This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The assignments of the bottom mesons within the screened potential model and P03{}^{3}P_{0} model

Xue-Chao Feng College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China    Wei Hao CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190,China University of Chinese Academy of Sciences (UCAS), Beijing 100049, China    Li-Juan Liu [email protected] School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
Abstract

In this work, we calculate the mass spectrum of the bottom mesons with a modified nonrelativistic quark model by involving the screening effect, and explore their strong decay properties within the P03{}^{3}P_{0} model. Our results suggest that the B1(5721)B_{1}(5721), B2(5747)B^{*}_{2}(5747), BJ(5840)B_{J}(5840), and BJ(5970)B_{J}(5970) could be reasonably assigned as the B1(1P)B_{1}^{\prime}(1P), B(13P2)B(1^{3}P_{2}), B(21S0)B(2^{1}S_{0}), and B(13D3)B(1^{3}D_{3}) respectively. The more precise measurements of the excited bottom mesons are crucial to confirm these assignments.

I Introduction

Meson spectroscopy is one of the important subjects in hadron physics, and the heavy-light system offers an excellent laboratory for testing the heavy quark symmetry. As we known, most of the charmed and charmed-strange mesons are well established, although there exists some exotic explanations for some states, for example Ds0(2317)D^{*}_{s0}(2317) and Ds1(2460)D_{s1}(2460) Chen:2016spr ; Du:2017zvv . For the family of bottom mesons, the first bottom meson BB was observed in 1983 by the CLEO Collaboration CLEO:1983mma , and there are only six excited bottom mesons observed experimentally so far, which are BB^{*}, B1(5721)B_{1}(5721), BJ(5732)B^{*}_{J}(5732), BJ(5840)B_{J}(5840), BJ(5970)B_{J}(5970), and B2(5747)B^{*}_{2}(5747) PDG2021 . Among those bottom states, only BB and BB^{*} are well assigned as the SS-wave doublet (11S01^{1}S_{0} and 13S11^{3}S_{1}).

The BJ(5732)B^{*}_{J}(5732), as the first orbitally excited bottom meson, was observed in 1994 by the OPAL detector at LEP OPAL:1994hqv , and this state has not yet confirmed in the last two decadeds PDG2021 . It should be streesed that its signal can be interpreted as stemming from several narrow and broad resonances, as discussed in Review of Particle Physics (RPP) PDG2021 , thus we will not discuss this state. In 2007, the D0 Collaboration reported two narrow orbitally excited (L=1L=1) bottom mesons, B1(5721)B_{1}(5721) with JP=1+J^{P}=1^{+} and B2(5747)B^{*}_{2}(5747) with JP=2+J^{P}=2^{+} D0:2007vzd , later confirmed by the CDF and LHCb Collaborations CDF:2008qzb ; CDF:2013www ; LHCb:2015aaf . The BJ(5970)B_{J}(5970) was first observed in 2013 by the CDF Collaboration CDF:2013www . In 2015 the LHCb Collaboration reproted two states BJ(5840)B_{J}(5840) and BJ(5960)B_{J}(5960) LHCb:2015aaf , where the latter one should be the same state as the BJ(5970)B_{J}(5970) since they have the similar properties. Here we list the masses, widths, and the quantum numbers of B1(5721)B_{1}(5721), BJ(5732)B^{*}_{J}(5732), BJ(5840)B_{J}(5840), BJ(5970)B_{J}(5970), and B2(5747)B^{*}_{2}(5747) in Table 1.

Table 1: Masses, decay widths, and quantum numbers of the bottom mesons PDG2021 .
state mass (MeV) width (MeV) I(JP)I(J^{P})
BJ(5732)B_{J}^{*}(5732) 5698±85698\pm 8 128±18128\pm 18 ?(??)?(?^{?})
B1(5721)0B_{1}(5721)^{0} 5726.1±1.35726.1\pm 1.3 27.5±3.427.5\pm 3.4 1/2(1+)1/2(1^{+})
B2(5747)0B^{*}_{2}(5747)^{0} 5739.5±0.75739.5\pm 0.7 24.2±1.724.2\pm 1.7 1/2(2+)1/2(2^{+})
BJ(5840)B_{J}(5840) 5863±95863\pm 9 127±40127\pm 40 1/2(??)1/2(?^{?})
BJ(5970)B_{J}(5970) 5971±55971\pm 5 81±1281\pm 12 1/2(??)1/2(?^{?})

Based on the experimental measurements of the bottom mesons, there are many theoretical discussions in literatures Zeng:1994vj ; Godfrey:1985xj ; Lahde:1999ih ; DiPierro:2001dwf ; Zhong:2008kd ; Ebert:2009ua ; Godfrey:2016nwn ; Lu:2016bbk ; Kher:2017mky ; Asghar:2018tha ; Godfrey:2019cmi ; Yu:2019iwm ; Chen:2022fye ; li:2021hss ; Narison:2020wql . The B2(5747)B^{*}_{2}(5747) is commonly regarded as the B(13P2)B(1^{3}P_{2}) state Ebert:2009ua ; Godfrey:2016nwn ; Lu:2016bbk ; Kher:2017mky ; Asghar:2018tha ; Godfrey:2019cmi ; Yu:2019iwm ; Chen:2022fye , and the B1(5721)B_{1}(5721) is explained as the B(1P1)B^{\prime}(1P_{1}) in Refs. Lu:2016bbk ; Godfrey:2019cmi ; Yu:2019iwm ; Chen:2022fye , B(1P1)B(1P_{1}) in Refs. Kher:2017mky ; Asghar:2018tha .

Although the LHCb Collaboration has suggested that the BJ(5840)B_{J}(5840) and BJ(5970)B_{J}(5970) could be the 21S02^{1}S_{0} and 23S12^{3}S_{1} states, respectively LHCb:2015aaf , the mass difference between them is about 110 MeV, much larger than the theoretical predictions of the 2S2S mass splitting, which is 39 MeV of Godfrey-Isgur model (Godfrey:1985xj, ), 30 MeV in alternate relativized (AR) model Godfrey:2016nwn , and 28 MeV in nonrelativistic potential quark model Asghar:2018tha . On the other hand, there are different interpretations for the BJ(5840)B_{J}(5840) and BJ(5970)B_{J}(5970), because their masses and widths can not be simultaneously reasonably reproduced.

