This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The 4-Adic Complexity of A Class of Quaternary Cyclotomic Sequences with
Period 2p2p

Shiyuan Qiang, Yan Li, Minghui Yang*, and Keqin Feng *Corresponding authorThe work was supported by the National Science Foundation of China (NSFC) under Grant 12031011, 11701553.Shiyuan Qiang is with the department of Applied Mathematics, China Agricultural, university, Beijing 100083, China (e-mail: [email protected]).Yan Li is with the department of Applied Mathematics, China Agricultural, university, Beijing 100083, China (e-mail: [email protected]).Minghui Yang is with State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China (e-mail: [email protected]).Keqin Feng is with the department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (email: [email protected]).
Abstract

In cryptography, we hope a sequence over m\mathbb{Z}_{m} with period NN having larger mm-adic complexity.Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper, we determine the 4-adic complexity of the quaternary cyclotomic sequences with period 2pp defined in [6]. The main method we utilized is a quadratic Gauss sum GpG_{p} valued in 4N1\mathbb{Z}_{4^{N}-1} which can be seen as a version of classical quadratic Gauss sum. Our results show that the 4-adic complexity of this class of quaternary cyclotomic sequences reaches the maximum if 5p25\nmid p-2 and close to the maximum otherwise.

Index Terms:
4-adic complexity, quaternary cyclotomic sequences, quadratic Gauss sum, cryptography

I Introduction

Periodic sequences over finite field 𝔽q\mathbb{F}_{q} or finite ring m=/m\mathbb{Z}_{m}=\mathbb{Z}/m\mathbb{Z} have many important applications in spread-spectrum multiple-access communication and cryptography. In the stream cipher schemes we need the sequences having good pseudorandom cryptographic properties and large linear complexity [1].

In the past three decades, many series of such sequences have been investigated, their autocorrelation and linear complexity have been determined or estimated. A sequence with linear complexity nn can be generated by a linear shift register of length nn and the period of a sequence is an upper bound of nn. In 1990’s, Klapper, Goresky and Xu [4, 5] described a kind of non-linear shift registers (feedback with carry shift registers (FCSRs)) and raised a new complexity, called mm-adic complexity.

Definition 1.

Let m2m\geq 2 be a positive integer, A={a(i)}i=0N1A=\{a(i)\}_{i=0}^{N-1} be a sequence over m\mathbb{Z}_{m} with period NN, a(i){0,1,,m1}a(i)\in\{0,1,\ldots,m-1\} for 0iN10\leq i\leq N-1. Let SA(m)=i=0N1a(i)miS_{A}(m)=\sum_{i=0}^{N-1}a(i)m^{i}\in\mathbb{Z} and d=gcd(SA(m),mN1)d=\gcd(S_{A}(m),m^{N}-1). The m-adic complexity of the sequence A is defined by

CA(m)=logm(mN1d).C_{A}(m)=\log_{m}\left(\frac{m^{N}-1}{d}\right).

Roughly speaking, a sequence AA with period NN over m\mathbb{Z}_{m} can be generated by an FCSR of length CA(m)\lceil C_{A}(m)\rceil. In cryptography, we hope a sequence AA over m\mathbb{Z}_{m} with period NN having larger mm-adic complexity CA(m)C_{A}(m). By the Definition 1 we know that CA(m)N\lceil C_{A}(m)\rceil\leq N, where for α>0\alpha>0, α\lceil\alpha\rceil is the smallest integer nn such that nαn\geq\alpha.

In the past decade, the 2-adic complexity CA(2)C_{A}(2) has been determined or estimated for many binary sequences AA with good autocorrelation properties. Particularly, for all known binary sequences A={a(i)}i=0N1(a(i){0,1})A=\{a(i)\}_{i=0}^{N-1}\ (a(i)\in\{0,1\}) with period N3(mod4)N\equiv 3\pmod{4} and ideal autocorrelation (i=0N1(1)a(i+τ)a(i)=1(\sum_{i=0}^{N-1}(-1)^{a(i+\tau)-a(i)}=-1, for all 1τN1)1\leq\tau\leq N-1), the 2-adic complexity CA(2)C_{A}(2) reaches the maximum value log2(2N1)\log_{2}(2^{N}-1) [3]. On the other hand, quaternary sequences (over 4\mathbb{Z}_{4}) are also important sequences in many practical applications [7]. Comparing with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper we determine the 4-adic complexity of the quaternary cyclotomic sequences give by Kim et al. in [6].

