This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The AαA_{\alpha} spectral radius of kk-connected graphs with given diameter

Xichan Liua,b, Ligong Wanga,b,111Corresponding author.
a School of Mathematics and Statistics
Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P.R. China.
b Xi’an-Budapest Joint Research Center for Combinatorics
Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P.R. China.
E-mail: [email protected], [email protected]

Abstract

Let GG be a graph with adjacency matrix A(G)A(G) and degree diagonal matrix D(G)D(G). In 2017, Nikiforov defined the matrix Aα(G)=αD(G)+(1α)A(G)A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G) for any real α[0,1]\alpha\in[0,1]. The largest eigenvalue of Aα(G)A_{\alpha}(G) is called the AαA_{\alpha} spectral radius or the AαA_{\alpha}-index of GG. Let 𝒢n,kd\mathcal{G}_{n,k}^{d} be the set of kk-connected graphs with order nn and diameter dd. In this paper, we determine the graphs with maximum AαA_{\alpha} spectral radius among all graphs in 𝒢n,kd\mathcal{G}_{n,k}^{d} for any α[0,1)\alpha\in[0,1), where k2k\geq 2 and d2d\geq 2. We generalizes the results of adjacency matrix in [P. Huang, W.C. Shiu, P.K. Sun, Linear Algebra Appl., 2016, Theorem 3.6] and the results of signless Laplacian matrix in [P. Huang, J.X. Li, W.C. Shiu, Linear Algebra Appl., 2021, Theorem 3.4]. Key Words: AαA_{\alpha} spectral radius; kk-connected; diameter AMS Subject Classification (2020):  05C50

1   Introduction

All graphs considered here are simple. Let GG be a graph with vertex set V(G)={v1,v2,,vn}V(G)=\{v_{1},v_{2},\ldots,v_{n}\} and edge set E(G)E(G). The order of GG is nn and the size of GG is mm, where n=|V(G)|n=|V(G)| and m=|E(G)|m=|E(G)|. The neighbor set of a vertex vv in GG is denoted by NG(v)N_{G}(v), the degree of the vertex vv in GG is denoted by dG(v)d_{G}(v), where dG(v)=|NG(v)|d_{G}(v)=|N_{G}(v)|. The minimum degree and the maximum degree of GG are denoted by δ(G)\delta(G) and Δ(G)\Delta(G), respectively. The distance dG(u,v)d_{G}(u,v) between two distinct vertices u,vu,v of a connected graph GG is the length of the shortest path connecting them. The diameter dd of GG is the maximum distance among all distinct vertices pairs of GG. For a subset WV(G)W\subseteq V(G), let G[W]G[W] be the subgraph induced by WW and GW=G[V(G)W]G-W=G[V(G)\setminus W]. A graph is kk-connected if GWG-W is connected for any subset WV(G)W\subseteq V(G) with |W|<k|W|<k. The sequential join G1GkG_{1}\vee\cdots\vee G_{k} of graphs G1,,GkG_{1},\ldots,G_{k}, is the graph formed by taking one copy of each graph and adding additional edges from each vertex of GiG_{i} to all vertices of Gi+1G_{i+1}, for i=1,2,,k1i=1,2,\ldots,k-1. A path and a complete graph of order nn are denoted by PnP_{n} and KnK_{n}, respectively. Unless otherwise stated, we use the standard notations and terminologies in [2, 23].

The MM spectral radius of a graph GG is the largest eigenvalue of MM, where MM is a responding graph matrix defined in a prescribed way, such as adjacency matrix, (signless) Laplacian matrix and others. The adjacency matrix of a graph GG with order nn is an n×nn\times n 0-1 matrix, denoted by A(G)=[aij]n×nA(G)=[a_{ij}]_{n\times n}, where aij=1a_{ij}=1 if vivjE(G)v_{i}v_{j}\in E(G), and aij=0a_{ij}=0 otherwise. The degree diagonal matrix of GG is D(G)=diag(dG(v1),dG(v2),,dG(vn))D(G)=diag(d_{G}(v_{1}),d_{G}(v_{2}),\ldots,d_{G}(v_{n})). The Laplacian matrix of a graph GG is L(G)=D(G)A(G)L(G)=D(G)-A(G), and the signless Laplacian matrix of GG is Q(G)=D(G)+A(G)Q(G)=D(G)+A(G). In 2017, Nikiforov [19] defined the AαA_{\alpha} matrix of a graph GG as Aα(G)=αD(G)+(1α)A(G)A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G) for any real α[0,1]\alpha\in[0,1], which can underpin a unified theory of A(G)A(G) and Q(G)Q(G). The AαA_{\alpha} spectral radius of a graph GG is denoted as λα(G)\lambda_{\alpha}(G). Based on the well-known Perron-Frobenius theorem, there exists a positive eigenvector X=(xv1,xv2,,xvn)TX=(x_{v_{1}},x_{v_{2}},\ldots,x_{v_{n}})^{T} corresponding to λα(G)\lambda_{\alpha}(G), also called the Perron vector of GG. For a vertex vV(G)v\in V(G), the eigenequation of Aα(G)A_{\alpha}(G) corresponding to vv is written as

λα(G)xv=αdG(v)xv+(1α)uvE(G)xu.\displaystyle\lambda_{\alpha}(G)x_{v}=\alpha d_{G}(v)x_{v}+(1-\alpha)\sum_{uv\in E(G)}x_{u}. (1)

Moreover, we have

XTAαX=αuV(G)dG(u)xu2+2(1α)uvE(G)xuxv.\displaystyle X^{T}A_{\alpha}X=\alpha\sum_{u\in V(G)}d_{G}(u)x_{u}^{2}+2(1-\alpha)\sum_{uv\in E(G)}x_{u}x_{v}. (2)

By Rayleigh Quotient, we have

λα(G)=supX0XTAα(G)XXTX.\displaystyle\lambda_{\alpha}(G)=\sup_{\|X\|\neq 0}\frac{X^{T}A_{\alpha}(G)X}{X^{T}X}. (3)

The Brualdi-Solheid problem, which was first presented in 1986 by Brualdi and Solheid in article [3], is a well-known question about finding a tight bound for the spectral radius in a set of graphs and characterizing the extremal graphs. Many recent results on this problem for various kinds of graphs and their adjacency spectral radius have been obtained, we refer to articles [1, 7, 8, 24, 29], some monographs [22, 23] and the references therein. The results of the Brualdi-Solheid problem about the signless Laplacian spectral radius and AαA_{\alpha} spectral radius, we refer to articles [10, 11, 15, 18, 28] and [4, 9, 12, 16, 21, 30], respectively. Further, other results for the AαA_{\alpha} spectral radius of digraph can be refered to [17, 25, 26] and the references therein. Recently, the spectral extremal problem of adjacency matrix and AαA_{\alpha} matrix has also attracted lots of attention, some results can be found in articles [5, 6] and the references therein.

Let 𝒢n,kd\mathcal{G}_{n,k}^{d} be the set of kk-connected graphs of order nn with given diameter dd. Huang, Shiu, Sun [14] and Huang, Li, Shiu [13] solved the Brualdi-Solheid problem in 𝒢n,kd\mathcal{G}_{n,k}^{d} for adjacency spectral radius and signless Laplacian spectral radius, respectively. Their conclusions are as follows.

Theorem 1.1 ([13, 14]).

For k2k\geq 2 and d2d\geq 2, the graph K1Kn1Knd1K1K_{1}\vee K_{n_{1}}\vee\cdots\vee K_{n_{d-1}}\vee K_{1} attains the maximum ((signless Laplacian)) spectral radius in 𝒢n,kd\mathcal{G}_{n,k}^{d}, where ni=kn_{i}=k for i{1,2,,d1}{d2}i\in\{1,2,\ldots,d-1\}\setminus\{\lfloor\frac{d}{2}\rfloor\}, and nd2kn_{\lfloor\frac{d}{2}\rfloor}\geq k.

Furthermore, Huang, Li and Shiu [13] believed that the results of Theorem 1.1 also hold for AαA_{\alpha} spectral radius in 𝒢n,kd\mathcal{G}_{n,k}^{d} with α[0,1)\alpha\in[0,1). For d=1d=1, it is obvious that KnK_{n} is the unique graph with the maximum AαA_{\alpha} spectral radius. For k=1k=1 and d2d\geq 2, Xue et al. [27] characterized that Knd(d2,d2)K_{n-d}(\lfloor\frac{d}{2}\rfloor,\lceil\frac{d}{2}\rceil) is the unique graph with the maximum AαA_{\alpha} spectral radius, where Knd(d2,d2)K_{n-d}(\lfloor\frac{d}{2}\rfloor,\lceil\frac{d}{2}\rceil) is the graph obtained from KndK_{n-d} by connecting its all vertices to an end vertex of Pd2P_{\lfloor\frac{d}{2}\rfloor} and an end vertex of Pd2P_{\lceil\frac{d}{2}\rceil}. In this paper, we confirm Huang, Li and Shiu’s conjecture for all d2d\geq 2 and k2k\geq 2. Our conclusion is as follows.

Theorem 1.2.

For k2k\geq 2 and d2d\geq 2, the graph G=K1Kn1Knd1K1G=K_{1}\vee K_{n_{1}}\vee\cdots\vee K_{n_{d-1}}\vee K_{1} attains the maximum AαA_{\alpha} spectral radius in 𝒢n,kd\mathcal{G}_{n,k}^{d}, where ni=kn_{i}=k for each i{1,2,,d1}{d2}i\in\{1,2,\ldots,d-1\}\setminus\{\lfloor\frac{d}{2}\rfloor\}, nd22kn_{\lfloor\frac{d}{2}\rfloor}\geq 2k. Further, 12(α(nd2+2k)+α2(nd2+2k+1)2+4(nd2+2k)(12α))<λα(G)\frac{1}{2}\big{(}\alpha(n_{\lfloor\frac{d}{2}\rfloor}+2k)+\sqrt{\alpha^{2}(n_{\lfloor\frac{d}{2}\rfloor}+2k+1)^{2}+4(n_{\lfloor\frac{d}{2}\rfloor}+2k)(1-2\alpha)}\big{)}<\lambda_{\alpha}(G)<nd2+2k1.<n_{\lfloor\frac{d}{2}\rfloor}+2k-1.

The rest of this paper is structured as follows. We provide several useful Lemmas in Section 2 and present our proof of Theorem 1.2 in Section 3.

2    Preliminaries

In this section, we present some preliminary results, which will be used in Section 3.

A graph is called diameter critical if its diameter decreases with any addition of an edge. The structure of a diameter critical kk-connected graph was characterized by Ore [20] in 1968.

Lemma 2.1 ([20]).

Let GG be a graph in 𝒢n,kd\mathcal{G}_{n,k}^{d}. If GG is a diameter critical graph, then GK1Kn1Knd1K1G\cong K_{1}\vee K_{n_{1}}\vee\cdots\vee K_{n_{d-1}}\vee K_{1}, where nikn_{i}\geq k for each i=1,2,,d1i=1,2,\ldots,d-1.

Following that, we present several results on the AαA_{\alpha} spectral radius. In this paper, the vertices uu and vv of GG are said to be equivalent, if there exists an automorphism pp: GGG\rightarrow G such that p(u)=vp(u)=v.

Lemma 2.2 ([19]).

Let GKnG\cong K_{n}. Then λα(G)=n1\lambda_{\alpha}(G)=n-1.

Lemma 2.3 ([19]).

Let GG be a connected graph and G0G_{0} be a proper subgraph of GG. Then λα(G0)<λα(G)\lambda_{\alpha}(G_{0})<\lambda_{\alpha}(G) for α[0,1)\alpha\in[0,1).

Lemma 2.4 ([19]).

Let GG be a connected graph. Let uu and vv be two equivalent vertices in GG. If XX is the positive eigenvector of Aα(G)A_{\alpha}(G) corresponding to λα(G)\lambda_{\alpha}(G), then xu=xvx_{u}=x_{v} for α[0,1]\alpha\in[0,1].

Lemma 2.5 ([19]).

Let GG be a graph with maximum degree Δ(G)=Δ\Delta(G)=\Delta. If α[0,1)\alpha\in[0,1), then

λα(G)12(α(Δ+1)+α2(Δ+1)2+4Δ(12α)).\lambda_{\alpha}(G)\geq\frac{1}{2}\big{(}\alpha(\Delta+1)+\sqrt{\alpha^{2}(\Delta+1)^{2}+4\Delta(1-2\alpha)}\ \big{)}.

If GG is connected, then equality holds if and only if GK1,ΔG\cong K_{1,\Delta}. In particular,

λα(G){α(Δ+1),if α[0,12],αΔ+(1α)2α,if α[12,1).\lambda_{\alpha}(G)\geq\left\{\begin{array}[]{ll}\alpha(\Delta+1),&\textrm{if $\alpha\in[0,\frac{1}{2}],$}\\ \alpha\Delta+\frac{(1-\alpha)^{2}}{\alpha},&\textrm{if $\alpha\in[\frac{1}{2},1).$}\\ \end{array}\right.
Lemma 2.6.

