This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

TESS observations of the Pleiades cluster: a nursery for δ\delta Scuti stars

Timothy R. Bedding Sydney Institute for Astronomy, School of Physics, University of Sydney NSW 2006, Australia Simon J. Murphy Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD 4350, Australia Courtney Crawford Sydney Institute for Astronomy, School of Physics, University of Sydney NSW 2006, Australia Daniel R. Hey Institute for Astronomy, University of Hawai‘i, Honolulu, HI 96822, USA Daniel Huber Institute for Astronomy, University of Hawai‘i, Honolulu, HI 96822, USA Hans Kjeldsen Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark Yaguang Li (李亚光)  Sydney Institute for Astronomy, School of Physics, University of Sydney NSW 2006, Australia Andrew W. Mann Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Guillermo Torres Center for Astrophysics || Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA Timothy R. White Sydney Institute for Astronomy, School of Physics, University of Sydney NSW 2006, Australia George Zhou Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD 4350, Australia
Abstract

We studied 89 A- and F-type members of the Pleiades open cluster, including five escaped members. We measured projected rotational velocities (vsiniv\sin i) for 49 stars and confirmed that stellar rotation causes a broadening of the main sequence in the color-magnitude diagram. Using time-series photometry from NASA’s TESS Mission (plus one star observed by Kepler/K2), we detected δ\delta Scuti pulsations in 36 stars. The fraction of Pleiades stars in the middle of the instability strip that pulsate is unusually high (over 80%), and their range of effective temperatures agrees well with theoretical models. On the other hand, the characteristics of the pulsation spectra are varied and do not correlate with stellar temperature, calling into question the existence of a useful νmax\nu_{\rm max} relation for δ\delta Scutis, at least for young main-sequence stars. By including δ\delta Scuti stars observed in the Kepler field, we show that the instability strip is shifted to the red with increasing distance by interstellar reddening. Overall, this work demonstrates the power of combining observations with Gaia and TESS for studying pulsating stars in open clusters.

Asteroseismology

1 Introduction

Explaining the details of excitation and mode selection in δ\delta Scuti stars is one of the major unsolved challenges in stellar pulsations (see reviews by Goupil et al. 2005; Handler 2009; Lenz 2011; Guzik 2021; Kurtz 2022). Why do only a subset of stars in the instability strip show δ\delta Scuti pulsations? And how can two stars occupy essentially the same position in the H–R diagram but only one show pulsations?

One obvious explanation is that some stars have pulsations too weak to be detected. However, CoRoT and Kepler pushed the detection threshold down to extremely low levels (Balona et al., 2015; Michel et al., 2017; Bowman & Kurtz, 2018; Guzik, 2021), and it is still the case that only about half the stars in the central part of the instability strip are pulsating (Murphy et al., 2019).

Another possible factor is chemical composition. Stars with different metallicities can pass through a given location in the H–R diagram at different ages, and with different opacities in the driving zone. This will affect pulsations driven by the κ\kappa (opacity) mechanism (Guzik et al., 2018), and even more so for chemically peculiar stars (Murphy et al., 2015; Guzik et al., 2021), so it is likely that chemical composition is part of the explanation. But even in open clusters, which are assumed to have a uniform metallicity (De Silva et al., 2006; Sestito et al., 2007; Bovy, 2016), the pulsator fraction is much less than 1. In the Pleiades, for example, Breger (1972) found four δ\delta Scuti stars and three decades later, that number still only stood at six (Koen et al., 1999; Li et al., 2002; Fox Machado et al., 2006). Kepler/K2 observed five of these in short-cadence (1 minute) mode (Murphy et al., 2022), and the long-cadence (30 minutes) data hinted at more variables (Rebull et al., 2016).

NASA’s TESS Mission (Ricker et al., 2015) is producing high-precision, rapid-cadence light curves over most of the sky, opening up new possibilities for studying large samples of δ\delta Scuti stars (e.g., Antoci et al., 2019; Balona & Ozuyar, 2020; Barceló Forteza et al., 2020; Bedding et al., 2020; Murphy et al., 2020). In this Letter, we use data from Gaia and TESS to perform the most detailed search to date for δ\delta Scuti pulsators in the Pleiades open cluster (Messier 45).

2 Sample selection and Gaia photometry

We selected an initial list of likely Pleiades members using Gaia DR2 astrometry and the BANYAN-Σ\Sigma code (Gagné et al., 2018). We used the default Pleiades parameters and did not include any radial velocity information (to avoid biasing against binaries). We selected all stars with BANYAN membership probabilities above 90% and Gaia colors 0.0<GBPGRP<0.70.0<G_{BP}-G_{RP}<0.7, which correspond approximately to spectral types in the range A0 V to F8 V. This gave a list of 83 stars. We note that our membership selection was not altered by updating to Gaia DR3.

We also included five stars listed by Heyl et al. (2022) as escaped Pleiades members (HD 17962, HD 20655, HD 21062, HD 23323 and HD 34027). These stars are too distant from the Pleiades core to have been included in our BANYAN-Σ\Sigma selection. We note that a cross-check of the G and early K dwarfs in the Heyl et al. (2022) sample with TESS indicated most of the suggested escapees have <10<10 day rotation periods, which is consistent with expectations for Pleiades membership (Curtis et al., 2019).

Our final sample of 89 stars is listed in Table 7. V1229 Tau (HD 23642) is a well-studied eclipsing and spectroscopic binary that consists of two A-type stars with an orbital period of 2.4611 days (see Groenewegen et al., 2007, and references therein). Both components are A-type stars, so we have listed them separately in the table (see Sec. 4.1 for details).

Ten stars in Table 7 are named variables (column 1). These include the six δ\delta Scuti stars previously known from ground-based observations (V534 Tau, V624 Tau, V647 Tau, V650 Tau, V1187 Tau and V1228 Tau; Breger 1972; Koen et al. 1999; Li et al. 2002), together with two γ\gamma Doradus stars (V1210 Tau and V1225 Tau; Martín & Rodríguez 2000) and both members of the eclipsing binary V1229 Tau (HD 23642).

The photometry in Table 7 (columns 5–7) is based on magnitudes and parallaxes from Gaia DR3 (Gaia Collaboration et al., 2021; Lindegren et al., 2021; Riello et al., 2021). In Fig. 1 we show the color-magnitude diagram (CMD) of the sample. No correction for extinction or reddening was made. We have included a PARSEC isochrone (Marigo et al., 2017), with a metallicity of Z=0.017Z=0.017 and an age of 110 Myr, which are appropriate for the Pleiades (Gaia Collaboration et al., 2018). We shifted the isochrone to account for extinction and reddening, using values of AG=0.11A_{G}=0.11 and E(GBPGRP)=0.055E(\mbox{$G_{BP}-G_{RP}$})=0.055 (Andrae et al., 2018).

Refer to caption
Refer to caption
Figure 1: CMD of 89 A and F stars in the Pleiades, based on photometry and parallaxes from Gaia DR3. Photometry has not been corrected for extinction and reddening. (a) Stars are color coded by RUWE (clipped at RUWE=5\mbox{RUWE}=5, although some stars have greater values), and red circular outlines indicate spectroscopic binaries (Torres et al., 2021); (b) Stars are color-coded by vsiniv\sin i (see Table 7) and red circular outlines indicate five stars listed as escaped members by Heyl et al. (2022). The black line in both panels is a PARSEC isoschrone, corrected for extinction and reddening (see Section 2).

