This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.




Tests of the Atomki anomaly in lepton pair decays of heavy mesons

G. López Castro [email protected] Departamento de Física, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, 07000 México D.F., México    Néstor Quintero [email protected] Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 No. 62-00, Código Postal 76001, Santiago de Cali, Colombia Departamento de Física, Universidad del Tolima, Código Postal 730006299, Ibagué, Colombia
Abstract

The anomalies recently reported in lepton pair transitions of 8Be and 4He nuclei may be attributed to the existence of a feebly interacting light vector boson X17X17. We study the effects of this hypothetic particle in the semileptonic HHe+eH^{*}\to He^{+}e^{-} decays (HH a Qq¯Q\bar{q} meson) in the framework of the HQET+VMD model. Using current bounds and the universality assumption of the X17X17 boson to quarks, we find that decays of D+D^{*+} and Ds+D_{s}^{*+} mesons can be importantly enhanced relative to the dominant photon-mediated contributions. Dedicated experimental searches at current heavy meson factories may confirm the existence of this light boson or set stronger bounds of their couplings to ordinary matter.

I Introduction

The existence of a light vector boson weakly coupled to Standard Model (SM) fermions, has been suggested as a solution to the observed discrepancy between the SM prediction and the experimental measurement of the muon g2g-2 magnetic moment anomaly (see for example Fayet:2007ua ; Pospelov:2008zw ). It may be also a good candidate as a mediator of dark and ordinary matter interactions Fayet:2007ua ; Pospelov:2008zw . Several strategies aiming their detection in different collider and fixed target experiments have not found any signal so far Essig:2013lka ; wfip2020 , but have excluded different regions in the mass and coupling strenghts of parameter space. Theoretically, different models can accomodate a light vector boson and its required interactions through dimension-four kinetic mixing with SM neutral gauge bosons and their interactions with fermionic currents of SM or dark matter particles Fayet:2007ua ; Pospelov:2008zw ; Essig:2013lka .

The anomalies recently reported in the invariant-mass spectrum and angular distribution of lepton pairs produced in 8Be transitions to its ground state Krasznahorkay:2015iga , reinforces the interest in searches of light vector bosons. The observed anomalies seems to require the existence of a spin-1 boson named X17X17 Krasznahorkay:2015iga ; Feng:2016jff ; Feng:2016ysn with mass mX=(16.7±0.35±0.50)m_{X}=(16.7\pm 0.35\pm 0.50) MeV and a relative ratio B(8Be8BeX)/B(8Be8Beγ)=5.8×106B(^{8}{\rm Be}^{*}\to^{8}{\rm\!Be}X)/B(^{8}{\rm Be}^{*}\to^{8}{\rm\!Be}\gamma)=5.8\times 10^{-6} Feng:2016ysn . Couplings to standard model first-generation fermions of 𝒪(103)\mathcal{O}(10^{-3}) (in units of the the electron charge), required to explain this ratio is not discarded by other data. More recently, the same group seems to confirm the X17X17 particle in studies of the 00+0^{-}\to 0^{+} transitions of 4He Krasznahorkay:2019lyl . Several new physics extensions of the SM have been proposed in the literature with the required couplings to interpret the Atomki anomaly, including enlarged Higgs and/or gauge sectors (see, for instance, Refs. Feng:2016ysn ; DelleRose:2017xil ; DelleRose:2018eic ; DelleRose:2018pgm ; Seto:2020jal ; Nomura:2020kcw ). Despite the excitement generated by these anomalies, one must be warned that the addition of radiative corrections to the leading one photon exchange amplitude may be responsible Aleksejevs:2021zjw for generating the bumps reported in the angle and mass spectrum of electron-positron pairs in 8Be transitions.

The almost isosinglet nature and the small mass difference of nuclei involved in 8Be decay provides an ideal place to observe this light boson, in case it exists. Mixing of nuclear isospin states Krasznahorkay:2019lyl ; Feng:2016ysn ; Feng:2020mbt and other nuclear interference effects Zhang:2017zap can only partially explain the observed anomaly. Further studies in analogous systems will be very important in order to establish or discard this light boson. In the present letter, we propose the study of HHe+eH^{*}\to He^{+}e^{-} decays, where H(H)H(H^{*}) is a heavy Qq¯Q\bar{q} spin-0 (spin-1) meson. Previous related studies include: 1) J/ψηcXJ/\psi\to\eta_{c}X decays and associated production of J/ψJ/\psi mesons at BESIII and Belle II experiments, recently reported in Ban:2020uii and, 2) a search proposal at LHCb of D0D0AD0e+eD^{*0}\to D^{0}A^{\prime}\to D^{0}e^{+}e^{-} with displaced vertex or resonant production of the dark photon AA^{\prime} was detailed in Ref. Ilten:2015hya . HHe+eH^{*}\to He^{+}e^{-} decays seem to be interesting to further test the Atomki anomaly: on the one hand, the mass-splitting in heavy mesons is large enough (see Table 1) to produce the X17X17 boson on-shell; on the other hand, strong decays of HH^{*} are either very suppressed of forbidden by kinematics, leaving electromagnetic decays as dominant. Furthermore, the large amount of data produced at heavy meson factories would allow to test the proposed channels in the near future.

