This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Testing backreaction effects with type Ia supernova data and observational Hubble parameter data

Yan-Hong Yao [email protected]    Xin-He Meng [email protected] Schcool of Physics, Nankai University, Tianjin 300071, China
Abstract

The backreaction term 𝒬𝒟{\cal Q}_{\cal D} and the averaged spatial Ricci scalar 𝒟\left\langle{\cal R}\right\rangle_{\cal D} in the spatially averaged inhomogeneous Universe can be used to combine into effective perfect fluid energy density ϱeff𝒟\varrho_{\rm eff}^{{\cal D}} and pressure peff𝒟p_{\rm eff}^{{\cal D}} that can be regarded as new effective sources for the backreaction effects. In order to model the realistic evolution of backreaction, we adopt the Chevallier-Polarski-Linder(CPL) parameterizations of the equation of state(EoS) of the effective perfect fluid. To deal with observations in the backreaction context, in this paper, we employ two metrics to describe the the late time Universe, one of them is the standard Friedmann-Lemaître-Robertson-Walker(FLRW) metric, and the other is a template metric with an evolving curvature parameter introduced by Larena et. al. in larena2009testing . We also fit the CPL backreaction model using type Ia supernova(SN Ia) data and observational Hubble parameter data(OHD) with these two metrics, and find out that parameter tensions between two different data sets are larger when the backreaction model is equipped with the template metric, therefore we conclude that the prescription of the geometrical instantaneous spatially-constant curvature κ𝒟\kappa_{{\cal D}} needs to be modified.

Keywords: dark energy theory; supernova type Ia; observational Hubble parameter

I Introduction

A large number of observations riess1998 ; perlmutter1999measurements ; spergel2003first ; spergel2007three ; dunkley2009five ; larson2011seven ; hinshaw2013nine , from low redshift to high redshift, suggest that the Universe is in a state of accelerated expansion, which implies that there exists a sector named as dark energy with negative pressure accounting for the invisible fuel that accelerates the expansion rate of the current universe. There are many scenarios have been proposed to account for these observations, the simplest one is the cosmological constant scenario, in which cosmological constant or, equivalently, vacuum energy plays the role of dark energy. However, because of the huge discrepancy between the theoretical expected vacuum energy density and the observed one, other alternative scenarios have been proposed, including scalar field models such as quintessenceCaldwell1998Cosmological , phantomCaldwell1999A , dilatonicPiazza2004Dilatonic , tachyonPadmanabhan2002Accelerated and quintomBo2006Oscillating etc. and modified gravity models such as braneworlds maartens2010brane , scalar-tensor gravity esposito2001scalar , higher-order gravitational theories capozziello2005reconciling ; das2006curvature . Recently, a third alternative has been considered to explain the dark energy phenomenon as backreaction effect(a Large scale effect caused by small scale inhomogeneities of the universe)rasanen2004dark ; kolb2006cosmic .

In order to consider backreaction effect, it is necessary to answer a longstanding question that how to average a general inhomogeneous spacetime. To date the macroscopic gravity(MG) approach zalaletdinov1992averaging ; zalaletdinov1993towards ; mars1997space is probably the most well known attempt at averaging in space-time. Although it provides a prescription for the correlation functions which emerge in an averaging of the Einstein’s field equations, so far it required a number of assumptions about the correlation functions which make the theory less convictive. Therefore, many researchers adopt another averaged approach put forward by Buchert buchert2000average ; buchert2001average , in despite of its foliation dependent nature, such approach is quite simple and hence becomes the most well studied averaged approach. Since the averaged field equations in such approach do not form a closed set, one needs to make some assumptions about the backreaction term appeared in the averaged equations. In buchert2006correspondence , by taking the assumption that the backreaction term 𝒬𝒟{\cal Q}_{\cal D} and the averaged spatial Ricci scalar 𝒟\left\langle{\cal R}\right\rangle_{\cal D} obey the scaling laws of the volume scale factor a𝒟a_{\cal D}, Buchert proposed a simple backreaction model(we will refer it as scaling backreaction model in the follow). In order to test the ability of such backreaction model to correctly describe observations of the large scale properties of the Universe, Larena et. al. in larena2009testing introduced a template metric with an evolving curvature parameter and confronted the scaling backreaction model with such template metric against supernova data and the position of the Cosmic Microwave Backround (CMB) peaks. Because of doubting the validity of the prescription for such evolving curvature parameter, Cao et. al.cao2018testing fitted the scaling backreaction model using OHD with the FLRW metric and the template metric, and found out that, for the template metric case, their fitting results is in contrary with the constraint results of Larena et al.larena2009testing , and for the FLRW metric case, two constraint results are basically consistent, which, to a certain extent, supporting their guess that the prescription for the geometrical instantaneous spatially-constant curvature κ𝒟\kappa_{{\cal D}} should be modified. However, as was pointed out by Larena et. al. in larena2009testing , the pure scaling ansatz for 𝒬𝒟{\cal Q}_{\cal D} and 𝒟\left\langle{\cal R}\right\rangle_{\cal D} is not what we expected in a realistic evolution of backreaction, therefore the conclusion that the prescription for κ𝒟\kappa_{{\cal D}} needs to be modified was drawn too early. In order to prove Cao et. al.’s conjecture in a more persuasive way, we describe the backreaction effects with an effective perfect fluid, whose EoS was assumed as weff𝒟=w0𝒟+wa𝒟(1a𝒟)w_{eff}^{{\cal D}}=w_{0}^{{\cal D}}+w_{a}^{{\cal D}}(1-a_{\cal D}) which having one more parameter than that of the scaling backreaction model. Then we fit such CPL backreaction model using SN Ia data and OHD with the FLRW metric and the template metric, and the constraint results agree with Cao et. al.’s conjecture.