Let pp be an odd prime, (.p):p={1,2,,p1}{±1}(\frac{{.}}{p}):\mathbb{Z}_{p}^{\ast}=\{1,2,\ldots,p-1\}\rightarrow\{\pm 1\} be the Legendre symbol. Namely, for apa\in\mathbb{Z}_{p}^{\ast},

(ap)={1,if a is a square in p;1,otherwise.\displaystyle\big{(}\frac{a}{p}\big{)}=\left\{\begin{array}[]{ll}1,&\textrm{if $a$ is a square in $\mathbb{Z}_{p}^{\ast}$;}\\ -1,&\textrm{otherwise.}\end{array}\right.

Let gg be a primitive element modulo 2pp, 2p=g\mathbb{Z}_{2p}^{\ast}=\langle g\rangle and

D0(2p)=g22p,D1(2p)=gD0(2p)2pD_{0}^{(2p)}=\langle g^{2}\rangle\subseteq\mathbb{Z}_{2p}^{\ast},\quad D_{1}^{(2p)}=gD_{0}^{(2p)}\subseteq\mathbb{Z}_{2p}^{\ast}
D0(p)={ap:(ap)=1},D1(p)={ap:(ap)=1}D_{0}^{(p)}=\{a\in\mathbb{Z}_{p}^{\ast}:\big{(}\frac{a}{p}\big{)}=1\},\quad D_{1}^{(p)}=\{a\in\mathbb{Z}_{p}^{\ast}:\big{(}\frac{a}{p}\big{)}=-1\}

Then

2p=D0(2p)D1(2p)2D0(p)2D1(p){0,p}(disjoint)\mathbb{Z}_{2p}=D_{0}^{(2p)}\bigcup D_{1}^{(2p)}\bigcup 2D_{0}^{(p)}\bigcup 2D_{1}^{(p)}\bigcup\{0,p\}\qquad(disjoint)
Definition 2.

([6]) Define a quaternary sequence A={a(i)}i=02p1A=\{a(i)\}_{i=0}^{2p-1} over 4={0,1,2,3}\mathbb{Z}_{4}=\{0,1,2,3\} with period N=2pN=2p by

a(i)={0,if i=0 or iD0(2p)2,if i=p or i2D0(p)1,if iD1(2p)3,if i2D1(p)\displaystyle a(i)=\left\{\begin{array}[]{ll}0,&\textrm{if $i=0$ or $i\in D_{0}^{(2p)}$}\\ 2,&\textrm{if $i=p$ or $i\in 2D_{0}^{(p)}$}\\ 1,&\textrm{if $i\in D_{1}^{(2p)}$}\\ 3,&\textrm{if $i\in 2D_{1}^{(p)}$}\end{array}\right.

The autocorrelation of this quaternary sequence has been computed in [6]. Du and Chen [2] translated this sequence into a sequence AA^{\prime} over the finite field 𝔽4\mathbb{F}_{4} by the Gray mapping and computed the linear complexity of AA^{\prime} over 𝔽4\mathbb{F}_{4}. The following theorem is our main result which determines the 4-adic complexity of the quaternary sequence AA.

Theorem 1.

Let AA be the quaternary sequence with period N=2pN=2p defined by Definition 2. Then the 4-adic complexity of AA is

CA(4)={log4(4N15),if 5p2;log4(4N1),otherwise.\displaystyle C_{A}(4)=\left\{\begin{array}[]{ll}\log_{4}(\frac{4^{N}-1}{5}),&\textrm{if $5\mid p-2$;}\\ \log_{4}(4^{N}-1),&\textrm{otherwise.}\end{array}\right.

In Section II we introduce a quadratic Gauss sum GpG_{p} valued in 4N1\mathbb{Z}_{4^{N}-1} as a version of classical quadratic Gauss sum, prove a property of GpG_{p}, and show that SA(4)=i=0N1a(i)4iS_{A}(4)=\sum_{i=0}^{N-1}a(i)4^{i} can be expressed by GpG_{p} modulo 4N14^{N}-1. In Section III we prove Theorem 1.

