This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ternary Primitive LCD BCH codes

Abstract.

Absolute coset leaders were first proposed by the authors which have advantages in constructing binary LCD BCH codes. As a continue work, in this paper we focus on ternary linear codes. Firstly, we find the largest, second largest, and third largest absolute coset leaders of ternary primitive BCH codes. Secondly, we present three classes of ternary primitive BCH codes and determine their weight distributions. Finally, we obtain some LCD BCH codes and calculate some weight distributions. However, the calculation of weight distributions of two of these codes is equivalent to that of Kloosterman sums.

Key words and phrases:
LCD codes, BCH codes, absolute coset leaders, Kloosterman sums.
1991 Mathematics Subject Classification:
Primary: 11T23, 94B05; Secondary: 11L05.
This paper was supported by the National Natural Science Foundation of China (No.61772015), the Foundation of Science and Technology on Information Assurance Laboratory (No.KJ-17-010) and the Foundation of Jinling Institute of Technology (No.JIT-B-202016, No.JIT-FHXM-2020). Y. Wu was sponsored by NUPTSF (No. NY220137). (Corresponding author:Yansheng Wu.)

Xinmei Huang

Department of Mathematics, Jinling Institute of Technology

Nanjing, 211169, P. R. China

State Key Laboratory of Cryptology, P. O. Box 5159

Beijing, 100878, China

Qin Yue

Department of Mathematics, Nanjing University of Aeronautics and Astronautics

Nanjing, Jiangsu, 211100, China

Yansheng Wu

School of Computer Science, Nanjing University of Posts and Telecommunications

Nanjing 210023, P. R. China

Xiaoping Shi

Department of Mathematics, Nanjing Forestry University

Nanjing 210037, P. R. China

(Communicated by )

1. Introduction

Let 𝔽q\mathbb{F}_{q} be a finite field with qq elements, where qq is a prime power. An [n,k,d][n,k,d] linear code π’ž\mathcal{C} over 𝔽q\mathbb{F}_{q} is a linear subspace of 𝔽qn\mathbb{F}_{q}^{n} with dimension kk and minimum (Hamming) distance dd. Let AiA_{i} denote the number of codewords in π’ž\mathcal{C} with Hamming weight ii. The weight enumerator of π’ž\mathcal{C} is defined by 1+A1​z+A2​z2+β‹―+An​zn.1+A_{1}z+A_{2}z^{2}+\cdots+A_{n}z^{n}. The sequence (1,A1,A2,…,An)(1,A_{1},A_{2},\ldots,A_{n}) is called the weight distribution of π’ž\mathcal{C}. A code π’ž\mathcal{C} is tt-weight if the number of nonzero AiA_{i} in the sequence (A1,A2,…,An)(A_{1},A_{2},\ldots,A_{n}) is equal to tt.

We define the standard Euclidean inner product of the 𝔽q\mathbb{F}_{q}-vector space 𝔽qn\mathbb{F}_{q}^{n} as follows: for 𝐚=(a0,…,anβˆ’1),𝐜=(c0,…,cnβˆ’1){\bf a}=(a_{0},\ldots,a_{n-1}),{\bf c}=(c_{0},\ldots,c_{n-1}), ⟨𝐚,𝐜⟩=𝐚𝐜T=βˆ‘i=0nβˆ’1ai​ci\langle{\bf a},{\bf c}\rangle={\bf a}{\bf c}^{T}=\sum_{i=0}^{n-1}a_{i}c_{i}. Let π’ž\mathcal{C} be an [n,k][n,k] linear code, its dual code is defined as follows:

π’žβŸ‚={πšβˆˆπ”½qn:𝐚𝐜T=0​ for allΒ β€‹πœβˆˆπ’ž}.\mathcal{C}^{\perp}=\{{\bf a}\in\mathbb{F}_{q}^{n}:{\bf a}{\bf c}^{T}=0\mbox{ for all }{\bf c}\in\mathcal{C}\}.

If the code π’ž\mathcal{C} satisfies the condition that each codeword (c0,c1,…,cnβˆ’1)βˆˆπ’ž(c_{0},c_{1},\ldots,c_{n-1})\in\mathcal{C} implies (cnβˆ’1,c0,c1,…,cnβˆ’2)βˆˆπ’ž(c_{n-1},c_{0},c_{1},\ldots,c_{n-2})\in\mathcal{C}, then π’ž\mathcal{C} is said to be a cyclic code. A cyclic code π’ž\mathcal{C} of length nn over 𝔽q\mathbb{F}_{q} corresponds to an ideal of the quotient ring 𝔽q​[x]/⟨xnβˆ’1⟩\mathbb{F}_{q}[x]/\langle x^{n}-1\rangle. Furthermore, 𝔽q​[x]/⟨xnβˆ’1⟩\mathbb{F}_{q}[x]/\langle x^{n}-1\rangle is a principle ideal ring, and π’ž\mathcal{C} is generated by a monic divisor g​(x)g(x) of xnβˆ’1{x^{n}}-1. In this situation, g​(x)g(x) is called the generator polynomial of the code π’ž\mathcal{C} and we write π’ž=⟨g​(x)⟩\mathcal{C}=\langle g(x)\rangle.

Let β„€n={0,1,…,nβˆ’1}\mathbb{Z}_{n}=\{0,1,\ldots,n-1\} be the ring of integers modulo nn. For sβˆˆβ„€ns\in\mathbb{Z}_{n}, assume that lsl_{s} is the smallest positive integer such that qls​s≑s(modn)q^{l_{s}}s\equiv s\pmod{n}. Then the qq-cyclotomic coset of ss modulo nn is defined by

Cs={s,s​q,β‹―,s​qlsβˆ’1}modnβŠ‚β„€nC_{s}=\{s,sq,\cdots,sq^{l_{s}-1}\}_{\mod n}\subset\mathbb{Z}_{n}

and |Cs|=ls|C_{s}|=l_{s}. The smallest integer in CsC_{s} is called the coset leader of CsC_{s} (see [11]). In the paper [8], the authors gave a new definition to investigate LCD BCH codes. Define that the smallest integer in the set {k,nβˆ’k:k∈Cs}\{k,n-k:k\in C_{s}\} is called the absolute coset leader of CsC_{s}.

Let m=ordn⁑(q)m=\operatorname{ord}_{n}(q) be the multiplicative order of qq modulo nn and Ξ³\gamma a primitive element of 𝔽qm\mathbb{F}_{q^{m}}. Then Ξ±=Ξ³qmβˆ’1n\alpha=\gamma^{\frac{q^{m}-1}{n}} is of order nn. A cyclic code π’ž(q,n,Ξ΄,b)=⟨g​(x)⟩\mathcal{C}_{(q,n,\delta,b)}=\langle g(x)\rangle of length nn over 𝔽q\mathbb{F}_{q} is called a BCH code with the designed distance Ξ΄\delta if its generator polynomial is of the form

g​(x)=∏i∈Z(xβˆ’Ξ±i),Z=Cb+1βˆͺCb+2βˆͺβ‹―βˆͺCb+Ξ΄βˆ’1,g(x)=\prod\limits_{i\in Z}{(x-{\alpha^{i}}}),\ Z=C_{b+1}\cup C_{b+2}\cup\cdots\cup C_{b+\delta-1},

where ZZ is called the defining set of π’ž(q,n,Ξ΄,b)\mathcal{C}_{(q,n,\delta,b)}. If n=qmβˆ’1n=q^{m}-1, we call π’ž(q,n,Ξ΄,b)\mathcal{C}_{(q,n,\delta,b)} a primitive BCH code. If b=0b=0, π’ž(q,n,Ξ΄,b)\mathcal{C}_{(q,n,\delta,b)} is called a narrow-sense BCH code; otherwise, it is called a non-narrow-sense BCH code. The dimension of π’ž(q,n,Ξ΄,b)\mathcal{C}_{(q,n,\delta,b)} is dim(π’ž(q,n,Ξ΄,b))=nβˆ’|⋃i=b+1b+Ξ΄βˆ’1Ci|\dim(\mathcal{C}_{(q,n,\delta,b)})=n-|\bigcup_{i=b+1}^{b+\delta-1}C_{i}|. Thus, to determine the dimension of the code π’ž(q,n,Ξ΄,b)\mathcal{C}_{(q,n,\delta,b)}, we only need to find out all coset leaders and cardinalities of the qq-cyclotomic cosets.