([19]) Let GG be a graph. If α[0,1]\alpha\in[0,1], then

2|E(G)||V(G)|λα(G)maxuvE(G){αdG(u)+(1α)dG(v)}.\frac{2|E(G)|}{|V(G)|}\leq\lambda_{\alpha}(G)\leq\max_{uv\in E(G)}\{\alpha d_{G}(u)+(1-\alpha)d_{G}(v)\}.

The first equality holds if and only if GG is regular.

Lemma 2.7 ([27]).

Let GG be a connected graph and X(G)=(x1,x2,,xn)TX(G)=(x_{1},x_{2},\ldots,x_{n})^{T} be a positive eigenvector of Aα(G)A_{\alpha}(G) corresponding to λα(G)\lambda_{\alpha}(G). For two distinct vertices uu, vv of GG, suppose YNG(u)(NG(v){v})Y\subseteq N_{G}(u)\setminus(N_{G}(v)\cup\{v\}). Let G=G{uw:wY}+{vw:wY}G^{{}^{\prime}}=G-\{uw:w\in Y\}+\{vw:w\in Y\}. If YY\neq\emptyset and xvxux_{v}\geq x_{u}, then λα(G)>λα(G)\lambda_{\alpha}(G^{{}^{\prime}})>\lambda_{\alpha}(G) for α[0,1)\alpha\in[0,1).

In order to prove our main results, we generalize Lemma 2.7, our conclusion is shown in Lemma 2.8. In addition, we characterize the AαA_{\alpha} spectral radius about the sequential join Kn1Kn2Kn3K_{n_{1}}\vee K_{n_{2}}\vee K_{n_{3}} of three complete graphs Kn1K_{n_{1}}, Kn2K_{n_{2}}, and Kn3K_{n_{3}}, the results are shown in Lemma 2.9.

Lemma 2.8.

Let GG be a connected graph and X(G)=(x1,x2,,xn)TX(G)=(x_{1},x_{2},\ldots,x_{n})^{T} be a positive eigenvector of Aα(G)A_{\alpha}(G) corresponding to λα(G)\lambda_{\alpha}(G). Let UU and VV be two disjoint subsets of V(G)V(G) that satisfy |U|=|V|=k|U|=|V|=k. For each pair of vertices u1u_{1}, u2Uu_{2}\in U ((resp. v1v_{1}, v2Vv_{2}\in V)) are equivalent in GG, then xu1=xu2x_{u_{1}}=x_{u_{2}} ((resp. xv1=xv2x_{v_{1}}=x_{v_{2}})). Suppose W=NG(U){NG(V)V}W=N_{G}(U)\setminus\{N_{G}(V)\cup V\}. Let GG^{\prime} be a graph from GG by deleting all edges between UU and WW and adding all edges between VV and WW. If xv1xu1x_{v_{1}}\geq x_{u_{1}}, then λα(G)>λα(G)\lambda_{\alpha}(G^{\prime})>\lambda_{\alpha}(G).

Proof.

By Equations (2) and (3)(\ref{rayleigh}), we have

λα(G)λα(G)\displaystyle\lambda_{\alpha}(G^{\prime})-\lambda_{\alpha}(G) X(G)T(Aα(G)Aα(G))X(G)\displaystyle\geq X(G)^{T}(A_{\alpha}(G^{\prime})-A_{\alpha}(G))X(G)
2(1α)kwWxw(xv1xu1)+α|W|k(xv12xu12)0.\displaystyle\geq 2(1-\alpha)k\sum_{w\in W}x_{w}(x_{v_{1}}-x_{u_{1}})+\alpha|W|k(x_{v_{1}}^{2}-x_{u_{1}}^{2})\geq 0.

By a similar argument as the proof of Lemma 2.2 in [27], we can deduce that λα(G)>λα(G)\lambda_{\alpha}(G^{\prime})>\lambda_{\alpha}(G). These complete the proof. ∎

Lemma 2.9.

Let G=Kn1Kn2Kn3G=K_{n_{1}}\vee K_{n_{2}}\vee K_{n_{3}}. Then λα(G)\lambda_{\alpha}(G) is the largest root of f(x)=0f(x)=0, where

f(x)=\displaystyle f(x)= x3+[3(α+1)(n1+n3)(2α+1)n2]x2+[n2α2(n1+n2+n3)+α(n1+2n2+\displaystyle x^{3}+[3-(\alpha+1)(n_{1}+n_{3})-(2\alpha+1)n_{2}]x^{2}+[n_{2}\alpha^{2}(n_{1}+n_{2}+n_{3})+\alpha(n_{1}+2n_{2}+
n3)(n1+n2+n32)+32(n1+n2+n3)+n1n3]x+[α2(n1n2(1n12n2)+\displaystyle n_{3})(n_{1}+n_{2}+n_{3}-2)+3-2(n_{1}+n_{2}+n_{3})+n_{1}n_{3}]x+[\alpha^{2}(n_{1}n_{2}(1-n_{1}-2n_{2})+
n2n3(1n32n2)+n22(1n2))+α((1n3)n12+(3n2+2n34n2n3n321)n1+\displaystyle n_{2}n_{3}(1-n_{3}-2n_{2})+n_{2}^{2}(1-n_{2}))+\alpha((1-n_{3})n_{1}^{2}+(3n_{2}+2n_{3}-4n_{2}n_{3}-n_{3}^{2}-1)n_{1}+
(2n2+n3)(n2+n31))+n1n3(n2+1)+1(n1+n2+n3)].\displaystyle(2n_{2}+n_{3})(n_{2}+n_{3}-1))+n_{1}n_{3}(n_{2}+1)+1-(n_{1}+n-2+n_{3})].

In Particular, we have the following two results.

  • (i)

    If n1=n3n_{1}=n_{3}, then λα(G)=12[(n1+n22)+α(2n1+n2)+g(x)]\lambda_{\alpha}(G)=\frac{1}{2}[(n_{1}+n_{2}-2)+\alpha(2n_{1}+n_{2})+g(x)], where

    g(x)=(2n1+n2)2α22(2n12+5n1n2+n22)α+n12+6n1n2+n22.\displaystyle g(x)=\sqrt{(2n_{1}+n_{2})^{2}\alpha^{2}-2(2n_{1}^{2}+5n_{1}n_{2}+n_{2}^{2})\alpha+n_{1}^{2}+6n_{1}n_{2}+n_{2}^{2}}.
  • (ii)

    If n1=n2=n3=k(kZ+)n_{1}=n_{2}=n_{3}=k\ (k\in Z^{+}), then λα(G)=3α+2+9α216α+82k1\lambda_{\alpha}(G)=\frac{3\alpha+2+\sqrt{9\alpha^{2}-16\alpha+8}}{2}k-1.

Proof.

Note that all vertices in V(Kn1)V(K_{n_{1}}), all vertices in V(Kn2)V(K_{n_{2}}) and all vertices in V(Kn3)V(K_{n_{3}}) are equivalent, respectively. Let X(G)=(x1,,x1n1,x2,,x2n2,x3,,x3n3)TX(G)=(\overbrace{x_{1},\ldots,x_{1}}^{n_{1}},\overbrace{x_{2},\ldots,x_{2}}^{n_{2}},\overbrace{x_{3},\ldots,x_{3}}^{n_{3}})^{T} be the Perron vector corresponding to λα(G)\lambda_{\alpha}(G), where xi=xv1i=xv2i==xvniix_{i}=x_{v^{i}_{1}}=x_{v^{i}_{2}}=\ldots=x_{v^{i}_{n_{i}}} for each i=1,2,3i=1,2,3. By Equation (1), we have

{[λα(G)α(n1+n21)(1α)(n11)]x1(1α)n2x2=0,(1α)n1x1+[λα(G)α(n1+n2+n31)(1α)(n21)]x2(1α)n3x3=0,(1α)n2x2+[λα(G)α(n2+n31)(1α)(n31)]x3=0.\left\{\begin{array}[]{ll}[\lambda_{\alpha}(G)-\alpha(n_{1}+n_{2}-1)-(1-\alpha)(n_{1}-1)]x_{1}-(1-\alpha)n_{2}x_{2}=0,\\ -(1-\alpha)n_{1}x_{1}+[\lambda_{\alpha}(G)-\alpha(n_{1}+n_{2}+n_{3}-1)-(1-\alpha)(n_{2}-1)]x_{2}-\\ (1-\alpha)n_{3}x_{3}=0,\\ -(1-\alpha)n_{2}x_{2}+[\lambda_{\alpha}(G)-\alpha(n_{2}+n_{3}-1)-(1-\alpha)(n_{3}-1)]x_{3}=0.\end{array}\right. (4)

Let f(x)f(x) be the determinant of the coefficient matrix of the Equation (4). Notice that X(G)0X(G)\neq 0, by using the theory of solving homogeneous linear equations, then λα(G)\lambda_{\alpha}(G) is the largest root of f(x)=0f(x)=0, where

f(x)=\displaystyle f(x)= x3+[3(α+1)(n1+n3)(2α+1)n2]x2+\displaystyle x^{3}+[3-(\alpha+1)(n_{1}+n_{3})-(2\alpha+1)n_{2}]x^{2}+
[(α2n22)(n1+n2+n3)+αn1(n1+3n2+2n32)]x+\displaystyle[(\alpha^{2}n_{2}-2)(n_{1}+n_{2}+n_{3})+\alpha n_{1}(n_{1}+3n_{2}+2n_{3}-2)]x+
[αn2(2n2+3n34)+αn3(n32)+n1n3+3]x+\displaystyle[\alpha n_{2}(2n_{2}+3n_{3}-4)+\alpha n_{3}(n_{3}-2)+n_{1}n_{3}+3]x+
(ααn3α2n2)n12+[2α2n22+(3α+n34αn3+α2)n2]n1+\displaystyle(\alpha-\alpha n_{3}-\alpha^{2}n_{2})n_{1}^{2}+[-2\alpha^{2}n_{2}^{2}+(3\alpha+n_{3}-4\alpha n_{3}+\alpha^{2})n_{2}]n_{1}+
[(n31)(ααn3+1)]n1(αn2+αn31)(αn21)(n2+n31).\displaystyle[(n_{3}-1)(\alpha-\alpha n_{3}+1)]n_{1}-(\alpha n_{2}+\alpha n_{3}-1)(\alpha n_{2}-1)(n_{2}+n_{3}-1).
  • (i)

    If n1=n3n_{1}=n_{3}, then the vertices in V(Kn1)V(Kn3)V(K_{n_{1}})\cup V(K_{n_{3}}) are equivalent in GG, that is x1=x3x_{1}=x_{3}. similarly we have

    {[λα(G)α(n1+n21)(1α)(n11)]x1(1α)n2x2=0,2n1(1α)x1+[λα(G)α(2n1+n21)(1α)(n21)]x2=0.\left\{\begin{array}[]{ll}[\lambda_{\alpha}(G)-\alpha(n_{1}+n_{2}-1)-(1-\alpha)(n_{1}-1)]x_{1}-(1-\alpha)n_{2}x_{2}=0,\\ -2n_{1}(1-\alpha)x_{1}+[\lambda_{\alpha}(G)-\alpha(2n_{1}+n_{2}-1)-(1-\alpha)(n_{2}-1)]x_{2}=0.\end{array}\right.

    Similarly, according to the theory of solving homogeneous linear equations, by direct calculation, we have λα(G)=12[(n1+n22)+α(2n1+n2)+g(x)]\lambda_{\alpha}(G)=\frac{1}{2}[(n_{1}+n_{2}-2)+\alpha(2n_{1}+n_{2})+g(x)], where

    g(x)=(2n1+n2)2α22(2n12+5n1n2+n22)α+n12+6n1n2+n22.\displaystyle g(x)=\sqrt{(2n_{1}+n_{2})^{2}\alpha^{2}-2(2n_{1}^{2}+5n_{1}n_{2}+n_{2}^{2})\alpha+n_{1}^{2}+6n_{1}n_{2}+n_{2}^{2}}.
  • (ii)

    If n1=n2=n3=k(kZ+)n_{1}=n_{2}=n_{3}=k\ (k\in Z^{+}), by direct calculation, then

    λα(G)=\displaystyle\lambda_{\alpha}(G)= 12[(n1+n22)+α(2n1+n2)+\displaystyle\frac{1}{2}[(n_{1}+n_{2}-2)+\alpha(2n_{1}+n_{2})+
    (2n1+n2)2α22(2n12+5n1n2+n22)α+n12+6n1n2+n22]\displaystyle\sqrt{(2n_{1}+n_{2})^{2}\alpha^{2}-2(2n_{1}^{2}+5n_{1}n_{2}+n_{2}^{2})\alpha+n_{1}^{2}+6n_{1}n_{2}+n_{2}^{2}}]
    =\displaystyle= 3α+2+9α216α+82k1.\displaystyle\frac{3\alpha+2+\sqrt{9\alpha^{2}-16\alpha+8}}{2}k-1.

