This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Thakurta metric does not describe a cosmological black hole

Tomohiro Haradaa [email protected]    Hideki Maedab [email protected]    Takuma Satoa [email protected] a Department of Physics, Rikkyo University, Tokyo 171-8501, Japan b Department of Electronics and Information Engineering, Hokkai-Gakuen University, Sapporo 062-8605, Japan
Abstract

Recently, the Thakurta metric has been adopted as a model of primordial black holes. We show that the spacetime described by this metric has neither black-hole event horizon nor black-hole trapping horizon and involves the violation of all the standard energy conditions as a solution of the Einstein equation. Therefore, this metric does not describe a cosmological black hole in the early universe. It is pointed out that a contradictory claim by the other group stems from an incorrect choice of sign.

pacs:
04.70.Bw, 97.60.Lf, 04.20.Gz

I Introduction

Primordial black holes (PBHs) Carr:1974nx ; Carr:1975qj have attracted intense attention as it has been revealed that a considerable fraction of binary black holes discovered by gravitational wave observations by LIGO and Virgo have masses in the range of several tens of solar masses. In fact, it is proposed that such very massive black holes might be of cosmological origin Sasaki:2016jop ; Clesse:2016vqa ; Bird:2016dcv . Recently, in the data observed by LIGO and Virgo, Franciolini et al. Franciolini:2021tla searched for a subpopulation of PBHs and found that the statistical evidence significantly depends on the assumed astrophysical models.

To discuss the physical properties of PBHs, Boehm et al. Boehm:2020jwd and Picker Picker:2021jxl adopt the Thakurta metric Thakurta1983 ; Faraoni:2018xwo . These works are criticized by Hütsi et al. Hutsi:2021nvs as this spacetime entails accretion history which is highly unlikely from a physical point of view. This controversy continues by a further comment Boehm:2021kzq and a reply Hutsi:2021vha . In a recent article Kobakhidze:2021rsh , the authors have claimed that the Thakurta spacetime admits a future outer trapping horizon in the Painlevé-Gullstrand-like coordinates, so that it may be interpreted as a cosmological black hole.

In this letter, we terminate the controversy on the Thakurta metric to turn the discussion to the right direction to seek for a mathematical model of PBHs. Although some of the main results in this letter are included in Mello:2016irl , where the causal structures of the Thakurta metric are properly analyzed in more general contexts, we will also study the energy conditions of the corresponding matter field and the properties of a trapping horizon in more detail. Furthermore, we will point out an error in the contradictory argument in Ref. Kobakhidze:2021rsh . Note that the Thakurta metric is different from McVittie’s solutions Faraoni:2018xwo ; McVittie:1933zz , whose causal structures are analyzed in detail in Nolan:1998xs ; Nolan:1999kk ; Nolan:1999wf ; Kaloper:2010ec . Our conventions for curvature tensors are [ρ,σ]Vμ=μνρσVν[\nabla_{\rho},\nabla_{\sigma}]V^{\mu}={{\cal R}^{\mu}}_{\nu\rho\sigma}V^{\nu} and μν=ρμρν{\cal R}_{\mu\nu}={{\cal R}^{\rho}}_{\mu\rho\nu}. The signature of the Minkowski spacetime is (,+,+,+)(-,+,+,+), and Greek indices run over all spacetime indices. We use the units in which c=G=1c=G=1.

II Preliminaries

Consider the most general four-dimensional spherically symmetric spacetime (M4,gμν)(M^{4},g_{\mu\nu}) given by

ds2=gAB(y)dyAdyB+R2(y)dΩ2,\displaystyle{\rm d}s^{2}=g_{AB}(y){\rm d}y^{A}{\rm d}y^{B}+R^{2}(y){\rm d}\Omega^{2}, (1)

where yA(A=0,1)y^{A}~{}(A=0,1) are coordinates in a two-dimensional Lorentzian spacetime (M2,gAB)(M^{2},g_{AB}) and dΩ2:=dθ2+sin2θdϕ2{\rm d}\Omega^{2}:={\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\phi^{2}. The Misner-Sharp quasi-local mass mMSm_{\rm MS} Misner:1964je for the metric (1) is defined by

mMS:=12R{1(DR)2},\displaystyle m_{\rm MS}:=\frac{1}{2}R\left\{1-(DR)^{2}\right\}, (2)

where (DR)2:=gAB(DAR)(DBR)(DR)^{2}:=g^{AB}(D_{A}R)(D_{B}R) and DAD_{A} is the covariant derivative on (M2,gAB)(M^{2},g_{AB}). Note that mMSm_{\rm MS} and the areal radius R(y)(0)R(y)(\geq 0) are scalars on (M2,gAB)(M^{2},g_{AB}).

