This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\savesymbol

iint \savesymboliiint \savesymboliiiint \savesymbolidotsint \restoresymbolTXFiint \restoresymbolTXFiiint \restoresymbolTXFiiiint \restoresymbolTXFidotsint

The 1D1D-wave bottom-strange baryons and possible interpretation of Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0}

Wen-Jia Wang1, Yu-Hui Zhou1, Li-Ye Xiao1 111E-mail: [email protected], Xian-Hui Zhong2,3 222E-mail: [email protected] 1)Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China 2) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 3) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
Abstract

Inspired by the LHCb’s newest observation of two new excited Ξb0\Xi_{b}^{0} states, we systematically study the strong decays of the low-lying λ\lambda- and ρ\rho-modes 1D1D-wave Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} baryons using the chiral quark model within the jj-jj coupling scheme. Based on the measured masses and strong decay properties of Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0}, we explain the two states as the λ\lambda-mode 1D1D Ξb\Xi_{b} states with JP=3/2+J^{P}=3/2^{+} and JP=5/2+J^{P}=5/2^{+}, respectively. Moreover, under this assignment, another dominant decay channel of Ξb(6327)0\Xi_{b}(6327)^{0} is Ξbπ\Xi^{\prime}_{b}\pi and that of Ξb(6333)0\Xi_{b}(6333)^{0} is Ξbπ\Xi_{b}^{*}\pi. Hence, the decay modes Ξbπ\Xi^{\prime}_{b}\pi and Ξbπ\Xi_{b}^{*}\pi may be another ideal channels as well to decode the inner structure of Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0}, respectively. For other unseen 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} states, our results indicate: (i) Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} are most likely to be narrow states with a width of Γ(1230)\Gamma\simeq(12-30) MeV, and dominantly decay into ΣbK\Sigma_{b}K and ΣbK\Sigma^{*}_{b}K, respectively; (ii) The 1D1D Ξb\Xi^{\prime}_{b} baryons are not broad states, and the widths vary in the range of Γ(1446)\Gamma\simeq(14-46) MeV. These states have a good potential to be observed in their dominant decay processes.

I Introduction

Establishing and improving hadron spectroscopy always is a key subject in hadron physics. Completing this subject can help us to understand the hadron structure, and then improve our understanding of the dynamics of Quantum Chromodynamics (QCD). As an indispensable part of hadrons, single heavy baryons play an important role since heavy quark symmetry is a good approximation and can provide some qualitative properties, especially in the baryons containing the bottom (bb) quark. However, differing from the charmed baryons, searching for the bottom states is quite difficult for experiment since higher energy and higher luminance of the beams are required to produce them. Fortunately, experimenters have made important progress in searching for the bottom baryons in recent years [1], which provides us good opportunities to establish an abundant spectrum by decoding the inner structures of these newly observed bottom baryons.

In 2012, two narrow 1P1P Λb0\Lambda_{b}^{0} baryons, denoted as Λb(5912)0\Lambda_{b}(5912)^{0} and Λb(5920)0\Lambda_{b}(5920)^{0}, were firstly observed by the LHCb Collaboration [2] and confirmed by the CDF Collaboration [3] the following year. Later, two bottom baryons, i.e., Ξb(6227)\Xi_{b}(6227)^{-} [4] and Σb(6097)±\Sigma_{b}(6097)^{\pm} [5], were found by the LHCb Collaboration. Recently, two 1D1D Λb0\Lambda_{b}^{0} candidates, Λb(6146)0\Lambda_{b}(6146)^{0} and Λb(6152)0\Lambda_{b}(6152)^{0}, were discovered by the LHCb Collaboration in the Λb0π+π\Lambda_{b}^{0}\pi^{+}\pi^{-} spectrum [6]. This may be the first time that the low-lying DD-wave singly bottom baryons are observed in experiment. In addition, four extremely narrow excited Ωb\Omega_{b} states, Ωb(6316)\Omega_{b}(6316)^{-}, Ωb(6330)\Omega_{b}(6330)^{-}, Ωb(6340)\Omega_{b}(6340)^{-} and Ωb(6350)\Omega_{b}(6350)^{-}, were announced by the LHCb Collaboration in the Ξb0K\Xi_{b}^{0}K^{-} mass spectrum[7] in 2020. These observed single bottom baryons have stimulated a wide discussion [19, 18, 21, 20, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26].

Very recently, the LHCb Collaboration again reported their new discovery of two new excited Ξb0\Xi_{b}^{0} states in the Λb0Kπ+\Lambda_{b}^{0}K^{-}\pi^{+} mass spectrum using a data sample of pppp collisions [27]. The measured masses and decay widths of these two states are

m(Ξb(6327)0)=6327.280.21+0.23±0.08±0.24MeV,\displaystyle m(\Xi_{b}(6327)^{0})=6327.28^{+0.23}_{-0.21}\pm 0.08\pm 0.24~{}\text{MeV}, (1)
m(Ξb(6333)0)=6332.690.18+0.17±0.03±0.22MeV,\displaystyle m(\Xi_{b}(6333)^{0})=6332.69^{+0.17}_{-0.18}\pm 0.03\pm 0.22~{}\text{MeV}, (2)
Γ(Ξb(6327)0)<2.20(2.56)MeV,\displaystyle\Gamma(\Xi_{b}(6327)^{0})<2.20(2.56)~{}\text{MeV}, (3)
Γ(Ξb(6333)0)<1.55(1.85)MeV,\displaystyle\Gamma(\Xi_{b}(6333)^{0})<1.55(1.85)~{}\text{MeV}, (4)

where the natural widths Γ\Gamma correspond to 90%(95%)90\%(95\%) confidence level upper limits. It is also found that the Ξb(6327)0\Xi_{b}(6327)^{0} resonance observed in the Λb0Kπ+\Lambda_{b}^{0}K^{-}\pi^{+} final states is dominantly contributed by the intermediate channel Σb+K\Sigma_{b}^{+}K^{-}, while the Ξb(6333)0\Xi_{b}(6333)^{0} resonance is significantly contributed by the intermediate channel Σb+K\Sigma_{b}^{*+}K^{-}. To decode their inner structure and analysis their dynamic mechanism in theory is necessary. Before the LHCb’s measurement [27], there exist many theoretical predictions of the mass spectra of the Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} baryons with various models in the literature [23, 11, 28, 24, 25, 10, 26, 29, 30, 31, 32, 33, 34], etc. We collect the some theoretical predictions of the spectrum for the 1D1D Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} baryons in Table 1. From the table, the two new exited Ξb0\Xi_{b}^{0} states observed by the LHCb Collaboration  [27] are in the predicted mass region of the λ\lambda-mode 1D1D Ξb\Xi_{b} resonances with spin-parity JP=3/2+J^{P}=3/2^{+} and JP=5/2+J^{P}=5/2^{+} [16, 29, 30, 31, 32, 33]. Except mass spectrum, decay property is one of the important bases for determining hadron’s properties. However, there are only a few discussions of the strong decays of the 1D1D bottom baryons [16, 17, 22]. It should be pointed out that the predicted strong decay properties of the λ\lambda-mode 1D1D Ξb\Xi_{b} resonances with spin-parity JP=3/2+J^{P}=3/2^{+} and JP=5/2+J^{P}=5/2^{+} in Refs. [16, 17] are in good agreement with the properties of the two new exited Ξb0\Xi_{b}^{0} states observed by the LHCb Collaboration [27]. Recently, Bijker et al. [35] assigned the newly observed Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} states as the λ\lambda-mode 1D1D Ξb\Xi_{b} resonances with spin-parity JP=3/2+J^{P}=3/2^{+} and JP=5/2+J^{P}=5/2^{+} as well both within the elementary emission model and the quark-pair creation model. The same theoretical results were obtained in Ref. [10] with the method of QCD sum rules.

