} is δ\delta-hyperbolic, then ν()ν()1\nu(\mathcal{M}^{\prime})\leq\nu(\mathcal{M})\leq 1, hence \mathcal{M}^{\prime} is δ\delta-hyperbolic. Recall that a path ρX\rho\subset X is a DD-hierarchy path for a hierarchically hyperbolic space (X,𝒢)(X,\mathscr{G}) if it is a (D,D)(D,D)-quasi-geodesic and παρ\pi_{\alpha}\rho is a unparameterized (D,D)(D,D)-quasi-geodesic for all α𝒢\alpha\in\mathscr{G}.

Proof.

Since (,𝒳)(\mathcal{M},\mathscr{X}^{\mathcal{M}}) is hierarchically hyperbolic, there exists D>0D>0 such that for any x,yx,y\in\mathcal{M}, there exists a DD-hierarchy path joining x,yx,y [BHS19, Thm. 4.4]. Let (x,z,y)3(x,z,y)\in\mathcal{M}^{3} be aligned and let γ\gamma be the geodesic from xx to yy passing through zz and ρ\rho the hierarchy path between x,yx,y. By the Morse lemma, there exists a constant M(D,δ)M(D,\delta) such that γ,ρ\gamma,\rho are M(D,δ)M(D,\delta)-Hausdorff close, hence d(z,ρ)M(D,δ)d(z,\rho)\leq M(D,\delta). For any W𝒳W\in\mathscr{X}^{\mathcal{M}}, πWρ\pi_{W}\rho is an unparameterized (D,D)(D,D)-quasi-geodesic. Applying the Morse lemma and that πW\pi_{W} is LL-Lipschitz for uniform LL, it follows that (πW(x),πW(z),πW(y))(\pi_{W}(x),\pi_{W}(z),\pi_{W}(y)) are KK-aligned where K=2(M(D,δ0)+LM(D,δ))K=2(M(D,\delta_{0})+LM(D,\delta)) is uniform over 3,𝒳\mathcal{M}^{3},\mathscr{X}^{\mathcal{M}} and δ0\delta_{0} is a uniform hyperbolicity constant for curve graphs [HPW15].

It follows that πW\pi_{W} for W𝒳W\in\mathscr{X}^{\mathcal{M}} and likewise πW\pi_{W^{\prime}} for W𝒳W^{\prime}\in\mathscr{X}^{\mathcal{M}^{\prime}} are KK^{\prime}-alignment preserving for uniform KK^{\prime}. Since 𝒳𝒳\mathscr{X}^{\mathcal{M}^{\prime}}\subset\mathscr{X}^{\mathcal{M}}, the distance formulas for ,\mathcal{M},\mathcal{M}^{\prime} imply the claim. ∎

Suppose that \mathcal{M} is a δ\delta-hyperbolic admissible marking graph on a compact surface Σ\Sigma with genus gg. By Lemma 4.11, the canonical map ι:𝒞Σ\iota:\mathcal{M}\to\mathcal{C}\Sigma is coarsely alignment preserving, hence by Theorem 1.12 𝒞Σ\partial\mathcal{C}\Sigma embeds into \partial\mathcal{M}. To prove Theorem 4.10 it suffices to find a compact subspace Z𝒞ΣZ\subset\partial\mathcal{C}\Sigma such that dimZn:=g112χ(Σ)\dim Z\geq n\mathrel{\mathop{:}}=g-1-\lceil\frac{1}{2}\chi(\Sigma)\rceil, since by Proposition 2.5 dimZ+1asdim\dim Z+1\leq\operatorname{asdim}\mathcal{M}. Recall that 𝒞Σ(Σ)\partial\mathcal{C}\Sigma\cong\mathcal{EL}(\Sigma).

Proposition 4.12.

Let Σ\Sigma be a genus gg compact hyperbolic surface and SS the (n+4)(n+4)-times punctured sphere, where n=g112χ(Σ)n=g-1-\lceil\frac{1}{2}\chi(\Sigma)\rceil. Then (S)\operatorname{\mathcal{EL}}(S) embeds into 𝒞Σ(Σ)\partial\mathcal{C}\Sigma\cong\operatorname{\mathcal{EL}}(\Sigma).

Proof.