These complete the proof. ∎

Lemma 2.10.

Let G=Kn1Kn2Kn2Kn1G=K_{n_{1}}\vee K_{n_{2}}\vee K_{n_{2}}\vee K_{n_{1}}. Then λα(G)=12[(α(n1+n2)+n1+2n22)+α(2n1+n2)+g(x)]\lambda_{\alpha}(G)=\frac{1}{2}[(\alpha(n_{1}+n_{2})+n_{1}+2n_{2}-2)+\alpha(2n_{1}+n_{2})+g(x)], where g(x)=(α1)2n12+2α(α1)n1n2+(α2)2n22g(x)=\sqrt{(\alpha-1)^{2}n_{1}^{2}+2\alpha(\alpha-1)n_{1}n_{2}+(\alpha-2)^{2}n_{2}^{2}}. In Particular, if n1=n2=k(kZ+)n_{1}=n_{2}=k\ (k\in Z^{+}), then λα(G)=(2α+3+4α28α+5)2k1\lambda_{\alpha}(G)=\frac{(2\alpha+3+\sqrt{4\alpha^{2}-8\alpha+5})}{2}k-1.

Proof.

Note that all vertices in V(Kn1)V(K_{n_{1}}) and all vertices in V(Kn2)V(K_{n_{2}}) are equivalent, respectively. Let X(G)X(G) be the Perron vector corresponding to λα(G)\lambda_{\alpha}(G). By symmetry, we have X(G)=(x1,,x1n1,x2,,x2n2,x2,,x2n2,x1,,x1n1)TX(G)=(\overbrace{x_{1},\ldots,x_{1}}^{n_{1}},\overbrace{x_{2},\ldots,x_{2}}^{n_{2}},\overbrace{x_{2},\ldots,x_{2}}^{n_{2}},\overbrace{x_{1},\ldots,x_{1}}^{n_{1}})^{T}. By using Equation (1), we have

{[λα(G)α(n1+n21)(1α)(n11)]x1(1α)n2x2=0,(1α)n1x1+[λα(G)α(n1+2n21)(1α)(2n21)]x2=0.\left\{\begin{array}[]{ll}[\lambda_{\alpha}(G)-\alpha(n_{1}+n_{2}-1)-(1-\alpha)(n_{1}-1)]x_{1}-(1-\alpha)n_{2}x_{2}=0,\\ -(1-\alpha)n_{1}x_{1}+[\lambda_{\alpha}(G)-\alpha(n_{1}+2n_{2}-1)-(1-\alpha)(2n_{2}-1)]x_{2}=0.\end{array}\right.

Similar to the proof of Lemma 2.9, by direct calculation, our results can be obtained easily. ∎

3   Proof of Theorem 1.2

Let GG be the graph with the maximum AαA_{\alpha} spectral radius among all graphs in 𝒢n,kd\mathcal{G}_{n,k}^{d}. We call the graph GG is maximal in 𝒢n,kd\mathcal{G}_{n,k}^{d}.

According to Lemmas 2.1 and 2.3, the maximal graph GG must be diameter critical. Since adding edges increases the AαA_{\alpha} spectral radius. We have GKn0KndG\cong K_{n_{0}}\vee\cdots\vee K_{n_{d}}, where n0=n1=1n_{0}=n_{1}=1 and nikn_{i}\geq k for each i=1,2,,d1i=1,2,\ldots,d-1, as shown in Figure 1. The vertices sets of the subgraph KniK_{n_{i}} in GG are simply denoted as ViV_{i} for each i=0,1,,di=0,1,\ldots,d. Therefore, {V0,V1,,Vd}\{V_{0},V_{1},\ldots,V_{d}\} is a partition of V(G)V(G).

Refer to caption
Figure 1: The graph G=Kn0KndG=K_{n_{0}}\vee\cdots\vee K_{n_{d}}

Note that any two distinct vertices in V1V_{1} (resp. V2,,Vd1V_{2},\ldots,V_{d-1}) are equivalent. Let X(G)X(G) be the Perron vector corresponding to λα(G)\lambda_{\alpha}(G). Then we have X(G)=(x0,x1,,x1n1,,xd1,,xd1nd1,xd)TX(G)=(x_{0},\overbrace{x_{1},\ldots,x_{1}}^{n_{1}},\ldots,\\ \overbrace{x_{d-1},\ldots,x_{d-1}}^{n_{d-1}},x_{d})^{T}.

Refer to caption
Figure 2: The graph G=Kn0KndG=K_{n_{0}}\vee\cdots\vee K_{n_{d}} with the subgraph HH.

Let HK1KkKkd1K1H\cong K_{1}\overbrace{\vee K_{k}\vee\cdots\vee K_{k}}^{d-1}\vee K_{1} be a subgraph of GG with vertex set V(H)V(H). Let Z=V(G)V(H)=i=0dZiZ=V(G)\setminus V(H)=\cup_{i=0}^{d}Z_{i}, where ZiViZ_{i}\subset V_{i}, i=0,1,,di=0,1,\ldots,d, as shown in Figure 2. Thus {V0(H),V1(H),,Vd(H)}\{V_{0}(H),V_{1}(H),\ldots,V_{d}(H)\} is a partition of V(H)V(H), where V0(H)=V0V_{0}(H)=V_{0}, Vd(H)=VdV_{d}(H)=V_{d}, Vi(H)ViV(G)V_{i}(H)\subset V_{i}\subset V(G) and |Vi(H)|=k|V_{i}(H)|=k for each i=1, 2,d1i=1,\ 2\ldots,d-1. Similarly, {Z0,Z1,,Zd}\{Z_{0},Z_{1},\ldots,Z_{d}\} is a partition of ZZ. It is possible that Zi=Z_{i}=\emptyset for some i[0,d]i\in[0,d], for instance Z0=Zd=Z_{0}=Z_{d}=\emptyset.

Let 𝒢1\mathcal{G}_{1} be the set of all graphs of order nn, in which each graph is isomorphic to Kn0KndK_{n_{0}}\vee\cdots\vee K_{n_{d}}, where n0=nd=1n_{0}=n_{d}=1, and there exists only one j{1,2,,d1}j\in\{1,2,\ldots,d-1\} such that njkn_{j}\geq k and ni=kn_{i}=k for each i{2,,d1}{j}i\in\{2,\ldots,d-1\}\setminus\{j\}. Obviously, H𝒢1𝒢n,kdH\in\mathcal{G}_{1}\subseteq\mathcal{G}_{n,k}^{d}.

Next, we keep the notations defined in the preceding section unless otherwise stated and prove several Lemmas.

Lemma 3.1.

Let GG be a maximal graph in 𝒢n,kd\mathcal{G}_{n,k}^{d}. If d2d\geq 2 and k2k\geq 2, then G𝒢1G\in\mathcal{G}_{1}.

Proof.

For d=2d=2 and k2k\geq 2, it is obvious that G𝒢1G\in\mathcal{G}_{1}. Next we consider d3d\geq 3 and k2k\geq 2.

By contradiction, we suppose G𝒢1G\notin\mathcal{G}_{1}, then there exists at least two j1j_{1},…, js{1,2,,d1}j_{s}\in\{1,2,\ldots,d-1\} such that Zj1,,ZjsZ_{j_{1}},\ldots,Z_{j_{s}}\neq\emptyset (s2)(s\geq 2) and Zi=Z_{i}=\emptyset for each i{1,2,,d1}{j1,,js}i\in\{1,2,\ldots,d-1\}\setminus\{j_{1},\ldots,j_{s}\}, which also implies that |Z|2|Z|\geq 2.

For d=3d=3 and k2k\geq 2, if G𝒢1G\notin\mathcal{G}_{1}, then Z1Z_{1}\neq\emptyset and Z2Z_{2}\neq\emptyset. Let GG^{\prime} be a graph obtained from GG by deleting all edges between Z1Z_{1} and V0V_{0} and adding all edges between Z1Z_{1} and VdV_{d}. Without loss of generality, we assume xdx0x_{d}\geq x_{0}. Since |V0|=|Vd|=1|V_{0}|=|V_{d}|=1, by using Lemma 2.7, we have λα(G)>λα(G)\lambda_{\alpha}(G^{\prime})>\lambda_{\alpha}(G). Note that G𝒢1𝒢n,kdG^{\prime}\in\mathcal{G}_{1}\subseteq\mathcal{G}_{n,k}^{d}, which contradicts the assumption that GG is the maximal graph in 𝒢n,kk\mathcal{G}_{n,k}^{k}. Thus G𝒢1G\in\mathcal{G}_{1}.

Next we consider d4d\geq 4 and k2k\geq 2. Let xaxbxcx_{a}\geq x_{b}\geq x_{c} be three largest values in the set {xi|i=0,1,,d}\{x_{i}|i=0,1,\ldots,d\} of the graph GG, where aa, bb and cc are pairwise distinct. Next we consider the following two cases:

  • Case 1.

    0 or d{a,b,c}d\notin\{a,b,c\}.

    For any a vertex vZv\in Z, let Vav(H),Vbv(H),Vcv(H)V(H)V_{a_{v}}(H),V_{b_{v}}(H),V_{c_{v}}(H)\in V(H) be three elements of the vertex partition set of V(H)V(H), whose vertices are adjacent to vv. It is possible that {av,bv,cv}{a,b,c}\{a_{v},b_{v},c_{v}\}\cap\{a,b,c\}\neq\emptyset. Because min{xa,xb,xc}max{xav,xbv,xcv}\min\{x_{a},x_{b},x_{c}\}\geq\max\{x_{a_{v}},x_{b_{v}},x_{c_{v}}\}, without loss of generality, we assume xaxavx_{a}\geq x_{a_{v}}, xbxbvx_{b}\geq x_{b_{v}} and xcxcvx_{c}\geq x_{c_{v}}.

    • Step 1.

      Let G1,1G_{1,1} be a graph obtained from GG by deleting all edges between vv and Vav(H)V_{a_{v}}(H), Vbv(H)V_{b_{v}}(H), Vcv(H)V_{c_{v}}(H), respectively, and adding all edges between vv and Va(H)V_{a}(H), Vb(H)V_{b}(H), Vc(H)V_{c}(H), respectively.

      For vZ1v\notin Z_{1} or Zd1Z_{d-1}, the graph GG and the graph G1,1G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}) is shown in Figure 3 (aa), (bb), respectively. In Figure 3 (cc), we denote the edge-shifting operation from the graph GG to the graph G1,1G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}) as GG1,1G\rightarrow G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}), where the thick dashed lines are the deleted edges in the graph GG and the thick solid lines are the added edges in the graph G1,1G_{1,1}. In Figures 3-9, take Figure 3 (cc) as an example, we just show the edge-shifting operations between the corresponding two graphs.

      If vZ1v\notin Z_{1} or Zd1Z_{d-1}, by using Equations (2) and (3), then

      λα(G1,1)λα(G)\displaystyle\lambda_{\alpha}(G_{1,1})-\lambda_{\alpha}(G)
      \displaystyle\geq X(G)T[Aα(G1,1)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,1})-A_{\alpha}(G)]X(G)
      =\displaystyle= 2k(1α)xv(xa+xb+xcxavxbvxcv)+\displaystyle 2k(1-\alpha)x_{v}(x_{a}+x_{b}+x_{c}-x_{a_{v}}-x_{b_{v}}-x_{c_{v}})+
      αk(xa2+xb2+xc2xav2xbv2xcv2)0.\displaystyle\alpha k(x_{a}^{2}+x_{b}^{2}+x_{c}^{2}-x_{a_{v}}^{2}-x_{b_{v}}^{2}-x_{c_{v}}^{2})\geq 0.

      If vZ1v\in Z_{1} or Zd1Z_{d-1}, by symmetry, we can suppose vZ1v\in Z_{1}. By using Equations (2) and (3), then we have

      λα(G1,1)λα(G)\displaystyle\lambda_{\alpha}(G_{1,1})-\lambda_{\alpha}(G)
      \displaystyle\geq X(G)T[Aα(G1,1)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,1})-A_{\alpha}(G)]X(G)
      =\displaystyle= 2k(1α)xv(xa+xb+xcx0x1x2)+αk(xa2+xb2+xc2x02x12x22)+\displaystyle 2k(1-\alpha)x_{v}(x_{a}+x_{b}+x_{c}-x_{0}-x_{1}-x_{2})+\alpha k(x_{a}^{2}+x_{b}^{2}+x_{c}^{2}-x_{0}^{2}-x_{1}^{2}-x_{2}^{2})+
      2(k1)((1α)xvx0+α2x02+α2xv2)0.\displaystyle 2(k-1)\big{(}(1-\alpha)x_{v}x_{0}+\frac{\alpha}{2}x_{0}^{2}+\frac{\alpha}{2}x_{v}^{2}\big{)}\geq 0.