In this letter, we adopt spherical slicings to identify trapped regions and trapping horizons defined by Hayward Hayward:1993wb . Let 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l} be two independent future-directed radial null vectors such that kμ(/xμ)=kA(/yA)k^{\mu}(\partial/\partial x^{\mu})=k^{A}(\partial/\partial y^{A}) and lμ(/xμ)=lA(/yA)l^{\mu}(\partial/\partial x^{\mu})=l^{A}(\partial/\partial y^{A}) with

kμkμ=lμlμ=0,kμlμ=1.\displaystyle k_{\mu}k^{\mu}=l_{\mu}l^{\mu}=0,\qquad k_{\mu}l^{\mu}=-1. (3)

The expansions along those null vectors are given by

θ+:=\displaystyle\theta_{+}:= 𝒜1+𝒜=2R1kADAR,\displaystyle{\cal A}^{-1}{\cal L}_{+}{\cal A}=2R^{-1}k^{A}D_{A}R, (4)
θ:=\displaystyle\theta_{-}:= 𝒜1𝒜=2R1lADAR,\displaystyle{\cal A}^{-1}{\cal L}_{-}{\cal A}=2R^{-1}l^{A}D_{A}R, (5)

where +:=kADA{\cal L}_{+}:=k^{A}D_{A} and :=lADA{\cal L}_{-}:=l^{A}D_{A}. Here 𝒜:=4πR2{\cal A}:=4\pi R^{2} is the surface area with the areal radius RR. By the expression θ+θ=2R2(DR)2\theta_{+}\theta_{-}=-2R^{-2}(DR)^{2} and Eq. (2), an untrapped (trapped) region defined by θ+θ<(>)0\theta_{+}\theta_{-}<(>)0 is given by (DR)2>(<)0(DR)^{2}>(<)0, or equivalently R>(<)2mMSR>(<)2m_{\rm MS}. A marginal surface defined by θ+θ=0\theta_{+}\theta_{-}=0 is given by (DR)2=0(DR)^{2}=0, or equivalently R=2mMSR=2m_{\rm MS}.

A trapping horizon is the closure of a hypersurface foliated by marginal surfaces Hayward:1993wb . Using the degrees of freedom in interchanging θ+\theta_{+} and θ\theta_{-}, one may set θ+=0\theta_{+}=0 on a trapping horizon without loss of generality. Then, a trapping horizon is classified according to the signs of θ\theta_{-} and θ+{\cal L}_{-}\theta_{+} there as summarized in Table 1.

Table 1: Types of trapping horizons given by θ+=0\theta_{+}=0.
++ 0 -
 θ\theta_{-}  Past  Bifurcating  Future
 θ+{\cal L}_{-}\theta_{+}  Inner  Degenerate  Outer

Among all the types of trapping horizons, it is a future outer trapping horizon that is associated with a black hole Hayward:1993wb . This is based on (i) θ|Σ<0\theta_{-}|_{\Sigma}<0 meaning that the ingoing null rays converge on the trapping horizon Σ\Sigma and (ii) θ+|Σ<0{\cal L}_{-}\theta_{+}|_{\Sigma}<0 meaning that the outgoing null rays are instantaneously parallel on Σ\Sigma but diverging just outside Σ\Sigma and converging just inside Hayward:1993wb ; Hayward:1997jp . In contrast, a past inner trapping horizon and a past outer trapping horizon correspond to a cosmological horizon and a white-hole horizon, respectively.

III Global structure of the Thakurta spacetime

The Thakurta metric is given by

ds2=a2(η)[f(r)dη2+1f(r)dr2+r2dΩ2],f(r):=12Mr,\displaystyle\begin{aligned} &{\rm d}s^{2}=a^{2}(\eta)\left[-f(r){\rm d}\eta^{2}+\frac{1}{f(r)}{\rm d}r^{2}+r^{2}{\rm d}\Omega^{2}\right],\\ &f(r):=1-\frac{2M}{r},\end{aligned} (6)

where MM is a constant Thakurta1983 ; Faraoni:2018xwo . We assume M>0M>0 throughout this letter. The spacetime approaches the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) solution with a conformal time η\eta as rr\to\infty. If the scale factor is given by a(η)=a0ηαa(\eta)=a_{0}\eta^{\alpha}, where a0a_{0} and α\alpha are positive constants, the asymptotic metric is that of the flat FLRW solution with a perfect fluid that obeys the equation of state p=wρp=w\rho (w>1/3)(w>-1/3) through the relation α=2/(1+3w)\alpha=2/(1+3w), corresponding to a decelerated cosmological expansion in the domain η>0\eta>0.

The Kretschmann invariant K:=μνρσμνρσK:={\cal R}_{\mu\nu\rho\sigma}{\cal R}^{\mu\nu\rho\sigma} for the metric (6) is calculated to give

K=4[3α2(1+α2)r8+4M2η2{3η2(r2M)2α2r4}]a04r6(r2M)2η4(1+α),K=\frac{4[3\alpha^{2}(1+\alpha^{2})r^{8}+4M^{2}\eta^{2}\{3\eta^{2}(r-2M)^{2}-\alpha^{2}r^{4}\}]}{a_{0}^{4}r^{6}(r-2M)^{2}\eta^{4(1+\alpha)}}, (7)

which shows that there is a scalar polynomial (s.p.) curvature singularity at each of r=0r=0 and η=0\eta=0. η=0\eta=0 with r>2Mr>2M is a spacelike singularity. However, the property of r=2Mr=2M is subtle.

The line element (6) can be written as

ds2=a2(η)[f(r)(dη2+dr2)+r2dΩ2],{\rm d}s^{2}=a^{2}(\eta)\left[f(r)(-{\rm d}\eta^{2}+{\rm d}{r^{*}}^{2})+r^{2}{\rm d}\Omega^{2}\right], (8)

where r:=r+2Mln[(r2M)/2M]r^{*}:=r+2M\ln[(r-2M)/{2M}]. Since r2Mr\to 2M corresponds to rr^{*}\to-\infty, it is a null boundary in the Penrose diagram.