The paper is organized as follows. In Section II, the spatial averaged approach of Buchert is demonstrated with presentation of the averaged equations for the volume scale factor a𝒟a_{\cal D}, and under this theoretical framework, the CPL backreaction model is introduced. In Section III, we introduce the template metric proposed by Larena et. al., which is a necessary tool to test the theoretical predictions with observations, although we doubt the validity of the prescription for κ𝒟\kappa_{{\cal D}}. We also show the way to compute observables with such template metric in this section. In Section IV, we apply a likelihood analysis of the CPL backreaction model by confronting it using latest SN Ia data and OHD with the FLRW metric and the template metric. After analysis of the results in Section IV, we summarize our results in the last section.

II The CPL backreaction model

In buchert2000average , Buchert considers a universe filled with irrotational dust with energy density ϱ\varrho. By foliating space-time with the use of Arnowitt-Deser-Misner(ADM) procedure and defining an averaging operator that acts on any spatial scalar Ψ\Psi function as

Ψ𝒟:=1V𝒟𝒟ΨJd3X,\left\langle\Psi\right\rangle_{\cal D}:=\frac{1}{V_{{\cal D}}}\int_{{\cal D}}\Psi Jd^{3}X, (1)

where V𝒟:=𝒟Jd3XV_{{\cal D}}:=\int_{{\cal D}}Jd^{3}X is the domain’s volume, Buchert obtains two averaged equations here we need, the averaged Raychaudhuri equation

3a¨𝒟a𝒟+4πGϱ𝒟=𝒬𝒟,3\frac{{\ddot{a}}_{\cal D}}{a_{\cal D}}+4\pi G\left\langle\varrho\right\rangle_{\cal D}={{\cal Q}}_{\cal D}, (2)

and the averaged Hamiltonian constraint

3(a˙𝒟a𝒟)28πGϱ𝒟=𝒟+𝒬𝒟2.3\left(\frac{{\dot{a}}_{\cal D}}{a_{\cal D}}\right)^{2}-8\pi G\left\langle\varrho\right\rangle_{\cal D}=-\frac{\left\langle{\cal R}\right\rangle_{\cal D}+{{\cal Q}}_{\cal D}}{2}. (3)

In these two equations, a𝒟(t)=(V𝒟(t)V𝒟𝟎)1/3a_{\cal D}(t)=\left(\frac{V_{\cal D}(t)}{V_{{{\cal D}_{\rm\bf 0}}}}\right)^{1/3} is the volume scale factor, where V𝒟𝟎=|𝒟𝟎|V_{{{\cal D}_{\rm\bf 0}}}=|{{{\cal D}_{\rm\bf 0}}}| denotes the present value of the volume, and 𝒬𝒟{\cal Q}_{\cal D}, 𝒟\left\langle{\cal R}\right\rangle_{\cal D} represent the backreaction term and the averaged spatial Ricci scalar respectively, which are related by the following integrability condition

1a𝒟6t(𝒬𝒟a𝒟6)+1a𝒟2t(𝒟a𝒟2)=0.\frac{1}{a_{\cal D}^{6}}\partial_{t}\left(\,{{\cal Q}}_{\cal D}\,a_{\cal D}^{6}\,\right)\;+\;\frac{1}{a_{\cal D}^{2}}\;\partial_{t}\left(\,\left\langle{\cal R}\right\rangle_{\cal D}a_{\cal D}^{2}\,\right)\,=0\;. (4)

Now we can define the effective prefect fluid by

ϱeff𝒟:\displaystyle\varrho_{\rm eff}^{{\cal D}}: =\displaystyle= 116πG(𝒬𝒟+𝒟),\displaystyle-\frac{1}{16\pi G}({{\cal Q}}_{\cal D}+\left\langle{\cal R}\right\rangle_{\cal D}), (5)
peff𝒟:\displaystyle p_{\rm eff}^{{\cal D}}: =\displaystyle= 116πG(𝒬𝒟𝒟3),\displaystyle-\frac{1}{16\pi G}({{\cal Q}}_{\cal D}-\frac{\left\langle{\cal R}\right\rangle_{\cal D}}{3}), (6)

the averaged Raychaudhuri equation and the averaged Hamiltonian constraint then can formally be recast into standard Friedmann equations for a total perfect fluid energy momentum tensor

3a¨𝒟a𝒟+4πG(ϱ𝒟+ϱeff𝒟+3peff𝒟)=0,3\frac{{\ddot{a}}_{\cal D}}{a_{\cal D}}+4\pi G(\left\langle\varrho\right\rangle_{\cal D}+\varrho_{\rm eff}^{{\cal D}}+3p_{\rm eff}^{{\cal D}})=0, (7)
3(a˙𝒟a𝒟)2=8πG(ϱ𝒟+ϱeff𝒟),3\left(\frac{{\dot{a}}_{\cal D}}{a_{\cal D}}\right)^{2}=8\pi G(\left\langle\varrho\right\rangle_{\cal D}+\varrho_{\rm eff}^{{\cal D}}), (8)

given the effective energy density and pressure, the effective EoS reads

weff𝒟:=peff𝒟ϱeff𝒟=𝒬𝒟𝒟3𝒬𝒟+𝒟.w_{\rm eff}^{{\cal D}}:=\frac{p_{\rm eff}^{{\cal D}}}{\varrho_{\rm eff}^{{\cal D}}}=\frac{{{\cal Q}}_{\cal D}-\frac{\left\langle{\cal R}\right\rangle_{\cal D}}{3}}{{{\cal Q}}_{\cal D}+\left\langle{\cal R}\right\rangle_{\cal D}}. (9)

One can then obtain a specific backreaction model with an extra ansatz about the form of weff𝒟w_{\rm eff}^{{\cal D}}, for example, for the scaling backreaction model, we have weff𝒟=n+33w_{\rm eff}^{{\cal D}}=-\frac{n+3}{3}, in which nn is the scaling index. In this paper, in order to model the realistic evolution of backreaction, we assume that the effective EoS follows the CPL form, i.e.