      Therefore, λα(G1,1)>λα(G)\lambda_{\alpha}(G_{1,1})>\lambda_{\alpha}(G).

      Refer to caption
      (a) The graph GG (vZ1v\notin Z_{1} or Zd1Z_{d-1}).
      Refer to caption
      (b) The graph G1,1G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}).
      Refer to caption
      (c) The edge-shifting operations from GG to G1,1G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}).
      Figure 3: GG1,1G\rightarrow G_{1,1} (vZ1v\notin Z_{1} or Zd1Z_{d-1}).
    • Step 2.

      Let ww be a vertex of GG and wZ{v}w\in Z\setminus\{v\}.
      If wZ1w\notin Z_{1} or Zd1Z_{d-1}, let Vaw(H),Vbw(H),Vcw(H)V(H)V_{a_{w}}(H),V_{b_{w}}(H),V_{c_{w}}(H)\in V(H) be three elements of the vertex partition set of V(H)V(H), whose vertices are adjacent to ww. According to our assumption, min{xa,xb,xc}max{xaw,xbw,xcw}\min\{x_{a},x_{b},x_{c}\}\geq\max\{x_{a_{w}},x_{b_{w}},x_{c_{w}}\}, thus without loss of generality, we assume xaxawx_{a}\geq x_{a_{w}}, xbxbwx_{b}\geq x_{b_{w}}, xcxcwx_{c}\geq x_{c_{w}}. Next we do the same operation as Step 1. and obtain a graph G1,2G_{1,2} from G1,1G_{1,1} by deleting all edges between ww and Vaw(H)V_{a_{w}}(H), Vbw(H)V_{b_{w}}(H), Vcw(H)V_{c_{w}}(H), respectively, and adding all edges between ww and Va(H)V_{a}(H), Vb(H)V_{b}(H), Vc(H)V_{c}(H), respectively. Then

      λα(G1,2)λα(G)\displaystyle\lambda_{\alpha}(G_{1,2})-\lambda_{\alpha}(G)
      \displaystyle\geq X(G1,2)TAα(G1,2)X(G1,2)X(G)TAα(G)X(G)\displaystyle X(G_{1,2})^{T}A_{\alpha}(G_{1,2})X(G_{1,2})-X(G)^{T}A_{\alpha}(G)X(G)
      \displaystyle\geq X(G)T[Aα(G1,2)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,2})-A_{\alpha}(G)]X(G)
      =\displaystyle= X(G)T[Aα(G1,2)Aα(G1,1)]X(G)+X(G)T[Aα(G1,1)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,2})-A_{\alpha}(G_{1,1})]X(G)+X(G)^{T}[A_{\alpha}(G_{1,1})-A_{\alpha}(G)]X(G)
      \displaystyle\geq 2k(1α)xw(xa+xb+xcxawxbwxcw)+\displaystyle 2k(1-\alpha)x_{w}(x_{a}+x_{b}+x_{c}-x_{a_{w}}-x_{b_{w}}-x_{c_{w}})+
      αk(xa2+xb2+xc2xaw2xbw2xcw2)0.\displaystyle\alpha k(x_{a}^{2}+x_{b}^{2}+x_{c}^{2}-x_{a_{w}}^{2}-x_{b_{w}}^{2}-x_{c_{w}}^{2})\geq 0.

      If wZ1w\in Z_{1} or Zd1Z_{d-1}, by symmetry, we suppose wZ1w\in Z_{1}. By using Equations (2) and (3), then we have

      λα(G1,2)λα(G)\displaystyle\lambda_{\alpha}(G_{1,2})-\lambda_{\alpha}(G)
      =\displaystyle= λα(G1,2)λα(G1,1)+λα(G1,1)λα(G)\displaystyle\lambda_{\alpha}(G_{1,2})-\lambda_{\alpha}(G_{1,1})+\lambda_{\alpha}(G_{1,1})-\lambda_{\alpha}(G)
      \displaystyle\geq X(G1,2)TAα(G1,2)X(G1,2)X(G)TAα(G)X(G)\displaystyle X(G_{1,2})^{T}A_{\alpha}(G_{1,2})X(G_{1,2})-X(G)^{T}A_{\alpha}(G)X(G)
      \displaystyle\geq X(G)T[Aα(G1,2)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,2})-A_{\alpha}(G)]X(G)
      =\displaystyle= X(G)T[Aα(G1,2)Aα(G1,1)]X(G)+X(G)T[Aα(G1,1)Aα(G)]X(G)\displaystyle X(G)^{T}[A_{\alpha}(G_{1,2})-A_{\alpha}(G_{1,1})]X(G)+X(G)^{T}[A_{\alpha}(G_{1,1})-A_{\alpha}(G)]X(G)
      \displaystyle\geq 2k(1α)xw(xa+xb+xcxawxbwxcw)+\displaystyle 2k(1-\alpha)x_{w}(x_{a}+x_{b}+x_{c}-x_{a_{w}}-x_{b_{w}}-x_{c_{w}})+
      αk(xa2+xb2+xc2xaw2xbw2xcw2)+\displaystyle\alpha k(x_{a}^{2}+x_{b}^{2}+x_{c}^{2}-x_{a_{w}}^{2}-x_{b_{w}}^{2}-x_{c_{w}}^{2})+
      2(k1)((1α)xwx0+α2x02+α2xw2)0.\displaystyle 2(k-1)\big{(}(1-\alpha)x_{w}x_{0}+\frac{\alpha}{2}x_{0}^{2}+\frac{\alpha}{2}x_{w}^{2}\big{)}\geq 0.

      Repeat this step until all of the vertices in ZZ have been chosen. Thus in the final graph, denoted by G2G_{2}, all vertices in ZZ are adjacent to Va(H)V_{a}(H), Vb(H)V_{b}(H) and Vc(H)V_{c}(H), and λα(G2)>λα(G)\lambda_{\alpha}(G_{2})>\lambda_{\alpha}(G).

      In order to ensure that the maximal graph GG after the edge-shifting operation is still a diameter critical graph, and prove that our conclusions hold, we do the Step 3.

    • Step 3.

      Let G2,1G_{2,1} be the graph obtained from G2G_{2} by adding some edges so that G2,1[Z]G_{2,1}[Z] is a clique. Then λα(G2,1)>λα(G2)>λα(G)\lambda_{\alpha}(G_{2,1})>\lambda_{\alpha}(G_{2})>\lambda_{\alpha}(G).
      If G[Va(H)Vb(H)Vc(H)]=KkKkKkG[V_{a}(H)\cup V_{b}(H)\cup V_{c}(H)]=K_{k}\vee K_{k}\vee K_{k}, then our results hold. Next we consider the following two cases.

      • Case 1.1.
        Refer to caption
        Figure 4: G2,1G2,2G_{2,1}\rightarrow G_{2,2}.

        G[Va(H)Vb(H)Vc(H)]=(KkKk)KkG[V_{a}(H)\cup V_{b}(H)\cup V_{c}(H)]=(K_{k}\vee K_{k})\cup K_{k}.

        Let G2,2G_{2,2} be the graph obtained from G2,1G_{2,1} by deleting all edges between Vb(H)V_{b}(H) and Vb+1(H)V_{b+1}(H), all edges between Vc(H)V_{c}(H) and Vc+1(H)V_{c+1}(H), and adding all edges between Vb(H)V_{b}(H) and Vc(H)V_{c}(H), all edges between Vb+1(H)V_{b+1}(H) and Vc+1(H)V_{c+1}(H), as shown in Figure 4.

        If c+1dc+1\neq d, then

        λα(G2,2)λα(G2,1)2(1α)k2(xbxc+1)(xcxb+1)0.\displaystyle\lambda_{\alpha}(G_{2,2})-\lambda_{\alpha}(G_{2,1})\geq 2(1-\alpha)k^{2}(x_{b}-x_{c+1})(x_{c}-x_{b+1})\geq 0.

        If c+1=dc+1=d, then

        λα(G2,2)λα(G2,1)\displaystyle\lambda_{\alpha}(G_{2,2})-\lambda_{\alpha}(G_{2,1})\geq 2(1α)k2(xbxc+1)(xcxb+1)+\displaystyle 2(1-\alpha)k^{2}(x_{b}-x_{c+1})(x_{c}-x_{b+1})+
        2(1α)k(k1)(xc+1xcxb+1xc+1)+\displaystyle 2(1-\alpha)k(k-1)(x_{c+1}x_{c}-x_{b+1}x_{c+1})+
        αk(k1)(xc2xb+12)0.\displaystyle\alpha k(k-1)(x_{c}^{2}-x_{b+1}^{2})\geq 0.

        Then λα(G2,2)>λα(G2,1)>λα(G2)>λα(G)\lambda_{\alpha}(G_{2,2})>\lambda_{\alpha}(G_{2,1})>\lambda_{\alpha}(G_{2})>\lambda_{\alpha}(G), and G2,2𝒢1𝒢n,kdG_{2,2}\in\mathcal{G}_{1}\subset\mathcal{G}_{n,k}^{d}. This contradicts that G𝒢1G\notin\mathcal{G}_{1} is the maximal graph in 𝒢n,kk\mathcal{G}_{n,k}^{k}. Thus the maximal graph G𝒢1𝒢n,kdG\in\mathcal{G}_{1}\subset\mathcal{G}_{n,k}^{d}.

      • Case 1.2.
        Refer to caption
        Figure 5: G2,1G2,3G_{2,1}\rightarrow G_{2,3}.

        G[Va(H)Vb(H)Vc(H)]=KkKkKkG[V_{a}(H)\cup V_{b}(H)\cup V_{c}(H)]=K_{k}\cup K_{k}\cup K_{k}.
        Let G2,3G_{2,3} be the graph obtained from G2,1G_{2,1} by deleting all edges between Va(H)V_{a}(H) and Va+1(H)V_{a+1}(H), all edges between Vb(H)V_{b}(H) and Vb+1(H)V_{b+1}(H), all edges between Vc(H)V_{c}(H) and Vc+1(H)V_{c+1}(H), all edges between Vb(H)V_{b}(H) and Vb1(H)V_{b-1}(H), and adding all edges between Va(H)V_{a}(H) and Vb(H)V_{b}(H), all edges between Vb(H)V_{b}(H) and Vc(H)V_{c}(H), all edges between Va+1(H)V_{a+1}(H) and Vb+1(H)V_{b+1}(H), all edges between Vb1(H)V_{b-1}(H) and Vc+1(H)V_{c+1}(H), as shown in Figure 5.

        If c+1dc+1\neq d, then

        λα(G2,3)λα(G2,1)\displaystyle\lambda_{\alpha}(G_{2,3})-\lambda_{\alpha}(G_{2,1})
        \displaystyle\geq 2(1α)k2[(xaxb+1)(xbxa+1)+(xbxc+1)(xcxb1)]0.\displaystyle 2(1-\alpha)k^{2}[(x_{a}-x_{b+1})(x_{b}-x_{a+1})+(x_{b}-x_{c+1})(x_{c}-x_{b-1})]\geq 0.

        If c+1=dc+1=d, then

        λα(G2,3)λα(G2,1)\displaystyle\lambda_{\alpha}(G_{2,3})-\lambda_{\alpha}(G_{2,1})
        \displaystyle\geq 2(1α)k2[(xaxb+1)(xbxa+1)+(xbxc+1)(xcxb1)]+\displaystyle 2(1-\alpha)k^{2}[(x_{a}-x_{b+1})(x_{b}-x_{a+1})+(x_{b}-x_{c+1})(x_{c}-x_{b-1})]+
        2(1α)k(k1)(xcxc+1xb1xc+1)+αk(k1)(xc2xb12)0.\displaystyle 2(1-\alpha)k(k-1)(x_{c}x_{c+1}-x_{b-1}x_{c+1})+\alpha k(k-1)(x_{c}^{2}-x_{b-1}^{2})\geq 0.

        Then λα(G2,3)>λα(G2,1)>λα(G)\lambda_{\alpha}(G_{2,3})>\lambda_{\alpha}(G_{2,1})>\lambda_{\alpha}(G) and G2,3𝒢1𝒢n,kdG_{2,3}\in\mathcal{G}_{1}\subset\mathcal{G}_{n,k}^{d}. This contradicts that G𝒢1G\notin\mathcal{G}_{1} is the maximal graph in 𝒢n,kd\mathcal{G}_{n,k}^{d}. Thus the maximal graph G𝒢1𝒢n,kdG\in\mathcal{G}_{1}\subset\mathcal{G}_{n,k}^{d}.