As discussed in Ref. bai:2009 , the quenched quark models, incorporating a coulomb term at short distances and the linear confining interaction at large distances, will not be reliable for the high excited mesons. This is because the linear potential, which is expected to be dominant in this mass region, will be screened and softened by the vacuum polarization effects of dynamical fermions. It is shown that the screened potential plays an important role in describing the spectra and decay properties of the charmed, charmed-strange mesons and charmonium Song:2015fha ; Song:2015nia ; Wang:2018rjg . Thus one expect that the screened potential could improve the description of the bottom mesons.

In this work, we will investigate the possible assignments of the B1(5721)B_{1}(5721), B2(5747)B^{*}_{2}(5747), BJ(5840)B_{J}(5840), and BJ(5970)B_{J}(5970) by employing the modified nonrelativistic quark model with screening effect, and the P03{}^{3}P_{0} model to calculate the mass spectrum and decay properties of the bottom mesons.

This article is organized as follows. In Sec. II, we give a brief review about the modified nonrelativistic quark model and the P03{}^{3}P_{0} model. In Sec. III, we present the numerical results and discuss the possible assignments of the bottom mesons. The summary is given in Sec. IV

II Theoretical models

II.1 Modified nonrelativistic quark model

The nonrelativistic quark model Lakhina:2006fy , as one of the successful quark models, is proposed by Lakhina and Swanson, and has already been used to describe the heavy-light mesons and heavy quarkonium successfully, such as the charmed-strange mesons (Li:2010vx, ) and the bottom mesons (Lu:2016bbk, ). In the model, the Hamiltonian of a qq¯q\bar{q} meson system is defined as (Li:2010vx, ; Lu:2016bbk, )

H=H0+Hsd+Cqq¯,H=H_{0}+H_{sd}+C_{q\bar{q}}, (1)

where H0H_{0} is the zeroth-order Hamiltonian, HsdH_{sd} is the spin-dependent Hamiltonian, and Cqq¯C_{q\bar{q}} is a constant, which will be fixed by experimental data. The H0H_{0} can be compressed as

H0\displaystyle H_{0} =\displaystyle= 𝒑2Mr43αsr+br+32αsσ3eσ2r29πmqmq¯𝑺q𝑺q¯,\displaystyle\frac{\bm{p}^{2}}{M_{r}}-\frac{4}{3}\frac{{\alpha}_{s}}{r}+br+\frac{32{\alpha}_{s}{\sigma}^{3}e^{-{\sigma}^{2}r^{2}}}{9\sqrt{\pi}m_{q}m_{\bar{q}}}{\bm{S}}_{q}\cdot{\bm{S}}_{\bar{q}}, (2)

where the confinement interaction includes the standard Coulomb potential 4αs/3r-4\alpha_{s}/3r and linear scalar potential brbr, and the last term is the hyperfine interaction that could be treated nonperturbatively. In Eq. (2), 𝒑\bm{p} is quark momentum in the system of qq¯q\bar{q} meson, r=|r|r=|\vec{r}| is the qq¯q\bar{q} separation, Mr=2mqmq¯/(mq+mq¯)M_{r}=2m_{q}m_{\bar{q}}/(m_{q}+m_{\bar{q}}), mqm_{q} (mq¯m_{\bar{q}}) and 𝑺q\bm{S}_{q} (𝑺q¯{\bm{S}}_{\bar{q}}) are the mass and spin of the constituent quark qq (antiquark q¯\bar{q}), respectively.

The spin-dependent term HsdH_{sd} is,

Hsd\displaystyle H_{sd} =\displaystyle= (𝑺q2mq2+𝑺q¯2mq¯2)𝑳(1rdVcdr+2rdV1dr)\displaystyle\left(\frac{\bm{S}_{q}}{2m_{q}^{2}}+\frac{{\bm{S}}_{\bar{q}}}{2m_{\bar{q}}^{2}}\right)\cdot\bm{L}\,\left(\frac{1}{r}\frac{dV_{c}}{dr}+\frac{2}{r}\frac{dV_{1}}{dr}\right) (3)
+𝑺+𝑳mqmq¯(1rdV2r)\displaystyle+\frac{{\bm{S}}_{+}\cdot\bm{L}}{m_{q}m_{\bar{q}}}\left(\frac{1}{r}\frac{dV_{2}}{r}\right)
+3𝑺q𝒓^𝑺q¯𝒓^𝑺q𝑺q¯3mqmq¯V3\displaystyle+\frac{3{\bm{S}}_{q}\cdot\hat{\bm{r}}\,{\bm{S}}_{\bar{q}}\cdot\hat{\bm{r}}-{\bm{S}}_{q}\cdot{\bm{S}}_{\bar{q}}}{3m_{q}m_{\bar{q}}}V_{3}
+[(𝑺qmq2𝑺q¯mq¯2)+𝑺mqmq¯]𝑳V4,\displaystyle+\left[\left(\frac{{\bm{S}}_{q}}{m_{q}^{2}}-\frac{{\bm{S}}_{\bar{q}}}{m_{\bar{q}}^{2}}\right)+\frac{{\bm{S}}_{-}}{m_{q}m_{\bar{q}}}\right]\cdot\bm{L}V_{4},

with

Vc\displaystyle V_{c} =\displaystyle= 43αsr+br,\displaystyle-\frac{4}{3}\frac{{\alpha}_{s}}{r}+br,
V1\displaystyle V_{1} =\displaystyle= br29παs2r[9ln(mqmq¯r)+9γE4],\displaystyle-br-\frac{2}{9\pi}\frac{{\alpha}_{s}^{2}}{r}\left[9\,{\rm ln}(\sqrt{m_{q}m_{\bar{q}}}r)+9{\gamma}_{E}-4\right],
V2\displaystyle V_{2} =\displaystyle= 43αsr19παs2r[18ln(mqmq¯r)+54ln(μr)\displaystyle-\frac{4}{3}\frac{{\alpha}_{s}}{r}-\frac{1}{9\pi}\frac{{\alpha}_{s}^{2}}{r}\left[-18\,{\rm ln}(\sqrt{m_{q}m_{\bar{q}}}r)+54\,{\rm ln}(\mu r)\right.
+36γE+29],\displaystyle\left.+36{\gamma}_{E}+29\right],
V3\displaystyle V_{3} =\displaystyle= 4αsr313παs2r3[36ln(mqmq¯r)+54ln(μr)\displaystyle-\frac{4{\alpha}_{s}}{r^{3}}-\frac{1}{3\pi}\frac{{\alpha}_{s}^{2}}{r^{3}}\left[-36\,{\rm ln}(\sqrt{m_{q}m_{\bar{q}}}r)+54\,{\rm ln}(\mu r)\right.
+18γE+31],\displaystyle\left.+18{\gamma}_{E}+31\right],
V4\displaystyle V_{4} =\displaystyle= 1παs2r3ln(mq¯mq),\displaystyle\frac{1}{\pi}\frac{{\alpha}_{s}^{2}}{r^{3}}{\rm ln}\left(\frac{m_{\bar{q}}}{m_{q}}\right), (4)