Transition mHmH\ \ m_{H^{*}}-m_{H} (MeV) eQ/mH[GeV1]e_{Q}/m_{H^{\ast}}\ [{\rm GeV}^{-1}] eq/mq(0)[GeV1]e_{q}/m_{q}(0)\ [{\rm GeV}^{-1}]    FHHγ(0)[GeV1]F_{H^{\ast}H\gamma}(0)\ [{\rm GeV}^{-1}]
D+D+γD^{\ast+}\to D^{+}\gamma      140.603(15) 0.330.33 0.85-0.85 0.54±0.05-0.54\pm 0.05   [0.47±0.06-0.47\pm 0.06 PDG2020 ]
D0D0γD^{\ast 0}\to D^{0}\gamma      142.014(30) 0.330.33 1.701.70 2.11±0.102.11\pm 0.10   [<10.8<10.8 PDG2020 ]
Ds+Ds+γD_{s}^{\ast+}\to D_{s}^{+}\gamma      143.8(4) 0.320.32 0.48-0.48 (0.17±0.03-0.17\pm 0.03)  [>16.4>-16.4 PDG2020 ]
B+B+γB^{\ast+}\to B^{+}\gamma      45.37(21) 0.063-0.063 1.701.70 1.64±0.091.64\pm 0.09
B0B0γB^{\ast 0}\to B^{0}\gamma      45.37(21) 0.063-0.063 0.85-0.85 0.92±0.12-0.92\pm 0.12
Bs0Bs0γB^{\ast 0}_{s}\to B_{s}^{0}\gamma      48.6(1.5+1.8{}^{+1.8}_{-1.5}) 0.062-0.062 0.48-0.48 (0.42±0.02-0.42\pm 0.02)
Table 1: Mass splittings of heavy mesons and electromagnetic couplings of HHγH^{\ast}\to H\gamma transitions in the HQET+VMD model. Within square brackets we show experimental values when available.

The Lagrangian describing the interaction of quark and lepton flavors ff with the photon and the XX boson is (γ,X)ff=ef(efAμ+εfXμ)f¯γμf{\cal L}_{(\gamma,X)ff}=-e\sum_{f}(e_{f}A_{\mu}+\varepsilon_{f}X_{\mu})\bar{f}\gamma^{\mu}f, with couplings strenghts efe_{f} and εf\varepsilon_{f} given in units of the electron charge ee. The photon and XX boson couplings to hadrons are described each by a single vector form factor which takes into account their structure in the momentum transfer region 4me2q2(mHmH)24m_{e}^{2}\leq q^{2}\leq(m_{H^{*}}-m_{H})^{2}, with q=pe++peq=p_{e^{+}}+p_{e^{-}}. The form factors describing the couplings of the off-shell vector particles (V=γ,XV=\gamma,X) in H(pH,ϵH)H(pH)V(q)H^{*}(p_{H^{*}},\epsilon_{H^{*}})\to H(p_{H})V(q) are defined from the hadronic amplitude

μ=ieFHHV(q2)ϵμναβϵHνpHαpHβ.{\cal M}_{\mu}=ieF_{H^{*}HV}(q^{2})\epsilon_{\mu\nu\alpha\beta}\epsilon_{H*}^{\nu}p_{H}^{\alpha}p_{H*}^{\beta}\ . (1)

For on-shell vector particles VV, this Lorentz-vector amplitude must be contracted with its vector polarization ϵVμ(q)\epsilon^{\mu}_{V}(q). The case of lepton pair production is discussed in Section III.

II HHH^{*}H-Vector vertices

The form factors FHHV(q)F_{H^{*}HV}(q) are evaluated in the framework of the heavy quark effective theory suplemented with vector meson dominance model (HQET+VDM)  Colangelo:1993zq ; Casalbuoni:1992dx , which has shown to give a good description of HHγH^{*}\to H\gamma decays. Since we will normalize results for our observables to this radiative decay, we use the ratio of decay rates because they are rather insensitive to the specific q2q^{2}-dependency of the form factor. This is due to the smallness of the HHH^{*}-H mass splitting (see Table 1) compared to typical hadronic scales (1GeV2\sim 1\ {\rm GeV}^{2}). Also, since the contributions of heavy quarks are 1/mQ1/m_{Q} suppressed, we expect that such ratios are relatively independent of constants involved in light-quark contributions through vector meson dominance model.

For self-containess purposes, we reproduce here the term of the Lagrangian density relevant for our calculations and definitions of couplings constants Colangelo:1993zq ; Casalbuoni:1992dx . The strong interaction of heavy mesons are described by

2(HHV)=iλbσμνFμν(ρ)ba¯a,{\cal L}_{2}(H^{*}HV)=i\lambda\langle{\cal H}_{b}\sigma^{\mu\nu}F_{\mu\nu}(\rho)_{ba}\overline{\cal H}_{a}\rangle\ ,

where \langle\cdots\rangle denotes the trace in flavor space, Fμν(ρ)=μρννρμ+[ρμ,ρν]F_{\mu\nu}(\rho)=\partial_{\mu}\rho_{\nu}-\partial_{\nu}\rho_{\mu}+[\rho_{\mu},\rho_{\nu}] is the field strenght tensor and ρμ=igVρ^μ/2\rho^{\mu}=ig_{V}\widehat{\rho}^{\mu}/\sqrt{2} where ρ^μ\widehat{\rho}^{\mu} the 3×\times3 matrix of the nonet of light vector mesons. The heavy meson field {\cal H} is defined in terms of the pseudoscalar (PaP_{a}) and vector (PaμP^{*}_{a\mu}) mesons fields as a=12(1+)[PaμγμPaγ5]{\cal H}_{a}=\frac{1}{2}(1+\not{v})[P^{*}_{a\mu}\gamma^{\mu}-P_{a}\gamma_{5}], and ¯a=γ0aγ0\overline{\cal H}_{a}=\gamma^{0}{\cal H}_{a}^{\dagger}\gamma^{0}. On the other hand, the coupling of light vector mesons to the vector currents are described in terms of a single constant fVf_{V} in the SU(3) flavor symmetry Colangelo:1993zq ; Casalbuoni:1992dx :

0|q¯Tiγμq|V(q,η)=ημfVTr(VTi),\langle 0|\bar{q}T^{i}\gamma^{\mu}q|V(q,\eta)\rangle=\eta^{\mu}f_{V}{\rm Tr}(VT^{i})\ ,

where (Ti)mn=δimδin(T^{i})_{mn}=\delta_{im}\delta_{in} and i=1,2,3i=1,2,3 for q=u,d,sq=u,d,s quarks, respectively. The values of coupling constant are given below.