LCD cyclic codes named reversible codes were first studied by Massey for data storage applications [19]. An application of LCD codes against side-channel attacks was investigated by Carlet and Guilley, and several constructions of LCD codes were presented in [1]. Several constructions of LCD MDS codes were presented in [2, 4, 9, 10, 20]. Tzeng and Hartmann proved that the minimum distance of a class of LCD cyclic codes is greater than the BCH bound [21]. Several investigations of LCD BCH codes were studied in [8, 11, 17, 22, 23]. Parameters and the weight distributions of BCH codes are studied in [6, 7, 16, 18, 13, 12, 15]. LCD codes in Hermitian case were studied in [2, 10]. In [3], Carlet et al. completly determined all qq-ary(q>3q>3) Euclidean LCD codes and all q2q^{2}-ary (q>2q>2) Hermitian LCD codes for all parameter. Some binary and ternary LCD codes were investigated in [8, 25]. In [8], the authors proposed a new conception, named absolute coset leader, and constructed some binary LCD BCH codes. In this paper, we shall investigate the ternary case.

The remainder of the paper is organized as follows. In Section 2, some fundamental definitions and results are introduced. In Section 3, the largest, second largest, and third largest absolute coset leaders are presented for ternary primitive BCH codes. In Section 4, some BCH codes and their weight distributions are presented. Also, LCD BCH codes are constructed and their parameters are determined, some weight distributions are calculated, the determination of the others is equivalent to the computing of Kloosterman sums. In Section 5, we conclude this paper.

2. Preliminaries

A linear code π’ž\mathcal{C} over 𝔽q\mathbb{F}_{q} is called a linear code with complementary dual code (LCD for short) if π’žβ€‹β‹‚π’žβŸ‚={0}\mathcal{C}\bigcap\mathcal{C}^{\perp}=\{0\}, where π’žβŸ‚\mathcal{C}^{\perp} denotes the Euclidean dual of π’ž\mathcal{C}.

Let f​(x)=xt+atβˆ’1​xtβˆ’1+β‹―+a1​x1+a0f(x)=x^{t}+a_{t-1}x^{t-1}+\cdots+a_{1}x_{1}+a_{0} be a monic polynomial over 𝔽q\mathbb{F}_{q} with a0β‰ 0a_{0}\neq 0. The reciprocal polynomial of f​(x)f(x) is defined by f^​(x)=a0βˆ’1​xt​f​(xβˆ’1)\widehat{f}(x)=a_{0}^{-1}x^{t}f(x^{-1}). Then we have the following lemma that characterizes LCD cyclic codes over 𝔽q\mathbb{F}_{q}.

Lemma 2.1.

[24] Let π’ž\mathcal{C} be a cyclic code of length nn over 𝔽q\mathbb{F}_{q} with generator polynomial g​(x)g(x) and gcd⁑(n,q)=1\gcd(n,q)=1. Then the following statements are equivalent.

  1. (1)

    π’ž\mathcal{C} is an LCD code.

  2. (2)

    g​(x)g(x) is self-reciprocal, i.e., g​(x)=g^​(x)g(x)=\widehat{g}(x).

  3. (3)

    Ξ±βˆ’1\alpha^{-1} is a root of g​(x)g(x) for every root Ξ±\alpha of g​(x)g(x).

Let 𝔽q\mathbb{F}_{q} be the finite field with qq elements, where qq is a power of a prime number pp. The canonical additive character of 𝔽q\mathbb{F}_{q} is defined as follows:

Ο‡:𝔽qβ†’β„‚βˆ—,χ​(x)=ΞΆpTrq/p⁑(x),\chi:\mathbb{F}_{q}\rightarrow\mathbb{C}^{*},\chi(x)=\zeta_{p}^{\operatorname{Tr}_{q/p}(x)},

where ΞΆp=e2​π​ip\zeta_{p}=e^{\frac{2\pi i}{p}} is a pp-th primitive root of unity and Trq/p\operatorname{Tr}_{q/p} denotes the trace function from 𝔽q\mathbb{F}_{q} to 𝔽p\mathbb{F}_{p}. The orthogonal property of additive characters which can be found in [14]

βˆ‘xβˆˆπ”½qΟ‡(ax)={qΒ if ​a=0,0Β if ​aβˆˆπ”½qβˆ—.\underset{x\in\mathbb{F}_{q}}{\sum}\chi(ax)=\left\{\begin{aligned} q&~{}\text{ if }~{}a=0,\\ 0&~{}\text{ if }~{}a\in\mathbb{F}_{q}^{*}.\\ \end{aligned}\right.

Let ψ:𝔽qβ†’β„‚βˆ—\psi:\mathbb{F}_{q}\rightarrow\mathbb{C}^{*} be a multiplicative character of 𝔽qβˆ—\mathbb{F}_{q}^{*}. The trivial multiplicative character ψ0\psi_{0} is defined by ψ0​(x)=1\psi_{0}(x)=1 for all xβˆˆπ”½qβˆ—x\in\mathbb{F}_{q}^{*} . For two multiplicative characters ψ\psi,Οˆβ€²\psi^{\prime} of 𝔽qβˆ—\mathbb{F}_{q}^{*} , we define the multiplication by setting Οˆβ€‹Οˆβ€²β€‹(x)=Οˆβ€‹(x)β€‹Οˆβ€²β€‹(x)\psi\psi^{\prime}(x)=\psi(x)\psi^{\prime}(x) for all xβˆˆπ”½qβˆ—x\in\mathbb{F}_{q}^{*}. Let ψ¯\bar{\psi} be the conjugate character of ψ\psi defined by ΟˆΒ―β€‹(x)=Οˆβ€‹(x)Β―\bar{\psi}(x)=\overline{\psi(x)}, where Οˆβ€‹(x)Β―\overline{\psi(x)} denotes the complex conjugate of Οˆβ€‹(x)\psi(x). It is easy to deduce that Οˆβˆ’1=ψ¯\psi^{-1}=\bar{\psi}. It is known [14] that all the multiplicative characters form a multiplication group 𝔽qβˆ—^\hat{\mathbb{F}_{q}^{*}} which is isomorphic to 𝔽qβˆ—\mathbb{F}_{q}^{*}. The orthogonal property of multiplicative characters [14] is:

βˆ‘xβˆˆπ”½qβˆ—Οˆ(x)={qβˆ’1Β ifΒ β€‹Οˆ=ψ0,0Β otherwise.\underset{x\in\mathbb{F}_{q}^{*}}{\sum}\psi(x)=\left\{\begin{aligned} q-1&~{}\text{ if }~{}\psi=\psi_{0},\\ 0&~{}\text{ otherwise}.\\ \end{aligned}\right.

The Gauss sum over 𝔽q\mathbb{F}_{q} is defined by

G​(ψ,Ο‡)=βˆ‘xβˆˆπ”½qβˆ—Ο‡β€‹(x)β€‹Οˆβ€‹(x).G(\psi,\chi)=\sum_{x\in\mathbb{F}_{q}^{*}}\chi(x)\psi(x).

It is easy to see that G​(ψ0,Ο‡)=βˆ’1G(\psi_{0},\chi)=-1 and G​(ψ¯,Ο‡)=Οˆβ€‹(βˆ’1)​G​(ψ,Ο‡)Β―G(\bar{\psi},\chi)=\psi(-1)\overline{G(\psi,\chi)}. Gauss sums can be viewed as the Fourier coefficients in the Fourier expansion of the restriction of ψ\psi to 𝔽qβˆ—\mathbb{F}_{q}^{*} in terms of the multiplicative characters of 𝔽q\mathbb{F}_{q}, i.e., for xβˆˆπ”½qβˆ—x\in\mathbb{F}_{q}^{*},

χ​(x)=1qβˆ’1β€‹βˆ‘xβˆˆπ”½qβˆ—^G​(ψ¯,Ο‡)β€‹Οˆβ€‹(x).\chi(x)=\frac{1}{q-1}\sum_{x\in\hat{\mathbb{F}_{q}^{*}}}G(\bar{\psi},\chi)\psi(x). (1)

Using (1), we can get the following results.

Lemma 2.2.

[14] Let Ο‡\chi be a nontrivial additive character of 𝔽q\mathbb{F}_{q}, nβˆˆβ„•n\in\mathbb{N}, and Ξ»\lambda a multiplicative character of 𝔽q\mathbb{F}_{q} of order d=g​c​d​(n,qβˆ’1)d=gcd(n,q-1). Then

βˆ‘xβˆˆπ”½qχ​(a​xn+b)=χ​(b)β€‹βˆ‘j=1dβˆ’1λ¯j​(a)​G​(Ξ»j,Ο‡)\sum_{x\in\mathbb{F}_{q}}\chi(ax^{n}+b)=\chi(b)\sum_{j=1}^{d-1}\bar{\lambda}^{j}(a)G(\lambda^{j},\chi)

for any a,bβˆˆπ”½qa,b\in\mathbb{F}_{q} with aβ‰ 0a\neq 0.