weff𝒟=w0𝒟+wa𝒟(1a𝒟),w_{\rm eff}^{{\cal D}}=w_{0}^{{\cal D}}+w_{a}^{{\cal D}}(1-a_{\cal D}), (10)

so the Eq. (8) can be rewrite as

H𝒟2=H𝒟𝟎2[Ωm𝒟𝟎a𝒟3+ΩX𝒟𝟎a𝒟3(1+w0𝒟+wa𝒟)e3wa𝒟(1a𝒟)],H_{{\cal D}}^{2}=H_{{{\cal D}_{\rm\bf 0}}}^{2}[\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}a_{{\cal D}}^{-3}+\Omega_{X}^{{{\cal D}_{\rm\bf 0}}}a_{{\cal D}}^{-3(1+w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}e^{-3w_{a}^{{\cal D}}(1-a_{{\cal D}})}], (11)

here H𝒟:=a˙𝒟/a𝒟H_{\cal D}:={\dot{a}}_{\cal D}/a_{\cal D} denotes the volume Hubble parameter and Ωm𝒟𝟎:=8πG3H𝒟𝟎2ϱ𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}:=\frac{8\pi G}{3H_{{{\cal D}_{\rm\bf 0}}}^{2}}\left\langle\varrho\right\rangle_{{\cal D}_{\rm\bf 0}}, ΩX𝒟𝟎:=8πG3H𝒟𝟎2ϱeff𝒟𝟎=1Ωm𝒟𝟎\Omega_{X}^{{{\cal D}_{\rm\bf 0}}}:=\frac{8\pi G}{3H_{{{\cal D}_{\rm\bf 0}}}^{2}}\varrho_{\rm eff}^{{{\cal D}_{\rm\bf 0}}}=1-\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}. Combine the above equations, we have the following formulas for the backreaction term and the averaged spatial Ricci scalar

𝒬𝒟=92(1Ωm𝒟𝟎)H𝒟𝟎2e3wa𝒟(1a𝒟)[(13+w0𝒟+wa𝒟)a𝒟3(1+w0𝒟+wa𝒟)wa𝒟a𝒟23(w0𝒟+wa𝒟)],{\cal Q}_{\cal D}=-\frac{9}{2}(1-\Omega_{m}^{{{\cal D}_{\rm\bf 0}}})H_{{{\cal D}_{\rm\bf 0}}}^{2}e^{-3w_{a}^{{\cal D}}(1-a_{{\cal D}})}[(\frac{1}{3}+w_{0}^{{\cal D}}+w_{a}^{{\cal D}})a_{{\cal D}}^{-3(1+w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}-w_{a}^{{\cal D}}a_{{\cal D}}^{-2-3(w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}], (12)
𝒟=92(1Ωm𝒟𝟎)H𝒟𝟎2e3wa𝒟(1a𝒟)[(1w0𝒟wa𝒟)a𝒟3(1+w0𝒟+wa𝒟)+wa𝒟a𝒟23(w0𝒟+wa𝒟)].\left\langle{\cal R}\right\rangle_{\cal D}=-\frac{9}{2}(1-\Omega_{m}^{{{\cal D}_{\rm\bf 0}}})H_{{{\cal D}_{\rm\bf 0}}}^{2}e^{-3w_{a}^{{\cal D}}(1-a_{{\cal D}})}[(1-w_{0}^{{\cal D}}-w_{a}^{{\cal D}})a_{{\cal D}}^{-3(1+w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}+w_{a}^{{\cal D}}a_{{\cal D}}^{-2-3(w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}]. (13)

III Effective geometry

III.1 The template metric

In order to test the ability of spatially averaged inhomogeneous cosmology to correctly describe observations of the large scale properties of the Universe, Larena et. al. in larena2009testing introduced a template metric as follows,

𝐠𝒟4=dt2+LH𝟎2a𝒟2γij𝒟dXidXj,{}^{4}{\bf g}^{\cal D}=-dt^{2}+L_{{H_{\rm\bf 0}}}^{2}\,a_{\cal D}^{2}\gamma^{\cal D}_{ij}\,dX^{i}\otimes dX^{j}\;\;, (14)

where LH𝟎=1/H𝒟𝟎L_{{H_{\rm\bf 0}}}=1/H_{{{\cal D}_{\rm\bf 0}}} is the present size of the horizon introduced so that the coordinate distance is dimensionless, and the domain-dependent effective three-metric reads:

γij𝒟dXidXj=dr21κ𝒟(t)r2+r2dΩ2,\gamma^{\cal D}_{ij}\,dX^{i}\otimes dX^{j}=\frac{dr^{2}}{1-\kappa_{{\cal D}}(t)r^{2}}+r^{2}d\Omega^{2}, (15)

with dΩ2=dθ2+sin2(θ)dϕ2d\Omega^{2}=d\theta^{2}+\sin^{2}(\theta)d\phi^{2}, this effective three-template metric is identical to the spatial part of a FLRW metric at any given time, but its scalar curvature κ𝒟\kappa_{{\cal D}} can vary from time to time. As was pointed out by Larena et. al., κ𝒟\kappa_{{\cal D}} cannot be arbitrary, more precisely, they argue that it should be related to the true averaged scalar curvature 𝒟\left\langle{\cal R}\right\rangle_{\cal D} in the way that

𝒟=κ𝒟(t)|𝒟𝟎|a𝒟𝟎2a𝒟2(t).\left\langle{\cal R}\right\rangle_{\cal D}=\frac{\kappa_{{\cal D}}(t)|\left\langle{\cal R}\right\rangle_{{\cal D}_{\rm\bf 0}}|a_{{{\cal D}_{\rm\bf 0}}}^{2}}{a_{{\cal D}}^{2}(t)}. (16)

However, considering the fitting results from Cao et. al. cao2018testing , we suspect that this prescription is incorrect, this is the reason why we start this research.