The vector HH^{*} and pseudoscalar HH heavy mesons are composed of a Qq¯Q\bar{q} pair, with Q=b,cQ=b,c and q=u,d,sq=u,d,s. The hadronic matrix element of the electromagnetic current is given by Colangelo:1993zq :

H(PH)|Jμem|H(PH,ϵH)\displaystyle\left\langle H(P_{H})|J_{\mu}^{\rm em}|H^{\ast}(P_{H^{\ast}},\epsilon_{H^{\ast}})\right\rangle (2)
=\displaystyle= eH(PH)|eQQ¯γμQ+eqq¯γμq|H(PH,ϵH),\displaystyle e\left\langle H(P_{H})|e_{Q}\bar{Q}\gamma_{\mu}Q+e_{q}\bar{q}\gamma_{\mu}q|H^{\ast}(P_{H^{\ast}},\epsilon_{H^{\ast}})\right\rangle,
=\displaystyle= e(eQJμQ+eqJμq),\displaystyle e(e_{Q}J_{\mu}^{Q}+e_{q}J_{\mu}^{q}),

where eQ(eq)e_{Q}(e_{q}) is the electric charge of the heavy quark (light quark) in units of the positron charge, and similarly, H(PH)|JμX|H(PH,ϵH)=e(εQJμQ+εqJμq)\left\langle H(P_{H})|J_{\mu}^{\rm X}|H^{\ast}(P_{H^{\ast}},\epsilon_{H^{\ast}})\right\rangle=e(\varepsilon_{Q}J_{\mu}^{Q}+\varepsilon_{q}J_{\mu}^{q}) for the XX boson current.

A straightforward evaluation of the form factors in the HQET+VMD model Colangelo:1993zq leads to

FHHγ(q2)\displaystyle F_{H^{\ast}H\gamma}(q^{2}) =\displaystyle= mHmH[eQmH+eqmq(q2)],\displaystyle\sqrt{\frac{m_{H^{\ast}}}{m_{H}}}\left[\frac{e_{Q}}{m_{H^{\ast}}}+\frac{e_{q}}{m_{q}(q^{2})}\right], (3)
FHHX(q2)\displaystyle F_{H^{\ast}HX}(q^{2}) =\displaystyle= mHmH[εQmH+εqmq(q2)],\displaystyle\sqrt{\frac{m_{H^{\ast}}}{m_{H}}}\left[\frac{\varepsilon_{Q}}{m_{H^{\ast}}}+\frac{\varepsilon_{q}}{m_{q}(q^{2})}\right], (4)

with the effective light “quark mass” parameter

mq(q2)1=V(22gVλfVmV2)(1q2mV2)1.m_{q}(q^{2})^{-1}=-\sum_{V}\Big{(}2\sqrt{2}g_{V}\lambda\frac{f_{V}}{m_{V}^{2}}\Big{)}\left(1-\frac{q^{2}}{m_{V}^{2}}\right)^{-1}\ . (5)

The expressions for the form factors of heavy mesons are explicitly separated in Eq. (3-4) into its heavy and light quark components. In the model under consideration, the couplings of heavy quarks to the the photon and XX boson are fixed by HQET, while the couplings to the light antiquarks are modeled by the dominance of light vector mesons Colangelo:1993zq . For the latter, the sum extends over light vector-meson resonances (V=ρ0,ω,ϕV=\rho^{0},\ \omega,\ \phi) according to the light-quark content of heavy mesons  Colangelo:1993zq . Under the assumption of the ideal mixing for vector mesons, the couplings of light uu and dd quarks are dominated by the exchange of ρ\rho and ω\omega mesons, while the coupling of the ss quark corresponds to the exchange of the ϕ\phi meson.

Numerical inputs for couplings constants can be found in Ref Colangelo:1993zq and are reproduced here for reference: gV=5.8g_{V}=5.8, λ=0.289±0.016GeV1\lambda=-0.289\pm 0.016\ {\rm GeV}^{-1} (updated from new experimental inputs PDG2020 ) and fVf_{V} (mVm_{V}) the decay constant (mass) of vector meson VV. Using current experimental data for lepton-pair decays of vector mesons Vee+V\to e^{-}e^{+} PDG2020 , one gets (fρ,fω,fϕ)=(0.171,0.155,0.232)GeV2(f_{\rho},f_{\omega},f_{\phi})=(0.171,0.155,0.232)\ {\rm GeV}^{2}, with very small uncertainties. In Table 1 we list values for the electromagnetic form factor predicted in the HQET+VMD model at q2=0q^{2}=0. The quoted uncertainty is dominated by the input on the HHVH^{*}HV strong coupling (λ\lambda) in this model (in all the predictions from this model quoted below, all the other uncertainties are very small). A comparison with the magnitude of the measured form factor (within square brackets), obtained from the measurement of the radiative decay D+D+γD^{\ast+}\to D^{+}\gamma branching fraction PDG2020 , give confidence on this model.