II Preliminaries

Let pp be an odd prime, N=2pN=2p. From the fact that ab(modp)a\equiv b\pmod{p} implies 42a42b(mod4N1)4^{2a}\equiv 4^{2b}\pmod{4^{N}-1} we can define an element GpG_{p} in 4N1\mathbb{Z}_{4^{N}-1}:

Gp=ap(ap)42a=a=1p1(ap)42a(mod4N1)G_{p}=\sum_{a\in\mathbb{Z}_{p}^{\ast}}\big{(}\frac{a}{p}\big{)}4^{2a}=\sum_{a=1}^{p-1}(\frac{a}{p}\big{)}4^{2a}\pmod{4^{N}-1}

The following result shows that SA(4)S_{A}(4) can be expressed by GpG_{p} modulo 4N14^{N}-1 and GpG_{p} has a similar property as classical quadratic Gauss sum.

Lemma 2.

Let A={a(i)}i=0N1A=\{a(i)\}_{i=0}^{N-1} be the quaternary sequence over 4\mathbb{Z}_{4} with period N=2pN=2p (p3)(p\geq 3) defined by Definition 2. Then

(1)SA(4)12(34p5)+4p+524N11512((2p)4p+1)Gp(mod4N1)(2)Gp2(1p)(p4N115)(mod4N1)\displaystyle\begin{array}[]{ll}&\textrm{$\rm(1)$}\ S_{A}(4)\equiv\frac{1}{2}(3\cdot 4^{p}-5)+\frac{4^{p}+5}{2}\frac{4^{N}-1}{15}-\frac{1}{2}(\big{(}\frac{2}{p}\big{)}4^{p}+1)G_{p}\pmod{4^{N}-1}\\ &\textrm{$\rm(2)$}\ G_{p}^{2}\equiv\big{(}\frac{-1}{p}\big{)}(p-\frac{4^{N}-1}{15})\pmod{4^{N}-1}\end{array}
Proof.

(1). By the Chinese Remainder Theorem, We have isomorphism of rings

φ:2pp2\varphi:\mathbb{Z}_{2p}\cong\mathbb{Z}_{p}\oplus\mathbb{Z}_{2}

by φ(x(mod2p))=(x(modp),x(mod2))\varphi(x\pmod{2p})=(x\pmod{p},x\pmod{2}). It is easy to see that for any element (A,B)p2(0Ap1,B{0,1})(A,B)\in\mathbb{Z}_{p}\oplus\mathbb{Z}_{2}(0\leq A\leq p-1,B\in\{0,1\}), φ1(A,B)=A(p+1)+pB2p.\varphi^{-1}(A,B)=A(p+1)+pB\in\mathbb{Z}_{2p}. Then

iD1(2p)4iA=1(Ap)=1p14A(p+1)+pA=1(2Ap)=1p142A+p(mod42p1)(i=A(p+1)+p)\displaystyle\sum_{i\in D_{1}^{(2p)}}4^{i}\equiv\sum_{A=1\atop(\frac{A}{p})=-1}^{p-1}4^{A(p+1)+p}\equiv\sum_{A=1\atop(\frac{2A}{p})=-1}^{p-1}4^{2A+p}\pmod{4^{2p}-1}\qquad(i=A(p+1)+p)

From Definition 2 we know that

SA(4)\displaystyle S_{A}(4) =iD1(2p)4i+24p+2aD0(p)42a+3aD1(p)42a\displaystyle=\sum_{i\in D_{1}^{(2p)}}4^{i}+2\cdot 4^{p}+2\sum_{a\in D_{0}^{(p)}}4^{2a}+3\sum_{a\in D_{1}^{(p)}}4^{2a}
a=1(2ap)=1p14p+2a+24p+2a=1(ap)=1p142a+3a=1(ap)=1p142a(mod4N1)\displaystyle\equiv\sum_{a=1\atop(\frac{2a}{p})=-1}^{p-1}4^{p+2a}+2\cdot 4^{p}+2\sum_{a=1\atop(\frac{a}{p})=1}^{p-1}4^{2a}+3\sum_{a=1\atop(\frac{a}{p})=-1}^{p-1}4^{2a}\pmod{4^{N}-1}
4pa=1(ap)=(2p)p142a+24p+2a=1p142a+a=1(ap)=1p142a(mod4N1)\displaystyle\equiv 4^{p}\cdot\sum_{a=1\atop(\frac{a}{p})=-(\frac{2}{p})}^{p-1}4^{2a}+2\cdot 4^{p}+2\sum_{a=1}^{p-1}4^{2a}+\sum_{a=1\atop(\frac{a}{p})=-1}^{p-1}4^{2a}\pmod{4^{N}-1}
4p12a=1p1(1(2p)(ap))42a+24p+2a=1p142a+12a=1p1(1(ap))42a(mod4N1)\displaystyle\equiv 4^{p}\cdot\frac{1}{2}\sum_{a=1}^{p-1}(1-(\frac{2}{p})(\frac{a}{p}))4^{2a}+2\cdot 4^{p}+2\sum_{a=1}^{p-1}4^{2a}+\frac{1}{2}\sum_{a=1}^{p-1}(1-(\frac{a}{p}))4^{2a}\pmod{4^{N}-1}
(4p2+2+12)a=1p142a+24p12((2p)4p+1)Gp(mod4N1)\displaystyle\equiv(\frac{4^{p}}{2}+2+\frac{1}{2})\sum_{a=1}^{p-1}4^{2a}+2\cdot 4^{p}-\frac{1}{2}((\frac{2}{p})4^{p}+1)G_{p}\pmod{4^{N}-1}
4p+52(4N1151)+24p12((2p)4p+1)Gp(mod4N1)\displaystyle\equiv\frac{4^{p}+5}{2}(\frac{4^{N}-1}{15}-1)+2\cdot 4^{p}-\frac{1}{2}((\frac{2}{p})4^{p}+1)G_{p}\pmod{4^{N}-1}
12(34p5)+4p+524N11512((2p)4p+1)Gp(mod4N1)\displaystyle\equiv\frac{1}{2}(3\cdot 4^{p}-5)+\frac{4^{p}+5}{2}\cdot\frac{4^{N}-1}{15}-\frac{1}{2}((\frac{2}{p})4^{p}+1)G_{p}\pmod{4^{N}-1}

