This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Testing exogeneity in the functional linear regression model

Manuela Dorn
Department of Mathematics, Physics, and Computer Science, University of Bayreuth
[email protected]
   Melanie Birke
Department of Mathematics, Physics, and Computer Science, University of Bayreuth
[email protected]
   Carsten Jentsch
Department of Statistics, TU Dortmund University
[email protected]
Abstract

We propose a novel test statistic for testing exogeneity in the functional linear regression model. In contrast to Hausman-type tests in finite dimensional linear regression setups, a direct extension to the functional linear regression model is not possible. Instead, we propose a test statistic based on the sum of the squared difference of projections of the two estimators for testing the null hypothesis of exogeneity in the functional linear regression model. We derive asymptotic normality under the null and consistency under general alternatives. Moreover, we prove bootstrap consistency results for residual-based bootstraps. In simulations, we investigate the finite sample performance of the proposed testing approach and illustrate the superiority of bootstrap-based approaches. In particular, the bootstrap approaches turn out to be much more robust with respect to the choice of the regularization parameter.

AMS 2010 Classification: Primary: 62R10, 62F05, 62E20, 62J20; Secondary: 62F40

Keywords and Phrases: asymptotic theory, bootstrap infe

1 Introduction

In functional linear regression models, goodness-of-fit tests are much more complicated to construct then e.g. in the multiple linear setting. This, among others stems to the fact that in functional linear regression models the L2L_{2}-distance of the slope function estimator to the true function has no proper limiting distribution. This was shown in [Cardot et al. (2006)] and [Ruymgaart et al. (2000)] for two estimators in the classical functional linear regression model under exogeneity. It turns out, that the lack of a proper limiting distribution also applies for other estimators using different model assumptions. This phenomenon inherent to functional data setups is probably one of the reasons why goodness-of-fit testing is generally not that widely developed for functional regression models yet. In particular, desirable counterparts of standard tests that are well-established in the multiple linear model are still missing in the functional linear setting.

In functional data settings, existing goodness-of-fit tests are described in [Müller and Stadtmüller (2005)], who use a suitable scalar product to transform the functions to a different space using the autocovariance operator to obtain a test statistic having a proper limiting distribution. Further approaches are given in [Cuesta-Albertos et al. (2019)] and [García-Portugués et al. (2014), García-Portugués et al. (2020)], who use random projections together with empirical process techniques.

In practice, one important model assumption is the exogeneity of the regressor. Especially in economics, this assumption is often violated such that the regressors are correlated with the error terms which leads to endogeneity issues. Estimating in such a model is an inverse problem. Neglecting endogeneity generally results in inconsistent estimators. Hence, it is important to test the data for exogeneity first. If the null hypothesis of exogeneity is rejected, different estimators such as e.g. instrumental variable (IV) estimators are required to achieve consistent estimation. See [Johannes (2016)], [Florens et al. (2011)] or [Florens and Van Bellegem (2014)], who consider such IV estimators in functional regression setups and derive asymptotic theory. While in the multiple linear regression model the Hausman test (see [Hausman (1978)] und [Wu (1973)]) is a standard and natural approach for testing exogeneity, this method cannot be transferred directly to the functional linear model since it is based on the L2L_{2}-distance of two slope function estimators due to the following proposition which transfers the results in [Cardot et al. (2006)] and [Ruymgaart et al. (2000)] to the present setting.

In the following, let β^\hat{\beta} denote the estimator of the slope function in the exogeneous model described in [Johannes (2013)] and [Joh13add], which is consistent under exogeneity, but inconsistent under endogeneity, and by β^IV\hat{\beta}_{IV} the IV estimator in the endogeneous functional linear model given in [Johannes (2016)], which is consistent in both cases. Then, we get the following result.

Proposition 1.1

In the functional linear regression model (2.1) defined below, even under exogeneity, there is no random variable ZZ with non-degenerate distribution, such that

snβ^IVβ^𝒟Zs_{n}\|\hat{\beta}_{IV}-\hat{\beta}\|\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}Z

for some real sequence (sn)n(s_{n})_{n\in\mathbb{N}} with limnsn=lim_{n\to\infty}s_{n}=\infty, where ||||||\cdot|| denotes the norm of the Hilbert space.

The proof of this result mainly goes along the lines of the one in [Cardot et al. (2006)], see also [Dorn (2021)] for further details. This is why we just state the result here and use it as motivation for a different approach in the following. Motivated by the fact, that in contrast to the L2L_{2}-distance, the projection error typically has an asymptotic distribution (see e.g. [Müller and Stadtmüller (2005)] and [Florens and Van Bellegem (2014)]), we propose to use the sum of the squared difference of projections of the two estimators as test statistic.

The rest of the paper is organized as follows. In Section 2, we state the model assumptions, construct the test statistic and derive its asymptotic distribution. As the limiting distribution turns out to depend on unknown functional nuisance parameters, which are difficult to estimate, we propose residual-based bootstrap methods in Section 3 and prove their consistency. The finite sample performance of all discussed tests is investigated in Section 5. All longer proofs are deferred to the Appendix and additional auxiliary results to a supplement.

2 Model and test statistic

We consider the functional linear regression model

Y=[0,1]X(t)β(t)𝑑t+U=β,X+U,Y=\int_{[0,1]}X(t)\beta(t)dt+U=\left\langle\beta,X\right\rangle+U, (2.1)

where YY is a real-valued random variable, UU is a real-valued error term with E[U]=0E[U]=0 and E[U2]=σ2(0,)E[U^{2}]=\sigma^{2}{\in(0,\infty)}, XX is a functional random variable with values in L2([0,1])L_{2}([0,1]) such that 01E|X(t)|2𝑑t<\int_{0}^{1}E|X(t)|^{2}\,dt<\infty. In this setup, the error variance σ2\sigma^{2} is unknown, and β\beta is an unknown function from the Sobolev space of periodically extendable square integrable functions denoted by

𝒲ν:={fL2[0,1]:fν2:=kγkν|f,ϕk|2<},\mathcal{W}_{\nu}:=\Big{\{}f\in L^{2}[0,1]:\;\|f\|_{\nu}^{2}:=\sum_{k\in\mathbb{Z}}\gamma_{k}^{\nu}|\langle f,\phi_{k}\rangle|^{2}<\infty\Big{\}}, (2.2)

where (ϕk)k(\phi_{k})_{k\in\mathbb{Z}} is the Fourier basis of L2([0,1])L^{2}([0,1]), ν\nu\in\mathbb{R} and γk=1+|2πk|\gamma_{k}=1+|2\pi k|, kk\in\mathbb{Z}, see e.g. [Neuba, Neubb], [MR96] or [Tsybakov (2004)]. In the setup of (2.1), we will speak of exogeneity (and call XX an exogenous regressor), if

H0:E[X(t)U]=0 for all t[0,1].H_{0}:\ \ E[X(t)U]=0\mbox{ for all }t\in[0,1]. (2.3)

Otherwise, we will speak of endogeneity (and call XX an endogeneous regressor), if

H1:E[X(t)U]0 for at least one t[0,1].H_{1}:\ \ E[X(t)U]\neq 0\mbox{ for at least one }t\in[0,1]. (2.4)

For consistent estimation in the endogeneous case, we assume to additionally have a functional instrumental variable WW with values in L2([0,1])L_{2}([0,1]) such that 01E|W(t)|2𝑑t<\int_{0}^{1}E|W(t)|^{2}\,dt<\infty and E[UW(t)]=0E[UW(t)]=0 for all t[0,1]t\in[0,1]. For the sake of simplicity, it is often assumed in the literature, that E[X(t)]=E[W(t)]=0E[X(t)]=E[W(t)]=0 holds for all t[0,1]t\in[0,1]. However, the general case can be handled along the same lines by centering with the sample mean in a first step and our results are stated for the general case. For estimating the cross-covariance operator, we also assume that (X,W)(X,W) is second-order stationary, see [Johannes (2016)].

Assumption 1

There exist functions cX,cW,cWX:[1,1]c_{X},c_{W},c_{WX}:\mathbb{[}-1,1]\to\mathbb{R}, such that

Cov(X(s),X(t))\displaystyle Cov(X(s),X(t)) =cX(ts),\displaystyle=c_{X}(t-s),
Cov(W(s),W(t))\displaystyle Cov(W(s),W(t)) =cW(ts),\displaystyle=c_{W}(t-s),
Cov(W(s),X(t))\displaystyle Cov(W(s),X(t)) =cWX(ts),\displaystyle=c_{WX}(t-s),

for all s,t[0,1]s,t\in[0,1], respectively, where cXc_{X} is assumed to be continuous.

By imposing continuity of cXc_{X}, we have that whenever (2.4) holds for one t[0,1]t\in[0,1], this immediately implies E[X(t)U]0E[X(t)U]\neq 0 on some set with positive Lebesgue measure. This condition ensures, that the test statistic proposed in the following can be used to consistently test for the null hypothesis (2.3) against alternatives (2.4).

Note, that cXc_{X} and cWc_{W} define the kernels of the covariance operators ΓX\Gamma_{X} of XX and ΓW\Gamma_{W} of WW, respectively, and cWXc_{WX} is the kernel of the cross covariance operator ΓWX\Gamma_{WX} of XX and WW. The (joint) weak stationarity of (X,W)(X,W) ensures, that both covariance operators as well as the cross covariance operator have the same exponential system of eigenfunctions, which we denote by (ϕk)k(\phi_{k})_{k\in\mathbb{N}}. Hence, let (xk,ϕk)k(x_{k},\phi_{k})_{k\in\mathbb{N}} be the eigensystem of ΓX\Gamma_{X}, (wk,ϕk)k(w_{k},\phi_{k})_{k\in\mathbb{N}} the eigensystem of ΓW\Gamma_{W} and (ck,ϕk)k(c_{k},\phi_{k})_{k\in\mathbb{N}} the eigensystem of ΓWX\Gamma_{WX}. Furthermore, denote λk=|ck|2wk\lambda_{k}=\frac{|c_{k}|^{2}}{w_{k}}.

Assumption 2

Throughout the article, we assume that all eigenvalues are strictly positive and that

k|E[YX,ϕk]|2xk2<.\sum_{k\in\mathbb{Z}}\frac{|E[Y\langle X,\phi_{k}\rangle]|^{2}}{x_{k}^{2}}<\infty.

Furthermore, we denote by μX=kμX,ϕkϕk\mu_{X}=\sum_{k\in\mathbb{Z}}\langle\mu_{X},\phi_{k}\rangle\phi_{k} and μW=kμW,ϕkϕk\mu_{W}=\sum_{k\in\mathbb{Z}}\langle\mu_{W},\phi_{k}\rangle\phi_{k} the expectations of XX and WW, respectively. Additionally, we assume that there exists some 0<τ<0<\tau<\infty such that

supk|λkwk|τ.\displaystyle\sup_{k\in\mathbb{Z}}\left|\frac{\lambda_{k}}{w_{k}}\right|\leq\tau. (2.5)

The last assumptions ensures, that the linear prediction of XX with respect to WW is well defined.

In principle, if they were available, IV estimation would be based on the optimal instrument W~\tilde{W} defined by

W~=ΓWXΓW1W=kck¯wkW,ϕkϕk\displaystyle\tilde{W}=\Gamma_{WX}\Gamma_{W}^{-1}W=\sum_{k\in\mathbb{Z}}\frac{\overline{c_{k}}}{w_{k}}\langle W,\phi_{k}\rangle\phi_{k}

and the eigenvalues (λk)k(\lambda_{k})_{k\in\mathbb{N}} of the corresponding cross covariance operator ΓW~X\Gamma_{\tilde{W}X}. However, this is usuall not the case and the optimal instrument respectively the corresponding eigenvalues of the cross covariance operator have to be estimated. Note, that W~\tilde{W} could be exactly computed from XX and WW, if the (cross) covariance operators were known and remark that λk=|ck|2wkxk\lambda_{k}=\frac{|c_{k}|^{2}}{w_{k}}\leq x_{k} for all kk\in\mathbb{Z}.

In the following, let {(Xi,Wi,Yi)}i=1,,n\{(X_{i},W_{i},Y_{i})\}_{i=1,\ldots,n} be independent and identically distributed (i.i.d.) copies of (X,W,Y)(X,W,Y) and suppose (2.3) is valid. Then, we can consistently estimate the unknown slope function β\beta due to [Johannes (2013)] and [Johannes (2016)] in two different ways. For this purpose, let (αn)n(\alpha_{n})_{n\in\mathbb{N}} be a sequence of regularization parameters such that αn>0\alpha_{n}>0 for all nn\in\mathbb{N} and limnαn=0\lim_{n\to\infty}\alpha_{n}=0. To simplify notation, we will write α\alpha for the regularization keeping in mind that it still depends on nn. Since the covariance operators and therefore the corresponding eigenvalues are unknown, they have to be estimated in a first step. Further, let ΓWX,n,ΓX,n,ΓW,n:L2([0,1])L2([0,1])\Gamma_{WX,n},\Gamma_{X,n},\Gamma_{W,n}:\,L_{2}([0,1])\to L_{2}([0,1]) denote the empirical versions of ΓWX,ΓX\Gamma_{WX},\Gamma_{X} and ΓW\Gamma_{W}, respectively, defined by

ΓWX,nf:=1ni=1nWi,fXi,ΓX,nf\displaystyle\Gamma_{WX,n}f:=\frac{1}{n}\sum_{i=1}^{n}\langle W_{i},f\rangle X_{i},\quad\Gamma_{X,n}f :=1ni=1nXi,fXi,andΓW,nf\displaystyle:=\frac{1}{n}\sum_{i=1}^{n}\langle X_{i},f\rangle X_{i},\quad\text{and}\quad\Gamma_{W,n}f :=1ni=1nWi,fWi\displaystyle:=\frac{1}{n}\sum_{i=1}^{n}\langle W_{i},f\rangle W_{i}

for fL2([0,1])f\in L_{2}([0,1]). These estimators as well as the deduced estimators

w^k:=1ni=1n|Wi,ϕk|2,\displaystyle\hat{w}_{k}:=\frac{1}{n}\sum_{i=1}^{n}|\langle W_{i},\phi_{k}\rangle|^{2},\, x^k:=1ni=1n|Xi,ϕk|2,\displaystyle\hat{x}_{k}:=\frac{1}{n}\sum_{i=1}^{n}|\langle X_{i},\phi_{k}\rangle|^{2},
c^k:=1ni=1nϕk,XiWi,ϕk,\displaystyle\hat{c}_{k}:=\frac{1}{n}\sum_{i=1}^{n}\langle\phi_{k},X_{i}\rangle\langle W_{i},\phi_{k}\rangle,\, λ^k:=|c^k|2w^kI{w^kα}\displaystyle\hat{\lambda}_{k}:=\frac{|\hat{c}_{k}|^{2}}{\hat{w}_{k}}I\{\hat{w}_{k}\geq\alpha\}

for the eigenvalues wkw_{k}, xkx_{k}, ckc_{k} and λk\lambda_{k}, respectively, are consistent for all kk\in\mathbb{Z}. Hence, observations of the optimal linear instrument W~\widetilde{W} can be estimated by

W~n,i:=kc^k¯w^kI{w^kα}Wi,ϕkϕk,i=1,,n,\displaystyle\widetilde{W}_{n,i}:=\sum_{k\in\mathbb{Z}}\frac{\overline{\hat{c}_{k}}}{\hat{w}_{k}}I\{\hat{w}_{k}\geq\alpha\}\langle W_{i},\phi_{k}\rangle\phi_{k},\quad i=1,\ldots,n,

and the corresponding cross covariance operator by

Γ~n:=1ni=1nW~n,i,Xi=1nkc^k¯w^kI{w^kα}i=1n,XiWi,ϕkϕk.\displaystyle\widetilde{\Gamma}_{n}:=\frac{1}{n}\sum_{i=1}^{n}\langle\widetilde{W}_{n,i},\cdot\rangle X_{i}=\frac{1}{n}\sum_{k\in\mathbb{Z}}\frac{\overline{\hat{c}_{k}}}{\hat{w}_{k}}I\{\hat{w}_{k}\geq\alpha\}\sum_{i=1}^{n}\langle\cdot,X_{i}\rangle\langle W_{i},\phi_{k}\rangle\phi_{k}. (2.6)

This allows to construct the IV-based estimator β^IV\hat{\beta}_{IV} of the slope function β\beta defined by

β^IV:=kg^kλ^kI{λ^kγkνα}ϕk=k1ni=1nWi,ϕkYic^kI{λ^kγkνα}I{w^kα}ϕk,\hat{\beta}_{IV}:=\sum_{k\in\mathbb{Z}}\frac{\hat{g}_{k}}{\hat{\lambda}_{k}}I\{\hat{\lambda}_{k}\geq\gamma_{k}^{\nu}\alpha\}\phi_{k}=\sum_{k\in\mathbb{Z}}\frac{\frac{1}{n}\sum_{i=1}^{n}\langle W_{i},\phi_{k}\rangle Y_{i}}{\hat{c}_{k}}I\{\hat{\lambda}_{k}\geq\gamma_{k}^{\nu}\alpha\}I\{\hat{w}_{k}\geq\alpha\}\phi_{k}, (2.7)

where

g^k\displaystyle\hat{g}_{k} =1ni=1nYiW~n,i,ϕk.\displaystyle=\frac{1}{n}\sum_{i=1}^{n}Y_{i}\langle\tilde{W}_{n,i},\phi_{k}\rangle.

As shown in [Johannes (2016)], under Assumptions 1 and 2 the estimator β^IV\hat{\beta}_{IV} is consistent under the exogeneity assumption (2.3) as well as under endogeneity of (2.4). In contrast, again under Assumptions 1 and 2, the estimator

β^=k1ni=1nXi,ϕkYix^kI{λ^kαγkν}ϕk\hat{\beta}=\sum_{k\in\mathbb{Z}}\frac{\frac{1}{n}\sum_{i=1}^{n}\langle X_{i},\phi_{k}\rangle Y_{i}}{\hat{x}_{k}}I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\}\phi_{k} (2.8)

is only consistent under the exogeneity assumption (2.3) (see [Johannes (2013)]) and inconsistent under endogeneity of (2.4). Note, that in comparison to the original definition in [Johannes (2013)], for β^\hat{\beta}, we use the same indicator function I{λ^kαγkν}I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\} as in β^IV\hat{\beta}_{IV}. It turned out, that the tests perform better if the same regularization is used in both estimators although it might not be the best choice for estimating β\beta by β^\hat{\beta} under assumption (2.3).

