This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The algebra of conjugacy classes of the wreath product
of a finite group with the symmetric group

Omar Tout Department of Mathematics, College of Science, Sultan Qaboos University, P. O Box 36, Al Khod 123, Sultanate of Oman [email protected]
Abstract.

For a finite group G,G, we define the concept of GG-partial permutation and use it to show that the structure coefficients of the center of the wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra are polynomials in nn with non-negative integer coefficients. Our main tool is a combinatorial algebra which projects onto the center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra for every n.n. This generalizes the Ivanov and Kerov method to prove the polynomiality property for the structure coefficients of the center of the symmetric group algebra.

Key words and phrases:
Wreath product, partial permutations, structure coefficients, character theory, shifted symmetric functions
2020 Mathematics Subject Classification:
Primary 05E05, 05E10, 20C30; Secondary 20E22.

1. Introduction

Throughout this paper GG will be a finite group, 1G1_{G} its identity element, Gโ‹†G_{\star} its set of conjugacy classes and Gโ‹†G^{\star} its set of irreducible complex characters. If nn is a positive integer, let ๐’ฎn\mathcal{S}_{n} denote the symmetric group on the set [n]:={1,2,โ€ฆ,n}.[n]:=\{1,2,\ldots,n\}. A partition is a finite list of non-increasing positive integers called parts. The size of a partition is the sum of all of its parts. A partition of size nn is usually called a partition of n.n. We denote by ๐’ซnGโ‹†\mathcal{P}_{n}^{G_{\star}} the set of families of partitions ฮ›=(ฮ›โ€‹(c))cโˆˆGโ‹†,\Lambda=(\Lambda(c))_{c\in G_{\star}}, indexed by Gโ‹†,G_{\star}, such that the sizes of the partitions ฮ›โ€‹(c)\Lambda(c) sum up to n.n. The type of an element of the wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is a family of partitions ฮ›โˆˆ๐’ซnGโ‹†,\Lambda\in\mathcal{P}_{n}^{G_{\star}}, see [5]. Two elements of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} are conjugate if and only if they have the same type. The center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra, which will be denoted Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]),Z(\mathbb{C}[G\wr\mathcal{S}_{n}]), is the algebra over โ„‚\mathbb{C} generated by the conjugacy classes of Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. If ฮ›โˆˆ๐’ซnGโ‹†,\Lambda\in\mathcal{P}_{n}^{G_{\star}}, we define ๐‚ฮ›\mathbf{C}_{\Lambda} to be the formal sum of all the elements in Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} with type ฮ›.\Lambda. The family (๐‚ฮ›)ฮ›(\mathbf{C}_{\Lambda})_{\Lambda} indexed by ๐’ซnGโ‹†\mathcal{P}_{n}^{G_{\star}} is a linear basis for Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]).Z(\mathbb{C}[G\wr\mathcal{S}_{n}]). The structure coefficients cฮ›โ€‹ฮ”ฮ“c_{\Lambda\Delta}^{\Gamma} are the non-negative integers defined by the following product in Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn])Z(\mathbb{C}[G\wr\mathcal{S}_{n}])

๐‚ฮ›โ€‹๐‚ฮ”=โˆ‘ฮ“โˆˆ๐’ซnGโ‹†cฮ›โ€‹ฮ”ฮ“โ€‹๐‚ฮ“.\mathbf{C}_{\Lambda}\mathbf{C}_{\Delta}=\sum_{\Gamma\in\mathcal{P}_{n}^{G_{\star}}}c_{\Lambda\Delta}^{\Gamma}\mathbf{C}_{\Gamma}.

In the case where GG is the trivial group, the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is isomorphic to the symmetric group ๐’ฎn.\mathcal{S}_{n}. The conjugacy classes of ๐’ฎn\mathcal{S}_{n} are indexed by partitions of n.n. It is a difficult problem to find explicit formulas even for particular structure coefficients of Zโ€‹(โ„‚โ€‹[๐’ฎn]),Z(\mathbb{C}[\mathcal{S}_{n}]), see [4], [2], [11]. In [1], Farahat and Higman showed that the structure coefficients of Zโ€‹(โ„‚โ€‹[๐’ฎn])Z(\mathbb{C}[\mathcal{S}_{n}]) are polynomials in n.n. By introducing partial permutations in [3], Ivanov and Kerov gave a combinatorial proof to this result. Recently, we used in [10] our general framework developed in [9] to show a polynomiality property for the structure coefficients of Zโ€‹(โ„‚โ€‹[๐’ฎkโ‰€๐’ฎn]).Z(\mathbb{C}[\mathcal{S}_{k}\wr\mathcal{S}_{n}]).

Beside from being combinatorial, the Ivanov-Kerov approach, developed in [3], uses a universal algebra which turns out to be isomorphic to the algebra of shifted symmetric functions. In the past few years, it was used to show a polynomiality property for the structure coefficients of some interesting algebras. For example, we define the notion of partial bijection in [8] to show that the structure coefficients of the Hecke algebra of the pair (๐’ฎ2โ€‹n,โ„ฌn),(\mathcal{S}_{2n},\mathcal{B}_{n}), where โ„ฌn\mathcal{B}_{n} is the hyperoctahedral subgroup of ๐’ฎ2โ€‹n,\mathcal{S}_{2n}, are polynomials in n.n. In [6], the concept of partial isomorphism appeared to give a polynomiality property for the structure coefficients of the center of the group GLโก(n,๐”ฝq)\operatorname{GL}(n,\mathbb{F}_{q}) algebra, where qq is a prime number and GLโก(n,๐”ฝq)\operatorname{GL}(n,\mathbb{F}_{q}) is the group of invertible nร—nn\times n matrices with coefficients in the finite field ๐”ฝq.\mathbb{F}_{q}. We used the notion of kk-partial permutation in [12] to give a more combinatorial proof to our result in [10].

In [13], Wang proved that the structure coefficients cฮ›โ€‹ฮ”ฮ“c_{\Lambda\Delta}^{\Gamma} of Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn])Z(\mathbb{C}[G\wr\mathcal{S}_{n}]) are polynomials in n.n. He used the Farahat-Higman approach developed in [1] for the center of the symmetric group algebra. The goal of this paper is to generalize the Ivanov-Kerov approach in order to obtain Wangโ€™s result by a more algebraic combinatorial way. For this reason, we will define the concept of GG-partial permutation and use it to build a universal combinatorial algebra which projects onto the center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra for each n.n. We will prove that this universal algebra is isomorphic to the algebra of shifted symmetric functions on |Gโ‹†||G^{\star}| alphabets. Recently, it came to our attention that Wang mentioned our generalization in [14, Section 5.35.3]. However, in addition to providing all the details, we think that some presented results like Theorem 7.1, are new and make a valuable contribution to the literature.

The paper is organized as follows. In Section 2, we present the necessary definitions for partitions and we review some basic results concerning the conjugacy classes and the center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra. Then, in Section 3, we introduce the notion of GG-partial permutation. An action of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} on the set of GG-partial permutations of nn is given in Section 4. The universal combinatorial algebra ๐’œโˆžG,\mathcal{A}_{\infty}^{G}, which projects on the center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra for each n,n, will be built in Section 5. Next in Section 6, we prove in Theorem 6.2 that the structure coefficients of the center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra are polynomials in n.n. In the last section, we present an isomorphism between ๐’œโˆžG\mathcal{A}_{\infty}^{G} and the algebra of shifted symmetric functions on |Gโ‹†||G^{\star}| alphabets.

2. Algebra of the conjugacy classes of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n}

In this section we will review all necessary definitions and results concerning the conjugacy classes of Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. For more details, the reader is invited to check [5, Appendix B].

2.1. Partitions

A partition ฮป\lambda is a weakly decreasing list of positive integers (ฮป1,โ€ฆ,ฮปl).(\lambda_{1},\ldots,\lambda_{l}). The ฮปi\lambda_{i} are called the parts of ฮป.\lambda. The size of ฮป,\lambda, denoted by |ฮป|,|\lambda|, is the sum of all of its parts. We say that ฮป\lambda is a partition of nn if |ฮป|=n.|\lambda|=n. The set of all partitions of nn will be denoted ๐’ซn.\mathcal{P}_{n}. In this paper, we will mainly use the exponential notation ฮป=(1m1โ€‹(ฮป),2m2โ€‹(ฮป),3m3โ€‹(ฮป),โ€ฆ),\lambda=(1^{m_{1}(\lambda)},2^{m_{2}(\lambda)},3^{m_{3}(\lambda)},\ldots), where miโ€‹(ฮป)m_{i}(\lambda) is the number of parts equal to ii in the partition ฮป.\lambda. We will dismiss imiโ€‹(ฮป)i^{m_{i}(\lambda)} from ฮป\lambda when miโ€‹(ฮป)=0,m_{i}(\lambda)=0, for example, we will write ฮป=(1,2,42)\lambda=(1,2,4^{2}) instead of ฮป=(1,2,30,42,50,โ€ฆ).\lambda=(1,2,3^{0},4^{2},5^{0},\ldots). If ฮป\lambda and ฮด\delta are two partitions, we define the union ฮปโˆชฮด\lambda\cup\delta and subtraction ฮปโˆ–ฮด\lambda\setminus\delta (if exists) as the following partitions:

ฮปโˆชฮด=(1m1โ€‹(ฮป)+m1โ€‹(ฮด),2m2โ€‹(ฮป)+m2โ€‹(ฮด),3m3โ€‹(ฮป)+m3โ€‹(ฮด),โ€ฆ).\lambda\cup\delta=(1^{m_{1}(\lambda)+m_{1}(\delta)},2^{m_{2}(\lambda)+m_{2}(\delta)},3^{m_{3}(\lambda)+m_{3}(\delta)},\ldots).
ฮปโˆ–ฮด=(1m1โ€‹(ฮป)โˆ’m1โ€‹(ฮด),2m2โ€‹(ฮป)โˆ’m2โ€‹(ฮด),3m3โ€‹(ฮป)โˆ’m3โ€‹(ฮด),โ€ฆ)โ€‹ย ifย miโ€‹(ฮป)โ‰ฅmiโ€‹(ฮด)ย for anyย i.ย \lambda\setminus\delta=(1^{m_{1}(\lambda)-m_{1}(\delta)},2^{m_{2}(\lambda)-m_{2}(\delta)},3^{m_{3}(\lambda)-m_{3}(\delta)},\ldots)\text{ if $m_{i}(\lambda)\geq m_{i}(\delta)$ for any $i.$ }

The cycle-type of a permutation of ๐’ฎn\mathcal{S}_{n} is the partition of nn obtained from the lengthes of the cycles that appear in its decomposition into product of disjoint cycles. For example, the permutation (1,4)โ€‹(2,6,3)โ€‹(5)โ€‹(7,8)(1,4)(2,6,3)(5)(7,8) of ๐’ฎ8\mathcal{S}_{8} has cycle-type (1,22,3).(1,2^{2},3). It is well known that two permutations of ๐’ฎn\mathcal{S}_{n} belong to the same conjugacy class if and only if they have the same cycle-type. Thus the conjugacy classes of ๐’ฎn\mathcal{S}_{n} can be indexed by partitions of n.n. The conjugacy class of ๐’ฎn\mathcal{S}_{n} associated to the partition ฮป=(1m1โ€‹(ฮป),2m2โ€‹(ฮป),3m3โ€‹(ฮป),โ€ฆ,nmnโ€‹(ฮป))โˆˆ๐’ซn\lambda=(1^{m_{1}(\lambda)},2^{m_{2}(\lambda)},3^{m_{3}(\lambda)},\ldots,n^{m_{n}(\lambda)})\in\mathcal{P}_{n} will be denoted CฮปC_{\lambda} and its cardinal is given by the following formula:

|Cฮป|=n!zฮป,|C_{\lambda}|=\frac{n!}{z_{\lambda}},

where

zฮป:=โˆiโ‰ฅ1imiโ€‹(ฮป)โ€‹miโ€‹(ฮป)!.z_{\lambda}:=\prod_{i\geq 1}i^{m_{i}(\lambda)}m_{i}(\lambda)!.

A partition is called proper if it does not have any part equal to 1. The proper partition associated to a partition ฮป\lambda is the partition ฮปยฏ:=(2m2โ€‹(ฮป),3m3โ€‹(ฮป),โ€ฆ).\bar{\lambda}:=(2^{m_{2}(\lambda)},3^{m_{3}(\lambda)},\ldots). The set of all proper partitions with size less than or equal to nn will be denoted ๐’ซโ€‹๐’ซโ‰คn.\mathcal{PP}_{\leq n}. If ฮป\lambda is a partition of r<n,r<n, we can extend ฮป\lambda to a partition of nn by adding nโˆ’rn-r parts equal to one, the new partition of nn will be denoted ฮปยฏn.\underline{\lambda}_{n}.

If XX is a finite set and ฮ›=(ฮ›โ€‹(x))xโˆˆX\Lambda=(\Lambda(x))_{x\in X} is a family of partitions indexed by X,X, we define the size of ฮ›,\Lambda, denoted by |ฮ›|,|\Lambda|, to be the sum of the sizes of ฮ›โ€‹(x)\Lambda(x)

|ฮ›|=โˆ‘xโˆˆX|ฮ›โ€‹(x)|.|\Lambda|=\sum_{x\in X}|\Lambda(x)|.