where 𝑺±=𝑺q±𝑺q¯\bm{S}_{\pm}={\bm{S}}_{q}\pm{\bm{S}}_{\bar{q}}, 𝑳\bm{L} is the relative orbital angular momentum of the qq¯q\bar{q} system. We take Euler constant γE=0.5772\gamma_{E}=0.5772, the scalar μ=1\mu=1 GeV, αs=0.5{\alpha}_{s}=0.5, b=0.14b=0.14 GeV2, σ=1.17\sigma=1.17 GeV, mu=md=0.45m_{u}=m_{d}=0.45 GeV, and mb=4.5m_{b}=4.5 GeV (Li:2010vx, ; Lu:2016bbk, ).

Because the coupled-channel effects become more important for higher radial and orbital excitations of the heavy-light mesons, some modified models have been proposed by including the screening effect bai:2009 ; Song:2015nia ; Song:2015fha , and widely used to calculate mass spectrum of charmed-strange meson Song:2015nia , charm meson  Song:2015fha , charmonium Wang:2019mhs ; bai:2009 , and bottomonium Wang:2018rjg . The screening effect was introduced by the following replacement Song:2015nia ,

brVscr(r)=b(1eβr)β,\displaystyle br\to V^{\text{scr}}(r)=\frac{b(1-e^{-\beta r})}{\beta}, (5)

where Vscr(r)V^{\text{scr}}(r) behaves like brbr at short distances and constant b/βb/\beta at large distanceSong:2015nia ; Song:2015fha , β\beta is parameter which is used to control the power of the screening effect.

The spin-orbit term in the HsdH_{sd} can be decomposed into symmetric part HsymH_{sym} and antisymmetric part HantiH_{anti}. These two parts can be written as Lu:2016bbk

Hsym\displaystyle H_{sym} =\displaystyle= 𝑺+𝑳2[(12mq2+12mq¯2)(1rdVcdr+2rdV1dr)\displaystyle\frac{{\bm{S}}_{+}\cdot{\bm{L}}}{2}\left[\left(\frac{1}{2m_{q}^{2}}+\frac{1}{2m_{\bar{q}}^{2}}\right)\left(\frac{1}{r}\frac{dV_{c}}{dr}+\frac{2}{r}\frac{dV_{1}}{dr}\right)\right. (6)
+2mqmq¯(1rdV2r)+(1mq21mq¯2)V4],\displaystyle\left.+\frac{2}{m_{q}m_{\bar{q}}}\left(\frac{1}{r}\frac{dV_{2}}{r}\right)+\left(\frac{1}{m_{q}^{2}}-\frac{1}{m_{\bar{q}}^{2}}\right)V_{4}\right],
Hanti\displaystyle H_{anti} =\displaystyle= 𝑺𝑳2[(12mq212mq¯2)(1rdVcdr+2rdV1dr)\displaystyle\frac{{\bm{S}}_{-}\cdot{\bm{L}}}{2}\left[\left(\frac{1}{2m_{q}^{2}}-\frac{1}{2m_{\bar{q}}^{2}}\right)\left(\frac{1}{r}\frac{dV_{c}}{dr}+\frac{2}{r}\frac{dV_{1}}{dr}\right)\right. (7)
+(1mq2+1mq¯2+2mqmq¯)V4].\displaystyle\left.+\left(\frac{1}{m_{q}^{2}}+\frac{1}{m_{\bar{q}}^{2}}+\frac{2}{m_{q}m_{\bar{q}}}\right)V_{4}\right].

The antisymmetric part HantiH_{anti} gives rise to the the spin-orbit mixing of the heavy-light mesons with different total spins but with the same total angular momentum such as B(nLL3)B(n{}^{3}L_{L}) and B(nLL1)B(n{}^{1}L_{L}). Hence, the two physical states BL(nL)B_{L}(nL) and BL(nL)B_{L}^{\prime}(nL) can be expressed as

(BL(nL)BL(nL))=(cosθnLsinθnLsinθnLcosθnL)(B(n1LL)B(n3LL)),\left(\begin{array}[]{cr}B_{L}(nL)\\ B^{\prime}_{L}(nL)\end{array}\right)=\left(\begin{array}[]{cr}\cos\theta_{nL}&\sin\theta_{nL}\\ -\sin\theta_{nL}&\cos\theta_{nL}\end{array}\right)\left(\begin{array}[]{cr}B(n^{1}L_{L})\\ B(n^{3}L_{L})\end{array}\right), (8)

where the θnL\theta_{nL} is the mixing angles.

With above formalisms, one can solve the Schrödinger equation with Hamiltonian of Eq. (1) to get the meson wave functions, which will act as the input for calculating the strong decays of excited bottom mesons in the P03{}^{3}P_{0} model.