Based on the two estimators (2.7) and (2.8), we construct the test statistic as

Tn\displaystyle T_{n} =1ni=1n|β^IVβ^,Xi|2=β^IVβ^,ΓX,n(β^IVβ^).\displaystyle=\frac{1}{n}\sum_{i=1}^{n}\left|\left\langle\hat{\beta}_{IV}-\hat{\beta},X_{i}\right\rangle\right|^{2}=\left\langle\hat{\beta}_{IV}-\hat{\beta},\Gamma_{X,n}\left(\hat{\beta}_{IV}-\hat{\beta}\right)\right\rangle. (2.9)

The last representation above corresponds to the idea used in [Müller and Stadtmüller (2005)] to construct a goodness-of-fit test. The equivalence of both approaches can be seen by using the singular value decomposition for the estimators and for the covariance operator.

Assumption 3

For the sequence of regularization parameters, we assume

αn=α>0n,α=o(1) and 1nα2=o(1).\displaystyle\alpha_{n}=\alpha>0\;\forall\,n\in\mathbb{N},\ \alpha=o(1)\text{ and }\ \frac{1}{n\alpha^{2}}=o(1).

For the next results, different moment conditions for XX, WW and UU are required. To simplify the notation, we introduce the following sets. In doing so, we assume, that all conditions on XX and WW mentioned above are fulfilled and define

ηm\displaystyle\mathcal{F}_{\eta}^{m} :={(X,W)|supkE|X,ϕkxk|mη and supkE|W,ϕkwk|mη},\displaystyle:=\Big{\{}(X,W)\Big{|}\sup_{k\in\mathbb{Z}}\text{E}\left|\frac{\langle X,\phi_{k}\rangle}{\sqrt{x_{k}}}\right|^{m}\leq\eta\text{ and }\sup_{k\in\mathbb{Z}}\text{E}\left|\frac{\langle W,\phi_{k}\rangle}{\sqrt{w_{k}}}\right|^{m}\leq\eta\Big{\}}, (2.10)
𝒢ηm\displaystyle\mathcal{G}_{\eta}^{m} :={X|ΓX>0 and supkE|X,ϕkxk|mη}.\displaystyle:=\Big{\{}X\Big{|}\Gamma_{X}>0\text{ and }\sup_{k\in\mathbb{Z}}\text{E}\left|\frac{\langle X,\phi_{k}\rangle}{\sqrt{x_{k}}}\right|^{m}\leq\eta\Big{\}}. (2.11)

In the following, for an operator Δ\Delta, we denote by Δ\Delta^{\dagger} the regularized inverse of the operator, that is

Δ=k1δkI{|δk|>αγkν,ϕkϕk}\Delta^{\dagger}=\sum_{k\in\mathbb{Z}}\frac{1}{\delta_{k}}I\{|\delta_{k}|>\alpha\gamma_{k}^{\nu}\langle\cdot,\phi_{k}\rangle\phi_{k}\}

and we define

tn2:=(Γ~X,nΓX)ΓXHS2=k𝒦n(xkwk|ck|21)2,t_{n}^{2}:=\|(\tilde{\Gamma}_{X,n}^{\dagger}-\Gamma_{X}^{\dagger})\Gamma_{X}\|_{HS}^{2}=\sum_{k\in\mathcal{K}_{n}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}, (2.12)

where HS\|\cdot\|_{HS} denotes the Hilbert-Schmidt norm and we set

𝒦n:={kλkαγkν}.\mathcal{K}_{n}:=\{k\in\mathbb{Z}\mid\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}.

Now, we are in a position to state an asymptotic result for the test statistic.

Theorem 2.1

In model (2.1), under Assumptions 1-3, let {(Xi,Wi,Yi)}i=1,,n\{(X_{i},W_{i},Y_{i})\}_{i=1,\ldots,n} be i.i.d. copies of (X,W,Y)(X,W,Y) with (X,W)η128\left(X,W\right)\in\mathcal{F}_{\eta}^{128} and E|U|128η<\text{E}|U|^{128}\leq\eta<\infty. Furthermore, let tnt_{n}\to\infty as nn\to\infty, and

1tn4k𝒦n(xkwk|ck|21)4=o(1),k|β,ϕk|xk3/2wk|ck|2<,kxk2wk|ck|2<.\displaystyle\frac{1}{t_{n}^{4}}\sum_{k\in\mathcal{K}_{n}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}=o(1),\quad\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|\frac{x_{k}^{3/2}w_{k}}{|c_{k}|^{2}}<\infty,\quad\sum_{k\in\mathbb{Z}}\frac{x_{k}^{2}w_{k}}{|c_{k}|^{2}}<\infty.

Then, under H0H_{0}, we have

ntn(Tn𝔅nn)𝒟𝒩(0,𝔙),\frac{n}{t_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}\mathcal{N}(0,\mathfrak{V}),

where

𝔅n\displaystyle\mathfrak{B}_{n} =n2tnβ,μX2k(μW,ϕkckμX,ϕkxk)2xkI{λkαγkν},\displaystyle=\frac{n}{2t_{n}}\langle\beta,\mu_{X}\rangle^{2}\sum_{k\in\mathbb{Z}}\left(\frac{\langle\mu_{W},\phi_{k}\rangle}{c_{k}}-\frac{\langle\mu_{X},\phi_{k}\rangle}{x_{k}}\right)^{2}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\},
n\displaystyle\mathfrak{R}_{n} =1n(σ2+m|β,ϕm|2xm)k(xkwk|ck|21)I{λkαγkν},\displaystyle=\frac{1}{n}\left(\sigma^{2}+\sum_{m\in\mathbb{Z}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\right)\sum_{k\in\mathbb{Z}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\},
𝔙\displaystyle\mathfrak{V} =(σ2+m|β,ϕm|2xm)2.\displaystyle=\left(\sigma^{2}+\sum_{m\in\mathbb{Z}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\right)^{2}.

Additionally, if XX is centered, that is, E[X(t)]=0E[X(t)]=0 for all t[0,1]t\in[0,1], we have μX=0\mu_{X}=0 leading to 𝔅n=0\mathfrak{B}_{n}=0.


Proof.  For the sake of simplicity, we assume, that XX is centered. If not, the additional bias term has to be taken into account as well as stated in the assertion of the theorem. We give a short overview of the proof. The used propositions and lemmas are stated and proven in the appendix. For the employed decomposition of the test statistic, we need several (modified) correlation operators of the instruments and XX. We define 𝒰n\mathcal{U}_{n}, ΔW,n:L2([0,1])\Delta_{W,n}:L_{2}([0,1])\to\mathbb{R} by

𝒰nf=1ni=1n(WiUi)fandΔW,nf=1ni=1n(WiYi)f,\displaystyle\mathcal{U}_{n}f=\frac{1}{n}\sum_{i=1}^{n}(W_{i}\otimes U_{i})f\quad\text{and}\quad\Delta_{W,n}f=\frac{1}{n}\sum_{i=1}^{n}(W_{i}\otimes Y_{i})f,

and set

𝒰~n\displaystyle\widetilde{\mathcal{U}}_{n} :=1ni=1n,W~iUi=1nkck¯wki=1nϕk,Wi,ϕkUi,\displaystyle:=\frac{1}{n}\sum_{i=1}^{n}\langle\cdot,\tilde{W}_{i}\rangle U_{i}=\frac{1}{n}\sum_{k\in\mathbb{Z}}\frac{\overline{c_{k}}}{w_{k}}\sum_{i=1}^{n}\langle\phi_{k},W_{i}\rangle\langle\cdot,\phi_{k}\rangle U_{i},
𝒰~^n\displaystyle\widehat{\widetilde{\mathcal{U}}}_{n} :=1ni=1n,W~n,iUi=1nkc^k¯w^kI{w^kα}i=1nϕk,Wi,ϕkUi.\displaystyle:=\frac{1}{n}\sum_{i=1}^{n}\langle\cdot,\tilde{W}_{n,i}\rangle U_{i}=\frac{1}{n}\sum_{k\in\mathbb{Z}}\frac{\overline{\hat{c}_{k}}}{\hat{w}_{k}}I\{\hat{w}_{k}\geq\alpha\}\sum_{i=1}^{n}\langle\phi_{k},W_{i}\rangle\langle\cdot,\phi_{k}\rangle U_{i}.

For the test statistic, the following decomposition holds

ntnTn\displaystyle\frac{n}{t_{n}}T_{n} =1tnj=1n|Tn,1+Tn,2+Tn,3,Xj|2+1tnj=1nTn,1+Tn,2+Tn,3,XjXj,Rn\displaystyle=\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle T_{n,1}+T_{n,2}+T_{n,3},X_{j}\right\rangle\right|^{2}+\frac{1}{t_{n}}\sum_{j=1}^{n}\langle T_{n,1}+T_{n,2}+T_{n,3},X_{j}\rangle\langle X_{j},R_{n}\rangle
+1tnj=1nXj,Tn,1+Tn,2+Tn,3Rn,Xj+1tnj=1n|Rn,Xj|2,\displaystyle\phantom{=}+\frac{1}{t_{n}}\sum_{j=1}^{n}\langle X_{j},T_{n,1}+T_{n,2}+T_{n,3}\rangle\langle R_{n},X_{j}\rangle+\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle R_{n},X_{j}\right\rangle\right|^{2}, (2.13)

where

Tn,1\displaystyle T_{n,1} =(Γ~n𝒰~^nΓX,n𝒰X,n)Π^𝒦n(Γ~𝒰~nΓX𝒰X,n)\displaystyle=\left(\tilde{\Gamma}_{n}^{\dagger}\hat{\tilde{\mathcal{U}}}_{n}-\Gamma_{X,n}^{\dagger}\mathcal{U}_{X,n}\right)-\hat{\Pi}_{\mathcal{K}_{n}}\left(\tilde{\Gamma}^{\dagger}\tilde{\mathcal{U}}_{n}-\Gamma_{X}^{\dagger}\mathcal{U}_{X,n}\right)
Tn,2\displaystyle T_{n,2} =(Γ~nΓ~nΓX,nΓX,n)βΠ^𝒦nAn\displaystyle=\left(\tilde{\Gamma}_{n}^{\dagger}\tilde{\Gamma}_{n}-\Gamma_{X,n}^{\dagger}\Gamma_{X,n}\right)\beta-\hat{\Pi}_{\mathcal{K}_{n}}A_{n}
Tn,3\displaystyle T_{n,3} =Π^𝒦n(Γ~𝒰~nΓX𝒰X,n+An)(Γ~𝒰~nΓX𝒰X,n+An)\displaystyle=\hat{\Pi}_{\mathcal{K}_{n}}\left(\tilde{\Gamma}^{\dagger}\tilde{\mathcal{U}}_{n}-\Gamma_{X}^{\dagger}\mathcal{U}_{X,n}+A_{n}\right)-\left(\tilde{\Gamma}^{\dagger}\tilde{\mathcal{U}}_{n}-\Gamma_{X}^{\dagger}\mathcal{U}_{X,n}+A_{n}\right)
Rn\displaystyle R_{n} =Γ~𝒰~nΓX𝒰X,n+An\displaystyle=\tilde{\Gamma}^{\dagger}\tilde{\mathcal{U}}_{n}-\Gamma_{X}^{\dagger}\mathcal{U}_{X,n}+A_{n}

and

An=1ni=1nkDi,kI{λkαγkν}m,|m||k|Si,mϕk.A_{n}=\frac{1}{n}\sum_{i=1}^{n}\sum_{k\in\mathbb{Z}}D_{i,k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\phi_{k}. (2.14)

When subtracting n\mathfrak{R}_{n}, the last term in (2.13) can be further decomposed to get

1tnj=1n|Rn,Xj|2ntnn=ntnRn,3+ntn(Rn,2n)+ntn(Rn,1+Rn,4+Rn,5),\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle R_{n},X_{j}\right\rangle\right|^{2}-\frac{n}{t_{n}}\mathfrak{R}_{n}=\frac{n}{t_{n}}R_{n,3}+\frac{n}{t_{n}}\left(R_{n,2}-\mathfrak{R}_{n}\right)+\frac{n}{t_{n}}\left(R_{n,1}+R_{n,4}+R_{n,5}\right),

where Rn,iR_{n,i}, i=1,,5i=1,\ldots,5 are defined in the appendix. There, we will also see that

ntnRn,3\displaystyle\frac{n}{t_{n}}R_{n,3} =1ntnkxkI{λkαγkν}i,j=1,ijnDi,k(σUi+m,|m||k|Si,m)Dj,k¯(σUj+m,|m||k|Sj,m¯)\displaystyle{=}\frac{1}{nt_{n}}\sum_{k\in\mathbb{Z}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{\begin{subarray}{c}i,j=1,\\ i\neq j\end{subarray}}^{n}D_{i,k}\Big{(}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\Big{)}\overline{D_{j,k}}\Big{(}\sigma U_{j}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}\overline{S_{j,m}}\Big{)}

converges weakly due to Theorem A.1 to a normal distribution with mean 0 and variance 𝔙\mathfrak{V}, while all remaining terms are discussed to be asymptotically negligible using Proposition A.5, A.2, A.3 and A.4 together with standard estimation techniques for the mixed terms. With the Lemma of Slutsky, the assertion follows. \Box

To apply the above result for testing, the bias and variance term have to be estimated. To this end, note that σ2\sigma^{2} can be consistently estimated by

σ^n2=1ni=1n(Yiβ^IV,Xi)2{\hat{\sigma}}_{n}^{2}=\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\langle\hat{\beta}_{IV},X_{i}\rangle)^{2} (2.15)

due to the law of large numbers and since 1ni=1nββ^IV,Xi2=oP(1)\frac{1}{n}\sum_{i=1}^{n}\langle\beta-\hat{\beta}_{IV},X_{i}\rangle^{2}=o_{P}(1) by similar calculations as in the derivation of the asymptotic distribution of TnT_{n}.

Corollary 2.2

Suppose all assumptions of Theorem 2.1 hold. Then, under H0H_{0}, we have

nt^nTn𝔅^n^n𝔙^n𝒟𝒩(0,1),\frac{n}{\hat{t}_{n}}\frac{T_{n}-\hat{\mathfrak{B}}_{n}-\hat{\mathfrak{R}}_{n}}{\sqrt{\hat{\mathfrak{V}}_{n}}}\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}\mathcal{N}(0,1),

where σ^n2{\hat{\sigma}}_{n}^{2} is defined in (2.15) and

t^n2\displaystyle\hat{t}_{n}^{2} =k(x^kw^k|c^k|21)2I{λ^kαγkν},\displaystyle=\sum_{k\in\mathbb{Z}}\left(\frac{\hat{x}_{k}\hat{w}_{k}}{|\hat{c}_{k}|^{2}}-1\right)^{2}I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\},
𝔅^n\displaystyle\hat{\mathfrak{B}}_{n} =n2t^nβ^IV,μ^X2k(μ^W,ϕkckμ^X,ϕkxk)2x^kI{λ^kαγkν},\displaystyle=\frac{n}{2\hat{t}_{n}}\langle\hat{\beta}_{IV},\hat{\mu}_{X}\rangle^{2}\sum_{k\in\mathbb{Z}}\left(\frac{\langle\hat{\mu}_{W},\phi_{k}\rangle}{c_{k}}-\frac{\langle\hat{\mu}_{X},\phi_{k}\rangle}{x_{k}}\right)^{2}\hat{x}_{k}I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\},
^n\displaystyle\hat{\mathfrak{R}}_{n} =1n(σ^n2+ΓX,n1/2β^IV2)k(x^kw^k|c^k|21)I{λ^kαγkν},\displaystyle=\frac{1}{n}\left({\hat{\sigma}}_{n}^{2}+\|\Gamma_{X,n}^{1/2}\hat{\beta}_{IV}\|^{2}\right)\sum_{k\in\mathbb{Z}}\left(\frac{\hat{x}_{k}\hat{w}_{k}}{|\hat{c}_{k}|^{2}}-1\right)I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\},
𝔙^n\displaystyle\hat{\mathfrak{V}}_{n} =(σ^2+ΓX,n1/2β^IV2)2.\displaystyle=\left({\hat{\sigma}}^{2}+\|\Gamma_{X,n}^{1/2}\hat{\beta}_{IV}\|^{2}\right)^{2}.

Using Corollary 2.2, it is possible to construct a test for the null hypothesis

H0:E[X(t)U]=0 for all t[0,1]H_{0}:\ \mbox{E}[X(t)U]=0\mbox{ for all }t\in[0,1] (2.16)

against

H1:E[X(t)U]0 for at least one t[0,1].H_{1}:\ \mbox{E}[X(t)U]\neq 0\mbox{ for at least one }t\in[0,1]. (2.17)

For given size γ(0,1)\gamma\in(0,1), we can reject H0H_{0} if

nt^nTn𝔅^n^n𝔙^n>u1γ\frac{n}{\hat{t}_{n}}\frac{T_{n}-\hat{\mathfrak{B}}_{n}-\hat{\mathfrak{R}}_{n}}{\sqrt{\hat{\mathfrak{V}}_{n}}}>u_{1-\gamma} (2.18)

where u1γu_{1-\gamma} denotes the (1γ)(1-\gamma)-quantile of the standard normal distribution. That is, we get a one-sided test for H0H_{0} against H1H_{1}. In the special case μX=0\mu_{X}=0 we can neglect the additional bias term which avoids the use of its plug-in estimator such that the test has the simpler structure I{n(Tn^n)/t^n𝔙^n>u1γ}I\{n(T_{n}-\hat{\mathfrak{R}}_{n})/{{\hat{t}_{n}}\sqrt{\hat{\mathfrak{V}}_{n}}}>u_{1-\gamma}\}.

Corollary 2.3

Suppose all assumptions of Corollary 2.2 hold. Then, under the alternative H1H_{1}, the test constructed in (2.18) is consistent.

Proof.  We only consider the special case μX=0\mu_{X}=0 here. The general case can be proven by similar arguments. Under H1H_{1}, β^\hat{\beta} is not consistently estimating β\beta such that it converges in probability to β+b\beta+b for some bL2[0,1]b\in L^{2}[0,1] with

b=σkE[U1X1,ϕk]xkI{λkαγkν}ϕk(t),b=\sigma\sum_{k\in\mathbb{Z}}\frac{E[U_{1}\langle X_{1},\phi_{k}\rangle]}{x_{k}}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\phi_{k}(t),

which is in general not equal to 0L2[0,1]0\in L^{2}[0,1] under endogeneity (by the continuity imposed in Assumption 1). Hence, we have

Tn\displaystyle T_{n} =1ni=1n|β^IV(β^b),Xi|22ni=1nβ^IV(β^b),Xib,Xi+1ni=1n|b,Xi|2\displaystyle=\frac{1}{n}\sum_{i=1}^{n}|\langle\hat{\beta}_{IV}-(\hat{\beta}-b),X_{i}\rangle|^{2}-\frac{2}{n}\sum_{i=1}^{n}\langle\hat{\beta}_{IV}-(\hat{\beta}-b),X_{i}\rangle\langle b,X_{i}\rangle+\frac{1}{n}\sum_{i=1}^{n}|\langle b,X_{i}\rangle|^{2}
=1ni=1n|β^IV(β^b),Xi|2Op(tnn)+Op(1).\displaystyle=\frac{1}{n}\sum_{i=1}^{n}|\langle\hat{\beta}_{IV}-(\hat{\beta}-b),X_{i}\rangle|^{2}-O_{p}\left(\sqrt{\frac{t_{n}}{n}}\right)+O_{p}\left(1\right).