For simplicity, we replace the boundary components of Σ\Sigma with punctures, noting that 𝒞Σ𝒞(ΣΣ)\mathcal{C}\Sigma\cong\mathcal{C}(\Sigma\setminus\partial\Sigma). Choose a hyperelliptic involution η\eta on Σ\Sigma that fixes at most one puncture and let h:ΣSh:\Sigma\to S^{\prime} be the orbifold covering map obtained by quotienting by η\eta. Obtain SS by removing the cone points of SS^{\prime}: one verifies that SS has n+4n+4 punctures. By [RS09], hh induces a quasi-isometric embedding h:𝒞S𝒞Σh_{*}:\mathcal{C}S\to\mathcal{C}\Sigma, which has quasi-convex image by the Morse lemma. Hence (S)𝒞S𝒞Σ\operatorname{\mathcal{EL}}(S)\cong\partial\mathcal{C}S\subset\partial\mathcal{C}\Sigma. ∎

When Σ\Sigma is a sphere with four boundary components, Theorem 4.10 is vacuously true. Otherwise, from Theorem 2.4 and the universal embedding property of Nöbeling spaces, we obtain the desired subspace Z(S)𝒞ΣZ\subset\operatorname{\mathcal{EL}}(S)\subset\partial\mathcal{C}\Sigma and Theorem 4.10 follows. ///\!\!/

4.2.3. Lower bounds for infinite-type surfaces

Given an admissible combinatorial model \mathcal{M} on an infinite-type surface Ω\Omega, let w{}w_{\mathcal{M}}\in\mathbb{N}\cup\{\infty\} denote the least upper bound on cardinalities for a set of pairwise-disjoint connected witnesses for \mathcal{M}. We consider two cases:

  1. (i)

    ww_{\mathcal{M}} is infinite. For arbitrarily large mm\in\mathbb{N}, we may choose a compact, essential subsurface ΣΩ\Sigma\subset\Omega containing at least mm disjoint witnesses. Σ\Sigma is a witness for \mathcal{M}, and any witness for \mathcal{M} contained in Σ\Sigma is a witness for Σ\mathcal{M}_{\Sigma} by construction. It follows that Σ\mathcal{M}_{\Sigma} is an asymphoric hierarchically hyperbolic space of rank νm\nu\geq m, hence by Proposition 4.7 asdimasdimΣm\operatorname{asdim}\mathcal{M}\geq\operatorname{asdim}\mathcal{M}_{\Sigma}\geq m. asdim=\operatorname{asdim}\mathcal{M}=\infty.

  2. (ii)

    w=mw_{\mathcal{M}}=m is finite. Fix a collection of pairwise disjoint witnesses {Wi}\{W_{i}\} with cardinality mm. Fix W0W_{0} among these such that W0W_{0} lies in a complementary component Ω0\Omega_{0} of i>0Wi\bigcup_{i>0}W_{i} of infinite type. Let ΣΩ0\Sigma\subset\Omega_{0} be an enlargement of W0W_{0} of arbitrarily negative χ(Σ)\chi(\Sigma): Σ\Sigma is a witness for \mathcal{M}. Moreover, since any witness for Σ\mathcal{M}_{\Sigma} is a witness for \mathcal{M} disjoint from the Wi>0W_{i>0}, any two connected witnesses for Σ\mathcal{M}_{\Sigma} must intersect: Σ\mathcal{M}_{\Sigma} is an asymphoric hierarchically hyperbolic space of rank ν=1\nu=1, hence δ\delta-hyperbolic. By Proposition 4.7 and Theorem 4.10, asdimasdimΣ12χ(Σ)\operatorname{asdim}\mathcal{M}\geq\operatorname{asdim}\mathcal{M}_{\Sigma}\geq-\frac{1}{2}\chi(\Sigma), hence asdim=\operatorname{asdim}\mathcal{M}=\infty.

Theorem 4.13.

Let \mathcal{M} be an admissible combinatorial model on an infinite-type surface Ω\Omega. Then asdim=\operatorname{asdim}\mathcal{M}=\infty. ∎

Theorem 1.3 follows from Theorems 4.10 and 4.13 in the special case of admissible multiarc and curve graphs. ///\!\!/

5. Acknowledgements

The author would like to thank Mladen Bestvina for his support and advice, George Shaji for numerous helpful discussions, Yusen Long for comments on the manuscript, and Priyam Patel for suggesting that the results in Sections 2 and 3 be generalized. The author was supported by NSF awards no. 2304774 and no. 1840190: RTG: Algebra, Geometry, and Topology at the University of Utah.