Now we show that future-directed ingoing radial null geodesics are incomplete at the s.p. curvature singularity at (r,η)=(2M,)(r,\eta)=(2M,\infty). In the Thakurta metric (6), an ingoing radial null geodesic γ\gamma satisfies u+=u+(0)=constu_{+}=u_{+(0)}=\mbox{const}, where u±:=η±ru_{\pm}:=\eta\pm r^{*}. The Kretschmann invariant in the limit of r2Mr\to 2M along γ\gamma is then calculated to

limr2MK|γ=limr(α2e(r2M)/MM4a04(r)2+4α)=.\lim_{r\to 2M}K|_{\gamma}=\lim_{r^{*}\to-\infty}\biggl{(}-\frac{\alpha^{2}e^{-(r^{*}-2M)/M}}{M^{4}a_{0}^{4}(-r^{*})^{2+4\alpha}}\biggl{)}=-\infty. (9)

Let 𝒑\boldsymbol{p} be a tangent vector of γ\gamma. Since the spacetime admits a conformal Killing vector ξμ=(1,0,0,0)\xi^{\mu}=(1,0,0,0), there exists a conserved quantity C=ξμpμ=a2(η)f(r)η˙C=-\xi^{\mu}p_{\mu}=a^{2}(\eta)f(r)\dot{\eta} along γ\gamma, where the dot denotes the derivative with respect to the affine parameter λ\lambda. We can make C=1C=1 by an affine transformation and then we find dλ=a2(η)dr{\rm d}\lambda=-a^{2}(\eta){\rm d}r through the relation pμpμ=0p^{\mu}p_{\mu}=0. The value of λ\lambda with which γ\gamma terminates at r=2Mr=2M is then given by

λλ0=r0a2(u+(0)r)f(r)dr.\lambda-\lambda_{0}=\int_{-\infty}^{r_{0}^{*}}a^{2}(u_{+(0)}-r^{*})f(r){\rm d}r^{*}. (10)

The interval of the integral on the right-hand side of Eq. (10) can be divided to (,L](-\infty,-L] and [L,r0][-L,r_{0}^{*}]. For any ϵ(0,1/2)\epsilon\in(0,1/2), there exists sufficiently large but finite LL such that

(u+(0)r)2αf(r)<(2M)2αe(1ϵ)(r2M)/(2M)(u_{+(0)}-r^{*})^{2\alpha}f(r)<(2M)^{2\alpha}e^{(1-\epsilon)(r^{*}-2M)/(2M)} (11)

for all r<Lr^{*}<-L. Therefore, if a(η)=a0ηαa(\eta)=a_{0}\eta^{\alpha}, the integral over the first interval converges to a finite limit value, while that over the second is trivially finite. This means that the ingoing radial null geodesics are future incomplete at the s.p. curvature singularity at (r,η)=(2M,)(r,\eta)=(2M,\infty).

Refer to caption
Refer to caption
Figure 1: Penrose diagrams of the Thakurta spacetime with a(η)ηαa(\eta)\propto\eta^{\alpha} for 0<α10<\alpha\leq 1 (top) and α>1\alpha>1 (bottom). Solid curves denote trapping horizons, which are past trapping horizons, and the shaded regions are past trapped. There is neither event horizon nor future outer trapping horizon in the spacetime.

As a result, the Penrose diagrams of the Thakurta spacetime with a(η)ηαa(\eta)\propto\eta^{\alpha} (α>0)(\alpha>0) are given by Fig. 1. (See Harada:2018ikn ; Harada:2021yul for those of the corresponding FLRW spacetimes.) This is a maximal extension of the spacetime. Clearly, there is no black-hole event horizon. Nevertheless, the spacetime might be interpreted as a black hole by an alternative definition in terms of a trapping horizon Hayward:1993wb ; Hayward:1994bu or an apparent horizon he1973 ; wald1983 . In fact, the Thakurta spacetime possesses a trapping horizon in the spherical foliation of the spacetime. However, this trapping horizon is not of black-hole type as we will show below.

IV Trapping horizon

With R=arR=ar, the Misner-Sharp mass (2) for the Thakurta spacetime is computed to give

mMS=a(M+2r32f(r)),m_{\rm MS}=a\left(M+\frac{{\cal H}^{2}r^{3}}{2f(r)}\right), (12)

where :=a/a{\cal H}:=a^{\prime}/a. A prime denotes the derivative with the argument η\eta. The location of a trapping horizon is determined by R=2mMSR=2m_{\rm MS}, or

f(r)=r,f(r)={\cal H}r, (13)

where r>2Mr>2M is assumed. With =α/η{\cal H}=\alpha/\eta, Eq. (13) is solved for η\eta to give

η=αr2r2M=:ηTH(r).\eta=\frac{\alpha r^{2}}{r-2M}=:\eta_{\rm TH}(r). (14)

The function η=ηTH(r)\eta=\eta_{\rm TH}(r) has a single local minimum η=8αM\eta=8\alpha M at r=4Mr=4M.