Some of the spread in the cluster main sequence is from binarity. The twelve red circular outlines in Fig 1a mark known spectroscopic binaries from the list compiled by Torres et al. (2021), and some of these clearly lie above the cluster sequence. Figure1a also shows several stars above the main sequence with values of Gaia RUWE (renormalised unit weight error) significantly greater than 1.0, indicating they are likely to be binaries (Evans, 2018; Belokurov et al., 2020). Note that stars with high RUWE values can still provide useful parallaxes, although generally with larger uncertainties (e.g., El-Badry et al., 2021; Lindegren et al., 2021; Maíz Apellániz et al., 2021). As a check, we examined the fidelity_v2 diagnostic calculated by Rybizki et al. (2022) and found it to have a value of 1.0 for all stars in our sample, indicating the astrometric solutions are reliable.

We conclude that stars well above the cluster sequence have high RUWE, are spectroscopic binaries, or both. The remaining spread in the observed sequence can be attributed to the presence of rapid rotators, as discussed in the next section.

3 Projected rotational velocities

We have measured vsiniv\sin i for 49 stars in our sample using spectra collected by the Center for Astrophysics (CfA) survey (Torres, 2020; Torres et al., 2021). These were gathered with the Tillinghast Reflector Échelle Spectrograph (TRES), a high-resolution (R=44,000R=44,000) fiber-fed échelle mounted on the 1.5m reflector at the Fred Lawrence Whipple Observatory, Arizona. Following Zhou et al. (2018), we extracted line profiles from each spectrum via a least-squares deconvolution (Donati et al., 1997) against a synthetic non-rotating ATLAS9 template (Castelli & Kurucz, 2003). The broadening profile was then modeled as a combination of kernels describing the effects of rotational, macroturbulent, and instrumental broadening (Gray, 2005). The resulting vsiniv\sin i values are listed in column 10 of Table 7 and are indicated as source 1 in column 11. For an additional 10 stars, we used vsiniv\sin i measurements from Gaia RVS spectra (Creevey et al., 2022), which are indicated as source 2 in the table. By way of validation, we note there is good consistency for 15 stars with vsiniv\sin i measurements from both sources. We also note that the distribution of our vsiniv\sin i measurements is similar to that of A-type stars in general (e.g., Royer et al., 2007; Zorec & Royer, 2012), so that we can consider the Pleiades to be representative of the broader population.

The color-magnitude diagram in Figure 1b is color-coded by vsiniv\sin i. It is well-known that rotation causes stars to move in the CMD (Pérez Hernández et al., 1999; Fox Machado et al., 2006; Espinosa Lara & Rieutord, 2011; Lipatov & Brandt, 2020; Wang et al., 2022; Malofeeva et al., 2023). This is at least partly responsible for the extended main-sequence turn-offs seen in the CMDs of young and intermediate-age clusters (Bastian & de Mink, 2009; Yang et al., 2013; Brandt & Huang, 2015; Goudfrooij et al., 2017; Gossage et al., 2019; Sun et al., 2019; de Juan Ovelar et al., 2020; Kamann et al., 2020; Chen et al., 2022a; He et al., 2022). Rotation does not only affect the turn-off, but also broadens the main sequence itself, and we are seeing good evidence for this in the Pleiades in Fig. 1b.

4 TESS Observations and analysis

Observations with TESS are made in 27-d sectors (Ricker et al., 2015). The Pleiades were observed in the fourth year of the mission, in Sectors 42–44 (2021 August 20 to November 6). Most Pleiades stars have TESS data in all three sectors and a few were also observed in Sectors 18 or 19. All the stars in our sample except two have TESS observations with 120-s cadence, and we used the lightkurve package (Lightkurve Collaboration et al., 2018) to download the PDCSAP111Pre-search Data Conditioning Simple Aperture Photometry light curves that were provided by the SPOC (Science Processing Operations Center). The first exception was HD 23479. For this star we extracted a light curve from the TESS full-frame images (10-min cadence), which showed no evidence for δ\delta Scuti pulsations.222The light curve for HD 23479 was contaminated by oscillations from HD 23463 (separation 39 arcsec), which is a red giant whose parallax and proper motion show it to be currently passing through the Pleiades cluster. The second exception was HD 23028, which fell just off the edge of the detector and is the only star in our sample with no TESS observations. For this star, Kepler/K2 long-cadence (30-min) observations show pulsations and we have included it as a δ\delta Scuti star in the table and figures (apart from Fig. 2).

Refer to caption
Figure 2: Pulsation spectra of 35 δ\delta Scuti stars in the Pleiades observed with TESS. Stars are ordered according to the Gaia GBPGRPG_{BP}-G_{RP} color index, whose values are given in parentheses, together with vsiniv\sin i (if available). Asterisks indicate four stars listed by Heyl et al. (2022) as escaped members. To help guide the eye, the blue dotted lines show approximate frequencies of the first 8 radial modes (see Sec. 6). These are based on the observed frequencies in the star V647 Tau, which has a particularly regular spectrum (Murphy et al., 2022, Table 4).

In total, we detected δ\delta Scuti pulsations in 36 of the stars in our sample, as flagged in Table 7 (column 12). These include the six previously known from ground-based observations (V534 Tau, V624 Tau, V647 Tau, V650 Tau, V1187 Tau and V1228 Tau), plus 30 additional detections. For all detections, the amplitude spectrum showed several clear peaks at least 10 times the mean noise level (and often much higher), while the non-detections showed no significant peaks above about 4 times the noise. The last two columns of Table 7 show the frequency and amplitude of the strongest mode in each δ\delta Scuti star (measured in the range 10 to 80 d-1).

The amplitude spectra for the 35 δ\delta Scuti stars observed by TESS are shown in Fig. 2, ordered according to Gaia GBPGRPG_{BP}-G_{RP}. The detections include four of the five escaped members (Heyl et al., 2022), and the similarity of those oscillation spectra to confirmed members of the Pleiades lends support to their status as escaped members.

4.1 V1229 Tau (HD 23642)

V1229 Tau is a well-studied eclipsing and spectroscopic binary, with a period of 2.4611 d (see Groenewegen et al., 2007, and references therein). Both components are A-type stars, and so we have treated them separately.

The Gaia photometry (G=6.82G=6.82 and GBPGRP=0.10\mbox{$G_{BP}-G_{RP}$}=0.10) measures the combined light of the system. In order to plot both components separately, we have estimated values in the table using the published effective temperatures (9750±2509750\pm 250 K and 7600±4007600\pm 400 K; Southworth et al. 2005) and a luminosity ratio of 0.355±0.0350.355\pm 0.035 (David et al., 2016). The photometry given in columns 5–7 of Table 7 are estimates if the two components were measured separately, also taking into account the reddening and extinction of the cluster. In Fig. 3a, the black circular outlines show (from left to right) the A component, the combined system, and the B component.

In addition to the eclipses, the TESS light curve shows high-frequency δ\delta Scuti pulsations. The amplitude spectrum in Fig. 2 was made after fitting and subtracting an eclipse model. Given the colors of the components (see Fig. 3a), it is reasonable to conclude that the pulsations occur in the B component. To verify this, we examined the scatter in the time series after fitting and removing the five highest peaks in the amplitude spectrum. We found the scatter to be reduced everywhere in this prewhitened light curve, but the reduction was less during secondary eclipses because the five-peak fit is a poorer fit when part of the pulsating star is being eclipsed (note that the inclination of the system is about 78 and the eclipses are not total; David et al. 2016). We can therefore confirm that it is the secondary component (V1229 Tau B) that is undergoing pulsations.

Chen et al. (2022b) noted pulsations in V1229 Tau (which they referred to as TIC 125754991) and suggested that it is hotter than typical δ\delta Scuti stars, because they assumed the primary is the pulsator. Once we accept that the secondary is the pulsating component, this star becomes typical. A more detailed study of the pulsations of V1229 Tau (HD 23642) using the TESS light curve has been made by Southworth et al. (2023).