Table 1: The classifications and masses(MeV) of the 1D1D-wave Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} states within the jj-jj coupling scheme. Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} stand for the bottom baryons belonging to flavor antitriplet 𝟑¯F\mathbf{\bar{3}}_{F} and flavor sextet 𝟔F\mathbf{6}_{F}, respectively.
State Quantum number Mass
Ξb()|JP,jλ(ρ)\Xi^{(^{\prime})}_{b}|J^{P},j\rangle_{\lambda(\rho)} lλl_{\lambda} lρl_{\rho} LL sρs_{\rho} jj JPJ^{P} RQM [29] QM [30] CQC [31] CQM [32] hCQM [33] QPM [16]
Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} 2 0 2 0 2 32+\frac{3}{2}^{+} 6366 6311 6373 6359 6386 6327
Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda} 2 0 2 0 2 52+\frac{5}{2}^{+} 6373 6300 6365 6369 6330
Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} 0 2 2 0 2 32+\frac{3}{2}^{+}
Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} 0 2 2 0 2 52+\frac{5}{2}^{+}
Ξb|JP=12+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda} 2 0 2 1 1 12+\frac{1}{2}^{+} 6447 6420 6486
Ξb|JP=32+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda} 2 0 2 1 1 32+\frac{3}{2}^{+} 6459 6410 6488
Ξb|JP=32+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} 2 0 2 1 2 32+\frac{3}{2}^{+} 6431 6412 6456
Ξb|JP=52+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda} 2 0 2 1 2 52+\frac{5}{2}^{+} 6432 6402 6403 6457
Ξb|JP=52+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda} 2 0 2 1 3 52+\frac{5}{2}^{+} 6420 6377 6407
Ξb|JP=72+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\lambda} 2 0 2 1 3 72+\frac{7}{2}^{+} 6414 6405 6390 6408
Ξb|JP=12+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho} 0 2 2 1 1 12+\frac{1}{2}^{+}
Ξb|JP=32+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho} 0 2 2 1 1 32+\frac{3}{2}^{+}
Ξb|JP=32+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} 0 2 2 1 2 32+\frac{3}{2}^{+}
Ξb|JP=52+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} 0 2 2 1 2 52+\frac{5}{2}^{+}
Ξb|JP=52+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho} 0 2 2 1 3 52+\frac{5}{2}^{+}
Ξb|JP=72+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\rho} 0 2 2 1 3 72+\frac{7}{2}^{+}

In the present work, we will further investigate the probable assignments of the new Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} states. Furthermore, considering the powerful detecting ability of LHCb, etc., more and more 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons are excepted to be observed in the near future. Thus, it is necessary for us to carry out a systematical study of the strong decay properties of the 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons including both the ρ\rho- and λ\lambda-mode excitations. By analyzing the decay properties of the 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons, we will suggest ideal decay channels to establish missing states in the follow-up experiments. It should be mentioned that proper consideration of the heavy quark symmetry is necessary for the bottom baryons, wherein the states can more favor the jj-jj coupling scheme [36, 19, 30]. Hence, we study the strong decays of the ρ\rho- and λ\lambda-mode 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons within the jj-jj scheme. With this coupling scheme, the classifications of the 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} states investigated in this work are listed in Table 1.

The paper is organized as follows. In Sec. II, we give a brief review of our theoretical method and the relationship between the jj-jj coupling scheme and the LL-SS coupling scheme. In Sec. III, we investigate the strong decay properties of the ρ\rho- and λ\lambda-mode 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons within the jj-jj scheme, where we attempt to decode the properties of the newly observed Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} states. Finally, we present a short summarization in Sec. IV.

II Chiral quark model

In this work, we systematically investigate the strong decay properties of both the ρ\rho- and λ\lambda-modes 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons within the chiral quark model [37, 38, 39]. In the chiral quark model, the effective low energy quark-pseudoscalar-meson coupling in the SU(3) flavor basis at tree level is given by [37]

Hm=j1fmψ¯jγμjγ5jψjτμϕm,\displaystyle H_{m}=\sum_{j}\frac{1}{f_{m}}\bar{\psi}_{j}\gamma^{j}_{\mu}\gamma^{j}_{5}\psi_{j}\vec{\tau}\cdot\partial^{\mu}\phi_{m}, (5)

where fmf_{m} represents the pseudoscalar meson decay constant and ψj\psi_{j} denotes the jj-th quark field in a baryon. ϕm\phi_{m} stands for the pseudoscalar meson octet and reads

ϕm=(12π0+16ηπ+K+π12π0+16ηK0KK¯023η).\displaystyle\phi_{m}=\begin{pmatrix}\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta&\pi^{+}&K^{+}\cr\pi^{-}&-\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta&K^{0}\cr K^{-}&\bar{K}^{0}&-\sqrt{\frac{2}{3}\eta}\end{pmatrix}. (6)

Considering the harmonic oscillator spatial wave function of baryons in this work being nonrelativistic form, the quark-pseudoscalar-meson coupling is adopt the nonrelativistic form as well and is described by [40, 41, 42]

Hmnr=j{ωmEf+Mf𝝈jPf+ωmEi+Mi𝝈jPi\displaystyle H^{nr}_{m}=\sum_{j}\Big{\{}\frac{\omega_{m}}{E_{f}+M_{f}}\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{P}_{f}+\frac{\omega_{m}}{E_{i}+M_{i}}\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{P}_{i} (7)
𝝈jq+ωm2μq𝝈jpj}Ijϕm.\displaystyle-\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{q}+\frac{\omega_{m}}{2\mu_{q}}\mbox{\boldmath$\sigma$\unboldmath}_{j}\cdot\textbf{p}^{\prime}_{j}\Big{\}}I_{j}\phi_{m}.

Here, ωm\omega_{m} and q correspond to the energy and three-vector momentum of the meson, respectively; Ei(f)E_{i(f)}, Mi(f)M_{i(f)} and Pi(f)\textbf{P}_{i(f)} represent the energy, mass and three-vector momentum of the initial (final) baryon; The 𝝈j\mbox{\boldmath$\sigma$\unboldmath}_{j} and μq\mu_{q} denote the Pauli spin vector and the reduced mass of the jj-th quark in the initial and final baryons, respectively. pj=pj(mj/M)Pc.m.\textbf{p}^{\prime}_{j}=\textbf{p}_{j}-(m_{j}/M)\textbf{P}_{c.m.} is the internal momentum of the jj-th quark in the baryon rest frame and IjI_{j} is the isospin operator associated with the pseudoscalar meson; φm=e()iqrj\varphi_{m}=e^{(-)i\textbf{q}\cdot\textbf{r}_{j}} for absorbing (emitting) a meson.

According to the non-relativistic operator of quark-pseudoscalar-meson coupling, the partial decay amplitudes MJiz,JfzM_{J_{iz},J_{fz}} of a light pseudoscalar meson emission in a baryon strong decays can be worked out. Here, JizJ_{iz} and JfzJ_{fz} stand for the third components of the total angular momenta of the initial and final baryons, respectively. Then, the strong decay width can be calculated by

Γ=(δfm)2(Ef+Mf)|q|4πMi12Ji+1JizJfz|MJiz,Jfz|2,\Gamma=\left(\frac{\delta}{f_{m}}\right)^{2}\frac{(E_{f}+M_{f})|q|}{4\pi M_{i}}\frac{1}{2J_{i}+1}\sum_{J_{iz}J_{fz}}|M_{J_{iz},J_{fz}}|^{2}, (8)

where δ\delta is a global parameter accounting for the strength of the quark-meson couplings, which has been determined by experimental data in works [38, 39]. Here, we fix its value the same as that in Refs. [38, 39], i.e. δ=0.557\delta=0.557 MeV.

For the single bottom baryons, decoding their inner structure within the jj-jj coupling scheme is considered preferable to that within the LL-SS coupling scheme (listed in Table 2). In the heavy quark symmetry limit [36], the states within the the jj-jj coupling scheme can be expressed as linear combinations of the states within the LL-SS coupling scheme via the following relationship [30]:

|[[(lρlλ)Lsρ]jsQ]J=(1)L+sρ+1/2+J2j+1S2S+1(LsρjsQJS)|[(lρlλ)L(sρsQ)S]JP.\begin{split}\big{|}[[(l_{\rho}l_{\lambda})_{L}s_{\rho}]_{j}s_{Q}]_{J}\big{\rangle}=(-1)^{L+s_{\rho}+1/2+J}\sqrt{2j+1}\sum_{S}\sqrt{2S+1}\\ \left(\begin{array}[]{ccc}L&s_{\rho}&j\\ s_{Q}&J&S\\ \end{array}\right)\big{|}[(l_{\rho}l_{\lambda})_{L}(s_{\rho}s_{Q})_{S}]_{J^{P}}\big{\rangle}.\end{split} (9)

In the expression, lρl_{\rho} and lλl_{\lambda} correspond to the quantum numbers of the orbital angular momenta for the ρ\rho-mode and λ\lambda-mode (see Fig. 1) oscillators, respectively. LL (=|lρlλ|,,lρ+lλ=|l_{\rho}-l_{\lambda}|,\cdot\cdot\cdot,l_{\rho}+l_{\lambda}) corresponds to the quantum number of the total orbital angular momentum. sρs_{\rho} is the quantum numbers of the total spin of the two light quarks and sQs_{Q} is the spin of the heavy quark. SS (=|sρsQ|,,sρ+sQ=|s_{\rho}-s_{Q}|,\cdot\cdot\cdot,s_{\rho}+s_{Q}) denotes the quantum number of the total spin angular momentum.