In our CPL backreaction model, we have the formula for κD\kappa_{D} as follows,

κ𝒟(t)=ΩX𝒟𝟎|ΩX𝒟𝟎(1w0𝒟)|e3wa𝒟(1a𝒟)[(1w0𝒟wa𝒟)a𝒟13(w0𝒟+wa𝒟)+wa𝒟a𝒟3(w0𝒟+wa𝒟)].\kappa_{{\cal D}}(t)=-\frac{\Omega_{X}^{{{\cal D}_{\rm\bf 0}}}}{|\Omega_{X}^{{{\cal D}_{\rm\bf 0}}}(1-w_{0}^{{\cal D}})|}e^{-3w_{a}^{{\cal D}}(1-a_{{\cal D}})}[(1-w_{0}^{{\cal D}}-w_{a}^{{\cal D}})a_{{\cal D}}^{-1-3(w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}+w_{a}^{{\cal D}}a_{{\cal D}}^{-3(w_{0}^{{\cal D}}+w_{a}^{{\cal D}})}]. (17)

III.2 Computation of observables

The computation of effective distances along the light cone defined by the template metric is very different from that of distances in FLRW models. Firstly, let us introduce an effective redshift z𝒟z_{{\cal D}} defined by

1+z𝒟:=(gabkaub)S(gabkaub)O ,1+z_{{\cal D}}:=\frac{(g_{ab}k^{a}u^{b})_{S}}{(g_{ab}k^{a}u^{b})_{O}}\mbox{ ,} (18)

where the letters O and S denote the evaluation of the quantities at the observer and at the source respectively, gabg_{ab} in this expression represents the template metric, while uau^{a} is the four-velocity of the dust which satisfies uaua=1u^{a}u_{a}=-1, kak^{a} the wave vector of a light ray travelling from the source S towards the observer O with the restrictions kaka=0k^{a}k_{a}=0. Then, by normalizing this wave vector such that (kaua)O=1(k^{a}u_{a})_{O}=-1 and introducing the scaled vector k^a=a𝒟2ka\hat{k}^{a}=a_{{\cal D}}^{2}k^{a}, we have the following equation:

1+z𝒟=(a𝒟1k^0)S ,1+z_{{\cal D}}=(a_{{\cal D}}^{-1}\hat{k}^{0})_{S}\mbox{ ,} (19)

with k^0\hat{k}^{0} obeying the null geodesics equation kaakb=0k^{a}\nabla_{a}k^{b}=0 which leads to

1k^0dk^0da𝒟=r2(a𝒟)2(1κ𝒟(a𝒟)r2(a𝒟))dκ𝒟(a𝒟)da𝒟 .\frac{1}{\hat{k}^{0}}\frac{d\hat{k}^{0}}{da_{{\cal D}}}=-\frac{r^{2}(a_{{\cal D}})}{2(1-\kappa_{{\cal D}}(a_{{\cal D}})r^{2}(a_{{\cal D}}))}\frac{d\kappa_{{\cal D}}(a_{{\cal D}})}{da_{{\cal D}}}\mbox{ .} (20)

As usual, the coordinate distance can be derived from the equation of radial null geodesics:

drda𝒟=H𝒟𝟎a𝒟2H𝒟(a𝒟)1κ𝒟(a𝒟)r2\frac{dr}{da_{{\cal D}}}=-\frac{H_{{{\cal D}_{\rm\bf 0}}}}{a_{{\cal D}}^{2}H_{{\cal D}}(a_{{\cal D}})}\sqrt{1-\kappa_{{\cal D}}(a_{{\cal D}})r^{2}} (21)

Solving these two equations with the initial condition k^0(1)=1,r(1)=0\hat{k}^{0}(1)=1,r(1)=0 and then plugging k^0(a𝒟)\hat{k}^{0}(a_{\cal D}) into Eq. (19), one finds the relation between the redshift and the scale factor. With these results, we can determine the volume Hubble parameter H𝒟(z𝒟)H_{{\cal D}}(z_{{\cal D}}) and the luminosity distance dL(z𝒟)d_{L}(z_{{\cal D}}) of the sources defined by the following formula

dL(z𝒟)\displaystyle d_{L}(z_{{\cal D}}) =\displaystyle= 1H𝒟𝟎(1+z𝒟)2a𝒟(z𝒟)r(z𝒟).\displaystyle\frac{1}{H_{{{\cal D}_{\rm\bf 0}}}}(1+z_{{\cal D}})^{2}a_{{\cal D}}(z_{{\cal D}})r(z_{{\cal D}}). (22)

Having computed these two observables , it is then possible to compare the CPL backreaction model predictions with type Ia supernova and Hubble parameter observations.

IV Constraints from SN Ia data and OHD

In this section, we perform a likelihood analysis on the parameters of the CPL backreaction model with both the FLRW metric and the template metric using SN Ia data and OHD respectively.

1.SN Ia data

We use the Pantheon samplescolnic2018complete with 1048 data points to fit the model, and its χ2\chi^{2} function is

χ~SN2(Ωm𝒟𝟎,w0𝒟,wa𝒟)=i=11048(μobsi5log10[H𝒟𝟎dL(z𝒟i)]μ0)2σμi2,\tilde{\chi}_{SN}^{2}(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})=\sum_{i=1}^{1048}\frac{\left(\mu_{obs_{i}}-5\log_{10}\left[H_{{{\cal D}_{\rm\bf 0}}}d_{L}({z_{{\cal D}}}_{i})\right]-\mu_{0}\right)^{2}}{\sigma_{\mu_{i}}^{2}}, (23)

where μobsi\mu_{obs_{i}} represents the observed distance modulus, σμi\sigma_{\mu_{i}} denotes its statistical uncertainty and μ0\mu_{0} is a free parameter.