5 The δ\delta Scuti instability strip

Figure 3 shows the δ\delta Scuti detections as a function of Gaia GBPGRPG_{BP}-G_{RP} color index (without correcting for the reddening of the Pleiades, which is about 0.055; Andrae et al. 2018). We see in the CMD (Fig. 3a) and the accompanying histogram (Fig. 3b) that the pulsators lie within a strip that spans from about 0.10 to 0.55 in GBPGRPG_{BP}-G_{RP}. In this color range, the fraction of stars that pulsate is 36/50 (72±6%72\pm 6\%), and in the middle of the instability strip (0.20–0.40) it is 21/25 (84±7%84\pm 7\%). This pulsator fraction is significantly higher than the 50–60% found in the Kepler δ\delta Scuti sample by Murphy et al. (2019).

Refer to caption
Refer to caption
Figure 3: Sample of 89 A and F stars in the Pleiades, of which 36 show δ\delta Scuti pulsations (orange) and 53 do not (blue). (a) Color-magnitude diagram, where red circular outlines are the five escaped members (Heyl et al., 2022). For the eclipsing binary V1229 Tau (HD 23642), black circular outlines show (from left to right) the A component (not pulsating), the combined system, and the B component (pulsating; see Section 4.1). The black line is a PARSEC isoschrone (corrected for extinction and reddening; see Section 2). (b) Histogram as a function of Gaia color.

Although the Pleiades cluster is unusually rich in δ\delta Scutis (with peak amplitudes in the range 50–3000 ppm, depending on the star), there are still several stars within the instability strip that are not pulsating (down to a sensitivity limit of 10–20 ppm). One possible explanation is chemical peculiarity, which typically occurs in slow rotators because helium sinks out of the He ii driving zone (Baglin et al., 1973; Deal et al., 2020). Slow rotation can be caused by tidal interactions with a binary companion (e.g., Fuller et al., 2017, and references therein), which is thought to be responsible for the Am stars (“m” for “metallic-lined”; e.g., Abt 1967; North et al. 1998; Debernardi et al. 2000; Stateva et al. 2012).

Eight stars in our sample were listed by Renson & Manfroid (2009) as being Am stars (see column 13 in Table 7). One of these is the eclipsing binary V1229 Tau, for which Abt & Levato (1978) gave the spectral type as A0 Vp(Si) + Am, indicating that the B component is an Am star. Overall, seven of the Am stars in our sample have colors that place them within the δ\delta Scuti instability strip, and five of these are pulsating. The conclusion is that chemical peculiarity can only account for two of the non-pulsators in the Pleiades.

Figure 4 shows our sample in an H–R diagram. To construct this, we first corrected the observed Gaia photometry for extinction and reddening using the values given above. We estimated effective temperatures from the de-reddened GBPGRPG_{BP}-G_{RP} colors using an updated version of Table 5 of Pecaut & Mamajek (2013)333http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt. We estimated approximate stellar luminosities from GG magnitudes and Gaia DR3 parallaxes, using VV bolometric corrections and GVG-V colors from the same source.

Refer to caption
Figure 4: H–R diagram of the Pleiades, corrected for extinction and reddening, showing the location of the δ\delta Scuti pulsators. Sloping lines indicate both the theoretical instability strip (solid blue lines; Dupret et al. 2005) and the observed strip from Kepler (dashed purple lines show the region in which at least 20% of Kepler stars pulsate; Murphy et al. 2019).

The solid blue lines in Fig. 4 show the theoretical instability strip calculated by Dupret et al. (2005), which used a typical solar composition (X=0.7X=0.7, Z=0.02Z=0.02), a convective core overshooting parameter of αov=0.2\alpha_{\rm ov}=0.2, and a solar-calibrated value for the mixing length parameter (αMLT=1.8\mbox{$\alpha_{\rm MLT}$}=1.8). With the caveat that αMLT\alpha_{\rm MLT} could have a different value for the Pleiades, we conclude that the observed δ\delta Scuti strip for our sample is quite well matched to the theoretical calculations.

The dashed purple lines in Fig. 4 mark the instability strip for δ\delta Scuti stars observed with Kepler (Murphy et al., 2019). The offset with respect to the Pleiades might come from a combination of: (1) different TeffT_{\rm eff} scales being used; (2) having a homogeneous composition among Pleiades members, rather than the heterogeneous Kepler sample; (3) perhaps from having a slightly higher overall metallicity in the Pleiades; (4) from the Pleiades being young, as opposed to the Kepler sample where some stars that appeared near the ZAMS may be older stars of lower metallicity; and (5) the larger Kepler sample may give rise to more outliers at the hotter end of the distribution.

Figure 5 shows the effect of reddening on the δ\delta Scuti instability strip by plotting the distance to each star versus its Gaia color index. The red points at the bottom show the Pleiades, and the blue points show δ\delta Scuti stars detected by Kepler (Murphy et al., 2019). As expected, the observed instability strip shifts to the red with increasing distance. Note that we have restricted the Kepler sample to stars more than 10 degrees from the Galactic plane, in order to see the dependence on distance more clearly. We see that the reddening in GBPGRPG_{BP}-G_{RP} is approximately 0.15 magnitudes for every kpc in distance. We also show the sample of γ\gamma Doradus stars in the Kepler field studied by Li et al. (2020), again restricted to b>10b>10^{\circ} (orange points). Overall, Fig. 5 displays very nicely the effect of interstellar reddening on the pulsational instability strips. Note that we have not given a list of γ\gamma Doradus stars in the Pleiades, although many are certainly present, because having only a few TESS sectors often makes it difficult to distinguish unambiguously between gravity-mode pulsations and rotational modulation.

Refer to caption
Figure 5: The effect of reddening on the pulsation instability strip. The Kepler samples of δ\delta Scuti stars (from Murphy et al. 2019) and γ\gamma Doradus stars (Li et al., 2020) are restricted to Galactic latitude b>10b>10^{\circ}.

6 Is there a νmax\nu_{\rm max} scaling relation for δ\delta Scuti stars?

The quantity νmax\nu_{\rm max} is defined for solar-like oscillations as the centroid of the power envelope (Kjeldsen & Bedding, 1995). Solar-like oscillations are excited stochastically by near-surface convection, and the observed modes cover a broad range of frequencies centered at νmax\nu_{\rm max}. It was suggested by Brown et al. (1991) that when scaling from the Sun to other stars, νmax\nu_{\rm max} should be a fixed fraction of the acoustic cutoff frequency. The latter is the frequency above which waves are no longer reflected at the surface, and is expected from simple arguments to scale as g/Teffg/\sqrt{\mbox{$T_{\rm eff}$}}. That line of reasoning underlies the scaling relation

νmaxg/Teff,\mbox{$\nu_{\rm max}$}\propto g/\sqrt{\mbox{$T_{\rm eff}$}}, (1)

which is widely used in the study of solar-like oscillations, although its physical basis is not well understood (Belkacem et al., 2011; Kjeldsen & Bedding, 2011; Chaplin & Miglio, 2013; Hekker, 2020; Zhou et al., 2020).

There have been suggestions that νmax\nu_{\rm max} is a useful observable for δ\delta Scuti stars, given that it shows a correlation with TeffT_{\rm eff} (Balona & Dziembowski, 2011; Barceló Forteza et al., 2018; Bowman & Kurtz, 2018; Barceló Forteza et al., 2020; Hasanzadeh et al., 2021). However, the oscillation spectra of δ\delta Scuti stars in the Pleiades (see Fig. 2, which is ordered by color index) show the correlation to be weak or nonexistent for this sample of young main-sequence stars. In particular, we do not see a shift to higher radial orders with increasing TeffT_{\rm eff}, as predicted by theoretical models. Different theoretical treatments give slightly different predictions, but they all agree that we expect the excitation of higher radial order modes in δ\delta Scuti stars as we move to higher temperatures within the instability strip (Dziembowski, 1997; Houdek et al., 1999; Pamyatnykh, 2000; Dupret et al., 2005; Houdek & Dupret, 2015; Xiong et al., 2016; Xiong, 2021).