The set of families of partitions of size nn indexed by XX will be denoted ๐’ซnX\mathcal{P}_{n}^{X} and ๐’ซโ‰คnX\mathcal{P}_{\leq n}^{X} will denote the set of families of partitions indexed by XX with size less than or equal to n.n. In this paper we will mainly encounter families of partitions indexed by Gโ‹†G_{\star} and Gโ‹†.G^{\star}. An element ฮ›โˆˆ๐’ซnGโ‹†\Lambda\in\mathcal{P}_{n}^{G_{\star}} is called proper if the partition ฮ›โ€‹({1G})\Lambda(\{1_{G}\}) is proper. We will use ๐’ซโ€‹๐’ซnGโ‹†\mathcal{PP}_{n}^{G_{\star}} (resp. ๐’ซโ€‹๐’ซโ‰คnGโ‹†\mathcal{PP}_{\leq n}^{G_{\star}}) to denote the set of proper families of partitions of size nn (resp. less than or equal to nn) indexed by Gโ‹†.G_{\star}. If ฮ›โˆˆ๐’ซโ‰คnGโ‹†,\Lambda\in\mathcal{P}_{\leq n}^{G_{\star}}, we define ฮ›ยฏn\underline{\Lambda}_{n} to be the element of ๐’ซnGโ‹†\mathcal{P}_{n}^{G_{\star}} with ฮ›ยฏnโ€‹(c)=ฮ›โ€‹(c)\underline{\Lambda}_{n}(c)=\Lambda(c) if cโ‰ {1G}c\neq\{1_{G}\} and

ฮ›ยฏnโ€‹({1G})=ฮ›โ€‹({1G})โˆช(1nโˆ’|ฮ›|)=ฮ›โ€‹({1G})ยฏn.\underline{\Lambda}_{n}(\{1_{G}\})=\Lambda(\{1_{G}\})\cup(1^{n-|\Lambda|})=\underline{\Lambda(\{1_{G}\})}_{n}.

2.2. Conjugacy classes of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n}

The wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is the group with underlying set Gnร—๐’ฎnG^{n}\times\mathcal{S}_{n} and product defined as follows:

((ฯƒ1,โ€ฆ,ฯƒn);p)โ‹…((ฯต1,โ€ฆ,ฯตn);q)=((ฯƒqโˆ’1โ€‹(1)โ€‹ฯต1,โ€ฆ,ฯƒqโˆ’1โ€‹(1)โ€‹ฯตn);pโ€‹q),((\sigma_{1},\ldots,\sigma_{n});p)\cdot((\epsilon_{1},\ldots,\epsilon_{n});q)=((\sigma_{q^{-1}(1)}\epsilon_{1},\ldots,\sigma_{q^{-1}(1)}\epsilon_{n});pq),

for any ((ฯƒ1,โ€ฆ,ฯƒn);p),((ฯต1,โ€ฆ,ฯตn);q)โˆˆGnร—๐’ฎn.((\sigma_{1},\ldots,\sigma_{n});p),((\epsilon_{1},\ldots,\epsilon_{n});q)\in G^{n}\times\mathcal{S}_{n}. We apply pp before qq when we write the product pโ€‹q.pq. The identity in this group is (1;1):=((1G,1G,โ€ฆ,1G);Idn).(1;1):=((1_{G},1_{G},\ldots,1_{G});\operatorname{Id}_{n}). The inverse of an element ((ฯƒ1,ฯƒ2,โ€ฆ,ฯƒn);p)โˆˆGโ‰€๐’ฎn((\sigma_{1},\sigma_{2},\ldots,\sigma_{n});p)\in G\wr\mathcal{S}_{n} is given by

((ฯƒ1,ฯƒ2,โ€ฆ,ฯƒn);p)โˆ’1=((ฯƒpโ€‹(1)โˆ’1,ฯƒpโ€‹(2)โˆ’1,โ€ฆ,ฯƒpโ€‹(n)โˆ’1);pโˆ’1).((\sigma_{1},\sigma_{2},\ldots,\sigma_{n});p)^{-1}=((\sigma^{-1}_{p(1)},\sigma^{-1}_{p(2)},\ldots,\sigma^{-1}_{p(n)});p^{-1}).

Let x=(g;p)โˆˆGโ‰€๐’ฎn,x=(g;p)\in G\wr\mathcal{S}_{n}, where g=(g1,โ€ฆ,gn)โˆˆGng=(g_{1},\ldots,g_{n})\in G^{n} and pโˆˆ๐’ฎnp\in\mathcal{S}_{n} is written as a product of disjoint cycles. If (i1,i2,โ€ฆ,ir)(i_{1},i_{2},\ldots,i_{r}) is a cycle of p,p, the element girโ€‹girโˆ’1โ€‹โ€ฆโ€‹gi1โˆˆGg_{i_{r}}g_{i_{r-1}}\ldots g_{i_{1}}\in G is determined up to conjugacy in GG by gg and (i1,i2,โ€ฆ,ir),(i_{1},i_{2},\ldots,i_{r}), and is called the cycle product of xx corresponding to the cycle (i1,i2,โ€ฆ,ir),(i_{1},i_{2},\ldots,i_{r}), see [5, Page 170170]. For any conjugacy class cโˆˆGโ‹†,c\in G_{\star}, we denote by ฯโ€‹(c)\rho(c) the partition written in the exponential way where miโ€‹(ฯโ€‹(c))m_{i}(\rho(c)) is the number of cycles of length ii in pp whose cycle-product lies in cc for each integer iโ‰ฅ1.i\geq 1. Then each element x=(g;p)โˆˆGโ‰€๐’ฎnx=(g;p)\in G\wr\mathcal{S}_{n} gives rise to a family of partitions (ฯโ€‹(c))cโˆˆGโ‹†(\rho(c))_{c\in G_{\star}} indexed by Gโ‹†G_{\star} such that

โˆ‘iโ‰ฅ1,cโˆˆGโ‹†iโ€‹miโ€‹(ฯโ€‹(c))=n.\sum_{i\geq 1,c\in G_{\star}}im_{i}(\rho(c))=n.

This family of partitions is called the type of xx and denoted typeโก(x).\operatorname{type}(x).

Example 2.1.

When G=โ„คk,G=\mathbb{Z}_{k}, the type of x=(g;p)โˆˆโ„คkโ‰€๐’ฎnx=(g;p)\in\mathbb{Z}_{k}\wr\mathcal{S}_{n} is a kk-vector of partitions ฮ›=(ฮป0,ฮป1,โ€ฆ,ฮปkโˆ’1)\Lambda=(\lambda_{0},\lambda_{1},\ldots,\lambda_{k-1}) where each partition ฮปi\lambda_{i} is formed out of cycles cc of pp whose cycle product equals i.i. For example, consider the element x=(g,p)โˆˆโ„ค3โ‰€๐’ฎ10x=(g,p)\in\mathbb{Z}_{3}\wr\mathcal{S}_{10} where g=(1,0,2,0,0,1,1,2,1,0)g=(1,0,2,0,0,1,1,2,1,0) and p=(1,4)โ€‹(2,5)โ€‹(3)โ€‹(6)โ€‹(7,8,9,10).p=(1,4)(2,5)(3)(6)(7,8,9,10). The cycle product of (1,4)(1,4) is 1+0=1,1+0=1, of (2,5)(2,5) is 0+0=0,0+0=0, of (3)(3) is 2,2, of (6)(6) is 11 and of (7,8,9,10)(7,8,9,10) is 1+2+1+0=11+2+1+0=1 in โ„ค3.\mathbb{Z}_{3}. Thus typeโก(x)=(ฮป0,ฮป1,ฮป2)\operatorname{type}(x)=(\lambda_{0},\lambda_{1},\lambda_{2}) with ฮป0=(2),\lambda_{0}=(2), ฮป1=(4,2,1)\lambda_{1}=(4,2,1) and ฮป2=(1).\lambda_{2}=(1).

It turns out, see [5, Page 170170], that two permutations are conjugate in Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} if and only if they have the same type. Thus the conjugacy classes of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} can be indexed by the elements of ๐’ซnGโ‹†.\mathcal{P}_{n}^{G_{\star}}. If ฮ›โˆˆ๐’ซnGโ‹†,\Lambda\in\mathcal{P}_{n}^{G_{\star}}, we will denote by Cฮ›C_{\Lambda} its associated conjugacy class:

Cฮ›:={xโˆˆGโ‰€๐’ฎn;typeโก(x)=ฮ›}.C_{\Lambda}:=\{x\in G\wr\mathcal{S}_{n};\operatorname{type}(x)=\Lambda\}.

From [5, (3.1)], the order of the centralizer of an element of type ฮ›\Lambda in Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is

Zฮ›=โˆcโˆˆGโ‹†zฮ›โ€‹(c)โ€‹ฮพclโ€‹(ฮ›โ€‹(c)),Z_{\Lambda}=\prod_{c\in G_{\star}}z_{\Lambda(c)}\xi_{c}^{l(\Lambda(c))},

where ฮพc=|G||c|\xi_{c}=\frac{|G|}{|c|} is the order of the centralizer of an element gโˆˆcg\in c in G.G. Thus, if ฮ›โˆˆ๐’ซnGโ‹†,\Lambda\in\mathcal{P}_{n}^{G_{\star}}, the cardinal of Cฮ›C_{\Lambda} is given by:

|Cฮ›|=|Gโ‰€๐’ฎn|Zฮ›=|G|nโ€‹n!โˆcโˆˆGโ‹†zฮ›โ€‹(c)โ€‹ฮพclโ€‹(ฮ›โ€‹(c)).|C_{\Lambda}|=\frac{|G\wr\mathcal{S}_{n}|}{Z_{\Lambda}}=\frac{|G|^{n}n!}{\prod\limits_{c\in G_{\star}}z_{\Lambda(c)}\xi_{c}^{l(\Lambda(c))}}.

2.3. The center of the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} algebra

The group algebra of Gโ‰€๐’ฎn,G\wr\mathcal{S}_{n}, denoted by โ„‚โ€‹[Gโ‰€๐’ฎn],\mathbb{C}[G\wr\mathcal{S}_{n}], is the algebra over โ„‚\mathbb{C} with basis the elements of the group Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. The product in โ„‚โ€‹[Gโ‰€๐’ฎn]\mathbb{C}[G\wr\mathcal{S}_{n}] is the linear extension of the group product in Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. The center of the group algebra โ„‚โ€‹[Gโ‰€๐’ฎn],\mathbb{C}[G\wr\mathcal{S}_{n}], usually denoted by Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]),Z(\mathbb{C}[G\wr\mathcal{S}_{n}]), is the sub-algebra of โ„‚โ€‹[Gโ‰€๐’ฎn]\mathbb{C}[G\wr\mathcal{S}_{n}] of invariant elements under the conjugation action of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} on โ„‚โ€‹[Gโ‰€๐’ฎn]:\mathbb{C}[G\wr\mathcal{S}_{n}]:

Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]):={xโˆˆโ„‚โ€‹[Gโ‰€๐’ฎn];yโ€‹x=xโ€‹yโˆ€yโˆˆGโ‰€๐’ฎn}.Z(\mathbb{C}[G\wr\mathcal{S}_{n}]):=\{x\in\mathbb{C}[G\wr\mathcal{S}_{n}];yx=xy~{}~{}~{}~{}\forall y\in G\wr\mathcal{S}_{n}\}.

The conjugacy classes of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} index a basis of Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]).Z(\mathbb{C}[G\wr\mathcal{S}_{n}]). We showed in Section 2.2 that the conjugacy classes of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} are indexed by the elements of ๐’ซnGโ‹†.\mathcal{P}_{n}^{G_{\star}}. Thus, the family (๐‚ฮ›)ฮ›โˆˆ๐’ซnGโ‹†,({\bf C}_{\Lambda})_{\Lambda\in\mathcal{P}_{n}^{G_{\star}}}, where

๐‚ฮ›=โˆ‘xโˆˆCฮ›x,{\bf C}_{\Lambda}=\sum_{x\in C_{\Lambda}}x,

forms a linear basis for Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn]).Z(\mathbb{C}[G\wr\mathcal{S}_{n}]). Let ฮ›\Lambda and ฮ”\Delta be two elements of ๐’ซnGโ‹†,\mathcal{P}_{n}^{G_{\star}}, the structure coefficients cฮ›โ€‹ฮ”ฮ“c_{\Lambda\Delta}^{\Gamma} of the algebra Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn])Z(\mathbb{C}[G\wr\mathcal{S}_{n}]) are defined by the following equation:

(1) ๐‚ฮ›โ€‹๐‚ฮ”=โˆ‘ฮ“โˆˆ๐’ซnGโ‹†cฮ›โ€‹ฮ”ฮ“โ€‹๐‚ฮ“.\mathbf{C}_{\Lambda}\mathbf{C}_{\Delta}=\sum_{\Gamma\in\mathcal{P}_{n}^{G_{\star}}}c_{\Lambda\Delta}^{\Gamma}\mathbf{C}_{\Gamma}.

The coefficients cฮ›โ€‹ฮ”ฮ“c_{\Lambda\Delta}^{\Gamma} are non-negative integer since they count the number of pairs of elements (x,y)โˆˆCฮ›ร—Cฮ”(x,y)\in C_{\Lambda}\times C_{\Delta} such that xโ‹…y=zx\cdot y=z for a fixed element zโˆˆCฮ“.z\in C_{\Gamma}. However, it is a very hard problem to compute these coefficients even in particular cases. For instance, the easiest choice for GG is the trivial group in which the group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is isomorphic to ๐’ฎn.\mathcal{S}_{n}. There is no explicit formula to compute all the structure coefficients of the center of the symmetric group algebra. Explicit formulas for particular structure coefficients of Zโ€‹(โ„‚โ€‹[๐’ฎn])Z(\mathbb{C}[\mathcal{S}_{n}]) appeared in many papers, for example see [4], [2] and [11].