(2). By the definition of GpG_{p},

Gp2\displaystyle G_{p}^{2} =x,y=1p1(xyp)16x+y\displaystyle=\sum_{x,y=1}^{p-1}\big{(}\frac{xy}{p}\big{)}16^{x+y}
x,t=1p1(tp)16x(1+t)(mod4N1)(y=xt)\displaystyle\equiv\sum_{x,t=1}^{p-1}\big{(}\frac{t}{p}\big{)}16^{x(1+t)}\pmod{4^{N}-1}\qquad(y=xt)
(1p)(p1)+t=1p2(tp)x=1p116x(1+t)(mod4N1)\displaystyle\equiv\big{(}\frac{-1}{p}\big{)}(p-1)+\sum_{t=1}^{p-2}\big{(}\frac{t}{p}\big{)}\sum_{x=1}^{p-1}16^{x(1+t)}\pmod{4^{N}-1}
(1p)(p1)+t=1p2(tp)x=1p116x(mod4N1)\displaystyle\equiv\big{(}\frac{-1}{p}\big{)}(p-1)+\sum_{t=1}^{p-2}\big{(}\frac{t}{p}\big{)}\sum_{x=1}^{p-1}16^{x}\pmod{4^{N}-1}
(1p)(p1)(1p)(16p1151)(mod4N1)\displaystyle\equiv\big{(}\frac{-1}{p}\big{)}(p-1)-\big{(}\frac{-1}{p}\big{)}(\frac{16^{p}-1}{15}-1)\pmod{4^{N}-1}
(1p)(p4N115)(mod4N1)\displaystyle\equiv\big{(}\frac{-1}{p}\big{)}(p-\frac{4^{N}-1}{15})\pmod{4^{N}-1}

III Proof of Theorem 1

By Definition 1, CA(4)=log4(4N1d)C_{A}(4)=\log_{4}(\frac{4^{N}-1}{d}) where d=gcd(SA(4),4N1)d=\gcd(S_{A}(4),4^{N}-1). Since N=2pN=2p, 4N1=(4p+1)(4p1)4^{N}-1=(4^{p}+1)(4^{p}-1) and gcd(4p+1,4p1)=gcd(4p+1,2)=1\gcd(4^{p}+1,4^{p}-1)=\gcd(4^{p}+1,2)=1. We get d=d+dd=d_{+}d_{-} where both of

d+=gcd(SA(4),4p+1)andd=gcd(SA(4),4p1)d_{+}=\gcd(S_{A}(4),4^{p}+1)\quad\rm{and}\quad d_{-}=\gcd(S_{A}(4),4^{p}-1)

are odd. We need to determine d+d_{+} and dd_{-}.

Lemma 3.
d+={5,if 5p2;1,otherwise.\displaystyle d_{+}=\left\{\begin{array}[]{ll}5,&\textrm{if $5\mid p-2$;}\\ 1,&\textrm{otherwise.}\end{array}\right.
Proof.