It is also worth noting that there is no unambiguous definition for νmax\nu_{\rm max} in δ\delta Scuti stars. In a star with solar-like oscillations, the stochastic nature of the excitation and damping from convection leads to a power envelope of modes that is roughly Gaussian, with a well-defined maximum. In many δ\delta Scuti stars, on the other hand, the distribution of amplitudes is much less ordered (see Fig. 2). Therefore, even defining what is meant by νmax\nu_{\rm max} in δ\delta Scuti stars is not straightforward. One approach is to use the frequency of the strongest mode, f1f_{1}, which we have listed in Column 14 of Table 7. Given that many stars in Fig. 2 have several modes with similar amplitudes, this is clearly not an ideal metric. Not surprisingly, given the diversity in Fig. 2, we found that plots of f1f_{1} versus various stellar parameters (such as TeffT_{\rm eff} and vsiniv\sin i) did not show any obvious correlations.

The variety of oscillation spectra in Fig. 2 is quite remarkable, although there is also similarity between some stars. To help guide the eye, the vertical dotted lines in the figure show the approximate locations of the first 8 radial modes. These are based on the observed frequencies in the star V647 Tau, which has a particularly regular spectrum (Murphy et al., 2022, Table 4).

It is well-established that oscillation frequencies (and therefore also the large separation, Δν\Delta\nu) scale as the square root of stellar density (e.g., Aerts et al., 2010). Hence, we might expect Δν\Delta\nu to vary substantially among the Pleiades δ\delta Scuti stars, given their range of masses. However, theoretical models of young main-sequence δ\delta Scuti stars show that for fixed metallicity, Δν\Delta\nu is remarkably constant across a wide range of masses (see Fig.4a of Murphy et al. 2021 and Murphy et al., in preparation). This makes the vertical lines in Fig. 2 quite useful for comparing the oscillation spectra.

Some of the variations between stars could be attributed to differences in rotation, but it is difficult to see much in the way of systematic trends. Furthermore, the distribution of vsiniv\sin i values in the Pleiades, as noted in Sec. 3, is similar to that of A-type stars in general. On balance, our results seem to raise more questions than they answer. On the one hand, the very high fraction of pulsators in the Pleiades means we are not left wondering why some pulsate and others do not. On the other hand, we cannot explain why stars with similar properties have such different pulsation spectra, although rotation presumably plays a role. An explanation for mode selection in δ\delta Scuti stars remains as elusive as ever.

7 Conclusions

Using Gaia photometry and astrometry, we constructed a list of 89 probable members of the Pleiades with spectral types A and F. We measured projected rotational velocities (vsiniv\sin i) for 49 stars and confirmed that stellar rotation is a significant cause of the broadening of the main sequence in the color-magnitude diagram (Fig. 1b). Using time-series photometry from NASA’s TESS Mission (plus one star observed by Kepler/K2), we detected δ\delta Scuti pulsations in 36 stars. Some stars suggested as being escaped members of the Pleiades by Heyl et al. (2022) have similar pulsation properties to confirmed members, which supports their identification as former members.

The fraction of Pleiades stars in the middle of the instability strip that pulsate is unusually high (over 80%), and their range of effective temperatures agrees well with theoretical models (Fig. 4). On the other hand, the characteristics of the pulsation spectra are very varied and do not correlate very strongly with stellar temperature (Fig. 2), calling into question the existence of a useful νmax\nu_{\rm max} relation for δ\delta Scutis, at least for young stars. By including δ\delta Scuti stars observed in the Kepler field (Fig. 5), we show that the instability strip is shifted to the red with increasing distance by interstellar reddening. In summary, this work demonstrates the power of combining observations with Gaia and TESS for studying pulsating stars in open clusters.