We can rewrite the χ2\chi^{2} as

χ~SN2(Ωm𝒟𝟎,w0𝒟,wa𝒟)=R2μ0S+μ02T,\tilde{\chi}_{SN}^{2}(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})=R-2\mu_{0}S+\mu_{0}^{2}T, (24)

in which RR, SS and TT is defined as

R\displaystyle R =\displaystyle= i=11048(μobsi5log10[H𝒟𝟎dL(z𝒟i)])2σμi2,\displaystyle\sum_{i=1}^{1048}\frac{\left(\mu_{obs_{i}}-5\log_{10}\left[H_{{{\cal D}_{\rm\bf 0}}}d_{L}({z_{{\cal D}}}_{i})\right]\right)^{2}}{\sigma_{\mu_{i}}^{2}}, (25)
S\displaystyle S =\displaystyle= i=11048(μobsi5log10[H𝒟𝟎dL(z𝒟i)])σμi2,\displaystyle\sum_{i=1}^{1048}\frac{\left(\mu_{obs_{i}}-5\log_{10}\left[H_{{{\cal D}_{\rm\bf 0}}}d_{L}({z_{{\cal D}}}_{i})\right]\right)}{\sigma_{\mu_{i}}^{2}}, (26)
T\displaystyle T =\displaystyle= i=110481σμi2.\displaystyle\sum_{i=1}^{1048}\frac{1}{\sigma_{\mu_{i}}^{2}}. (27)

Since μ0\mu_{0} is an irrelevant parameter, we can get rid of it by marginalizing it, or we can find the extreme point of the χ2\chi^{2} with respect to the independent variable μ0\mu_{0} and substitute it in Eq. (24). Here we choose the second method, in fact both methods give similar results. Since the extreme point of the χ2\chi^{2} with respect to the independent variable μ0\mu_{0} is μ0=S/T\mu_{0}=S/T, we have the final formula for the χ2\chi^{2} as follows,

χSN2(Ωm𝒟𝟎,w0𝒟,wa𝒟)=RS2T.\chi_{SN}^{2}(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})=R-\frac{S^{2}}{T}. (28)

2.OHD

For the observed Hubble parameter dataset in Table 1, the best-fit values of the parameters (H𝒟𝟎,Ωm𝒟𝟎,w0𝒟,wa𝒟)(H_{{{\cal D}_{\rm\bf 0}}},\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}}) can be determined by a likelihood analysis based on the calculation of

χH2=i=138(H𝒟𝟎E(z𝒟i;Ωm𝒟𝟎,w0𝒟,wa𝒟)Hi)2σi2.\chi^{2}_{H}=\sum_{i=1}^{38}\frac{(H_{{{\cal D}_{\rm\bf 0}}}E(z_{{\cal D}_{i}};\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})-H_{i})^{2}}{\sigma_{i}^{2}}. (29)

Here we assume that each Hubble parameter data point is independent. However, the covariance matrix of data is not necessarily diagonal, as discussed in yu2013nonparametric , and if it is not, the problem will become complicated and should be treated by means of the method mentioned by yu2013nonparametric .

Since χSN2\chi_{SN}^{2} does not contain H𝒟𝟎H_{{{\cal D}_{\rm\bf 0}}}, in order to directly compare the two sets of fitting results, we can marginalize the H𝒟𝟎H_{{{\cal D}_{\rm\bf 0}}} in the χH2\chi^{2}_{H} by using the following formula:

P(Ωm𝒟𝟎,w0𝒟,wa𝒟|{Hi})=P(Ωm𝒟𝟎,w0𝒟,wa𝒟,H𝒟𝟎|{Hi})𝑑H𝒟𝟎=({Hi}|Ωm𝒟𝟎,w0𝒟,wa𝒟,H𝒟𝟎)P(H𝒟𝟎)𝑑H𝒟𝟎,\begin{split}P(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}}|\{H_{i}\})&=\int P(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}},H_{{{\cal D}_{\rm\bf 0}}}|\{H_{i}\})dH_{{{\cal D}_{\rm\bf 0}}}\\ &=\int\mathcal{L}(\{H_{i}\}|\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}},H_{{{\cal D}_{\rm\bf 0}}})P(H_{{{\cal D}_{\rm\bf 0}}})dH_{{{\cal D}_{\rm\bf 0}}},\end{split} (30)

where ({Hi}|Ωm𝒟𝟎,w0𝒟,wa𝒟,H𝒟𝟎)=(i=13812πσi2)exp(χH22)\mathcal{L}(\{H_{i}\}|\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}},H_{{{\cal D}_{\rm\bf 0}}})=(\prod_{i=1}^{38}\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}})\exp(-\frac{\chi^{2}_{H}}{2}) is the likelihood function before H𝒟𝟎H_{{{\cal D}_{\rm\bf 0}}} is marginalized, P(H𝒟𝟎)=12πσH2exp[(H𝒟𝟎μH)2σH2]P(H_{{{\cal D}_{\rm\bf 0}}})=\frac{1}{\sqrt{2\pi\sigma_{H}^{2}}}\exp[-\frac{(H_{{{\cal D}_{\rm\bf 0}}}-\mu_{H})^{2}}{\sigma_{H}^{2}}] is the prior of H𝒟𝟎H_{{{\cal D}_{\rm\bf 0}}}, where μH=73.8\mu_{H}=73.8 and σH=1.1\sigma_{H}=1.1 wong2020h0licow . After marginalization, we can get the probability distribution of the three parameters Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}} and wa𝒟w_{a}^{{\cal D}} as

P(Ωm𝒟𝟎,w0𝒟,wa𝒟|{Hi})=1A[erf(BA)+1]eB2A,P(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}}|\{H_{i}\})=\frac{1}{\sqrt{A}}[{\rm erf}(\frac{B}{\sqrt{A}})+1]e^{\frac{B^{2}}{A}}, (31)

where

A=12σH2+i=138E2(z𝒟i;Ωm𝒟𝟎,w0𝒟,wa𝒟)2σi2,B=μH2σH2+i=138E(z𝒟i;Ωm𝒟𝟎,w0𝒟,wa𝒟)Hi2σi2.A=\frac{1}{2\sigma_{H}^{2}}+\sum_{i=1}^{38}\frac{E^{2}(z_{{{\cal D}}_{i}};\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})}{2\sigma_{i}^{2}},B=\frac{\mu_{H}}{2\sigma_{H}^{2}}+\sum_{i=1}^{38}\frac{E(z_{{{\cal D}}_{i}};\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})H_{i}}{2\sigma_{i}^{2}}. (32)

By which we can obtain the χ2\chi^{2} of OHD after H𝒟𝟎H_{{{\cal D}_{\rm\bf 0}}} is marginalized.