References

  • [AV20] Javier Aramayona and Nicholas G. Vlamis, Big mapping class groups: an overview, 2020.
  • [BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Springer Berlin, Heidelberg, 1999.
  • [BHS19] Jason Behrstock, Mark F. Hagen, and Alessandro Sisto, Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific Journal of Mathematics 299 (2019), no. 2, 257–338.
  • [BHS21] by same author, Quasiflats in hierarchically hyperbolic spaces, Duke Mathematical Journal 170 (2021), no. 5, 909 – 996.
  • [BL08] Sergei Buyalo and Nina Lebedeva, Dimensions of locally and asymptotically self-similar spaces, St. Petersburg Math. J. 19 (2008), 45–65.
  • [BNV22] Assaf Bar-Natan and Yvon Verberne, The grand arc graph, 2022.
  • [BS00] Mario Bonk and Oded Schramm, Embeddings of Gromov hyperbolic spaces, Geometric and Functional Analysis 10 (2000), 243–284.
  • [Buy06] Sergei Buyalo, Asymptotic dimension of a hyperbolic space and capacity dimension of its boundary at infinity, St. Petersberg Math. J. 17 (2006), 267–283.
  • [Cal09] Danny Calegari, Big mapping class groups and dynamics, Blog post, https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics, 2009.
  • [CPV21] Yassin Chandran, Priyam Patel, and Nicholas G. Vlamis, Infinite type surfaces and mapping class groups: Open problems, http://qcpages.qc.cuny.edu/~nvlamis/Papers/InfTypeProblems.pdf, 2021.
  • [DK18] C. Druţu and M. Kapovich, Geometric group theory, Colloquium Publications, American Mathematical Society, 2018.
  • [DT17] Spencer Dowdall and Samuel J. Taylor, The co-surface graph and the geometry of hyperbolic free group extensions, Journal of Topology 10 (2017), no. 2, 447–482.
  • [FGM21] Federica Fanoni, Tyrone Ghaswala, and Alan McLeay, Homeomorphic subsurfaces and the omnipresent arcs, Annales Henri Lebesgue 4 (2021), 1565–1593.
  • [Gab14] David Gabai, On the topology of ending lamination space, Geometry & Topology 18 (2014), no. 5, 2683 – 2745.
  • [Has22] Yo Hasegawa, Gromov boundaries of non-proper hyperbolic geodesic spaces, Tokyo Journal of Mathematics 45 (2022), no. 2, 319–331.
  • [HPW15] Sebastian Hensel, Piotr Przytycki, and Richard Webb, 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs, Journal of the European Mathematical Society 17 (2015), no. 4, 755–762.
  • [KB02] Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, 2002.
  • [Kla18] Erica Klarreich, The boundary at infinity of the curve complex and the relative teichm uller space, Groups, Geometry, and Dynamics 16 (2018).
  • [Kop23a] Michael C. Kopreski, Multiarc and curve graphs are hierarchically hyperbolic, 2023.
  • [Kop23b] by same author, Prescribed arc graphs, 2023.
  • [MM00] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves II: Hierarchical structure, Geometric & Functional Analysis 10 (2000), 902–974.
  • [MR20] Kathryn Mann and Kasra Rafi, Large scale geometry of big mapping class groups, 2020.
  • [Nöb30] G. Nöbeling, Über eine n-dimensionale Universalmenge im 2n+1\mathbb{R}_{2n+1}, Mathematische Annalen 104 (1930), 71–80.
  • [Po17] Witsarut Pho-on, Infinite unicorn paths and Gromov boundaries, Groups, Geometry, and Dynamics 11 (2017), no. 1, 353–370.
  • [Ric63] I. Richards, On the classification of noncompact surfaces, Transactions of the American Mathematical Society 106 (1963), 259–269.
  • [Ros14] Christian Rosendal, Large scale geometry of metrisable groups, 2014.
  • [RS09] Kasra Rafi and Saul Schleimer, Covers and the curve complex, Geometry & Topology 13 (2009), no. 4, 2141 – 2162.
  • [Sch] Saul Schleimer, Notes on the complex of curves, http://homepages.warwick.ac.uk/~masgar/Maths/notes.pdf.
  • [Wat16] Yohsuke Watanabe, Intersection numbers in the curve graph with a uniform constant, Topology and its Applications 204 (2016), 157–167.