In general, the explicit determination of Gauss sums is a difficult problem. For future use, we state the quadratic Gauss sums here.

Lemma 2.3.

[14] Let 𝔽q\mathbb{F}_{q} be a finite field with q=psq=p^{s}, where pp is an odd prime and sβˆˆβ„•s\in\mathbb{N}. Let Ξ·\eta be the quadratic character of 𝔽q\mathbb{F}_{q} and let Ο‡\chi be the canonical additive character of 𝔽q\mathbb{F}_{q}. Then

G​(Ξ·,Ο‡)={(βˆ’1)s​q1/2Β if ​p≑1(mod4),(βˆ’1)sβˆ’1​(βˆ’1)s​q1/2Β if ​p≑3(mod4).G(\eta,\chi)=\left\{\begin{array}[]{ll}(-1)^{s}q^{1/2}&\mbox{ if }p\equiv 1\pmod{4},\\ (-1)^{s-1}(\sqrt{-1})^{s}q^{1/2}&\mbox{ if }p\equiv 3\pmod{4}.\end{array}\right.

3. Absolute coset leaders of ternary BCH codes

In this section, we will find the first, second and third largest absolute coset leaders of ternary cyclic BCH codes of length n=3mβˆ’1n=3^{m}-1 over 𝔽3\mathbb{F}_{3}, where m=ordn⁑(3)m=\operatorname{ord}_{n}(3).

In [16, 18, 23], the authors determined the largest and second largest coset leaders of BCH codes in three cases: (1) n=qmβˆ’1n=q^{m}-1; (2) n=qmβˆ’1qβˆ’1n=\frac{q^{m}-1}{q-1}; (3) n=ql+1n=q^{l}+1. In [8], the authors determined the largest and second largest absolute coset leaders of binary BCH codes.

Before presenting our results, we describe some notations. The 33-adic expansion of an integer iβˆˆβ„€ni\in\mathbb{Z}_{n} is denoted by

i=i0+i1​3+β‹―+imβˆ’1​3mβˆ’1β‰œ(i0,i1,…,imβˆ’1),i=i_{0}+i_{1}3+\cdots+i_{m-1}3^{m-1}\triangleq(i_{0},i_{1},\ldots,i_{m-1}),

where each 0≀it≀20\leq i_{t}\leq 2.

According to the definition of absolute coset leaders, we can get the following proposition.

Proposition 1.

[8] Let the absolute coset leader of CΞ΄C_{\delta} be Ξ΄\delta and n=qmβˆ’1n=q^{m}-1.

(1) Then δ≀n2\delta\leq\frac{n}{2}.

(2) If nβˆ’Ξ΄βˆ‰CΞ΄n-\delta\notin C_{\delta}, then Cnβˆ’Ξ΄β‰ CΞ΄C_{n-\delta}\neq C_{\delta}, |Cnβˆ’Ξ΄|=|CΞ΄||C_{n-\delta}|=|C_{\delta}|, and Cnβˆ’Ξ΄C_{n-\delta} has the same absolute coset leader Ξ΄\delta as one in CΞ΄C_{\delta}.

Theorem 3.1.

Let q=3q=3, mm a positive integer, and n=qmβˆ’1n=q^{m}-1. Then Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2} is the largest absolute coset leader among all 33-cyclotomic cosets, CΞ΄1={Ξ΄1}C_{\delta_{1}}=\{\delta_{1}\}, and |CΞ΄1|=1|C_{\delta_{1}}|=1.

Proof.

We shall verify that Ξ΄1\delta_{1} is the largest absolute coset leader among all 33-cyclotomic cosets Cs,0≀s≀nβˆ’1C_{s},0\leq s\leq n-1.

There are two 33-adic expansions of nn and Ξ΄1\delta_{1}:

n\displaystyle n =\displaystyle= (2,2,2,2,…,2,2,2),\displaystyle(2,2,2,2,\ldots,2,2,2), (2)
Ξ΄1\displaystyle\delta_{1} =\displaystyle= (1,1,1,1,…,1,1).\displaystyle(1,1,1,1,\ldots,1,1).

Firstly, we prove that Ξ΄1\delta_{1} is the absolute coset leader of the qq-cyclotomic cosets CΞ΄1C_{\delta_{1}}. For 1≀l≀mβˆ’11\leq l\leq m-1,

3l​δ1(modn)≑(1,1,1,1,…,1,1)3^{l}\delta_{1}\pmod{n}\equiv(1,1,1,1,\ldots,1,1)

Hence CΞ΄1={Ξ΄1}C_{\delta_{1}}=\{\delta_{1}\} only has one element, i.e. |CΞ΄1|=1|C_{\delta_{1}}|=1.

Secondly, we will show that Ξ΄1\delta_{1} is the largest absolute coset leader among all qq-cyclotomic cosets.

For 0≀i≀nβˆ’10\leq i\leq n-1, there is a 33-adic expansion:

i=i0+i1​3+β‹―+imβˆ’1​3mβˆ’1=(i0,i1,…,imβˆ’1),i=i_{0}+i_{1}3+\cdots+i_{m-1}3^{m-1}=(i_{0},i_{1},\ldots,i_{m-1}),

where each it∈{0,1,2}i_{t}\in\{0,1,2\}, t=0,1,…,mβˆ’1t=0,1,\ldots,m-1.

If the expansion of ii has 0. Without loss of generality, let i=(…,0,…)i=(\ldots,0,\ldots). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0)\in C_{i}, so 3l​i(modn)<Ξ΄13^{l}i\pmod{n}<\delta_{1} by (3.1). Hence the absolute coset leader in CiC_{i} is less than Ξ΄1\delta_{1}.

If the expansion of ii has 22. Similarly, let i=(…,2,…)i=(\ldots,2,\ldots), there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that nβˆ’3l​i(modn)<Ξ΄1n-3^{l}i\pmod{n}<\delta_{1}. Hence the absolute coset leader in CiC_{i} is less than Ξ΄1\delta_{1}.

Therefore, Ξ΄1\delta_{1} is the largest absolute coset leader among all cosets.

This completes the proof. ∎

Theorem 3.2.

Let q=3q=3, mm a positive integer, and n=qmβˆ’1n=q^{m}-1.

(1) If mβ‰₯3m\geq 3 is an odd integer, then Ξ΄2=3mβˆ’1βˆ’14+3mβˆ’2\delta_{2}=\frac{3^{m-1}-1}{4}+3^{m-2} is the second largest absolute coset leader, CΞ΄2β‰ Cnβˆ’Ξ΄2C_{\delta_{2}}\neq C_{n-\delta_{2}}, and |CΞ΄2|=|Cnβˆ’Ξ΄2|=m|C_{\delta_{2}}|=|C_{n-\delta_{2}}|=m.

(2) If mβ‰₯2m\geq 2 is an even integer, then Ξ΄2=3mβˆ’14\delta_{2}=\frac{3^{m}-1}{4} is the second largest absolute coset leader, CΞ΄2={Ξ΄2,nβˆ’Ξ΄2}C_{\delta_{2}}=\{\delta_{2},n-\delta_{2}\}, and |CΞ΄2|=2|C_{\delta_{2}}|=2.

Proof.

(1) If mm is odd and the 33-adic expansion of Ξ΄2\delta_{2} is as follows:

Ξ΄2=3mβˆ’1βˆ’14+3mβˆ’2=(2,0,2,0,…,2,0⏟(mβˆ’3)/2​(2,0)′​s,2,1,0),\delta_{2}=\frac{3^{m-1}-1}{4}+3^{m-2}=(\underbrace{2,0,2,0,\ldots,2,0}_{(m-3)/2~{}~{}(2,0)^{\prime}s},2,1,0),

then Ξ΄2<Ξ΄1\delta_{2}<\delta_{1}.

Firstly, we prove that Ξ΄2\delta_{2} is the absolute coset leader of the qq-cyclotomic cosets CΞ΄2C_{\delta_{2}} and Cnβˆ’Ξ΄2C_{n-\delta_{2}}. For 1≀l≀mβˆ’11\leq l\leq m-1, if ll is odd, then

3l​δ2(modn)≑(2,0,…,2,0,⏟(lβˆ’3)/2​(2,0)′​s​2,1,0,2,0,…,2,0⏟(mβˆ’l)/2​(2,0)′​s);3^{l}\delta_{2}\pmod{n}\equiv(\underbrace{2,0,\ldots,2,0,}_{(l-3)/2\ (2,0)^{\prime}s}2,1,0,\underbrace{2,0,\ldots,2,0}_{(m-l)/2~{}~{}(2,0)^{\prime}s});

if ll is even, then

3l​δ1(modn)≑(0,2,0,…,2,0,⏟(lβˆ’4)/2​(2,0)′​s​2,1,0,2,0,…,2,0,⏟(mβˆ’lβˆ’1)/2​(2,0)′​s​2).3^{l}\delta_{1}\pmod{n}\equiv(0,\underbrace{2,0,\ldots,2,0,}_{(l-4)/2~{}~{}(2,0)^{\prime}s}2,1,0,\underbrace{2,0,\ldots,2,0,}_{(m-l-1)/2~{}~{}(2,0)^{\prime}s}2).