  • Case 2.

    0 or d{a,b,c}d\in\{a,b,c\}.
    Since x0=(1α)|V1|λαα|V1|x1x_{0}=\frac{(1-\alpha)|V_{1}|}{\lambda_{\alpha}-\alpha|V_{1}|}x_{1}, by using Proposition 36. in [19] and Lemma 2.3, then λα>(|V1|+1)1=|V1|\lambda_{\alpha}>(|V_{1}|+1)-1=|V_{1}|, that is x0<x1x_{0}<x_{1}. Because of symmetry, we have xd<xd1x_{d}<x_{d-1}. Thus, {a,b,c}={0,1,r}\{a,b,c\}=\{0,1,r\} or {r,d1,d}\{r,d-1,d\}, where 1rd11\leq r\leq d-1. Without loss of generality, we assume {a,b,c}={0,1,r}\{a,b,c\}=\{0,1,r\}, where 2rd12\leq r\leq d-1. Next we consider two cases: first, Z1=Zd1=Z_{1}=Z_{d-1}=\emptyset, second, Z1Zd1Z_{1}\neq Z_{d-1}\neq\emptyset. The case of Z1Zd1Z_{1}\neq Z_{d-1}\neq\emptyset can be converted to the case that Z1Z_{1}\neq\emptyset and ZdZ_{d}\neq\emptyset by using some edge-shifting operations.

    • Refer to caption
      Figure 6: GG3,1G\rightarrow G_{3,1}.
      Refer to caption
      Figure 7: G3,1G3,2G_{3,1}\rightarrow G_{3,2}.
      Refer to caption
      Figure 8: G3,2G3,3G_{3,2}\rightarrow G_{3,3}.
      Refer to caption
      Figure 9: G3,3G3,4G_{3,3}\rightarrow G_{3,4}.
      Refer to caption
      Figure 10: G3,5G_{3,5}.
      Refer to caption
      Figure 11: G3,5G3,6G_{3,5}\rightarrow G_{3,6}.
    • Case 2.1.

      Z1=Zd1=Z_{1}=Z_{d-1}=\emptyset.
      Let xaxbxcx_{a^{\prime}}\geq x_{b^{\prime}}\geq x_{c^{\prime}} be the three largest components of X(G){x0,xd}=(x1,x2,,xd1)TX(G)\setminus\{x_{0},x_{d}\}=(x_{1},x_{2},\ldots,x_{d-1})^{T} corresponding to all vertices of VaV_{a^{\prime}}, VbV_{b^{\prime}}, VcV_{c^{\prime}} (aa^{\prime}, bb^{\prime} and cc^{\prime} are pairwise distinct), respectively. We follow all steps as Case 1., then we can obtain the graphs like G1,1G_{1,1}, G1,2G_{1,2}, G2,1G_{2,1}, G2G_{2}, G2,2G_{2,2} or G2,3G_{2,3}, such that λα(G2,3)(λα(G2,2))>λα(G2,1)>λα(G2)(λα(G1,2),λα(G1,1))>λα(G)\lambda_{\alpha}(G_{2,3})\big{(}\lambda_{\alpha}(G_{2,2})\big{)}>\lambda_{\alpha}(G_{2,1})>\lambda_{\alpha}(G_{2})\big{(}\lambda_{\alpha}(G_{1,2}),\lambda_{\alpha}(G_{1,1})\big{)}>\lambda_{\alpha}(G), where G2,3G_{2,3} and G2,2G_{2,2} are in 𝒢1𝒢n,kd\mathcal{G}_{1}\subseteq\mathcal{G}_{n,k}^{d}. Then we obtain a same contradiction like Case 1. that GG is a maximal graph in 𝒢n,kd\mathcal{G}_{n,k}^{d} and G𝒢1G\notin\mathcal{G}_{1}.

    • Case 2.2.

      Z1Zd1Z_{1}\neq Z_{d-1}\neq\emptyset and rd1r\neq d-1.
      Let G3,1G_{3,1} be a graph obtained from GG by deleting all edges between Zd1Z_{d-1} and Vd(H)V_{d}(H), Vd1(H)V_{d-1}(H), respectively, and adding all edges between Zd1Z_{d-1} and V0(H)V_{0}(H), V1(H)V_{1}(H), respectively, as shown in Figure 6. Then there is no edge between ZZ and Vd1(H)Vd(H)V_{d-1}(H)\cup V_{d}(H). By using Lemma 2.8, then λα(G3,1)>λα(G)\lambda_{\alpha}(G_{3,1})>\lambda_{\alpha}(G). The following discussion also applies to the case that one of Z1Z_{1}, Zd1Z_{d-1} is not an empty set.

      First, we choose one vertex ww from Vd1(H)V_{d-1}(H). Let G3,2G_{3,2} be a graph obtained from GG by deleting all edges between ww and (Vd1(H)w)Vd(H)(V_{d-1}(H)\setminus{w})\cup V_{d}(H), all edges between Vd2(H)V_{d-2}(H) and Vd1(H)wV_{d-1}(H)\setminus{w}, and adding all edges between Vd1(H)wV_{d-1}(H)\setminus{w} and V1(H)V0(H)V_{1}(H)\cup V_{0}(H), and the edge V0VdV_{0}V_{d}, see Figure 7. By using Lemma 2.8, we have λα(G3,2)>λα(G)\lambda_{\alpha}(G_{3,2})>\lambda_{\alpha}(G).

      Second, let G3,3G_{3,3} be a graph obtained from G3,2G_{3,2} by adding all edges between Vd1wV_{d-1}\setminus{w} and Z1Z_{1}, as shown in Figure 8. By using Lemma 2.3, we have λα(G3,3)>λα(G)\lambda_{\alpha}(G_{3,3})>\lambda_{\alpha}(G).

      Third, if Zd2=Z_{d-2}=\emptyset, then we may follow the proof of Case 1., otherwise, if Zd2Z_{d-2}\neq\emptyset, let G3,4G_{3,4} be a graph obtained from G3,3G_{3,3} by deleting all edges between ww and Zd2Z_{d-2}, and adding all edges between V0V_{0} and Zd2Z_{d-2}, as shown in Figure 9. By using Lemma 2.8, we have λα(G3,4)>λα(G)\lambda_{\alpha}(G_{3,4})>\lambda_{\alpha}(G). Next, we may follow the proof of Case 1. and get a contraction. Thus the maximal graph G𝒢1𝒢n,kdG\in\mathcal{G}_{1}\subset\mathcal{G}_{n,k}^{d}.

    • Case 2.3.

      Z1Zd1Z_{1}\neq Z_{d-1}\neq\emptyset and r=d1r=d-1 ({a,b,c}={0,1,r}\{a,b,c\}=\{0,1,r\}).
      First, we keep all edges between Z1Z_{1} and V0V1(H)V_{0}\cup V_{1}(H), keep all edges between Zd1Z_{d-1} and Vd1(H)V_{d-1}(H). Next we delete all edges between Zd1Z_{d-1} and VdV_{d} and add all edges between Zd1Z_{d-1} and V0V_{0}.

      Second, let xjx_{j} be the largest component of X(G){x0,x1,xd1,xd}X(G)\setminus\{x_{0},x_{1},x_{d-1},x_{d}\}. Then we repeat the similar operations of Step 1.–Step 3. in Case 1. and obtain a graph G3,5G_{3,5} with λα(G3,5)>λα(G)\lambda_{\alpha}(G_{3,5})>\lambda_{\alpha}(G), as shown in Figure 10. Let G3,6G_{3,6} be a graph obtained from G3,5G_{3,5} by deleting all edges between Z1Z_{1} and Vj(H)V_{j}(H), all edges between Zd1Z_{d-1} and Vj(H)V_{j}(H), and adding all edges between Z1Z_{1} and Vd1(H)V_{d-1}(H), all edges between Zd1Z_{d-1} and V1(H)V_{1}(H), as shown in Figure 11. Then by using Lemma 2.3, we have λα(G3,5)>λα(G)\lambda_{\alpha}(G_{3,5})>\lambda_{\alpha}(G). Note that the graph G3,6G_{3,6} satisfys G3,6𝒢n.kdG_{3,6}\in\mathcal{G}_{n.k}^{d}, and in the graph G3,6G_{3,6}, one of Z1Z_{1} and Zd1Z_{d-1}\neq\emptyset and rd1r\neq d-1. It belongs to Case 2.2.

These complete the proof of Lemma 3.1. ∎

Refer to caption
Figure 12: G(l,dl)G(l,d-l)
Lemma 3.2.

Let G=G(l,dl)=Kn0Knl1lKnlKnl+1KnddlG=G(l,d-l)=\overbrace{K_{n_{0}}\vee\cdots\vee K_{n_{l-1}}}^{l}\vee K_{n_{l}}\vee\overbrace{K_{n_{l+1}}\cdots\vee K_{n_{d}}}^{d-l}, where n0=nd=1n_{0}=n_{d}=1, nl2kn_{l}\geq 2k, ni=kn_{i}=k for each i{1,2,,d1}{l}i\in\{1,2,\ldots,d-1\}\setminus\{l\}, as shown in Figure 12. Let X(G)=(x0,x1,,x1n1,,xd1,,xd1nd1,xd)TX(G)=(x_{0},\overbrace{x_{1},\ldots,x_{1}}^{n_{1}},\ldots,\overbrace{x_{d-1},\ldots,x_{d-1}}^{n_{d-1}},x_{d})^{T} be the Perron vector of the graph GG corresponding to λα(G)\lambda_{\alpha}(G), where xi=xv1i=xv2i==xvniix_{i}=x_{v^{i}_{1}}=x_{v^{i}_{2}}=\ldots=x_{v^{i}_{n_{i}}} for each i=1,2,,d1i=1,2,\ldots,d-1. If α[0,1)\alpha\in[0,1), nl2kn_{l}\geq 2k, and ldl+1l\geq d-l+1. Then

  • (i)

    xl1>>x1>x0x_{l-1}>\cdots>x_{1}>x_{0} and xl+1>>xd1>xdx_{l+1}>\cdots>x_{d-1}>x_{d}.

  • (ii)

    nlxl>kxl1n_{l}x_{l}>kx_{l-1}.

  • (iii)

    xd>x0x_{d}>x_{0} and xi<xdix_{i}<x_{d-i} for each i=1,2,,dl1i=1,2,\ldots,d-l-1, where ldl+2l\geq d-l+2.

Proof.

We keep all notations above unless otherwise stated. Let λα(G)=λα\lambda_{\alpha}(G)=\lambda_{\alpha}. Since nl2kn_{l}\geq 2k, by Lemmas 2.2 and 2.3, then λα>λα(KkK2k)=3k1\lambda_{\alpha}>\lambda_{\alpha}(K_{k}\vee K_{2k})=3k-1. By Equation (1), we have λαx0=αkx0+(1α)kx1\lambda_{\alpha}x_{0}=\alpha kx_{0}+(1-\alpha)kx_{1}, then x0=(1α)kλααkx1<x1x_{0}=\frac{(1-\alpha)k}{\lambda_{\alpha}-\alpha k}x_{1}<x_{1} for any α[0,1)\alpha\in[0,1).

(i) xl1>>x1>x0x_{l-1}>\cdots>x_{1}>x_{0} and xl+1>>xd1>xdx_{l+1}>\cdots>x_{d-1}>x_{d}.

In terms of symmetry, we just consider i=0,1,,l1i=0,1,\ldots,l-1. It is similar for i=l+1,l+2,,di=l+1,l+2,\ldots,d. Next we are going to consider the following two cases:

Case 1. l4l\geq 4.

By the eigenequations of Aα(G)A_{\alpha}(G), we have the following recurrence equations:

(1α)kxi+1+(2kα+k1λα)xi+(1α)kxi1=0,i=1,2,,l1.(1-\alpha)kx_{i+1}+(2k\alpha+k-1-\lambda_{\alpha})x_{i}+(1-\alpha)kx_{i-1}=0,\quad i=1,2,\ldots,l-1. (5)

Let x1,x2,,xl1x_{1},x_{2},\ldots,x_{l-1} be a sequence of numbers satisfying the above recursive formula. Thus its characteristic equation is

(1α)kt2+(2kα+k1λα)t+(1α)k=0.(1-\alpha)kt^{2}+(2k\alpha+k-1-\lambda_{\alpha})t+(1-\alpha)k=0. (6)

Notice that λα>3k1\lambda_{\alpha}>3k-1, then (2kα+k1λα)24(1α)2k2>0(2k\alpha+k-1-\lambda_{\alpha})^{2}-4(1-\alpha)^{2}k^{2}>0, thus Equation (6) has two different real roots t1t_{1} and t2t_{2} such that

t1t2=1,t1+t2=λα2kα+1k(1α)k>(3k1)2kα+1k(1α)k=2.t_{1}t_{2}=1,\quad t_{1}+t_{2}=\frac{\lambda_{\alpha}-2k\alpha+1-k}{(1-\alpha)k}>\frac{(3k-1)-2k\alpha+1-k}{(1-\alpha)k}=2.