II.2 P03{}^{3}P_{0} model

The P03{}^{3}P_{0} model was proposed by Micu Micu:1968mk and further developed by Le Yaouanc LeYaouanc:1972vsx ; LeYaouanc:1974cvx ; LeYaouanc:1977fsz ; LeYaouanc:1977gm , and it has been widely used to calculate the OZI allowed decay processes Roberts:1992js ; Blundell:1996as ; Barnes:1996ff ; Close:2005se ; Barnes:2005pb ; Zhang:2006yj ; Li:2008mza ; Li:2009rka ; Li:2010vx ; Lu:2014zua ; Pan:2016bac ; Lu:2016bbk ; Li:2022ybj ; Li:2021qgz ; Wang:2017pxm ; Hao:2020fs . In this model, the meson decay occurs through the regroupment between the qq¯q\bar{q} of the initial meson and the another qq¯q\bar{q} pair created from vacuum with the quantum numbers JPC=0++J^{PC}=0^{++}. The transition operator TT of the decay ABCA\rightarrow BC in the P03{}^{3}P_{0} model is given by

T=3γm1m;1m|00d3𝒑3d3𝒑4δ3(𝒑3+𝒑4)\displaystyle T=-3\gamma\sum\limits_{m}\langle 1m;1-m|00\rangle\int d^{3}\bm{p}_{3}d^{3}\bm{p}_{4}\delta^{3}(\bm{p}_{3}+\bm{p}_{4})
𝒴1m(𝒑3𝒑42)χ1,m34ϕ034(ω034)b3(𝒑3)d4(𝒑4),\displaystyle\mathcal{Y}_{1m}\left(\frac{\bm{p}_{3}-\bm{p}_{4}}{2}\right)\chi^{34}_{1,-m}\phi^{34}_{0}\left(\omega^{34}_{0}\right)b^{{\dagger}}_{3}(\bm{p}_{3})d^{{\dagger}}_{4}(\bm{p}_{4}), (9)

where 𝒴1m(𝒑)|𝒑|1Y1m(θp,ϕp){\cal{Y}}^{m}_{1}(\bm{p})\equiv|\bm{p}|^{1}Y^{m}_{1}(\theta_{p},\phi_{p}) is solid harmonic polynomial in the momentum space of the created quark-antiquark pair. χ1,m34\chi^{34}_{1,-m}, ϕ034\phi^{34}_{0} and ω034\omega^{34}_{0} are the spin, flavor and color wave functions, respectively. The paramtere γ\gamma is the quark pair creation strength parameter for uu¯u\bar{u} and dd¯d\bar{d} pairs, and for ss¯s\bar{s} we take γss¯=γmums\gamma_{s\bar{s}}=\gamma\frac{m_{u}}{m_{s}} LeYaouanc:1977gm . The parameter γ\gamma can be determined by fitting to the experimental data. The partial wave amplitude LS(𝑷){\cal{M}}^{LS}(\bm{P}) of the decay ABCA\rightarrow BC is be given by Ref. Jacob:1959at ,

LS(𝑷)\displaystyle{\cal{M}}^{LS}(\bm{P}) =\displaystyle= MJB,MJC,MS,MLLMLSMS|JAMJA\displaystyle\sum_{M_{J_{B}},M_{J_{C}},M_{S},M_{L}}\langle LM_{L}SM_{S}|J_{A}M_{J_{A}}\rangle (10)
JBMJBJCMJC|SMS\displaystyle\langle J_{B}M_{J_{B}}J_{C}M_{J_{C}}|SM_{S}\rangle
𝑑ΩYLMLMJAMJBMJC(𝑷),\displaystyle\int d\Omega\,\mbox{}Y^{\ast}_{LM_{L}}{\cal{M}}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}),

where MJAMJBMJC(𝑷){\cal{M}}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}) is the helicity amplitude,

BC|T|A=δ3(𝑷A𝑷B𝑷C)\displaystyle\langle BC|T|A\rangle=\delta^{3}(\bm{P}_{A}-\bm{P}_{B}-\bm{P}_{C})
MJAMJBMJC(𝑷).\displaystyle{\cal{M}}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}). (11)

Here, |A|A\rangle, |B|B\rangle, and |C|C\rangle denote the mock meson states which are defined in Ref. Hayne:1981zy . Then, the decay width Γ(ABC)\Gamma(A\rightarrow BC) can be expressed as

Γ(ABC)=πP4MA2LS|LS(𝑷)|2,\displaystyle\Gamma(A\rightarrow BC)=\frac{\pi P}{4M^{2}_{A}}\sum_{LS}|{\cal{M}}^{LS}(\bm{P})|^{2}, (12)

where P=|𝑷|=[MA2(MB+MC)2][MA2(MBMC)2]2MAP=|\bm{P}|=\frac{\sqrt{[M^{2}_{A}-(M_{B}+M_{C})^{2}][M^{2}_{A}-(M_{B}-M_{C})^{2}]}}{2M_{A}}, MAM_{A}, MBM_{B}, and MCM_{C} are the masses of the mesons AA, BB, and CC, respectively. The spatial wave functions of the mesons in the P03{}^{3}P_{0} model are obtained by solving the Schro¨\ddot{o}dinger equation in Eq. (1).

Table 2: The mass spectrum of the bottom mesons by different quark models in the units of MeV. The mixing angles of BLBLB_{L}-B^{\prime}_{L} calculated in this work are θ1P=53.5\theta_{1P}=-53.5^{\circ}, θ2P=54.5\theta_{2P}=-54.5^{\circ}, θ1D=50.5\theta_{1D}=-50.5^{\circ}, θ2D=50.5\theta_{2D}=-50.5^{\circ} and θ1F=49.0\theta_{1F}=49.0^{\circ}