Hence CΞ΄2C_{\delta_{2}} has mm distinct elements, i.e. |CΞ΄2|=m|C_{\delta_{2}}|=m, and Ξ΄2=min⁑{k,nβˆ’k:k∈CΞ΄2}\delta_{2}=\min\{k,n-k:k\in C_{\delta_{2}}\}, which is the absolute coset leader in CΞ΄2C_{\delta_{2}}. Similarly, we can prove that |Cnβˆ’Ξ΄2|=m|C_{n-\delta_{2}}|=m, CΞ΄2β‰ Cnβˆ’Ξ΄2C_{\delta_{2}}\neq C_{n-\delta_{2}}, and Cnβˆ’Ξ΄2C_{n-\delta_{2}} has also the absolute coset leader Ξ΄2\delta_{2}.

Secondly, we prove that Ξ΄2\delta_{2} is the second largest absolute coset leader.

For 0≀i≀nβˆ’10\leq i\leq n-1, there is a 33-adic expansion:

i=i0+i1​3+…+imβˆ’1​3mβˆ’1=(i0,i1,…,imβˆ’1),i=i_{0}+i_{1}3+\ldots+i_{m-1}3^{m-1}=(i_{0},i_{1},\ldots,i_{m-1}),

which has at least two elements among 0,1,20,1,2. Otherwise, the expansion of ii has only one elements of 0,1,20,1,2, then i=(0,…,0)<Ξ΄2i=(0,\ldots,0)<\delta_{2}, i=Ξ΄1i=\delta_{1}, or i=nβˆ’Ξ΄1i=n-\delta_{1}.

If the expansion of ii has a consecutive form: (00)(00), i.e., i=(…,0,0,…)i=(\ldots,0,0,\ldots). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,0,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0,0)\in C_{i}, so 3l​i(modn)<Ξ΄23^{l}i\pmod{n}<\delta_{2}. Hence the absolute coset leader of CiC_{i} is less than Ξ΄2\delta_{2}. Similarly, we can prove it if the expansion of ii has consecutive (22)(22).

If the expansion of ii has a form: (110)(110), i.e., i=(…,1,1,0,…)i=(\ldots,1,1,0,\ldots). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,1,1,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,0)\in C_{i}, so 3l​i(modn)<Ξ΄23^{l}i\pmod{n}<\delta_{2}. Hence the absolute coset leader of CiC_{i} is less than Ξ΄2\delta_{2}. Similarly, we can prove if the expansion of ii has a from: (112)(112). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,1,1,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,2)\in C_{i}, so nβˆ’3l​i(modn)<Ξ΄2n-3^{l}i\pmod{n}<\delta_{2}. Hence the absolute coset leader of CiC_{i} is less than Ξ΄2\delta_{2}.

If the expansion of ii has a form: (010)(010) (or (212)(212)), then there is an integer ll such that 3l​i(modn)<Ξ΄23^{l}i\pmod{n}<\delta_{2} (or nβˆ’3l​i(modn)<Ξ΄2n-3^{l}i\pmod{n}<\delta_{2}, respectively). Hence the absolute coset leader of CiC_{i} is less than Ξ΄2\delta_{2}.

If the expansion of ii has not any forms: (00)(00), (11)(11), (22)(22), (010)(010), and (212)(212). We shall prove that the absolute coset leader of CiC_{i} is less than Ξ΄2\delta_{2}. From the above, the expansion of ii is equivalent to insert some 1’s into the sequence (2,0,…,2,0)(2,0,\ldots,2,0) (or (0,2,…,0,2)(0,2,\ldots,0,2)). Since mm is an odd integer, the number of 1’s in the expansion of ii is an odd integer kk.

If k=1k=1, i.e., the expansion of ii has only one form: (210)(210) (or (021)(021)), then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑δ23^{l}i\pmod{n}\equiv\delta_{2} (or nβˆ’3l​i(modn)≑δ2n-3^{l}i\pmod{n}\equiv\delta_{2}, respectively).

If kβ‰₯3k\geq 3, without loss of generality, there are two adjacent (210)′​s(210)^{\prime}s in the expansion of ii, i.e.,

i=(…,2,1,0⏟,2,0,…,2,0,2,1,0⏟,…).i=(\ldots,\underbrace{2,1,0},2,0,\ldots,2,0,\underbrace{2,1,0},\ldots).

Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that

3l​i(modn)≑(…,2,1,0⏟,2,0,…,2,0,2,1,0⏟)<Ξ΄2.3^{l}i\pmod{n}\equiv(\ldots,\underbrace{2,1,0},2,0,\ldots,2,0,\underbrace{2,1,0})<\delta_{2}.

Similarly, if there are two adjacent (012)′​s(012)^{\prime}s in the expansion of ii, i.e.,

i=(…,0,1,2⏟,0,2,…,0,2,0,1,2⏟,…).i=(\ldots,\underbrace{0,1,2},0,2,\ldots,0,2,\underbrace{0,1,2},\ldots).

Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that

nβˆ’3l​i(modn)≑(…,2,1,0⏟,2,0,…,2,0,2,1,0⏟)<Ξ΄2.n-3^{l}i\pmod{n}\equiv(\ldots,\underbrace{2,1,0},2,0,\ldots,2,0,\underbrace{2,1,0})<\delta_{2}.

Therefore Ξ΄2\delta_{2} is the second largest absolute coset leader for mm is odd.

(2) If mm is even, and the expansion of Ξ΄2\delta_{2} is as follows:

Ξ΄2=3mβˆ’14=(2,0,2,0,…,2,0⏟m/2​(2,0)′​s),\delta_{2}=\frac{3^{m}-1}{4}=(\underbrace{2,0,2,0,\ldots,2,0}_{m/2~{}~{}(2,0)^{\prime}s}),

then Ξ΄2<Ξ΄1\delta_{2}<\delta_{1}.

Firstly, we prove that Ξ΄2\delta_{2} is the absolute coset leader of the qq-cyclotomic cosets CΞ΄2C_{\delta_{2}}. For 1≀l≀mβˆ’11\leq l\leq m-1, if ll is odd, then 3l​δ2(modn)≑δ23^{l}\delta_{2}\pmod{n}\equiv\delta_{2}, if ll is even, then nβˆ’3l​δ1(modn)≑δ2n-3^{l}\delta_{1}\pmod{n}\equiv\delta_{2}. Hence CΞ΄2={Ξ΄2,nβˆ’Ξ΄2}C_{\delta_{2}}=\{\delta_{2},n-\delta_{2}\} and |CΞ΄2|=2|C_{\delta_{2}}|=2. It is obvious that Ξ΄2\delta_{2} is the absolute coset leader in CΞ΄2C_{\delta_{2}}.

Secondly, we prove that Ξ΄2\delta_{2} is the second largest absolute coset leader.

For 1≀i≀nβˆ’11\leq i\leq n-1, the 33-adic expansion of ii is as follows: i=(i0,i1,…,imβˆ’1)i=(i_{0},i_{1},\ldots,i_{m-1}), which has at least two elements among 0,1,20,1,2.

If the expansion of ii has a form: (10)(10) (or (12)(12)). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,1,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,0)\in C_{i} (or 3l​i(modn)≑(…,1,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,2)\in C_{i}), so 3l​i(modn)<Ξ΄23^{l}i\pmod{n}<\delta_{2} (or nβˆ’3l​i(modn)<Ξ΄2n-3^{l}i\pmod{n}<\delta_{2}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄2\delta_{2}.

If the expansion of ii has a consecutive form: (11)(11). Then the expansion of ii has (110)(110) or (112)(112). From the above, the absolute coset leader in CiC_{i} is less than Ξ΄2\delta_{2}.

If the expansion of ii has a consecutive form: (00)(00) (or (22)(22)). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,0,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0,0)\in C_{i} (or 3l​i(modn)≑(…,2,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,2,2)\in C_{i}), so 3l​i(modn)<Ξ΄23^{l}i\pmod{n}<\delta_{2} (or nβˆ’3l​i(modn)<Ξ΄2n-3^{l}i\pmod{n}<\delta_{2}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄2\delta_{2}.

Therefore Ξ΄2\delta_{2} is the second largest absolute coset leader.

This completes the proof. ∎

Theorem 3.3.

Let q=3q=3, mm a positive integer, and n=qmβˆ’1n=q^{m}-1.