It is clear that t1>t2>0t_{1}>t_{2}>0. Since λα>3k1\lambda_{\alpha}>3k-1, if t=1t=1, then the Equation (6) is equal to 3k1λα<03k-1-\lambda_{\alpha}<0. By Lemmas 2.3, 2.9(i), for ldl+15l\geq d-l+1\geq 5, we have λα>λα(KkK2kKk)=4α+3+16α232α+172k1\lambda_{\alpha}>\lambda_{\alpha}(K_{k}\vee K_{2k}\vee K_{k})=\frac{4\alpha+3+\sqrt{16\alpha^{2}-32\alpha+17}}{2}k-1, if t=2t=2, then the Equation 6 is equal to (7α)k22λα<(45α16α232α+17)k<0(7-\alpha)k-2-2\lambda_{\alpha}<(4-5\alpha-\sqrt{16\alpha^{2}-32\alpha+17})k<0, that is t1>2t_{1}>2. Therefore, we have t1>2, 1>t2>0t_{1}>2,\ 1>t_{2}>0. By the theory of linear recurrence equation about the sequence, there exist AA and BB such that xi=At1i1+Bt2i1x_{i}=At_{1}^{i-1}+Bt_{2}^{i-1}, i=2,3,,l2i=2,3,\ldots,l-2. The boundary conditions are as follows:

{x1=A+B,x2=At1+Bt2,λαx1=2αkx1+(1α)(x0+(k1)x1+kx2).\left\{\begin{array}[]{c}\begin{aligned} x_{1}&=A+B,\\ x_{2}&=At_{1}+Bt_{2},\\ \lambda_{\alpha}x_{1}&=2\alpha kx_{1}+(1-\alpha)(x_{0}+(k-1)x_{1}+kx_{2}).\end{aligned}\end{array}\right.

Then

{A=[λα(1+α)k+(1α)(1t2k)]x1(1α)x0(1α)(t1t2)k,B=[λα(1+α)k+(1α)(1t1k)]x1+(1α)x0(1α)(t1t2)k.\left\{\begin{array}[]{c}\begin{aligned} A&=\frac{[\lambda_{\alpha}-(1+\alpha)k+(1-\alpha)(1-t_{2}k)]x_{1}-(1-\alpha)x_{0}}{(1-\alpha)(t_{1}-t_{2})k},\\ B&=\frac{-[\lambda_{\alpha}-(1+\alpha)k+(1-\alpha)(1-t_{1}k)]x_{1}+(1-\alpha)x_{0}}{(1-\alpha)(t_{1}-t_{2})k}.\end{aligned}\end{array}\right.

That is,

xi=(t1i1t2i1)[(λα(1+α)k)x1+(1α)(x1x0)]k(1α)(t1i2t2i2)x1(1α)(t1t2)k.x_{i}=\frac{(t_{1}^{i-1}-t_{2}^{i-1})\big{[}(\lambda_{\alpha}-(1+\alpha)k)x_{1}+(1-\alpha)(x_{1}-x_{0})\big{]}-k(1-\alpha)(t_{1}^{i-2}-t_{2}^{i-2})x_{1}}{(1-\alpha)(t_{1}-t_{2})k}.

Thus

xixi1=(t1i1t2i1)[(λα(1+α)k)x1+(1α)(x1x0)]k(1α)(t1i2t2i2)x1(t1i2t2i2)[(λα(1+α)k)x1+(1α)(x1x0)]k(1α)(t1i3t2i3)x1,\frac{x_{i}}{x_{i-1}}=\frac{(t_{1}^{i-1}-t_{2}^{i-1})\big{[}(\lambda_{\alpha}-(1+\alpha)k)x_{1}+(1-\alpha)(x_{1}-x_{0})\big{]}-k(1-\alpha)(t_{1}^{i-2}-t_{2}^{i-2})x_{1}}{(t_{1}^{i-2}-t_{2}^{i-2})\big{[}(\lambda_{\alpha}-(1+\alpha)k)x_{1}+(1-\alpha)(x_{1}-x_{0})\big{]}-k(1-\alpha)(t_{1}^{i-3}-t_{2}^{i-3})x_{1}},

where i=2,,l1.i=2,\ldots,l-1.

Since t1t2=1t_{1}t_{2}=1, t1>2t_{1}>2 and 1>t2>01>t_{2}>0 for any α[0,1)\alpha\in[0,1), then t1i1t2i1=t1(t1i2t2i)>t1(t1i2t2i2)>2(t1i2t2i2)>0t_{1}^{i-1}-t_{2}^{i-1}=t_{1}(t_{1}^{i-2}-t_{2}^{i})>t_{1}(t_{1}^{i-2}-t_{2}^{i-2})>2(t_{1}^{i-2}-t_{2}^{i-2})>0.

By using Lemma 2.9(i), we have λα>4α+3+16α232α+172k1\lambda_{\alpha}>\frac{4\alpha+3+\sqrt{16\alpha^{2}-32\alpha+17}}{2}k-1. Then for k2k\geq 2, then we have [λα(1+α)k]k>2α1+16α232α+172k1>0.93k1>0.[\lambda_{\alpha}-(1+\alpha)k]-k>~{}\frac{2\alpha-1+\sqrt{16\alpha^{2}-32\alpha+17}}{2}k-1>~{}0.93k-1>~{}0. Thus λα(1+α)k>k>(1α)k\lambda_{\alpha}-(1+\alpha)k>k>(1-\alpha)k, for any α[0,1)\alpha\in[0,1).

Let h1(t1,t2)=(t1i1t2i1)[(λα(1+α)k)x1+(1α)(x1x0)]k(1α)(t1i2t2i2)x1h_{1}(t_{1},t_{2})=(t_{1}^{i-1}-t_{2}^{i-1})\big{[}(\lambda_{\alpha}-(1+\alpha)k)x_{1}+(1-\alpha)(x_{1}-x_{0})\big{]}-k(1-\alpha)(t_{1}^{i-2}-t_{2}^{i-2})x_{1}, and h2(t1,t2)=(t1i2t2i2)[(λα(1+α)k)x1+(1α)(x1x0)]k(1α)(t1i3t2i3)x1h_{2}(t_{1},t_{2})=(t_{1}^{i-2}-t_{2}^{i-2})\big{[}(\lambda_{\alpha}-(1+\alpha)k)x_{1}+(1-\alpha)(x_{1}-x_{0})\big{]}-k(1-\alpha)(t_{1}^{i-3}-t_{2}^{i-3})x_{1}.

Notice that x1>x0x_{1}>x_{0}, then we have

h1(t1,t2)h2(t1,t2)=\displaystyle h_{1}(t_{1},t_{2})-h_{2}(t_{1},t_{2})= [(t1i1t2i1)(t1i2t2i2)](λα(1+α)k)x1\displaystyle\big{[}(t_{1}^{i-1}-t_{2}^{i-1})-(t_{1}^{i-2}-t_{2}^{i-2})\big{]}(\lambda_{\alpha}-(1+\alpha)k)x_{1}
+[(t1i3t2i3)(t1i2t2i2)](1α)kx1\displaystyle+\big{[}(t_{1}^{i-3}-t_{2}^{i-3})-(t_{1}^{i-2}-t_{2}^{i-2})\big{]}(1-\alpha)kx_{1}
+[(t1i1t2i1)(t1i2t2i2)](1α)(x1x0)\displaystyle+\big{[}(t_{1}^{i-1}-t_{2}^{i-1})-(t_{1}^{i-2}-t_{2}^{i-2})\big{]}(1-\alpha)(x_{1}-x_{0})
>\displaystyle> [(t1i1t2i1)(t1i2t2i2)](λα(1+α)k)x1\displaystyle\big{[}(t_{1}^{i-1}-t_{2}^{i-1})-(t_{1}^{i-2}-t_{2}^{i-2})\big{]}(\lambda_{\alpha}-(1+\alpha)k)x_{1}
+[(t1i3t2i3)(t1i2t2i2)](1α)kx1\displaystyle+\big{[}(t_{1}^{i-3}-t_{2}^{i-3})-(t_{1}^{i-2}-t_{2}^{i-2})\big{]}(1-\alpha)kx_{1}
>\displaystyle> (t1i1t2i1)2(t1i2t2i2)+(t1i3t2i3)](1α)kx1\displaystyle(t_{1}^{i-1}-t_{2}^{i-1})-2(t_{1}^{i-2}-t_{2}^{i-2})+(t_{1}^{i-3}-t_{2}^{i-3})\big{]}(1-\alpha)kx_{1}
>\displaystyle> (t1i3t2i3)(1α)kx1>0.\displaystyle(t_{1}^{i-3}-t_{2}^{i-3})(1-\alpha)kx_{1}>0.

Thus we have xi>xi1x_{i}>x_{i-1}, for each i=2,,l1i=2,\ldots,l-1 when l4l\geq 4. By symmetry, we have xj>xj+1x_{j}>x_{j+1}, for each l+1jd2l+1\leq j\leq d-2 where dl4d-l\geq 4.

Case 2. l=1,2,3l=1,2,3.

It is clear that xl1>>x1>x0x_{l-1}>\cdots>x_{1}>x_{0} holds for l=1l=1 and l=2l=2. Next we are going to proof that xl1>>x1>x0x_{l-1}>\cdots>x_{1}>x_{0} holds for l=3l=3, that is x2>x1>x0x_{2}>x_{1}>x_{0}. By the eigenequations of Aα(G)A_{\alpha}(G) corresponding to x0x_{0} and x1x_{1}, we have

{(1α)kx1x0+(kαλα)=0,(1α)kx2x1+[(k+1)α+k1λα]+(1α)x0x1=0.\left\{\begin{array}[]{c}\begin{aligned} &(1-\alpha)\frac{kx_{1}}{x_{0}}+(k\alpha-\lambda_{\alpha})=0,\\ &(1-\alpha)\frac{kx_{2}}{x_{1}}+[(k+1)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{x_{0}}{x_{1}}=0.\end{aligned}\end{array}\right.

Then we have

{x1x0=λαkα(1α)k,x2x1=λα+1k(k+1)a(1α)kx0kx1.\left\{\begin{array}[]{c}\begin{aligned} &\frac{x_{1}}{x_{0}}=\frac{\lambda_{\alpha}-k\alpha}{(1-\alpha)k},\\ &\frac{x_{2}}{x_{1}}=\frac{\lambda_{\alpha}+1-k-(k+1)a}{(1-\alpha)k}-\frac{x_{0}}{kx_{1}}.\\ \end{aligned}\end{array}\right.

Thus x2x1=(λα+1k(k+1)α)(λαkα)(1α)2k(λαkα)(1α)k.\frac{x_{2}}{x_{1}}=\frac{(\lambda_{\alpha}+1-k-(k+1)\alpha)(\lambda_{\alpha}-k\alpha)-(1-\alpha)^{2}k}{(\lambda_{\alpha}-k\alpha)(1-\alpha)k}. Let g1=(λα+1k(k+1)α)(λαkα)(1α)2kg_{1}=(\lambda_{\alpha}+1-k-(k+1)\alpha)(\lambda_{\alpha}-k\alpha)-(1-\alpha)^{2}k, g2=(λαkα)(1α)kg_{2}=(\lambda_{\alpha}-k\alpha)(1-\alpha)k. Therefore, in order to prove x2x1>1\frac{x_{2}}{x_{1}}>1, we only need to prove g1g2>0g_{1}-g_{2}>0. Let g3=g1g2g_{3}=g_{1}-g_{2}. By direct calculation, we have

g3=g1g2=λα2+(1kα2kα)λαk(12kαα).\displaystyle g_{3}=g_{1}-g_{2}=\lambda_{\alpha}^{2}+(1-k\alpha-2k-\alpha)\lambda_{\alpha}-k(1-2k\alpha-\alpha).

Note that g3g_{3} is a fuction of λα\lambda_{\alpha}, so g3=0g_{3}=0 has solutions if and only if (1kα2kα)2+4k(12kαα)>0(1-k\alpha-2k-\alpha)^{2}+4k(1-2k\alpha-\alpha)>0. Note that (1kα2kα)2+4k(12kαα)=(k+1)2α2(4k2+2k+2)α+4k2+1(1-k\alpha-2k-\alpha)^{2}+4k(1-2k\alpha-\alpha)=(k+1)^{2}\alpha^{2}-(4k^{2}+2k+2)\alpha+4k^{2}+1. By direct calculation, it is easy to prove that (k+1)2α2(4k2+2k+2)α+4k2+1>0(k+1)^{2}\alpha^{2}-(4k^{2}+2k+2)\alpha+4k^{2}+1>0 holds for α[0,1)\alpha\in[0,1) and k2k\geq 2.