Figure 1: The ρ\rho- and λ\lambda-mode excitations in a single bottom baryon. Here ρ\rho and λ\lambda are the Jacobi coordinates defined as ρ=12(𝐫1𝐫2)\rho=\frac{1}{\sqrt{2}}(\mathbf{r}_{1}-\mathbf{r}_{2}) and λ=16(𝐫1+𝐫22𝐫3)\lambda=\frac{1}{\sqrt{6}}(\mathbf{r}_{1}+\mathbf{r}_{2}-2\mathbf{r}_{3}), respectively. q1q_{1} and q2q_{2} stand for the light quarks(uu, ss), and Q3Q_{3} stands for the bottom quark(bb).
Table 2: The classifications of the 1D1D-wave Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} states within the LL-SS coupling scheme. Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} stand for the bottom baryons belonging to flavor antitriplet 𝟑¯F\mathbf{\bar{3}}_{F} and flavor sextet 𝟔F\mathbf{6}_{F}, respectively.
Notation lλl_{\lambda} lρl_{\rho} LL sρs_{\rho} sQs_{Q} SS JPJ^{P} Wavefunction\rm Wave\ function
|ΞbDλλ232+{\ket{\Xi_{b}{{}^{2}}D_{\lambda\lambda}\frac{3}{2}^{+}}} 0 22 22 0 12\frac{1}{2} 12\frac{1}{2} 32+\frac{3}{2}^{+} Ψ2Lzλλ2χszρϕΞb{}^{2}\Psi^{\lambda\lambda}_{2L_{z}}\chi^{\rho}_{s_{z}}\phi_{\Xi_{b}}
|ΞbDλλ252+{\ket{\Xi_{b}{{}^{2}}D_{\lambda\lambda}\frac{5}{2}^{+}}} 22 0 22 0 12\frac{1}{2} 12\frac{1}{2} 52+\frac{5}{2}^{+}
|ΞbDρρ232+{\ket{\Xi_{b}{{}^{2}}D_{\rho\rho}\frac{3}{2}^{+}}} 0 22 22 0 12\frac{1}{2} 12\frac{1}{2} 32+\frac{3}{2}^{+} Ψ2Lzρρ2χszρϕΞb{}^{2}\Psi^{\rho\rho}_{2L_{z}}\chi^{\rho}_{s_{z}}\phi_{\Xi_{b}}
|ΞbDρρ252+{\ket{\Xi_{b}{{}^{2}}D_{\rho\rho}\frac{5}{2}^{+}}} 0 22 22 0 12\frac{1}{2} 12\frac{1}{2} 52+\frac{5}{2}^{+}
|ΞbDλλ232+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{2}}D_{\lambda\lambda}\frac{3}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 12\frac{1}{2} 32+\frac{3}{2}^{+} Ψ2Lzλλ2χszλϕΞb{}^{2}\Psi^{\lambda\lambda}_{2L_{z}}\chi^{\lambda}_{s_{z}}\phi_{\Xi^{{}^{\prime}}_{b}}
|ΞbDλλ252+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{2}}D_{\lambda\lambda}\frac{5}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 12\frac{1}{2} 52+\frac{5}{2}^{+}
|ΞbDλλ412+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\lambda\lambda}\frac{1}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 12+\frac{1}{2}^{+} Ψ2Lzλλ2χszSϕΞb{}^{2}\Psi^{\lambda\lambda}_{2L_{z}}\chi^{S}_{s_{z}}\phi_{\Xi^{{}^{\prime}}_{b}}
|ΞbDλλ432+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\lambda\lambda}\frac{3}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 32+\frac{3}{2}^{+}
|ΞbDλλ452+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\lambda\lambda}\frac{5}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 52+\frac{5}{2}^{+}
|ΞbDλλ472+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\lambda\lambda}\frac{7}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 72+\frac{7}{2}^{+}
|ΞbDρρ232+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{2}}D_{\rho\rho}\frac{3}{2}^{+}}} 0 22 22 11 12\frac{1}{2} 12\frac{1}{2} 32+\frac{3}{2}^{+} Ψ2Lzρρ2χszλϕΞb{}^{2}\Psi^{\rho\rho}_{2L_{z}}\chi^{\lambda}_{s_{z}}\phi_{\Xi^{{}^{\prime}}_{b}}
|ΞbDρρ252+{\ket{\Xi^{{}^{\prime}}_{b}{{}^{2}}D_{\rho\rho}\frac{5}{2}^{+}}} 0 22 22 11 12\frac{1}{2} 12\frac{1}{2} 52+\frac{5}{2}^{+}
|ΞbDρρ412+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\rho\rho}\frac{1}{2}^{+}}} 0 22 22 11 12\frac{1}{2} 32\frac{3}{2} 12+\frac{1}{2}^{+} Ψ2Lzρρ2χszSϕΞb{}^{2}\Psi^{\rho\rho}_{2L_{z}}\chi^{S}_{s_{z}}\phi_{\Xi^{{}^{\prime}}_{b}}
|ΞbDρρ432+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\rho\rho}\frac{3}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 32+\frac{3}{2}^{+}
|ΞbDρρ452+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\rho\rho}\frac{5}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 52+\frac{5}{2}^{+}
|ΞbDρρ472+{\ket{\Xi_{b}^{{}^{\prime}}{{}^{4}}D_{\rho\rho}\frac{7}{2}^{+}}} 22 0 22 11 12\frac{1}{2} 32\frac{3}{2} 72+\frac{7}{2}^{+}

In the calculation, the standard quark model parameters are adopted. Namely, we set mu=md=330m_{u}=m_{d}=330 MeV, ms=450m_{s}=450 MeV and mb=5000m_{b}=5000 MeV for the constituent quark masses. The decay constants for π\pi and KK mesons are taken as fπ=132f_{\pi}=132 MeV and fK=160f_{K}=160 MeV, respectively. The masses of the initial baryons(1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons) are estimated based on the various theoretical predictions listed in Table 1. The masses of the final SS-wave ground mesons and baryons used in the calculations are adopted from the Particle Data Group [1], and those of the final PP-wave single-bottom baryons are taken the predictions in Ref. [29]. The spatial wave function ΨLLzN{}^{N}\Psi_{LL_{z}} of the baryons is taken the form of non-relativistic harmonic oscillator spatial-wave function. The harmonic oscillator parameter αρ\alpha_{\rho} for us/dsus/ds system is taken as αρ=420\alpha_{\rho}=420 MeV [17, 18], and another harmonic oscillator parameter αλ\alpha_{\lambda} is estimated by [38, 17, 18]

αλ2=3mQ2mq+mQαρ2.\displaystyle\alpha^{2}_{\lambda}=\sqrt{\frac{3m_{Q}}{2m_{q}+m_{Q}}}\alpha^{2}_{\rho}. (10)

We notice that in the simplified case the ratio between oscillator frequencies ωλ\omega_{\lambda} and ωρ\omega_{\rho} reads

ωλωρ=13+2mq3mq<1.\displaystyle\frac{\omega_{\lambda}}{\omega_{\rho}}=\sqrt{\frac{1}{3}+\frac{2m_{q}}{3m_{q}}}<1. (11)

This expression indicates the excitation energy of the λ\lambda-mode is smaller than that of the ρ\rho-mode. Thus, the ρ\rho-excitation modes are heavier than the λ\lambda-excitation modes for the 1D1D Ξb\Xi_{b} and Ξb\Xi^{\prime}_{b} baryons. The realistic potential is much more complicated, while the general feature should be similar.

III Calculations and Results

We conduct a systematic investigation of strong decays of ρ\rho- and λ\lambda-modes 1D1D Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} within the jj-jj coupling scheme in the framework of the chiral quark model, emphatically explaining the two newly discovered states by LHCb Collaboration [27] and giving predictions of other missing 1D1D-wave states. Our theoretical results are presented as follows.

III.1 Ξb\Xi_{b} states

The flavor wave functions of the Ξb\Xi_{b} baryons belonging to flavor antitriplet 𝟑¯F\mathbf{\bar{3}}_{F}, ϕΞb\phi_{\Xi_{b}}, are antisymmetric, thus, their spin-spatial wave functions must be antisymmetric as well. Hence, according to the symmetry, there are two λ\lambda-mode 1D1D Ξb\Xi_{b} baryons, Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} and Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}, and two ρ\rho-mode 1D1D Ξb\Xi_{b} baryons, Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}. The predicted masses of the two λ\lambda-mode 1D1D Ξb\Xi_{b} baryons are about 6.3-6.4 GeV (see Table 1), which are consistent with the measured masses of the newly observed Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} states at LHCb [27]. As the possible assignments, it is crucial to investigate the decay behaviors of the two λ\lambda-mode 1D1D Ξb\Xi_{b} baryons. For completeness, we present the prediction of the strong decays of the other two ρ\rho-mode 1D1D Ξb\Xi_{b} baryons, and hope to provide some valuable reference for the future experiment exploring.