The standardized version of the first part converges in distribution to a standard normal distribution by similar arguments as in Theorem 2.1 and Corollary 2.2 while the sum of the remainder terms multiplied with ntn\frac{n}{t_{n}} goes to infinity for nn\to\infty. Consequently, we have

P(nt^nTn^n𝔙^n>u1γ)1\displaystyle P\left(\frac{n}{\hat{t}_{n}}\frac{T_{n}-\hat{\mathfrak{R}}_{n}}{\sqrt{\hat{\mathfrak{V}}_{n}}}>u_{1-\gamma}\right)\to 1

for nn\to\infty. \Box

In practice, we do not know, if μX=0\mu_{X}=0 such that a naive application of the asymptotic test without estimating 𝔅n{\mathfrak{B}}_{n} could result in wrong decisions. In addition, asymptotic tests based on plug-in methods as above usually exhibit a smaller power compared to other methods. This is due to the additional estimation step. The bootstrap version of the test discussed in the next section is expected to have better finite sample behavior, since it is not required to estimate the unknown bias and variance. This has additionally the effect, that we need not distinguish between the cases μX=0\mu_{X}=0 and μX0\mu_{X}\neq 0 which is a clear advantage of the bootstrap test.

3 Bootstrap Consistency

In this section, we use residual-based bootstrap procedures to estimate the distribution of

ntn(Tn𝔅nn)\frac{n}{t_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right)

under the null of exogeneity . To this end, we first estimate the residuals from the original data set and define

U^i=Yiβ^IV,Xi,i=1,,n,\displaystyle\hat{U}_{i}=Y_{i}-\langle\hat{\beta}_{IV},X_{i}\rangle,\quad i=1,\ldots,n,

where we use the IV-based estimator, because it is consistent under the null hypothesis as well as under the alternative. However, using the classical estimator β^\hat{\beta} would also result in a proper bootstrap scheme to approximate the distribution of the test statistics under the null of exogeneity, since the independence of error and regressor in the bootstrap sample is achieved by the (fixed-design) bootstrap procedure itself. However, to get bootstrap data that mimics the true distribution under the null hypothesis of exogeneity given the original sample as close as possible, the IV-based estimator turns out to be more natural and performs better in simulations. In the sequel, different versions of residual-based bootstraps are considered. All bootstrap methods will follow these steps

Step 1.)

Given i.i.d. observations (Xi,Wi,Yi)(X_{i},W_{i},Y_{i}), i=1,,ni=1,\ldots,n, we generate a bootstrap sample (Xi,Wi,Yi)(X_{i},W_{i},Y_{i}^{*}), i=1,,ni=1,\ldots,n, by

Yi=β^IV,Xi+Ui,\displaystyle Y_{i}^{*}=\langle\hat{\beta}_{IV},X_{i}\rangle+U_{i}^{*},

where the bootstrap errors UiU_{i}^{*} are generated from the residuals U^1,,U^n\hat{U}_{1},\ldots,\hat{U}_{n} in such a way that the conditional independence of UiU_{i}^{*} and (Xi,Wi)(X_{i},W_{i}) is ensured. A thorough discussion, which types of bootstrap are appropriate in this sense follows in the next subsection.

Step 2.)

From (Xi,Wi,Yi)(X_{i},W_{i},Y_{i}^{*}), i=1,,ni=1,\ldots,n, a bootstrap test statistic TnT_{n}^{*} is calculated.

Step 3.)

Repeat Steps 1.) and 2.) BB times, where BB is large, to get bootstrap realizations Tn,1,,Tn,BT_{n}^{*,1},\ldots,T_{n}^{*,B} of the test statistic and denote by q1γ=Tn,(B(1γ))q_{1-\gamma}^{*}=T_{n}^{*,(\lfloor B(1-\gamma)\rfloor)} the corresponding empirical (1γ)(1-\gamma)-quantile.

As the bootstrap errors are generated such that conditional independence of UiU_{i}^{*} and (Xi,Wi)(X_{i},W_{i}) is ensured, the bootstrap automatically adopts the exogeneity assumption. For the naive (Efron-type)residual bootstrap, this is trivially the case, because the bootstrap errors are drawn independently with replacement from the residuals, and for the wild bootstrap, since suitable bootstrap multiplier variables ViV_{i} will also be drawn independently from XiX_{i} and WiW_{i}.

Theorem 3.1

Under the assumptions of Theorem 2.1 let 𝒮n={(Xi,Wi,Yi)}i=1,,n\mathcal{S}_{n}=\{(X_{i},W_{i},Y_{i})\}_{i=1,\ldots,n} be a set of i.i.d. copies of (X,W,Y)(X,W,Y) with (X,W)η128\left(X,W\right)\in\mathcal{F}_{\eta}^{128} and E|U|128η<\text{E}|U|^{128}\leq\eta<\infty and let (tn)n(t_{n})_{n\in\mathbb{N}} from (2.12) fulfill limntn=\lim_{n\to\infty}t_{n}=\infty. Additionally, suppose that

1tn4k𝒦n(xkwk|ck|21)4=o(1),k𝒦n(xk2E|ββ^IV,ϕk|4)1/4xk4wk4|ck|8=O(1),\displaystyle\frac{1}{t_{n}^{4}}\sum_{k\in\mathcal{K}_{n}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}=o(1),\quad\sum_{k\in\mathcal{K}_{n}}\left(x_{k}^{2}\mathrm{E}|\langle\beta-\hat{\beta}_{IV},\phi_{k}\rangle|^{4}\right)^{1/4}\frac{x_{k}^{4}w_{k}^{4}}{|c_{k}|^{8}}=O(1),
kxkwk1/2|ck|<,and1tnk𝒦nxk3/2wk|ck|2=O(1)\displaystyle\sum_{k\in\mathbb{Z}}\frac{x_{k}w_{k}^{1/2}}{|c_{k}|}<\infty,\quad\text{and}\quad\frac{1}{t_{n}}\sum_{k\in\mathcal{K}_{n}}\frac{x_{k}^{3/2}w_{k}}{|c_{k}|^{2}}=O(1)

hold. Then, under both H0H_{0} and H1H_{1}, we have

supt|P(ntn(Tn𝔅nn)t𝒮n)PH0(ntn(Tn𝔅nn)t)|0,\displaystyle\sup_{t\in\mathbb{R}}\left|P\left(\frac{n}{t_{n}}\left(T_{n}^{*}-\mathfrak{B}_{n}^{*}-\mathfrak{R}_{n}^{*}\right)\leq t\mid\mathcal{S}_{n}\right)-P_{H_{0}}\left(\frac{n}{t_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right)\leq t\right)\right|\stackrel{{\scriptstyle\mathbb{P}}}{{\longrightarrow}}0,

where 𝔅n\mathfrak{B}_{n}^{*} and n\mathfrak{R}_{n}^{*} denote the bootstrap versions of 𝔅n\mathfrak{B}_{n} and n\mathfrak{R}_{n} defined in Theorem A.1 and PH0P_{H_{0}} is the distribution of ntn(Tn𝔅nn)\frac{n}{t_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right) under H0H_{0}.

Based on this result, we can again construct a one-sided test for the hypotheses (2.17) which rejects the null hypothesis if Tn>q1γT_{n}>q_{1-\gamma}^{*} from Step 3 since Tn,Tn0T_{n},T_{n}^{\ast}\geq 0 and both asymptotically have the same bias and variance.

4 Generalization to other estimators and measuring goodness-of-fit

While the above results are stated for the spectral-cut-off estimators as proposed in [Johannes (2013)] and [Johannes (2016)], it is also possible to derive analogue results for other types of estimators like cut-off as in [Müller and Stadtmüller (2005)] or ones based on Tikhonov or ridge-type regularization. A quite general approach is given in [Cardot et al. (2006)] with a sequence of regularization functions fn:[cn,)0+f_{n}:[c_{n},\infty)\to\mathbb{R}_{0}^{+} such that fnf_{n} is decreasing on [cn,2z1z2][c_{n},2z_{1}-z_{2}] where (zj)j(z_{j})_{j\in\mathbb{Z}} are the eigenvalues of the relevant covariance operator and (cn)n(c_{n})_{n\in\mathbb{N}} is a decreasing sequence of positive values with cn<z1c_{n}<z_{1}. Furthermore limnsupzcn|zfn(z)1|=o(1/n)\lim_{n\to\infty}\sup_{z\geq c_{n}}|zf_{n}(z)-1|=o(1/\sqrt{n}) and fnf_{n} is differentiable on [cn,)[c_{n},\infty) which replaces Assumption 3. While the estimator β^\hat{\beta} from (2.8) above does not completely fit this situation it is not neccessary to consider this modification if one is only interested in testing goodness-of-fit in an exogeneous model (2.1). For the sake of shorter notation we assume here μX0\mu_{X}\equiv 0. If β~\tilde{\beta} denotes the estimator proposed in [Cardot et al. (2006)] we obtain under Assumption 1 and the moment conditions in Theorem 2.1 the following result

nsn(1ni=1n|β~β,Xi|2n)𝒟𝒩(0,𝔙)\frac{n}{s_{n}}\left(\frac{1}{n}\sum_{i=1}^{n}\left|\left\langle\tilde{\beta}-\beta,X_{i}\right\rangle\right|^{2}-\mathfrak{R}_{n}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}\mathcal{N}(0,\mathfrak{V})

with sn=kxk4fn4(xk)s_{n}=\sum_{k\in\mathbb{Z}}x_{k}^{4}f_{n}^{4}(x_{k}), 𝔙\mathfrak{V} as in Theorem 2.1 and

n=1n(σ2+m|β,ϕm|2xm)kfn(xk)=O(1n).\mathfrak{R}_{n}=\frac{1}{n}\left(\sigma^{2}+\sum_{m\in\mathbb{Z}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\right)\sum_{k\in\mathbb{Z}}f_{n}(x_{k})=O\left(\frac{1}{\sqrt{n}}\right).

If is straight forward to also generalize the instrumental variable estimator to other regularization schemes. We get an estimator

β~IV=kg^kfn(λ^k)\tilde{\beta}_{IV}=\sum_{k\in\mathbb{Z}}\hat{g}_{k}f_{n}(\hat{\lambda}_{k})

and, if we are willing to assume exogeneity here, derive by the same arguments as above

nsn,IV(1ni=1n|β~IVβ,Xi|2n)𝒟𝒩(0,𝔙)\frac{n}{s_{n,IV}}\left(\frac{1}{n}\sum_{i=1}^{n}\left|\left\langle\tilde{\beta}_{IV}-\beta,X_{i}\right\rangle\right|^{2}-\mathfrak{R}_{n}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}\mathcal{N}(0,\mathfrak{V})

with sn,IV=kxk2λk2fn4(λk)s_{n,IV}=\sum_{k\in\mathbb{Z}}x_{k}^{2}\lambda_{k}^{2}f_{n}^{4}(\lambda_{k}), 𝔙\mathfrak{V} as in Theorem 2.1 and

n=1n𝔙1/2kxkλkfn(λk)=O(1n).\mathfrak{R}_{n}=\frac{1}{n}\mathfrak{V}^{1/2}\sum_{k\in\mathbb{Z}}x_{k}\lambda_{k}f_{n}(\lambda_{k})=O\left(\frac{1}{\sqrt{n}}\right).

The assumption of exegeneity is in this case not realistic because one would only use the instrumental variable estimator under endogeneity. Proving an analogue result under endogeneity is in principle possible but the proof differs in several points from the one presented here.

Using the estimators β~\tilde{\beta} and β~IV\tilde{\beta}_{IV} we can construct a test statistic similar to the one above. To this end we need a similar regularization scheme for both estimators. If we allow for a second argument in fnf_{n} the estimators involved in the test above can also be written with fn,1(xk,λk)=1xkI{λkαγkν}f_{n,1}(x_{k},\lambda_{k})=\frac{1}{x_{k}}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\} for β^\hat{\beta} and fn,2(xk,λk)=1λkI{λkαγkν}f_{n,2}(x_{k},\lambda_{k})=\frac{1}{\lambda_{k}}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\} for β^IV\hat{\beta}_{IV} and it is straight forward to generalize them at least to regularisation functions of type fn,1(xk,λk)=g1(xk,λk)f~n(λk)f_{n,1}(x_{k},\lambda_{k})=g_{1}(x_{k},\lambda_{k})\tilde{f}_{n}(\lambda_{k}) respectively fn,2(xk,λk)=g2(xk,λk)f~n(λk)f_{n,2}(x_{k},\lambda_{k})=g_{2}(x_{k},\lambda_{k})\tilde{f}_{n}(\lambda_{k}). Under Assumption 1, the moment assumptions of Theorem 2.1 and certain regularity conditions we derive under the null hypthesis

nt~n(Tn𝔅nn)𝒟𝒩(0,𝔙),\frac{n}{\tilde{t}_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right)\stackrel{{\scriptstyle\mathcal{D}}}{{\to}}\mathcal{N}(0,\mathfrak{V}),

where

t~n=k(λkg22(xk,λk)2λkg1(xk,λk)g2(xk,λk)+xkg1(xk,λk))2f~n2(λk),\tilde{t}_{n}=\sum_{k\in\mathbb{Z}}(\lambda_{k}g_{2}^{2}(x_{k},\lambda_{k})-2\lambda_{k}g_{1}(x_{k},\lambda_{k})g_{2}(x_{k},\lambda_{k})+x_{k}g_{1}(x_{k},\lambda_{k}))^{2}{\tilde{f}_{n}}^{2}(\lambda_{k}),

𝔙\mathfrak{V} as in Theorem 2.1 and

n\displaystyle\mathfrak{R}_{n} =1n𝔙1/2k(λkg22(xk,λk)2λkg1(xk,λk)g2(xk,λk)+xkg1(xk,λk))f~n(λk).\displaystyle=\frac{1}{n}\mathfrak{V}^{1/2}\sum_{k\in\mathbb{Z}}\left(\lambda_{k}g_{2}^{2}(x_{k},\lambda_{k})-2\lambda_{k}g_{1}(x_{k},\lambda_{k})g_{2}(x_{k},\lambda_{k})+x_{k}g_{1}(x_{k},\lambda_{k})\right)\tilde{f}_{n}(\lambda_{k}).

For all results presented in this section it is again straight forward to derive empirical versions and bootstrap results.

5 Finite sample properties

In this section, we investigate the finite sample behavior of the tests proposed above under several degrees of endogeneity and for different slope functions. We generate our data from the model

X(t)=(t+12)Z1,W(t)=(t+12)Z2+H\displaystyle X(t)=\left(t+\frac{1}{2}\right)Z_{1},\quad W(t)=\left(t+\frac{1}{2}\right)Z_{2}+H

and

Y=1p+1l=0pX(l/p+1)β(l/p)+σε,Y=\frac{1}{p+1}\sum_{l=0}^{p}X(l/p+1)\cdot\beta(l/p)+\sigma\cdot\varepsilon,

for some pp large enough to approximate the integral sufficiently well. To control all correlations in the model, we generate i.i.d. copies of

(Z1Z2U)𝒩3((000),(3ν6ρ3ν620ρ301))\begin{pmatrix}Z_{1}\\ Z_{2}\\ U\end{pmatrix}\sim\mathcal{N}_{3}\left(\begin{pmatrix}0\\ 0\\ 0\end{pmatrix},\begin{pmatrix}3&\nu\sqrt{6}&\rho\sqrt{3}\\ \nu\sqrt{6}&2&0\\ \rho\sqrt{3}&0&1\\ \end{pmatrix}\right)

with corr(Z1,Z2)=ν,corr(Z1,U)=ρcorr(Z_{1},Z_{2})=\nu,\;corr(Z_{1},U)=\rho, see [Wong (1996)]. The random variable HH is uniformly distributed on (1/2,1/2)(-1/2,1/2) and independent of (Z1,Z2,ε)(Z_{1},Z_{2},\varepsilon)^{\prime}. The parameter ρ\rho controls the severity of endogeneity (if ρ=0\rho=0 we are in the exogenous case, i.e. under the null H0H_{0}) and ν\nu the strength of the instrument WW. The standard deviation is assumed to be σ=7/5\sigma=7/5. In the following, as illustrated in Figure 1, we will use three different slope functions β1,β2\beta_{1},\beta_{2} and β3\beta_{3} defined by

β1(t)\displaystyle\beta_{1}(t) =sin(4πt)+12sin(8πt)+17sin(20πt),\displaystyle=\sin(4\pi t)+\frac{1}{2}\sin\left(8\pi t\right)+\frac{1}{7}\sin\left(20\pi t\right),
β2(t)\displaystyle\beta_{2}(t) =2πarcsin(cos(2πt)),\displaystyle=\frac{2}{\pi}\arcsin(\cos(2\pi t)),
β3(t)\displaystyle\beta_{3}(t) =nrn(s)kn,h(ts)𝑑s,\displaystyle=\sum_{n\in\mathbb{Z}}\int_{\mathbb{R}}r_{n}(s)k_{n,h}(t-s)\,ds, (5.1)
Refer to caption
Figure 1: Slope functions β1,β2\beta_{1},\beta_{2} and β3\beta_{3} as defined in (5.1).

where in β3\beta_{3}, rn(t)=I{n+14,n+34}(t)r_{n}(t)=I_{\big{\{}n+\frac{1}{4},n+\frac{3}{4}\big{\}}}(t) and kn,h(t)=1hkn(th)k_{n,h}(t)=\frac{1}{h}k_{n}(\frac{t}{h}) with

kn(t)=1Cexp(11(t2n)2)I(1+2n,2n+1)(t)k_{n}(t)=\frac{1}{C}\exp\left(-\frac{1}{1-(t-2n)^{2}}\right)I_{(-1+2n,2n+1)}(t)

and C=k0(s)𝑑sC=\int_{\mathbb{R}}k_{0}(s)\,ds. For all simulations, we generate 1000 Monte Carlo realizations and use B=500B=500 bootstrap replications.