In [1], Farahat and Higman showed that the structure coefficients of Zโ€‹(โ„‚โ€‹[๐’ฎn])Z(\mathbb{C}[\mathcal{S}_{n}]) are polynomials in nn which was later proved by Ivanov and Kerov in [3] using a more combinatorial way. In [13], following the Farahat and Higman approach, Wang proved that the structure coefficients cฮ›โ€‹ฮ”ฮ“c_{\Lambda\Delta}^{\Gamma} of Zโ€‹(โ„‚โ€‹[Gโ‰€๐’ฎn])Z(\mathbb{C}[G\wr\mathcal{S}_{n}]) are polynomials in n.n. In the next sections we will develop a combinatorial approach in order to prove Wangโ€™s result using the Ivanov-Kerov method.

3. GG-partial permutations

A partial permutation of [n][n] is a pair (d,ฯ‰)(d,\omega) consisting of an arbitrary subset dd of [n][n] and an arbitrary bijection ฯ‰:dโŸถd.\omega:d\longrightarrow d. The notion of partial permutation of [n][n] appeared in [3] to show by a combinatorial way that the structure coefficients of the center of the symmetric group ๐’ฎn\mathcal{S}_{n} algebra are polynomials in n.n.

If dd is a subset of [n],[n], we denote by GdnG^{n}_{d} the set of vectors gg with nn-coordinates such that giโˆˆGg_{i}\in G if iโˆˆdi\in d and gig_{i} is left blank otherwise. For example, if G=โ„ค3,G=\mathbb{Z}_{3}, n=5n=5 and d={1,3,4}d=\{1,3,4\} then (1,,2,0,)โˆˆGd5(1,,2,0,)\in G^{5}_{d} but (1,,1,1,1)โˆ‰Gd5.(1,,1,1,1)\notin G^{5}_{d}.

Definition 3.1.

A GG-partial permutation of [n][n] is a pair (g;(d,ฯ‰))(g;(d,\omega)) where (d,ฯ‰)(d,\omega) is a partial permutation of [n][n] and gโˆˆGdn.g\in G^{n}_{d}.

We denote by ๐”“nG\mathfrak{P}^{G}_{n} the set of all GG-partial permutations of [n].[n]. It would be clear that

|๐”“nG|=โˆ‘k=0n(nk)โ€‹k!โ€‹|G|k.|\mathfrak{P}^{G}_{n}|=\sum_{k=0}^{n}{n\choose k}k!|G|^{k}.

A GG-partial permutation (g;(d,ฯ‰))(g;(d,\omega)) of [n][n] may be represented by a diagram obtained by drawing the two lines permutation diagram associated to (d,ฯ‰),(d,\omega), with the nodes of the bottom row replaced by the elements gig_{i} for iโˆˆd.i\in d. This representation will help us understanding the product between GG-partial permutations of [n][n] which will be defined later.

Example 3.2.

If n=9,n=9, A={2,4,5,6}A=\{2,4,5,6\} and ฯ‰=(2,5)โ€‹(4,6),\omega=(2,5)(4,6), then we represent the element (g;(A,ฯ‰))(g;(A,\omega)) by the following diagram

22445566g5g_{5}g2g_{2}g6g_{6}g4g_{4}

The definition of type can be extended naturally to a GG-partial permutation of [n].[n]. If x=(g;(d,ฯ‰))x=(g;(d,\omega)) is a GG-partial permutation of [n][n] and cโˆˆGโ‹†c\in G_{\star} then let ฯโ€‹(c)\rho(c) be the partition written in the exponential way where miโ€‹(ฯโ€‹(c))m_{i}(\rho(c)) is the number of cycles of length ii in ฯ‰\omega whose cycle-product lies in cc for each integer iโ‰ฅ1.i\geq 1. Define the type of xx to be the family of partitions (ฯโ€‹(c))cโˆˆGโ‹†(\rho(c))_{c\in G_{\star}} indexed by Gโ‹†.G_{\star}. It would be clear that

|typeโก(x)|=|d|.|\operatorname{type}(x)|=|d|.

If x=(g;(d,ฯ‰))โˆˆ๐”“nG,x=(g;(d,\omega))\in\mathfrak{P}^{G}_{n}, we denote by x~\widetilde{x} the element (g~;ฯ‰~)(\widetilde{g};\widetilde{\omega}) of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} where ฯ‰~\widetilde{\omega} and g~\widetilde{g} are defined by:

ฯ‰~โ€‹(a)={ฯ‰โ€‹(a)ifaโˆˆd,aifaโˆˆ[n]โˆ–d.โ€‹ย andย โ€‹g~i={giifiโˆˆd,1Gifiโˆˆ[n]โˆ–d.\widetilde{\omega}(a)=\left\{\begin{array}[]{ll}\omega(a)&\qquad\mathrm{if}\quad a\in d,\\ a&\qquad\mathrm{if}\quad a\in[n]\setminus d.\\ \end{array}\right.\text{ and }\widetilde{g}_{i}=\left\{\begin{array}[]{ll}g_{i}&\qquad\mathrm{if}\quad i\in d,\\ 1_{G}&\qquad\mathrm{if}\quad i\in[n]\setminus d.\\ \end{array}\right.

The product of two GG-partial permutations (g;(d1,ฯ‰1))(g;(d_{1},\omega_{1})) and (h;(d2,ฯ‰2))(h;(d_{2},\omega_{2})) of [n][n] is defined by:

(g;(d1,ฯ‰1))โ‹…(h;(d2,ฯ‰2))=((g~ฯ‰~2|d1โˆชd2โˆ’1โ€‹(1)โ€‹h~1,โ€ฆ,g~ฯ‰~2|d1โˆชd2โˆ’1โ€‹(n)โ€‹h~n);(d1,ฯ‰1)โ€‹(d2,ฯ‰2)),\big{(}g;(d_{1},\omega_{1})\big{)}\cdot\big{(}h;(d_{2},\omega_{2})\big{)}=\big{(}(\widetilde{g}_{\widetilde{\omega}_{2_{|d_{1}\cup d_{2}}}^{-1}(1)}\widetilde{h}_{1},\ldots,\widetilde{g}_{\widetilde{\omega}_{2_{|d_{1}\cup d_{2}}}^{-1}(n)}\widetilde{h}_{n});(d_{1},\omega_{1})(d_{2},\omega_{2})\big{)},

where

(d1,ฯ‰1)โ€‹(d2,ฯ‰2)=(d1โˆชd2,ฯ‰~1|d1โˆชd2โ€‹ฯ‰~2|d1โˆชd2).(d_{1},\omega_{1})(d_{2},\omega_{2})=(d_{1}\cup d_{2},\widetilde{\omega}_{1_{|d_{1}\cup d_{2}}}\widetilde{\omega}_{2_{|d_{1}\cup d_{2}}}).

This product is well defined since (d1,ฯ‰1)โ€‹(d2,ฯ‰2)(d_{1},\omega_{1})(d_{2},\omega_{2}) is a partial permutation of [n].[n]. The set ๐”“nG\mathfrak{P}^{G}_{n} is a semigroup with this multiplication. The unity in ๐”“nG\mathfrak{P}^{G}_{n} is the GG-partial permutation ((,,โ€ฆ,);(โˆ…,e0))((,,\ldots,);(\emptyset,e_{0})) where e0e_{0} is the trivial permutation of the empty set โˆ….\emptyset. We denote by โ„ฌnG=โ„‚โ€‹[๐”“nG]\mathcal{B}^{G}_{n}=\mathbb{C}[\mathfrak{P}^{G}_{n}] the algebra of the semigroup ๐”“nG.\mathfrak{P}^{G}_{n}.

Example 3.3.

Reconsider the GG-partial permutation (g;(A,ฯ‰))(g;(A,\omega)) of Example 3.2 and let (f;(B,ฯƒ))(f;(B,\sigma)) be the GG-partial permutation of [9][9] with B={1,3,5,6,8,9}B=\{1,3,5,6,8,9\} and ฯƒ=(1,5,8)โ€‹(3,9)โ€‹(6)\sigma=(1,5,8)(3,9)(6) then the product (g;(A,ฯ‰))โ‹…(f;(B,ฯƒ))(g;(A,\omega))\cdot(f;(B,\sigma)) yields the following GG-partial permutation of [9][9]

((f1,g2,f3,g4,f5,g6f6,,g5f8,f9);({1,2,3,4,5,6,8,9},(1,5,2,8)(3,9)(4,6)))\big{(}(f_{1},g_{2},f_{3},g_{4},f_{5},g_{6}f_{6},,g_{5}f_{8},f_{9});(\{1,2,3,4,5,6,8,9\},(1,5,2,8)(3,9)(4,6))\big{)}

This can be obtained easily by drawing the diagram of (g;(A,ฯ‰))(g;(A,\omega)) above the diagram of (f;(B,ฯƒ))(f;(B,\sigma)) then extending both of them to AโˆชBA\cup B as represented below

22445566g5g_{5}g2g_{2}g6g_{6}g4g_{4}111G1_{G}331G1_{G}881G1_{G}991G1_{G}11f5f_{5}55f8f_{8}88f1f_{1}33f9f_{9}99f3f_{3}66f6f_{6}221G1_{G}441G1_{G}

All extensions are drawn in red. The diagram of the product (g;(A,ฯ‰))โ‹…(f;(B,ฯƒ))(g;(A,\omega))\cdot(f;(B,\sigma)) is then obtained by taking the resulted diagram of the above combination

11f5f_{5}22g5โ€‹f8g_{5}f_{8}33f9f_{9}44g6โ€‹f6g_{6}f_{6}55g2g_{2}66g4g_{4}88f1f_{1}99f3f_{3}

4. Action of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} on ๐”“nG\mathfrak{P}^{G}_{n}

Any element (g;ฯƒ)(g;\sigma) of the wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} can be seen as a GG-partial permutation of [n][n] by identifying ฯƒ\sigma with the partial permutation ([n],ฯƒ).([n],\sigma). The wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} acts on the semigroup ๐”“nG\mathfrak{P}^{G}_{n} by:

(g;ฯƒ)โ‹…(h;(d,ฯ‰)):=(f;(ฯƒโˆ’1โ€‹(d),ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1)),(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}:=\big{(}f;(\sigma^{-1}(d),\sigma\omega\sigma^{-1})\big{)},

where fi=gฯ‰โˆ’1โ€‹(ฯƒโ€‹(i))โ€‹hฯƒโ€‹(i)โ€‹gฯƒโ€‹(i)โˆ’1f_{i}=g_{\omega^{-1}(\sigma(i))}h_{\sigma(i)}g^{-1}_{\sigma(i)} if iโˆˆฯƒโˆ’1โ€‹(d)i\in\sigma^{-1}(d) for any (g;ฯƒ)โˆˆGโ‰€๐’ฎn(g;\sigma)\in G\wr\mathcal{S}_{n} and (h;(d,ฯ‰))โˆˆ๐”“nG.\big{(}h;(d,\omega)\big{)}\in\mathfrak{P}^{G}_{n}. The orbits of this action will be called the conjugacy classes of ๐”“nG.\mathfrak{P}^{G}_{n}. Two GG-partial permutations (h;(d1,ฯ‰1))(h;(d_{1},\omega_{1})) and (f;(d2,ฯ‰2))(f;(d_{2},\omega_{2})) of [n][n] are in the same conjugacy class if and only if there exists (g;ฯƒ)โˆˆGโ‰€๐’ฎn(g;\sigma)\in G\wr\mathcal{S}_{n} such that (g;ฯƒ)โ‹…(h;(d1,ฯ‰1))=(f;(d2,ฯ‰2)),(g;\sigma)\cdot(h;(d_{1},\omega_{1}))=(f;(d_{2},\omega_{2})), that is d2=ฯƒโˆ’1โ€‹(d1),d_{2}=\sigma^{-1}(d_{1}), ฯ‰2=ฯƒโ€‹ฯ‰1โ€‹ฯƒโˆ’1\omega_{2}=\sigma\omega_{1}\sigma^{-1} and fi=gฯ‰1โˆ’1โ€‹(ฯƒโ€‹(i))โ€‹hฯƒโ€‹(i)โ€‹gฯƒโ€‹(i)โˆ’1f_{i}=g_{\omega_{1}^{-1}(\sigma(i))}h_{\sigma(i)}g^{-1}_{\sigma(i)} for any iโˆˆd2.i\in d_{2}.

Example 4.1.