Let \ell be a prime divisor of d+d_{+}. Then SA(4)4p+10(mod).S_{A}(4)\equiv 4^{p}+1\equiv 0\pmod{\ell}. From Lemma 2(1) and |4p+1\ell|4^{p}+1 we have

SA(4)4+2(4p1)15(4p+1)12((2p)+1)Gp(mod)\displaystyle S_{A}(4)\equiv-4+\frac{2(4^{p}-1)}{15}(4^{p}+1)-\frac{1}{2}\big{(}-(\frac{2}{p})+1\big{)}G_{p}\pmod{\ell} (1)

Since 4p+12(mod3)4^{p}+1\equiv 2\pmod{3}, we know that 5\ell\geq 5. Firstly we consider the case =5\ell=5. In this case, 4p+1(1)p+10(mod5)4^{p}+1\equiv(-1)^{p}+1\equiv 0\pmod{5} and

Gp=a=1p1(ap)42aa=1p1(ap)0(mod5)\displaystyle G_{p}=\sum_{a=1}^{p-1}\big{(}\frac{a}{p}\big{)}4^{2a}\equiv\sum_{a=1}^{p-1}\big{(}\frac{a}{p}\big{)}\equiv 0\pmod{5}

Then by the formula (1) we get SA(4)4415(4p+1)(mod5)S_{A}(4)\equiv-4-\frac{4}{15}(4^{p}+1)\pmod{5}. Therefore,

SA(4)\displaystyle S_{A}(4) 0(mod5)4p+1151(mod5)4p+115(mod25)\displaystyle\equiv 0\pmod{5}\Leftrightarrow\frac{4^{p}+1}{15}\equiv-1\pmod{5}\Leftrightarrow 4^{p}+1\equiv-15\pmod{25}
4p21(mod25)102(p2)\displaystyle\Leftrightarrow 4^{p-2}\equiv-1\pmod{25}\Leftrightarrow 10\mid 2(p-2)

The last equivalence can be obtained by the fact that the order of 4 modulo 25 is 10. Therefore, 5|d+5|d_{+} if and only if 5|p25|p-2. Moreover, assume that 5p25\mid p-2. If 254p+125\mid 4^{p}+1, then 42p1(mod25)4^{2p}\equiv 1\pmod{25} and then 102p10\mid 2p which contradicts to 5p25\mid p-2. In summary, 5d+5\mid d_{+} if and only if 5p25\mid p-2 and when 5|p25|p-2 we have 25d+.25\nmid d_{+}.

Now we assume 7\ell\geq 7. The formula (1) becomes

0SA(4)412((2p)+1)Gp(mod)\displaystyle 0\equiv S_{A}(4)\equiv-4-\frac{1}{2}\big{(}-(\frac{2}{p})+1\big{)}G_{p}\pmod{\ell} (2)

and by Lemma 2(2), Gp2(1p)p(mod).G_{p}^{2}\equiv\big{(}\frac{-1}{p}\big{)}p\pmod{\ell}. If p±1(mod8)p\equiv\pm 1\pmod{8} then (2p)=1\big{(}\frac{2}{p}\big{)}=1 and we get a contradiction 04(mod)0\equiv-4\pmod{\ell}. If p±3(mod8)p\equiv\pm 3\pmod{8} then (2p)=1\big{(}\frac{2}{p}\big{)}=-1 and Gp4(mod)G_{p}\equiv-4\pmod{\ell} by (2). Therefore 16Gp2(1p)p(mod)16\equiv G_{p}^{2}\equiv\big{(}\frac{-1}{p}\big{)}p\pmod{\ell} and then p16\ell\mid p-16 or p+16\ell\mid p+16. On the other hand, 22p=4p1(mod)2^{2p}=4^{p}\equiv-1\pmod{\ell} which means that the order of 2 modulo \ell is 4p4p. Therefore 4p14p\mid\ell-1 and 4p1p+154p\leq\ell-1\leq p+15 which implies p5p\leq 5. If p=3p=3, then l=13l=13. From G3=a=12(a3)42aG_{3}=\sum_{a=1}^{2}(\frac{a}{3})4^{2a} we get G3=42446(mod13)G_{3}=4^{2}-4^{4}\equiv-6\pmod{13}. By (2) we get G34(mod13)G_{3}\equiv-4\pmod{13} which is a contradiction. Then by p±3(mod8)p\equiv\pm 3\pmod{8} we get p=5p=5 and =21\ell=21 which contradicts to that \ell is a prime number. In summary, we get d+=5d_{+}=5 if 5p25\mid p-2 and d+=1d_{+}=1 otherwise. This completes the proof of Lemma 3. ∎

Lemma 4.

d=1d_{-}=1

Proof.