Besides an Efron-type residual-based bootstrap, which draws the bootstrap errors UiU_{i}^{*}, i=1,,ni=1,\ldots,n independently with replacement from the residuals U^1,,U^n\hat{U}_{1},\ldots,\hat{U}_{n}, we consider also several versions of a residual-based wild bootstrap, where

Ui=ViU^i,i=1,,n\displaystyle U_{i}^{*}=V_{i}\hat{U}_{i},\quad i=1,\ldots,n

and the ViV_{i}’s are i.i.d. with E[V1]=0\mbox{E}[V_{1}]=0 and E[V12]=1\mbox{E}[V_{1}^{2}]=1 and independent of (Xi,Wi,Yi)i=1,,n(X_{i},W_{i},Y_{i})_{i=1,\ldots,n}. We consider different choices for the distribution of the ViV_{i}’s as commonly used in the literature, see e.g. [Mammen (1993)],

a)\displaystyle a) P(V1=(51)2)=5+125,P(V1=5+12)=5125,\displaystyle\quad P\left(V_{1}=\frac{-(\sqrt{5}-1)}{2}\right)=\frac{\sqrt{5}+1}{2\sqrt{5}},\quad P\left(V_{1}=\frac{\sqrt{5}+1}{2}\right)=\frac{\sqrt{5}-1}{2\sqrt{5}}, (5.2)
b)\displaystyle b) P(V1=1)=0.5=P(V1=1),\displaystyle\quad P(V_{1}=1)=0.5=P(V_{1}=-1), (5.3)
c)\displaystyle c) V1𝒩(0,1).\displaystyle\quad V_{1}\sim\mathcal{N}(0,1). (5.4)
Refer to caption
Figure 2: Empirical size and power of the asymptotic test for several choices of α\alpha. The gray solid line shows the target level γ=0.05\gamma=0.05. The true slope parameter function is β1\beta_{1}.

In a first step we try to get an idea how to choose α\alpha and, in a next step how to choose 𝒦n\mathcal{K}_{n}. To this end, we fix the degree of endogeneity with ρ=0.4\rho=0.4 and the strength of the instrument with ν=0.6\nu=0.6. In Figure 2, the results for the asymptotic test using β1\beta_{1} as slope parameter and different choices of α\alpha are shown. We see that the best results are obtained for α\alpha between 0.050.05 and 0.0550.055. For smaller α\alpha, the test does not hold the prescribed level, while for larger α\alpha the power is comparably small up to biased tests for α\alpha larger than 0.070.07. Based on Figure 2, we can find a sequence of good choices for α\alpha depending on the sample size varying from α=0.04\alpha=0.04 for n=25n=25 to α=0.053\alpha=0.053 for larger sample sizes up to 300300. We see that the asymptotic test has only moderate power even for larger sample sizes. This is a well known effect with asymptotic tests using plug-in estimators.

The way out is typically a bootstrap-based test. The results for the residual-based bootstraps proposed in Section 3 and again β1\beta_{1} are shown in Figure 3.

Refer to caption
Figure 3: Empirical size and power of the bootstrap tests for several choices of α\alpha. The gray solid line shows the target level γ=0.05\gamma=0.05. The true slope function is β1\beta_{1}.

It turns out, that the regularization parameter can be chosen considerably smaller than for the asymptotic test and the procedure is much more robust in choosing α\alpha. Nearly all tests hold the size of γ=0.05\gamma=0.05 for larger sample sizes and the power increases with sample size for most choices of α\alpha up to a value close to 1 already for n=300n=300. Again we can get an idea of choosing a good α\alpha depending on the sample size which varies from α=0.01\alpha=0.01 for n=25,50n=25,50 to α=0.0001\alpha=0.0001 for n=75,100,200n=75,100,200 and 300300.

Apparently all bootstrap procedures discussed in Section 3 perform comparably good which can be seen in Figure 4 for a choice of α=0.0001\alpha=0.0001.

Refer to caption
Figure 4: Empirical power and size of the bootstrap tests for several choices of α\alpha. The gray solid line shows the predetermined level γ=0.05\gamma=0.05 of the test

Comparing the performance of the bootstrap test for different slope functions, we discover that in all models the bootstrap test holds the size γ=0.05\gamma=0.05 while we see in Table 1 that the power is similarly good for all settings with only sligh disadvantages for the smoothed indicator function β3\beta_{3}.

nn
25 50 75 100 125 150 175 200 225 250 275 300
β1\beta_{1} 0.111 0.507 0.773 0.901 0.960 0.980 0.992 0.997 0.998 0.998 1 1
β2\beta_{2} 0.164 0.568 0.798 0.912 0.958 0.979 0.992 0.997 0.999 0.998 1 1
β3\beta_{3} 0.255 0.560 0.733 0.853 0.904 0.961 0.978 0.990 0.993 0.994 0.997 0.998
Table 1: Empirical power of the bootstrap tests for slope functions defined in (5.1) using ρ=0.4\rho=0.4, ν=0.6\nu=0.6 and α=0.0001\alpha=0.0001.

Finally, we inspect the influence of the degree of endogeneity and the strength of the instrument on the performance of the test. In Figure 5, we see that the power of the bootstrap test increases with increasing degree ρ\rho of endogeneity being already acceptable for ρ=0.3\rho=0.3.

Refer to caption
Figure 5: Power of the bootstrap test for different degrees ρ\rho of endogeneity

Figure 6 shows, that the performance of the test is highly dependent on the strength of the instrument. If the instrument is too weak, the power is too low and the test does not hold the size. It turns out, that for the setting with slope function β1\beta_{1}, ρ=0.4\rho=0.4 and α=0.0001\alpha=0.0001, the bootstrap test performs best for a strength of the instrument around ν=0.7\nu=0.7.

Refer to caption
Figure 6: Power and size of the bootstrap test for different strengths ν\nu of the instrument

6 Concluding remarks

The underlying work is the first approach of testing for endogeneity in a functional regression setup by introducing a modified approach of the classical Hausman test in a multiple linear regression model. This modification is required, because the L2L_{2}-distance of two slope function estimators in functional linear regression models are shown to have no proper limiting distribution. We prove asymptotic normality for the proposed modified Hausman-type test statistic, which allows for the construction of asymptotic tests for exogeneity. As the asymptotic test has several drawbacks such as many nuisance parameters, which are cumbersome to estimate, an additional bias term, which diverges when multiplied with the rate of convergence, and a high sensitivity to the choice of the regularization parameter, we propose suitable bootstrap versions of the test to approximate the null distribution. This avoids the additional estimation of nuisance parameters and turns out to be much more robust to the choice of the regularization parameter. This behavior is demonstrated in a detailed simulation study. Topics of ongoing work are the choice of the instrument, a data driven choice of the regularization parameter and the transfer to other regression models.

Appendix A Auxiliary Results for the Proof of Theorem 2.1

We assume for the sake of simplicity E[X(t)]=E[W(t)]=0E[X(t)]=E[W(t)]=0 for all t[0,1]t\in[0,1] and remember from Section 2 the decomposition of the test statistic with

Rn,1\displaystyle R_{n,1} =1n2k(x^kxk)|i=1nDi,kI{λkαγkν}(σUi+m,|m||k|Si,m)|2\displaystyle=\frac{1}{n^{2}}\sum_{k\in\mathbb{Z}}\left(\hat{x}_{k}-x_{k}\right)\Big{|}\sum_{i=1}^{n}D_{i,k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Big{(}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\Big{)}\Big{|}^{2}
Rn,2\displaystyle R_{n,2} =1n2kxkI{λkαγkν}i=1n|Di,k|2|σUi+m,|m||k|Si,m|2,\displaystyle=\frac{1}{n^{2}}\sum_{k\in\mathbb{Z}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{i=1}^{n}|D_{i,k}|^{2}\Big{|}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\Big{|}^{2},
Rn,3\displaystyle R_{n,3} =1n2kxkI{λkαγkν}i,j=1,ijnDi,k(σUi+m,|m||k|Si,m)Dj,k¯(σUj+m,|m||k|Sj,m¯),\displaystyle=\frac{1}{n^{2}}\sum_{k\in\mathbb{Z}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{\begin{subarray}{c}i,j=1,\\ i\neq j\end{subarray}}^{n}D_{i,k}\Big{(}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\Big{)}\overline{D_{j,k}}\Big{(}\sigma U_{j}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}\overline{S_{j,m}}\Big{)},
Rn,4\displaystyle R_{n,4} =1n3k,l,|k||l|j=1nϕk,XjXj,ϕlI{λkαγkν}I{λlαγlν}\displaystyle=\frac{1}{n^{3}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}\sum_{j=1}^{n}\langle\phi_{k},X_{j}\rangle\langle X_{j},\phi_{l}\rangle I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\} (A.1)
×i=1nDi,k(σUi+m,|m||k|Si,m)Di,l¯(σUi+m,|m||l|Si,m¯),\displaystyle\phantom{\frac{1}{n^{3}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}\sum_{j=1}^{n}\langle\phi_{k},X_{j}\rangle}\times\sum_{i=1}^{n}D_{i,k}\Big{(}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i,m}\Big{)}\overline{D_{i,l}}\Big{(}\sigma U_{i}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|l|\end{subarray}}\overline{S_{i,m}}\Big{)},
Rn,5\displaystyle R_{n,5} =1n3k,l,klj=1nϕk,Xji1,i2=1,i1i2nDi1,k(σUi1+m,|m||k|Si1,m)Di2,l¯(σUi2+m,|m||l|Si2,m¯)\displaystyle={\frac{1}{n^{3}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}\sum_{j=1}^{n}\langle\phi_{k},X_{j}\rangle}\sum_{\begin{subarray}{c}i_{1},i_{2}=1,\\ i_{1}\neq i_{2}\end{subarray}}^{n}D_{i_{1},k}\Big{(}\sigma U_{i_{1}}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}S_{i_{1},m}\Big{)}\overline{D_{i_{2},l}}\Big{(}\sigma U_{i_{2}}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|l|\end{subarray}}\overline{S_{i_{2},m}}\Big{)} (A.2)

and define

Di,k,n\displaystyle D_{i,k,n} =Wi,ϕkc^kI{w^kα}1x^kXi,ϕk,\displaystyle=\frac{\langle W_{i},\phi_{k}\rangle}{\hat{c}_{k}}I\{\hat{w}_{k}\geq\alpha\}-\frac{1}{\hat{x}_{k}}\langle X_{i},\phi_{k}\rangle, (A.3)
Di,k\displaystyle D_{i,k} =(Wi,ϕkck1xkXi,ϕk),\displaystyle=\left(\frac{\langle W_{i},\phi_{k}\rangle}{c_{k}}-\frac{1}{x_{k}}\langle X_{i},\phi_{k}\rangle\right), (A.4)
Si,m\displaystyle S_{i,m} =β,ϕmϕm,Xi.\displaystyle=\langle\beta,\phi_{m}\rangle\langle\phi_{m},X_{i}\rangle. (A.5)

The first result establishes the asymptotic distribution of the test statistic.

Theorem A.1

Under the assumptions of Theorem 2.1, under the null hypothesis, and for (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4} and E[X(t)]=E[W(t)]=0E[X(t)]=E[W(t)]=0 for all t[0,1]t\in[0,1], we have

ntnRn,3𝒟𝒩(0,𝔙).\frac{n}{t_{n}}R_{n,3}\stackrel{{\scriptstyle\mathcal{D}}}{{\longrightarrow}}\mathcal{N}(0,\mathfrak{V}).

The remaining results are to show, that the remainder terms are negligible.

Proposition A.2

Let (X,W)η128\left(X,W\right)\in\mathcal{F}_{\eta}^{128} and E|U|128η<\mathrm{E}|U|^{128}\leq\eta<\infty. Under the assumptions of Theorem 2.1, we have

1nj=1n|Tn,1,Xj|2=oP(1n).\frac{1}{n}\sum_{j=1}^{n}\left|\left\langle T_{n,1},X_{j}\right\rangle\right|^{2}=o_{P}\left(\frac{1}{n}\right).
Proposition A.3

Under the assumptions of Theorem 2.1 and if (X,W)η64\left(X,W\right)\in\mathcal{F}_{\eta}^{64} and E|U|64η<\mathrm{E}|U|^{64}\leq\eta<\infty, we have

1nj=1n|Tn,2,Xj|2=oP(tnn).\frac{1}{n}\sum_{j=1}^{n}\left|\left\langle T_{n,2},X_{j}\right\rangle\right|^{2}=o_{P}\left(\frac{t_{n}}{n}\right).
Proposition A.4

Under the assumptions of Theorem 2.1, and if (X,W)η8\left(X,W\right)\in\mathcal{F}_{\eta}^{8} and E|U|8η<\mathrm{E}|U|^{8}\leq\eta<\infty, we have

1nj=1n|Tn,3,Xj|2=oP(tnn).\frac{1}{n}\sum_{j=1}^{n}\left|\left\langle T_{n,3},X_{j}\right\rangle\right|^{2}=o_{P}\left(\frac{t_{n}}{n}\right).
Proposition A.5

Under the assumptions of Theorem 2.1, and if E|U|4η<\mbox{E}|U|^{4}\leq\eta<\infty and (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4}, we have

Rn,1\displaystyle R_{n,1} =oP(1n),Rn,2=n+oP(tnn),n=o(1n),\displaystyle=o_{P}\left(\frac{1}{n}\right),\quad R_{n,2}=\mathfrak{R}_{n}+o_{P}\left(\frac{t_{n}}{n}\right),\quad\mathfrak{R}_{n}=o\left(\frac{1}{\sqrt{n}}\right),
Rn,4\displaystyle R_{n,4} =oP(1n3/2),Rn,5=oP(1n).\displaystyle=o_{P}\left(\frac{1}{n^{3/2}}\right),\quad R_{n,5}=o_{P}\left(\frac{1}{n}\right).

Appendix B Auxiliary results

The results in this section are used at several places in the proofs. They follow from Lemma A.1 in [Johannes (2016)].

Lemma B.1

Let XX and WW have finite second moments and mm\in\mathbb{N}. Then we have kxk2m<\sum_{k\in\mathbb{Z}}x_{k}^{2m}<\infty and kxk2mwk<\sum_{k\in\mathbb{Z}}x_{k}^{2m}w_{k}<\infty. If additionally X𝒢η2mX\in\mathcal{G}_{\eta}^{2m} und βL2([0,1])\beta\in L_{2}([0,1]), we have

E|kβ,ϕkϕk,X|2m<.\displaystyle\mathrm{E}\left|\sum_{k\in\mathbb{Z}}\langle\beta,\phi_{k}\rangle\langle\phi_{k},X\rangle\right|^{2m}<\infty.
Lemma B.2

Let pp\in\mathbb{N} be fixed and suppose (X,W)η8p\left(X,W\right)\in\mathcal{F}_{\eta}^{8p} and E|U|8pη<\mathrm{E}|U|^{8p}\leq\eta<\infty. Then, there is a positive Konstant C=CpC=C_{p} such that for kk\in\mathbb{Z}, we have

E|I{λ^kαγkν}(Di,k,nDi,k)|pCnp/2(wkpxkp/2|ck|2p+1xkp/2)(1+o(1))\displaystyle\mathrm{E}|I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\}\left(D_{i,k,n}-D_{i,k}\right)|^{p}\leq\frac{C}{n^{p/2}}\left(\frac{w_{k}^{p}x_{k}^{p/2}}{|c_{k}|^{2p}}+\frac{1}{x_{k}^{p/2}}\right)\left(1+o(1)\right) (B.1)

and

E|I{λ^kαγkν}Di,k,n|pCp{wkp/2|ck|p+1xkp/2+Cnp/2(wkpxkp/2|ck|2p+1xkp/2)(1+o(1))}.\displaystyle\mathrm{E}\left|I\{\hat{\lambda}_{k}\geq\alpha\gamma_{k}^{\nu}\}D_{i,k,n}\right|^{p}\leq C_{p}\Bigg{\{}\frac{w_{k}^{p/2}}{|c_{k}|^{p}}+\frac{1}{x_{k}^{p/2}}+\frac{C}{n^{p/2}}\left(\frac{w_{k}^{p}x_{k}^{p/2}}{|c_{k}|^{2p}}+\frac{1}{x_{k}^{p/2}}\right)\left(1+o(1)\right)\Bigg{\}}. (B.2)

Appendix C Proof of Theorem A.1

The proof follows by using a central limit theorem for martingal difference sequences with respect to (n,j)n,0jn\left(\mathcal{F}_{n,j}\right)_{n\in\mathbb{N},0\leq j\leq n}, where n,j=σ(X1,W1,Y1,,Xj,Wj,Yj)\mathcal{F}_{n,j}=\sigma\left(X_{1},W_{1},Y_{1},\ldots,X_{j},W_{j},Y_{j}\right) and n,0=σ(,Ω)\mathcal{F}_{n,0}=\sigma\left(\emptyset,\Omega\right), see [Hall und Heyde (1980)], Theorem 3.2 and Corollary 3.1, for

n2tnRn,3\displaystyle\frac{n}{2t_{n}}R_{n,3} =j=2n1tnnk𝒰j,kDj,ki=1j1𝒰i,kDi,k¯xkI{λkαγkν}=j=2nYn,j,\displaystyle=\sum_{j=2}^{n}\frac{1}{t_{n}n}\sum_{k\in\mathbb{Z}}\mathscr{U}_{j,k}D_{j,k}\sum_{i=1}^{j-1}\overline{\mathscr{U}_{i,k}D_{i,k}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}=\sum_{j=2}^{n}Y_{n,j},

where

Yn,j=1tnnk𝒰j,kDj,kZn,j,k,Y_{n,j}=\frac{1}{t_{n}n}\sum_{k\in\mathbb{Z}}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k},

and

Zn,j,k=i=1j1𝒰i,kDi,k¯xkI{λkαγkν}.Z_{n,j,k}=\sum_{i=1}^{j-1}\overline{\mathscr{U}_{i,k}D_{i,k}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}.

In a first step, we consider the conditional variance of the maringale difference scheme.

Proposition C.1

Under the assumptions of Theorem 2.1, under the null hypothesis and for (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4}, we have

𝔙n:=j=2nE[Yn,j2n,j1]P𝔙asn.\mathfrak{V}_{n}:=\sum_{j=2}^{n}\mathrm{E}\left[Y_{n,j}^{2}\mid\mathcal{F}_{n,j-1}\right]\stackrel{{\scriptstyle P}}{{\longrightarrow}}\mathfrak{V}\quad\text{as}\quad n\to\infty.