Let ฯƒ=(2,3,6)โ€‹(1,4)โ€‹(5,7,9)โ€‹(8)โˆˆ๐’ฎ9,\sigma=(2,3,6)(1,4)(5,7,9)(8)\in\mathcal{S}_{9}, d={2,4,5,6}d=\{2,4,5,6\} and ฯ‰=(2,5)โ€‹(4,6).\omega=(2,5)(4,6). To obtain that

(g;ฯƒ)โ‹…(h;(d,ฯ‰))=((g6h4g4โˆ’1,,g4h6g6โˆ’1,,,g5h2g2โˆ’1,,,g2h5g5โˆ’1);({1,3,6,9},(1,3)(6,9))),(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}=\big{(}(g_{6}h_{4}g_{4}^{-1},,g_{4}h_{6}g_{6}^{-1},,,g_{5}h_{2}g_{2}^{-1},,,g_{2}h_{5}g_{5}^{-1});(\{1,3,6,9\},(1,3)(6,9))\big{)},

we have to draw the diagram of (g;ฯƒ)(g;\sigma) restricted to ฯƒโˆ’1โ€‹(d)\sigma^{-1}(d) then below it the diagram of (h;(d,ฯ‰))\big{(}h;(d,\omega)\big{)} then below it the diagram of (g;ฯƒ)โˆ’1(g;\sigma)^{-1} restricted to dd as shown below

22h5h_{5}44h6h_{6}55h2h_{2}66h4h_{4}g2g_{2}66g4g_{4}11g5g_{5}99g6g_{6}3322g2โˆ’1g_{2}^{-1}44g4โˆ’1g^{-1}_{4}55g5โˆ’1g_{5}^{-1}66g6โˆ’1g_{6}^{-1}

Then it would be easy to verify that typeโก((g;ฯƒ)โ‹…(h;(d,ฯ‰)))=typeโก((h;(d,ฯ‰)))\operatorname{type}\Big{(}(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}\Big{)}=\operatorname{type}\Big{(}\big{(}h;(d,\omega)\big{)}\Big{)} since the cycle product h5โ€‹h2h_{5}h_{2} of the cycle (2,5)(2,5) of ฯ‰\omega is conjugate to the cycle product g2โ€‹h5โ€‹g5โˆ’1โ€‹g5โ€‹h2โ€‹g2โˆ’1g_{2}h_{5}g_{5}^{-1}g_{5}h_{2}g_{2}^{-1} of the cycle (6,9)(6,9) of ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1\sigma\omega\sigma^{-1} and the cycle product h6โ€‹h4h_{6}h_{4} of the cycle (4,6)(4,6) of ฯ‰\omega is conjugate to the cycle product g4โ€‹h6โ€‹g6โˆ’1โ€‹g6โ€‹h4โ€‹g4โˆ’1g_{4}h_{6}g_{6}^{-1}g_{6}h_{4}g_{4}^{-1} of the cycle (1,3)(1,3) of ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1.\sigma\omega\sigma^{-1}.

This shows that the conjugacy classes of ๐”“nG\mathfrak{P}^{G}_{n} can be indexed by the elements of the set ๐’ซโ‰คnGโ‹†\mathcal{P}^{G_{\star}}_{\leq n} of families of partitions indexed by Gโ‹†G_{\star} with size less than or equal to n.n. If ฮ›=(ฮ›โ€‹(c))cโˆˆGโ‹†โˆˆ๐’ซโ‰คnGโ‹†,\Lambda=(\Lambda(c))_{c\in G_{\star}}\in\mathcal{P}^{G_{\star}}_{\leq n}, the conjugacy class of ๐”“nG\mathfrak{P}^{G}_{n} associated to ฮ›\Lambda will be denoted Cฮ›;nC_{\Lambda;n} and is defined by:

Cฮ›;n:={x=(h;(d,ฯ‰))โˆˆ๐”“nGโ€‹ย such thatย โ€‹|d|=|ฮ›|โ€‹ย andย โ€‹typeโก(x)=ฮ›}.C_{\Lambda;n}:=\{x=(h;(d,\omega))\in\mathfrak{P}^{G}_{n}\text{ such that }|d|=|\Lambda|\text{ and }\operatorname{type}(x)=\Lambda\}.
Proposition 4.2.

If ฮ›=(ฮ›โ€‹(c))cโˆˆGโ‹†โˆˆ๐’ซโ‰คnGโ‹†,\Lambda=(\Lambda(c))_{c\in G_{\star}}\in\mathcal{P}^{G_{\star}}_{\leq n}, then:

|Cฮ›;n|=(nโˆ’|ฮ›|+m1โ€‹(ฮปโ€‹({1G}))m1โ€‹(ฮปโ€‹({1G})))โ€‹|Cฮ›ยฏn|.|C_{\Lambda;n}|=\begin{pmatrix}n-|\Lambda|+m_{1}(\lambda(\{1_{G}\}))\\ m_{1}(\lambda(\{1_{G}\}))\end{pmatrix}|C_{\underline{\Lambda}_{n}}|.
Proof.

Consider the following mapping

ฮ˜:Cฮ›;nโ†’Cฮ›ยฏn(g;(d,ฯ‰))โ†ฆ(g~;ฯ‰~).\begin{array}[]{ccccc}\Theta&:&C_{\Lambda;n}&\to&C_{\underline{\Lambda}_{n}}\\ &&(g;(d,\omega))&\mapsto&(\widetilde{g};\widetilde{\omega}).\\ \end{array}

If v,vโ€ฒโˆˆCฮ›ยฏnv,v^{{}^{\prime}}\in C_{\underline{\Lambda}_{n}} with vโ‰ vโ€ฒ,v\neq v^{{}^{\prime}}, we have ฮ˜โˆ’1โ€‹(v)โˆฉฮ˜โˆ’1โ€‹(vโ€ฒ)=โˆ…\Theta^{-1}(v)\cap\Theta^{-1}(v^{{}^{\prime}})=\emptyset which implies that

(2) |Cฮ›;n|=โˆ‘vโˆˆCฮ›ยฏn|ฮ˜โˆ’1โ€‹(v)|.|C_{\Lambda;n}|=\sum_{v\in C_{\underline{\Lambda}_{n}}}|\Theta^{-1}(v)|.

Let (ฯƒ;p)โˆˆCฮ›ยฏn(\sigma;p)\in C_{\underline{\Lambda}_{n}} and consider the set suppโก(ฯƒ;p)\operatorname{supp}(\sigma;p) defined as follows:

suppโก(ฯƒ;p)={iโˆˆ[n]โ€‹ย such thatย โ€‹pโ€‹(i)โ‰ iโ€‹ย orย โ€‹pโ€‹(i)=iโ€‹ย andย โ€‹ฯƒiโ‰ 1G}.\operatorname{supp}(\sigma;p)=\{i\in[n]\text{ such that }p(i)\neq i\text{ or }p(i)=i\text{ and }\sigma_{i}\neq 1_{G}\}.

Since (ฯƒ;p)(\sigma;p) has type ฮ›ยฏn\underline{\Lambda}_{n} then it would be clear that |suppโก(ฯƒ;p)|=|ฮ›|โˆ’m1โ€‹(ฮปโ€‹({1G})).|\operatorname{supp}(\sigma;p)|=|\Lambda|-m_{1}(\lambda(\{1_{G}\})). To make an element (g;(d,ฯ‰))โˆˆฮ˜โˆ’1โ€‹(ฯƒ;p),(g;(d,\omega))\in\Theta^{-1}(\sigma;p), (g;(d,ฯ‰))(g;(d,\omega)) must coincide with (ฯƒ;p)(\sigma;p) on suppโก(ฯƒ;p)\operatorname{supp}(\sigma;p) which necessarily implies that suppโก(ฯƒ;p)โŠ‚d\operatorname{supp}(\sigma;p)\subset d and we choose m1โ€‹(ฮ›โ€‹({1G}))=|d|โˆ’|suppโก(ฯƒ;p)|m_{1}(\Lambda(\{1_{G}\}))=|d|-|\operatorname{supp}(\sigma;p)| fixed points for (d,ฯ‰)(d,\omega) among the nโˆ’|ฮ›|+m1โ€‹(ฮ›โ€‹({1G}))n-|\Lambda|+m_{1}(\Lambda(\{1_{G}\})) fixed points of ฯƒ.\sigma. Thus for any (ฯƒ;p)โˆˆCฮ›ยฏn(\sigma;p)\in C_{\underline{\Lambda}_{n}} we have

|ฮ˜โˆ’1โ€‹(ฯƒ;p)|=(nโˆ’|ฮ›|+m1โ€‹(ฮปโ€‹({1G}))m1โ€‹(ฮปโ€‹({1G}))).|\Theta^{-1}(\sigma;p)|=\begin{pmatrix}n-|\Lambda|+m_{1}(\lambda(\{1_{G}\}))\\ m_{1}(\lambda(\{1_{G}\}))\end{pmatrix}.

Combining this formula with Equation (2) ends the proof. โˆŽ

We extend the action of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} on ๐”“nG\mathfrak{P}^{G}_{n} by linearity to an action on โ„ฌnG:=โ„‚โ€‹[๐”“nG],\mathcal{B}^{G}_{n}:=\mathbb{C}[\mathfrak{P}^{G}_{n}], the algebra of the semigroup ๐”“nG,\mathfrak{P}^{G}_{n}, and we denote

๐’œnG:={bโˆˆโ„ฌnGโ€‹ย such that for anyย (ฯƒ;p)โˆˆGโ‰€๐’ฎn,ย โ€‹(ฯƒ;p)โ‹…b=b}\mathcal{A}^{G}_{n}:=\{b\in\mathcal{B}^{G}_{n}\text{ such that for any $(\sigma;p)\in G\wr\mathcal{S}_{n},$ }(\sigma;p)\cdot b=b\}

the sub-algebra of invariant elements under this action.

Proposition 4.3.

The surjective homomorphism

ฯˆ:๐”“nGโ†’Gโ‰€๐’ฎn(h;(d,ฯ‰))โ†ฆ(h~;ฯ‰~)\begin{array}[]{ccccc}\psi&:&\mathfrak{P}^{G}_{n}&\to&G\wr\mathcal{S}_{n}\\ &&(h;(d,\omega))&\mapsto&(\widetilde{h};\widetilde{\omega})\\ \end{array}

is compatible with the action of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} on ๐”“nG.\mathfrak{P}^{G}_{n}.

Proof.

We need to prove that for any (g;ฯƒ)โˆˆGโ‰€๐’ฎn(g;\sigma)\in G\wr\mathcal{S}_{n} and any (h;(d,ฯ‰))โˆˆ๐”“nG\big{(}h;(d,\omega)\big{)}\in\mathfrak{P}^{G}_{n} we have:

ฯˆโ€‹((g;ฯƒ)โ‹…(h;(d,ฯ‰)))=(g;ฯƒ)โ‹…ฯˆโ€‹((h;(d,ฯ‰)))=(g;ฯƒ)โ€‹(h~;ฯ‰~)โ€‹(g;ฯƒ)โˆ’1.\psi\big{(}(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}\big{)}=(g;\sigma)\cdot\psi\big{(}\big{(}h;(d,\omega)\big{)}\big{)}=(g;\sigma)(\widetilde{h};\widetilde{\omega})(g;\sigma)^{-1}.

We have (g;ฯƒ)โ‹…(h;(d,ฯ‰))=(f;(ฯƒโˆ’1โ€‹(d),ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1))(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}=\big{(}f;(\sigma^{-1}(d),\sigma\omega\sigma^{-1})\big{)} where fi=gฯ‰โˆ’1โ€‹(ฯƒโ€‹(i))โ€‹hฯƒโ€‹(i)โ€‹gฯƒโ€‹(i)โˆ’1f_{i}=g_{\omega^{-1}(\sigma(i))}h_{\sigma(i)}g^{-1}_{\sigma(i)} if iโˆˆฯƒโˆ’1โ€‹(d)i\in\sigma^{-1}(d) which implies that ฯˆโ€‹((g;ฯƒ)โ‹…(h;(d,ฯ‰)))=(f~;ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1~)\psi\big{(}(g;\sigma)\cdot\big{(}h;(d,\omega)\big{)}\big{)}=\big{(}\widetilde{f};\widetilde{\sigma\omega\sigma^{-1}}\big{)} with

ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1~โ€‹(a)={(ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1)โ€‹(a)ifaโˆˆฯƒโˆ’1โ€‹(d)aotherwiseโ€‹ย andย โ€‹f~i={fiifiโˆˆฯƒโˆ’1โ€‹(d)1Gotherwise.\widetilde{\sigma\omega\sigma^{-1}}(a)=\left\{\begin{array}[]{ll}(\sigma\omega\sigma^{-1})(a)&\qquad\mathrm{if}\quad a\in\sigma^{-1}(d)\\ a&\qquad\mathrm{otherwise}\\ \end{array}\right.\text{ and }\widetilde{f}_{i}=\left\{\begin{array}[]{ll}f_{i}&\qquad\mathrm{if}\quad i\in\sigma^{-1}(d)\\ 1_{G}&\qquad\mathrm{otherwise}.\\ \end{array}\right.

On the other hand (g;ฯƒ)โ€‹(h~;ฯ‰~)โ€‹(g;ฯƒ)โˆ’1=(r;ฯƒโ€‹ฯ‰~โ€‹ฯƒโˆ’1)(g;\sigma)(\widetilde{h};\widetilde{\omega})(g;\sigma)^{-1}=(r;\sigma\widetilde{\omega}\sigma^{-1}) with ri=gฯ‰~โˆ’1โ€‹(ฯƒโ€‹(i))โ€‹h~ฯƒโ€‹(i)โ€‹gฯƒโ€‹(i)โˆ’1.r_{i}=g_{\widetilde{\omega}^{-1}(\sigma(i))}\widetilde{h}_{\sigma(i)}g^{-1}_{\sigma(i)}. If iโˆ‰ฯƒโˆ’1โ€‹(d)i\notin\sigma^{-1}(d) then ฯƒโ€‹(i)โˆ‰d\sigma(i)\notin d which implies that ฯ‰~โˆ’1โ€‹(ฯƒโ€‹(i))=ฯƒโ€‹(i)\widetilde{\omega}^{-1}(\sigma(i))=\sigma(i) and h~ฯƒโ€‹(i)=1G\widetilde{h}_{\sigma(i)}=1_{G} which results in ri=1G.r_{i}=1_{G}. If iโˆˆฯƒโˆ’1โ€‹(d)i\in\sigma^{-1}(d) then ri=fi.r_{i}=f_{i}. Thus f~=r\widetilde{f}=r and it is easy to check that ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1~=ฯƒโ€‹ฯ‰~โ€‹ฯƒโˆ’1\widetilde{\sigma\omega\sigma^{-1}}=\sigma\widetilde{\omega}\sigma^{-1} which ends the proof. โˆŽ

The surjective homomorphism ฯˆ\psi can be extended to a surjective homomorphism of algebras ฯˆ:โ„ฌnGโ†’โ„‚โ€‹[Gโ‰€๐’ฎn]\psi:\mathcal{B}^{G}_{n}\rightarrow\mathbb{C}[G\wr\mathcal{S}_{n}] and Proposition 4.3 implies that

ฯˆโ€‹(๐’œnG)=Zโ€‹(โ„‚โ€‹[๐’ฎn]).\psi(\mathcal{A}^{G}_{n})=Z(\mathbb{C}[\mathcal{S}_{n}]).