Transition εQ/mH[GeV1]\varepsilon_{Q}/m_{H^{\ast}}\ [{\rm GeV}^{-1}] εq/mq(mX2)[GeV1]\varepsilon_{q}/m_{q}(m_{X}^{2})\ [{\rm GeV}^{-1}] FHHX(mX2)[GeV1]F_{H^{\ast}HX}(m_{X}^{2})\ [{\rm GeV}^{-1}] RX/γ(H)\ \ R_{X/\gamma}(H^{*})
D+D+XD^{\ast+}\to D^{+}X 1.84×1031.84\times 10^{-3} 1.89×102-1.89\times 10^{-2} (1.76±0.11)×102(-1.76\pm 0.11)\times 10^{-2}   1.1×1031.1\times 10^{-3}
D0D0XD^{\ast 0}\to D^{0}X 1.84×1031.84\times 10^{-3} 9.43×1039.43\times 10^{-3} (1.17±0.05)×102(1.17\pm 0.05)\times 10^{-2}   3.0×1053.0\times 10^{-5}
Ds+Ds+XD_{s}^{\ast+}\to D_{s}^{+}X 1.75×1031.75\times 10^{-3} 7.83×103-7.83\times 10^{-3} (0.91±0.06)×102(-0.91\pm 0.06)\times 10^{-2}\ \ 3.1×1033.1\times 10^{-3}
B+B+XB^{\ast+}\to B^{+}X 1.39×103-1.39\times 10^{-3} 9.43×1039.43\times 10^{-3} (0.81±0.05)×102(0.81\pm 0.05)\times 10^{-2}   1.9×1051.9\times 10^{-5}
B0B0XB^{\ast 0}\to B^{0}X 1.39×103-1.39\times 10^{-3} 1.88×102-1.88\times 10^{-2} (2.03±0.10)×102(-2.03\pm 0.10)\times 10^{-2}   4.0×1044.0\times 10^{-4}
Bs0Bs0XB_{s}^{\ast 0}\to B_{s}^{0}X 1.37×103-1.37\times 10^{-3} 7.83×103-7.83\times 10^{-3} (0.92±0.04)×102(-0.92\pm 0.04)\times 10^{-2}\ \ 4.1×1044.1\times 10^{-4}
Table 2: The HHXH^{*}HX form factors evaluated at q2=mX2q^{2}=m_{X}^{2} and ratio RX/γR_{X/\gamma} defined in Eq. (6).

Let us define the following ratio of two-body decay rates:

RX/γ(H)=Γ(HHX)Γ(HHγ)=|FHHX(mX2)FHHγ(0)|2|pX|3|pγ|3,R_{X/\gamma}(H^{*})=\frac{\Gamma(H^{*}\to HX)}{\Gamma(H^{*}\to H\gamma)}=\left|\frac{F_{H^{*}HX}(m_{X}^{2})}{F_{H^{*}H\gamma}(0)}\right|^{2}\cdot\frac{\left|\vec{p}_{X}\right|^{3}}{\left|\vec{p}_{\gamma}\right|^{3}}\ , (6)

where pV\vec{p}_{V} is the momentum of the final state boson in the rest frame of HH^{*}. This ratio exhibits two important differences with respect to the similar ratio defined in Be88Be{}^{8}{\rm Be}^{*}\to\ ^{8}{\rm Be} nuclear transitions Feng:2016jff . First, since mHmq(q2)m_{H^{*}}\gg m_{q}(q^{2}) we have a suppression of the heavy quark relative to the light quarks contributions in Eqs. (3) and (4), which is stronger for bottom meson transition amplitudes. In order to be more explicit, and for the easy reference of the interested reader, in Table 2 we display the values of the two contributions that appear within square brackets in Eq. (4), by assuming q2=mX2q^{2}=m_{X}^{2} for the square of the momentum transfer of the XX-boson. This has the advantage that the the ratio RX/γ(H)R_{X/\gamma}(H^{*}) is more sensitive to the Xqq¯Xq\bar{q} couplings, which are relatively well bounded from other processes Feng:2016jff . On the other hand, given the larger phase-space in heavy meson decays, this ratio is not suppressed by kinematics, as it happens for decay of 8Be nucleus.

Predictions for the HHXH^{*}\to HX decay fractions require an estimate of the εQ,q\varepsilon_{Q,q} couplings. For the couplings of the X17X17 boson to the quarks of the first generation we use: εu±3.7×103\varepsilon_{u}\simeq\pm 3.7\times 10^{-3} and εd7.4×103\varepsilon_{d}\simeq\mp 7.4\times 10^{-3} Fornal:2017msy . They are obtained by combining |εu+εd|3.7×103|\varepsilon_{u}+\varepsilon_{d}|\approx 3.7\times 10^{-3}, obtained in Refs. Feng:2016jff ; Feng:2016ysn from the 8Be anomaly, with the null results on searches of the π0Xγ\pi^{0}\to X\gamma by the NA48/2 experiment Batley:2015lha , which translates into the contraint |2εu+ϵd|8×104|2\varepsilon_{u}+\epsilon_{d}|\leq 8\times 10^{-4} Fornal:2017msy for the X17X17 boson couplings. By assumming the NA48/2 constraint to be exactly zero, namely the ‘protophobic’ assumption (see however Zhang:2020ukq ), one gets the results used in this paper. On the other hand, the limits on the coupling to electrons can be obtained 0.2×103|εe|1.4×1030.2\times 10^{-3}\lesssim|\varepsilon_{e}|\lesssim 1.4\times 10^{-3} from beam dump experiments at SLAC and measurements of the g2g-2 anomalous magnetic moment of the electron according to Ref. Fornal:2017msy . Our study requires the knowledge of second- and third-generation couplings, namely strange εs\varepsilon_{s}, charm εc\varepsilon_{c}, and bottom εb\varepsilon_{b}. A priori these parameters are independent Feng:2016ysn , and need not be related to the first-generation couplings. Our simplest starting assumption is universality of down- and up-type quark εf\varepsilon_{f} couplings, thus, we will take εc=εu\varepsilon_{c}=\varepsilon_{u} and εb=εs=εd\varepsilon_{b}=\varepsilon_{s}=\varepsilon_{d}; henceforth, our results will be obtained under this assumption Feng:2016jff ; Feng:2016ysn . Values of the HHXH^{\ast}HX couplings and RX/γ(H)R_{X/\gamma}(H^{*}) ratios for these transitions are given in Table 2. The ratios are larger than the ones in the nuclear case mainly due to the unsuppressed phase space for X17X17 production.