. State PDG Ours GIGodfrey:2016nwn ARMGodfrey:2016nwn NRQMLu:2016bbk EFGEbert:2009ua DEDiPierro:2001dwf LNRLahde:1999ih ZVRZeng:1994vj B(11S0)B(1^{1}S_{0}) 5279.65±0.125279.65\pm 0.12 5279 5312 5275 5280 5280 5279 5277 5280 B(13S1)B(1^{3}S_{1}) 5324.70±0.215324.70\pm 0.21 5327 5371 5316 5329 5326 5324 5325 5330 B(21S0)B(2^{1}S_{0}) 5863±95863\pm 9 5870 5904 5834 5910 5890 5886 5822 5830 B(23S1)B(2^{3}S_{1}) 5896 5933 5864 5939 5906 5920 5848 5870 B(31S0)B(3^{1}S_{0}) 6278 6335 6216 6369 6379 6320 6117 6210 B(33S1)B(3^{3}S_{1}) 6297 6355 6240 6391 6387 6347 6136 6240 B(13P0)B(1^{3}P_{0}) 5683 5756 5720 5683 5749 5706 5678 5650 B1(1P)B_{1}(1P) 5722 5777 5738 5729 5774 5700 5686 5690 B1(1P)B^{\prime}_{1}(1P) 5726.1±1.35726.1\pm 1.3 5725 5784 5753 5754 5723 5742 5699 5690 B(13P2)B(1^{3}P_{2}) 5739.5±0.75739.5\pm 0.7 5736 5797 5754 5768 5741 5714 5704 5710 B(23P0)B(2^{3}P_{0}) 6104 6213 6106 6145 6221 6163 6010 6060 B1(2P)B_{1}(2P) 6139 6197 6126 6185 6281 6175 6022 6100 B1(2P)B^{\prime}_{1}(2P) 6162 6228 6132 6241 6209 6194 6028 6100 B(23P2)B(2^{3}P_{2}) 6174 6213 6141 6253 6260 6188 6040 6120 B(13D1)B(1^{3}D_{1}) 6066 6110 6053 6095 6119 6025 6005 5970 B2(1D)B_{2}(1D) 5952 6095 6012 6004 6121 5985 5920 5960 B2(1D)B^{\prime}_{2}(1D) 6080 6124 6072 6113 6103 6037 5955 5980 B(13D3)B(1^{3}D_{3}) 5971±55971\pm 5 5959 6106 6026 6014 6091 5993 5871 5970 B(23D1)B(2^{3}D_{1}) 6420 6475 6357 6497 6534 6248 B2(2D)B_{2}(2D) 6334 6450 6334 6435 6554 6179 6310 B2(2D)B^{\prime}_{2}(2D) 6433 6486 6377 6513 6528 6207 6320 B(23D3)B(2^{3}D_{3}) 6341 6460 6347 6444 6542 6140 6320 B(13F2)B(1^{3}F_{2}) 6329 6387 6302 6383 6412 6264 6190 B3(1F)B_{3}(1F) 6157 6358 6231 6236 6420 6220 6180 B3(1F)B^{\prime}_{3}(1F) 6337 6396 6316 6393 6391 6271 6200 B(13F4)B(1^{3}F_{4}) 6162 6364 6244 6243 6380 6226 6180

III Results and discussions

In the modified nonrelativistic quark model, we determine two parameters, Cqq¯=0.0152C_{q\bar{q}}=0.0152 GeV of Eq. (1) and β=0.0246\beta=0.0246 GeV of Eq. (5), by fitting the masses of the bottom mesons BB and BB^{*}, which have already been well established as the B(11S0)B(1^{1}S_{0}) and B(13S1)B(1^{3}S_{1}), respectively. With these values, we calculated the mass spectrum of the bottom mesons, as shown in Table 2, where we also present the predictions with other models without considering the screening effect Zeng:1994vj ; Lahde:1999ih ; DiPierro:2001dwf ; Ebert:2009ua ; Godfrey:2016nwn ; Lu:2016bbk . It should be stressed that the mixing angles are obtained as θ1P=53.5\theta_{1P}=-53.5^{\circ}, θ2P=54.5\theta_{2P}=-54.5^{\circ}, θ1D=50.5\theta_{1D}=-50.5^{\circ}, θ2D=50.5\theta_{2D}=-50.5^{\circ} and θ1F=49.0\theta_{1F}=-49.0^{\circ} by solving the potential model with the Hamiltonian of Eq. (1), which are close to the heavy quark limit mixing angles θ1P=θ2P=54.7\theta_{1P}=\theta_{2P}=-54.7^{\circ}, θ1D=θ2D=50.8\theta_{1D}=\theta_{2D}=-50.8^{\circ} and θ1F=θ2F=49.1\theta_{1F}=\theta_{2F}=-49.1^{\circ}  Cahn:2003cw .

Table 3: Decay widths of the B2(5747)B_{2}^{*}(5747) as the B(13P2)B(1^{3}P_{2}) in units of MeV.
B2(5747)B_{2}^{*}(5747)
B+πB^{+}\pi^{-} 8.2
B0π0B^{0}\pi^{0} 4.1
B+πB^{*+}\pi^{-} 7.8
B0π0B^{*0}\pi^{0} 4.0
Total width 24.2
Experiment 24.2±1.724.2\pm 1.7

In Table 2, one can find that our results for excited bottom mesons are lower than those of Godfrey-Isgur (GI) Godfrey:2016nwn and Nonrelativistic quark model (NRQM) Lu:2016bbk , which is due to the screening effect. In the modified nonrelativistic quark model, the B2(5747)B^{*}_{2}(5747) mass is consistent with the predicted mass of B(13P2)B(1^{3}P_{2}), and the B1(5721)B_{1}(5721) mass is also in well agreement with the one of B1(1P)B^{\prime}_{1}(1P). On the other hand, the BJ(5840)B_{J}(5840) can be considered as the candidate of the B(21S0)B(2^{1}S_{0}) taking into account the experimental uncertainties, and the BJ(5970)B_{J}(5970) can be assigned as the candidate of the B2(1D)B_{2}(1D) or B(13D3)B(1^{3}D_{3}). As we known, only the mass information is not enough to make those assignments, and we will calculate their strong decay widths based on these preliminary assignments for the B1(5721)B_{1}(5721), B2(5747)B^{*}_{2}(5747), BJ(5840)B_{J}(5840), and BJ(5970)B_{J}(5970) to further examine these assignments.

Table 4: Decay widths of the B1(5721)B_{1}(5721) a,s the B(1P)B(1P) and B1(1P)B^{\prime}_{1}(1P) in units of MeV, with the mixing angle θ1P=53.5\theta_{1P}=-53.5^{\circ}.
Channel B1(1P)B_{1}(1P) B1(1P)B^{\prime}_{1}(1P)
B+πB^{*+}\pi^{-} 129.2129.2 11.011.0
B0π0B^{*0}\pi^{0} 64.364.3 5.65.6
Total width 193.5193.5 16.516.5
Experiment 27.5±3.427.5\pm 3.4

Before presenting the strong decays, we need to determine the quark pair creation strength γ\gamma firstly. As we discussed above, B1(5721)B_{1}(5721) may be a mixing state, and the assignments of the BJ(5840)B_{J}(5840) and BJ(5970)B_{J}(5970) are still in debate due to the unknown quantum numbers and poor decay information. In this work we take γ=0.411\gamma=0.411 by fitting to the experimental widths of B2(5747)B^{*}_{2}(5747) which is regarded as the B(13P2)B(1^{3}P_{2}) state in previous works Lu:2016bbk ; Kher:2017mky ; Asghar:2018tha ; Godfrey:2019cmi ; Yu:2019iwm . The decay properties of the state B2(5747)B^{*}_{2}(5747) with the assignment of B(13P2)B(1^{3}P_{2}) are shown in Table 3. The ratio of the decay modes are calculated as,

Γ(B2(5747)B+π)Γ(B2(5747)B+π)=0.95,\frac{\Gamma(B^{*}_{2}(5747)\to B^{*+}\pi^{-})}{\Gamma(B^{*}_{2}(5747)\to B^{+}\pi^{-})}=0.95, (13)

which is consistent with the experimental data of 1.10±0.42±0.311.10\pm 0.42\pm 0.31 D0:2007vzd and 0.71±0.14±0.300.71\pm 0.14\pm 0.30 LHCb:2015aaf , and also the prediction of the nonrelativistic quark model Lu:2016bbk .