We thank the TESS team for making this research possible. The TESS data used in this paper can be found in MAST: http://dx.doi.org/10.17909/t9-nmc8-f686 (catalog 10.17909/t9-nmc8-f686). We gratefully acknowledge support from the Australian Research Council through Discovery Project DP210103119, Future Fellowship FT210100485 and Laureate Fellowship FL220100117, and from the Danish National Research Foundation (Grant DNRF106) through its funding for the Stellar Astrophysics Centre (SAC). D.H. acknowledges support from the Alfred P. Sloan Foundation and the National Aeronautics and Space Administration (80NSSC21K0784). This research made use of Lightkurve, a Python package for Kepler and TESS data analysis (Lightkurve Collaboration et al., 2018). This work made use of several publicly available python packages: astropy (Astropy Collaboration, 2013, 2018), lightkurve (Lightkurve Collaboration et al., 2018), matplotlib (Hunter, 2007), numpy (Harris et al., 2020), and scipy (Virtanen et al., 2020). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. We thank Konstanze Zwintz, Dennis Stello and the referee for useful comments on the paper. TESS \startlongtable
Table 1: Sample of A and F stars in the Pleiades. Column 8: 1 indicates an escaped member (Heyl et al., 2022). Column 9: 1 indicates a spectroscopic binary (SB; Torres et al., 2021). Column 11: source for vsiniv\sin i is 1 (this work) or 2 (Gaia DR3). Column 12: 1 indicates δ\delta Scuti star. Column 13: 1 indicates Am star (Renson & Manfroid, 2009). Columns 14 and 15: frequency and amplitude of the strongest δ\delta Scuti mode. For V1229 Tau A & B, the magnitudes and colors (columns 5–7) are estimates (see Sec. 4.1).
Name HD HIP TIC GG MGM_{G} GBPGRPG_{BP}-G_{RP} Esc. SB vsiniv\sin i δ\delta Sct Am f1f_{1} a1a_{1}
km s-1 src d-1 ppt
22578 17000 113956708 6\@alignment@align.70 1.04 0\@alignment@align.00 0 0\@alignment@align 242 ±\pm 22 1 0 0 . .
24 Tau 23629 405484171 6\@alignment@align.30 0.59 0\@alignment@align.01 0 0\@alignment@align 184 ±\pm 15 1 0 0 . .
V1229 Tau A 23642 17704 125754991 7\@alignment@align.32 1.61 0\@alignment@align.01 0 1\@alignment@align 0 0 . .
23410 17572 67830155 6\@alignment@align.90 1.25 0\@alignment@align.02 0 0\@alignment@align 180 ±\pm 9 1 0 0 . .
23950 17921 440695282 6\@alignment@align.04 0.39 0\@alignment@align.02 0 0\@alignment@align 133 ±\pm 7 1 0 0 . .
24899 18559 149980785 7\@alignment@align.20 1.43 0\@alignment@align.03 0 1\@alignment@align 67 ±\pm 2 1 0 0 . .
23568 17664 405484416 6\@alignment@align.80 1.11 0\@alignment@align.03 0 0\@alignment@align 188 ±\pm 5 2 0 0 . .
22614 17034 427545204 7\@alignment@align.10 1.54 0\@alignment@align.04 0 0\@alignment@align 114 ±\pm 2 1 0 0 . .
23631 440681316 7\@alignment@align.29 1.58 0\@alignment@align.04 0 1\@alignment@align 13 ±\pm 5 1 0 1 . .
23632 17692 440681358 7\@alignment@align.00 1.32 0\@alignment@align.04 0 0\@alignment@align 194 ±\pm 3 2 0 0 . .
23913 17892 440691760 7\@alignment@align.00 1.32 0\@alignment@align.04 0 0\@alignment@align 205 ±\pm 21 1 0 0 . .
23964 17923 440695975 6\@alignment@align.81 1.15 0\@alignment@align.06 0 1\@alignment@align 5 ±\pm 1 1 0 0 . .
23948 35159593 7\@alignment@align.55 1.87 0\@alignment@align.09 0 0\@alignment@align 115 ±\pm 1 2 0 0 . .
22637 17043 113981021 7\@alignment@align.27 1.56 0\@alignment@align.11 0 1\@alignment@align 131 ±\pm 10 1 0 0 . .
23872 346626001 7\@alignment@align.53 1.76 0\@alignment@align.13 0 0\@alignment@align 246 ±\pm 5 2 1 0 62.01 0.09
23489 125736946 7\@alignment@align.35 1.68 0\@alignment@align.13 0 0\@alignment@align 124 ±\pm 2 1 1 0 22.64 0.08
24076 17999 35205647 6\@alignment@align.93 1.09 0\@alignment@align.14 0 0\@alignment@align 0 0 . .
21062 15902 29058513 7\@alignment@align.11 2.05 0\@alignment@align.15 1 0\@alignment@align 118 ±\pm 1 2 1 0 47.64 1.05
23336 17547 385554826 7\@alignment@align.40 1.92 0\@alignment@align.17 0 0\@alignment@align 243 ±\pm 3 2 1 0 31.33 0.67
23763 17791 35156298 6\@alignment@align.94 1.13 0\@alignment@align.18 0 0\@alignment@align 116 ±\pm 2 1 1 0 33.28 0.10
23155 17403 405483425 7\@alignment@align.51 2.06 0\@alignment@align.18 0 0\@alignment@align 205 ±\pm 5 1 1 0 32.92 1.05
24178 84336172 7\@alignment@align.65 1.98 0\@alignment@align.20 0 0\@alignment@align 214 ±\pm 13 1 0 0 . .
V650 Tau 23643 440681425 7\@alignment@align.75 2.11 0\@alignment@align.22 0 0\@alignment@align 238 ±\pm 7 1 1 0 32.64 2.97
23886 346626099 7\@alignment@align.96 2.32 0\@alignment@align.23 0 0\@alignment@align 125 ±\pm 2 2 1 0 56.62 1.94
23852 440691730 7\@alignment@align.71 2.07 0\@alignment@align.23 0 0\@alignment@align 148 ±\pm 4 1 1 0 17.77 1.59
23388 17552 67828699 7\@alignment@align.73 2.17 0\@alignment@align.24 0 0\@alignment@align 204 ±\pm 7 1 1 0 14.14 0.51
23402 67830321 7\@alignment@align.80 2.11 0\@alignment@align.25 0 0\@alignment@align 248 ±\pm 6 1 1 0 40.86 0.42
V1187 Tau 23194 405483707 8\@alignment@align.04 2.39 0\@alignment@align.27 0 0\@alignment@align 37 ±\pm 1 1 1 1 53.18 1.46
23924 440695768 8\@alignment@align.09 2.42 0\@alignment@align.27 0 0\@alignment@align 0 1 . .
23409 385589694 7\@alignment@align.83 2.15 0\@alignment@align.27 0 0\@alignment@align 213 ±\pm 5 1 1 0 32.31 1.95
23430 17583 385558439 8\@alignment@align.02 2.37 0\@alignment@align.28 0 0\@alignment@align 130 ±\pm 3 1 1 0 44.99 0.86
23863 346626294 8\@alignment@align.10 2.45 0\@alignment@align.30 0 0\@alignment@align 163 ±\pm 6 1 1 0 41.47 1.28
17962 13522 77568727 8\@alignment@align.15 2.45 0\@alignment@align.30 1 0\@alignment@align 152 ±\pm 2 2 1 0 39.35 0.57
20655 15552 402366726 7\@alignment@align.55 2.47 0\@alignment@align.31 1 0\@alignment@align 146 ±\pm 2 2 1 0 34.88 1.38
23361 385552144 8\@alignment@align.02 2.38 0\@alignment@align.31 0 0\@alignment@align 219 ±\pm 8 1 1 0 32.66 0.97