(1) If m≑0(mod4)m\equiv 0\pmod{4} and mβ‰₯4m\geq 4, then Ξ΄3=3mβˆ’15\delta_{3}=\frac{3^{m}-1}{5} is the third largest absolute coset leader, CΞ΄3={Ξ΄3,2​δ3,nβˆ’3​δ3,nβˆ’2​δ3}C_{\delta_{3}}=\{\delta_{3},2\delta_{3},n-3\delta_{3},n-2\delta_{3}\}, and |CΞ΄3|=4|C_{\delta_{3}}|=4.

(2) If m≑2(mod4)m\equiv 2\pmod{4} and mβ‰₯6m\geq 6, then Ξ΄3=3mβˆ’6βˆ’15+3mβˆ’6+2β‹…3mβˆ’5+2β‹…3mβˆ’3+3mβˆ’2\delta_{3}=\frac{3^{m-6}-1}{5}+3^{m-6}+2\cdot 3^{m-5}+2\cdot 3^{m-3}+3^{m-2} is the third largest absolute coset leader, CΞ΄3β‰ Cnβˆ’Ξ΄3C_{\delta_{3}}\neq C_{n-\delta_{3}}, and |CΞ΄3|=|Cnβˆ’Ξ΄3|=m|C_{\delta_{3}}|=|C_{n-\delta_{3}}|=m.

Proof.

(1) If m≑0(mod4)m\equiv 0\pmod{4} and the 33-adic expansion of Ξ΄3\delta_{3} is as follows:

Ξ΄3=3mβˆ’15=(1+2β‹…3+32)​(1+34+…+3mβˆ’44)=(1,2,1,0,…,1,2,1,0⏟m/4​(1,2,1,0)′​s).\delta_{3}=\frac{3^{m}-1}{5}=(1+2\cdot 3+3^{2})(1+3^{4}+\ldots+3^{\frac{m-4}{4}})=(\underbrace{1,2,1,0,\ldots,1,2,1,0}_{m/4~{}(1,2,1,0)^{\prime}s}).

Firstly, it is checked that CΞ΄3={Ξ΄3,2​δ3,nβˆ’2​δ3,nβˆ’3​δ3}=Cnβˆ’Ξ΄3C_{\delta_{3}}=\{\delta_{3},2\delta_{3},n-2\delta_{3},n-3\delta_{3}\}=C_{n-\delta_{3}}, |CΞ΄3|=4|C_{\delta_{3}}|=4 and Ξ΄3\delta_{3} is the absolute coset leader of the qq-cyclotomic cosets CΞ΄3C_{\delta_{3}}.

Secondly, we prove that Ξ΄3\delta_{3} is the third largest absolute coset leader.

For 1≀i≀nβˆ’11\leq i\leq n-1, the 33-adic expansion of ii is as follows: i=(i0,i1,…,imβˆ’1)i=(i_{0},i_{1},\ldots,i_{m-1}), which has at least two elements among 0,1,20,1,2.

If the expansion of ii has a consecutive form: (00)(00) or (22)(22). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,0,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0,0)\in C_{i} (or 3l​i(modn)≑(…,2,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,2,2)\in C_{i}), so 3l​i(modn)<Ξ΄33^{l}i\pmod{n}<\delta_{3} (or nβˆ’3l​i(modn)<Ξ΄3n-3^{l}i\pmod{n}<\delta_{3}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has a consecutive form: (11)(11) and the expansion of ii has the form: (110)(110) or (112)(112). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,1,1,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,0)\in C_{i} (or 3l​i(modn)≑(…,1,1,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,2)\in C_{i}), so 3l​i(modn)<Ξ΄33^{l}i\pmod{n}<\delta_{3} (or nβˆ’3l​i(modn)<Ξ΄3n-3^{l}i\pmod{n}<\delta_{3}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has not any consecutive form: (00)(00), (11)(11), or (22)(22), and it has a form: (010)(010) or (212)(212). Then we can easily check that the absolute coset leader of CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has not any form: (00)(00), (11)(11), (22)(22), (010)(010) and (212)(212), we will prove that the absolute coset leader of CiC_{i} is less than Ξ΄3\delta_{3}. By the assumptions, the expansion of ii is equivalent to insert some 1’s into the sequence (2,0,…,2,0)(2,0,\ldots,2,0) (or (0,2,…,0,2)(0,2,\ldots,0,2)). Since m≑0(mod4)m\equiv 0\pmod{4}, the number of 1’s in the expansion of ii is an even integer kk.

If k=0k=0, then i=Ξ΄2i=\delta_{2} (or nβˆ’Ξ΄2n-\delta_{2}).

If k=m2k=\frac{m}{2}, then i=Ξ΄3i=\delta_{3} or 3​i(modn)≑δ33i\pmod{n}\equiv\delta_{3}.

If 2≀k<m22\leq k<\frac{m}{2}, then i=(…,2,0,2,1,0,…)i=(\ldots,2,0,2,1,0,\ldots) (or i=(…,0,2,0,1,2,…)i=(\ldots,0,2,0,1,2,\ldots)). Hence there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,2,0,2,1,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,2,0,2,1,0)\in C_{i} (or 3l​i(modn)≑(…,0,2,0,1,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0,2,0,1,2)\in C_{i}), so 3l​i(modn)<Ξ΄33^{l}i\pmod{n}<\delta_{3} (or nβˆ’3l​i(modn)<Ξ΄3n-3^{l}i\pmod{n}<\delta_{3}, respectively). So the absolute coset leader of CiC_{i} is smaller than Ξ΄3\delta_{3}.

Therefore Ξ΄3\delta_{3} is the third largest absolute coset leader when m≑0(mod4)m\equiv 0\pmod{4}.

(2) If m≑2(mod4)m\equiv 2\pmod{4} and the 3-adic expansion of Ξ΄3\delta_{3} is as follows:

Ξ΄3\displaystyle\delta_{3} =\displaystyle= (1+2β‹…3+32)​(1+34+…+3mβˆ’104)+3mβˆ’6+2β‹…3mβˆ’5+2β‹…3mβˆ’3+3mβˆ’2\displaystyle(1+2\cdot 3+3^{2})(1+3^{4}+\ldots+3^{\frac{m-10}{4}})+3^{m-6}+2\cdot 3^{m-5}+2\cdot 3^{m-3}+3^{m-2}
=\displaystyle= (1,2,1,0,…,1,2,1,0⏟(mβˆ’6)/4​(1,2,1,0)′​s,1,2,0,2,1,0).\displaystyle(\underbrace{1,2,1,0,\ldots,1,2,1,0}_{(m-6)/4~{}(1,2,1,0)^{\prime}s},1,2,0,2,1,0).

In fact, the number of 1′​s1^{\prime}s in the expansion of Ξ΄3\delta_{3} is mβˆ’22\frac{m-2}{2}.

Firstly, we prove that Ξ΄3\delta_{3} is the absolute coset leader of the qq-cyclotomic cosets CΞ΄3C_{\delta_{3}} and Cnβˆ’Ξ΄3C_{n-\delta_{3}}. For 1≀l≀mβˆ’11\leq l\leq m-1, 3l​δ3(modn)3^{l}\delta_{3}\pmod{n} are all different and Ξ΄3\delta_{3} is the smallest one in CΞ΄3C_{\delta_{3}}. Hence CΞ΄3C_{\delta_{3}} has mm distinct elements, i.e. |CΞ΄3|=m|C_{\delta_{3}}|=m, and Ξ΄3\delta_{3} is the absolute coset leader in CΞ΄3C_{\delta_{3}}. Similarly, we can prove that |Cnβˆ’Ξ΄3|=m|C_{n-\delta_{3}}|=m, CΞ΄3β‰ Cnβˆ’Ξ΄3C_{\delta_{3}}\neq C_{n-\delta_{3}}, and Cnβˆ’Ξ΄3C_{n-\delta_{3}} has also the absolute coset leader Ξ΄3\delta_{3}.

Secondly, we prove that Ξ΄3\delta_{3} is the third largest absolute coset leader.

For 1≀i≀nβˆ’11\leq i\leq n-1, there is a 33-adic expansion: i=(i0,i1,…,imβˆ’1)i=(i_{0},i_{1},\ldots,i_{m-1}), which has at least two elements among 0,1,20,1,2.