χOHD2(Ωm𝒟𝟎,w0𝒟,wa𝒟)=2ln(P(Ωm𝒟𝟎,w0𝒟,wa𝒟|{Hi}))\chi_{OHD}^{2}(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}})=-2\ln(P(\Omega_{m}^{{{\cal D}_{\rm\bf 0}}},w_{0}^{{\cal D}},w_{a}^{{\cal D}}|\{H_{i}\})) (33)

Table 3 show the constriant results of the CPL backreaction model with both the FLRW metric and template metric by using SN Ia data and OHD respectively, and Table 3 show the prior of the parameters in the CPL backreaction model with both the FLRW metric and template metric. From the given fitting results one can infer that, for the template metric case, the tensions in parameters Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}} and wa𝒟w_{a}^{{\cal D}} between two different data sets are 2.91σ\sigma, 0.05σ\sigma and 0.49σ\sigma respectively, and for the FLRW metric case, the corresponding tensions are 1.7σ\sigma, 0.17σ\sigma and 0.07σ\sigma respectively. It is obvious that the CPL backreaction model with the FLRW metric has smaller parameter tensions in generally, and these tensions can actually be attributed to the lack of precision caused by the insufficient amount of OHD. The difference in the degree of parameter tensions in two different cases can also be inferred from Figure 1 and Figure 2. In cao2018testing , Cao et. al. show with the scaling backreaction model that, for the template metric case, their fitting results, which is produced by using OHD, is in contrary with the constraint results of Larena et al.larena2009testing , which is produced by using SN Ia data and the position of CMB peaks, and for the FLRW metric case, two constraint results are basically consistent. What our work further show is that even for a more realistic backreaction model like the CPL backreaction model, similar results reproduce. Therefore, we draw the same conclusion that Cao et. al make that the prescription of κ𝒟\kappa_{{\cal D}} should be modified, or some other scenarios should be introduced.

zz H(z)H(z) method Ref.
0.07080.0708 69.0±19.6869.0\pm 19.68 I Zhang et al. (2014)-Zhang2014
0.090.09 69.0±12.069.0\pm 12.0 I Jimenez et al. (2003)-Jimenez2003
0.120.12 68.6±26.268.6\pm 26.2 I Zhang et al. (2014)-Zhang2014
0.170.17 83.0±8.083.0\pm 8.0 I Simon et al. (2005)-Simon2005
0.1790.179 75.0±4.075.0\pm 4.0 I Moresco et al. (2012)-Moresco2012
0.1990.199 75.0±5.075.0\pm 5.0 I Moresco et al. (2012)-Moresco2012
0.200.20 72.9±29.672.9\pm 29.6 I Zhang et al. (2014)-Zhang2014
0.2400.240 79.69±2.6579.69\pm 2.65 II Gaztan~\tilde{\rm{n}}aga et al. (2009)-Gaztanaga2009
0.270.27 77.0±14.077.0\pm 14.0 I Simon et al. (2005)-Simon2005
0.280.28 88.8±36.688.8\pm 36.6 I Zhang et al. (2014)-Zhang2014
0.350.35 84.4±7.084.4\pm 7.0 II Xu et al. (2013)-Xu2013
0.3520.352 83.0±14.083.0\pm 14.0 I Moresco et al. (2012)-Moresco2012
0.38020.3802 83.0±13.583.0\pm 13.5 I Moresco et al. (2016)-Moresco2016
0.40.4 95±17.095\pm 17.0 I Simon et al. (2005)-Simon2005
0.40040.4004 77.0±10.277.0\pm 10.2 I Moresco et al. (2016)-Moresco2016
0.42470.4247 87.1±11.287.1\pm 11.2 I Moresco et al. (2016)-Moresco2016
0.430.43 86.45±3.6886.45\pm 3.68 II Gaztanaga et al. (2009)-Gaztanaga2009
0.440.44 82.6±7.882.6\pm 7.8 II Blake et al. (2012)-Blake2012
0.44970.4497 92.8±12.992.8\pm 12.9 I Moresco et al. (2016)-Moresco2016
0.47830.4783 80.9±9.080.9\pm 9.0 I Moresco et al. (2016)-Moresco2016
0.480.48 97.0±62.097.0\pm 62.0 I Stern et al. (2010)-Stern2010
0.570.57 92.4±4.592.4\pm 4.5 II Samushia et al. (2013)-Samushia2013
0.5930.593 104.0±13.0104.0\pm 13.0 I Moresco et al. (2012)-Moresco2012
0.60.6 87.9±6.187.9\pm 6.1 II Blake et al. (2012)-Blake2012
0.680.68 92.0±8.092.0\pm 8.0 I Moresco et al. (2012)-Moresco2012
0.730.73 97.3±7.097.3\pm 7.0 II Blake et al. (2012)-Blake2012
0.7810.781 105.0±12.0105.0\pm 12.0 I Moresco et al. (2012)-Moresco2012
0.8750.875 125.0±17.0125.0\pm 17.0 I Moresco et al. (2012)-Moresco2012
0.880.88 90.0±40.090.0\pm 40.0 I Stern et al. (2010)-Stern2010
0.90.9 117.0±23.0117.0\pm 23.0 I Simon et al. (2005)-Simon2005
1.0371.037 154.0±20.0154.0\pm 20.0 I Moresco et al. (2012)-Moresco2012
1.31.3 168.0±17.0168.0\pm 17.0 I Simon et al. (2005)-Simon2005
1.3631.363 160.0±33.6160.0\pm 33.6 I Moresco (2015)-Moresco2015
1.431.43 177.0±18.0177.0\pm 18.0 I Simon et al. (2005)-Simon2005
1.531.53 140.0±14.0140.0\pm 14.0 I Simon et al. (2005)-Simon2005
1.751.75 202.0±40.0202.0\pm 40.0 I Simon et al. (2005)-Simon2005
1.9651.965 186.5±50.4186.5\pm 50.4 I Moresco (2015)-Moresco2015
2.342.34 222.0±7.0222.0\pm 7.0 II Delubac et al. (2015)-Delubac2015
Table 1: The current available OHD dataset. The method I is the differential ages method, and II represents the radial Baryon acoustic oscillation (BAO) method. H(z) is in unit of km/s/Mpc{\rm km/s/Mpc} here.
SN Ia OHD
CPL backreaction model with template metric
Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}} 0.360.08+0.050.36_{-0.08}^{+0.05} 0.120.04+0.020.12_{-0.04}^{+0.02}
w0𝒟w_{0}^{{\cal D}} 1.030.12+0.14-1.03_{-0.12}^{+0.14} 1.020.12+0.10-1.02_{-0.12}^{+0.10}
wa𝒟w_{a}^{{\cal D}} 1.510.48+0.171.51_{-0.48}^{+0.17} 1.240.32+0.261.24_{-0.32}^{+0.26}
χmin2\chi^{2}_{min} 1034.0331034.033 8228.50-8228.50
CPL backreaction model with FLRW metric
Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}} 0.380.08+0.050.38_{-0.08}^{+0.05} 0.240.02+0.020.24_{-0.02}^{+0.02}
w0𝒟w_{0}^{{\cal D}} 1.200.15+0.18-1.20_{-0.15}^{+0.18} 1.160.16+0.17-1.16_{-0.16}^{+0.17}
wa𝒟w_{a}^{{\cal D}} 1.200.29+0.271.20_{-0.29}^{+0.27} 1.240.52+0.281.24_{-0.52}^{+0.28}
χmin2\chi^{2}_{min} 1032.191032.19 8228.06-8228.06
Table 2: Fitting results of the CPL backreaction model with both the FLRW metric and template metric by using SN Ia data and OHD respectively.
CPL backreaction model with template metric
Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}} [0.01,0.99][0.01,0.99]
w0𝒟w_{0}^{{\cal D}} [2,2][-2,2]
wa𝒟w_{a}^{{\cal D}} [3,3][-3,3]
CPL backreaction model with FLRW metric
Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}} [0.01,0.99][0.01,0.99]
w0𝒟w_{0}^{{\cal D}} [2,2][-2,2]
wa𝒟w_{a}^{{\cal D}} [10,3][-10,3]
Table 3: Prior of the parameters in the CPL backreaction model with both the FLRW metric and template metric.