V1228 Tau 23628 125754823 7\@alignment@align.63 2.10 0\@alignment@align.31 0 0\@alignment@align 1 0 32.54 0.74
21744 16407 46476992 8\@alignment@align.09 2.50 0\@alignment@align.32 0 0\@alignment@align 130 ±\pm 3 1 1 0 41.78 0.81
23664 17729 125754460 8\@alignment@align.27 2.56 0\@alignment@align.34 0 0\@alignment@align 96 ±\pm 2 1 0 0 . .
23610 17694 440681752 8\@alignment@align.12 2.60 0\@alignment@align.34 0 1\@alignment@align 26 ±\pm 1 1 0 1 . .
V624 Tau 23156 405483817 8\@alignment@align.20 2.55 0\@alignment@align.35 0 0\@alignment@align 1 0 39.03 1.67
V647 Tau 23607 405484188 8\@alignment@align.24 2.55 0\@alignment@align.35 0 0\@alignment@align 19 ±\pm 1 1 1 1 38.38 1.47
23323 385553714 8\@alignment@align.55 2.63 0\@alignment@align.36 1 0\@alignment@align 123 ±\pm 1 2 1 0 20.81 2.49
24711 18431 14111056 8\@alignment@align.30 2.64 0\@alignment@align.37 0 0\@alignment@align 138 ±\pm 3 1 1 0 42.82 0.79
V1229 Tau B 23642 17704 125754991 8\@alignment@align.20 2.49 0\@alignment@align.37 0 1\@alignment@align 1 1 21.89 0.15
23246 348639016 8\@alignment@align.12 2.64 0\@alignment@align.38 0 0\@alignment@align 1 0 23.31 0.19
23791 440690782 8\@alignment@align.34 2.66 0\@alignment@align.38 0 0\@alignment@align 1 1 20.89 0.38
V1210 Tau 23585 405484093 8\@alignment@align.33 2.68 0\@alignment@align.41 0 0\@alignment@align 108 ±\pm 3 1 0 0 . .
21510 16217 405461432 8\@alignment@align.33 2.76 0\@alignment@align.42 0 0\@alignment@align 1 0 21.75 0.45
23479 385589599 8\@alignment@align.23 2.57 0\@alignment@align.44 0 0\@alignment@align 0 0 . .
23028 17325 114083179 8\@alignment@align.36 2.72 0\@alignment@align.44 0 0\@alignment@align 68 ±\pm 1 1 1 0 . .
23325 385509282 8\@alignment@align.55 2.72 0\@alignment@align.47 0 0\@alignment@align 85 ±\pm 1 2 1 1 23.22 0.64
23157 17401 67768222 7\@alignment@align.86 2.32 0\@alignment@align.49 0 0\@alignment@align 58 ±\pm 1 1 1 0 32.46 0.55
V1225 Tau 22702 427580304 8\@alignment@align.75 2.98 0\@alignment@align.49 0 0\@alignment@align 137 ±\pm 6 1 0 0 . .
23488 17625 125736216 8\@alignment@align.65 2.99 0\@alignment@align.49 0 1\@alignment@align 18 ±\pm 1 1 1 0 22.04 0.88
34027 24808 82969878 8\@alignment@align.85 2.77 0\@alignment@align.49 1 0\@alignment@align 0 0 . .
23375 385552372 8\@alignment@align.55 2.88 0\@alignment@align.50 0 0\@alignment@align 0 0 . .
V534 Tau 23567 405484574 8\@alignment@align.48 3.11 0\@alignment@align.50 0 0\@alignment@align 1 0 38.71 1.06
23733 35155873 8\@alignment@align.21 2.56 0\@alignment@align.50 0 1\@alignment@align 166 ±\pm 25 1 1 0 18.26 0.16
22146 26126738 8\@alignment@align.79 3.04 0\@alignment@align.50 0 0\@alignment@align 1 0 11.13 0.05
23290 17481 67788829 8\@alignment@align.63 2.96 0\@alignment@align.51 0 0\@alignment@align 0 0 . .
24132 18050 84331341 8\@alignment@align.77 3.07 0\@alignment@align.53 0 0\@alignment@align 0 0 . .
23326 67829720 8\@alignment@align.89 3.26 0\@alignment@align.54 0 0\@alignment@align 19 ±\pm 1 1 0 0 . .
23512 61139371 8\@alignment@align.04 2.37 0\@alignment@align.54 0 0\@alignment@align 170 ±\pm 8 1 1 0 53.64 0.05
23792 440690206 8\@alignment@align.31 3.10 0\@alignment@align.55 0 1\@alignment@align 164 ±\pm 11 1 0 0 . .
23289 17497 67787772 8\@alignment@align.89 3.23 0\@alignment@align.55 0 0\@alignment@align 26 ±\pm 1 1 0 0 . .
16423 26078071 8\@alignment@align.78 3.24 0\@alignment@align.56 0 0\@alignment@align 0 0 . .
24655 14109779 8\@alignment@align.98 3.54 0\@alignment@align.59 0 0\@alignment@align 22 ±\pm 1 1 0 0 . .
23912 440691379 9\@alignment@align.03 3.33 0\@alignment@align.59 0 0\@alignment@align 151 ±\pm 4 1 0 0 . .
22887 17225 114060256 9\@alignment@align.07 3.44 0\@alignment@align.60 0 0\@alignment@align 0 0 . .
23133 114166637 8\@alignment@align.89 3.27 0\@alignment@align.60 0 0\@alignment@align 122 ±\pm 22 1 0 0 . .
23351 385552643 8\@alignment@align.90 3.22 0\@alignment@align.62 0 1\@alignment@align 0 0 . .
23511 125736995 9\@alignment@align.20 3.53 0\@alignment@align.62 0 0\@alignment@align 30 ±\pm 1 1 0 0 . .
24086 84331854 9\@alignment@align.01 3.33 0\@alignment@align.62 0 0\@alignment@align 0 0 . .
22977 17289 114084434 9\@alignment@align.06 3.42 0\@alignment@align.63 0 0\@alignment@align 0 0 . .
24302 18154 427735820 9\@alignment@align.34 3.67 0\@alignment@align.64 0 0\@alignment@align 0 0 . .
23513 61145701 9\@alignment@align.30 3.64 0\@alignment@align.64 0 0\@alignment@align 32 ±\pm 1 1 0 0 . .
23584 405484278 9\@alignment@align.38 3.71 0\@alignment@align.65 0 0\@alignment@align 82 ±\pm 2 1 0 0 . .
23312 17511 67788288 9\@alignment@align.36 3.63 0\@alignment@align.66 0 0\@alignment@align 0 0 . .
17125 353928999 9\@alignment@align.50 3.78 0\@alignment@align.66 0 0\@alignment@align 85 ±\pm 2 1 0 0 . .
23514 61145611 9\@alignment@align.31 3.58 0\@alignment@align.66 0 0\@alignment@align 0 0 . .
18544 14177821 9\@alignment@align.29 3.78 0\@alignment@align.66 0 0\@alignment@align 72 ±\pm 2 1 0 0 . .
23732 35155396 9\@alignment@align.12 3.45 0\@alignment@align.66 0 0\@alignment@align 23 ±\pm 1 1 0 0 . .
23061 258067594 9\@alignment@align.37 3.68 0\@alignment@align.66 0 0\@alignment@align 0 0 . .
SAO 93581 67789284 9\@alignment@align.30 3.65 0\@alignment@align.68 0 0\@alignment@align 0 0 . .
23975 35204900 9\@alignment@align.52 3.82 0\@alignment@align.68 0 0\@alignment@align 0 0 . .
16639 46538779 9\@alignment@align.43 3.77 0\@alignment@align.68 0 0\@alignment@align 0 0 . .
23352 385552619 9\@alignment@align.57 3.91 0\@alignment@align.68 0 0\@alignment@align 34 ±\pm 1 1 0 0 . .
23158 67768242 9\@alignment@align.43 3.77 0\@alignment@align.69 0 1\@alignment@align 40 ±\pm 1 1 0 0 . .
24463 348769726 9\@alignment@align.60 3.94 0\@alignment@align.70 0 0\@alignment@align 0 0 . .