Proof.  Using that 𝒰j,kDj,k𝒰j,lDj,l¯\mathscr{U}_{j,k}D_{j,k}\overline{\mathscr{U}_{j,l}D_{j,l}} is independent of (n,j1)j=1,,n(\mathcal{F}_{n,j-1})_{j=1,\ldots,n}, we can decompose

𝔙n\displaystyle\mathfrak{V}_{n} =1tn2n2j=2nE[|k𝒰j,kDj,kZn,j,k|2n,j1]\displaystyle=\frac{1}{t_{n}^{2}n^{2}}\sum_{j=2}^{n}\text{E}\Big{[}\Big{|}\sum_{k\in\mathbb{Z}}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\Big{|}^{2}\mid\mathcal{F}_{n,j-1}\Big{]}
=1tn2nkxk(xkwk|ck|21)I{λkαγkν}E|𝒰1,k|2\displaystyle=\frac{1}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\text{E}|\mathscr{U}_{1,k}|^{2}
(i=1n1|𝒰i,kDi,k|2+i,p=1,ipn1𝒰i,kDi,k𝒰p,kDp,k¯)\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{2}n^{2}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}}\Bigg{(}\sum_{i=1}^{n-1}|\mathscr{U}_{i,k}D_{i,k}|^{2}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\mathscr{U}_{i,k}D_{i,k}\overline{\mathscr{U}_{p,k}D_{p,k}}\Bigg{)}
=𝔙n,1+𝔙n,2.\displaystyle=\mathfrak{V}_{n,1}+\mathfrak{V}_{n,2}.

We define

n:=𝔙tn2nkxk(xkwk|ck|21)I{λkαγkν}i=1n1E|Di,k|2\displaystyle\mathfrak{H}_{n}:=\frac{\mathfrak{V}}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{i=1}^{n-1}\text{E}|D_{i,k}|^{2}

and show

𝔙n,1=n+o(1)\displaystyle\mathfrak{V}_{n,1}=\mathfrak{H}_{n}+o(1)

by proving the corresponding L2L_{2}-convergence. Afterwards we show that n\mathfrak{H}_{n} converges in probability to 𝔙\mathfrak{V}. Writing for i{1,,n}i\in\{1,\ldots,n\} and kk\in\mathbb{Z}

|𝒰i,kDi,k|2E|𝒰1,k|2𝔙E|Di,k|2\displaystyle|\mathscr{U}_{i,k}D_{i,k}|^{2}\text{E}|\mathscr{U}_{1,k}|^{2}-\mathfrak{V}\text{E}|D_{i,k}|^{2}
=𝔙1/2[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]|𝒰i,kDi,k|2|β,ϕk|2xk.\displaystyle=\mathfrak{V}^{1/2}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{]}-|\mathscr{U}_{i,k}D_{i,k}|^{2}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}.

and, observing that σ2+m|β,ϕm|2xmC1\sigma^{2}+\sum_{m\in\mathbb{Z}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\leq C_{1} for some constant C1>0C_{1}>0, we get

E(𝔙n,1n)2𝕍n,1+𝕍n,2+𝕍n,3\displaystyle\text{E}\left(\mathfrak{V}_{n,1}-\mathfrak{H}_{n}\right)^{2}\leq\mathbb{V}_{n,1}+\mathbb{V}_{n,2}+\mathbb{V}_{n,3}

with

𝕍n,1\displaystyle\mathbb{V}_{n,1} =Ctn4n2kxk2(xkwk|ck|21)2I{λkαγkν}\displaystyle=\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
{i=1n1E(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)2\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}}\Bigg{\{}\sum_{i=1}^{n-1}\text{E}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}^{2}
+i,p=1,ipn1E[|𝒰i,kDi,k|2𝔙1/2E|D1,k|2]E[(|𝒰p,kDp,k|2𝔙1/2E|D1,k|2]}\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}\Big{\{}}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{1,k}|^{2}\Big{]}\text{E}\Big{[}(|\mathscr{U}_{p,k}D_{p,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{1,k}|^{2}\Big{]}\Bigg{\}}
𝕍n,2\displaystyle\mathbb{V}_{n,2} =Ctn4n2k,l,|k||l|xk(xkwk|ck|21)I{λkαγkν}xl(xlwl|cl|21)I{λlαγlν}\displaystyle{=}\frac{C}{t_{n}^{4}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
{i=1n1E[(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)(|𝒰i,lDi,l|2𝔙1/2E|Di,l|2)]\displaystyle\phantom{=}\phantom{+\frac{1}{t_{n}^{4}n^{2}}}\phantom{\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\Bigg{\{}\sum_{i=1}^{n-1}\text{E}\Big{[}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}\Big{(}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{)}\Big{]}
+i,p=1,ipn1E[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]E[|𝒰i,lDi,l|2𝔙1/2E|Di,l|2]}\displaystyle\phantom{=}\phantom{+\frac{1}{t_{n}^{4}n^{2}}}\phantom{\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{]}\text{E}\Big{[}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{]}\Bigg{\}}
𝕍n,3\displaystyle\mathbb{V}_{n,3} =2tn4n2E(kxk2(xkwk|ck|21)|β,ϕk|2I{λkαγkν}i=1n1|𝒰i,kDi,k|2)2.\displaystyle{=}\frac{2}{t_{n}^{4}n^{2}}\text{E}\Bigg{(}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{i=1}^{n-1}|\mathscr{U}_{i,k}D_{i,k}|^{2}\Bigg{)}^{2}.

We have

E|𝒰j,kDj,k|2=(σ2+m,|m||k||β,ϕm|2xm)(wk|ck|21xk),\displaystyle\text{E}|\mathscr{U}_{j,k}D_{j,k}|^{2}=\Bigg{(}\sigma^{2}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\Bigg{)}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right), (C.1)

because |𝒰j,k|2|\mathscr{U}_{j,k}|^{2} and |Dj,k|2|D_{j,k}|^{2} are uncorrelated for all kk\in\mathbb{Z} and j{1,,n}j\in\{1,\ldots,n\}. With Lemma B.1 and (E.6), for all i{1,,n}i\in\{1,\ldots,n\} and k𝒦nk\in\mathcal{K}_{n}, we have

E(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)2\displaystyle\text{E}\left(|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\right)^{2} C(E|D1,k|4(E|D1,k|2)2)CE|D1,k|4\displaystyle\leq C\left(\text{E}|D_{1,k}|^{4}-\left(\text{E}|D_{1,k}|^{2}\right)^{2}\right)\leq C\text{E}|D_{1,k}|^{4}
Cα2.\displaystyle\leq\frac{C}{\alpha^{2}}. (C.2)

as well as

E[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]\displaystyle\text{E}\left[|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\right] =E|D1,k|2|β,ϕk|2xk\displaystyle=-\text{E}|D_{1,k}|^{2}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}
=(xkwk|ck|21)|β,ϕk|2.\displaystyle=-\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}. (C.3)

For the mixed terms with k,l,|k||l|k,l\in\mathbb{Z},|k|\neq|l| and i{1,,n}i\in\{1,\ldots,n\} and wk|ck|21xk0\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\geq 0 for all kk\in\mathbb{Z}, we get

E[(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)(|𝒰i,lDi,l|2𝔙1/2E|Di,l|2)]\displaystyle\text{E}\Big{[}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}\Big{(}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{)}\Big{]}
E[|𝒰1,kD1,k𝒰1,lD1,l|2]+(wk|ck|21xk)(wl|cl|21xl)\displaystyle\leq\text{E}\Big{[}|\mathscr{U}_{1,k}D_{1,k}\mathscr{U}_{1,l}D_{1,l}|^{2}\Big{]}+\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}
C{1α2|β,ϕk|2xk|β,ϕl|2xl+xlα|β,ϕl|2(wk|ck|21xk)\displaystyle\leq C\Bigg{\{}\frac{1}{\alpha^{2}}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}|\langle\beta,\phi_{l}\rangle|^{2}x_{l}+\frac{x_{l}}{\alpha}|\langle\beta,\phi_{l}\rangle|^{2}\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}
+xkα|β,ϕk|2(wl|cl|21xl)+(wk|ck|21xk)(wl|cl|21xl)}.\displaystyle\phantom{=}\phantom{C\Bigg{\{}}+\frac{x_{k}}{\alpha}|\langle\beta,\phi_{k}\rangle|^{2}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}+\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}\Bigg{\}}. (C.4)

Using this, we have

𝕍n,1\displaystyle\mathbb{V}_{n,1} Ctn4n2kxk2(xkwk|ck|21)2I{λkαγkν}{nα2+n2(xkwk|ck|21)2|β,ϕk|4}\displaystyle\leq\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Bigg{\{}\frac{n}{\alpha^{2}}+n^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{4}\Bigg{\}}
Ctn4nα2kxk2(xkwk|ck|21)2I{λkαγkν}\displaystyle\leq\frac{C}{t_{n}^{4}n\alpha^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
+Ctn4kxk2(xkwk|ck|21)4|β,ϕk|4I{λkαγkν}\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}|\langle\beta,\phi_{k}\rangle|^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
=o(1+1tn2),\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}\right),

with some constant C>0C>0. With similar arguments we obtain

𝕍n,2\displaystyle\mathbb{V}_{n,2} =o(1+1tn2+1ntn)+𝒪(1n).\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}+\frac{1}{\sqrt{n}t_{n}}\right)+\mathcal{O}\left(\frac{1}{n}\right).

and

𝕍n,3\displaystyle\mathbb{V}_{n,3} =o(1+1tn2+1n+1ntn).\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}+\frac{1}{n}+\frac{1}{\sqrt{n}t_{n}}\right).

which altogether results in

𝔙n,1=n+oP(1).\mathfrak{V}_{n,1}=\mathfrak{H}_{n}+o_{P}\left(1\right).

The stochastic convergence of n\mathfrak{H}_{n} follows by

n\displaystyle\mathfrak{H}_{n} =𝔙n1tn2nk(xkwk|ck|21)2I{λkαγkν}P𝔙\displaystyle=\mathfrak{V}\frac{n-1}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\stackrel{{\scriptstyle P}}{{\to}}\mathfrak{V}

for nn\to\infty. For proving, that 𝔙n,2\mathfrak{V}_{n,2} converges stochastically to 0 we show again the corresponding L2L_{2}-convergence. To this end, we bound for all i{1,,n}i\in\{1,\ldots,n\} und kk\in\mathbb{Z} the term E|𝒰1,k|2\text{E}|\mathscr{U}_{1,k}|^{2} by a constant C<C<\infty using the centeredness of UU and Lemma B.1, to obtain

𝔙n,2=oP(1).\mathfrak{V}_{n,2}=o_{P}\left(1\right).

The detailed arguments can be found in the supplementary material. \Box

The second step is to show the conditional Lindeberg condition by verifying an unconditional Ljapunov condition.

Proposition C.2

Under the assumptions of Theorem 2.1, under the null hypothesis, and with (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4}, we have

ε>0:j=2nE[Yn,j2I{|Yn,j|>ε}n,j1]P0asn.\forall\,\varepsilon>0:\;\sum_{j=2}^{n}\mathrm{E}\left[Y_{n,j}^{2}I\{|Y_{n,j}|>\varepsilon\}\mid\mathcal{F}_{n,j-1}\right]\stackrel{{\scriptstyle P}}{{\longrightarrow}}0\quad\text{as}\quad n\to\infty. (C.5)

Proof.  It is shown in [Alj et al. (2014)] and [Gänssler et al. (1978)] that the conditional Lindeberg condition follows from the unconditional Ljapunov condition. We will show in the following, that

j=2nE|Yn,j|4=o(1)\sum_{j=2}^{n}\text{E}|Y_{n,j}|^{4}=o(1)

and decompose

j=2nE|Yn,j|4=Ln,1+Ln,2+Ln,3+Ln,4,\sum_{j=2}^{n}\text{E}|Y_{n,j}|^{4}=L_{n,1}+L_{n,2}+L_{n,3}+L_{n,4},

where

Ln,1\displaystyle L_{n,1} =1tn4n4j=2nkE|𝒰j,kDj,kZn,j,k|4,\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}\left|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\right|^{4},
Ln,2\displaystyle L_{n,2} =1tn4n4j=2nk,l,|k||l|E|𝒰j,kDj,kZn,j,k𝒰j,lDj,lZn,j,l¯|2,\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}\text{E}\left|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}}\right|^{2},
Ln,3\displaystyle L_{n,3} =1tn4n4j=2nk,l,q,|k|,|l||q|,|k||l|E[|𝒰j,kDj,kZn,j,k|2𝒰j,lDj,lZn,j,l𝒰j,qDj,qZn,j,q¯],\displaystyle{=}{\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}}\sum_{\begin{subarray}{c}k,l,q\in\mathbb{Z},\\ |k|,|l|\neq|q|,|k|\neq|l|\end{subarray}}\text{E}\Big{[}|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}|^{2}\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}\overline{\mathscr{U}_{j,q}D_{j,q}Z_{n,j,q}}\Big{]},
Ln,4\displaystyle L_{n,4} =1tn4n4j=2nk,l,p,q,|k|,|l|,|p||q|,|k|,|l||p|,|k||l|E[𝒰j,kDj,kZn,j,k𝒰j,lDj,lZn,j,l¯𝒰j,pDj,pZn,j,p𝒰j,qDj,qZn,j,q¯].\displaystyle{=}{\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}}\sum_{\begin{subarray}{c}k,l,p,q\in\mathbb{Z},\\ |k|,|l|,|p|\neq|q|,\\ |k|,|l|\neq|p|,|k|\neq|l|\end{subarray}}\text{E}\Big{[}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}}\mathscr{U}_{j,p}D_{j,p}Z_{n,j,p}\overline{\mathscr{U}_{j,q}D_{j,q}Z_{n,j,q}}\Big{]}.

For Ln,1L_{n,1} we use, that for all k,n,j{1,,n}k\in\mathbb{Z},n\in\mathbb{N},j\in\{1,\ldots,n\}, Zn,j,kZ_{n,j,k} are stochastically independent of 𝒰j,kDj,k\mathscr{U}_{j,k}D_{j,k} and 𝒰j,k\mathscr{U}_{j,k} are uncorrelated with Dj,kD_{j,k}. Furthermore, the fourth absolute moment of 𝒰j,k\mathscr{U}_{j,k} is due to the centredness of UU and Lemma B.1 uniformly bounded. The fourth absolute moment of Dj,kD_{j,k} can be estimated using Assumption 3 and (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4} as

E|Dj,k|4C(E|W,ϕk|4|ck|4+E|X,ϕk|4xk4)Cη(wk2|ck|4+1xk2)Cηα2.\displaystyle\text{E}|D_{j,k}|^{4}\leq C\left(\frac{\text{E}|\langle W,\phi_{k}\rangle|^{4}}{|c_{k}|^{4}}+\frac{\text{E}|\langle X,\phi_{k}\rangle|^{4}}{x_{k}^{4}}\right)\leq C\eta\left(\frac{w_{k}^{2}}{|c_{k}|^{4}}+\frac{1}{x_{k}^{2}}\right)\leq\frac{C\eta}{\alpha^{2}}. (C.6)

Again using similar arguments, we obtain

E|𝒰i1,kDi1,k|2=E|𝒰i1,k|2E|Di1,k|2\displaystyle\text{E}\left|\mathscr{U}_{i_{1},k}D_{i_{1},k}\right|^{2}=\text{E}|\mathscr{U}_{i_{1},k}|^{2}\text{E}|D_{i_{1},k}|^{2} C(wk|ck|21xk).\displaystyle\leq C\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right). (C.7)

This results in

E|i=1j1𝒰i,kDi,kxkI{λkαγkν}|4\displaystyle\text{E}\Big{|}\sum_{i=1}^{j-1}\mathscr{U}_{i,k}D_{i,k}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Big{|}^{4}
=xk4I{λkαγkν}{i=1j1E|𝒰i,k|4E|Di,k|4+21i1<i2j1E|𝒰i1,kDi1,k|2E|𝒰i2,kDi2,k|2}\displaystyle=x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Bigg{\{}\sum_{i=1}^{j-1}\text{E}|\mathscr{U}_{i,k}|^{4}\text{E}|D_{i,k}|^{4}+2\sum_{1\leq i_{1}<i_{2}\leq j-1}\text{E}|\mathscr{U}_{i_{1},k}D_{i_{1},k}|^{2}\text{E}|\mathscr{U}_{i_{2},k}D_{i_{2},k}|^{2}\Bigg{\}}
Cnα2xk4I{λkαγkν}+Cn2xk2(xkwk|ck|21)2I{λkαγkν}.\displaystyle\leq\frac{Cn}{\alpha^{2}}x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}+Cn^{2}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}. (C.8)

Putting these results together, we get

Ln,1\displaystyle L_{n,1} =1tn4n4j=2nkE|𝒰j,k|4E|Dj,k|4E|Zn,j,k|4\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}|\mathscr{U}_{j,k}|^{4}\text{E}|D_{j,k}|^{4}\text{E}|Z_{n,j,k}|^{4}
Ctn4n4α2j=2nkE|i=1j1𝒰i,kDi,kxkI{λkαγkν}|4\displaystyle\leq\frac{C}{t_{n}^{4}n^{4}\alpha^{2}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}\Big{|}\sum_{i=1}^{j-1}\mathscr{U}_{i,k}D_{i,k}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Big{|}^{4}
Ctn4nα2kxk2I{λkαγkν}(1nα2xk2+(xkwk|ck|21)2)\displaystyle\leq\frac{C}{t_{n}^{4}n\alpha^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\left(\frac{1}{n\alpha^{2}}x_{k}^{2}+\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}\right)
=o(1)1tn4(kxk4I{λkαγkν}+kxk2(xkwk|ck|21)2I{λkαγkν}),\displaystyle=o(1)\frac{1}{t_{n}^{4}}\left(\sum_{k\in\mathbb{Z}}x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}+\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right),

where the first series converges due to Lemma B.1 and the second series either also converges or, if not, can be bounded by Ctn2Ct_{n}^{2}.

Considering Ln,4L_{n,4}, we use the stochastic independence of Zn,j,kZ_{n,j,k} and 𝒰j,lDj,l\mathscr{U}_{j,l}D_{j,l} for all k,lk,l\in\mathbb{Z}, which results in

E[𝒰j,kDj,kZn,j,k𝒰j,l¯Dj,l¯Zn,j,l¯𝒰j,pDj,pZn,j,p𝒰j,q¯Dj,q¯Zn,j,q¯]\displaystyle\text{E}\big{[}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}}\overline{D_{j,l}}\overline{Z_{n,j,l}}\mathscr{U}_{j,p}D_{j,p}Z_{n,j,p}\overline{\mathscr{U}_{j,q}}\overline{D_{j,q}}\overline{Z_{n,j,q}}\big{]}
=E[𝒰j,kDj,k𝒰j,l¯Dj,l¯𝒰j,pDj,p𝒰j,q¯Dj,q¯]E[Zn,j,kZn,j,l¯Zn,j,pZn,j,q¯].\displaystyle=\text{E}\big{[}\mathscr{U}_{j,k}D_{j,k}\overline{\mathscr{U}_{j,l}}\overline{D_{j,l}}\mathscr{U}_{j,p}D_{j,p}\overline{\mathscr{U}_{j,q}}\overline{D_{j,q}}\big{]}\text{E}\big{[}Z_{n,j,k}\overline{Z_{n,j,l}}Z_{n,j,p}\overline{Z_{n,j,q}}\big{]}.