Refer to caption

Refer to caption

Refer to caption

Figure 1: The 1σ\sigma, 2σ\sigma and 3σ\sigma confidence regions of the parameters Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}} , and wa𝒟w_{a}^{{\cal D}} for the CPL backreaction model with the template metric using both SN Ia data and OHD. For the SN Ia data case, the contours are black, and the best fitting points are (0.32, -1.04), (0.32, 1.15) and (-1.04, 1.15) for the parameter pairs (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}}), (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, wa𝒟w_{a}^{{\cal D}}) and (w0𝒟w_{0}^{{\cal D}}, wa𝒟w_{a}^{{\cal D}}) respectively. For the OHD case, the contours are in three different colours as one can see, and the best fitting points are (0.05, -1), (0.05, 1.31) and (-1, 1.31) for the parameter pairs (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}}), (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, wa𝒟w_{a}^{{\cal D}}) and (w0𝒟w_{0}^{{\cal D}}, wa𝒟w_{a}^{{\cal D}}) respectively.

Refer to caption

Refer to caption

Refer to caption

Figure 2: The 1σ\sigma, 2σ\sigma and 3σ\sigma confidence regions of the parameters Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}} , and wa𝒟w_{a}^{{\cal D}} for the CPL backreaction model with the FLRW metric using both SN Ia data and OHD. For the SN Ia data case, the contours are black, and the best fitting points are (0.23, -1.09), (0.23, 1.24) and (-1.09, 1.24) for the parameter pairs (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}}), (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, wa𝒟w_{a}^{{\cal D}}) and (w0𝒟w_{0}^{{\cal D}}, wa𝒟w_{a}^{{\cal D}}) respectively. For the OHD case, the contours are in three different colours as one can see, and the best fitting points are (0.19, -1.21), (0.19, 1.19) and (-1.21, 1.19) for the parameter pairs (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}}), (Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, wa𝒟w_{a}^{{\cal D}}) and (w0𝒟w_{0}^{{\cal D}}, wa𝒟w_{a}^{{\cal D}}) respectively.

V conclusion

In this paper, in order to further prove the conclusion drawn by Cao et. al. in cao2018testing that the prescription of κ𝒟\kappa_{{\cal D}} needs to be modified, we equivalently regard the backreaction effects as the direct results of an effective perfect fluid whose EoS is parameterized as CPL form by us to model the realistic evolution of backreaction as accurately as possible. As a comparison, we employ two metrics to describe the late time Universe, one of them is the FLRW metric, and the other is the template metric that contain the geometrical instantaneous spatially-constant curvature κ𝒟\kappa_{{\cal D}} whose prescription needs to be tested. We then fit such CPL backreaction model using both SN Ia data and OHD with these two metrics, and from the the constraint results we find that, for the template metric case, the tensions in parameters Ωm𝒟𝟎\Omega_{m}^{{{\cal D}_{\rm\bf 0}}}, w0𝒟w_{0}^{{\cal D}} and wa𝒟w_{a}^{{\cal D}} between two different data sets are 2.91σ\sigma, 0.05σ\sigma and 0.49σ\sigma respectively, and for the FLRW metric case, the corresponding tensions are 1.7σ\sigma, 0.17σ\sigma and 0.07σ\sigma respectively. Obviously, the CPL backreaction model with the FLRW metric has smaller parameter tensions in generally, and these tensions can actually be attributed to the insufficient amount of OHD, however, for the other case, tensions are too large to be attributed to the insufficient amount of OHD. Therefore, we believe that the prescription of κ𝒟\kappa_{{\cal D}} needs to be modified.

Acknowledgments

The paper is partially supported by the Natural Science Foundation of China.