If ฮ›=(ฮ›โ€‹(c))cโˆˆGโ‹†โˆˆ๐’ซโ‰คnGโ‹†,\Lambda=(\Lambda(c))_{c\in G_{\star}}\in\mathcal{P}^{G_{\star}}_{\leq n}, let us denote by ๐‚ฮ›;n{\bf{C}}_{\Lambda;n} the following formal sum:

๐‚ฮ›;n=โˆ‘(h;(d,ฯ‰))โˆˆCฮ›;n(h;(d,ฯ‰)).{\bf C}_{\Lambda;n}=\sum_{(h;(d,\omega))\in C_{\Lambda;n}}(h;(d,\omega)).

The elements of the family (๐‚ฮ›;n)ฮ›โˆˆ๐’ซโ‰คnGโ‹†({\bf{C}}_{\Lambda;n})_{\Lambda\in\mathcal{P}^{G_{\star}}_{\leq n}} form a basis for the algebra ๐’œnG\mathcal{A}^{G}_{n} and if ฮ›โˆˆ๐’ซโ‰คnGโ‹†,\Lambda\in\mathcal{P}^{G_{\star}}_{\leq n}, then by Proposition 4.2 we have:

(3) ฯˆโ€‹(๐‚ฮ›;n)=(nโˆ’|ฮ›|+m1โ€‹(ฮปโ€‹({1G}))m1โ€‹(ฮปโ€‹({1G})))โ€‹๐‚ฮ›ยฏn.\psi({\bf{C}}_{\Lambda;n})=\begin{pmatrix}n-|\Lambda|+m_{1}(\lambda(\{1_{G}\}))\\ m_{1}(\lambda(\{1_{G}\}))\end{pmatrix}{\bf C}_{\underline{\Lambda}_{n}}.

5. Action of Gโ‰€๐’ฎโˆžG\wr\mathcal{S}_{\infty} on โ„ฌโˆžG\mathcal{B}^{G}_{\infty}

Denote by โ„ฌโˆžG\mathcal{B}^{G}_{\infty} the projective limit of the algebras โ„ฌnG\mathcal{B}^{G}_{n} with respect to the homomorphism ฯ†n:โ„ฌn+1Gโ†’โ„ฌnG\varphi_{n}:\mathcal{B}^{G}_{n+1}\rightarrow\mathcal{B}^{G}_{n} defined by:

ฯ†nโ€‹(h;(d,ฯ‰))={(h;(d,ฯ‰))ifdโŠ‚[n],0otherwise.\varphi_{n}(h;(d,\omega))=\left\{\begin{array}[]{ll}(h;(d,\omega))&\qquad\mathrm{if}\quad d\subset[n],\\ 0&\qquad\mathrm{otherwise.}\\ \end{array}\right.

If dd is a finite subset of โ„•,\mathbb{N}, we define GdโˆžG^{\infty}_{d} to be the set of vectors xx with infinite number of coordinates such that xiโˆˆGx_{i}\in G whenever iโˆˆdi\in d and xix_{i} is left blank otherwise. An element bโˆˆโ„ฌโˆžGb\in\mathcal{B}^{G}_{\infty} can be canonically written:

b=โˆ‘k=0โˆžโˆ‘|d|=kโˆ‘ฯ‰โˆˆ๐’ฎdโˆ‘hโˆˆGdโˆžb(h;(d,ฯ‰))โ€‹(h;(d,ฯ‰)),b=\sum_{k=0}^{\infty}\sum_{|d|=k}\sum_{\omega\in\mathcal{S}_{d}}\sum_{h\in G^{\infty}_{d}}b_{(h;(d,\omega))}(h;(d,\omega)),

where the b(h;(d,ฯ‰))b_{(h;(d,\omega))}โ€™s are complex numbers. Consider the group ๐’ฎโˆž\mathcal{S}_{\infty} of permutations of โ„•\mathbb{N} with finite support. Let the group Gโ‰€๐’ฎโˆžG\wr\mathcal{S}_{\infty} acts on โ„ฌโˆžG\mathcal{B}^{G}_{\infty} by conjugation and denote by ๐’œโˆžG\mathcal{A}^{G}_{\infty} the sub-algebra of invariant elements of โ„ฌโˆžG\mathcal{B}^{G}_{\infty} under this action. An element bโˆˆโ„ฌโˆžGb\in\mathcal{B}^{G}_{\infty} is in ๐’œโˆžG\mathcal{A}^{G}_{\infty} if and only if:

b(h;(d,ฯ‰))=b(f;(ฯƒโˆ’1โ€‹(d),ฯƒโ€‹ฯ‰โ€‹ฯƒโˆ’1))โ€‹ย for anyย โ€‹(g;ฯƒ)โˆˆGโ‰€๐’ฎโˆž,b_{(h;(d,\omega))}=b_{(f;(\sigma^{-1}(d),\sigma\omega\sigma^{-1}))}\text{ for any }(g;\sigma)\in G\wr\mathcal{S}_{\infty},

where fi=gฯ‰1โˆ’1โ€‹(ฯƒโ€‹(i))โ€‹hฯƒโ€‹(i)โ€‹gฯƒโ€‹(i)โˆ’1f_{i}=g_{\omega_{1}^{-1}(\sigma(i))}h_{\sigma(i)}g^{-1}_{\sigma(i)} if iโˆˆฯƒโˆ’1โ€‹(d)i\in\sigma^{-1}(d) and fif_{i} is left blank if iโˆ‰ฯƒโˆ’1โ€‹(d).i\notin\sigma^{-1}(d).

Definition 5.1.

A GG-partial permutation of โ„•\mathbb{N} is a pair (h;(d,ฯ‰))(h;(d,\omega)) where dโŠŠโ„•d\subsetneq\mathbb{N} is a finite subset of โ„•,\mathbb{N}, ฯ‰โˆˆ๐’ฎd\omega\in\mathcal{S}_{d} and hโˆˆGdโˆž.h\in G_{d}^{\infty}.

We denote by ๐”“โˆžG\mathfrak{P}_{\infty}^{G} the set of all GG-partial permutations of โ„•.\mathbb{N}. For a family of partitions ฮ›=(ฮปโ€‹(c))cโˆˆGโ‹†โˆˆ๐’ซGโ‹†\Lambda=(\lambda(c))_{c\in G_{\star}}\in\mathcal{P}^{G_{\star}} indexed by Gโ‹†,G_{\star}, we define Cฮ›;โˆžC_{\Lambda;\infty} as follows:

Cฮ›;โˆž={(h;(d,ฯ‰))โˆˆ๐”“โˆžGโ€‹ย such thatย โ€‹|d|=|ฮ›|โ€‹ย andย โ€‹typeโก(h;(d,ฯ‰))=ฮ›}.C_{\Lambda;\infty}=\{(h;(d,\omega))\in\mathfrak{P}_{\infty}^{G}\text{ such that }|d|=|\Lambda|\text{ and }\operatorname{type}(h;(d,\omega))=\Lambda\}.

Any element in ๐’œโˆžG\mathcal{A}^{G}_{\infty} can be written in a unique way as an infinite linear combination of elements (๐‚ฮ›;โˆž)ฮ›โˆˆ๐’ซG,({\bf C}_{\Lambda;\infty})_{\Lambda\in\mathcal{P}^{G}}, where

๐‚ฮ›;โˆž=โˆ‘(h;(d,ฯ‰))โˆˆCฮ›;โˆž(h;(d,ฯ‰)).{\bf C}_{\Lambda;\infty}=\sum_{(h;(d,\omega))\in C_{\Lambda;\infty}}(h;(d,\omega)).

Let ฮ›\Lambda and ฮ”\Delta be two families of partitions in ๐’ซGโ‹†,\mathcal{P}^{G_{\star}}, the structure coefficients kฮ›โ€‹ฮ”ฮ“k_{\Lambda\Delta}^{\Gamma} of the algebra ๐’œโˆžG\mathcal{A}^{G}_{\infty} are defined by:

(4) ๐‚ฮ›;โˆžโ€‹๐‚ฮ”;โˆž=โˆ‘ฮ“โˆˆ๐’ซGโ‹†kฮ›โ€‹ฮ”ฮ“โ€‹๐‚ฮ“;โˆž.{\bf C}_{\Lambda;\infty}{\bf C}_{\Delta;\infty}=\sum_{\Gamma\in\mathcal{P}^{G_{\star}}}k_{\Lambda\Delta}^{\Gamma}{\bf C}_{\Gamma;\infty}.
Proposition 5.2.

The function Fil\operatorname{Fil} defined by Filโก(๐‚ฮ›;โˆž)=|ฮ›|,\operatorname{Fil}({\bf C}_{\Lambda;\infty})=|\Lambda|, for any ฮ›โˆˆ๐’ซGโ‹†,\Lambda\in\mathcal{P}^{G_{\star}}, is a filtration on ๐’œโˆžG.\mathcal{A}^{G}_{\infty}.

Proof.

We need to prove that Filโก(๐‚ฮ›;โˆžโ€‹๐‚ฮ”;โˆž)โ‰คFilโก(๐‚ฮ›;โˆž)+Filโก(๐‚ฮ”;โˆž)\operatorname{Fil}({\bf C}_{\Lambda;\infty}{\bf C}_{\Delta;\infty})\leq\operatorname{Fil}({\bf C}_{\Lambda;\infty})+\operatorname{Fil}({\bf C}_{\Delta;\infty}) for any two families of partitions ฮ›,ฮ”โˆˆ๐’ซGโ‹†.\Lambda,\Delta\in\mathcal{P}^{G_{\star}}. For this let ฮ“\Gamma be a family of partitions in ๐’ซGโ‹†\mathcal{P}^{G_{\star}} for which kฮ›โ€‹ฮ”ฮ“k_{\Lambda\Delta}^{\Gamma} of Equation (4) is a non-zero coefficient. By its definition, kฮ›โ€‹ฮ”ฮ“k_{\Lambda\Delta}^{\Gamma} counts the number of pairs of GG-partial permutations ((g1;(d1,ฯ‰1)),(g2;(d2,ฯ‰2)))โˆˆCฮ›;โˆžร—Cฮ”;โˆž\big{(}(g_{1};(d_{1},\omega_{1})),(g_{2};(d_{2},\omega_{2}))\big{)}\in C_{\Lambda;\infty}\times C_{\Delta;\infty} such that

(g1;(d1,ฯ‰1)).(g2;(d2,ฯ‰2))=(g;(d,ฯ‰))(g_{1};(d_{1},\omega_{1})).(g_{2};(d_{2},\omega_{2}))=(g;(d,\omega))

where (g;(d,ฯ‰))(g;(d,\omega)) is a fixed GG-partial permutation belonging to Cฮ“;โˆž.C_{\Gamma;\infty}. It would be then sufficient to remark that, when multiplying (g1;(d1,ฯ‰1))(g_{1};(d_{1},\omega_{1})) by (g2;(d2,ฯ‰2)),(g_{2};(d_{2},\omega_{2})), the permutation ฯ‰~1|d1โˆชd2ฯ‰~2|d1โˆชd2\widetilde{\omega}_{1_{|d_{1}\cup d_{2}}}\widetilde{\omega}_{2_{|d_{1}\cup d_{2}}} acts on at most |d1โˆชd2||d_{1}\cup d_{2}| elements. This means that each family of partitions ฮ“\Gamma that appears in the sum of Equation (4) must satisfy

(5) max(|ฮ›|,|ฮ”|)โ‰ค|ฮ“|โ‰ค|ฮ›|+|ฮ”|,\max(|\Lambda|,|\Delta|)\leq|\Gamma|\leq|\Lambda|+|\Delta|,

which ends the proof. โˆŽ

Remark 5.3.

More filtrations on ๐’œGโˆž\mathcal{A}^{G}_{\infty} may exist as suggested by [3]. In this paper, we will only use the above proved one.

We denote by Projn\operatorname{Proj}_{n} the natural projection homomorphism between โ„ฌGโˆž\mathcal{B}^{G}_{\infty} and โ„ฌGn\mathcal{B}^{G}_{n} defined on the generating element of โ„ฌGโˆž\mathcal{B}^{G}_{\infty} by

Projn(h;(d,ฯ‰))={(h;(d,ฯ‰))ifdโŠ‚[n],0otherwise.\operatorname{Proj}_{n}(h;(d,\omega))=\left\{\begin{array}[]{ll}(h;(d,\omega))&\qquad\mathrm{if}\quad d\subset[n],\\ 0&\qquad\mathrm{otherwise.}\\ \end{array}\right.