The rest of the argumentation is just calculating the expectations using that for all j{1,,n}j\in\{1,\ldots,n\}, Dj,k,Dj,l,Dj,pD_{j,k},D_{j,l},D_{j,p} and Dj,qD_{j,q} are uncorellated with Sj,mS_{j,m} for all m\{m:|m|=|k|,|l|,|p|,|q|}m\in\mathbb{Z}\backslash\{m\in\mathbb{Z}:|m|=|k|,|l|,|p|,|q|\} and stochastically independent of UjU_{j}. Finally,

E[Sj,kDj,k]\displaystyle\text{E}[S_{j,k}D_{j,k}] =β,ϕkE[ϕk,Xj(Wj,ϕkckXj,ϕkxk)]=β,ϕk(ckckxkxk)=0\displaystyle=\langle\beta,\phi_{k}\rangle\text{E}\left[\langle\phi_{k},X_{j}\rangle\left(\frac{\langle W_{j},\phi_{k}\rangle}{c_{k}}-\frac{\langle X_{j},\phi_{k}\rangle}{x_{k}}\right)\right]=\langle\beta,\phi_{k}\rangle\left(\frac{c_{k}}{c_{k}}-\frac{x_{k}}{x_{k}}\right)=0 (C.9)

and, in the same way, E[Sj,k¯Dj,k]=E[Sj,kDj,k¯]=0\text{E}[\overline{S_{j,k}}D_{j,k}]=\text{E}[S_{j,k}\overline{D_{j,k}}]=0, which gives Ln,4=0L_{n,4}=0.

With similar arguments as above, which can be found in the supplementary material we get

Ln,2\displaystyle L_{n,2} =o(1tn4+1tn2n+1tn2+1tnn)+𝒪(1n+1n2)=o(1),\displaystyle=o\left(\frac{1}{t_{n}^{4}}+\frac{1}{t_{n}^{2}n}+\frac{1}{t_{n}^{2}}+\frac{1}{t_{n}\sqrt{n}}\right)+\mathcal{O}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)=o(1),

and

Ln,3=o(1tn2n).\displaystyle L_{n,3}=o\left(\frac{1}{t_{n}^{2}n}\right).

\Box

All remainder terms can be estimated with similar techniques. We exemplarily show the idea for Proposition A.5, that is for Rn,2R_{n,2}, in the supplementary material.

Appendix D Proof of Theorem 3.1

Let Φ𝔙()\Phi_{\mathfrak{V}}(\cdot) denote the distribution function of the normal distribution with mean zero and variance 𝔙\mathfrak{V}, FnF_{n} the distribution function of ntn(Tn𝔅nn)\frac{n}{t_{n}}\left(T_{n}-\mathfrak{B}_{n}-\mathfrak{R}_{n}\right) and F𝒮n,nF_{\mathcal{S}_{n},n}^{*} the distribution function of the conditional distribution of ntn(Tn𝔅nn)\frac{n}{t_{n}}\left(T_{n}^{*}-\mathfrak{B}_{n}^{*}-\mathfrak{R}_{n}^{*}\right) given 𝒮n\mathcal{S}_{n}. By bounding

supt|F𝒮n,n(t)Fn(t)|\displaystyle\sup_{t\in\mathbb{R}}\left|F_{\mathcal{S}_{n},n}^{*}(t)-F_{n}(t)\right| supt|F𝒮n,n(t)Φ𝔙(t)|+supt|Fn(t)Φ𝔙(t)|=:M1,n+M2,n,\displaystyle\leq\sup_{t\in\mathbb{R}}\left|F_{\mathcal{S}_{n},n}^{*}(t)-\Phi_{\mathfrak{V}}(t)\right|+\sup_{t\in\mathbb{R}}\left|F_{n}(t)-\Phi_{\mathfrak{V}}(t)\right|=:M_{1,n}+M_{2,n},

similar to the example in Section 29 of [DasGupta (2008)], it is enough to show the convergence of M1,nM_{1,n} and M2,nM_{2,n}. Due to the continuity of ϕ𝔙\phi_{\mathfrak{V}}, the convergence of M2,nM_{2,n} follows directly from Theorem 2.1 and Polya’s Theorem, as stated in Section 1.5.3 of [Serfling (1980)]. Again, using Polya’s Theorem, it is enough to show for M1,nM_{1,n}, that for all ε>0\varepsilon>0

limn(|F𝒮n,n(t)ϕ𝔙(t)|>ε)=0.\displaystyle\lim_{n\to\infty}\mathbb{P}\left(\left|F_{\mathcal{S}_{n},n}^{*}(t)-\phi_{\mathfrak{V}}(t)\right|>\varepsilon\right)=0. (D.1)

For this we just immitate the proof of Theorem 2.1. Analogously to (2.13), we decompose

ntnTn\displaystyle\frac{n}{t_{n}}T_{n}^{*} =1tnj=1n|Tn,1+Tn,2+Tn,3,Xj|2+1tnj=1nTn,1+Tn,2+Tn,3,XjXj,Rn\displaystyle=\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle T_{n,1}^{*}+T_{n,2}^{*}+T_{n,3}^{*},X_{j}\right\rangle\right|^{2}+\frac{1}{t_{n}}\sum_{j=1}^{n}\langle T_{n,1}^{*}+T_{n,2}^{*}+T_{n,3}^{*},X_{j}\rangle\langle X_{j},R_{n}^{*}\rangle
+1tnj=1nXj,Tn,1+Tn,2+Tn,3Rn,Xj+1tnj=1n|Rn,Xj|2,\displaystyle\phantom{=}+\frac{1}{t_{n}}\sum_{j=1}^{n}\langle X_{j},T_{n,1}^{*}+T_{n,2}^{*}+T_{n,3}^{*}\rangle\langle R_{n}^{*},X_{j}\rangle+\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle R_{n}^{*},X_{j}\right\rangle\right|^{2},

where, similar to the proof of Theorem 2.1, we get

1tnj=1n|Rn,Xj|2ntnn=ntnRn,3+ntn(Rn,2n)+ntn(Rn,1+Rn,4+Rn,5).\frac{1}{t_{n}}\sum_{j=1}^{n}\left|\left\langle R_{n}^{*},X_{j}\right\rangle\right|^{2}-\frac{n}{t_{n}}\mathfrak{R}_{n}=\frac{n}{t_{n}}R_{n,3}^{*}+\frac{n}{t_{n}}\left(R_{n,2}^{*}-\mathfrak{R}_{n}\right)+\frac{n}{t_{n}}\left(R_{n,1}^{*}+R_{n,4}^{*}+R_{n,5}^{*}\right).

Then, ntn(Rn,3𝔅nn)\frac{n}{t_{n}}(R_{n,3}^{*}-\mathfrak{B}_{n}^{*}-\mathfrak{R}_{n}^{*}) converges weakly in probability to 𝒩(0,𝔙)\mathcal{N}(0,\mathfrak{V}) along the lines of Theorem A.1. The remainder terms can be discussed to be negligible with the same arguments as for the remainder terms in Theorem 2.1. \Box

Appendix E Supplementary Material

E.1 Proof of Proposition A.5

We give only the proof for Rn,2R_{n,2}. We have

n2tn2E|Rn,2n|2\displaystyle\frac{n^{2}}{t_{n}^{2}}\text{E}|R_{n,2}-\mathfrak{R}_{n}|^{2}
1tn2n2kxk2I{λkαγkν}E|i=1n(|Di,k𝒰i,k|2𝔙1/2(wk|ck|21xk))|2\displaystyle\leq\frac{1}{t_{n}^{2}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\text{E}\Bigg{|}\sum_{i=1}^{n}\left(|D_{i,k}\mathscr{U}_{i,k}|^{2}-\mathfrak{V}^{1/2}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)\right)\Bigg{|}^{2}
+1tn2n2k,l,|k||l|xkI{λkαγkν}xlI{λlαγlν}\displaystyle\phantom{=}+\frac{1}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
i=1nE[(|Di,k𝒰i,k|2𝔙1/2(wk|ck|21xk))(|Di,l𝒰i,l|2𝔙1/2(wl|cl|21xl))]\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\sum_{i=1}^{n}\text{E}\Big{[}\Big{(}|D_{i,k}\mathscr{U}_{i,k}|^{2}-\mathfrak{V}^{1/2}\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{)}\Big{(}|D_{i,l}\mathscr{U}_{i,l}|^{2}-\mathfrak{V}^{1/2}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}\Big{)}\Big{]}
+1tn2n2k,l,|k||l|xkI{λkαγkν}xlI{λlαγlν}\displaystyle\phantom{=}+\frac{1}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
i,p=1,ipnE[|Di,k𝒰i,k|2𝔙1/2(wk|ck|21xk)]E[|Dp,l𝒰p,l|2𝔙1/2(wl|cl|21xl)].\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n}\text{E}\Big{[}|D_{i,k}\mathscr{U}_{i,k}|^{2}-\mathfrak{V}^{1/2}\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{]}\text{E}\Big{[}|D_{p,l}\mathscr{U}_{p,l}|^{2}-\mathfrak{V}^{1/2}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}\Big{]}.

The terms quadratic in kk\in\mathbb{Z} can be estimated by Lemma B.1 und (E.6), while the other terms except the one coming from |β,ϕk|2xk|\langle\beta,\phi_{k}\rangle|^{2}x_{k} vanish

E|i=1n(|Di,k𝒰i,k|2𝔙1/2(wk|ck|21xk))|2Cnα2+Cn2(xkwk|ck|21)2|β,ϕk|4(1+1n).\displaystyle\text{E}\Bigg{|}\sum_{i=1}^{n}\left(|D_{i,k}\mathscr{U}_{i,k}|^{2}-\mathfrak{V}^{1/2}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)\right)\Bigg{|}^{2}\leq\frac{Cn}{\alpha^{2}}+Cn^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{4}\left(1+\frac{1}{n}\right).

Using the Cauchy-Schwarz inequality (E.3), leads to

E[(|Di,k𝒰i,k|2𝔙1/2(wk|ck|21xk))(|Di,l𝒰i,l|2𝔙1/2(wl|cl|21xl))]Cα2.\displaystyle\text{E}\Bigg{[}\left(|D_{i,k}\mathscr{U}_{i,k}|^{2}-\mathfrak{V}^{1/2}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)\right)\left(|D_{i,l}\mathscr{U}_{i,l}|^{2}-\mathfrak{V}^{1/2}\left(\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\right)\right)\Bigg{]}\leq\frac{C}{\alpha^{2}}.

The expectations with k,lk,l\in\mathbb{Z}, |k||l||k|\neq|l| und i,p{1,,n}i,p\in\{1,\ldots,n\}, ipi\neq p can be estimated by (E.4). This finally yields

n2tn2E|Rn,2n|2\displaystyle\frac{n^{2}}{t_{n}^{2}}\text{E}|R_{n,2}-\mathfrak{R}_{n}|^{2}
1tn2n2kxk2I{λkαγkν}{Cnα2+Cn2(xkwk|ck|21)2|β,ϕk|4(1+1n)}\displaystyle\leq\frac{1}{t_{n}^{2}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Bigg{\{}\frac{Cn}{\alpha^{2}}+Cn^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{4}\left(1+\frac{1}{n}\right)\Bigg{\}}
+Ctn2n2k,l,|k||l|xkI{λkαγkν}xlI{λlαγlν}\displaystyle\phantom{=}+\frac{C}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
{nα2+n(n1)(xkwk|ck|21)|β,ϕk|2(xlwl|cl|21)|β,ϕl|2}\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{2}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\Bigg{\{}\frac{n}{\alpha^{2}}+n(n-1)\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)|\langle\beta,\phi_{l}\rangle|^{2}\Bigg{\}}
=o(1+1tn2).\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}\right).

The second part can be shown by using

xkwk|ck|211α(xkλk),\displaystyle\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\leq\frac{1}{\alpha}(x_{k}-\lambda_{k}), (E.1)

for all k𝒦nk\in\mathscr{K}_{n} together with Lemma B.1 \Box

All the other parts of Proposition A.5 as well as Lemmas A.2-A.4 follow by very similar techniques. For details we refer to [5] in the main article.

E.2 Details for the proof of Proposition C.1

Using that 𝒰j,kDj,k𝒰j,lDj,l¯\mathscr{U}_{j,k}D_{j,k}\overline{\mathscr{U}_{j,l}D_{j,l}} is independent of (n,j1)j=1,,n(\mathcal{F}_{n,j-1})_{j=1,\ldots,n}, we can decompose

𝔙n\displaystyle\mathfrak{V}_{n} =1tn2n2j=2nE[|k𝒰j,kDj,kZn,j,k|2n,j1]\displaystyle=\frac{1}{t_{n}^{2}n^{2}}\sum_{j=2}^{n}\text{E}\Big{[}\Big{|}\sum_{k\in\mathbb{Z}}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\Big{|}^{2}\mid\mathcal{F}_{n,j-1}\Big{]}
=1tn2nkxk(xkwk|ck|21)I{λkαγkν}E|𝒰1,k|2\displaystyle=\frac{1}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\text{E}|\mathscr{U}_{1,k}|^{2}
(i=1n1|𝒰i,kDi,k|2+i,p=1,ipn1𝒰i,kDi,k𝒰p,kDp,k¯)\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{2}n^{2}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}}\Bigg{(}\sum_{i=1}^{n-1}|\mathscr{U}_{i,k}D_{i,k}|^{2}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\mathscr{U}_{i,k}D_{i,k}\overline{\mathscr{U}_{p,k}D_{p,k}}\Bigg{)}
=𝔙n,1+𝔙n,2.\displaystyle=\mathfrak{V}_{n,1}+\mathfrak{V}_{n,2}.

We define

n:=𝔙tn2nkxk(xkwk|ck|21)I{λkαγkν}i=1n1E|Di,k|2\displaystyle\mathfrak{H}_{n}:=\frac{\mathfrak{V}}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{i=1}^{n-1}\text{E}|D_{i,k}|^{2}

and show

𝔙n,1=n+o(1)\displaystyle\mathfrak{V}_{n,1}=\mathfrak{H}_{n}+o(1)

by proving the corresponding L2L_{2}-convergence. Afterwards we show that n\mathfrak{H}_{n} converges in probability to 𝔙\mathfrak{V}. Writing for i{1,,n}i\in\{1,\ldots,n\} and kk\in\mathbb{Z}

|𝒰i,kDi,k|2E|𝒰1,k|2𝔙E|Di,k|2\displaystyle|\mathscr{U}_{i,k}D_{i,k}|^{2}\text{E}|\mathscr{U}_{1,k}|^{2}-\mathfrak{V}\text{E}|D_{i,k}|^{2}
=𝔙1/2[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]|𝒰i,kDi,k|2|β,ϕk|2xk.\displaystyle=\mathfrak{V}^{1/2}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{]}-|\mathscr{U}_{i,k}D_{i,k}|^{2}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}.

and, observing that σ2+m|β,ϕm|2xmC1\sigma^{2}+\sum_{m\in\mathbb{Z}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\leq C_{1} for some constant C1>0C_{1}>0, we get

E(𝔙n,1n)2𝕍n,1+𝕍n,2+𝕍n,3\displaystyle\text{E}\left(\mathfrak{V}_{n,1}-\mathfrak{H}_{n}\right)^{2}\leq\mathbb{V}_{n,1}+\mathbb{V}_{n,2}+\mathbb{V}_{n,3}

with

𝕍n,1\displaystyle\mathbb{V}_{n,1} =Ctn4n2kxk2(xkwk|ck|21)2I{λkαγkν}\displaystyle=\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
{i=1n1E(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)2\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}}\Bigg{\{}\sum_{i=1}^{n-1}\text{E}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}^{2}
+i,p=1,ipn1E[|𝒰i,kDi,k|2𝔙1/2E|D1,k|2]E[(|𝒰p,kDp,k|2𝔙1/2E|D1,k|2]},\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}\Big{\{}}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{1,k}|^{2}\Big{]}\text{E}\Big{[}(|\mathscr{U}_{p,k}D_{p,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{1,k}|^{2}\Big{]}\Bigg{\}},
𝕍n,2\displaystyle\mathbb{V}_{n,2} =Ctn4n2k,l,|k||l|xk(xkwk|ck|21)I{λkαγkν}xl(xlwl|cl|21)I{λlαγlν}\displaystyle{=}\frac{C}{t_{n}^{4}n^{2}}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
{i=1n1E[(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)(|𝒰i,lDi,l|2𝔙1/2E|Di,l|2)]\displaystyle\phantom{=}\phantom{+\frac{1}{t_{n}^{4}n^{2}}}\phantom{\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\Bigg{\{}\sum_{i=1}^{n-1}\text{E}\Big{[}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}\Big{(}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{)}\Big{]}
+i,p=1,ipn1E[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]E[|𝒰i,lDi,l|2𝔙1/2E|Di,l|2]},\displaystyle\phantom{=}\phantom{+\frac{1}{t_{n}^{4}n^{2}}}\phantom{\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}+\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}\Big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{]}\text{E}\Big{[}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{]}\Bigg{\}},
𝕍n,3\displaystyle\mathbb{V}_{n,3} =2tn4n2E(kxk2(xkwk|ck|21)|β,ϕk|2I{λkαγkν}i=1n1|𝒰i,kDi,k|2)2.\displaystyle{=}\frac{2}{t_{n}^{4}n^{2}}\text{E}\Bigg{(}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\sum_{i=1}^{n-1}|\mathscr{U}_{i,k}D_{i,k}|^{2}\Bigg{)}^{2}.