In fact, the Thakurta metric (6) with a(η)ηαa(\eta)\propto\eta^{\alpha} (α>0)(\alpha>0) admits only a past trapping horizon in the domain η>0\eta>0, which is associated with a white-hole or a cosmological horizon. To see this, we adopt the following choice for 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l}:

kμxμ=\displaystyle k^{\mu}\frac{\partial}{\partial x^{\mu}}= kAyA=12a(1fη+fr),\displaystyle k^{A}\frac{\partial}{\partial y^{A}}=\frac{1}{\sqrt{2}a}\biggl{(}\frac{1}{\sqrt{f}}\frac{\partial}{\partial\eta}+\sqrt{f}\frac{\partial}{\partial r}\biggl{)}, (15)
lμxμ=\displaystyle l^{\mu}\frac{\partial}{\partial x^{\mu}}= lAyA=12a(1fηfr),\displaystyle l^{A}\frac{\partial}{\partial y^{A}}=\frac{1}{\sqrt{2}a}\biggl{(}\frac{1}{\sqrt{f}}\frac{\partial}{\partial\eta}-\sqrt{f}\frac{\partial}{\partial r}\biggl{)}, (16)

which satisfy Eq. (3). By Eqs. (4) and (5), the null expansions along 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l} are given by θ+\theta_{+} and θ\theta_{-}, respectively, where

θ±=2[r±f(r)]arf.\theta_{\pm}=\frac{\sqrt{2}\left[{\cal H}r\pm f(r)\right]}{ar\sqrt{f}}. (17)

Because θ+>θ\theta_{+}>\theta_{-} holds, 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l} are outgoing and ingoing, respectively. Equation (17) shows that θ+>0\theta_{+}>0 and θ=0\theta_{-}=0 hold on the trapping horizon (13). For the further classification of a trapping horizon, we need to use

+θ|θ=0=(1α)(r2M)+2αMαa2r3.{\cal L}_{+}\theta_{-}|_{\theta_{-}=0}=-\frac{(1-\alpha)(r-2M)+2\alpha M}{\alpha a^{2}r^{3}}. (18)

Since θ+|θ=0>0\theta_{+}|_{\theta_{-}=0}>0 holds, our trapping horizon (14) is a past trapping horizon. Then, by Eq. (18), it is an outer trapping horizon for 0<α10<\alpha\leq 1. For α>1\alpha>1, it is an outer, degenerate, and inner trapping horizons in the regions of r2M<β2r-2M<\beta_{2}, r2M=β2r-2M=\beta_{2}, and r2M>β2r-2M>\beta_{2}, respectively, where

β2:=2αMα1.\beta_{2}:=\frac{2\alpha M}{\alpha-1}. (19)

In the region of 0<η<ηTH(r)0<\eta<\eta_{\rm TH}(r), both θ+\theta_{+} and θ\theta_{-} are positive, meaning that the region is past trapped. These results are summarized in Table 2.

Table 2: Types of the trapping horizon in the Thakurta spacetime with a(η)ηαa(\eta)\propto\eta^{\alpha} (α>0)(\alpha>0) for the different ranges of r2Mr-2M.
Past outer Past degenerate Past inner
0<α10<\alpha\leq 1 (0,)(0,\infty) \emptyset \emptyset
α>1\alpha>1 (0,β2)(0,\beta_{2}) β2\beta_{2} (β2,)(\beta_{2},\infty)

We also check the signature of the trapping horizon as another important property. The line element on the trapping horizon (14) is given by

dsTH2=a2(ηTH(r))(Π(r)r2f3dr2+r2dΩ2),Π(r):=[(1α)(r2M)+2αM]×[(1+α)(r2M)2αM],\displaystyle\begin{aligned} {\rm d}s^{2}_{\rm TH}=&a^{2}(\eta_{\rm TH}(r))\left(\frac{\Pi(r)}{r^{2}f^{3}}{\rm d}r^{2}+r^{2}{\rm d}\Omega^{2}\right),\\ \Pi(r):=&[(1-\alpha)(r-2M)+2\alpha M]\\ &\times[(1+\alpha)(r-2M)-2\alpha M],\end{aligned} (20)

which clarifies the locations of timelike, null, and spacelike portions of the trapping horizon. The results are summarized in Table 3. We can see that the signature changes at r2M=β1r-2M=\beta_{1} and β2\beta_{2}, where

β1:=2αMα+1.\displaystyle\beta_{1}:=\frac{2\alpha M}{\alpha+1}. (21)

We notice that for α=1\alpha=1, uu_{-}\to-\infty and u++u_{+}\to+\infty holds as rr\to\infty along the trapping horizon η=ηTH(r)\eta=\eta_{\rm TH}(r). This limit corresponds to spacelike infinity i0i^{0} in the Penrose diagram.

Table 3: Signatures of the trapping horizon for the different ranges of r2Mr-2M.
Timelike     Null   Spacelike
0<α10<\alpha\leq 1 (0,β1)(0,\beta_{1}) β1\beta_{1} (β1,)(\beta_{1},\infty)
1<α1<\alpha (0,β1),(β2,)(0,\beta_{1}),(\beta_{2},\infty) β1,β2\beta_{1},\beta_{2} (β1,β2)(\beta_{1},\beta_{2})

We present all the results obtained so far in the rηr\eta plane in Fig. 2. The orbits of the trapping horizons are also presented in Fig. 1. We find that for all α>0\alpha>0, there exists a past outer trapping horizon located at 0<r2M<β10<r-2M<\beta_{1}, which is a timelike hypersurface. It is known that an outer (inner) trapping horizon is nontimelike (nonspacelike) under the null energy condition (NEC) in general relativity Hayward:1993wb ; Nozawa:2007vq . Therefore, if we adopt the Thakurta metric (6) as a solution of the Einstein equation, the corresponding matter field violates the NEC on the trapping horizon located at 0<r2M<β10<r-2M<\beta_{1} for any α>0\alpha>0.