III Lepton pair production

The decay amplitude for lepton pair production H(PH)H(PH)e+(p+)e(p)H^{\ast}(P_{H^{\ast}})\to H(P_{H})e^{+}(p_{+})e^{-}(p_{-}) is the coherent sum of the photon and X-boson mediated amplitudes (HHe+e)=γ+X\mathcal{M}(H^{\ast}\to He^{+}e^{-})=\mathcal{M}_{\gamma}+\mathcal{M}_{X}, where (V=γ,XV=\gamma,X):

V=e2GHHV(q2)ϵμναδμϵHνPHαPHδ,\mathcal{M}_{V}=-e^{2}G_{H^{\ast}HV}(q^{2})\ \epsilon_{\mu\nu\alpha\delta}\ell^{\mu}\epsilon^{\nu}_{H^{\ast}}P_{H}^{\alpha}P_{H^{\ast}}^{\delta}, (7)

where μ=u¯(p)γμv(p+)\ell_{\mu}=\bar{u}(p_{-})\gamma_{\mu}v(p_{+}) is the leptonic current and GHHγ(q2)=FHHγ(q2)/q2G_{H^{*}H\gamma}(q^{2})=-F_{H^{*}H\gamma}(q^{2})/q^{2}, GHHX(q2)=εeFHHX(q2)/(q2mX2+imXΓX)G_{H^{*}HX}(q^{2})=\varepsilon_{e}F_{H^{*}HX}(q^{2})/(q^{2}-m_{X}^{2}+im_{X}\Gamma_{X}). In numerical evaluations throughout this paper we use αem=α(0)\alpha_{\rm em}=\alpha(0), the fine structure constant, because according to Table 1 the maximum value of the squared photon momentum is not large (qmax2=(mHmH)2q^{2}_{\rm max}=(m_{H^{*}}-m_{H})^{2}). On the other hand, running effects between q2=0q^{2}=0 and qmax2q^{2}_{\max} are very small compared with the present and forthcoming experimental accuracies which, in the absence of real estimates, we will assume to be not better than 5% for the branching fractions.

As in Ref. Feng:2016jff ; Feng:2016ysn , we assume negligible decays of the X17X17 boson into neutrino channels, such that its full width is given by

ΓX\displaystyle\Gamma_{X} \displaystyle\equiv Γ(Xe+e)\displaystyle\Gamma(X\to e^{+}e^{-}) (8)
=\displaystyle= αemεe2mX3(1+2re)14re\displaystyle\frac{\alpha_{\rm em}\varepsilon_{e}^{2}m_{X}}{3}(1+2r_{e})\sqrt{1-4r_{e}}
=\displaystyle= 8.0×108MeV\displaystyle 8.0\times 10^{-8}\ {\rm MeV}

with re=me2/mX2r_{e}=m_{e}^{2}/m_{X}^{2}. The total width quoted above corresponds to maximun value of εe\varepsilon_{e}, discussed in the previous section. Decays of a light vector boson into neutrino-antineutrino pairs that may increase ΓX\Gamma_{X} width are also allowed by kinematics and are included in some extensions of the SM involving enlarged Higgs and/or gauge sectors Feng:2016ysn ; DelleRose:2017xil ; DelleRose:2018eic ; DelleRose:2018pgm ; Seto:2020jal ; Nomura:2020kcw . The relevant coupling εν\varepsilon_{\nu} can be constrained from neutrino-electron scattering in the case of the first generation like done from the TEXONO experiment Deniz:2009mu yielding to |εeεν|1/27×105|\varepsilon_{e}\varepsilon_{\nu}|^{1/2}\lesssim 7\times 10^{-5} Feng:2016ysn . The addition of the νν¯\nu\bar{\nu} channels will modify the total width of the XX boson by less that 0.1%, and our results will remain unchanged.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Lepton pair invariant mass distributions of HHe+eH^{\ast}\to He^{+}e^{-} transitions normalized to the radiative HHγH^{*}\to H\gamma decay width: (a) D+D+e+eD^{\ast+}\to D^{+}e^{+}e^{-}, (b) D0D0e+eD^{\ast 0}\to D^{0}e^{+}e^{-}, (c) Ds+Ds+e+eD_{s}^{\ast+}\to D_{s}^{+}e^{+}e^{-}, (d) B+B+e+eB^{\ast+}\to B^{+}e^{+}e^{-}, (e) B0B0e+eB^{\ast 0}\to B^{0}e^{+}e^{-} and (f) Bs0Bs0e+eB_{s}^{\ast 0}\to B_{s}^{0}e^{+}e^{-}. The red-solid plot denotes the virtual photon contribution, while the X17X17 boson contribution is represented by the blue-dashed curve. The (almost invisible) shaded bands account for the theoretical uncertainties in form factors.