For the λ(ρ)\lambda(\rho)-mode 1D1D Ξb\Xi_{b} baryons, there is one-to-one correspondence between the jj-jj coupling scheme and the LL-SS coupling scheme, namely, |JP=32+,2λ(ρ)=|Dλλ(ρρ)232+|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda(\rho)}=|{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{3}{2}^{+}\rangle and |JP=52+,2λ(ρ)=|Dλλ(ρρ)252+|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda(\rho)}=|{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{5}{2}^{+}\rangle.

III.1.1 λ\lambda-mode excitations

Considering the uncertainties of the predicted masses of Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} and Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}, we plot the decay width as a function of the mass in the range of M=(63006400)M=(6300-6400) MeV in Fig. 2. From the figure, it is found that the two λ\lambda-mode 1D1D Ξb\Xi_{b} baryons both are narrow states with a width of several MeV. It’s important to note that the partial decay widths of Γ[Ξb|JP=32+,2λΣbK]\Gamma[\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma_{b}K] and Γ[Ξb|JP=52+,2λΣbK]\Gamma[\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma^{*}_{b}K] increase rapidly with the masses increasing(see Fig. 2). Similar results were also obtained in the previous works [16, 17].

The JP=3/2+J^{P}=3/2^{+} state Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} mainly decays into the ΣbK\Sigma_{b}K, Ξbπ\Xi^{\prime}_{b}\pi and Ξbπ\Xi^{*}_{b}\pi channels. The Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} is a good assignment of the newly observed Ξb(6327)0\Xi_{b}(6327)^{0} in the Λb0Kπ+\Lambda_{b}^{0}K^{-}\pi^{+} final state at LHCb [27], since it is dominantly contributed by the intermediate channel Σb+K\Sigma_{b}^{+}K^{-}. With the measured mass M=6327M=6327 MeV of Ξb(6327)0\Xi_{b}(6327)^{0}, our predicted decay properties of Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} have been shown in Table 3. It is seen that the total decay width

ΓTotal2.56MeV,\displaystyle\Gamma_{\text{Total}}\simeq 2.56\ \ \mathrm{MeV}, (12)

is consistent with the observations. The branching fraction for the ΣbK\Sigma_{b}K channel is

Γ[Ξb|JP=32+,2λΣbK]ΓTotal23%.\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma_{b}K]}{\Gamma_{\text{Total}}}\sim 23\%. (13)

In addition, we get that

Γ[Ξb|JP=32+,2λΞbπ]ΓTotal51%,\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}\rightarrow\Xi^{\prime}_{b}\pi]}{\Gamma_{\text{Total}}}\sim 51\%, (14)
Γ[Ξb|JP=32+,2λΞbπ]ΓTotal26%.\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}\rightarrow\Xi^{{}^{\prime}*}_{b}\pi]}{\Gamma_{\text{Total}}}\sim 26\%. (15)

If the newly observed Ξb(6327)0\Xi_{b}(6327)^{0} state corresponds to Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} indeed, besides the ΣbK\Sigma_{b}K channel, the Ξbπ\Xi^{\prime}_{b}\pi and Ξbπ\Xi^{{}^{\prime}*}_{b}\pi may be another two interesting channels for the observation of Ξb(6327)\Xi_{b}(6327) in future experiments. The Ξb(6327)\Xi_{b}(6327) resonance should be observed in the Ξbππ\Xi_{b}\pi\pi final state as well.

Figure 2: Partial and total strong decay widths of the λ\lambda-mode 1D1D Ξb\Xi_{b} states as a function of the masses. The solid curves stand for the total widths. Some decay channels are not shown in the figure for their small partial decay widths.
Table 3: The partial decay widths(MeV) of Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} assigned as λ\lambda-mode 1D1D Ξb\Xi_{b} baryons Ξb|JP=32+,2λ\Xi_{b}\Ket{J^{P}=\frac{3}{2}^{+},2}_{\lambda} and Ξb|JP=52+,2λ\Xi_{b}\Ket{J^{P}=\frac{5}{2}^{+},2}_{\lambda}, respectively.
Decay width Ξb|JP=32+,2λ¯\underline{~{}~{}~{}~{}~{}~{}\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}~{}~{}~{}~{}~{}~{}} Ξb|JP=52+,2λ¯\underline{~{}~{}~{}~{}~{}~{}\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}~{}~{}~{}~{}~{}~{}}
Ξb(6327)0\Xi_{b}(6327)^{0} Ξb(6333)0\Xi_{b}(6333)^{0}
Γ[ΣbK]\Gamma[\Sigma_{b}K] 0.59 0.00
Γ[ΣbK]\Gamma[\Sigma^{*}_{b}K] - 0.11
Γ[Ξbπ]\Gamma[\Xi^{{}^{\prime}}_{b}\pi] 1.30 0.41
Γ[Ξbπ]\Gamma[\Xi^{{}^{\prime}*}_{b}\pi] 0.67 1.64
ΓTotal\Gamma_{\text{Total}} 2.56 2.16
Expt. <<2.20(2.56) <<1.55(1.85)

For the JP=5/2+J^{P}=5/2^{+} state Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda} (see Fig. 2), the mainly decay channels are the Ξbπ\Xi^{\prime}_{b}\pi, ΣbK\Sigma^{*}_{b}K and Ξbπ\Xi^{*}_{b}\pi channels. Combining the natures of the newly observed state Ξb(6333)0\Xi_{b}(6333)^{0}, we obtain that this new state may be an assignment of Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}. Fixing the mass of Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda} at M=6333M=6333 MeV, we collect its decay properties in Table 3 as well. It is found that the total decay width

ΓTotal2.16MeV,\displaystyle\Gamma_{\text{Total}}\simeq 2.16\ \ \mathrm{MeV}, (16)

is close to the upper limit of the observed one. The branching fractions for the main decay channels are predicted to be

Γ[Ξb|JP=52+,2λΣbK]ΓTotal5%,\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{Total}}}\sim 5\%, (17)
Γ[Ξb|JP=52+,2λΞbπ]ΓTotal19%,\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Xi^{\prime}_{b}\pi]}{\Gamma_{\text{Total}}}\sim 19\%, (18)
Γ[Ξb|JP=52+,2λΞbπ]ΓTotal76%.\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Xi^{{}^{\prime}*}_{b}\pi]}{\Gamma_{\text{Total}}}\sim 76\%. (19)

Thus, basing on our calculations, these strong decay processes may be measured due to their significant branching fractions. To confirm the Ξb(6333)\Xi_{b}(6333) resonance, the Ξbππ\Xi_{b}\pi\pi final state is worth observing in experiments.

III.1.2 ρ\rho-mode excitations

There are some qualitative discussions for the masses of ρ\rho-mode 1D1D Ξb\Xi_{b} states [34], and pointed out that the masses of ρ\rho-mode excitations were about 100 MeV heavier than those of λ\lambda-mode excitations. Hence, the masses of the two ρ\rho-mode 1D1D Ξb\Xi_{b} states, Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}, may vary in the range of M=(64006500)M=(6400-6500) MeV, and we are most likely to exclude the two ρ\rho-mode states as assignments of Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0} based on the masses. We calculate the decay properties of the two ρ\rho-mode 1D1D Ξb\Xi_{b} states as a function of the mass within the possible range allowed, as shown in Fig. 3. The total decay widths of the two ρ\rho-mode 1D1D Ξb\Xi_{b} states are about Γ(1230)\Gamma\simeq(12-30) MeV within the mass range what we considered.

Figure 3: Partial and total strong decay widths of the ρ\rho-mode 1D1D Ξb\Xi_{b} states as a function of the masses. The solid curves stand for the total widths. Some decay channels are not shown in the figure for their small partial decay widths.

Meanwhile, we notice that Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} decays mainly through the ΣbK\Sigma_{b}K channel, and the predicted branching ratio is

Γ[Ξb|JP=32+,2ρΣbK]ΓTotal51%.\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}\rightarrow\Sigma_{b}K]}{\Gamma_{\text{Total}}}\sim 51\%. (20)

For the Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} state, the main decay channel is ΣbK\Sigma^{*}_{b}K and the corresponding branching fraction is

Γ[Ξb|JP=52+,2ρΣbK]ΓTotal(5358)%.\displaystyle\frac{\Gamma[\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{Total}}}\sim(53-58)\%. (21)

If we don’t care about masses of Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}, the two ρ\rho-mode 1D1D Ξb\Xi_{b} states are good candidates of the newly observed states Ξb(6327)0\Xi_{b}(6327)^{0} and Ξb(6333)0\Xi_{b}(6333)^{0}, respectively, where the ΣbK\Sigma_{b}K process dominates the decay of Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}, while the ΣbK\Sigma^{*}_{b}K channel dominates the decay of Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}. To further clarify the inner structures of the two newly observed states and verify our predictions, more experimental observations are needed.