Refer to caption
Refer to caption
Figure 2: rηr\eta planes for the Thakurta spacetime with a(η)ηαa(\eta)\propto\eta^{\alpha} for (top) 0<α10<\alpha\leq 1 and (bottom) α>1\alpha>1. Several future light cones are put to clarify the signature of the trapping horizon η=ηTH(r)\eta=\eta_{\rm TH}(r). The regions of 0<η<ηTH(r)0<\eta<\eta_{\rm TH}(r) with r>2Mr>2M are past trapped.

In fact, the corresponding energy-momentum tensor Tμν(:=Gμν/(8π))T_{\mu\nu}(:=G_{\mu\nu}/(8\pi)) is of the Hawking-Ellis type IV in the region of η>(α+1)r2/(2M)\eta>(\alpha+1)r^{2}/(2M), which violates all the standard energy conditions he1973 ; Maeda:2018hqu ; Martin-Moruno:2017exc . To prove this, we compute G(a)(b):=GμνEμ(a)Eν(b)G^{(a)(b)}:=G^{\mu\nu}E^{(a)}_{\mu}E^{(b)}_{\nu} with the following orthonormal basis one-forms:

Eμ(0)dxμ=a(η)f(r)1/2dη,Eμ(1)dxμ=a(η)f(r)1/2dr,Eμ(2)dxμ=a(η)rdθ,Eμ(3)dxμ=a(η)rsinθdϕ.\displaystyle\begin{aligned} &E_{\mu}^{(0)}{\rm d}x^{\mu}=-a(\eta)f(r)^{1/2}{\rm d}\eta,\\ &E_{\mu}^{(1)}{\rm d}x^{\mu}=a(\eta)f(r)^{-1/2}{\rm d}r,\\ &{E}_{\mu}^{(2)}{\rm d}x^{\mu}=a(\eta)r{\rm d}\theta,\\ &{E}_{\mu}^{(3)}{\rm d}x^{\mu}=a(\eta)r\sin\theta{\rm d}\phi.\end{aligned} (22)

All the non-zero components G(a)(b)G^{(a)(b)} are

G(0)(0)=3fa2a4,G(0)(1)=G(1)(0)=2Mr2faa3,G(1)(1)=G(2)(2)=G(3)(3)=1f(2a′′a3+a2a4),\displaystyle\begin{aligned} &G^{(0)(0)}=\frac{3}{f}\frac{{a^{\prime}}^{2}}{a^{4}},\qquad G^{(0)(1)}=G^{(1)(0)}=\frac{2M}{r^{2}f}\frac{a^{\prime}}{a^{3}},\\ &G^{(1)(1)}=G^{(2)(2)}=G^{(3)(3)}=\frac{1}{f}\biggl{(}-2\frac{a^{\prime\prime}}{a^{3}}+\frac{{a^{\prime}}^{2}}{a^{4}}\biggl{)},\end{aligned} (23)

which give

𝒟:=\displaystyle{\cal D}:= (G(0)(0)+G(1)(1))24(G(0)(1))2\displaystyle(G^{(0)(0)}+G^{(1)(1)})^{2}-4(G^{(0)(1)})^{2}
=\displaystyle= 4α2η2f2a4(α+1η+2Mr2)(α+1η2Mr2).\displaystyle\frac{4\alpha^{2}}{\eta^{2}f^{2}a^{4}}\biggl{(}\frac{\alpha+1}{\eta}+\frac{2M}{r^{2}}\biggl{)}\biggl{(}\frac{\alpha+1}{\eta}-\frac{2M}{r^{2}}\biggl{)}. (24)

Then, by Lemma 1 in  Maeda:2022vld , the corresponding energy-momentum tensor TμνT_{\mu\nu} is of the Hawking-Ellis type I, II, and IV in the regions of 𝒟>0{\cal D}>0, 𝒟=0{\cal D}=0, and 𝒟<0{\cal D}<0, respectively. Thus, by Eq. (24), TμνT_{\mu\nu} is of type IV in the region of η>(α+1)r2/(2M)\eta>(\alpha+1)r^{2}/(2M) and therefore violates all the standard energy conditions there. On the trapping horizon (14), TμνT_{\mu\nu} is of type IV in the region of 0<r2M<β10<r-2M<\beta_{1}, where β1\beta_{1} is defined by Eq. (21). This is the reason of the unusual behavior of the trapping horizon in this region.

V Trapping horizon in Painlevé-Gullstrand-like coordinates

In Ref. Kobakhidze:2021rsh , the authors claim that the trapping horizon in the Thakurta spacetime considered in this letter can be a future outer trapping horizon in Painlevé-Gullstrand-like coordinates on (M2,gAB)(M^{2},g_{AB}) and then the spacetime may be interpreted as a cosmological black hole. However, this claim cannot be true. In fact, the location of a trapping horizon and its type are invariant as long as a spherical foliation is adopted because θ±\theta_{\pm} and ±θ{\cal L}_{\pm}\theta_{\mp} are scalars on (M2,gAB)(M^{2},g_{AB}) Faraoni:2016xgy . Moreover, the signs of θ±\theta_{\pm} and ±θ{\cal L}_{\pm}\theta_{\mp} are independent from the choice of 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l}. (See Proposition 1 in Ref. Sato:2022yto .) In contrast, it has been established that non-spherical foliations may miss trapped surfaces Wald:1991zz ; Schnetter:2005ea .