The lepton pair invariant mass distribution, normalized to the radiative decay width of HHγH^{*}\to H\gamma, becomes the sum of the photon and XX-boson mediated distributions, namely (we use λ(x,y,z)=x2+y2+z22xy2xz2yz\lambda(x,y,z)=x^{2}+y^{2}+z^{2}-2xy-2xz-2yz):

dΓ(HHe+e)dq2=αem272πΓ(HHγ)|GHHγ(q2)\displaystyle\frac{d\Gamma(H^{\ast}\to He^{+}e^{-})}{dq^{2}}=\frac{\alpha_{\rm em}^{2}}{72\pi\Gamma(H^{*}\to H\gamma)}\Big{|}G_{H^{*}H\gamma}(q^{2})
+GHHX(q2)|2q2[λ(mH2,mH2,q2)1/2mH]3.\displaystyle\ \ \ \ \ +G_{H^{*}HX}(q^{2})\Big{|}^{2}q^{2}\bigg{[}\frac{\lambda(m_{H^{\ast}}^{2},m_{H}^{2},q^{2})^{1/2}}{m_{H^{\ast}}}\bigg{]}^{3}. (9)

Given the very narrow width of the X17X17-boson, the interference of the amplitudes is negligible. Indeed, the interference in the di-lepton spectrum vanishes at the position of the X17X17 and it is suppressed by more than six orders of magnitude relative to the one-photon contribution outside the resonance.

Channel Reeγ(H)R^{\gamma}_{ee}(H^{*}) ReeX(H)R^{X}_{ee}(H^{*}) Total Experiment
D+D+e+eD^{\ast+}\to D^{+}e^{+}e^{-}   6.67×1036.67\times 10^{-3}   (1.05±0.07)×103(1.05\pm 0.07)\times 10^{-3}   (7.72±0.07)×103(7.72\pm 0.07)\times 10^{-3} --
D0D0e+eD^{\ast 0}\to D^{0}e^{+}e^{-}   6.67×1036.67\times 10^{-3}   3.02×1053.02\times 10^{-5}   6.70×1036.70\times 10^{-3} --
Ds+Ds+e+eD_{s}^{\ast+}\to D_{s}^{+}e^{+}e^{-}   6.72×1036.72\times 10^{-3}   (3.10±0.60)×103(3.10\pm 0.60)\times 10^{-3}   (9.82±0.60)×103(9.82\pm 0.60)\times 10^{-3}   (7.21.6+1.8)×103(7.2^{+1.8}_{-1.6})\times 10^{-3} CroninHennessy:2011xp
B+B+e+eB^{\ast+}\to B^{+}e^{+}e^{-}   4.88×1034.88\times 10^{-3}   (1.91±0.03)×105(1.91\pm 0.03)\times 10^{-5}   4.90×1034.90\times 10^{-3} --
B0B0e+eB^{\ast 0}\to B^{0}e^{+}e^{-}   4.88×1034.88\times 10^{-3}   3.96×1043.96\times 10^{-4}   5.28×1035.28\times 10^{-3} --
Bs0Bs0e+eB_{s}^{\ast 0}\to B_{s}^{0}e^{+}e^{-}   4.99×1034.99\times 10^{-3}   4.08×1044.08\times 10^{-4}   5.40×1035.40\times 10^{-3} --
Table 3: Photon and X17X17 boson exchange contributions to the ratio of decay rates defined in Eq. (10). We assume universal couplings of the hypothetical X17X17 boson to down-type quarks [εb=εs=εd=7.4×103\varepsilon_{b}=\varepsilon_{s}=\varepsilon_{d}=\mp 7.4\times 10^{-3}] and up-type quarks [εc=εu=±3.7×103\varepsilon_{c}=\varepsilon_{u}=\pm 3.7\times 10^{-3}] (see end of Section II). Unless explicityly indicated, theoretical uncertainties are at least three-orders of magnitude smaller than the corresponding central values.

The lepton-pair invariant mass distributions due to photon (solid-red) and X17X17-boson (dashed-blue) exchange are shown separately in Figure 1 for the six different decay channels under consideration. The shaded bands around each curve represents the theoretical error, which are difficult to visualise in the log-scale. The peak due to the production of the X17X17 boson in each channel is not located very close to the end of the lepton-pair spectrum as it happens in the nuclear case, avoiding in this way possible end-point kinematical effects. In contradistinction to the on-shell X17X17 production, the effect of this boson is the largest for the D+(Ds+)D+(Ds+)e+eD^{*+}(D_{s}^{*+})\to D^{+}(D_{s}^{+})e^{+}e^{-} decay. The corresponding peaks of this boson contribution is suppressed by one or two orders of magnitude in all other cases, relative to the photon contribution. Note that we are assuming universality bounds on heavier quark εc,s,b\varepsilon_{c,s,b} couplings; since this is a conservative assumption, the experimental study of heavy mesons transitions involving lepton pairs may serve to set bounds on these unknown couplings of the hypothetical X17X17 boson.

Table 3 displays the values of the decay rates for the lepton-pair production in HHH^{*}\to H transitions normalized to the corresponding rates of the radiative decays HHγH^{*}\to H\gamma, namely

Ree(H)Γ(HHe+e)Γ(HHγ)R_{ee}(H^{*})\equiv\frac{\Gamma(H^{*}\to He^{+}e^{-})}{\Gamma(H^{*}\to H\gamma)} (10)