Thus in order to prove g3=g1g2>0g_{3}=g_{1}-g_{2}>0, we need to prove that λα\lambda_{\alpha} is greater than the maximum solution of g3=0g_{3}=0, that is λα>12(α+αk+2k1+(α2)2k2+2α(α1)k+(α1)2)\lambda_{\alpha}>\frac{1}{2}(\alpha+\alpha k+2k-1+\sqrt{(\alpha-2)^{2}k^{2}+2\alpha(\alpha-1)k+(\alpha-1)^{2}}). Notice that λα>3k1\lambda_{\alpha}>3k-1, then we need to prove that 3k1>12(α+αk+2k1+(α2)2k2+2α(α1)k+(α1)2)3k-1>\frac{1}{2}(\alpha+\alpha k+2k-1+\sqrt{(\alpha-2)^{2}k^{2}+2\alpha(\alpha-1)k+(\alpha-1)^{2}}), which is equivalent to prove 2(3k1)ααk2k+1[(α2)2k2+2α(α1)k+(α1)2]=(124α)k2(4α+8)k+4α>02(3k-1)-\alpha-\alpha k-2k+1-[(\alpha-2)^{2}k^{2}+2\alpha(\alpha-1)k+(\alpha-1)^{2}]=(12-4\alpha)k^{2}-(4\alpha+8)k+4\alpha>0. Let g4=(124α)k2(4α+8)k+4αg_{4}=(12-4\alpha)k^{2}-(4\alpha+8)k+4\alpha. By direct calculate, we have (4α+8)216α(124α)=16(5α28α+4)>0(4\alpha+8)^{2}-16\alpha(12-4\alpha)=16(5\alpha^{2}-8\alpha+4)>0 holds for each α[0,1)\alpha\in[0,1). Thus, if k is greater than the maximum solution of g4=0g_{4}=0, then g4>0g_{4}>0. By direct calculation, we have the maximum solution of g4=0g_{4}=0 is α+(5α28α+4+22(3α)[0.6667,1)\frac{\alpha+\sqrt{(5\alpha^{2}-8\alpha+4}+2}{2(3-\alpha)}\in[0.6667,1) for each α[0,1)\alpha\in[0,1). Thus g4>0g_{4}>0 holds for each k2k\geq 2 and each α[0,1)\alpha\in[0,1). Thus g3=g1g2>0g_{3}=g_{1}-g_{2}>0. Then x2x1>1\frac{x_{2}}{x_{1}}>1.

Thus we have xi>xi1x_{i}>x_{i-1}, for each i=2,,l1i=2,\ldots,l-1 when 1l31\leq l\leq 3. By symmetry, we have xj>xj+1x_{j}>x_{j+1}, for each l+1jd2l+1\leq j\leq d-2 when 1dl31\leq d-l\leq 3.

These complete the proof of (i) in this Lamma 3.2. Next we are going to prove nlxl>kxl1n_{l}x_{l}>kx_{l-1}.

(ii) nlxl>kxl1n_{l}x_{l}>kx_{l-1}.

By the eigenequation corresponding to xl1x_{l-1}, that is

(1α)nlxlxl1+[(nl+k)α+k1λα]+(1α)kxl2xl1=0.(1-\alpha)\frac{n_{l}x_{l}}{x_{l-1}}+[(n_{l}+k)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{kx_{l-2}}{x_{l-1}}=0.

Note that k2k\geq 2, xl1>xl2x_{l-1}>x_{l-2} and α[0,1)\alpha\in[0,1). Then we have

nlxlkxl1\displaystyle\frac{n_{l}x_{l}}{kx_{l-1}} =1k(1α)[(nl+k)αk+1+λα]xl2xl1,\displaystyle=\frac{1}{k(1-\alpha)}[-(n_{l}+k)\alpha-k+1+\lambda_{\alpha}]-\frac{x_{l-2}}{x_{l-1}},
>1k(1α)[(nl+k)αk+1+λα]1,\displaystyle>\frac{1}{k(1-\alpha)}[-(n_{l}+k)\alpha-k+1+\lambda_{\alpha}]-1,
>1k(1α)[(nl+k)αk+1+(nl+k1)]1>1.\displaystyle>\frac{1}{k(1-\alpha)}[-(n_{l}+k)\alpha-k+1+(n_{l}+k-1)]-1>1.

Thus we have nlxl>kxl1n_{l}x_{l}>kx_{l-1}. These complete the proof of the first and second results (i) and (ii) in this Lamma 3.2.

(iii) 𝒙𝒅>𝒙𝟎\bm{x_{d}>x_{0}} and xi<xdi\bm{x_{i}<x_{d-i}} for each i=𝟏,𝟐,,dl𝟏\bm{i=1,2,\ldots,d-l-1}, where ldl+𝟐\bm{l\geq d-l+2}.

By the eigenequations of Aα(G)A_{\alpha}(G), we have

{(1α)kx1x0+(kαλα)=0,(1α)kx2x1+[(k+1)α+k1λα]+(1α)x0x1=0,(1α)kx3x2+(2kα+k1λα)+(1α)kx1x2=0,(1α)kxdl1xdl2+(2kα+k1λα)+(1α)kxdl3xdl2=0,(1α)kxdlxdl1+(2kα+k1λα)+(1α)kxdl2xdl1=0,(1α)kxl1xl2+(2kα+k1λα)+(1α)kxl3xl2=0,(1α)nlxlxl1+[(nl+k)α+k1λα]+(1α)kxl2xl1=0,(1α)kxl1xl+(2kα+nl1λα)+(1α)kxl+1xl=0,(1α)nlxlxl+1+[(nl+k)α+k1λα]+(1α)kxl+2xl+1=0,(1α)kxl+1xl+2+(2kα+k1λα)+(1α)kxl+3xl+2=0,\left\{\begin{aligned} \begin{array}[]{l}(1-\alpha)\frac{kx_{1}}{x_{0}}+(k\alpha-\lambda_{\alpha})=0,\\ (1-\alpha)\frac{kx_{2}}{x_{1}}+[(k+1)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{x_{0}}{x_{1}}=0,\\ (1-\alpha)\frac{kx_{3}}{x_{2}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{1}}{x_{2}}=0,\\ \vdots\\ (1-\alpha)\frac{kx_{d-l-1}}{x_{d-l-2}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{d-l-3}}{x_{d-l-2}}=0,\\ (1-\alpha)\frac{kx_{d-l}}{x_{d-l-1}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{d-l-2}}{x_{d-l-1}}=0,\\ \vdots\\ (1-\alpha)\frac{kx_{l-1}}{x_{l-2}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{l-3}}{x_{l-2}}=0,\\ (1-\alpha)\frac{n_{l}x_{l}}{x_{l-1}}+[(n_{l}+k)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{kx_{l-2}}{x_{l-1}}=0,\\ (1-\alpha)\frac{kx_{l-1}}{x_{l}}+(2k\alpha+n_{l}-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{l+1}}{x_{l}}=0,\\ (1-\alpha)\frac{n_{l}x_{l}}{x_{l+1}}+[(n_{l}+k)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{kx_{l+2}}{x_{l+1}}=0,\\ (1-\alpha)\frac{kx_{l+1}}{x_{l+2}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{l+3}}{x_{l+2}}=0,\\ \end{array}\end{aligned}\right.
{(1α)kxd3xd2+(2kα+k1λα)+(1α)kxd1xd2=0,(1α)kxd2xd1+[(k+1)α+k1λα]+(1α)xdxd1=0,(1α)kxd1xd+(kαλα)=0.\left\{\begin{aligned} \begin{array}[]{l}\vdots\\ (1-\alpha)\frac{kx_{d-3}}{x_{d-2}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{d-1}}{x_{d-2}}=0,\\ (1-\alpha)\frac{kx_{d-2}}{x_{d-1}}+[(k+1)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{x_{d}}{x_{d-1}}=0,\\ (1-\alpha)\frac{kx_{d-1}}{x_{d}}+(k\alpha-\lambda_{\alpha})=0.\\ \end{array}\end{aligned}\right.

Since ldl+1l\geq d-l+1 and k2k\geq 2, then

kxd1xd=kx1x0,kxd2xd1=kx2x1,,kxl+1xl+2=kxdl1xdl2.\frac{kx_{d-1}}{x_{d}}=\frac{kx_{1}}{x_{0}},\ \frac{kx_{d-2}}{x_{d-1}}=\frac{kx_{2}}{x_{1}},\ldots,\ \frac{kx_{l+1}}{x_{l+2}}=\frac{kx_{d-l-1}}{x_{d-l-2}}. (7)

Notice that nl2kn_{l}\geq 2k, by the eigenequations corresponding to xdl1x_{d-l-1}, xl+1x_{l+1}, these are

{(1α)kxdlxdl1+(2kα+k1λα)+(1α)kxdl2xdl1=0,(1α)nlxlxl+1+[(nl+k)α+k1λα]+(1α)kxl+2xl+1=0.\left\{\begin{aligned} \begin{array}[]{l}(1-\alpha)\frac{kx_{d-l}}{x_{d-l-1}}+(2k\alpha+k-1-\lambda_{\alpha})+(1-\alpha)\frac{kx_{d-l-2}}{x_{d-l-1}}=0,\\ (1-\alpha)\frac{n_{l}x_{l}}{x_{l+1}}+[(n_{l}+k)\alpha+k-1-\lambda_{\alpha}]+(1-\alpha)\frac{kx_{l+2}}{x_{l+1}}=0.\\ \end{array}\end{aligned}\right.

Thus kxdlxdl1>nlxlxl+1\frac{kx_{d-l}}{x_{d-l-1}}>\frac{n_{l}x_{l}}{x_{l+1}}. Since nlxl>kxdln_{l}x_{l}>kx_{d-l}, then xdl1<xl+1x_{d-l-1}<x_{l+1}, by Equation (7), we have xi<xdix_{i}<x_{d-i} and xd>x0x_{d}>x_{0}, for each i=1,2,,dl1i=1,2,\ldots,d-l-1.

These complete the proof of this Lemma 3.2. ∎

In the following, we use all the notations in Lemma 3.2 unless otherwise stated.

Lemma 3.3.

Let G=G(l,dl)G=G(l,d-l) be a maximal graph in 𝒢n,kd\mathcal{G}_{n,k}^{d}. Suppose ldl+2l\geq d-l+2, then xdi+1<xi,i=1,2,,dl1x_{d-i+1}<x_{i},\ i=1,2,\ldots,d-l-1.

Proof.

By Lemma 3.2, we have x0<xdx_{0}<x_{d}, so xdixix_{d-i}\neq x_{i}, i=1,2,,dl1i=1,2,\ldots,d-l-1. Recall that Z=Zl={VlV(Kk)}Z=Z_{l}=\{V_{l}\setminus V(K_{k})\}. Let GG^{\prime} be a graph obtained from the maximal graph GG by deleting all edges between ZZ and Vl+1V_{l+1} and adding all edges between ZZ and Vl2V_{l-2}. If xl2xl+1x_{l-2}\geq x_{l+1}, then by Lemma 2.8, we have λα(G)>λα(G)\lambda_{\alpha}(G^{\prime})>\lambda_{\alpha}(G). Thus this contradicts that GG is the maximal graph in 𝒢n,kk\mathcal{G}_{n,k}^{k}. Thus xl2<xl+1x_{l-2}<x_{l+1}. Similarly, we have xl1>xl+2x_{l-1}>x_{l+2}. Next we prove xd<x1x_{d}<x_{1}.

Suppose xd>x1x_{d}>x_{1}. We select one vertex ww of V1V_{1}. Since n0=nd=1n_{0}=n_{d}=1, then we denote the two vertices in V0V_{0}, VdV_{d} as uu, vv, respectively. Let G′′G^{\prime\prime} be a graph obtained from GG by deleting all edges between V1{w}V_{1}\setminus\{w\} and ww, all edges between V1{w}V_{1}\setminus\{w\} and V2V_{2}, edge wuwu, and adding edge vuvu, all edges between V1{w}V_{1}\setminus\{w\} and Vd1V_{d-1}, all edges between V1{w}V_{1}\setminus\{w\} and vv. Obviously, G′′𝒢n,kdG^{\prime\prime}\in\mathcal{G}_{n,k}^{d}. Then

0>\displaystyle 0> λα(G′′)λα(G)\displaystyle\lambda_{\alpha}(G^{\prime\prime})-\lambda_{\alpha}(G)
>\displaystyle> (1α)[k(k1)x1(xd1x2)+(k1)x1(xdx1)+x0(xdx1)]\displaystyle(1-\alpha)\big{[}k(k-1)x_{1}(x_{d-1}-x_{2})+(k-1)x_{1}(x_{d}-x_{1})+x_{0}(x_{d}-x_{1})\big{]}
+\displaystyle+ α[(k1)(xd12x22)+k(xd2x12)]\displaystyle\alpha\big{[}(k-1)(x_{d-1}^{2}-x_{2}^{2})+k(x_{d}^{2}-x_{1}^{2})\big{]}
>\displaystyle> (1α)k(k1)x1(xd1x2)+α(k1)(xd12x22).\displaystyle(1-\alpha)k(k-1)x_{1}(x_{d-1}-x_{2})+\alpha(k-1)(x_{d-1}^{2}-x_{2}^{2}).