If ฮ›โˆˆ๐’ซGโ‹†,\Lambda\in\mathcal{P}^{G_{\star}}, then we have:

Projn(๐‚ฮ›;โˆž)={๐‚ฮ›;nif|ฮ›|โ‰คn,0otherwise.\operatorname{Proj}_{n}({\bf C}_{\Lambda;\infty})=\left\{\begin{array}[]{ll}{\bf C}_{\Lambda;n}&\qquad\mathrm{if}\quad|\Lambda|\leq n,\\ 0&\qquad\mathrm{otherwise.}\\ \end{array}\right.

By Equation (4), kฮ›ฮ”ฮ“k_{\Lambda\Delta}^{\Gamma} are also the structure coefficients of the algebra ๐’œGn:\mathcal{A}^{G}_{n}:

๐‚ฮ›;n๐‚ฮ”;n=โˆ‘ฮ“โˆˆ๐’ซGโ‹†โ‰คn,|ฮ“|โ‰ค|ฮ›|+|ฮ”|kฮ›ฮ”ฮ“๐‚ฮ“;n,{\bf C}_{\Lambda;n}{\bf C}_{\Delta;n}=\sum_{\Gamma\in\mathcal{P}^{G_{\star}}_{\leq n},\atop{|\Gamma|\leq|\Lambda|+|\Delta|}}k_{\Lambda\Delta}^{\Gamma}{\bf C}_{\Gamma;n},

where ฮ›\Lambda and ฮ”\Delta are two families of partitions belonging to ๐’ซGโ‹†โ‰คn.\mathcal{P}^{G_{\star}}_{\leq n}. In other words, the structure coefficients kฮ›ฮ”ฮ“k_{\Lambda\Delta}^{\Gamma} of ๐’œGโˆž\mathcal{A}^{G}_{\infty} do not depend on nn and they are the structure coefficients of ๐’œGn\mathcal{A}^{G}_{n} for any n.n.

6. Polynomiality of the structure coefficients of Z(โ„‚[Gโ‰€๐’ฎn])Z(\mathbb{C}[G\wr\mathcal{S}_{n}])

In this section we will prove our main result in Theorem 6.2. For this we will need the following lemma.

Lemma 6.1.

If ฮ“โˆˆ๐’ซGโ‹†โ‰คn\Gamma\in\mathcal{P}^{G_{\star}}_{\leq n} then we have ๐‚ฮ“ยฏn=๐‚ฮ“jยฏn{\bf C}_{\underline{\Gamma}_{n}}={\bf C}_{\underline{\Gamma^{j}}_{n}} for any 0โ‰คjโ‰คnโˆ’|ฮ“|,0\leq j\leq n-|\Gamma|, where ฮ“j=(ฮณj(c))cโˆˆGโ‹†\Gamma^{j}=(\gamma^{j}(c))_{c\in G_{\star}} is the family of partitions of size |ฮ“|+j|\Gamma|+j indexed by Gโ‹†G_{\star} and defined by ฮณj({1G})=ฮณ({1G})โˆช(1j)\gamma^{j}(\{1_{G}\})=\gamma(\{1_{G}\})\cup(1^{j}) and ฮณj(c)=ฮณ(c)\gamma^{j}(c)=\gamma(c) if cโ‰ {1G}.c\neq\{1_{G}\}.

Theorem 6.2.

Let ฮ›,ฮ”\Lambda,\Delta and ฮ“\Gamma be three proper families of partitions indexed by Gโ‹†G_{\star} and let nn be a natural number with nโ‰ฅ|ฮ›|,|ฮ”|,|ฮ“|.n\geq|\Lambda|,|\Delta|,|\Gamma|. The structure coefficient cฮ›ฮ”ฮ“(n)c_{\Lambda\Delta}^{\Gamma}(n) is a polynomial in nn with degree maxkฮ›ฮ”ฮ“jโ‰ 00โ‰คjโ‰คnโˆ’|ฮ“|j\displaystyle\max_{\overset{0\leq j\leq n-|\Gamma|}{k_{\Lambda\Delta}^{\Gamma^{j}}\neq 0}}j that can be written:

cฮ›ฮ”ฮ“(n)=โˆ‘j=0nโˆ’|ฮ“|kฮ›ฮ”ฮ“j(nโˆ’|ฮ“|j),c_{\Lambda\Delta}^{\Gamma}(n)=\sum_{j=0}^{n-|\Gamma|}k_{\Lambda\Delta}^{\Gamma^{j}}\begin{pmatrix}n-|\Gamma|\\ j\end{pmatrix},

where the coefficients kฮ›ฮ”ฮ“jk_{\Lambda\Delta}^{\Gamma^{j}} are independant integers of n.n.

Proof.

If ฮ›\Lambda and ฮ”\Delta are two proper partitions then by Equation (3) we have ฯˆ(๐‚ฮ›;n)=๐‚ฮ›ยฏn\psi\big{(}{\bf C}_{\Lambda;n}\big{)}={\bf C}_{\underline{\Lambda}_{n}} and ฯˆ(๐‚ฮ”;n)=๐‚ฮ”ยฏn.\psi\big{(}{\bf C}_{\Delta;n}\big{)}={\bf C}_{\underline{\Delta}_{n}}. Recall the following equation in ๐’œGn:\mathcal{A}^{G}_{n}:

๐‚ฮ›;n๐‚ฮ”;n=โˆ‘ฮ“โˆˆ๐’ซGโ‹†โ‰คn,|ฮ“|โ‰ค|ฮ›|+|ฮ”|kฮ›ฮ”ฮ“๐‚ฮ“;n,{\bf C}_{\Lambda;n}{\bf C}_{\Delta;n}=\sum_{\Gamma\in\mathcal{P}^{G_{\star}}_{\leq n},\atop{|\Gamma|\leq|\Lambda|+|\Delta|}}k_{\Lambda\Delta}^{\Gamma}{\bf C}_{\Gamma;n},

Apply ฯˆ\psi to get:

๐‚ฮ›ยฏn๐‚ฮ”ยฏn=โˆ‘ฮ“โˆˆ๐’ซGโ‹†โ‰คn,|ฮ“|โ‰ค|ฮ›|+|ฮ”|kฮ›ฮ”ฮ“(nโˆ’|ฮ“|+m1(ฮณ({1G}))m1(ฮณ({1G})))๐‚ฮ“ยฏn.{\bf C}_{\underline{\Lambda}_{n}}{\bf C}_{\underline{\Delta}_{n}}=\sum_{\Gamma\in\mathcal{P}^{G_{\star}}_{\leq n},\atop{|\Gamma|\leq|\Lambda|+|\Delta|}}k_{\Lambda\Delta}^{\Gamma}\begin{pmatrix}n-|\Gamma|+m_{1}(\gamma(\{1_{G}\}))\\ m_{1}(\gamma(\{1_{G}\}))\end{pmatrix}{\bf C}_{\underline{\Gamma}_{n}}.

Thus, by Lemma 6.1, the right hand side summation of the above equation can be written:

โˆ‘ฮ“โˆˆ๐’ซ๐’ซGโ‹†โ‰คn,|ฮ“|โ‰ค|ฮ›|+|ฮ”|[โˆ‘j=0nโˆ’|ฮ“|kฮ›ฮ”ฮ“j(nโˆ’|ฮ“j|+m1(ฮณj({1G}))m1(ฮณj({1G})))]๐‚ฮ“ยฏn.\sum_{\Gamma\in\mathcal{PP}^{G_{\star}}_{\leq n},\atop{|\Gamma|\leq|\Lambda|+|\Delta|}}\left[\sum_{j=0}^{n-|\Gamma|}k_{\Lambda\Delta}^{\Gamma^{j}}\begin{pmatrix}n-|\Gamma^{j}|+m_{1}(\gamma^{j}(\{1_{G}\}))\\ m_{1}(\gamma^{j}(\{1_{G}\}))\end{pmatrix}\right]{\bf C}_{\underline{\Gamma}_{n}}.

After simplification, we obtain:

โˆ‘ฮ“โˆˆ๐’ซ๐’ซGโ‹†โ‰คn,|ฮ“|โ‰ค|ฮ›|+|ฮ”|[โˆ‘j=0nโˆ’|ฮ“|kฮ›ฮ”ฮ“j(nโˆ’|ฮ“|j)]๐‚ฮ“ยฏn,\sum_{\Gamma\in\mathcal{PP}^{G_{\star}}_{\leq n},\atop{|\Gamma|\leq|\Lambda|+|\Delta|}}\left[\sum_{j=0}^{n-|\Gamma|}k_{\Lambda\Delta}^{\Gamma^{j}}\begin{pmatrix}n-|\Gamma|\\ j\end{pmatrix}\right]{\bf C}_{\underline{\Gamma}_{n}},

which ends the proof. โˆŽ

Example 6.3.

Let p>2p>2 be a prime number and consider G=โ„คp.G=\mathbb{Z}_{p}. Recall that the type of x=(g;p)โˆˆโ„คpโ‰€๐’ฎnx=(g;p)\in\mathbb{Z}_{p}\wr\mathcal{S}_{n} is a pp-vector of partitions ฮ›=(ฮป0,ฮป1,โ€ฆ,ฮปpโˆ’1)\Lambda=(\lambda_{0},\lambda_{1},\ldots,\lambda_{p-1}) where each partition ฮปi\lambda_{i} is formed out of cycles cc of pp whose cycle product equals i.i. If 0โ‰คiโ‰คpโˆ’10\leq i\leq p-1 and ฯ\rho is a partition then we denote by ฯi\rho^{i} the pp-vector of partitions (ฮป0,ฮป1,โ€ฆ,ฮปpโˆ’1)(\lambda_{0},\lambda_{1},\ldots,\lambda_{p-1}) where ฮปi=ฯ\lambda_{i}=\rho and ฮปs=โˆ…\lambda_{s}=\emptyset if sโ‰ i.s\neq i. If ฯ\rho is a proper partition then it would be clear that ฯi\rho^{i} is a proper family of partitions. We have:

๐‚(1)i;โˆž=โˆ‘jโˆˆโ„•โ‹†(i^j;({j},Id{j})),{\bf C}_{(1)^{i};\infty}=\sum_{j\in\mathbb{N}^{\star}}\big{(}~{}\widehat{i}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)},

where i^jโˆˆGโˆž{j}\widehat{i}^{j}\in G^{\infty}_{\{j\}} is the vector xx with infinite number of coordinates such that xj=ix_{j}=i and xvx_{v} is left blank if vโ‰ j.v\neq j. It would be clear that (1)i(1)^{i} is proper if and only if 0<iโ‰คpโˆ’1.0<i\leq p-1. Suppose that j<rj<r then we have

(i^j;({j},Id{j}))(t^r;({r},Id{r}))=(i^j+t^r;({j,r},Id{j,r})).\big{(}~{}\widehat{i}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)}\big{(}~{}\widehat{t}^{r};(\{r\},\operatorname{Id}_{\{r\}})~{}\big{)}=\big{(}~{}\widehat{i}^{j}+\widehat{t}^{r};(\{j,r\},\operatorname{Id}_{\{j,r\}})~{}\big{)}.

This can be deduced by drawing the multiplication diagram as below:

jjiirrttrr0jj0

In addition, we have:

(i^j;({j},Id{j}))(t^j;({j},Id{j}))=(i+t^j;({j},Id{j})),\big{(}~{}\widehat{i}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)}\big{(}~{}\widehat{t}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)}=\big{(}~{}\widehat{i+t}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)},

where the sum i+ti+t is taken modulo p.p. Thus, if 0<iโ‰คpโˆ’1,0<i\leq p-1, then

(6) ๐‚(1)i;โˆž๐‚(1)t;โˆž={๐‚(1)2i;โˆž+2๐‚(12)i;โˆžift=i,๐‚(1)i+t;โˆž+2๐‚(1)iโˆช(1)t;โˆžotherwise,{\bf C}_{(1)^{i};\infty}{\bf C}_{(1)^{t};\infty}=\left\{\begin{array}[]{ll}{\bf C}_{(1)^{2i};\infty}+2{\bf C}_{(1^{2})^{i};\infty}&\qquad\mathrm{if}\quad t=i,\\ {\bf C}_{(1)^{i+t};\infty}+2{\bf C}_{(1)^{i}\cup(1)^{t};\infty}&\qquad\mathrm{otherwise,}\\ \end{array}\right.

where (1)iโˆช(1)t(1)^{i}\cup(1)^{t} is the pp-vector of partitions (ฮป0,ฮป1,โ€ฆ,ฮปpโˆ’1)(\lambda_{0},\lambda_{1},\ldots,\lambda_{p-1}) with ฮปi=(1),\lambda_{i}=(1), ฮปt=(1)\lambda_{t}=(1) and ฮปs=โˆ…\lambda_{s}=\emptyset if sโˆ‰{i,t}.s\notin\{i,t\}. The coefficient 22 of ๐‚(1)iโˆช(1)t;โˆž{\bf C}_{(1)^{i}\cup(1)^{t};\infty} in the right hand side of Equation (6) is due to the fact that both products (i^j;({j},Id{j}))(t^r;({r},Id{r}))\big{(}~{}\widehat{i}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)}\big{(}~{}\widehat{t}^{r};(\{r\},\operatorname{Id}_{\{r\}})~{}\big{)} and (t^r;({r},Id{r}))(i^j;({j},Id{j}))\big{(}~{}\widehat{t}^{r};(\{r\},\operatorname{Id}_{\{r\}})~{}\big{)}\big{(}~{}\widehat{i}^{j};(\{j\},\operatorname{Id}_{\{j\}})~{}\big{)} yields the same โ„คp\mathbb{Z}_{p}-partial permutation (i^j+t^r;({j,r},Id{j,r})).\big{(}~{}\widehat{i}^{j}+\widehat{t}^{r};(\{j,r\},\operatorname{Id}_{\{j,r\}})~{}\big{)}. If nโ‰ฅ2,n\geq 2, by applying ฮธn\theta_{n} then ฯˆ\psi on Equation (6) we obtain:

๐‚(1)iยฏn๐‚(1)iยฏn=๐‚(1)2iยฏn+2๐‚(12)iยฏnifย iโ‰ 0,{\bf C}_{\underline{(1)^{i}}_{n}}{\bf C}_{\underline{(1)^{i}}_{n}}={\bf C}_{\underline{(1)^{2i}}_{n}}+2{\bf C}_{\underline{(1^{2})^{i}}_{n}}\text{if $i\neq 0$},
๐‚(1)iยฏn๐‚(1)tยฏn=๐‚(1)i+tยฏn+2๐‚(1)iโˆช(1)tยฏnifย i,tโ‰ 0,ย iโ‰ tย andย i+tโ‰ 0ย (modย p),{\bf C}_{\underline{(1)^{i}}_{n}}{\bf C}_{\underline{(1)^{t}}_{n}}={\bf C}_{\underline{(1)^{i+t}}_{n}}+2{\bf C}_{\underline{(1)^{i}\cup(1)^{t}}_{n}}\text{if $i,t\neq 0,$ $i\neq t$ and $i+t\neq 0$ (mod $p$)},

and

๐‚(1)iยฏn๐‚(1)tยฏn=(n1)๐‚(1)i+tยฏn+2๐‚(1)iโˆช(1)tยฏnย ifย i,tโ‰ 0,ย iโ‰ tย andย i+t=0ย (modย p).{\bf C}_{\underline{(1)^{i}}_{n}}{\bf C}_{\underline{(1)^{t}}_{n}}={n\choose 1}{\bf C}_{\underline{(1)^{i+t}}_{n}}+2{\bf C}_{\underline{(1)^{i}\cup(1)^{t}}_{n}}\text{ if $i,t\neq 0,$ $i\neq t$ and $i+t=0$ (mod $p$)}.