We have

E|𝒰j,kDj,k|2=(σ2+m,|m||k||β,ϕm|2xm)(wk|ck|21xk),\displaystyle\text{E}|\mathscr{U}_{j,k}D_{j,k}|^{2}=\Bigg{(}\sigma^{2}+\sum_{\begin{subarray}{c}m\in\mathbb{Z},\\ |m|\neq|k|\end{subarray}}|\langle\beta,\phi_{m}\rangle|^{2}x_{m}\Bigg{)}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right), (E.2)

because |𝒰j,k|2|\mathscr{U}_{j,k}|^{2} and |Dj,k|2|D_{j,k}|^{2} are uncorrelated for all kk\in\mathbb{Z} and j{1,,n}j\in\{1,\ldots,n\}. With Lemma B.1 and (E.6), for all i{1,,n}i\in\{1,\ldots,n\} and k𝒦nk\in\mathcal{K}_{n}, we have

E(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)2\displaystyle\text{E}\left(|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\right)^{2} C(E|D1,k|4(E|D1,k|2)2)CE|D1,k|4\displaystyle\leq C\left(\text{E}|D_{1,k}|^{4}-\left(\text{E}|D_{1,k}|^{2}\right)^{2}\right)\leq C\text{E}|D_{1,k}|^{4}
Cα2\displaystyle\leq\frac{C}{\alpha^{2}} (E.3)

as well as

E[|𝒰i,kDi,k|2𝔙1/2E|Di,k|2]\displaystyle\text{E}\left[|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\right] =E|D1,k|2|β,ϕk|2xk\displaystyle=-\text{E}|D_{1,k}|^{2}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}
=(xkwk|ck|21)|β,ϕk|2.\displaystyle=-\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}. (E.4)

For the mixed terms with k,l,|k||l|k,l\in\mathbb{Z},|k|\neq|l| and i{1,,n}i\in\{1,\ldots,n\} and wk|ck|21xk0\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\geq 0 for all kk\in\mathbb{Z}, we get

E[(|𝒰i,kDi,k|2𝔙1/2E|Di,k|2)(|𝒰i,lDi,l|2𝔙1/2E|Di,l|2)]\displaystyle\text{E}\Big{[}\Big{(}|\mathscr{U}_{i,k}D_{i,k}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,k}|^{2}\Big{)}\Big{(}|\mathscr{U}_{i,l}D_{i,l}|^{2}-\mathfrak{V}^{1/2}\text{E}|D_{i,l}|^{2}\Big{)}\Big{]}
E[|𝒰1,kD1,k𝒰1,lD1,l|2]+(wk|ck|21xk)(wl|cl|21xl)\displaystyle\leq\text{E}\Big{[}|\mathscr{U}_{1,k}D_{1,k}\mathscr{U}_{1,l}D_{1,l}|^{2}\Big{]}+\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}
C{1α2|β,ϕk|2xk|β,ϕl|2xl+xlα|β,ϕl|2(wk|ck|21xk)\displaystyle\leq C\Bigg{\{}\frac{1}{\alpha^{2}}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}|\langle\beta,\phi_{l}\rangle|^{2}x_{l}+\frac{x_{l}}{\alpha}|\langle\beta,\phi_{l}\rangle|^{2}\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}
+xkα|β,ϕk|2(wl|cl|21xl)+(wk|ck|21xk)(wl|cl|21xl)}.\displaystyle\phantom{=}\phantom{C\Bigg{\{}}+\frac{x_{k}}{\alpha}|\langle\beta,\phi_{k}\rangle|^{2}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}+\Big{(}\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\Big{)}\Big{(}\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\Big{)}\Bigg{\}}. (E.5)

Using this, we have

𝕍n,1\displaystyle\mathbb{V}_{n,1} Ctn4n2kxk2(xkwk|ck|21)2I{λkαγkν}{nα2+n2(xkwk|ck|21)2|β,ϕk|4}\displaystyle\leq\frac{C}{t_{n}^{4}n^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Bigg{\{}\frac{n}{\alpha^{2}}+n^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{4}\Bigg{\}}
Ctn4nα2kxk2(xkwk|ck|21)2I{λkαγkν}\displaystyle\leq\frac{C}{t_{n}^{4}n\alpha^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
+Ctn4kxk2(xkwk|ck|21)4|β,ϕk|4I{λkαγkν}\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}|\langle\beta,\phi_{k}\rangle|^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
=o(1+1tn2),\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}\right),

with some constant C>0C>0. With similar arguments, we obtain

𝕍n,2\displaystyle\mathbb{V}_{n,2} Ctn4{1nα2(kxk2(xkwk|ck|21)|β,ϕk|2I{λkαγkν})2\displaystyle\leq\frac{C}{t_{n}^{4}}\Bigg{\{}\frac{1}{n\alpha^{2}}\left(\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2}
+tn2nα(lxl2(xlwl|cl|21)|β,ϕl|2I{λlαγlν})+(tn2)2n}\displaystyle\phantom{=}\phantom{+\frac{C}{t_{n}^{4}}\Bigg{\{}}+\frac{t_{n}^{2}}{n\alpha}\left(\sum_{l\in\mathbb{Z}}x_{l}^{2}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)|\langle\beta,\phi_{l}\rangle|^{2}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}\right)+\frac{(t_{n}^{2})^{2}}{n}\Bigg{\}}
+Ctn4(kxk(xkwk|ck|21)2|β,ϕk|2I{λkαγkν})2,\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}}\left(\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2},

which can be further bounded using the Cauchy-Schwarz inequality to get

𝕍n,2\displaystyle\mathbb{V}_{n,2} =o(1+1tn2+1ntn)+𝒪(1n).\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}+\frac{1}{\sqrt{n}t_{n}}\right)+\mathcal{O}\left(\frac{1}{n}\right).

Using similar arguments as for the first two terms, Vn,3V_{n,3} can also be bounded to get

𝕍n,3\displaystyle\mathbb{V}_{n,3} Ctn4nα2kxk4(xkwk|ck|21)2|β,ϕk|4I{λkαγkν}\displaystyle\leq\frac{C}{t_{n}^{4}n\alpha^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{4}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
+Ctn4kxk2(xkwk|ck|21)4|β,ϕk|4I{λkαγkν}\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}|\langle\beta,\phi_{k}\rangle|^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
+Ctn4nα2(kxk3(xkwk|ck|21)|β,ϕk|4I{λkαγkν})2\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}n\alpha^{2}}\left(\sum_{k\in\mathbb{Z}}x_{k}^{3}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)|\langle\beta,\phi_{k}\rangle|^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2}
+Ctn4n(kxk(xkwk|ck|21)2|β,ϕk|2I{λkαγkν})2\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}n}\left(\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2}
+Ctn4nαkxk(xkwk|ck|21)2|β,ϕk|2I{λkαγkν}\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}n\alpha}\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}
kxl3(xlwl|cl|21)|β,ϕl|4I{λlαγlν}\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n\alpha}\sum_{k\in\mathbb{Z}}}\sum_{k\in\mathbb{Z}}x_{l}^{3}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)|\langle\beta,\phi_{l}\rangle|^{4}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
+Ctn4(kxk(xkwk|ck|21)2|β,ϕk|2I{λkαγkν})2\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}}\left(\sum_{k\in\mathbb{Z}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}|\langle\beta,\phi_{k}\rangle|^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2}
=o(1+1tn2+1n+1ntn).\displaystyle=o\left(1+\frac{1}{t_{n}^{2}}+\frac{1}{n}+\frac{1}{\sqrt{n}t_{n}}\right).

Altogether, we have

𝔙n,1=n+oP(1).\mathfrak{V}_{n,1}=\mathfrak{H}_{n}+o_{P}\left(1\right).

The stochastic convergence of n\mathfrak{H}_{n} follows by

n\displaystyle\mathfrak{H}_{n} =𝔙n1tn2nk(xkwk|ck|21)2I{λkαγkν}P𝔙\displaystyle=\mathfrak{V}\frac{n-1}{t_{n}^{2}n}\sum_{k\in\mathbb{Z}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\stackrel{{\scriptstyle P}}{{\to}}\mathfrak{V}

for nn\to\infty. For proving, that 𝔙n,2\mathfrak{V}_{n,2} converges stochastically to 0 we show again the corresponding L2L_{2}-convergence. To this end we bound for all i{1,,n}i\in\{1,\ldots,n\} und kk\in\mathbb{Z} the term E|𝒰1,k|2\text{E}|\mathscr{U}_{1,k}|^{2} by a constant C<C<\infty using the centredness of UU and Lemma B.1, to obtain

E|𝔙n,2|2\displaystyle\text{E}|\mathfrak{V}_{n,2}|^{2} Ctn4n2{kxk2(xkwk|ck|21)2I{λkαγkν}E|i,p=1,ipn1𝒰i,kDi,k𝒰p,kDp,k¯|2\displaystyle\leq\frac{C}{t_{n}^{4}n^{2}}\Bigg{\{}\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\text{E}\Bigg{|}\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\mathscr{U}_{i,k}D_{i,k}\overline{\mathscr{U}_{p,k}D_{p,k}}\Bigg{|}^{2}
+k,l,|k||l|xk(xkwk|ck|21)I{λkαγkν}xl(xlwl|cl|21)I{λlαγlν}\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\Bigg{\{}}+\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}x_{k}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}x_{l}\left(\frac{x_{l}w_{l}}{|c_{l}|^{2}}-1\right)I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}
E[(i,p=1,ipn1𝒰i,kDi,k𝒰p,kDp,k¯)(i,p=1,ipn1𝒰i,lDi,l¯𝒰p,lDp,l)]}.\displaystyle\phantom{=}\phantom{\frac{C}{t_{n}^{4}n^{2}}\Bigg{\{}+\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}}\text{E}\Bigg{[}\Bigg{(}\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\mathscr{U}_{i,k}D_{i,k}\overline{\mathscr{U}_{p,k}D_{p,k}}\Bigg{)}\Bigg{(}\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\overline{\mathscr{U}_{i,l}D_{i,l}}\mathscr{U}_{p,l}D_{p,l}\Bigg{)}\Bigg{]}\Bigg{\}}.

Since 𝒰i,kDi,k\mathscr{U}_{i,k}D_{i,k} and 𝒰p,kDp,k\mathscr{U}_{p,k}D_{p,k} are stochastically independent for pip\neq i, only the quadratic terms for kk\in\mathbb{Z} are relevant

i,p=1,ipn1E|𝒰i,kDi,k𝒰p,kDp,k¯|2\displaystyle\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}\Big{|}\mathscr{U}_{i,k}D_{i,k}\overline{\mathscr{U}_{p,k}D_{p,k}}\Big{|}^{2} =i,p=1,ipn1E|𝒰i,kDi,k|2E|𝒰p,kDp,k|2\displaystyle=\sum_{\begin{subarray}{c}i,p=1,\\ i\neq p\end{subarray}}^{n-1}\text{E}|\mathscr{U}_{i,k}D_{i,k}|^{2}\text{E}|\mathscr{U}_{p,k}D_{p,k}|^{2}
=(n1)(n2)(E|𝒰1,k|2E|D1,k|2)2\displaystyle=(n-1)(n-2)\left(\text{E}|\mathscr{U}_{1,k}|^{2}\text{E}|D_{1,k}|^{2}\right)^{2}
Cn2(wk|ck|21xk)2.\displaystyle\leq Cn^{2}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)^{2}.

Under the assumptions of Theorem 2.1, this leads to

E|𝔙n,2|2\displaystyle\text{E}|\mathfrak{V}_{n,2}|^{2} Ctn4k(xkwk|ck|21)4I{λkαγkν}=o(1),\displaystyle\leq\frac{C}{t_{n}^{4}}\sum_{k\in\mathbb{Z}}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}=o(1),

and therefore

𝔙n,2=oP(1).\mathfrak{V}_{n,2}=o_{P}\left(1\right).

E.3 Details for the proof of Proposition C.2

It is shown in [1] and [10] that the conditional Lindeberg condition follows from the unconditional Ljapunov condition. We will show in the following, that

j=2nE|Yn,j|4=o(1)\sum_{j=2}^{n}\text{E}|Y_{n,j}|^{4}=o(1)

and decompose

j=2nE|Yn,j|4=Ln,1+Ln,2+Ln,3+Ln,4,\sum_{j=2}^{n}\text{E}|Y_{n,j}|^{4}=L_{n,1}+L_{n,2}+L_{n,3}+L_{n,4},

where

Ln,1\displaystyle L_{n,1} =1tn4n4j=2nkE|𝒰j,kDj,kZn,j,k|4,\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}\left|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\right|^{4},
Ln,2\displaystyle L_{n,2} =1tn4n4j=2nk,l,|k||l|E|𝒰j,kDj,kZn,j,k𝒰j,lDj,lZn,j,l¯|2,\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ |k|\neq|l|\end{subarray}}\text{E}\left|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}}\right|^{2},
Ln,3\displaystyle L_{n,3} =1tn4n4j=2nk,l,q,|k|,|l||q|,|k||l|E[|𝒰j,kDj,kZn,j,k|2𝒰j,lDj,lZn,j,l𝒰j,qDj,qZn,j,q¯],\displaystyle{=}{\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}}\sum_{\begin{subarray}{c}k,l,q\in\mathbb{Z},\\ |k|,|l|\neq|q|,|k|\neq|l|\end{subarray}}\text{E}\Big{[}|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}|^{2}\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}\overline{\mathscr{U}_{j,q}D_{j,q}Z_{n,j,q}}\Big{]},
Ln,4\displaystyle L_{n,4} =1tn4n4j=2nk,l,p,q,|k|,|l|,|p||q|,|k|,|l||p|,|k||l|E[𝒰j,kDj,kZn,j,k𝒰j,lDj,lZn,j,l¯𝒰j,pDj,pZn,j,p𝒰j,qDj,qZn,j,q¯].\displaystyle{=}{\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}}\sum_{\begin{subarray}{c}k,l,p,q\in\mathbb{Z},\\ |k|,|l|,|p|\neq|q|,\\ |k|,|l|\neq|p|,|k|\neq|l|\end{subarray}}\text{E}\Big{[}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}}\mathscr{U}_{j,p}D_{j,p}Z_{n,j,p}\overline{\mathscr{U}_{j,q}D_{j,q}Z_{n,j,q}}\Big{]}.

For Ln,1L_{n,1} we use, that for all k,n,j{1,,n}k\in\mathbb{Z},n\in\mathbb{N},j\in\{1,\ldots,n\}, Zn,j,kZ_{n,j,k} are stochastically independent of 𝒰j,kDj,k\mathscr{U}_{j,k}D_{j,k} and 𝒰j,k\mathscr{U}_{j,k} are uncorrelated with Dj,kD_{j,k}. Furthermore, the fourth absolute moment of 𝒰j,k\mathscr{U}_{j,k} is due to the centredness of UU and Lemma B.1 uniformly bounded. The fourth absolute moment of Dj,kD_{j,k} can be estimated using Assumption 3 and (X,W)η4(X,W)\in\mathcal{F}_{\eta}^{4} as

E|Dj,k|4C(E|W,ϕk|4|ck|4+E|X,ϕk|4xk4)Cη(wk2|ck|4+1xk2)Cηα2.\displaystyle\text{E}|D_{j,k}|^{4}\leq C\left(\frac{\text{E}|\langle W,\phi_{k}\rangle|^{4}}{|c_{k}|^{4}}+\frac{\text{E}|\langle X,\phi_{k}\rangle|^{4}}{x_{k}^{4}}\right)\leq C\eta\left(\frac{w_{k}^{2}}{|c_{k}|^{4}}+\frac{1}{x_{k}^{2}}\right)\leq\frac{C\eta}{\alpha^{2}}. (E.6)

Again using similar arguments, we obtain

E|𝒰i1,kDi1,k|2=E|𝒰i1,k|2E|Di1,k|2\displaystyle\text{E}\left|\mathscr{U}_{i_{1},k}D_{i_{1},k}\right|^{2}=\text{E}|\mathscr{U}_{i_{1},k}|^{2}\text{E}|D_{i_{1},k}|^{2} C(wk|ck|21xk).\displaystyle\leq C\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right). (E.7)

This results in

E|i=1j1𝒰i,kDi,kxkI{λkαγkν}|4\displaystyle\text{E}\Big{|}\sum_{i=1}^{j-1}\mathscr{U}_{i,k}D_{i,k}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Big{|}^{4}
=xk4I{λkαγkν}{i=1j1E|𝒰i,k|4E|Di,k|4+21i1<i2j1E|𝒰i1,kDi1,k|2E|𝒰i2,kDi2,k|2}\displaystyle=x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Bigg{\{}\sum_{i=1}^{j-1}\text{E}|\mathscr{U}_{i,k}|^{4}\text{E}|D_{i,k}|^{4}+2\sum_{1\leq i_{1}<i_{2}\leq j-1}\text{E}|\mathscr{U}_{i_{1},k}D_{i_{1},k}|^{2}\text{E}|\mathscr{U}_{i_{2},k}D_{i_{2},k}|^{2}\Bigg{\}}
Cnα2xk4I{λkαγkν}+Cn2xk2(xkwk|ck|21)2I{λkαγkν}.\displaystyle\leq\frac{Cn}{\alpha^{2}}x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}+Cn^{2}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}. (E.8)

Putting these results together, for Ln,1L_{n,1}, we get

Ln,1\displaystyle L_{n,1} =1tn4n4j=2nkE|𝒰j,k|4E|Dj,k|4E|Zn,j,k|4\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}|\mathscr{U}_{j,k}|^{4}\text{E}|D_{j,k}|^{4}\text{E}|Z_{n,j,k}|^{4}
Ctn4n4α2j=2nkE|i=1j1𝒰i,kDi,kxkI{λkαγkν}|4\displaystyle\leq\frac{C}{t_{n}^{4}n^{4}\alpha^{2}}\sum_{j=2}^{n}\sum_{k\in\mathbb{Z}}\text{E}\Big{|}\sum_{i=1}^{j-1}\mathscr{U}_{i,k}D_{i,k}x_{k}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\Big{|}^{4}
Ctn4nα2kxk2I{λkαγkν}(1nα2xk2+(xkwk|ck|21)2)\displaystyle\leq\frac{C}{t_{n}^{4}n\alpha^{2}}\sum_{k\in\mathbb{Z}}x_{k}^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\left(\frac{1}{n\alpha^{2}}x_{k}^{2}+\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}\right)
=o(1)1tn4(kxk4I{λkαγkν}+kxk2(xkwk|ck|21)2I{λkαγkν}),\displaystyle=o(1)\frac{1}{t_{n}^{4}}\left(\sum_{k\in\mathbb{Z}}x_{k}^{4}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}+\sum_{k\in\mathbb{Z}}x_{k}^{2}\left(\frac{x_{k}w_{k}}{|c_{k}|^{2}}-1\right)^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right),

where the first series converges due to Lemma B.1 and the second series either also converges or, if not, can be bounded by Ctn2Ct_{n}^{2}.

Considering Ln,4L_{n,4}, we use the stochastic independence of Zn,j,kZ_{n,j,k} and 𝒰j,lDj,l\mathscr{U}_{j,l}D_{j,l} for all k,lk,l\in\mathbb{Z}, which results in

E[𝒰j,kDj,kZn,j,k𝒰j,l¯Dj,l¯Zn,j,l¯𝒰j,pDj,pZn,j,p𝒰j,q¯Dj,q¯Zn,j,q¯]\displaystyle\text{E}\big{[}\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}\overline{\mathscr{U}_{j,l}}\overline{D_{j,l}}\overline{Z_{n,j,l}}\mathscr{U}_{j,p}D_{j,p}Z_{n,j,p}\overline{\mathscr{U}_{j,q}}\overline{D_{j,q}}\overline{Z_{n,j,q}}\big{]}
=E[𝒰j,kDj,k𝒰j,l¯Dj,l¯𝒰j,pDj,p𝒰j,q¯Dj,q¯]E[Zn,j,kZn,j,l¯Zn,j,pZn,j,q¯].\displaystyle=\text{E}\big{[}\mathscr{U}_{j,k}D_{j,k}\overline{\mathscr{U}_{j,l}}\overline{D_{j,l}}\mathscr{U}_{j,p}D_{j,p}\overline{\mathscr{U}_{j,q}}\overline{D_{j,q}}\big{]}\text{E}\big{[}Z_{n,j,k}\overline{Z_{n,j,l}}Z_{n,j,p}\overline{Z_{n,j,q}}\big{]}.