Let \ell be a prime divisor of dd_{-}. Then SA(4)4p10(mod).S_{A}(4)\equiv 4^{p}-1\equiv 0\pmod{\ell}. From

SA(4)24p+aD1(2p)1+aD0(p)23p12+22(mod3)S_{A}(4)\equiv 2\cdot 4^{p}+\sum_{a\in D_{1}^{(2p)}}1+\sum_{a\in D_{0}^{(p)}}2\equiv 3\cdot\frac{p-1}{2}+2\equiv 2\pmod{3}

we know that 5\ell\geq 5. From 4p1(mod)4^{p}\equiv 1\pmod{\ell} and 5\ell\geq 5 we know that the order of 4 modulo \ell is pp. Therefore p1p\mid\ell-1. On the other hand, by Lemma 2 we have

0SA(4)112((2p)+1)Gp(modl),Gp2(1p)p(mod)0\equiv S_{A}(4)\equiv-1-\frac{1}{2}(\big{(}\frac{2}{p}\big{)}+1)G_{p}\pmod{l},\quad G_{p}^{2}\equiv\big{(}\frac{-1}{p}\big{)}p\pmod{\ell}

If (2p)=1\big{(}\frac{2}{p}\big{)}=-1, we get contradiction 01(mod)0\equiv-1\pmod{\ell}. If (2p)=1\big{(}\frac{2}{p}\big{)}=1 then 1Gp(modl)1\equiv-G_{p}\pmod{l} and 1Gp2(1p)p(mod)1\equiv G_{p}^{2}\equiv\big{(}\frac{-1}{p}\big{)}p\pmod{\ell}. We get p+12\ell\mid\frac{p+1}{2} or p12\ell\mid\frac{p-1}{2}. Then we have p112(p+1)1=12p12p\leq\ell-1\leq\frac{1}{2}(p+1)-1=\frac{1}{2}p-\frac{1}{2} which is a contradiction. Therefore we get d=1d_{-}=1. ∎

Proof of Theorem 1  By Lemma 3 and Lemma 4 we get

d=d+d1={5,if 5p2;1,otherwise.\displaystyle d=d_{+}d_{1}=\left\{\begin{array}[]{ll}5,&\textrm{if $5\mid p-2$;}\\ 1,&\textrm{otherwise.}\end{array}\right.

Therefore

CA(4)=log4(4N1d)={log4(4N15),if 5p2;log4(4N1),otherwise.\displaystyle C_{A}(4)=\log_{4}(\frac{4^{N}-1}{d})=\left\{\begin{array}[]{ll}\log_{4}(\frac{4^{N}-1}{5}),&\textrm{if $5\mid p-2$;}\\ \log_{4}(4^{N}-1),&\textrm{otherwise.}\end{array}\right.

References

  • [1] T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, (revised edition), Elsevier, 2004.
  • [2] X. Du and Z. Chen, “Linear complexity of quaternary sequences generated using generalized cyclotomic classes modulo 2p2p,” IEICE Trans. Fundamentals, vol. E94-A, no. 5, pp. 1214-1217, 2011.
  • [3] H. G. Hu, “Comments on a new method to compute the 2-adic complexity of binary sequences ,” IEEE Trans. Inform. Theory, vol. 60, no. 9, pp. 5803-5804, 2014.
  • [4] A. Klapper and M. Goresky, “Feedback shift registers, 2-adic span, and combiners with memory,” Jour of Cryptology, vol. 10, no. 2, pp. 111-147, 1997.
  • [5] A. Klapper and J. Xu, “Algebraic feedback shift registers,” Theoretical Computer Science, vol. 226, no. 1-2, pp. 61-92, 1999.
  • [6] Y.-J. Kim, Y.-P. Hong and H.-Y. Song, “Autocorrelation of some quaternary cyclotomic sequences of length 2p2p,” IEICE Trans. Fundamentals, vol. E91-A, no. 12, pp. 3679-3684, 2008.
  • [7] S. M. Krone and D. V. Sarwate, “Quadriphase sequences for spread-spectrum multiple-access communication,” IEEE Trans. Inform. Theory, vol. 30, no. 3, pp. 520-529, 1984.