References

  • Abt (1967) Abt, H. A. 1967, in Magnetic and Related Stars, ed. R. C. Cameron (MOno Book Co 1967 1, Baltimore), 173–+
  • Abt & Levato (1978) Abt, H. A., & Levato, H. 1978, PASP, 90, 201, doi: 10.1086/130308
  • Aerts et al. (2010) Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology (Springer)
  • Andrae et al. (2018) Andrae, R., Fouesneau, M., Creevey, O., et al. 2018, A&A, 616, A8, doi: 10.1051/0004-6361/201732516
  • Antoci et al. (2019) Antoci, V., Cunha, M. S., Bowman, D. M., et al. 2019, MNRAS, 490, 4040, doi: 10.1093/mnras/stz2787
  • Astropy Collaboration (2013) Astropy Collaboration. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
  • Astropy Collaboration (2018) —. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
  • Baglin et al. (1973) Baglin, A., Breger, M., Chevalier, C., et al. 1973, A&A, 23, 221
  • Balona et al. (2015) Balona, L. A., Daszyńska-Daszkiewicz, J., & Pamyatnykh, A. A. 2015, MNRAS, 452, 3073, doi: 10.1093/mnras/stv1513
  • Balona & Dziembowski (2011) Balona, L. A., & Dziembowski, W. A. 2011, MNRAS, 417, 591, doi: 10.1111/j.1365-2966.2011.19301.x
  • Balona & Ozuyar (2020) Balona, L. A., & Ozuyar, D. 2020, MNRAS, 493, 5871, doi: 10.1093/mnras/staa670
  • Barceló Forteza et al. (2020) Barceló Forteza, S., Moya, A., Barrado, D., et al. 2020, A&A, 638, A59, doi: 10.1051/0004-6361/201937262
  • Barceló Forteza et al. (2018) Barceló Forteza, S., Roca Cortés, T., & García, R. A. 2018, A&A, 614, A46, doi: 10.1051/0004-6361/201731803
  • Bastian & de Mink (2009) Bastian, N., & de Mink, S. E. 2009, MNRAS, 398, L11, doi: 10.1111/j.1745-3933.2009.00696.x
  • Bedding et al. (2020) Bedding, T. R., Murphy, S. J., Hey, D. R., et al. 2020, Nature, 581, 147, doi: 10.1038/s41586-020-2226-8
  • Belkacem et al. (2011) Belkacem, K., Goupil, M. J., Dupret, M. A., et al. 2011, A&A, 530, A142, doi: 10.1051/0004-6361/201116490
  • Belokurov et al. (2020) Belokurov, V., Penoyre, Z., Oh, S., et al. 2020, MNRAS, 496, 1922, doi: 10.1093/mnras/staa1522
  • Bovy (2016) Bovy, J. 2016, ApJ, 817, 49, doi: 10.3847/0004-637X/817/1/49
  • Bowman & Kurtz (2018) Bowman, D. M., & Kurtz, D. W. 2018, MNRAS, 476, 3169, doi: 10.1093/mnras/sty449
  • Brandt & Huang (2015) Brandt, T. D., & Huang, C. X. 2015, ApJ, 807, 25, doi: 10.1088/0004-637X/807/1/25
  • Breger (1972) Breger, M. 1972, ApJ, 176, 367, doi: 10.1086/151641
  • Brown et al. (1991) Brown, T. M., Gilliland, R. L., Noyes, R. W., & Ramsey, L. W. 1991, ApJ, 368, 599, doi: 10.1086/169725
  • Castelli & Kurucz (2003) Castelli, F., & Kurucz, R. L. 2003, in Modelling of Stellar Atmospheres, ed. N. Piskunov, W. W. Weiss, & D. F. Gray, Vol. 210, A20. https://arxiv.org/abs/astro-ph/0405087
  • Chaplin & Miglio (2013) Chaplin, W. J., & Miglio, A. 2013, Annual Review of Astronomy and Astrophysics, 51, 353, doi: 10.1146/annurev-astro-082812-140938
  • Chen et al. (2022a) Chen, J., Li, Z., Zhang, S., Deng, Y., & Zhao, W. 2022a, MNRAS, 512, 3992, doi: 10.1093/mnras/stab3589
  • Chen et al. (2022b) Chen, X., Ding, X., Cheng, L., et al. 2022b, ApJS, 263, 34, doi: 10.3847/1538-4365/aca284
  • Creevey et al. (2022) Creevey, O. L., Sordo, R., Pailler, F., et al. 2022, arXiv e-prints, arXiv:2206.05864. https://arxiv.org/abs/2206.05864
  • Curtis et al. (2019) Curtis, J. L., Agüeros, M. A., Douglas, S. T., & Meibom, S. 2019, ApJ, 879, 49, doi: 10.3847/1538-4357/ab2393
  • David et al. (2016) David, T. J., Conroy, K. E., Hillenbrand, L. A., et al. 2016, AJ, 151, 112, doi: 10.3847/0004-6256/151/5/112
  • de Juan Ovelar et al. (2020) de Juan Ovelar, M., Gossage, S., Kamann, S., et al. 2020, MNRAS, 491, 2129, doi: 10.1093/mnras/stz3128
  • De Silva et al. (2006) De Silva, G. M., Sneden, C., Paulson, D. B., et al. 2006, AJ, 131, 455, doi: 10.1086/497968
  • Deal et al. (2020) Deal, M., Goupil, M. J., Marques, J. P., Reese, D. R., & Lebreton, Y. 2020, A&A, 633, A23, doi: 10.1051/0004-6361/201936666
  • Debernardi et al. (2000) Debernardi, Y., Mermilliod, J.-C., Carquillat, J.-M., & Ginestet, N. 2000, A&A, 354, 881
  • Donati et al. (1997) Donati, J. F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS, 291, 658, doi: 10.1093/mnras/291.4.658
  • Dupret et al. (2005) Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, A&A, 435, 927, doi: 10.1051/0004-6361:20041817
  • Dziembowski (1997) Dziembowski, W. 1997, in IAU Symposium, Vol. 181, Sounding Solar and Stellar Interiors, ed. J. Provost & F.-X. Schmider, 317
  • El-Badry et al. (2021) El-Badry, K., Rix, H.-W., & Heintz, T. M. 2021, MNRAS, 506, 2269, doi: 10.1093/mnras/stab323
  • Espinosa Lara & Rieutord (2011) Espinosa Lara, F., & Rieutord, M. 2011, A&A, 533, A43, doi: 10.1051/0004-6361/201117252
  • Evans (2018) Evans, D. F. 2018, Research Notes of the American Astronomical Society, 2, 20, doi: 10.3847/2515-5172/aac173
  • Fox Machado et al. (2006) Fox Machado, L., Pérez Hernández, F., Suárez, J. C., Michel, E., & Lebreton, Y. 2006, A&A, 446, 611, doi: 10.1051/0004-6361:20053791
  • Fuller et al. (2017) Fuller, J., Hambleton, K., Shporer, A., Isaacson, H., & Thompson, S. 2017, MNRAS, 472, L25, doi: 10.1093/mnrasl/slx130
  • Gagné et al. (2018) Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, ApJ, 856, 23, doi: 10.3847/1538-4357/aaae09
  • Gaia Collaboration et al. (2018) Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018, A&A, 616, A10, doi: 10.1051/0004-6361/201832843
  • Gaia Collaboration et al. (2021) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1, doi: 10.1051/0004-6361/202039657
  • Gossage et al. (2019) Gossage, S., Conroy, C., Dotter, A., et al. 2019, ApJ, 887, 199, doi: 10.3847/1538-4357/ab5717
  • Goudfrooij et al. (2017) Goudfrooij, P., Girardi, L., & Correnti, M. 2017, ApJ, 846, 22, doi: 10.3847/1538-4357/aa7fb7
  • Goupil et al. (2005) Goupil, M. J., Dupret, M. A., Samadi, R., et al. 2005, Journal of Astrophysics and Astronomy, 26, 249, doi: 10.1007/BF02702333
  • Gray (2005) Gray, D. F. 2005, The Observation and Analysis of Stellar Photospheres (Cambridge Univ. Press, Cambridge)
  • Groenewegen et al. (2007) Groenewegen, M. A. T., Decin, L., Salaris, M., & De Cat, P. 2007, A&A, 463, 579, doi: 10.1051/0004-6361:20066303
  • Guzik et al. (2018) Guzik, J., Fontes, C., & Fryer, C. 2018, Atoms, 6, 31, doi: 10.3390/atoms6020031
  • Guzik (2021) Guzik, J. A. 2021, Frontiers in Astronomy and Space Sciences, 8, 55, doi: 10.3389/fspas.2021.653558
  • Guzik et al. (2021) Guzik, J. A., Jackiewicz, J., Catanzaro, G., & Soukup, M. S. 2021, arXiv e-prints, arXiv:2107.09479. https://arxiv.org/abs/2107.09479