Here we find out an error in the argument in Ref. Kobakhidze:2021rsh . First we outline the argument made in Ref. Kobakhidze:2021rsh . The authors start from the Thakurta metric in the following coordinates:

ds2=f(r)dt2+a¯2(t)(1f(r)dr2+r2dΩ2),\displaystyle{\rm d}s^{2}=-f(r){\rm d}t^{2}+{\bar{a}}^{2}(t)\left(\frac{1}{f(r)}{\rm d}r^{2}+r^{2}{\rm d}\Omega^{2}\right), (25)

where f(r)f(r) is defined by Eq. (6). They introduce the following scalar function FF on (M2,gAB)(M^{2},g_{AB}) defined by the areal radius RR and the Misner-Sharp mass (2):

F:=\displaystyle F:= 12mMSR.\displaystyle 1-\frac{2m_{\rm MS}}{R}. (26)

A trapping horizon is given by F=0F=0.

By a coordinate transformation from (t,r)(t,r) to (t,R)(t,R) with R=a¯(t)rR={\bar{a}}(t)r, one obtains

ds2=f¯dt2+1f¯(dRHRdt)2+R2dΩ2,f¯:=12Ma¯(t)R,H:=a¯,ta¯,\displaystyle\begin{aligned} {\rm d}s^{2}=&-{\bar{f}}{\rm d}t^{2}+\frac{1}{{\bar{f}}}\left({\rm d}R-HR{\rm d}t\right)^{2}+R^{2}{\rm d}\Omega^{2},\\ {\bar{f}}:=&1-\frac{2M{\bar{a}}(t)}{R},\qquad H:=\frac{{\bar{a}}_{,t}}{{\bar{a}}},\end{aligned} (27)

where a comma denotes a partial differentiation and H>0H>0 corresponds to the case where the asymptotic region is the expanding FLRW universe. The function FF is computed to give

F=f¯H2R2f¯.\displaystyle F={\bar{f}}-\frac{H^{2}R^{2}}{{\bar{f}}}. (28)

Then, we perform another coordinate transformation from (t,R)(t,R) to (τ,R)(\tau,R), where τ\tau is defined such that t=t(τ,R)t=t(\tau,R) satisfies

f¯=f¯2t,R2+(1HRt,R)2\displaystyle{\bar{f}}=-{\bar{f}}^{2}{t_{,R}}^{2}+(1-HRt_{,R})^{2} (29)

to give gRR=1g_{RR}=1. Note that the coordinates (τ,R)(\tau,R) are the Painlevé-Gullstrand-like coordinates. The resulting metric is

ds2=\displaystyle{\rm d}s^{2}= t,τ2Fdτ22t,τ(Ft,R+HRf¯)dτdR\displaystyle-{t_{,\tau}}^{2}F{\rm d}\tau^{2}-2t_{,\tau}\left(Ft_{,R}+\frac{HR}{{\bar{f}}}\right){\rm d}\tau{\rm d}R
+dR2+R2dΩ2,\displaystyle+{\rm d}R^{2}+R^{2}{\rm d}\Omega^{2}, (30)

where we used Eq. (28). Equations (28) and (29) show

(Ft,R+HRf¯)2=1F,\displaystyle\left(Ft_{,R}+\frac{HR}{{\bar{f}}}\right)^{2}=1-F, (31)

which gives

Ft,R+HRf¯=ε1F,\displaystyle Ft_{,R}+\frac{HR}{{\bar{f}}}=\varepsilon\sqrt{1-F}, (32)

where ε=±1\varepsilon=\pm 1. Hence, the metric (30) reduces to

ds2=\displaystyle{\rm d}s^{2}= t,τ2Fdτ22εt,τ1FdτdR\displaystyle-t_{,\tau}^{2}F{\rm d}\tau^{2}-2\varepsilon t_{,\tau}\sqrt{1-F}{\rm d}\tau{\rm d}R
+dR2+R2dΩ2.\displaystyle~{}~{}~{}~{}~{}+{\rm d}R^{2}+R^{2}{\rm d}\Omega^{2}. (33)

Now we are prepared to see that the contradictory argument in Ref. Kobakhidze:2021rsh stems from an incorrect choice of ε\varepsilon. The authors chose ε=1\varepsilon=-1 in the metric (33) as seen in Eq. (21) in Ref. Kobakhidze:2021rsh . (Note that the metric signature (+,,,)(+,-,-,-) was adopted in Ref. Kobakhidze:2021rsh .) However, Eq. (32) with ε=1\varepsilon=-1 and H>0H>0 leads to a contradiction on a trapping horizon F=0F=0 in the region of f¯>0{\bar{f}}>0, where t,Rt_{,R} is assumed to be finite. Clearly, one has to choose ε=1\varepsilon=1 instead 111The sign of ε\varepsilon is invariant under the transformation from τ\tau to τ-\tau..