7. Irreducible characters of Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} and symmetric functions

In this section we will recall all the necessary definitions and results from the theory of summetric functions in order to prove that the algebra ๐’œโˆžG\mathcal{A}_{\infty}^{G} is isomorphic to an algebra of shifted symmetric functions on |Gโ‹†||G^{\star}| alphabets.

7.1. The case G={1G}G=\{1_{G}\}

When G={1G},G=\{1_{G}\}, the wreath product Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} is isomorphic to the symmetric group ๐’ฎn.\mathcal{S}_{n}. The irreducible ๐’ฎn\mathcal{S}_{n}-modules are indexed by partitions of n.n. If ฮปโˆˆ๐’ซn,\lambda\in\mathcal{P}_{n}, we will denote by VฮปV^{\lambda} its associated irreducible ๐’ฎn\mathcal{S}_{n}-module and by ฯ‡ฮป\chi^{\lambda} its character. It is well known that both the power sum functions (pฮป)ฮป(p_{\lambda})_{\lambda} and the Schur functions (sฮป)ฮป,(s_{\lambda})_{\lambda}, indexed by partitions, are basis families for the algebra A\mathrm{A} of symmetric functions. The transition matrix between these two bases is given by the following formula of Frobenius:

(7) pฮด=โˆ‘ฯ|ฯ|=|ฮด|ฯ‡ฯฮดsฯ,p_{\delta}=\sum_{\rho\atop{|\rho|=|\delta|}}\chi^{\rho}_{\delta}s_{\rho},

where ฯ‡ฯฮด\chi^{\rho}_{\delta} denotes the value of the character ฯ‡ฯ\chi^{\rho} on any permutation of cycle-type ฮด.\delta.

A shifted symmetric function ff in infinitely many variables (x1,x2,โ€ฆ)(x_{1},x_{2},\ldots) is a family (fi)i>1(f_{i})_{i>1} that satisfies the following two properties:

  1. 1.

    fif_{i} is a symmetric polynomial in (x1โˆ’1,x2โˆ’2,โ€ฆ,xiโˆ’i).(x_{1}-1,x_{2}-2,\ldots,x_{i}-i).

  2. 2.

    fi+1(x1,x2,โ€ฆ,xi,0)=fi(x1,x2,โ€ฆ,xi).f_{i+1}(x_{1},x_{2},\ldots,x_{i},0)=f_{i}(x_{1},x_{2},\ldots,x_{i}).

The set of all shifted symmetric functions is an algebra which we shall denote A#.\mathrm{A}^{\#}. In [7], Okounkov and Olshanski gave a linear isomorphism ฯ†:Aโ†’A#.\varphi:\mathrm{A}\rightarrow\mathrm{A}^{\#}. For any partition ฮป,\lambda, the images of the power sum function pฮปp_{\lambda} and the Schur function sฮปs_{\lambda} by ฯ†\varphi are the shifted power symmetric function p#ฮปp^{\#}_{\lambda} and the shifted Schur function s#ฮป.s^{\#}_{\lambda}. By applying ฯ†\varphi to the Frobenius relation given in Equation (7), we get:

(8) p#ฮด=โˆ‘ฯ|ฯ|=|ฮด|ฯ‡ฯฮดs#ฯ.p^{\#}_{\delta}=\sum_{\rho\atop{|\rho|=|\delta|}}\chi^{\rho}_{\delta}s^{\#}_{\rho}.

If fโˆˆA#f\in\mathrm{A}^{\#} and if ฮป=(ฮป1,ฮป2,โ‹ฏ,ฮปl)\lambda=(\lambda_{1},\lambda_{2},\cdots,\lambda_{l}) is a partition, we denote by f(ฮป)f(\lambda) the value fl(ฮป1,ฮป2,โ‹ฏ,ฮปl).f_{l}(\lambda_{1},\lambda_{2},\cdots,\lambda_{l}). By [7], any shifted symmetric function is determined by its values on partitions. The vanishing characterization of the shifted symmetric functions given in [7] states that sฯ#s_{\rho}^{\#} is the unique shifted symmetric function of degree at most |ฯ||\rho| such that

(9) s#ฯ(ฮป)={(|ฮป|โ‡‚|ฯ|)dimฮปfฮป/ฯย ifย ฯโІฮป0ย otherwiseย s^{\#}_{\rho}(\lambda)=\left\{\begin{array}[]{ll}\frac{(|\lambda|\downharpoonright|\rho|)}{\dim\lambda}f^{\lambda/\rho}&\text{ if }\rho\subseteq\lambda\\ 0&\text{ otherwise }\\ \end{array}\right.

where (|ฮป|โ‡‚|ฯ|):=|ฮป|(|ฮป|โˆ’1)โ‹ฏ(|ฮป|โˆ’|ฯ|+1)(|\lambda|\downharpoonright|\rho|):=|\lambda|(|\lambda|-1)\cdots(|\lambda|-|\rho|+1) is the falling factorial and fฮป/ฯf^{\lambda/\rho} is the number of skew standard tableaux of shape ฮป/ฯ.\lambda/\rho. Using the following branching rule for characters of the symmetric groups

(10) ฯ‡ฮปฯโˆช(1|ฮป|โˆ’|ฯ|)=โˆ‘ฮฝ;|ฮฝ|=|ฯ|fฮป/ฮฝฯ‡ฮฝฯ,\chi^{\lambda}_{\rho\cup(1^{|\lambda|-|\rho|})}=\sum_{\nu;|\nu|=|\rho|}f^{\lambda/\nu}\chi^{\nu}_{\rho},

one can verify using formulas (8) and (9) that

p#ฮด(ฮป)={(|ฮป|โ‡‚|ฮด|)dimฮปฯ‡ฮปฮดยฏ|ฮป|ย ifย |ฮป|โ‰ฅ|ฮด|0ย otherwiseย .p^{\#}_{\delta}(\lambda)=\left\{\begin{array}[]{ll}\frac{(|\lambda|\downharpoonright|\delta|)}{\dim\lambda}\chi^{\lambda}_{\underline{\delta}_{|\lambda|}}&\text{ if }|\lambda|\geq|\delta|\\ 0&\text{ otherwise }.\\ \end{array}\right.

Using this formula, Ivanov and Kerov showed in [3, Theorem 9.1] that the mapping F:๐’œโˆž{1G}โ†’A#F:\mathcal{A}_{\infty}^{\{1_{G}\}}\rightarrow\mathrm{A}^{\#} defined on the basis elements of ๐’œโˆž{1G}\mathcal{A}_{\infty}^{\{1_{G}\}} by

F(๐‚ฮด)=zฮดโˆ’1p#ฮดF(\mathbf{C}_{\delta})=z_{\delta}^{-1}p^{\#}_{\delta}

is an isomorphism of algebras.

7.2. The general case

We refer to [5, Appendix B] for the results of the representation theory of wreath products presented in this section. Let (Pr(c))rโ‰ฅ1,cโˆˆGโ‹†(P_{r}(c))_{r\geq 1,c\in G_{\star}} be a family of independent indeterminates over โ„‚.\mathbb{C}. For each cโˆˆGโ‹†,c\in G_{\star}, we may think of Pr(c)P_{r}(c) as the rthr^{th} power sum in a sequence of variables xc=(xic)iโ‰ฅ1.x_{c}=(x_{ic})_{i\geq 1}. Let us denote by AG\mathrm{A}^{G} the algebra over โ„‚\mathbb{C} with algebraic basis the elements Pr(c)P_{r}(c)

AG:=โ„‚[Pr(c);rโ‰ฅ1,cโˆˆGโ‹†].\mathrm{A}^{G}:=\mathbb{C}[P_{r}(c);r\geq 1,c\in G_{\star}].

If ฯ=(ฯ1,ฯ2,โ‹ฏ,ฯl)\rho=(\rho_{1},\rho_{2},\cdots,\rho_{l}) is an arbitrary partition and cโˆˆGโ‹†,c\in G_{\star}, we define Pฯ(c)P_{\rho}(c) to be the product of Pฯi(c),P_{\rho_{i}}(c),

Pฯ(c):=Pฯ1(c)Pฯ2(c)โ‹ฏPฯl(c).P_{\rho}(c):=P_{\rho_{1}}(c)P_{\rho_{2}}(c)\cdots P_{\rho_{l}}(c).

The family (Pฮ›)ฮ›โˆˆ๐’ซGโ‹†,(P_{\Lambda})_{\Lambda\in\mathcal{P}^{G_{\star}}}, where

Pฮ›:=โˆcโˆˆGโ‹†Pฮ›(c)(c),P_{\Lambda}:=\prod_{c\in G_{\star}}P_{\Lambda(c)}(c),

forms a linear basis for AG.\mathrm{A}^{G}. That is any element fโˆˆAGf\in\mathrm{A}^{G} can be written f=โˆ‘ฮ›โˆˆ๐’ซGโ‹†fฮ›Pฮ›f=\sum\limits_{\Lambda\in\mathcal{P}^{G_{\star}}}f_{\Lambda}P_{\Lambda} where all but a finite number of the coefficients fฮ›โˆˆโ„‚f_{\Lambda}\in\mathbb{C} are zero. If we assign degree rr to Pr(c),P_{r}(c), then

AG=โจnโ‰ฅ0AnG\mathrm{A}^{G}=\bigoplus_{n\geq 0}\mathrm{A}_{n}^{G}

is a graded โ„‚\mathbb{C}-algebra where AnG\mathrm{A}_{n}^{G} is the algebra spanned by all Pฮ›P_{\Lambda} where ฮ›โˆˆ๐’ซGโ‹†n.\Lambda\in\mathcal{P}^{G_{\star}}_{n}. The algebra AG\mathrm{A}^{G} can be equipped with a hermitian scalar product defined by

<f,g>=โˆ‘ฮ›fฮ›gยฏฮ›Zฮ›<f,g>=\sum_{\Lambda}f_{\Lambda}\bar{g}_{\Lambda}Z_{\Lambda}

for any two elements f=โˆ‘ฮ›โˆˆ๐’ซGโ‹†fฮ›Pฮ›f=\sum\limits_{\Lambda\in\mathcal{P}^{G_{\star}}}f_{\Lambda}P_{\Lambda} and g=โˆ‘ฮ›โˆˆ๐’ซGโ‹†gฮ›Pฮ›g=\sum\limits_{\Lambda\in\mathcal{P}^{G_{\star}}}g_{\Lambda}P_{\Lambda} of ๐’œG.\mathcal{A}^{G}. In particular, we have:

<Pฮ›,Pฮ“>=ฮดฮ›,ฮ“Zฮ›,<P_{\Lambda},P_{\Gamma}>=\delta_{\Lambda,\Gamma}Z_{\Lambda},

where ฮดฮ›,ฮ“\delta_{\Lambda,\Gamma} is the Kronecker symbol.

For each irreducible character ฮณโˆˆGโ‹†\gamma\in G^{\star} and each rโ‰ฅ1,r\geq 1, let

Pr(ฮณ):=โˆ‘cโˆˆGโ‹†ฮพcโˆ’1ฮณ(c)Pr(c),P_{r}(\gamma):=\sum_{c\in G_{\star}}\xi_{c}^{-1}\gamma(c)P_{r}(c),

where ฮณ(c)\gamma(c) is the value of the character ฮณ\gamma on an element of the conjugacy class c.c. By the orthogonality of the characters of G,G,

<ฮณ,ฯ>:=1|G|โˆ‘gโˆˆGฮณ(g)ฯ(g)=โˆ‘cโˆˆGโ‹†ฮพcโˆ’1ฮณ(c)ฯ(c)=ฮดฮณ,ฮด,<\gamma,\rho>:=\frac{1}{|G|}\sum_{g\in G}\gamma(g)\rho(g)=\sum_{c\in G_{\star}}\xi_{c}^{-1}\gamma(c)\rho(c)=\delta_{\gamma,\delta},

we can write

Pr(c)=โˆ‘ฮณโˆˆGโ‹†ฮณ(c)ยฏPr(ฮณ).P_{r}(c)=\sum_{\gamma\in G^{\star}}\overline{\gamma(c)}P_{r}(\gamma).