References

  • (1) J. Larena, J.M. Alimi, T. Buchert, M. Kunz, P.S. Corasaniti, Physical Review D 79(8), 083011 (2009)
  • (2) A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, et al., The Astronomical Journal 116(3), 1009 (1998)
  • (3) S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent, P. Castro, S. Deustua, S. Fabbro, A. Goobar, D. Groom, et al., The Astrophysical Journal 517(2), 565 (1999)
  • (4) D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, et al., The Astrophysical Journal Supplement Series 148(1), 175 (2003)
  • (5) D.N. Spergel, R. Bean, O. Doré, M. Nolta, C. Bennett, J. Dunkley, G. Hinshaw, N.e. Jarosik, E. Komatsu, L. Page, et al., The Astrophysical Journal Supplement Series 170(2), 377 (2007)
  • (6) J. Dunkley, E. Komatsu, M. Nolta, D. Spergel, D. Larson, G. Hinshaw, L. Page, C. Bennett, B. Gold, N. Jarosik, et al., The Astrophysical Journal Supplement Series 180(2), 306 (2009)
  • (7) D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. Nolta, C. Bennett, B. Gold, M. Halpern, R. Hill, N. Jarosik, et al., The Astrophysical Journal Supplement Series 192(2), 16 (2011)
  • (8) G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C. Bennett, J. Dunkley, M. Nolta, M. Halpern, R. Hill, N. Odegard, et al., The Astrophysical Journal Supplement Series 208(2), 19 (2013)
  • (9) R.R. Caldwell, R. Dave, P.J. Steinhardt, Physical Review Letters 80(8), 1582 (1998)
  • (10) R.R. Caldwell, Physics Letters B 545(1-2), 23 (2002)
  • (11) F. Piazza, S. Tsujikawa, Journal of Cosmology and Astroparticle Physics 2004(07), 004 (2004)
  • (12) T. Padmanabhan, Physical Review D Particles Fields 66(2), 611 (2002)
  • (13) B. Feng, M. Li, Y.S. Piao, X. Zhang, Physics Letters B 634(2), 101 (2006)
  • (14) R. Maartens, K. Koyama, Living Reviews in Relativity 13(1), 5 (2010)
  • (15) G. Esposito-Farese, D. Polarski, Physical Review D 63(6), 063504 (2001)
  • (16) S. Capozziello, V.F. Cardone, A. Troisi, Physical Review D 71(4), 043503 (2005)
  • (17) S. Das, N. Banerjee, N. Dadhich, Classical and Quantum Gravity 23(12), 4159 (2006)
  • (18) S. Räsänen, Journal of Cosmology and Astroparticle Physics 2004(02), 003 (2004)
  • (19) E.W. Kolb, S. Matarrese, A. Riotto, New Journal of Physics 8(12), 322 (2006)
  • (20) R.M. Zalaletdinov, General Relativity and Gravitation 24(10), 1015 (1992)
  • (21) R.M. Zalaletdinov, General relativity and gravitation 25(7), 673 (1993)
  • (22) M. Mars, R.M. Zalaletdinov, Journal of Mathematical Physics 38(9), 4741 (1997)
  • (23) T. Buchert, General Relativity and Gravitation 32(1), 105 (2000)
  • (24) T. Buchert, General Relativity and Gravitation 33(8), 1381 (2001)
  • (25) T. Buchert, J. Larena, J.M. Alimi, Classical and Quantum Gravity 23(22), 6379 (2006)
  • (26) S.L. Cao, H.Y. Teng, H.Y. Wan, H.R. Yu, T.J. Zhang, The European Physical Journal C 78(2), 1 (2018)
  • (27) D.M. Scolnic, D. Jones, A. Rest, Y. Pan, R. Chornock, R. Foley, M. Huber, R. Kessler, G. Narayan, A. Riess, et al., The Astrophysical Journal 859(2), 101 (2018)
  • (28) H.R. Yu, S. Yuan, T.J. Zhang, Physical Review D 88(10), 103528 (2013)
  • (29) K.C. Wong, S.H. Suyu, G.C. Chen, C.E. Rusu, M. Millon, D. Sluse, V. Bonvin, C.D. Fassnacht, S. Taubenberger, M.W. Auger, et al., Monthly Notices of the Royal Astronomical Society 498(1), 1420 (2020)
  • (30) C. Zhang, H. Zhang, S. Yuan, S. Liu, T.J. Zhang, Y.C. Sun, Research in Astronomy and Astrophysics 14(10), 1221 (2014)
  • (31) R. Jimenez, L. Verde, T. Treu, D. Stern, The Astrophysical Journal 593(2), 622 (2003)
  • (32) J. Simon, L. Verde, R. Jimenez, Physical Review D 71(12), 123001 (2005)
  • (33) M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, Journal of Cosmology and Astroparticle Physics 2012(07), 053 (2012)
  • (34) E. Gaztanaga, A. Cabré, L. Hui, Monthly Notices of the Royal Astronomical Society 399(3), 1663 (2009)
  • (35) X. Xu, A.J. Cuesta, N. Padmanabhan, D.J. Eisenstein, C.K. McBride, Monthly Notices of the Royal Astronomical Society 431(3), 2834 (2013)
  • (36) M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, D. Wilkinson, Journal of Cosmology and Astroparticle Physics 2016(05), 014 (2016)
  • (37) C.A. Labarrere, J. Woods, J. Hardin, G. Campana, M. Ortiz, B. Jaeger, B. Reichart, J. Bonnin, A. Currin, S. Cosgrove, et al., American Journal of Transplantation 11(3), 528 (2011)
  • (38) D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford, Journal of Cosmology and Astroparticle Physics 2010(02), 008 (2010)
  • (39) L. Samushia, B.A. Reid, M. White, W.J. Percival, A.J. Cuesta, L. Lombriser, M. Manera, R.C. Nichol, D.P. Schneider, D. Bizyaev, et al., Monthly Notices of the Royal Astronomical Society 429(2), 1514 (2013)
  • (40) M. Moresco, Monthly Notices of the Royal Astronomical Society: Letters 450(1), L16 (2015)
  • (41) T. Delubac, J.E. Bautista, J. Rich, D. Kirkby, S. Bailey, A. Font-Ribera, A. Slosar, K.G. Lee, M.M. Pieri, J.C. Hamilton, et al., Astronomy & Astrophysics 574, A59 (2015)