where the radiative rate is given by Γ(HHγ)=(αem/3)|FHHγ(0)|2|pγ|3\Gamma(H^{*}\to H\gamma)=(\alpha_{\rm em}/3)|F_{H^{\ast}H\gamma}(0)|^{2}|\vec{p}_{\gamma}|^{3}. We expect that the remaining model-dependent terms in the form factors are cancelled in this ratio (all other lepton-pair and angular distributions in the following are normalized to this radiative width). As in the case of the lepton-pair spectra, the largest contribution of the X17X17 boson is observed for the D+D^{*+} and Ds+D_{s}^{*+} decays, making these channels the most sensitive for the observation of this light boson effects. Our calculation of the electromagnetic contribution in the case of DsD^{*}_{s} decays yields Reeγ(Ds+)=6.8×103R^{\gamma}_{ee}(D_{s}^{*+})=6.8\times 10^{-3} is in good agreement with the experimental value (7.21.6+1.8)×103(7.2^{\ +1.8}_{\ -1.6})\times 10^{-3} reported in CroninHennessy:2011xp . When we add the contribution of the X17X17 boson exchange, our prediction increases to Reeγ+X(Ds)=(9.8±0.6)×103R^{\gamma+X}_{ee}(D^{*}_{s})=(9.8\pm 0.6)\times 10^{-3}, which exceeds the experimental value but it is still consistent with it within 1.4σ\sigma. Let us notice that a previous prediction of this ratio Ree(Ds)=6.5×103R_{ee}(D^{*}_{s})=6.5\times 10^{-3} was estimated in Ref. CroninHennessy:2011xp based on the model proposed in Landsberg:1986fd which includes only the electromagnetic contribution.

Refer to caption
Figure 2: The 1σ1\sigma confidence level allowed regions in the parameter space of up-type (εU=εc\varepsilon_{U}=\varepsilon_{c}) and down-type (εD=εs\varepsilon_{D}=\varepsilon_{s}) XX-quark couplings from Ds+Ds+e+eD_{s}^{\ast+}\to D_{s}^{+}e^{+}e^{-} (light-red shaded band). The region within dashed lines corresponds to the assumption of a five-fold improvement in the experimental uncertainty. The corresponding constraints on (εU=εu,εD=εd\varepsilon_{U}=\varepsilon_{u},\varepsilon_{D}=\varepsilon_{d}) from the experimental results from 8Be Krasznahorkay:2015iga ; Feng:2016jff ; Feng:2016ysn and NA48/2 Feng:2016ysn ; Batley:2015lha are represented by the the two paralell thin black lines and the wider steepest blue band, respectively.

sThe sensitivity of DsD_{s}^{*} decays into lepton pairs to the effects of X17X17 boson exchange observed in the previous paragraph, suggests this channel can be useful to constrain the parameter space of the hypothetical vector boson. In Fig. 2 we show the 1σ1\sigma confidence level allowed for the parameter space in the (εc,εs)(\varepsilon_{c},\varepsilon_{s}) plane, obtained from the comparison of the experimental branching fraction reported by CLEO CroninHennessy:2011xp and the result of integrating Eq. (9) for DsDse+eD_{s}^{*}\to D_{s}e^{+}e^{-} (light-red shaded band). The current experimental uncertainty in R(Ds)R(D_{s}^{*}) is close to 25%25\%, and current experiments producing a large dataset of charmed mesons have not planned new measurements. Therefore, we will assume that a dedicated measurement of this observable may reach an improvement of the current uncertainty by a factor of five. Under this assumption we get the region enclosed by the red-dashed contour in Figure 2. For comparison, we also show the two thin parallel black lines corresponding to the allowed values of (εu,εd\varepsilon_{u},\varepsilon_{d}) obtained from Be8{}^{8}{\rm Be}^{*} results Feng:2016jff ; Feng:2016ysn and the region allowed from the so-called ‘protophobic condition’ obtained from the non-observation of π0γX\pi^{0}\to\gamma X by the NA48/2 experiment Feng:2016ysn ; Batley:2015lha (single steepest blue band). The different sensitivities observed from these measurements to the up-type and down-type quark couplings makes worth an improved measurement of the heavy mesons decays discussed in this paper.

Finally, let us comment that the angular distribution of the e+ee^{+}e^{-} pair, in the rest frame of the decaying particle, will be peaked closer to the collinear configuration compared to the nuclear case of 8Be transitions, where θ(e+e)1400\theta(e^{+}e^{-})\sim 140^{0}. This happens because the X17X17 boson is produced with a larger velocity, while in nuclear transitions this boson is produced almost at rest.

IV Conclusions

The hypothetical light vector boson X17X17, proposed as a solution for the anomaly observed in lepton-pair production of 8Be and 4He transitions, can be studied in the clean environment provided by vector to pseudoscalar heavy mesons transitions in Belle, Belle II and BESIII factories. These H(Qq¯)H(Qq¯)e+eH^{*}(Q\bar{q})\to H(Q\bar{q})e^{+}e^{-} decays are free from theoretical uncertainties associated to nuclear effects. We have used the HQET+VMD framework to model the hadronic form factors of 101^{-}\to 0^{-} meson transitions, however our results are little-dependent on hadronic uncertainties because the rates are normalized to the dominant HHγH^{*}\to H\gamma electromagnetic decays and the dominant contributions in most channels are dominated by photon emission off the light quarks in this model.

Although all the branching fractions of the heavy meson channels considered in this paper exhibit some sensitivity to the effects of the X17X17 boson, decays of D+D^{*+} and Ds+D_{s}^{*+} mesons turn out to be the most sensitive ones. This happens because 1) the radiative charged charmed vector meson decay rates used as a normalization factor in Ree(Ds)R_{ee}(D_{s}^{*}) and Ree(D+)R_{ee}(D^{*+}) are suppressed in the HQET+VMD owing to a partial cancellation of the heavy and light quarks contributions and, 2) the large contribution of the light quark coupling to X17X17 for D+D+D^{*+}\to D^{+} transition. Also, improved measurements of these leptonic decay channels can set additional and complementary constraints on the X17X17 boson couplings to ordinary fermions, as shown in Figure 2 for the case of DsDse+eD_{s}^{*}\to D_{s}e^{+}e^{-} decays or, eventually, confirm the existence of this light boson.

Acknowledgements.
GLC acknowledges support from Ciencia de Frontera project No. 428218 (Conacyt). The work of N. Quintero has been financially supported by MINCIENCIAS and Universidad del Tolima through Convocatoria Estancias Postdoctorales No. 848-2019 (Contract No. 834-2020), and Dirección General de Investigaciones - Universidad Santiago de Cali under Project No. 935-621118-3.