We may think of Pr(ฮณ)P_{r}(\gamma) as the rthr^{th} power sum in a new sequence of variables yฮณ=(yiฮณ)iโ‰ฅ1y_{\gamma}=(y_{i\gamma})_{i\geq 1} and denote by sฯ(ฮณ)s_{\rho}(\gamma) the schur function sฯs_{\rho} associated to the partition ฯ\rho on the sequence of variables (yiฮณ)iโ‰ฅ1.(y_{i\gamma})_{i\geq 1}. Now, for any family of partitions ฮ›โˆˆ๐’ซGโ‹†,\Lambda\in\mathcal{P}^{G^{\star}}, define

Sฮ›:=โˆฮณโˆˆGโ‹†sฮ›(ฮณ)(ฮณ).S_{\Lambda}:=\prod_{\gamma\in G^{\star}}s_{\Lambda(\gamma)}(\gamma).

The family (Sฮ›)ฮ›โˆˆ๐’ซGโ‹†(S_{\Lambda})_{\Lambda\in\mathcal{P}^{G^{\star}}} is an orthonormal basis of AG,\mathrm{A}^{G}, see [5, (7.4)].

Let VฮณV^{\gamma} be the irreducible GG-module associated to ฮณโˆˆGโ‹†.\gamma\in G^{\star}. The group Gโ‰€๐’ฎnG\wr\mathcal{S}_{n} acts on the nthn^{th} tensor power Tn(Vฮณ)=VฮณโŠ—Vฮณโ‹ฏโŠ—VฮณT^{n}(V^{\gamma})=V^{\gamma}\otimes V^{\gamma}\cdots\otimes V^{\gamma} as follows:

(g;p)โ‹…(v1โŠ—v2โŠ—โ‹ฏโŠ—vn):=g1vpโˆ’1(1)โŠ—โ‹ฏโŠ—gnvpโˆ’1(n),(g;p)\cdot(v_{1}\otimes v_{2}\otimes\cdots\otimes v_{n}):=g_{1}v_{p^{-1}(1)}\otimes\cdots\otimes g_{n}v_{p^{-1}(n)},

where (g;p)โˆˆGโ‰€๐’ฎn(g;p)\in G\wr\mathcal{S}_{n} and v1,v2,โ‹ฏ,vnโˆˆVฮณ.v_{1},v_{2},\cdots,v_{n}\in V^{\gamma}. Let us denote by ฮทn(ฮณ)\eta_{n}(\gamma) the character of this representation of Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. From [5, (8.2)], if xโˆˆGโ‰€๐’ฎnx\in G\wr\mathcal{S}_{n} has type ฮ›โˆˆ๐’ซGโ‹†n,\Lambda\in\mathcal{P}^{G_{\star}}_{n}, then:

ฮทn(ฮณ)(x)=โˆcโˆˆGโ‹†ฮณ(c)l(ฮ›(c)).\eta_{n}(\gamma)(x)=\prod_{c\in G_{\star}}{\gamma(c)}^{l(\Lambda(c))}.

For any partition ฮผ\mu of mm and each ฮณโˆˆGโ‹†,\gamma\in G^{\star}, we define

Xฮผ(ฮณ):=det(ฮทฮผiโˆ’i+j(ฮณ)).X^{\mu}(\gamma):=\det(\eta_{\mu_{i}-i+j}({\gamma})).

We can extend this definition to families of partitions ฮ›โˆˆ๐’ซGโ‹†n.\Lambda\in\mathcal{P}^{G^{\star}}_{n}. If ฮ›โˆˆ๐’ซGโ‹†n,\Lambda\in\mathcal{P}^{G^{\star}}_{n}, let

Xฮ›:=โˆฮณโˆˆGโ‹†Xฮ›(ฮณ)(ฮณ).X^{\Lambda}:=\prod_{\gamma\in G^{\star}}X^{\Lambda(\gamma)}(\gamma).

The family (Xฮ›)ฮ›โˆˆ๐’ซGโ‹†n(X^{\Lambda})_{\Lambda\in\mathcal{P}^{G^{\star}}_{n}} is a full list of irreducible characters of Gโ‰€๐’ฎn.G\wr\mathcal{S}_{n}. For any two families of partitions ฮ›โˆˆ๐’ซGโ‹†n\Lambda\in\mathcal{P}^{G^{\star}}_{n} and ฮ”โˆˆ๐’ซGโ‹†n,\Delta\in\mathcal{P}^{G_{\star}}_{n}, let us denote by Xฮ›ฮ”X^{\Lambda}_{\Delta} the value of the character Xฮ›X^{\Lambda} on any of the elements of the conjugacy class Cฮ”.C_{\Delta}. By [5, page 177], we have the following three important identities

Xฮ›ฮ”=<Sฮ›,Pฮ”>,X^{\Lambda}_{\Delta}=<S_{\Lambda},P_{\Delta}>,
Sฮ›=โˆ‘ฮ“โˆˆ๐’ซGโ‹†nZฮ“โˆ’1Xฮ›ฮ“Pฮ“S_{\Lambda}=\sum_{\Gamma\in\mathcal{P}^{G_{\star}}_{n}}Z_{\Gamma}^{-1}X^{\Lambda}_{\Gamma}P_{\Gamma}

and

Pฮ”=โˆ‘ฮฃโˆˆ๐’ซGโ‹†nXฮฃฮ›ยฏSฮฃ.P_{\Delta}=\sum_{\Sigma\in\mathcal{P}^{G^{\star}}_{n}}\overline{X^{\Sigma}_{\Lambda}}S_{\Sigma}.

Let us consider the algebra AG#\mathrm{A}^{G\#} isomorphic to AG\mathrm{A}^{G} defined using the shifted symmetric functions. It has a basis formed by the shifted functions P#ฮ”P^{\#}_{\Delta} defined by

P#ฮ”:=โˆcโˆˆGโ‹†P#ฮ”(c)(c),P^{\#}_{\Delta}:=\prod_{c\in G_{\star}}P^{\#}_{\Delta(c)}(c),

for any ฮ”โˆˆ๐’ซGโ‹†.\Delta\in\mathcal{P}^{G_{\star}}. For any family of partitions ฮ›โˆˆ๐’ซGโ‹†,\Lambda\in\mathcal{P}^{G_{\star}}, we set

P#ฮ”(ฮ›):=โˆcโˆˆGโ‹†P#ฮ”(c)(c)(ฮ›(c)).P^{\#}_{\Delta}(\Lambda):=\prod_{c\in G_{\star}}P^{\#}_{\Delta(c)}(c)(\Lambda(c)).
Theorem 7.1.

The linear map FG:๐’œโˆžGโŸถAG#F^{G}:\mathcal{A}_{\infty}^{G}\longrightarrow\mathrm{A}^{G\#} defined by

FG(๐‚ฮ”;โˆž)=|G||ฮ”|Zฮ”P#ฮ”F^{G}(\mathbf{C}_{\Delta;\infty})=\frac{|G|^{|\Delta|}}{Z_{\Delta}}P^{\#}_{\Delta}

is an isomorphism of algebras.

Proof.

Let ฮ›โˆˆ๐’ซGโ‹†n\Lambda\in\mathcal{P}^{G^{\star}}_{n} and consider the composition Fฮ›G:=Xฮ›dimฮ›โˆ˜ฯˆโˆ˜Proj|ฮ›|F_{\Lambda}^{G}:=\frac{X^{\Lambda}}{\dim\Lambda}\circ\psi\circ\operatorname{Proj}_{|\Lambda|} of morphisms. Let us see how Fฮ›GF_{\Lambda}^{G} acts on the basis elements of ๐’œโˆžG.\mathcal{A}_{\infty}^{G}. If ฮ”โˆˆ๐’ซGโ‹†\Delta\in\mathcal{P}^{G_{\star}} with |ฮ”|>|ฮ›|,|\Delta|>|\Lambda|, it would be clear then that Fฮ›G(๐‚ฮ”;โˆž)=0.F_{\Lambda}^{G}({\bf C}_{\Delta;\infty})=0. Suppose now that |ฮ›|โ‰ฅ|ฮ”|,|\Lambda|\geq|\Delta|, we have the following equalities:

(Xฮ›dimฮ›โˆ˜ฯˆโˆ˜Proj|ฮ›|)(๐‚ฮ”;โˆž)\displaystyle\left(\frac{X^{\Lambda}}{\dim\Lambda}\circ\psi\circ\operatorname{Proj}_{|\Lambda|}\right)(\mathbf{C}_{\Delta;\infty}) =\displaystyle= Xฮ›dimฮ›((|ฮ›|โˆ’|ฮ”|+m1(ฮ”({1G}))m1(ฮ”({1G})))๐‚ฮ”ยฏ|ฮ›|)\displaystyle\frac{X^{\Lambda}}{\dim\Lambda}\left({|\Lambda|-|\Delta|+m_{1}(\Delta(\{1_{G}\}))\choose m_{1}(\Delta(\{1_{G}\}))}\mathbf{C}_{\underline{\Delta}_{|\Lambda|}}\right)
=\displaystyle= (|ฮ›|โˆ’|ฮ”|+m1(ฮ”({1G}))m1(ฮ”({1G})))n!|G|nZฮ”ยฏ|ฮ›|dimฮ›Xฮ›ฮ”ยฏ|ฮ›|\displaystyle{|\Lambda|-|\Delta|+m_{1}(\Delta(\{1_{G}\}))\choose m_{1}(\Delta(\{1_{G}\}))}\frac{n!|G|^{n}}{Z_{\underline{\Delta}_{|\Lambda|}}\dim\Lambda}X^{\Lambda}_{\underline{\Delta}_{|\Lambda|}}
=\displaystyle= (|G|)|ฮ”|Zฮ”(|ฮ›|โ‡‚|ฮ”|)dimฮ›Xฮ›ฮ”ยฏ|ฮ›|\displaystyle\frac{(|G|)^{|\Delta|}}{Z_{\Delta}}\frac{(|\Lambda|\downharpoonright|\Delta|)}{\dim\Lambda}X^{\Lambda}_{\underline{\Delta}_{|\Lambda|}}
=\displaystyle= (|G|)|ฮ”|Zฮ”P#ฮ”(ฮ›)\displaystyle\frac{(|G|)^{|\Delta|}}{Z_{\Delta}}P^{\#}_{\Delta}(\Lambda)
=\displaystyle= FG(๐‚ฮ”;โˆž)(ฮ›)\displaystyle F^{G}(\mathbf{C}_{\Delta;\infty})(\Lambda)

โˆŽ

References

  • [1] H.ย Farahat and G.ย Higman. The centres of symmetric group rings. Proc. Roy. Soc. (A), 250:212โ€“221, 1959.
  • [2] A.ย Goupil and G.ย Schaeffer. Factoring n-cycles and counting maps of given genus. Eur. J. Comb., 19(7):819โ€“834, 1998.
  • [3] V.ย Ivanov and S.ย Kerov. The algebra of conjugacy classes in symmetric groups, and partial permutations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256(3):95โ€“120, 1999.
  • [4] J.ย Katriel and J.ย Paldus. Explicit expression for the product of the class of transpositions with an arbitrary class of the symmetric group. Group Theoretical Methods in Physics, pages 503โ€“506, 1987.
  • [5] I.ย Macdonald. Symmetric functions and Hall polynomials. Oxford Univ. Press, second edition, 1995.
  • [6] P.-L. Mรฉliot. Partial isomorphisms over finite fields. Journal of Algebraic Combinatorics, 40(1):83โ€“136, 2014.
  • [7] A.ย Y. Okounkov and G.ย I. Olshanskii. Shifted schur functions. Algebra i Analiz, 9(2):73โ€“146, 1997.
  • [8] O.ย Tout. Structure coefficients of the hecke algebra of (S2n,Bn)({S}_{2n},{B}_{n}). The Electronic Journal of Combinatorics, 21(4):P4โ€“35, 2014.
  • [9] O.ย Tout. A general framework for the polynomiality property of the structure coefficients of double-class algebras. Journal of Algebraic Combinatorics, 45(4):1111โ€“1152, June 2017.
  • [10] O.ย Tout. The center of the wreath product of symmetric groups algebra. To appear in Algebra and Discrete Mathematics, 2019.
  • [11] O.ย Tout. Some explicit expressions for the structure coefficients of the center of the symmetric group algebra involving cycles of length three. Journal of Algebra Combinatorics Discrete Structures and Applications, 6(2):53โ€“62, 2019.
  • [12] O.ย Tout. kk-partial permutations and the center of the wreath product ๐’ฎkโ‰€๐’ฎn\mathcal{S}_{k}\wr\mathcal{S}_{n} algebra. Journal of Algebraic Combinatorics, pages 1โ€“24, 2020.
  • [13] W.ย Wang. The Farahatโ€“Higman ring of wreath products and Hilbert schemes. Advances in Mathematics, 187(2):417โ€“446, 2004.
  • [14] W.ย Wang. Vertex algebras and the class algebras of wreath products. Proceedings of the London Mathematical Society, 88(2):381โ€“404, 2004.