III.2 Ξb\Xi^{{}^{\prime}}_{b} states

The flavor wave functions of the Ξb\Xi^{\prime}_{b} baryons belonging to sextet 𝟔F\mathbf{6}_{F}, ϕΞb\phi_{\Xi^{\prime}_{b}}, are symmetric, thus, their spin-spatial wave functions must be symmetric as well. Based on the symmetry, there are six λ\lambda-mode 1D1D Ξb\Xi^{\prime}_{b} baryons and six ρ\rho-mode 1D1D Ξb\Xi^{\prime}_{b} baryons, as listed in Table  1. According to the theoretical predictions by various quark model, the masses of λ\lambda-mode 1D1D Ξb\Xi^{{}^{\prime}}_{b} baryons vary in the region of M=(63806480)M=(6380-6480) MeV. Considering the mass of the ρ\rho-mode excitation being 100\sim 100 MeV heavier than the λ\lambda-mode excitation, the ρ\rho-mode 1D1D Ξb\Xi^{{}^{\prime}}_{b} baryons may be in the range of M=(64806580)M=(6480-6580) MeV. From the point of view of mass, the possibility of the newly observed Ξb0(6327)\Xi^{0}_{b}(6327) and Ξb0(6333)\Xi^{0}_{b}(6333) states as the Ξb\Xi^{{}^{\prime}}_{b} state may be excluded.

From relationship given in Eq. (9), the 1D1D Ξb\Xi^{\prime}_{b} baryon states in the jj-jj coupling scheme can be expressed with the linear combination of the configurations in the LL-SS coupling scheme:

|JP=12+,1λ(ρ)=|Dλλ(ρρ)412+,\Ket{J^{P}=\frac{1}{2}^{+},1}_{\lambda(\rho)}=\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{1}{2}^{+}}, (22)
|JP=32+,1λ(ρ)=12|Dλλ(ρρ)432+12|Dλλ(ρρ)232+,\Ket{J^{P}=\frac{3}{2}^{+},1}_{\lambda(\rho)}=\sqrt{\frac{1}{2}}\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{3}{2}^{+}}-\sqrt{\frac{1}{2}}\Ket{{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{3}{2}^{+}}, (23)
|JP=32+,2λ(ρ)=12|Dλλ(ρρ)432++12|Dλλ(ρρ)232+,\Ket{J^{P}=\frac{3}{2}^{+},2}_{\lambda(\rho)}=\sqrt{\frac{1}{2}}\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{3}{2}^{+}}+\sqrt{\frac{1}{2}}\Ket{{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{3}{2}^{+}}, (24)
|JP=52+,2λ(ρ)=73|Dλλ(ρρ)452+23|Dλλ(ρρ)252+,\Ket{J^{P}=\frac{5}{2}^{+},2}_{\lambda(\rho)}=\frac{\sqrt{7}}{3}\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{5}{2}^{+}}-\frac{\sqrt{2}}{3}\Ket{{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{5}{2}^{+}}, (25)
|JP=52+,3λ(ρ)=23|Dλλ(ρρ)452++73|Dλλ(ρρ)252+,\Ket{J^{P}=\frac{5}{2}^{+},3}_{\lambda(\rho)}=\frac{\sqrt{2}}{3}\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{5}{2}^{+}}+\frac{\sqrt{7}}{3}\Ket{{{}^{2}}D_{\lambda\lambda(\rho\rho)}\frac{5}{2}^{+}}, (26)
|JP=72+,3λ(ρ)=|Dλλ(ρρ)472+.\Ket{J^{P}=\frac{7}{2}^{+},3}_{\lambda(\rho)}=\Ket{{{}^{4}}D_{\lambda\lambda(\rho\rho)}\frac{7}{2}^{+}}. (27)

In the following, we present our theoretical predictions of the 1D1D Ξb\Xi^{\prime}_{b} baryons within the jj-jj coupling scheme.

III.2.1 λ\lambda-mode excitations

Firstly, we fix the masses of the λ\lambda-mode 1D1D Ξb\Xi^{{}^{\prime}}_{b} states at the predictions within the nonrelativistic quark-diquark picture in Ref. [29], and collect the decay properties in Table 4.

Table 4: The decay properties of the λ\lambda- and ρ\rho- modes 1D1D Ξb\Xi^{{}^{\prime}}_{b} states. ΓTotal\Gamma_{\text{Total}} stands for the total decay width. The unit of the mass and width is MeV. In this work the 1P1P-wave states |Λb2Pλ12|\Lambda^{2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangle and |Λb2Pλ32|\Lambda^{2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangle are assigned to Λb(5912)\Lambda_{b}(5912) and Λb(5920)\Lambda_{b}(5920), respectively. The masses for the unestablished 1P1P-wave Ξb\Xi_{b} and Ξb\Xi_{b}^{\prime} states are taken the predictions in Ref. [29].
Decay width Ξb|JP=12+,1λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda}~{}~{}} Ξb|JP=32+,1λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda}~{}~{}} Ξb|JP=32+,2λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}~{}~{}} Ξb|JP=52+,2λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda~{}~{}}} Ξb|JP=52+,3λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda}~{}~{}} Ξb|JP=72+,3λ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\lambda}~{}~{}}
M=6447M=6447 M=6459M=6459 M=6431M=6431 M=6432M=6432 M=6420M=6420 M=6414M=6414
Γ\Gamma[Ξb\Xi_{b}π\pi] 2.21 1.96 - - 9.60 9.11
Γ\Gamma[Ξb\Xi^{{}^{\prime}}_{b}π\pi] 1.30 0.32 2.89 1.27 1.23 0.64
Γ\Gamma[Ξb\Xi^{{}^{\prime}*}_{b}π\pi] 0.64 1.62 2.28 4.06 2.09 0.64
Γ\Gamma[Λb\Lambda_{b}K] 2.41 2.10 - - 5.77 5.43
Γ\Gamma[Σb\Sigma_{b}K] 4.08 1.07 8.37 0.47 0.38 0.17
Γ\Gamma[Σb\Sigma^{*}_{b}K] 1.76 4.86 1.84 6.83 0.77 0.10
Γ\Gamma[|Λb2Pλ12|\Lambda^{2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleK] 3.14 3.03 - - - 0.05
Γ\Gamma[|Λb2Pλ32|\Lambda^{2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleK] 6.24 6.24 - - - -
Γ\Gamma[|Ξb2Pλ12|\Xi^{2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.85 0.76 - - 0.43 1.59
Γ\Gamma[|Ξb2Pλ32|\Xi^{2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] 1.83 1.67 - - 0.70 2.83
Γ\Gamma[|Ξb2Pλ12|\Xi^{{}^{\prime}2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.87 0.08 0.60 0.01 0.01 0.06
Γ\Gamma[|Ξb2Pλ32|\Xi^{{}^{\prime}2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] 0.61 0.16 1.19 0.02 0.01 0.11
Γ\Gamma[|Ξb4Pλ12|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.16 0.04 0.07 0.56 0.01 0.04
Γ\Gamma[|Ξb4Pλ32|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] 0.03 0.01 0.02 0.12 - 0.01
Γ\Gamma[|Ξb4Pλ52|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{5}{2}^{-}\rangleπ\pi] 1.17 0.08 0.13 1.03 0.01 0.07
ΓTotal\Gamma_{\text{Total}} 26.87 23.93 17.39 14.37 21.27 21.09
Decay width Ξb|JP=12+,1ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho}~{}~{}} Ξb|JP=32+,1ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho}~{}~{}} Ξb|JP=32+,2ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}~{}~{}} Ξb|JP=52+,2ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}~{}~{}} Ξb|JP=52+,3ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho}~{}~{}} Ξb|JP=72+,3ρ¯\underline{~{}~{}\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\rho}~{}~{}}
M=6547M=6547 M=6559M=6559 M=6531M=6531 M=6532M=6532 M=6520M=6520 M=6514M=6514
Γ\Gamma[Ξb\Xi_{b}π\pi] 11.00 10.56 - - 10.52 10.12
Γ\Gamma[Ξb\Xi^{{}^{\prime}}_{b}π\pi] 4.34 1.09 9.61 2.00 2.03 1.08
Γ\Gamma[Ξb\Xi^{{}^{\prime}*}_{b}π\pi] 2.13 5.38 4.83 11.44 5.26 2.66
Γ\Gamma[Λb\Lambda_{b}K] 7.64 7.16 - - 6.73 6.47
Γ\Gamma[Σb\Sigma_{b}K] 11.06 2.81 24.15 1.79 1.70 0.87
Γ\Gamma[Σb\Sigma^{*}_{b}K] 4.42 13.75 7.15 21.12 5.31 1.96
Γ\Gamma[|Λb2Pλ12|\Lambda^{2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleK] 0.49 0.58 - - 0.03 0.02
Γ\Gamma[|Λb2Pλ32|\Lambda^{2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleK] 0.87 1.94 0.08 - 0.04 0.03
Γ\Gamma[|Ξb2Pλ12|\Xi^{2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.47 0.53 - - 0.06 0.05
Γ\Gamma[|Ξb2Pλ32|\Xi^{2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] 0.83 1.87 0.10 - 0.10 0.09
Γ\Gamma[|Ξb2Pλ12|\Xi^{{}^{\prime}2}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.03 0.01 0.04 - - -
Γ\Gamma[|Ξb2Pλ32|\Xi^{{}^{\prime}2}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] 0.05 0.02 0.08 - - -
Γ\Gamma[|Ξb4Pλ12|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{1}{2}^{-}\rangleπ\pi] 0.01 - 0.01 0.05 - -
Γ\Gamma[|Ξb4Pλ32|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{3}{2}^{-}\rangleπ\pi] - - - 0.01 - -
Γ\Gamma[|Ξb4Pλ52|\Xi^{{}^{\prime}4}_{b}P_{\lambda}\frac{5}{2}^{-}\rangleπ\pi] 0.03 0.01 0.02 0.09 - -
ΓTotal\Gamma_{\text{Total}} 43.46 45.71 46.07 36.5 31.78 23.35
Figure 4: Partial and total strong decay widths of the λ\lambda-mode 1D1D Ξb\Xi^{\prime}_{b} states as a function of the masses. Some decay channels are not shown in the figure for their small partial decay widths.