Table 5: Decay widths of the BJ(5840)B_{J}(5840) as the B(21S0)B(2^{1}S_{0}) in units of MeV.
21S02^{1}S_{0}
B+πB^{*+}\pi^{-} 73.073.0
B0π0B^{*0}\pi^{0} 36.536.5
B(13P0)+πB^{*}(1^{3}P_{0})^{+}\pi^{-} 0.0040.004
B(13P0)0π0B^{*}(1^{3}P_{0})^{0}\pi^{0} 0.0030.003
Total width 109.5109.5
Experiment 127±40127\pm 40

The decay widths of the B1(5721)B_{1}(5721) as the B1(1P)B_{1}(1P) and B1(1P)B^{\prime}_{1}(1P) with the mixing angle θ1P=53.5\theta_{1P}=-53.5^{\circ} are listed in Table 4. The total widths of the B1(5721)B_{1}(5721) as the B1(1P)B_{1}(1P) and B1(1P)B^{\prime}_{1}(1P) are predicted to be 193.5193.5 MeV and 16.516.5 MeV, respectively. The dependence of the total decay widths of the B1(5721)B_{1}(5721) as the B1(1P)B_{1}(1P) and B1(1P)B^{\prime}_{1}(1P) on the mixing angle is shown in Fig. 1. One can see that the total width is narrow around θ1P=53.5\theta_{1P}=-53.5^{\circ}. We can safely rule out the B1(1P)B_{1}(1P) assignment since the width of this case is much larger than the experimental data. Within in the experimental uncertainties, the total width of the B1(1P)B^{\prime}_{1}(1P) assignment is in fair agreement with the experimental data, which implies that B1(5721)B_{1}(5721) could be the B1(1P)B^{\prime}_{1}(1P) state.

In the heavy quark limit, the PP-wave heavy-light mesons could be divided into j=1/2(0+,1+)j=1/2(0^{+},1^{+}) doublet and j=3/2(1+,2+)j=3/2(1^{+},2^{+}) doublet, with j(=Sq+L)j(=S_{q}+L) is the total angular momentum of the light quark. For the bottom mesons, the decay width is broad for j=1/2j=1/2 doublet, which couples to BπB\pi in SS-wave, and narrow for j=3/2j=3/2 doublet, which couples to BπB\pi in DD-wave. Thus, the B1(5721)B_{1}(5721) and B2(5747)B^{*}_{2}(5747) should be the j=3/2(1+,2+)j=3/2(1^{+},2^{+}) doublet.

Refer to caption
Figure 1: Total decay width of the B1(5721)B_{1}(5721) as the B1(1P)B^{\prime}_{1}(1P) depends on the mixing angle. The vertical red solid line corresponds to the mixing angle θ1P=53.5\theta_{1P}=-53.5^{\circ}, and the blue band denotes the experimental width of the B1(5721)B_{1}(5721) from RPP PDG2021 .
Table 6: Decay widths of the BJ(5970)B_{J}(5970) as the B2(1D)B_{2}(1D) and B(13D3)B(1^{3}D_{3}) in units of MeV with the mixing angle θ1D=50.5\theta_{1D}=-50.5^{\circ}.
B2(1D)B_{2}(1D) B(13D3)B(1^{3}D_{3})
B+πB^{+}\pi^{-} - 12.612.6
B0π0B^{0}\pi^{0} - 6.36.3
B+πB^{*+}\pi^{-} 52.952.9 13.513.5
B0π0B^{*0}\pi^{0} 26.426.4 6.86.8
B(13P0)+πB^{*}(1^{3}P_{0})^{+}\pi^{-} 0.0060.006 -
B(13P0)0π0B^{*}(1^{3}P_{0})^{0}\pi^{0} 0.0030.003 -
B(13P2)+πB^{*}(1^{3}P_{2})^{+}\pi^{-} 66.866.8 0.20.2
B(13P2)0π0B^{*}(1^{3}P_{2})^{0}\pi^{0} 33.533.5 0.10.1
B1(1P)+πB_{1}(1P)^{+}\pi^{-} 0.0050.005 0.050.05
B1(1P)0π0B_{1}(1P)^{0}\pi^{0} 0.0030.003 0.030.03
B1(1P)+πB^{\prime}_{1}(1P)^{+}\pi^{-} 0.40.4 0.050.05
B1(1P)0π0B^{\prime}_{1}(1P)^{0}\pi^{0} 0.10.1 0.030.03
B0ηB^{0}\eta - 0.30.3
B0ηB^{*0}\eta 11.211.2 0.10.1
Bs0K0B_{s}^{0}K^{0} - 0.10.1
Bs0K0B_{s}^{*0}K^{0} 11.111.1 0.030.03
Total width 202.5202.5 40.140.1
Experiment 81±1281\pm 12
Refer to caption
Figure 2: Total decay width of the BJ(5970)B_{J}(5970) depends on the mixing angle as the B2(1D)B_{2}(1D) and B2(1D)B^{\prime}_{2}(1D). The vertical red solid line corresponds to the mixing angle θ1D=50.5\theta_{1D}=-50.5^{\circ} and the blue band denotes the experimental width from RPP PDG2021

The decay widths of the BJ(5840)B_{J}(5840) as the B(21S0)B(2^{1}S_{0}) is shown in Table 5, and the predicted total decay width is 109.5 MeV, in well agreement with the experimental measurement 127±40127\pm 40 MeV PDG2021 . In this case, the dominant decay mode is BπB^{*}\pi, and the decay mode BπB\pi is forbidden for the B(21S0)B(2^{1}S_{0}) assignment. It should be pointed out that the decay mode BπB\pi has not yet finally been confirmed by the LHCb LHCb:2015aaf , which implies that assignments of the BJ(5840)B_{J}(5840) as the B(21S0)B(2^{1}S_{0}) is acceptable.