If the expansion of ii has a consecutive form: (00)(00) or (22)(22). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,0,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,0,0)\in C_{i} (or 3l​i(modn)≑(…,2,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,2,2)\in C_{i}), so 3l​i(modn)<Ξ΄33^{l}i\pmod{n}<\delta_{3} (or nβˆ’3l​i(modn)<Ξ΄3n-3^{l}i\pmod{n}<\delta_{3}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has a consecutive form: (11)(11) and the expansion of ii has a form: (110)(110) or (112)(112). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)≑(…,1,1,0)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,0)\in C_{i} (or 3l​i(modn)≑(…,1,1,2)∈Ci3^{l}i\pmod{n}\equiv(\ldots,1,1,2)\in C_{i}), so 3l​i(modn)<Ξ΄33^{l}i\pmod{n}<\delta_{3} (or nβˆ’3l​i(modn)<Ξ΄3n-3^{l}i\pmod{n}<\delta_{3}, respectively). Hence, the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has not any consecutive form: (00)(00), (11)(11), or (22)(22), and it has a form: (010)(010) or (212)(212). Then we can easily check that the absolute coset leader of CiC_{i} is less than Ξ΄3\delta_{3}.

If the expansion of ii has not any form: (00)(00), (11)(11), (22)(22), (010)(010) and (212)(212), we will prove that the absolute coset leader of CiC_{i} is less than Ξ΄3\delta_{3}. Similarly, by the assumptions, the expansion of ii is equivalent to insert some 1’s into the sequence (2,0,…,2,0)(2,0,\ldots,2,0) (or (0,2,…,0,2)(0,2,\ldots,0,2)). Since m≑2(mod4)m\equiv 2\pmod{4}, the number of 1’s in the expansion of ii is an even integer kk with 0≀k≀mβˆ’220\leq k\leq\frac{m-2}{2}.

If k=0k=0, then i=Ξ΄2i=\delta_{2}.

If k=mβˆ’22k=\frac{m-2}{2} and the expansion of ii has only one form: (202)(202) or (020)(020), i.e. i=(…,1,2,1,0,…,1,0,1,2,0,2⏟,1,0,…)i=(\ldots,1,2,1,0,\ldots,1,0,1,\underbrace{2,0,2},1,0,\ldots) or i=(…,1,2,1,0,…,1,2,1,0,2,0⏟,1,2​…)i=(\ldots,1,2,1,0,\ldots,1,2,1,\underbrace{0,2,0},1,2\ldots). Then there is an integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i(modn)=Ξ΄33^{l}i\pmod{n}=\delta_{3} or nβˆ’3l​i(modn)=Ξ΄3n-3^{l}i\pmod{n}=\delta_{3}.

If k=mβˆ’22k=\frac{m-2}{2} and the expansion of ii has not any form: (202)(202) or (020)(020), i.e., i=(…,2,1,0,2⏟,1,0,…)i=(\ldots,2,1,\underbrace{0,2},1,0,\ldots) (or i=(…,0,1,2,0⏟,1,2,…)i=(\ldots,0,1,\underbrace{2,0},1,2,\ldots)). Then there is a integer ll, 0≀l≀mβˆ’10\leq l\leq m-1, such that 3l​i=(…,1,0,2,1,0)<Ξ΄33^{l}i=(\ldots,1,0,2,1,0)<\delta_{3} (or nβˆ’3i​i=nβˆ’(…,1,2,0,1,2)<Ξ΄3n-3^{i}i=n-(\ldots,1,2,0,1,2)<\delta_{3}, respectively). Hence the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}.

If 2≀k<mβˆ’222\leq k<\frac{m-2}{2}. We consider the following some cases.

(I) If the expansion of ii has one of the following six cases:

i\displaystyle i =\displaystyle= (…,2,1,0,2⏟2,1,0,…),i=(…,0,1,2,0⏟2,1,2,…),\displaystyle(\ldots,2,1,\underbrace{0,2}_{2},1,0,\ldots),~{}i=(\ldots,0,1,\underbrace{2,0}_{2},1,2,\ldots),
i\displaystyle i =\displaystyle= (…,1,0,2,…​0,2,0,2⏟>3,1,…),i=(…,1,2,0,…,2,0,2,0⏟>3,1,…),\displaystyle(\ldots,1,\underbrace{0,2,\ldots 0,2,0,2}_{>3},1,\ldots),~{}i=(\ldots,1,\underbrace{2,0,\ldots,2,0,2,0}_{>3},1,\ldots),
i\displaystyle i =\displaystyle= (…,1,2,0,…​0,2,0,2⏟>3,1,…),i=(…,1,0,2,…,0,2,0⏟>3,1,…),\displaystyle(\ldots,1,\underbrace{2,0,\ldots 0,2,0,2}_{>3},1,\ldots),~{}i=(\ldots,1,\underbrace{0,2,\ldots,0,2,0}_{>3},1,\ldots),

i.e. there are two or more than three elements between two 1′​s1^{\prime}s. Then there is an integer ll such that 3l​i<Ξ΄33^{l}i<\delta_{3} or nβˆ’3l​i<Ξ΄3n-3^{l}i<\delta_{3}.

(II) If the expansion of ii has a form:

i=(…,1,2,0,2⏟,1,0,2,0⏟,1,…),i=(\ldots,1,\underbrace{2,0,2},1,\underbrace{0,2,0},1,\ldots),

where each 11 inserts between (2,0,2)(2,0,2) and (0,2,0)(0,2,0). Then m=k+3​k=4​km=k+3k=4k, which is contradictory.

(III) If the expansion of ii has a form:

i=(…,1,2,0,2⏟,1,0,1,2,1,0,2,0⏟,1,…),i=(\ldots,1,\underbrace{2,0,2},1,0,1,2,1,\underbrace{0,2,0},1,\ldots),

where 0, 22, (202)(202), and (020)(020) appear between two 1′​s1^{\prime}s. Let the number of (202)(202) and (020)(020) in the expansion of ii be tt, then tt is odd.

In fact, if (202)(202) and (020)(020) are viewed as 22 and 0, respectively, i.e.

iβ€²=(…,1,2⏟,1,0,1,2,1,0⏟,1,…).i^{\prime}=(\ldots,1,\underbrace{2},1,0,1,2,1,\underbrace{0},1,\ldots).

Then by m≑2(mod4)m\equiv 2\pmod{4} and kk even, m=2​k+2​tm=2k+2t and tt is odd.

Without loss of generality, there are two adjacent (202)′​s(202)^{\prime}s in the expansion of ii, i.e.,

i=(…,2,0,2⏟,1,0,…,0,1,2,0,2⏟,1,0,…).i=(\ldots,\underbrace{2,0,2},1,0,\ldots,0,1,\underbrace{2,0,2},1,0,\ldots).

Then there is an integer ll such that 3l​i<Ξ΄33^{l}i<\delta_{3}.

Hence the absolute coset leader in CiC_{i} is less than Ξ΄3\delta_{3}. Therefore Ξ΄3\delta_{3} is the third largest absolute coset leader for m≑2(mod4)m\equiv 2\pmod{4}.

This completes the proof. ∎

4. Parameters of some BCH codes

In this section, we will first present three classes of ternary BCH codes, determine their parameters and weight distributions. Secondly, four classes of ternary LCD BCH codes are proposed, weight distributions of two of these codes are calculated and the others convert to the calculations of the Kloosterman sums.

We always assume that n=3mβˆ’1n=3^{m}-1, Ξ±\alpha is a primitive element of 𝔽3m\mathbb{F}_{3^{m}}, and CiC_{i} is the 33-cyclotomic coset. We shall compute the weight distributions of BCH codes.

4.1. Three classes of BCH Codes and their weight distributions

Theorem 4.1.

Let mm be an odd integer, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}, Ξ΄2=3mβˆ’1βˆ’14+3mβˆ’2\delta_{2}=\frac{3^{m-1}-1}{4}+3^{m-2}, Z=β‹ƒβˆ’Ξ΄2<s≀δ1CsZ=\bigcup_{-\delta_{2}<s\leq\delta_{1}}C_{s}, and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,Ξ΄1+Ξ΄2+1,βˆ’Ξ΄2)={c​(a)=(Tr3m/3⁑(a​αδ2​i))i=0nβˆ’1:aβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,\delta_{1}+\delta_{2}+1,-\delta_{2})}=\{c(a)=(\operatorname{Tr}_{3^{m}/3}(a\alpha^{\delta_{2}i}))_{i=0}^{n-1}:a\in\mathbb{F}_{3^{m}}\}

is a one-weight [3mβˆ’1,m,2β‹…3mβˆ’1][3^{m}-1,m,2\cdot 3^{m-1}] BCH code.

Proof.

By Theorem 3.2, Ξ΄2\delta_{2} is the second largest abstract coset leader if mm is odd, the parity-check polynomial of π’ž(3,3mβˆ’1,Ξ΄1+Ξ΄2,βˆ’Ξ΄2)\mathcal{C}_{(3,3^{m}-1,\delta_{1}+\delta_{2},-\delta_{2})} is h​(x)=∏i∈Cnβˆ’Ξ΄2(xβˆ’Ξ±i)h(x)=\prod_{i\in C_{n-\delta_{2}}}(x-\alpha^{i}), which is irreducible over 𝔽q\mathbb{F}_{q} and deg⁑(h​(x))=m\deg(h(x))=m, so the dimension of the code is mm.