Thus if xd>x1x_{d}>x_{1}, then xd1<x2x_{d-1}<x_{2} holds.

Next we obtain the graph G′′G^{\prime\prime} by using a different edge-shifting operation. Let G′′G^{\prime\prime} be the graph obtained from GG by deleting all edges between Vd2V_{d-2} and Vd1V_{d-1}, all edges between V2V_{2} and V3V_{3} and adding all edges between Vd2V_{d-2} and V2V_{2}, all edges between Vd1V_{d-1} and V3V_{3}. Then we have

0\displaystyle 0 >λα(G′′)λα(G)>(1α)k2(xd2x3)(x2xd1).\displaystyle>\lambda_{\alpha}(G^{\prime\prime})-\lambda_{\alpha}(G)>(1-\alpha)k^{2}(x_{d-2}-x_{3})(x_{2}-x_{d-1}).

Thus if xd>x1x_{d}>x_{1} and xd1<x2x_{d-1}<x_{2}, then xd2<x3x_{d-2}<x_{3} holds. Through gradual recursion, let G′′G^{\prime\prime} be the graph obtained from GG by deleting all edges between VjV_{j} and Vj+1V_{j+1}, all edges between VdjV_{d-j} and Vdj+1V_{d-j+1} and adding all edges between VjV_{j} and VdjV_{d-j}, all edges between Vj+1V_{j+1} and Vdj+1V_{d-j+1}, for j=2,,l2j=2,\ldots,l-2. Thus we have if xd>x1x_{d}>x_{1}, then xd1<x2x_{d-1}<x_{2}, xd2<x3x_{d-2}<x_{3},\ldots, xl+1<xdl<xdl+1<<xl2x_{l+1}<x_{d-l}<x_{d-l+1}<\ldots<x_{l-2}. There is a contradiction that xl2<xl+1x_{l-2}<x_{l+1} in the maximal graph GG. Thus xd<x1x_{d}<x_{1}.

Assume xdi+1<xix_{d-i+1}<x_{i} for i=1,2,,dl2i=1,2,\ldots,d-l-2, and we now prove xdi<xi+1x_{d-i}<x_{i+1}. Let G′′G^{\prime\prime} be a graph obtained from GG by deleting all edges between ViV_{i} and Vi+1V_{i+1}, all edges between VdiV_{d-i} and Vdi+1V_{d-i+1} and adding all edges between ViV_{i} and VdiV_{d-i}, all edges between Vi+1V_{i+1} and Vdi+1V_{d-i+1}. Then

0>λα(G′′)λα(G)>(1α)k2(xdixi+1)(xixdi+1).0>\lambda_{\alpha}(G^{\prime\prime})-\lambda_{\alpha}(G)>(1-\alpha)k^{2}(x_{d-i}-x_{i+1})(x_{i}-x_{d-i+1}).

Since xi>xdi+1x_{i}>x_{d-i+1}, we have xdi<xi+1x_{d-i}<x_{i+1}, for each i=1,2,,dl2i=1,2,\ldots,d-l-2. These complete the proof. ∎

Now we have all the ingredients to present our proof of Theorem 1.2.

Proof of Theorem 1.2.

In this proof, we use the notations in Lemma 3.2 unless otherwise stated. Let G=G(l,dl)=Kn0Knl1lKnlKnl+1KnddlG^{*}=G(l,d-l)=\overbrace{K_{n_{0}}\vee\cdots\vee K_{n_{l-1}}}^{l}\vee K_{n_{l}}\vee\overbrace{K_{n_{l+1}}\cdots\vee K_{n_{d}}}^{d-l}, where n0=nd=1n_{0}=n_{d}=1, nl2kn_{l}\geq 2k, ni=kn_{i}=k, i{1,2,,d1}{l}i\in\{1,2,\ldots,d-1\}\setminus\{l\}, as shown in Figure 12. By Lemma 3.1, the result hold when d=2d=2 or 33. Thus we only consider the case d4d\geq 4 in the following.

In order to prove a contradiction, we suppose ldl+2l\geq d-l+2. Let G′′G^{\prime\prime} be a graph obtained from GG^{*} by deleting all the edges between VlV_{l} and Vl+1V_{l+1} and the edges between Vdl+1V_{d-l+1} and Vdl+2V_{d-l+2}, then adding all the edges between Vl+1V_{l+1} and Vdl+2V_{d-l+2} and the edges between VlV_{l} and Vdl+1V_{d-l+1}. Evidently, G′′=G(l1,dl+1)𝒢n,kdG^{\prime\prime}=G(l-1,d-l+1)\in\mathcal{G}_{n,k}^{d}. Note that αnlxl>kxl1>kxdl+2\alpha n_{l}x_{l}>kx_{l-1}>kx_{d-l+2} by Lemma 3.2 and xl+1>xl2>xl1>xdl+1x_{l+1}>x_{l-2}>x_{l-1}>x_{d-l+1}. Then from Equation 2, we have

λα(G′′)λα(G)\displaystyle\lambda_{\alpha}(G^{\prime\prime})-\lambda_{\alpha}(G^{*})\geq (1α)[nlnl+1xlxl+1ndl+1ndl+2xdl+1xdl+2+\displaystyle(1-\alpha)[-n_{l}n_{l+1}x_{l}x_{l+1}-n_{d-l+1}n_{d-l+2}x_{d-l+1}x_{d-l+2}+
nl+1ndl+2xl+1xdl+2+nlndl+1xlxdl+1]+\displaystyle n_{l+1}n_{d-l+2}x_{l+1}x_{d-l+2}+n_{l}n_{d-l+1}x_{l}x_{d-l+1}]+
α[(nlndl+1)xdl+12+(nl+1ndl+1)xdl+22+(nlndl+2)xl+12]\displaystyle\alpha[(n_{l}-n_{d-l+1})x_{d-l+1}^{2}+(n_{l+1}-n_{d-l+1})x_{d-l+2}^{2}+(n_{l}-n_{d-l+2})x_{l+1}^{2}]
\displaystyle\geq (1α)(ndl+1xdl+1nl+1xl+1)(nlxlndl+2xdl+2)+\displaystyle(1-\alpha)(n_{d-l+1}x_{d-l+1}-n_{l+1}x_{l+1})(n_{l}x_{l}-n_{d-l+2}x_{d-l+2})+
α(2k+12k)xdl+120.\displaystyle\alpha(2k+1-2k)x_{d-l+1}^{2}\geq 0.

Thus λα(G′′)>λα(G)\lambda_{\alpha}(G^{\prime\prime})>\lambda_{\alpha}(G^{*}), which contradicts the fact that GG^{*} is the maximal graph in 𝒢n,kk\mathcal{G}_{n,k}^{k}. Thus we have ldl+1l\leq d-l+1.

Notice that Δ(G)=(nd2+2k1)\Delta(G^{*})=(n_{\lfloor\frac{d}{2}\rfloor}+2k-1), by Lemmas 2.5 and 2.6, our conclusion can be obtained directly. These complete the proof. ∎

References

  • [1] A. Berman, X-D. Zhang. On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B., 83(2) (2001) 233–240.
  • [2] J.A. Bondy, U.S.R. Murty. Graph Theory, Springer, New York, 2008.
  • [3] R.A. Brualdi, E.S. Solheid. On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebraic Discrete Methods, 7(2) (1986) 265–272.
  • [4] C.H. Chen, J.R. Peng, T.Y. Chen. The AαA_{\alpha}-spectral radius of complements of bicyclic and tricylic graphs with nn vertices, Spec. Matrices, 10 (2022) 55–66.
  • [5] S. Cioabă, D.N. Desai, M. Tait. The spectral radius of graphs with no odd wheels, European J. Combin., 99 (2022) 103420.
  • [6] S. Cioabă, L.H. Feng, M. Tait, X-D. Zhang. The maximum spectral radius of graphs without friendship subgraphs, Electron. J. Combin., 27 (2020) Article 4.22.
  • [7] L.H. Feng, G.H. Yu, X-D. Zhang. Spectral radius of graphs with given matching number, Linear Algebra Appl., 422(1) (2007) 133–138.
  • [8] L.H. Feng, P.L. Zhang, W.J. Liu. Spectral radius and kk-connectedness of a graph, Monatsh. Math., 185 (2018) 651–661.
  • [9] Z.M. Feng, W. Wei. On the AαA_{\alpha}-spectral radius of graphs with given size and diameter, Linear Algebra Appl., 650 (2022) 132–149.
  • [10] J-M. Guo, J.X. Li, P. Huang, W.C Shiu. Coefficients of the characteristic polynomial of the (signless, normalized) Laplacian of a graph, Graphs Combin., 33 (2017) 1155–1164.
  • [11] J-M. Guo, J-Y. Ren, J-S. Shi. Maximizing the least signless Laplacian eigenvalue of unicyclic graphs, Linear Algebra Appl., 519 (2017) 136–145.
  • [12] Y.F. Hao, S.C. Li, Q. Zhao. On the AαA_{\alpha}-spectral radius of graphs without large matchings, Bull. Malays. Math. Sci. Soc., 45 (2022) 3131–3156.
  • [13] P. Huang, J.X. Li, W.C. Shiu. Maximizing the signless Laplacian spectral radius of kk-connected graphs with given diameter, Linear Algebra Appl., 617 (2021) 78–99.
  • [14] P. Huang, W.C. Shiu, P.K. Sun. Maximizing the spectral radius of kk-connected graphs with given diameter, Linear Algebra Appl., 488 (2016) 350–362.
  • [15] H.M. Jia, S.C. Li, S.J. Wang. Ordering the maxima of LL-index and QQ-index: graphs with given size and diameter, Linear Algebra Appl., 652 (2022), 18–36.
  • [16] D. Li, R. Qin. The AαA_{\alpha}-spectral radius of graphs with a prescribed number of edges for 12α1\frac{1}{2}\leq\alpha\leq 1, Linear Algebra Appl., 628 (2021) 29–41.
  • [17] J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu. The AαA_{\alpha} spectral radius characterization of some digraphs, Linear Algebra Appl., 563 (2019) 63–74.
  • [18] Z.Z. Lou, J-M. Guo, Z.W. Wang. Maxima of LL-index and QQ-index: graphs with given size and diameter, Discrete Math., 344 (2021) 112533.
  • [19] V. Nikiforov. Merging the AA- and QQ-spectral theories, Appl. Anal. Discrete Math, 11 (2017) 81–107.
  • [20] O. Ore. Diameters in graphs, J. Combin. Theory, 5 (1968) 75–81.
  • [21] S. Pirzada. Two upper bounds on the AαA_{\alpha}-spectral radius of a connected graph, Commun. Comb. Optim., 7 (2022) 53–57.
  • [22] Z. Stanić. Inequalities for Graph Eigenvalues, Cambridge University Press, Cambridge, 2015.
  • [23] D. Stevanović. Spectral Radius of Graphs, Academic Press, New York, 2015.
  • [24] Z-W. Wang, J-M. Guo. Some upper bounds on the spectral radius of a graph, Linear Algebra Appl., 601 (2020) 101–112.
  • [25] W.G. Xi, W. So, L.G. Wang. On the AαA_{\alpha} spectral radius of digraphs with given parameters, Linear Multilinear Algebra, 70 (2022) 2248–2263.
  • [26] W.G. Xi, L.G. Wang. The AαA_{\alpha} spectral radius and maximum outdegree of irregular digraphs, Discrete Optim., 38 (2020) 100592.
  • [27] J. Xue, H.Q. Lin, S.T. Liu, J.L. Shu. On the AαA_{\alpha}-spectral radius of a graph, Linear Algebra Appl., 550 (2018) 105–120.
  • [28] G.H. Yu, L.H. Feng, A. Ilić, D. Stevanović. The signless Laplacian spectral radius of bounded degree graphs on surfaces, Appl. Anal. Discrete Math., 9 (2015) 332–346.
  • [29] W.Q. Zhang. The maximum spectral radius of tt-connected graphs with bounded matching number, Discrete Math, 345(4) (2022) 112775.
  • [30] Y.H. Zhao, X.Y. Huang, Z.W. Wang. The AαA_{\alpha}-spectral radius and perfect matchings of graphs, Linear Algebra Appl., 631 (2021) 143–155.