The decay widths of the BJ(5970)B_{J}(5970) as the B2(1D)B_{2}(1D) and B(13D3)B(1^{3}D_{3}) are listed in Table 6. The predicted total width of the B2(1D)B_{2}(1D) assignment is 202.5202.5 MeV with mixing angle θ1D=50.5\theta_{1D}=-50.5^{\circ}, which is about 100 MeV larger than the experimental data 81±1281\pm 12 MeV, while the one of the B(13D3)B(1^{3}D_{3}) assignment is 40.140.1 MeV. The dominant decay modes are BπB\pi and BπB^{*}\pi decay modes, supported by the measurements of the CDF CDF:2013www and LHCb Collaborations LHCb:2015aaf . The dependence of the decay widths of the BJ(5970)B_{J}(5970) as the B2(1D)B_{2}(1D) on the mixing angle is shown in Fig. 2, one can find that the total width of B2(1D)B_{2}(1D) is about 200 MeV around the mixing angle θ1D=50.5\theta_{1D}=-50.5^{\circ}, and the total width of B2(1D)B^{\prime}_{2}(1D) is predicted to be about 50 MeV. Considering the predictive power of the model and the experimental uncertainties, it is reasonable to regard BJ(5970)B_{J}(5970) as the B(13D3)B(1^{3}D_{3}).

IV Summary

In this paper, we have calculated the bottom meson spectrum with a modified nonrelativistic quark model involving the screening effect. We present a good description of mass spectrum of the bottom mesons, especially for the excited bottom mesons. Furthermore, we also investigate the strong decay properties of the B1(5721)B_{1}(5721), B2(5747)B^{*}_{2}(5747), BJ(5840)B_{J}(5840), and BJ(5970)B_{J}(5970) with the P03{}^{3}P_{0} model.

Based on the mass spectrum and decay properties, the B1(5721)B_{1}(5721) and B2(5747)B^{*}_{2}(5747) can be identified as the B1(1P)B_{1}^{\prime}(1P) and B(13P2)B(1^{3}P_{2}), respectively. The BJ(5840)B_{J}(5840) could be interpreted as the B(21S0)B(2^{1}S_{0}), and the BJ(5970)B_{J}(5970) could be explained as the B(13D3)B(1^{3}D_{3}). Further experimental information, especially the quantum numbers and decay modes of BJ(5840)B_{J}(5840) and BJ(5970)B_{J}(5970), are necessary to confirm these assignments.

Acknowledgements.
This work is supported by the Academic Improvement Project of Zhengzhou University.