For aβˆˆπ”½3mβˆ—a\in\mathbb{F}_{3^{m}}^{*}, let Ο‰\omega be a 3-th primitive root of unit in the complex field. Since 3m+14∈Cnβˆ’Ξ΄2\frac{3^{m}+1}{4}\in C_{n-\delta_{2}}, and (3m+14,3mβˆ’1)=1(\frac{3^{m}+1}{4},3^{m}-1)=1, we have

WH​(c​(a))=nβˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ‘i=0nβˆ’1Ο‰y​Tr3m/3⁑(a​αδ2​i)\displaystyle W_{H}(c(a))=n-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}}\sum_{i=0}^{n-1}\omega^{y\operatorname{Tr}_{3^{m}/3}(a\alpha^{\delta_{2}i})}
=\displaystyle= 2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—βˆ‘i=0nβˆ’1Ο‰y​Tr3m/3⁑(a​α3m+14​i)\displaystyle\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\sum_{i=0}^{n-1}\omega^{y\operatorname{Tr}_{3^{m}/3}(a\alpha^{\frac{3^{m}+1}{4}i})}
=\displaystyle= 2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—βˆ‘xβˆˆπ”½3mβˆ—Ο‰y​Tr3m/3⁑(a​x)=2​n3βˆ’23​(βˆ‘xβˆˆπ”½3mΟ‰Tr3m/3⁑(a​x)βˆ’1)=2β‹…3mβˆ’1.\displaystyle\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\sum_{x\in\mathbb{F}_{3^{m}}^{*}}\omega^{y\operatorname{Tr}_{3^{m}/3}(ax)}=\frac{2n}{3}-\frac{2}{3}(\sum_{x\in\mathbb{F}_{3^{m}}}\omega^{\operatorname{Tr}_{3^{m}/3}(ax)}-1)=2\cdot 3^{m-1}.

This completes the proof.∎

Example 1.

Let p=3p=3, m=5m=5, and n=pmβˆ’1=242n=p^{m}-1=242. Then the BCH code in Theorem 4.1 has weight enumerator 1+242​z162,1+242z^{162}, which is confirmed by Magma.

Theorem 4.2.

Let mβ‰₯6m\geq 6 be an even integer with m≑2(mod4)m\equiv 2\pmod{4}, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}, Ξ΄3=3mβˆ’6βˆ’15+3mβˆ’6+2β‹…3mβˆ’5+2β‹…3mβˆ’3+3mβˆ’2\delta_{3}=\frac{3^{m-6}-1}{5}+3^{m-6}+2\cdot 3^{m-5}+2\cdot 3^{m-3}+3^{m-2}, Z=(β‹ƒβˆ’Ξ΄3<s≀δ1Cs)Z=(\bigcup_{-\delta_{3}<s\leq\delta_{1}}C_{s}), and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,Ξ΄1+Ξ΄3+1,βˆ’Ξ΄3)={c​(a)=(Tr3m/3⁑(a​αδ3​i))i=0nβˆ’1:aβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,\delta_{1}+\delta_{3}+1,-\delta_{3})}=\{c(a)=(\operatorname{Tr}_{3^{m}/3}(a\alpha^{\delta_{3}i}))_{i=0}^{n-1}:a\in\mathbb{F}_{3^{m}}\}

is a BCH code with parameters [3mβˆ’1,m,23β‹…(3mβˆ’3m2)][3^{m}-1,m,\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}})] and the weight distribution in Table 1.

Table 1
Weight Frequency 0 1 23β‹…(3mβˆ’3m2)\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}}) 3mβˆ’12\frac{3^{m}-1}{2} 23β‹…(3m+3m2)\frac{2}{3}\cdot(3^{m}+3^{\frac{m}{2}}) 3mβˆ’12\frac{3^{m}-1}{2}

Proof.

By Theorem 3.3, Ξ΄3\delta_{3} is the third largest abstract coset leader, the parity-check polynomial of π’ž(3,3mβˆ’1,Ξ΄1+Ξ΄3+1,βˆ’Ξ΄3)\mathcal{C}_{(3,3^{m}-1,\delta_{1}+\delta_{3}+1,-\delta_{3})} is h​(x)=∏i∈Cnβˆ’Ξ΄3(xβˆ’Ξ±i)h(x)=\prod_{i\in C_{n-\delta_{3}}}(x-\alpha^{i}), so the dimension of the code is mm.

For aβˆˆπ”½3mβˆ—a\in\mathbb{F}_{3^{m}}^{*}, let Ο‰\omega be a 3-th primitive root of unit in the complex field. By m≑2(mod4)m\equiv 2\pmod{4}, Ξ±3mβˆ’13βˆ’1∈(𝔽3mβˆ—)2\alpha^{\frac{3^{m}-1}{3-1}}\in(\mathbb{F}_{3^{m}}^{*})^{2} and 𝔽3βˆ—βŠ‚(𝔽3mβˆ—)2\mathbb{F}_{3}^{*}\subset(\mathbb{F}_{3^{m}}^{*})^{2}. Since 3mβˆ’195∈Cnβˆ’Ξ΄3\frac{3^{m}-19}{5}\in C_{n-\delta_{3}} and gcd⁑(3mβˆ’195,3mβˆ’1)=2\gcd(\frac{3^{m}-19}{5},3^{m}-1)=2, for 0β‰ aβˆˆπ”½3m0\neq a\in\mathbb{F}_{3^{m}},

WH​(c​(a))=nβˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ‘i=0nβˆ’1Ο‰y​Tr3m/3⁑(a​αδ3​i)=2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—βˆ‘i=0nβˆ’1Ο‰y​Tr3m/3⁑(a​α3mβˆ’195​i)\displaystyle W_{H}(c(a))=n-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}}\sum_{i=0}^{n-1}\omega^{y\operatorname{Tr}_{3^{m}/3}(a\alpha^{\delta_{3}i})}=\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\sum_{i=0}^{n-1}\omega^{y\operatorname{Tr}_{3^{m}/3}(a\alpha^{\frac{3^{m}-19}{5}i})}
=\displaystyle= 2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—βˆ‘xβˆˆπ”½3mβˆ—Ο‡β€‹(y​a​x2)=2​n3βˆ’23​(βˆ‘xβˆˆπ”½3mχ​(y​a​x2)βˆ’1)\displaystyle\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\sum_{x\in\mathbb{F}_{3^{m}}^{*}}\chi(yax^{2})=\frac{2n}{3}-\frac{2}{3}(\sum_{x\in\mathbb{F}_{3^{m}}}\chi(yax^{2})-1)
=\displaystyle= 2β‹…3m3βˆ’23​η​(a)​G​(Ξ·)\displaystyle\frac{2\cdot 3^{m}}{3}-\frac{2}{3}\eta(a)G(\eta)
=\displaystyle= {23β‹…(3mβˆ’3m2),Β if ​a​ is a squareΒ ,23β‹…(3m+3m2),Β if ​a​ is not a squareΒ ,\displaystyle\left\{\begin{array}[]{ll}\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}}),&\mbox{ if }a\mbox{ is a square },\\ \frac{2}{3}\cdot(3^{m}+3^{\frac{m}{2}}),&\mbox{ if }a\mbox{ is not a square },\end{array}\right.

where Ξ·\eta is the multiplicative character of order 22 over 𝔽3m\mathbb{F}_{3^{m}}. Hence the frequency of the weights is easy to obtain and this completes the proof. ∎

Example 2.

Let p=3p=3, m=6m=6, and n=pmβˆ’1=728n=p^{m}-1=728. Then the BCH code in Theorem 4.2 has weight enumerator 1+364​z468+364​z504,1+364z^{468}+364z^{504}, which is confirmed by Magma.

Theorem 4.3.