References

  • (1) P. Fayet, U-boson production in e+ee^{+}e^{-} annihilations, ψ\psi and Υ\Upsilon decays, and Light Dark Matter, Phys. Rev. D 75, 115017 (2007) [arXiv:hep-ph/0702176 [hep-ph]].
  • (2) M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80, 095002 (2009) [arXiv:0811.1030 [hep-ph]].
  • (3) R. Essig et al., “Working Group Report: New Light Weakly Coupled Particles,” arXiv:1311.0029 [hep-ph].
  • (4) See talks at the Workshop on Feeble Interacting Particles 2020, https://indico.cern.ch/event/864648/timetable/ , August 31st- September 4th (2020).
  • (5) A. J. Krasznahorkay et al, Observation of Anomalous Internal Pair Creation in Be8 : A Possible Indication of a Light, Neutral Boson, Phys. Rev. Lett. 116, no.4, 042501 (2016) [arXiv:1504.01527 [nucl-ex]].
  • (6) J. L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T. M. P. Tait and P. Tanedo, Protophobic Fifth-Force Interpretation of the Observed Anomaly in 8Be Nuclear Transitions, Phys. Rev. Lett. 117, no.7, 071803 (2016) [arXiv:1604.07411 [hep-ph]].
  • (7) J. L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T. M. P. Tait and P. Tanedo, Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95, no.3, 035017 (2017) [arXiv:1608.03591 [hep-ph]].
  • (8) A. J. Krasznahorkay et al., New evidence supporting the existence of the hypothetic X17 particle, arXiv:1910.10459 [nucl-ex].
  • (9) L. Delle Rose, S. Khalil and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)’ -extended two Higgs doublet model, Phys. Rev. D 96, no.11, 115024 (2017) [arXiv:1704.03436 [hep-ph]].
  • (10) L. Delle Rose, S. Khalil, S. J. D. King, S. Moretti and A. M. Thabt, Atomki Anomaly in Family-Dependent U(1)U(1)^{\prime} Extension of the Standard Model, Phys. Rev. D 99, no.5, 055022 (2019) [arXiv:1811.07953 [hep-ph]].
  • (11) L. Delle Rose, S. Khalil, S. J. D. King and S. Moretti, New Physics Suggested by Atomki Anomaly, Front. in Phys. 7, 73 (2019) [arXiv:1812.05497 [hep-ph]].
  • (12) O. Seto and T. Shimomura, Atomki anomaly in gauged U(1)RU(1)_{R} symmetric model, [arXiv:2006.05497 [hep-ph]].
  • (13) T. Nomura and P. Sanyal, Explaining Atomki anomaly and muon g2g-2 in U(1)XU(1)_{X} extended flavour violating two Higgs doublet model, [arXiv:2010.04266 [hep-ph]].
  • (14) A. Aleksejevs, S. Barkanova, Y. G. Kolomensky and B. Sheff, A Standard Model Explanation for the ”ATOMKI Anomaly, arXiv:2102.01127 [hep-ph].
  • (15) J. L. Feng, T. M. P. Tait and C. B. Verhaaren, Dynamical Evidence For a Fifth Force Explanation of the ATOMKI Nuclear Anomalies, Phys. Rev. D 102, no. 3, 036016 (2020) [arXiv:2006.01151 [hep-ph]].
  • (16) X. Zhang and G. A. Miller, Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?, Phys. Lett. B 773, 159 (2017).
  • (17) K. Ban, Y. Jho, Y. Kwon, S. C. Park, S. Park and P. Y. Tseng, Search for new light vector boson using J/ΨJ/\Psi at BESIII and Belle II, arXiv:2012.04190 [hep-ph].
  • (18) P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev. D 92, no. 11, 115017 (2015)
  • (19) P. Colangelo, F. De Fazio and G. Nardulli, Radiative heavy meson transitions, Phys. Lett. B 316, 555-560 (1993) [arXiv:hep-ph/9307330 [hep-ph]].
  • (20) R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio and G. Nardulli, Effective Lagrangian for heavy and light mesons: Semileptonic decays, Phys. Lett. B 299, 139 (1993).
  • (21) P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (22) B. Fornal, Is There a Sign of New Physics in Beryllium Transitions?, Int. J. Mod. Phys. A 32, 1730020 (2017) [arXiv:1707.09749 [hep-ph]].
  • (23) J. R. Batley et al. [NA48/2], Search for the dark photon in π0\pi^{0} decays, Phys. Lett. B 746, 178-185 (2015) [arXiv:1504.00607 [hep-ex]].
  • (24) X. Zhang and G. A. Miller, Can a protophobic vector boson explain the ATOMKI anomaly?, arXiv:2008.11288 [hep-ph].
  • (25) M. Deniz et al. [TEXONO], Measurement of ν¯e\bar{\nu}_{e} -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 81, 072001 (2010) [arXiv:0911.1597 [hep-ex]].
  • (26) E. Kou et al. [Belle-II Collaboration], The Belle II Physics Book, PTEP 2019, no. 12, 123C01 (2019) Erratum: [PTEP 2020, no. 2, 029201 (2020)]
  • (27) D. Cronin-Hennessy et al. [CLEO], Observation of the Dalitz Decay Ds+Ds+e+eD_{s}^{*+}\to D_{s}^{+}e^{+}e^{-}, Phys. Rev. D 86, 072005 (2012) [arXiv:1104.3265 [hep-ex]].
  • (28) L. G. Landsberg, Electromagnetic Decays of Light Mesons, Phys. Rept. 128, 301-376 (1985).