The JP=1/2+J^{P}=1/2^{+} state Ξb|JP=12+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda} has a narrow width of Γ27\Gamma\simeq 27 MeV and has relatively large decay rates into the ΛbK\Lambda_{b}K, ΣbK\Sigma_{b}K, Ξbπ\Xi_{b}\pi, Λb(5912)K\Lambda_{b}(5912)K and Λb(5920)K\Lambda_{b}(5920)K channels. The branching fractions for the ΛbK\Lambda_{b}K, ΣbK\Sigma_{b}K, Ξbπ\Xi_{b}\pi channels are predicted to be

Γ[Ξb|JP=12+,1λΛbK]ΓTotal9%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda}\to\Lambda_{b}K]}{\Gamma_{\text{Total}}}\sim 9\%, (28)
Γ[Ξb|JP=12+,1λΣbK]ΓTotal15%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda}\to\Sigma_{b}K]}{\Gamma_{\text{Total}}}\sim 15\%, (29)
Γ[Ξb|JP=12+,1λΞbπ]ΓTotal8%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda}\to\Xi_{b}\pi]}{\Gamma_{\text{Total}}}\sim 8\%. (30)

The ΛbK\Lambda_{b}K, ΣbK\Sigma_{b}K and Ξbπ\Xi_{b}\pi channels can be used to search for the missing Ξb|JP=12+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\lambda} state.

For the JP=3/2+J^{P}=3/2^{+} state Ξb|JP=32+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda}, its width is predicted to be around Γ24\Gamma\simeq 24 MeV. This state has large decay rates into Λb(5920)K\Lambda_{b}(5920)K, ΣbK\Sigma^{*}_{b}K and Λb(5912)K\Lambda_{b}(5912)K. The branching fraction for the ΣbK\Sigma^{*}_{b}K channel can reach up to

Γ[Ξb|JP=32+,1λΣbK]ΓTotal20%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda}\to\Sigma^{*}_{b}K]}{\Gamma_{\text{Total}}}\sim 20\%. (31)

The Ξb|JP=32+,1λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda} may have a large potential to be observed in the ΛbπK\Lambda_{b}\pi K final state via the decay chain Ξb|JP=32+,1λΣbKΛbπK\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda}\to\Sigma^{*}_{b}K\to\Lambda_{b}\pi K at LHCb.

The other JP=3/2+J^{P}=3/2^{+} state Ξb|JP=32+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} has a width of Γ17\Gamma\simeq 17 MeV, and dominantly decay into ΣbK\Sigma_{b}K channel with a branching fraction

Γ[Ξb|JP=32+,2λΣbK]ΓTotal48%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma_{b}K]}{\Gamma_{\text{Total}}}\sim 48\%. (32)

This state may have a large potential to be observed in the ΛbπK\Lambda_{b}\pi K final state as well via the decay chain Ξb|JP=32+,1λΣbKΛbπK\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\lambda}\to\Sigma_{b}K\to\Lambda_{b}\pi K at LHCb.

For the JP=5/2+J^{P}=5/2^{+} state Ξb|JP=52+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}, the width is predicted to be Γ14\Gamma\simeq 14 MeV. This state mainly decays into ΣbK\Sigma^{*}_{b}K and Ξbπ\Xi_{b}^{{}^{\prime}*}\pi. Their branching fractions are

Γ[Ξb|JP=52+,2λΣbK]ΓTotal47%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{Total}}}\sim 47\%, (33)
Γ[Ξb|JP=52+,2λΞbπ]ΓTotal28%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\rightarrow\Xi_{b}^{{}^{\prime}*}\pi]}{\Gamma_{\text{Total}}}\sim 28\%. (34)

The Ξb|JP=52+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda} may be observed in the ΛbπK\Lambda_{b}\pi K or/and Ξbππ\Xi_{b}\pi\pi final states via the decay chains Ξb|JP=52+,2λΣbK/ΞbπΛbπK/Ξbππ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}\to\Sigma_{b}^{*}K/\Xi_{b}^{{}^{\prime}*}\pi\to\Lambda_{b}\pi K/\Xi_{b}\pi\pi.

Both Ξb|JP=52+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda} and Ξb|JP=72+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\lambda} have a similar width of Γ21\Gamma\simeq 21 MeV, and dominantly decay into Ξbπ\Xi_{b}\pi and ΛbK\Lambda_{b}K channels. The branching fractions are predicted to be

Γ[Ξb|JP=52+(72+),3λΛbK]ΓTotal28%(26%),\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+}(\frac{7}{2}^{+}),3\rangle_{\lambda}\to\Lambda_{b}K]}{\Gamma_{\text{Total}}}\sim 28\%(26\%), (35)
Γ[Ξb|JP=52+(72+),3λΞbπ]ΓTotal45%(43%).\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+}(\frac{7}{2}^{+}),3\rangle_{\lambda}\rightarrow\Xi_{b}\pi]}{\Gamma_{\text{Total}}}\sim 45\%(43\%). (36)

The Ξbπ\Xi_{b}\pi and ΛbK\Lambda_{b}K may be good channels to search for the Ξb|JP=52+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda} and Ξb|JP=72+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\lambda} states. Furthermore, it is found that the Ξb|JP=52+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda} state has sizeable decay rates into the Ξbπ\Xi_{b}^{{}^{\prime}*}\pi channel with a branching fraction of

Γ[Ξb|JP=52+,3λΞbπ]ΓTotal10%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda}\rightarrow\Xi^{{}^{\prime}*}_{b}\pi]}{\Gamma_{\text{Total}}}\sim 10\%. (37)

The Ξbπ\Xi_{b}^{{}^{\prime}*}\pi channel which can be used to distinguish Ξb|JP=52+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\lambda} from Ξb|JP=72+,3λ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\lambda} in future experiments.

The predicted masses of the λ\lambda- mode 1D1D Ξb\Xi^{\prime}_{b} baryons certainly have a large uncertainty, which may bring uncertainties to the theoretical results. To investigate this effect, we plot the two-body strong decay widths of the λ\lambda-mode 1D1D Ξb\Xi^{\prime}_{b} baryons as a function of the mass in Fig. 4. The sensitivities of the decay properties of these states to their masses can be clearly seen from the figure. As a whole, the λ\lambda-mode 1D1D Ξb\Xi^{{}^{\prime}}_{b} states have a fairly narrow width of Γ(1327)\Gamma\simeq(13-27) MeV. To looking for these missing states, the ΛbK\Lambda_{b}K, Ξbπ\Xi_{b}\pi, ΛbKπ\Lambda_{b}K\pi and Ξbππ\Xi_{b}\pi\pi are worth observing in future experiments.