References

  • (1) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80 (2017) no.7, 076201
  • (2) M. L. Du, M. Albaladejo, P. Fernández-Soler, F. K. Guo, C. Hanhart, U. G. Meißner, J. Nieves and D. L. Yao, Towards a new paradigm for heavy-light meson spectroscopy, Phys. Rev. D 98 (2018) no.9, 094018
  • (3) S. Behrends et al. [CLEO], Observation of Exclusive Decay Modes of BB Flavored Mesons, Phys. Rev. Lett. 50 (1983), 881-884
  • (4) P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) no.8, 083C01
  • (5) R. Akers et al. [OPAL], Observations of πB\pi^{-}B charge - flavor correlations and resonant BπB\pi and BKBK production, Z. Phys. C 66 (1995), 19-30
  • (6) V. M. Abazov et al. [D0], Observation and Properties of L=1B1L=1B_{1} and B2B^{*}_{2} Mesons, Phys. Rev. Lett. 99 (2007), 172001
  • (7) T. Aaltonen et al. [CDF], Measurement of Resonance Parameters of Orbitally Excited Narrow B0B^{0} Mesons, Phys. Rev. Lett. 102 (2009), 102003
  • (8) T. A. Aaltonen et al. [CDF], Study of Orbitally Excited BB Mesons and Evidence for a New BπB\pi Resonance, Phys. Rev. D 90 (2014) no.1, 012013
  • (9) R. Aaij et al. [LHCb], Precise measurements of the properties of the B1(5721)0,+B_{1}(5721)^{0,+} and B2(5747)0,+B^{\ast}_{2}(5747)^{0,+} states and observation of B+,0π,+B^{+,0}\pi^{-,+} mass structures, JHEP 04 (2015), 024
  • (10) J. Zeng, J. W. Van Orden and W. Roberts, Heavy mesons in a relativistic model, Phys. Rev. D 52 (1995), 5229-5241
  • (11) S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32 (1985), 189-231
  • (12) T. A. Lahde, C. J. Nyfalt and D. O. Riska, Spectra and M1M_{1} decay widths of heavy light mesons, Nucl. Phys. A 674 (2000), 141-167
  • (13) M. Di Pierro and E. Eichten, Excited Heavy - Light Systems and Hadronic Transitions, Phys. Rev. D 64 (2001), 114004
  • (14) X. h. Zhong and Q. Zhao, Strong decays of heavy-light mesons in a chiral quark model, Phys. Rev. D 78 (2008), 014029
  • (15) D. Ebert, R. N. Faustov and V. O. Galkin, Heavy-light meson spectroscopy and Regge trajectories in the relativistic quark model, Eur. Phys. J. C 66 (2010), 197-206
  • (16) S. Godfrey, K. Moats and E. S. Swanson, BB and BsB_{s} Meson Spectroscopy, Phys. Rev. D 94, 054025 (2016)
  • (17) Q. F. Lü, T. T. Pan, Y. Y. Wang, E. Wang, and D. M. Li, Excited bottom and bottom-strange mesons in the quark model, Phys. Rev. D 94, 074012 (2016).
  • (18) V. Kher, N. Devlani and A. K. Rai, Spectroscopy, Decay properties and Regge trajectories of the BB and BsB_{s} mesons, Chin. Phys. C 41, no.9, 093101 (2017).
  • (19) I. Asghar, B. Masud, E. S. Swanson, F. Akram and M. Atif Sultan, Decays and spectrum of bottom and bottom strange mesons, Eur. Phys. J. A 54 (2018) no.7, 127
  • (20) S. Godfrey and K. Moats, Spectroscopic Assignments of the Excited BB-Mesons, Eur. Phys. J. A 55, no.5, 84 (2019)
  • (21) G. L. Yu and Z. G. Wang, Analysis of the excited bottom and bottom-strange states B1(5721)B_{1}(5721), B2(5747)B_{2}^{*}(5747), Bs1(5830)B_{s1}(5830), Bs2(5840)B_{s2}^{*}(5840), BJ(5840)B_{J}(5840) and BJ(5970)B_{J}(5970) in BB meson family, Chin. Phys. C 44, 033103 (2020)
  • (22) B. Chen, S. Q. Luo, K. W. Wei and X. Liu, bb-hadron spectroscopy study based on the similarity of double bottom baryon and bottom meson, Phys. Rev. D 105 (2022) no.7, 074014
  • (23) Q. li, R. H. Ni and X. H. Zhong, Towards establishing an abundant BB and BsB_{s} spectrum up to the second orbital excitations, Phys. Rev. D 103 (2021), 116010
  • (24) S. Narison, Spectra and decay constants of BcB_{c}-like and B0B_{0}^{*} mesons in QCD, Phys. Lett. B 807 (2020), 135522
  • (25) B. Q. Li and K. T. Chao, Higher Charmonia and XX, YY, ZZ states with Screened Potential, Phys. Rev. D 79 (2009), 094004
  • (26) Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Charmed-strange mesons revisited: mass spectra and strong decays, Phys. Rev. D 91 (2015), 054031
  • (27) Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, Higher radial and orbital excitations in the charmed meson family, Phys. Rev. D 92 (2015) no.7, 074011
  • (28) J. Z. Wang, Z. F. Sun, X. Liu and T. Matsuki, Higher bottomonium zoo, Eur. Phys. J. C 78 (2018) no.11, 915
  • (29) O. Lakhina and E. S. Swanson, A Canonical Ds(2317)D_{s}(2317)?, Phys. Lett. B 650 (2007), 159-165
  • (30) D. M. Li, P. F. Ji and B. Ma, The newly observed open-charm states in quark model, Eur. Phys. J. C 71 (2011), 1582
  • (31) J. Z. Wang, D. Y. Chen, X. Liu and T. Matsuki, Constructing J/ψJ/\psi family with updated data of charmoniumlike YY states, Phys. Rev. D 99 (2019) no.11, 114003
  • (32) L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10 (1969), 521-526
  • (33) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Naive quark pair creation model of strong interaction vertices, Phys. Rev. D 8 (1973), 2223-2234
  • (34) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Resonant Partial Wave Amplitudes in π+nπ+π+n\pi^{+}n\rightarrow\pi^{+}\pi^{+}n According to the Naive Quark Pair Creation Model, Phys. Rev. D 11 (1975), 1272
  • (35) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Strong Decays of ψ(4.028)\psi(4.028) as a Radial Excitation of Charmonium, Phys. Lett. B 71 (1977), 397-399
  • (36) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Why Is ψ(4.414)\psi(4.414) SO Narrow?, Phys. Lett. B 72 (1977), 57-61
  • (37) W. Roberts and B. Silvestre-Brac, General method of calculation of any hadronic decay in the P03{}^{3}P_{0} model, Few Body Syst. 11 (1992) no.4, 171-193
  • (38) H. G. Blundell, Meson properties in the quark model: A look at some outstanding problems, hep-ph/9608473.
  • (39) T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Higher quarkonia, Phys. Rev. D 55, 4157 (1997).
  • (40) F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).
  • (41) T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
  • (42) B. Zhang, X. Liu, W. Z. Deng, and S. L. Zhu, DsJ(2860)D_{sJ}(2860) and DsJ(2715)D_{sJ}(2715), Eur. Phys. J. C 50, 617 (2007).
  • (43) D. M. Li and B. Ma, X(1835)X(1835) and η(1760)\eta(1760) observed by the BES Collaboration, Phys. Rev. D 77, 074004 (2008).
  • (44) D. M. Li and E. Wang, Canonical interpretation of the η2(1870)\eta_{2}(1870), Eur. Phys. J. C 63,297 (2009).
  • (45) Q. F. Lü and D. M. Li, Understanding the charmed states recently observed by the LHCb and BaBar Collaborations in the quark model, Phys. Rev. D 90, 054024 (2014).
  • (46) T. T. Pan, Q. F. Lü , E. Wang and D. M. Li, Strong decays of the X(2500)X(2500) newly observed by the BESIII Collaboration, Phys. Rev. D 94, no. 5, 054030 (2016).
  • (47) T. G. Li, Z. Gao, G. Y. Wang, D. M. Li, E. Wang and J. Zhu, The possible assignments of the scalar K0(1950)K_{0}^{*}(1950) and K0(2130)K_{0}^{*}(2130) within the P03{}^{3}P_{0} model, [arXiv:2203.17082 [hep-ph]].
  • (48) Z. Y. Li, D. M. Li, E. Wang, W. C. Yan and Q. T. Song, Assignments of the Y(2040)Y(2040), ρ(1900)\rho(1900), and ρ(2150)\rho(2150) in the quark model, Phys. Rev. D 104 (2021) no.3, 034013
  • (49) G. Y. Wang, S. C. Xue, G. N. Li, E. Wang and D. M. Li, Strong decays of the higher isovector scalar mesons, Phys. Rev. D 97 (2018) no.3, 034030
  • (50) W. Hao, G. Y. Wang, E. Wang, G. N. Li and D. M. Li, Canonical interpretation of the X(4140)X(4140) state within the P03{}^{3}P_{0} model, Eur. Phys. J. C 80 (2020) no.7, 626
  • (51) M. Jacob and G. C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys. 7 (1959), 404-428
  • (52) C. Hayne and N. Isgur, Beyond the Wave Function at the Origin: Some Momentum Dependent Effects in the Nonrelativistic Quark Model, Phys. Rev. D 25 (1982), 1944
  • (53) R. N. Cahn and J. D. Jackson, Spin orbit and tensor forces in heavy quark light quark mesons: Implications of the new D(s)D_{(s)} state at 2.32-GeV, Phys. Rev. D 68, 037502 (2003)