  • Handler (2009) Handler, G. 2009, in American Institute of Physics Conference Series, Vol. 1170, Stellar Pulsation: Challenges for Theory and Observation, ed. J. A. Guzik & P. A. Bradley, 403–409, doi: 10.1063/1.3246528
  • Harris et al. (2020) Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2
  • Hasanzadeh et al. (2021) Hasanzadeh, A., Safari, H., & Ghasemi, H. 2021, MNRAS, 505, 1476, doi: 10.1093/mnras/stab1411
  • He et al. (2022) He, C., Sun, W., Li, C., et al. 2022, ApJ, 938, 42, doi: 10.3847/1538-4357/ac8b08
  • Hekker (2020) Hekker, S. 2020, Frontiers in Astronomy and Space Sciences, 7, 3, doi: 10.3389/fspas.2020.00003
  • Heyl et al. (2022) Heyl, J., Caiazzo, I., & Richer, H. B. 2022, ApJ, 926, 132, doi: 10.3847/1538-4357/ac45fc
  • Houdek et al. (1999) Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999, A&A, 351, 582
  • Houdek & Dupret (2015) Houdek, G., & Dupret, M.-A. 2015, Living Reviews in Solar Physics, 12, 8, doi: 10.1007/lrsp-2015-8
  • Hunter (2007) Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90
  • Kamann et al. (2020) Kamann, S., Bastian, N., Gossage, S., et al. 2020, MNRAS, 492, 2177, doi: 10.1093/mnras/stz3583
  • Kjeldsen & Bedding (1995) Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87. https://arxiv.org/abs/astro-ph/9403015
  • Kjeldsen & Bedding (2011) —. 2011, A&A, 529, L8, doi: 10.1051/0004-6361/201116789
  • Koen et al. (1999) Koen, C., van Rooyen, R., van Wyk, F., & Marang, F. 1999, MNRAS, 309, 1051, doi: 10.1046/j.1365-8711.1999.02928.x
  • Kurtz (2022) Kurtz, D. W. 2022, ARA&A, 60, 31, doi: 10.1146/annurev-astro-052920-094232
  • Lenz (2011) Lenz, P. 2011, in New Horizons in Astronomy, 3
  • Li et al. (2020) Li, G., Van Reeth, T., Bedding, T. R., et al. 2020, MNRAS, 491, 3586, doi: 10.1093/mnras/stz2906
  • Li et al. (2002) Li, Z. P., Michel, E., Fox Machado, L., et al. 2002, A&A, 395, 873, doi: 10.1051/0004-6361:20021346
  • Lightkurve Collaboration et al. (2018) Lightkurve Collaboration, Cardoso, J. V. d. M., Hedges, C., et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library. http://ascl.net/1812.013
  • Lindegren et al. (2021) Lindegren, L., Klioner, S. A., Hernández, J., et al. 2021, A&A, 649, A2, doi: 10.1051/0004-6361/202039709
  • Lipatov & Brandt (2020) Lipatov, M., & Brandt, T. D. 2020, ApJ, 901, 100, doi: 10.3847/1538-4357/aba8f5
  • Maíz Apellániz et al. (2021) Maíz Apellániz, J., Pantaleoni González, M., & Barbá, R. H. 2021, A&A, 649, A13, doi: 10.1051/0004-6361/202140418
  • Malofeeva et al. (2023) Malofeeva, A. A., Mikhnevich, V. O., Carraro, G., & Seleznev, A. F. 2023, AJ, 165, 45, doi: 10.3847/1538-3881/aca666
  • Marigo et al. (2017) Marigo, P., Girardi, L., Bressan, A., et al. 2017, ApJ, 835, 77, doi: 10.3847/1538-4357/835/1/77
  • Martín & Rodríguez (2000) Martín, S., & Rodríguez, E. 2000, A&A, 358, 287
  • Michel et al. (2017) Michel, E., Dupret, M.-A., Reese, D., et al. 2017, in EPJWC, Vol. 160, EPJWC, 03001. https://arxiv.org/abs/1705.03721
  • Murphy et al. (2015) Murphy, S. J., Bedding, T. R., Niemczura, E., Kurtz, D. W., & Smalley, B. 2015, MNRAS, 447, 3948, doi: 10.1093/mnras/stu2749
  • Murphy et al. (2022) Murphy, S. J., Bedding, T. R., White, T. R., et al. 2022, MNRAS, 511, 5718, doi: 10.1093/mnras/stac240
  • Murphy et al. (2019) Murphy, S. J., Hey, D., Van Reeth, T., & Bedding, T. R. 2019, MNRAS, 485, 2380, doi: 10.1093/mnras/stz590
  • Murphy et al. (2021) Murphy, S. J., Joyce, M., Bedding, T. R., White, T. R., & Kama, M. 2021, MNRAS, 502, 1633, doi: 10.1093/mnras/stab144
  • Murphy et al. (2020) Murphy, S. J., Paunzen, E., Bedding, T. R., Walczak, P., & Huber, D. 2020, MNRAS, 495, 1888, doi: 10.1093/mnras/staa1271
  • North et al. (1998) North, P., Ginestet, N., Carquillat, J.-M., Carrier, F., & Udry, S. 1998, Contributions of the Astronomical Observatory Skalnate Pleso, 27, 179
  • Pamyatnykh (2000) Pamyatnykh, A. A. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 210, Delta Scuti and Related Stars, ed. M. Breger & M. Montgomery, 215
  • Pecaut & Mamajek (2013) Pecaut, M. J., & Mamajek, E. E. 2013, ApJS, 208, 9, doi: 10.1088/0067-0049/208/1/9
  • Pérez Hernández et al. (1999) Pérez Hernández, F., Claret, A., Hernández, M. M., & Michel, E. 1999, A&A, 346, 586
  • Rebull et al. (2016) Rebull, L. M., Stauffer, J. R., Bouvier, J., et al. 2016, AJ, 152, 114, doi: 10.3847/0004-6256/152/5/114
  • Renson & Manfroid (2009) Renson, P., & Manfroid, J. 2009, A&A, 498, 961, doi: 10.1051/0004-6361/200810788
  • Ricker et al. (2015) Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, J. Astron. Telescopes, Instruments, and Systems, 1, 014003, doi: 10.1117/1.JATIS.1.1.014003
  • Riello et al. (2021) Riello, M., De Angeli, F., Evans, D. W., et al. 2021, A&A, 649, A3, doi: 10.1051/0004-6361/202039587
  • Royer et al. (2007) Royer, F., Zorec, J., & Gómez, A. E. 2007, A&A, 463, 671, doi: 10.1051/0004-6361:20065224
  • Rybizki et al. (2022) Rybizki, J., Green, G. M., Rix, H.-W., et al. 2022, MNRAS, 510, 2597, doi: 10.1093/mnras/stab3588
  • Sestito et al. (2007) Sestito, P., Randich, S., & Bragaglia, A. 2007, A&A, 465, 185, doi: 10.1051/0004-6361:20066643
  • Southworth et al. (2005) Southworth, J., Maxted, P. F. L., & Smalley, B. 2005, A&A, 429, 645, doi: 10.1051/0004-6361:20041867
  • Southworth et al. (2023) Southworth, J., Murphy, S. J., & Pavlovski, K. 2023, MNRAS, 520, L53, doi: 10.1093/mnrasl/slad004
  • Stateva et al. (2012) Stateva, I., Iliev, I. K., & Budaj, J. 2012, MNRAS, 420, 1207, doi: 10.1111/j.1365-2966.2011.20108.x
  • Sun et al. (2019) Sun, W., de Grijs, R., Deng, L., & Albrow, M. D. 2019, ApJ, 876, 113, doi: 10.3847/1538-4357/ab16e4
  • Torres (2020) Torres, G. 2020, ApJ, 901, 91, doi: 10.3847/1538-4357/abb136
  • Torres et al. (2021) Torres, G., Latham, D. W., & Quinn, S. N. 2021, ApJ, 921, 117, doi: 10.3847/1538-4357/ac1585
  • Virtanen et al. (2020) Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
  • Wang et al. (2022) Wang, C., Hastings, B., Schootemeijer, A., et al. 2022, arXiv e-prints, arXiv:2211.15794, doi: 10.48550/arXiv.2211.15794
  • Xiong (2021) Xiong, D.-r. 2021, Frontiers in Astronomy and Space Sciences, 7, 96, doi: 10.3389/fspas.2020.438870
  • Xiong et al. (2016) Xiong, D. R., Deng, L., Zhang, C., & Wang, K. 2016, MNRAS, 457, 3163, doi: 10.1093/mnras/stw047
  • Yang et al. (2013) Yang, W., Bi, S., Meng, X., & Liu, Z. 2013, ApJ, 776, 112, doi: 10.1088/0004-637X/776/2/112
  • Zhou et al. (2018) Zhou, G., Rodriguez, J. E., Vanderburg, A., et al. 2018, AJ, 156, 93, doi: 10.3847/1538-3881/aad085
  • Zhou et al. (2020) Zhou, Y., Asplund, M., Collet, R., & Joyce, M. 2020, MNRAS, 495, 4904, doi: 10.1093/mnras/staa1445
  • Zorec & Royer (2012) Zorec, J., & Royer, F. 2012, A&A, 537, A120, doi: 10.1051/0004-6361/201117691