III.2.2 ρ\rho-mode excitations

Considering the masses of the ρ\rho-mode excitations being about 100 MeV heavier than the λ\lambda-mode excitations, thus, we fix the masses of the six ρ\rho-mode 1D1D Ξb\Xi^{\prime}_{b} baryons in the range of M=(64806580)M=(6480-6580) MeV, and listed the decay properties in Table 4 as well.

Figure 5: Partial and total strong decay widths of the ρ\rho-mode 1D1D Ξb\Xi^{\prime}_{b} states as a function of the masses. Some decay channels are not shown in the figure for their small partial decay widths.

The three ρ\rho-mode states Ξb|JP=12+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho}, Ξb|JP=32+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho} and Ξb|JP=32+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} have a comparable width of Γ45\Gamma\simeq 45 MeV. While, we notice that the main decay channels have some different among those three states. The Ξb|JP=12+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho} mainly decays into ΣbK\Sigma_{b}K, ΛbK\Lambda_{b}K, and Ξbπ\Xi_{b}\pi channels. Their branching fractions are predicted to be

Γ[Ξb|JP=12+,1ρΣbK]ΓTotal25%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho}\to\Sigma_{b}K]}{\Gamma_{\text{Total}}}\sim 25\%, (38)
Γ[Ξb|JP=12+,1ρΛbK]ΓTotal17%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho}\to\Lambda_{b}K]}{\Gamma_{\text{Total}}}\sim 17\%, (39)
Γ[Ξb|JP=12+,1ρΞbπ]ΓTotal25%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho}\to\Xi_{b}\pi]}{\Gamma_{\text{Total}}}\sim 25\%. (40)

Meanwhile, the Ξb|JP=12+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{1}{2}^{+},1\rangle_{\rho} has sizeable decay rates into Ξbπ\Xi^{\prime}_{b}\pi and ΣbK\Sigma_{b}^{*}K, their branching fractions can reach up to 10%\sim 10\%.

For the Ξb|JP=32+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho} state, the dominant decay modes are ΣbK\Sigma^{*}_{b}K and Ξbπ\Xi_{b}\pi with branching fractions

Γ[Ξb|JP=32+,1ρΣbK]Γtotal30%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{total}}}\sim 30\%, (41)
Γ[Ξb|JP=32+,1ρΞbπ]Γtotal23%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho}\rightarrow\Xi_{b}\pi]}{\Gamma_{\text{total}}}\sim 23\%. (42)

The decay rates of Ξb|JP=32+,1ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},1\rangle_{\rho} into Ξbπ\Xi_{b}^{{}^{\prime}*}\pi and ΛbK\Lambda_{b}K are fairly large as well. Their branching fractions are predicted to be about 11%11\% and 15%15\%, respectively.

The decay of Ξb|JP=32+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} is governed by ΣbK\Sigma_{b}K. The branching fraction is predicted to be

Γ[Ξb|JP=32+,2ρΣbK]Γtotal52%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}\rightarrow\Sigma_{b}K]}{\Gamma_{\text{total}}}\sim 52\%. (43)

The rates of Ξb|JP=32+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} decaying into Ξbπ\Xi^{\prime}_{b}\pi and ΣbK\Sigma^{*}_{b}K are sizable and predicted to be

Γ[Ξb|JP=32+,2ρΞbπ]Γtotal21%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}\rightarrow\Xi^{\prime}_{b}\pi]}{\Gamma_{\text{total}}}\sim 21\%, (44)
Γ[Ξb|JP=32+,2ρΣbK]Γtotal15%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{total}}}\sim 15\%. (45)

Compared with the three states above, the total decay widths of the two JP=5/2+J^{P}=5/2^{+} states Ξb|JP=52+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho} are a little narrower with a width of Γ35\Gamma\simeq 35 MeV. The Ξb|JP=52+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} state mainly decays into ΣbK\Sigma^{*}_{b}K and Ξbπ\Xi^{{}^{\prime}*}_{b}\pi with branching fractions

Γ[Ξb|JP=52+,2ρΣbK]Γtotal58%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}\rightarrow\Sigma^{*}_{b}K]}{\Gamma_{\text{total}}}\sim 58\%, (46)
Γ[Ξb|JP=52+,2ρΞbπ]Γtotal31%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho}\rightarrow\Xi^{{}^{\prime}*}_{b}\pi]}{\Gamma_{\text{total}}}\sim 31\%. (47)

While, the strong decay of the state Ξb|JP=52+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho} is dominated by the Ξbπ\Xi_{b}\pi channel, and the branching ratio is

Γ[Ξb|JP=52+,3ρΞbπ]Γtotal33%,\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho}\rightarrow\Xi_{b}\pi]}{\Gamma_{\text{total}}}\sim 33\%, (48)

which can be used to distinguish Ξb|JP=52+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho} from Ξb|JP=52+,2ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} in future experiments. The Ξb|JP=52+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},3\rangle_{\rho} also has relatively large decay rates into the Ξbπ\Xi^{{}^{\prime}*}_{b}\pi, ΛbK\Lambda_{b}K, and ΣbK\Sigma^{*}_{b}K channels with a comparable branching fraction of 15%\sim 15\%.

The Ξb|JP=72+,3ρ\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\rho} may be the narrowest one among the six ρ\rho-mode 1D1D Ξb\Xi^{\prime}_{b} baryons with a width of Γ23\Gamma\simeq 23 MeV, and mainly decays into Ξbπ\Xi_{b}\pi and ΛbK\Lambda_{b}K channel. The predicted branching fractions are

Γ[Ξb|JP=72+,3ρΞbπ]Γtotal43%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\rho}\to\Xi_{b}\pi]}{\Gamma_{\text{total}}}\sim 43\%. (49)
Γ[Ξb|JP=72+,3ρΛbK]Γtotal28%.\displaystyle\frac{\Gamma[\Xi^{\prime}_{b}|J^{P}=\frac{7}{2}^{+},3\rangle_{\rho}\to\Lambda_{b}K]}{\Gamma_{\text{total}}}\sim 28\%. (50)

Similarly, considering the uncertainties of the masses, we also plot the the variations of the partial decay widths as a function of the mass, and show in Fig. 5. As a whole the ρ\rho-mode 1D1D Ξb\Xi^{\prime}_{b} baryons may also have good potentials to be observed in experiments due to their relatively narrow widths. The ideal channels for observations are Ξbπ\Xi_{b}\pi, ΛbK\Lambda_{b}K, ΣbK\Sigma_{b}K, ΣbK\Sigma^{*}_{b}K and Ξbπ\Xi^{{}^{\prime}*}_{b}\pi.

IV Summary

Stimulated by the newly observed bottom baryon resonances Ξb0(6327)\Xi^{0}_{b}(6327) and Ξb0(6333)\Xi^{0}_{b}(6333) at LHCb, we carry out a systematic study on the two-body strong decay behaviors of the ρ\rho- and λ\lambda-mode 1D1D Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} baryons in the framework of chiral quark model within the jj-jj coupling scheme. For the newly observed states Ξb0(6327)\Xi^{0}_{b}(6327) and Ξb0(6333)\Xi^{0}_{b}(6333), we give a possible theoretical interpretation. Meanwhile, we give the predictions for the strong decay properties of the missing 1D1D Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} states, and hope to provide helpful references in theory for the future experiment exploring.

Our theoretical results indicate the newly observed Ξb0(6327)\Xi^{0}_{b}(6327) and Ξb0(6333)\Xi^{0}_{b}(6333) may correspond to the 𝟑¯F\mathbf{\bar{3}}_{F} assignments Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} and Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}, respectively, where the ΣbK\Sigma_{b}K channel dominates the decay decay of Ξb|JP=32+,2λ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda}, while the partial decay width of the ΣbK\Sigma^{*}_{b}K channel are sizable for Ξb|JP=52+,2λ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}. With this correspondence, Ξbπ\Xi^{\prime}_{b}\pi and Ξbπ\Xi^{*}_{b}\pi may be another ideal channels for investigating the nature of Ξb0(6327)\Xi^{0}_{b}(6327) and Ξb0(6333)\Xi^{0}_{b}(6333), respectively, in future experiments.

The other two ρ\rho-mode 𝟑¯F\mathbf{\bar{3}}_{F} states Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} and Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} are most likely to be narrow states with a total decay width of Γ(1230)\Gamma\simeq(12-30) MeV. Ξb|JP=32+,2ρ\Xi_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\rho} mainly decays into ΣbK\Sigma_{b}K, while Ξb|JP=52+,2ρ\Xi_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\rho} dominantly decays into ΣbK\Sigma^{*}_{b}K. Hence, those two states have a good potential to be observed in their dominant decay process.