The rest of the argumentation is just calculating the expectations using that for all j{1,,n}j\in\{1,\ldots,n\}, Dj,k,Dj,l,Dj,pD_{j,k},D_{j,l},D_{j,p} and Dj,qD_{j,q} are uncorrelated with Sj,mS_{j,m} for all m\{m:|m|=|k|,|l|,|p|,|q|}m\in\mathbb{Z}\backslash\{m\in\mathbb{Z}:|m|=|k|,|l|,|p|,|q|\} and stochastically independent of UjU_{j}. Finally,

E[Sj,kDj,k]\displaystyle\text{E}[S_{j,k}D_{j,k}] =β,ϕkE[ϕk,Xj(Wj,ϕkckXj,ϕkxk)]=β,ϕk(ckckxkxk)=0\displaystyle=\langle\beta,\phi_{k}\rangle\text{E}\left[\langle\phi_{k},X_{j}\rangle\left(\frac{\langle W_{j},\phi_{k}\rangle}{c_{k}}-\frac{\langle X_{j},\phi_{k}\rangle}{x_{k}}\right)\right]=\langle\beta,\phi_{k}\rangle\left(\frac{c_{k}}{c_{k}}-\frac{x_{k}}{x_{k}}\right)=0 (E.9)

and, in the same way, E[Sj,k¯Dj,k]=E[Sj,kDj,k¯]=0\text{E}[\overline{S_{j,k}}D_{j,k}]=\text{E}[S_{j,k}\overline{D_{j,k}}]=0, which gives Ln,4=0L_{n,4}=0.

With similar arguments as above, we get

Ln,2\displaystyle L_{n,2} =1tn4n4j=2nk,l,klE|𝒰j,kDj,k𝒰j,l¯Dj,l¯|2E|Zn,j,kZn,j,l¯|2,\displaystyle=\frac{1}{t_{n}^{4}n^{4}}\sum_{j=2}^{n}\sum_{\begin{subarray}{c}k,l\in\mathbb{Z},\\ k\neq l\end{subarray}}\text{E}|\mathscr{U}_{j,k}D_{j,k}\overline{\mathscr{U}_{j,l}}\overline{D_{j,l}}|^{2}\text{E}|Z_{n,j,k}\overline{Z_{n,j,l}}|^{2},

which can be further bounded by using

E|Sj,k¯Dj,k|2\displaystyle\text{E}\big{|}\overline{S_{j,k}}D_{j,k}\big{|}^{2} |β,ϕk|2E|X,ϕk|4E|Dj,k|4\displaystyle\leq|\langle\beta,\phi_{k}\rangle|^{2}\sqrt{\text{E}\big{|}\langle X,\phi_{k}\rangle|^{4}\text{E}\big{|}D_{j,k}\big{|}^{4}}
η|β,ϕk|2xk(E|W,ϕk|4|ck|4+E|X,ϕk|4xk4)1/2\displaystyle\leq\sqrt{\eta}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}\left(\frac{\text{E}|\langle W,\phi_{k}\rangle|^{4}}{|c_{k}|^{4}}+\frac{\text{E}|\langle X,\phi_{k}\rangle|^{4}}{x_{k}^{4}}\right)^{1/2}
C|β,ϕk|2xk(wk2|ck|4+1xk2)1/2C|β,ϕk|2xkα\displaystyle\leq C|\langle\beta,\phi_{k}\rangle|^{2}x_{k}\left(\frac{w_{k}^{2}}{|c_{k}|^{4}}+\frac{1}{x_{k}^{2}}\right)^{1/2}\leq\frac{C|\langle\beta,\phi_{k}\rangle|^{2}x_{k}}{\alpha}

and

E|Zn,j,kZn,j,l¯|2\displaystyle\text{E}|Z_{n,j,k}\overline{Z_{n,j,l}}|^{2}
Cxk2xl2I{λkαγkν}I{λlαγlν}(n1)\displaystyle\leq Cx_{k}^{2}x_{l}^{2}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}(n-1)
{[Cα2|β,ϕk|2xk|β,ϕl|2xl+C|β,ϕl|2xlα(wk|ck|21xk)\displaystyle\phantom{=}\Bigg{\{}\Bigg{[}\frac{C}{\alpha^{2}}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}|\langle\beta,\phi_{l}\rangle|^{2}x_{l}+\frac{C|\langle\beta,\phi_{l}\rangle|^{2}x_{l}}{\alpha}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)
+C|β,ϕk|2xkα(wl|cl|21xl)+(wk|ck|21xk)(wl|cl|21xl)]\displaystyle\phantom{=}\phantom{C\big{\{}}+\frac{C|\langle\beta,\phi_{k}\rangle|^{2}x_{k}}{\alpha}\left(\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\right)+\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)\left(\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\right)\Bigg{]}
+(n2)(wk|ck|21xk)(wl|cl|21xl)}.\displaystyle\phantom{=}\phantom{\Big{\{}}+(n-2)\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)\left(\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\right)\Bigg{\}}.

This results in

Ln,2\displaystyle L_{n,2} Ctn4(nα2)2(k|β,ϕk|4xk4)2+Ctn2n2α2l|β,ϕl|4xl4+Cn2\displaystyle\leq\frac{C}{t_{n}^{4}(n\alpha^{2})^{2}}\left(\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{4}x_{k}^{4}\right)^{2}+\frac{C}{t_{n}^{2}n^{2}\alpha^{2}}\sum_{l\in\mathbb{Z}}|\langle\beta,\phi_{l}\rangle|^{4}x_{l}^{4}+\frac{C}{n^{2}}
+Ctn4nα2(k|β,ϕk|2xk2(wkxk|ck|21)I{λkαγkν})2\displaystyle\phantom{=}+\frac{C}{t_{n}^{4}n\alpha^{2}}\left(\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{2}x_{k}^{2}\left(\frac{w_{k}x_{k}}{|c_{k}|^{2}}-1\right)I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}\right)^{2}
+Ctn2nαl|β,ϕl|2xl2(wlxl|cl|21)I{λlαγlν}+Cn\displaystyle\phantom{=}+\frac{C}{t_{n}^{2}n\alpha}\sum_{l\in\mathbb{Z}}|\langle\beta,\phi_{l}\rangle|^{2}x_{l}^{2}\left(\frac{w_{l}x_{l}}{|c_{l}|^{2}}-1\right)I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}+\frac{C}{n}
o(1tn4+1tn2n)+𝒪(1n+1n2)+Ctn2nα2k|β,ϕk|4xk4+Ctnnαk|β,ϕk|4xk4\displaystyle\leq o\left(\frac{1}{t_{n}^{4}}+\frac{1}{t_{n}^{2}n}\right)+\mathcal{O}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)+\frac{C}{t_{n}^{2}n\alpha^{2}}\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{4}x_{k}^{4}+\frac{C}{t_{n}n\alpha}\sqrt{\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{4}x_{k}^{4}}
=o(1tn4+1tn2n+1tn2+1tnn)+𝒪(1n+1n2)\displaystyle=o\left(\frac{1}{t_{n}^{4}}+\frac{1}{t_{n}^{2}n}+\frac{1}{t_{n}^{2}}+\frac{1}{t_{n}\sqrt{n}}\right)+\mathcal{O}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)
=o(1),\displaystyle=o(1),

using the Hölder inequality and Lemma B.1.

For the summands in Ln,3L_{n,3}, we get

E[|𝒰j,kDj,kZn,j,k|2𝒰j,lDj,lZn,j,l𝒰j,qDj,qZn,j,q¯]\displaystyle\text{E}\big{[}|\mathscr{U}_{j,k}D_{j,k}Z_{n,j,k}|^{2}\mathscr{U}_{j,l}D_{j,l}Z_{n,j,l}\overline{\mathscr{U}_{j,q}D_{j,q}Z_{n,j,q}}\big{]}
=E[|𝒰j,kDj,k|2𝒰j,lDj,l𝒰j,qDj,q¯]E[|Zn,j,k|2Zn,j,lZn,j,q¯].\displaystyle=\text{E}\big{[}|\mathscr{U}_{j,k}D_{j,k}|^{2}\mathscr{U}_{j,l}D_{j,l}\overline{\mathscr{U}_{j,q}D_{j,q}}\big{]}\text{E}\big{[}|Z_{n,j,k}|^{2}Z_{n,j,l}\overline{Z_{n,j,q}}\big{]}.

The first expectation is

E[|𝒰j,kDj,k|2𝒰j,lDj,l𝒰j,qDj,q¯]\displaystyle\text{E}\big{[}|\mathscr{U}_{j,k}D_{j,k}|^{2}\mathscr{U}_{j,l}D_{j,l}\overline{\mathscr{U}_{j,q}D_{j,q}}\big{]}
=(wk|ck|21xk)|β,ϕl|2|β,ϕq|2\displaystyle=\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)|\langle\beta,\phi_{l}\rangle|^{2}|\langle\beta,\phi_{q}\rangle|^{2}
E[|Xj,ϕl|2(Wj,ϕlclXj,ϕlxl)]E[|Xj,ϕq|2(ϕq,Wjcq¯ϕq,Xjxq)],\displaystyle\phantom{=}\phantom{\Bigg{(}}\text{E}\left[|\langle X_{j},\phi_{l}\rangle|^{2}\left(\frac{\langle W_{j},\phi_{l}\rangle}{c_{l}}-\frac{\langle X_{j},\phi_{l}\rangle}{x_{l}}\right)\right]\text{E}\left[|\langle X_{j},\phi_{q}\rangle|^{2}\left(\frac{\langle\phi_{q},W_{j}\rangle}{\overline{c_{q}}}-\frac{\langle\phi_{q},X_{j}\rangle}{x_{q}}\right)\right],

while

E[|Zn,j,k|2Zn,j,lZn,j,q¯]\displaystyle\text{E}\big{[}|Z_{n,j,k}|^{2}Z_{n,j,l}\overline{Z_{n,j,q}}\big{]}
=xk2xlxqI{λkαγkν}I{λlαγlν}I{λqαγqν}i=1j1E[|𝒰i,kDi,k|2𝒰i,lDi,l𝒰i,q¯Di,q¯].\displaystyle=x_{k}^{2}x_{l}x_{q}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}I\{\lambda_{q}\geq\alpha\gamma_{q}^{\nu}\}\sum_{i=1}^{j-1}\text{E}\big{[}|\mathscr{U}_{i,k}D_{i,k}|^{2}\mathscr{U}_{i,l}D_{i,l}\overline{\mathscr{U}_{i,q}}\overline{D_{i,q}}\big{]}.

Altogether, we have

Ln,31tn4n2k,l,q,|k|,|l||q|,|k||l|xk2xlxqI{λkαγkν}I{λlαγlν}I{λqαγqν}\displaystyle L_{n,3}\leq\frac{1}{t_{n}^{4}n^{2}}\sum_{\begin{subarray}{c}k,l,q\in\mathbb{Z},\\ |k|,|l|\neq|q|,|k|\neq|l|\end{subarray}}x_{k}^{2}x_{l}x_{q}I\{\lambda_{k}\geq\alpha\gamma_{k}^{\nu}\}I\{\lambda_{l}\geq\alpha\gamma_{l}^{\nu}\}I\{\lambda_{q}\geq\alpha\gamma_{q}^{\nu}\}
(wk|ck|21xk)2|β,ϕl|4|β,ϕq|4\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{4}n^{4}}}\left(\frac{w_{k}}{|c_{k}|^{2}}-\frac{1}{x_{k}}\right)^{2}|\langle\beta,\phi_{l}\rangle|^{4}|\langle\beta,\phi_{q}\rangle|^{4}
(E[|X,ϕl|2(W,ϕlclX,ϕlxl)]E[|X,ϕq|2(ϕq,Wcq¯ϕq,Xxq)])2.\displaystyle\phantom{=}\phantom{\frac{1}{t_{n}^{4}n^{4}}}\left(\text{E}\left[|\langle X,\phi_{l}\rangle|^{2}\left(\frac{\langle W,\phi_{l}\rangle}{c_{l}}-\frac{\langle X,\phi_{l}\rangle}{x_{l}}\right)\right]\text{E}\left[|\langle X,\phi_{q}\rangle|^{2}\left(\frac{\langle\phi_{q},W\rangle}{\overline{c_{q}}}-\frac{\langle\phi_{q},X\rangle}{x_{q}}\right)\right]\right)^{2}.

The series can be bounded by tn2t_{n}^{2}. Using the Hölder inequality for l𝒦nl\in\mathcal{K}_{n}, we have

(E[|X,ϕl|2(ϕl,Wcl¯ϕl,Xxl)])2E|X,ϕl|4E|D1,l|2ηxl2(wl|cl|21xl)Cα2xl2.\displaystyle\left(\text{E}\Big{[}|\langle X,\phi_{l}\rangle|^{2}\Big{(}\frac{\langle\phi_{l},W\rangle}{\overline{c_{l}}}-\frac{\langle\phi_{l},X\rangle}{x_{l}}\Big{)}\Big{]}\right)^{2}\leq\text{E}|\langle X,\phi_{l}\rangle|^{4}\text{E}\Big{|}D_{1,l}|^{2}\leq\eta x_{l}^{2}\left(\frac{w_{l}}{|c_{l}|^{2}}-\frac{1}{x_{l}}\right)\leq\frac{C}{\alpha^{2}}x_{l}^{2}.

Finally, relying again on Assumption 3 and Lemma B.1, also Ln,3L_{n,3} converges to 0 due to

Ln,3Ctn2n2(k|β,ϕk|4xkxkλkλk)1/2Ctn2n2α2k|β,ϕk|4xk(xkλk)=o(1tn2n).\displaystyle L_{n,3}\leq\frac{C}{t_{n}^{2}n^{2}}\left(\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{4}x_{k}\frac{x_{k}-\lambda_{k}}{\lambda_{k}}\right)^{1/2}\leq\frac{C}{t_{n}^{2}n^{2}\alpha^{2}}\sum_{k\in\mathbb{Z}}|\langle\beta,\phi_{k}\rangle|^{4}x_{k}(x_{k}-\lambda_{k})=o\left(\frac{1}{t_{n}^{2}n}\right).

Acknowledgments

The authors would like to thank Jan Johannes for helpfull discussions on the different estimation techniques in the functional linear regression model with and without endogeneity.

References

  • [Alj et al. (2014)] Alj, Abdelkamel, Azrak, Rajae and Mélard, Guy. On Conditions in Central Limit Theorems for Martingale Difference Arrays Long Version. ECORE Discussion Paper (2014/12).
  • [Cardot et al. (2006)] Cardot, Hervé, Mas, André and Sarda, Pascal. CLT in functional linear regression models. Probability Theory and Related Fields (2007) 138:325–361.
  • [Cuesta-Albertos et al. (2019)] Cuesta-Albertos, Juan A., García-Portugués, Eduardo, Febrero-Bande, Manuel and González-Manteiga, Wenceslao. Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. The Annals of Statistics (2019) 47(1):439–467.
  • [DasGupta (2008)] DasGupta, Anirban. Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. Springer, New York 2008.
  • [Dorn (2021)] Dorn, Manuela. Tests auf Exogenität im funktionalen linearen Regressionsmodell unter schwacher Stationarität. Dissertation. University of Bayreuth 2021.
  • [Florens et al. (2011)] Florens, Jean-Pierre, Johannes, Jan and Van Bellegem, Sébastien. Identification and estimation by penalization in nonparametric instrumental Regression. Econometric Theory (2011) 27:472–496.
  • [Florens and Van Bellegem (2014)] Florens, Jean-Pierre and Van Bellegem, Sébastien. Instrumental variable estimation in functional linear models. ECORE Discussion Paper (2014/56).
  • [García-Portugués et al. (2014)] García-Portugués, Eduardo, González-Manteiga, Wenceslao and Febrero-Bande, Manuel. A goodness-of-fit test for the functional linear model with scalar response. arXiv:1205.6167v6.
  • [García-Portugués et al. (2020)] García-Portugués, Eduardo, Álvarez-Liébana, Javier, Álvarez-Pérez, Gonzalo and González-Manteiga, Wenceslao. Goodness-of-fit tests for functional linear models based on integrated projections. arXiv:2008.09885v1.
  • [Gänssler et al. (1978)] Gänssler, Peter, Strobel, J. and Stute, Winfried. On central limit theorems for martingale triangular arrays. Acta Mathematica Academiae Scientiarum Hungaricae (1978) 31(3–4):205–216.
  • [Hall und Heyde (1980)] Hall, Peter and Heyde, Christopher C. Martingale Limit Theory and Its Application. Probability and mathematical statistics. Academic Press, New York 1980.
  • [Hausman (1978)] Hausman, Jerry A. Specification Tests in Econometrics, Econometrica (1978) 46(6):1251–1271.
  • [Johannes (2013)] Johannes, Jan. Nonparametric estimation in functional linear models with second order stationary regressors. arXiv:0901.4266v1.
  • [Johannes (2016)] Johannes, Jan. Functional linear instrumental regression under second order stationarity. arXiv:1603.01649v1.
  • [Mammen (1993)] Mammen, Enno. Bootstrap and wild bootstrap for high dimensional linear models. The Annals of Statistics (1993) 21(1):255–285.
  • [Müller and Stadtmüller (2005)] Müller, Hans-Georg and Stadtmüller, Ulrich. Generalized functional linear models. The Annals of Statistics (2005) 33(2):774–805.
  • [Neubauer (1988a)] Neubauer, Andreas (1988). An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error. Appl. Numer. Math. 4, 507–519
  • [Ruymgaart et al. (2000)] Ruymgaart, Frits, Wang, Jing, Wei, Shih-Hsuan and Yu, Li. Some asymptotic theory for functional regression and classification. Texas Tech University, Lubbock 2000.
  • [Tsybakov (2004)] Tsybakov, Alexandre B. Introduction à l’estimation non-paramétrique., Math. Appl. (Berl.) 41, x + 175
  • [Serfling (1980)] Serfling, Robert J. Approximation theorems of mathematical statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley and Sons, New York u. a. 1980.
  • [Wong (1996)] Wong, Ka-fu. Bootstrapping Hausman’s exogeneity test. Economics Letters (1996) 53:139–143.
  • [Wu (1973)] Wu, De-Min. Alternative tests of independence between stochastic regressors and disturbances. Econometrica (1973) 41(4):733–750.