Let us confirm that the trapping horizon in the coordinate system (33) with ε=1\varepsilon=1 is of the past type. We adopt the following two independent future-directed radial null vectors:

kμxμ=\displaystyle k^{\mu}\frac{\partial}{\partial x^{\mu}}= 12(1t,ττ+(1+ε1F)R),\displaystyle\frac{1}{\sqrt{2}}\biggl{(}\frac{1}{{t_{,\tau}}}\frac{\partial}{\partial{\tau}}+(1+\varepsilon\sqrt{1-F})\frac{\partial}{\partial R}\biggl{)}, (34)
lμxμ=\displaystyle l^{\mu}\frac{\partial}{\partial x^{\mu}}= 12(1t,ττ(1ε1F)R),\displaystyle\frac{1}{\sqrt{2}}\biggl{(}\frac{1}{{t_{,\tau}}}\frac{\partial}{\partial{\tau}}-(1-\varepsilon\sqrt{1-F})\frac{\partial}{\partial R}\biggl{)}, (35)

which satisfy Eq. (3). From Eqs. (4) and (5), the null expansions along 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l} are given by

θ+=2(1+ε1F)R,θ=2(1ε1F)R,\displaystyle\theta_{+}=\frac{\sqrt{2}(1+\varepsilon\sqrt{1-F})}{R},\quad\theta_{-}=-\frac{\sqrt{2}(1-\varepsilon\sqrt{1-F})}{R}, (36)

respectively. Since θ+>θ\theta_{+}>\theta_{-} holds independently of the value of ε\varepsilon, 𝒌\boldsymbol{k} and 𝒍\boldsymbol{l} are outgoing and ingoing, respectively. On a trapping horizon F=0F=0 with ε=1\varepsilon=1, we have θ+>0\theta_{+}>0 and θ=0\theta_{-}=0, so that it is of the past type. In contrast, with ε=1\varepsilon=-1, one obtains θ+=0\theta_{+}=0 and θ<0\theta_{-}<0 on the trapping horizon and then it is of the future type. However, by Eq. (32), ε=1\varepsilon=-1 is allowed only with H<0H<0. Namely, a future trapping horizon may be possible only in the case where the asymptotic region is the collapsing FLRW universe, which is of no interest in the present context.

VI Concluding remarks

We emphasize that the Thakurta metric does not describe a cosmological black hole in spite of subtlety in defining cosmological black holes. Let us consider an observer O located outside a black-hole event horizon at finite distance and time, not at future null infinity nor timelike infinity. This is an observer usually presumed in observational cosmology. By definition, such an observer never knows the existence of an event horizon, even though the causal nature of the r=2Mr=2M surface, such as whether it is finitely far or not and regular or not, crucially depends on the asymptotic behavior of a(η)a(\eta) in the infinite future η\eta\to\infty (cf. Nakao:2018knn ).

What is even worse, if the universe is not asymptotically flat FLRW, it may not be possible to define future null infinity nor an event horizon. These facts suggest that, at least from an observational point of view, we should give up the definition of a cosmological black hole in terms of an event horizon. Instead, for example, we may practically define a cosmological black hole by the existence of an “almost” future outer trapping horizon, a hypersurface foliated by “almost” marginal surfaces on which θ<0\theta_{-}<0 and θ+\theta_{+} is infinitesimally small positive, and θ+<0{\cal L}_{-}\theta_{+}<0 are satisfied, that can be observed in principle by O. Even in such a rather weaker definition, the Thakurta spacetime cannot be interpreted as a cosmological black hole because both θ+\theta_{+} and θ\theta_{-} are always positive in the vicinity of r=2Mr=2M surface.

To conclude, the Thakurta metric (6) with a(η)ηαa(\eta)\propto\eta^{\alpha} (α>0)(\alpha>0) does not describe a cosmological black hole in the early universe, with a possible exceptional case, where the cosmological expansion is accelerated.

Acknowledgements.
T. H. is grateful to N. Tanahashi and J. Yang for fruitful discussion. H. M. is grateful to A. Kobakhidze for email communications. This work was partially supported by MEXT Grants-in-Aid for Scientific Research/JSPSKAKENHI Grants Nos. JP19K03876, JP19H01895, and JP20H05853 (T.H.).