For the 1D1D Ξb\Xi^{\prime}_{b} states belonging 𝟔F\mathbf{6}_{F}, the total decay widths are not broad and vary in the range of Γ(1446)\Gamma\simeq(14-46) MeV. Especially for Ξb|JP=32+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{3}{2}^{+},2\rangle_{\lambda} and Ξb|JP=52+,2λ\Xi^{\prime}_{b}|J^{P}=\frac{5}{2}^{+},2\rangle_{\lambda}, their total decay widths are about a dozen MeV.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants No.12005013, No.11947048, No.12175065, No.U1832173 and No.11775078.

References

  • [1] P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, no.8, 083C01 (2020).
  • [2] R. Aaij et al. [LHCb], Observation of excited Λb0\Lambda_{b}^{0} baryons, Phys. Rev. Lett. 109, 172003 (2012).
  • [3] T. A. Aaltonen et al. [CDF], Evidence for a Bottom Baryon Resonance Λb0\Lambda_{b}^{*0} in CDF Data, Phys. Rev. D 88, no.7, 071101 (2013).
  • [4] R. Aaij et al. [LHCb], Observation of a new Ξb\Xi_{b}^{-} resonance, Phys. Rev. Lett. 121, no.7, 072002 (2018).
  • [5] R. Aaij et al. [LHCb], Observation of Two Resonances in the Λb0π±\Lambda_{b}^{0}\pi^{\pm} Systems and Precise Measurement of Σb±\Sigma_{b}^{\pm} and Σb±\Sigma_{b}^{*\pm} properties, Phys. Rev. Lett. 122, no.1, 012001 (2019).
  • [6] R. Aaij et al. [LHCb], Observation of New Resonances in the Λb0π+π\Lambda_{b}^{0}\pi^{+}\pi^{-} System, Phys. Rev. Lett. 123, no.15, 152001 (2019).
  • [7] R. Aaij et al. [LHCb], First observation of excited Ωb\Omega_{b}^{-} states, Phys. Rev. Lett. 124, no.8, 082002 (2020).
  • [8] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, no.7, 076201 (2017).
  • [9] J. Oudichhya, K. Gandhi and A. K. Rai, Mass-spectra of singly, doubly, and triply bottom baryons, Phys. Rev. D 104, no.11, 114027 (2021).
  • [10] G. L. Yu, Z. G. Wang and X. W. Wang, The 1D1D, 2D2D Ξb\Xi_{b} and Λb\Lambda_{b} baryons, [arXiv:2109.02217 [hep-ph]].
  • [11] A. Kakadiya, Z. Shah, K. Gandhi and A. K. Rai, Spectra and decay properties of Λb\Lambda_{b} and Σb\Sigma_{b} baryons, [arXiv:2108.11062 [hep-ph]].
  • [12] H. M. Yang and H. X. Chen, PP-wave bottom baryons of the SU(3)SU(3) flavor 𝟔F\mathbf{6}_{F}, Phys. Rev. D 101, no.11, 114013 (2020).
  • [13] Q. Mao, H. X. Chen and H. M. Yang, Identifying the Λb(6146)0\Lambda_{b}(6146)^{0} and Λb(6152)0\Lambda_{b}(6152)^{0} as DD-wave bottom baryons, Universe 6, no.6, 86 (2020).
  • [14] L. Y. Xiao, K. L. Wang, M. S. Liu and X. H. Zhong, Possible interpretation of the newly observed Ωb\Omega_{b} states, Eur. Phys. J. C 80, no.3, 279 (2020).
  • [15] Q. F. Lü and X. H. Zhong, Strong decays of the higher excited ΛQ\Lambda_{Q} and ΣQ\Sigma_{Q} baryons, Phys. Rev. D 101, no.1, 014017 (2020).
  • [16] B. Chen, S. Q. Luo, X. Liu and T. Matsuki, Interpretation of the observed Λb(6146)0\Lambda_{b}(6146)^{0} and Λb(6152)0\Lambda_{b}(6152)^{0} states as 1DD bottom baryons, Phys. Rev. D 100, no.9, 094032 (2019).
  • [17] Y. X. Yao, K. L. Wang and X. H. Zhong, Strong and radiative decays of the low-lying DD-wave singly heavy baryons, Phys. Rev. D 98, no.7, 076015 (2018).
  • [18] K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Strong and radiative decays of the low-lying SS- and PP-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).
  • [19] K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed Σb(6097)±\Sigma_{b}(6097)^{\pm} and Ξb(6227)\Xi_{b}(6227)^{-} states as the PP-wave bottom baryons, Phys. Rev. D 99, 014011 (2019).
  • [20] L. Y. Xiao and X. H. Zhong, Toward establishing the low-lying PP-wave Σb\Sigma_{b} states, Phys. Rev. D 102, 014009 (2020).
  • [21] K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed Λb(6146)0\Lambda_{b}(6146)^{0} and Λb(6152)0\Lambda_{b}(6152)^{0} states in a chiral quark model, Phys. Rev. D 100, 114035 (2019).
  • [22] H. Z. He, W. Liang, Q. F. Lü and Y. B. Dong, Strong decays of the low-lying bottom strange baryons, Sci. China Phys. Mech. Astron. 64, no.6, 261012 (2021).
  • [23] D. Jia, W. N. Liu and A. Hosaka, Regge behaviors in orbitally excited spectroscopy of charmed and bottom baryons,” Phys. Rev. D 101, no.3, 034016 (2020).
  • [24] B. Chen, K. W. Wei, X. Liu and A. Zhang, Role of newly discovered Ξb(6227)\Xi_{b}(6227)^{-} for constructing excited bottom baryon family, Phys. Rev. D 98, no.3, 031502 (2018).
  • [25] Q. Mao, H. X. Chen, W. Chen, A. Hosaka, X. Liu and S. L. Zhu, QCD sum rule calculation for P-wave bottom baryons, Phys. Rev. D 92, no.11, 114007 (2015).
  • [26] E. L. Cui, H. M. Yang, H. X. Chen and A. Hosaka, Identifying the Ξb(6227)\Xi_{b}(6227) and Σb(6097)\Sigma_{b}(6097) as PP-wave bottom baryons of JP=3/2J^{P}=3/2^{-}, Phys. Rev. D 99, no.9, 094021 (2019).
  • [27] R. Aaij et al. [LHCb], Observation of two new excited Ξb0{\it\Xi}_{b}^{0} states decaying to Λb0Kπ+{\it\Lambda}_{b}^{0}K^{-}\pi^{+}, [arXiv:2110.04497 [hep-ex]].
  • [28] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Spectrum of heavy baryons in the quark model, Phys. Rev. D 92, no.11, 114029 (2015).
  • [29] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84, 014025 (2011).
  • [30] W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817-2860 (2008).
  • [31] A. Valcarce, H. Garcilazo and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A 37, 217-225 (2008).
  • [32] D. Ebert, R. N. Faustov and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612-620 (2008).
  • [33] K. Thakkar, Z. Shah, A. K. Rai and P. C. Vinodkumar, Excited State Mass spectra and Regge trajectories of Bottom Baryons, Nucl. Phys. A 965, 57-73 (2017).
  • [34] I. M. Narodetskii, M. A. Trusov and A. I. Veselov, Charm and bottom baryons in nonperturbative quark dynamics, Phys. Atom. Nucl. 72, 536-540 (2009).
  • [35] R. Bijker, H. García-Tecocoatzi, A. Giachino, E. Ortiz-Pacheco and E. Santopinto, Masses and decay widths of Ξc/b\Xi_{c/b} and Ξc/b\Xi^{\prime}_{c/b} baryons, [arXiv:2010.12437 [hep-ph]].
  • [36] H. Y. Cheng, Charmed baryons circa 2015,” Front. Phys. (Beijing) 10, no.6, 101406 (2015).
  • [37] A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234, 189-212 (1984).
  • [38] X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008).
  • [39] X. h. Zhong and Q. Zhao, Strong decays of heavy-light mesons in a chiral quark model, Phys. Rev. D 78, 014029 (2008).
  • [40] Z. P. Li, The Threshold pion photoproduction of nucleons in the chiral quark model, Phys. Rev. D 50, 5639-5646 (1994).
  • [41] Z. p. Li, H. x. Ye and M. h. Lu, An Unified approach to pseudoscalar meson photoproductions off nucleons in the quark model, Phys. Rev. C 56, 1099-1113 (1997).
  • [42] Q. Zhao, J. S. Al-Khalili, Z. P. Li and R. L. Workman, Pion photoproduction on the nucleon in the quark model, Phys. Rev. C 65, 065204 (2002).