References

  • (1) B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron. Soc. 168 (1974), 399-415.
  • (2) B. J. Carr, Astrophys. J. 201, 1-19 (1975) doi:10.1086/153853
  • (3) M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Phys. Rev. Lett. 117 (2016) no.6, 061101 [erratum: Phys. Rev. Lett. 121 (2018) no.5, 059901] doi:10.1103/PhysRevLett.117.061101 [arXiv:1603.08338 [astro-ph.CO]].
  • (4) S. Clesse, and J. García-Bellido, Phys. Dark Univ. 15, 142 (2017) doi:10.1016/j.dark.2016.10.002 [arXiv:1603.05234 [astro-ph.CO]].
  • (5) S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G. Riess, Phys. Rev. Lett. 116, no. 20, 201301 (2016) doi:10.1103/PhysRevLett.116.201301 [arXiv:1603.00464 [astro-ph.CO]].
  • (6) G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti, P. Pani, A. Riotto and S. Vitale, Phys. Rev. D 105 (2022) no.8, 083526 doi:10.1103/PhysRevD.105.083526 [arXiv:2105.03349 [gr-qc]].
  • (7) C. Boehm, A. Kobakhidze, C. A. J. O’hare, Z. S. C. Picker and M. Sakellariadou, JCAP 03 (2021), 078 doi:10.1088/1475-7516/2021/03/078 [arXiv:2008.10743 [astro-ph.CO]].
  • (8) Z. S. C. Picker, [arXiv:2103.02815 [astro-ph.CO]].
  • (9) S. N. G. Thakurta, Indian Journal of Physics 55B, 304 (1981).
  • (10) V. Faraoni, Universe 4 (2018) no.10, 109 doi:10.3390/universe4100109 [arXiv:1810.04667 [gr-qc]].
  • (11) G. Hütsi, T. Koivisto, M. Raidal, V. Vaskonen and H. Veermäe, Eur. Phys. J. C 81 (2021) no.11, 999 doi:10.1140/epjc/s10052-021-09803-4 [arXiv:2105.09328 [astro-ph.CO]].
  • (12) C. Boehm, A. Kobakhidze, C. A. J. O’Hare, Z. S. C. Picker and M. Sakellariadou, [arXiv:2105.14908 [astro-ph.CO]].
  • (13) G. Hütsi, T. Koivisto, M. Raidal, V. Vaskonen and H. Veermäe, [arXiv:2106.02007 [astro-ph.CO]].
  • (14) A. Kobakhidze and Z. S. C. Picker, Eur. Phys. J. C 82, no.4, 347 (2022) doi:10.1140/epjc/s10052-022-10312-1 [arXiv:2112.13921 [gr-qc]].
  • (15) M. M. C. Mello, A. Maciel and V. T. Zanchin, Phys. Rev. D 95 (2017) no.8, 084031 doi:10.1103/PhysRevD.95.084031 [arXiv:1611.05077 [gr-qc]].
  • (16) G. C. McVittie, Mon. Not. Roy. Astron. Soc. 93 (1933), 325-339 doi:10.1093/mnras/93.5.325
  • (17) B. C. Nolan, Phys. Rev. D 58 (1998), 064006 doi:10.1103/PhysRevD.58.064006 [arXiv:gr-qc/9805041 [gr-qc]].
  • (18) B. C. Nolan, Class. Quant. Grav. 16 (1999), 1227-1254 doi:10.1088/0264-9381/16/4/012
  • (19) B. C. Nolan, Class. Quant. Grav. 16 (1999), 3183-3191 doi:10.1088/0264-9381/16/10/310 [arXiv:gr-qc/9907018 [gr-qc]].
  • (20) N. Kaloper, M. Kleban and D. Martin, Phys. Rev. D 81 (2010), 104044 doi:10.1103/PhysRevD.81.104044 [arXiv:1003.4777 [hep-th]].
  • (21) C. W. Misner and D. H. Sharp, Phys. Rev. 136 (1964), B571-B576 doi:10.1103/PhysRev.136.B571
  • (22) S. A. Hayward, Phys. Rev. D 49 (1994), 6467-6474 doi:10.1103/PhysRevD.49.6467
  • (23) S. A. Hayward, Class. Quant. Grav. 15, 3147-3162 (1998) doi:10.1088/0264-9381/15/10/017 [arXiv:gr-qc/9710089 [gr-qc]].
  • (24) T. Harada, B. J. Carr and T. Igata, Class. Quant. Grav. 35 (2018) no.10, 105011 doi:10.1088/1361-6382/aab99f [arXiv:1801.01966 [gr-qc]].
  • (25) T. Harada, T. Igata, T. Sato and B. Carr, Class. Quant. Grav. 39 (2022), 145008 [arXiv:2110.13421 [gr-qc]].
  • (26) S. A. Hayward, Phys. Rev. D 53 (1996) 1938 doi:10.1103/PhysRevD.53.1938 [gr-qc/9408002].
  • (27) S.W. Hawking and G.F.R. Ellis, “The Large Scale Structure of Space-time” (Cambridge: Cambridge University Press, 1973).
  • (28) R. M. Wald, “General Relativity” (Chicago: University of Chicago Press, 1983).
  • (29) M. Nozawa and H. Maeda, Class. Quant. Grav. 25 (2008), 055009 doi:10.1088/0264-9381/25/5/055009 [arXiv:0710.2709 [gr-qc]].
  • (30) P. Martín-Moruno and M. Visser, Fundam. Theor. Phys. 189, 193-213 (2017) doi:10.1007/978-3-319-55182-1_9 [arXiv:1702.05915 [gr-qc]].
  • (31) H. Maeda and C. Martinez, PTEP 2020, no.4, 043E02 (2020) doi:10.1093/ptep/ptaa009 [arXiv:1810.02487 [gr-qc]].
  • (32) H. Maeda and T. Harada, [arXiv:2205.12993 [gr-qc]].
  • (33) V. Faraoni, G. F. R. Ellis, J. T. Firouzjaee, A. Helou and I. Musco, Phys. Rev. D 95 (2017) no.2, 024008 doi:10.1103/PhysRevD.95.024008 [arXiv:1610.05822 [gr-qc]].
  • (34) T. Sato, H. Maeda and T. Harada, [arXiv:2206.10998 [gr-qc]].
  • (35) R. M. Wald and V. Iyer, Phys. Rev. D 44, R3719-R3722 (1991) doi:10.1103/PhysRevD.44.R3719
  • (36) E. Schnetter and B. Krishnan, Phys. Rev. D 73 (2006), 021502 doi:10.1103/PhysRevD.73.021502 [arXiv:gr-qc/0511017 [gr-qc]].
  • (37) K. i. Nakao, C. M. Yoo and T. Harada, Phys. Rev. D 99 (2019) no.4, 044027 doi:10.1103/PhysRevD.99.044027 [arXiv:1809.00124 [gr-qc]].