Let mm be an integer with m≑2(mod4)m\equiv 2\pmod{4}, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2} , Ξ΄3=3mβˆ’6βˆ’15+3mβˆ’6+2β‹…3mβˆ’5+2β‹…3mβˆ’3+3mβˆ’2\delta_{3}=\frac{3^{m-6}-1}{5}+3^{m-6}+2\cdot 3^{m-5}+2\cdot 3^{m-3}+3^{m-2} , Z=(β‹ƒβˆ’Ξ΄3<s<Ξ΄1Cs)Z=(\bigcup_{-\delta_{3}<s<\delta_{1}}C_{s}), and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,Ξ΄1+Ξ΄3,βˆ’Ξ΄3)={c​(a,b)=(a​(βˆ’1)i+Tr3m/3⁑(b​αδ3​i))i=0nβˆ’1:aβˆˆπ”½3,bβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,\delta_{1}+\delta_{3},-\delta_{3})}=\{c(a,b)=\left(a(-1)^{i}+\operatorname{Tr}_{3^{m}/3}(b\alpha^{\delta_{3}i})\right)_{i=0}^{n-1}:a\in\mathbb{F}_{3},b\in\mathbb{F}_{3^{m}}\}

is a ternary BCH code with parameters [3mβˆ’1,m+1,23β‹…(3mβˆ’3m2)][3^{m}-1,m+1,\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}})] and the weight distribution in Table 2.

Table 2
Weight Frequency 0 1 23β‹…(3mβˆ’3m2)\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}}) 3mβˆ’12\frac{3^{m}-1}{2} 23β‹…(3m+3m2)\frac{2}{3}\cdot(3^{m}+3^{\frac{m}{2}}) 3mβˆ’12\frac{3^{m}-1}{2} 13​(2β‹…3m+3m2)βˆ’1\frac{1}{3}(2\cdot 3^{m}+3^{\frac{m}{2}})-1 3mβˆ’13^{m}-1 13​(2β‹…3mβˆ’3m2)βˆ’1\frac{1}{3}(2\cdot 3^{m}-3^{\frac{m}{2}})-1 3mβˆ’13^{m}-1 3mβˆ’13^{m}-1 2

Proof.

By Theorem 3.3, Ξ΄3\delta_{3} is the third largest abstract coset leader, the parity-check polynomial of π’ž\mathcal{C} is h​(x)=(x+1)β€‹βˆi∈Cnβˆ’Ξ΄3(xβˆ’Ξ±i)h(x)=(x+1)\prod_{i\in C_{n-\delta_{3}}}(x-\alpha^{i}), so the dimension of the code is m+1m+1.

Let Ο‰\omega be a 3-th primitive root of unit in the complex field. By m≑2(mod4)m\equiv 2\pmod{4}, 𝔽3βˆ—βŠ‚(𝔽3mβˆ—)2\mathbb{F}_{3}^{*}\subset(\mathbb{F}_{3^{m}}^{*})^{2}; by βˆ’3mβˆ’195∈Cnβˆ’Ξ΄3-\frac{3^{m}-19}{5}\in C_{n-\delta_{3}}, (3mβˆ’195,3mβˆ’1)=2(\frac{3^{m}-19}{5},3^{m}-1)=2. For aβˆˆπ”½3a\in\mathbb{F}_{3} and bβˆˆπ”½3mb\in\mathbb{F}_{3^{m}},

WH​(c​(a,b))\displaystyle W_{H}(c(a,b)) =\displaystyle= nβˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ‘i=0nβˆ’1Ο‰y​[a​(βˆ’1)i+Tr3m/3⁑(b​αδ3​i)]\displaystyle n-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}}\sum_{i=0}^{n-1}\omega^{y[a(-1)^{i}+\operatorname{Tr}_{3^{m}/3}(b\alpha^{\delta_{3}i})]}
=\displaystyle= 2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—βˆ‘i=0nβˆ’1Ο‰y​[a​(βˆ’1)i+Tr3m/3⁑(b​αδ3​i)]\displaystyle\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\sum_{i=0}^{n-1}\omega^{y[a(-1)^{i}+\operatorname{Tr}_{3^{m}/3}(b\alpha^{\delta_{3}i})]}
=\displaystyle= 2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰y​aβ€‹βˆ‘xβˆˆπ”½3mβˆ—Ο‰Tr3m/3⁑(b​x2).\displaystyle\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ya}\sum_{x\in\mathbb{F}_{3^{m}}^{*}}\omega^{\operatorname{Tr}_{3^{m}/3}(bx^{2})}.

Suppose that a=0a=0 and b=0b=0. Then WH​(c​(a,b))=0W_{H}(c(a,b))=0.

Suppose that a≠0a\neq 0 and b=0b=0. Then

WH​(c​(a,b))\displaystyle W_{H}(c(a,b)) =\displaystyle= 2​n3βˆ’n3β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰y​a=n.\displaystyle\frac{2n}{3}-\frac{n}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ya}=n.

Suppose that a=0a=0 and b≠0b\neq 0. Then

WH​(c​(a,b))=2​n3βˆ’23​(βˆ‘xβˆˆπ”½3mΟ‰Tr3m/3⁑(b​x2)βˆ’1)=2β‹…3mβˆ’1βˆ’23​η​(b)​G​(Ξ·)\displaystyle W_{H}(c(a,b))=\frac{2n}{3}-\frac{2}{3}(\sum_{x\in\mathbb{F}_{3^{m}}}\omega^{\operatorname{Tr}_{3^{m}/3}(bx^{2})}-1)=2\cdot 3^{m-1}-\frac{2}{3}\eta(b)G(\eta)
=\displaystyle= {23β‹…(3mβˆ’3m2),Β if ​b​ is a square,23β‹…(3m+3m2),Β if ​b​ is not a square.\displaystyle\left\{\begin{array}[]{ll}\frac{2}{3}\cdot(3^{m}-3^{\frac{m}{2}}),&\mbox{ if }b\mbox{ is a square},\\ \frac{2}{3}\cdot(3^{m}+3^{\frac{m}{2}}),&\mbox{ if }b\mbox{ is not a square}.\end{array}\right.

Suppose that a≠0a\neq 0 and b≠0b\neq 0. Then

WH​(c​(a,b))=2​n3βˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰y​aβ€‹βˆ‘xβˆˆπ”½3mβˆ—Ο‰Tr3m/3⁑(b​x2)\displaystyle W_{H}(c(a,b))=\frac{2n}{3}-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ya}\sum_{x\in\mathbb{F}_{3^{m}}^{*}}\omega^{\operatorname{Tr}_{3^{m}/3}(bx^{2})}
=\displaystyle= 2​n3βˆ’13​(βˆ’1)β€‹βˆ‘xβˆˆπ”½3m(χ​(Tr3m/3⁑(b​x2))βˆ’1)\displaystyle\frac{2n}{3}-\frac{1}{3}(-1)\sum_{x\in\mathbb{F}_{3^{m}}}(\chi(\operatorname{Tr}_{3^{m}/3}(bx^{2}))-1)
=\displaystyle= 2​n3βˆ’13+13​η​(b)​G​(Ξ·)\displaystyle\frac{2n}{3}-\frac{1}{3}+\frac{1}{3}\eta(b)G(\eta)
=\displaystyle= {13​(2β‹…3m+3m2)βˆ’1,Β if ​b​ is a squareΒ ,13​(2β‹…3mβˆ’3m2)βˆ’1,Β if ​b​ is not a square.Β \displaystyle\left\{\begin{array}[]{ll}\frac{1}{3}(2\cdot 3^{m}+3^{\frac{m}{2}})-1,&\mbox{ if }b\mbox{ is a square },\\ \frac{1}{3}(2\cdot 3^{m}-3^{\frac{m}{2}})-1,&\mbox{ if }b\mbox{ is not a square. }\end{array}\right.

Note that it is easy to obtain their frequencies and this completes the proof. ∎

Example 3.

Let p=3p=3, m=6m=6, and n=pmβˆ’1=728n=p^{m}-1=728. Then the BCH code in Theorem 4.3 has weight enumerator

1+364​z468+728​z476+728​z494+364​z504+2​z728,1+364z^{468}+728z^{476}+728z^{494}+364z^{504}+2z^{728},

which is confirmed by Magma.

4.2. Ternary LCD BCH Codes

Let n=3mβˆ’1n=3^{m}-1 and Ξ±\alpha a primitive element of 𝔽3m\mathbb{F}_{3^{m}}. Define a ternary LCD BCH code π’ž(3,n,βˆ’t,2​t)=⟨g​(x)⟩\mathcal{C}_{(3,n,-t,2t)}=\langle g(x)\rangle, where tt is a positive integer, Z=⋃|i|<tCiZ=\bigcup_{|i|<t}C_{i} is a defining set, and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Now we shall choose some tt to compute the weight distributions of the ternary LCD BCH cyclic codes.

Theorem 4.4.

Let mm be an integer and Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}. Then

π’ž(3,3mβˆ’1,2​δ1,βˆ’Ξ΄1)={c​(a)=(Tr3m/3⁑(a​x))xβˆˆπ”½3mβˆ—:aβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,2\delta_{1},-\delta_{1})}=\{c(a)=(\operatorname{Tr}_{3^{m}/3}(ax))_{x\in\mathbb{F}_{3^{m}}^{*}}:a\in\mathbb{F}_{3^{m}}\}

is a ternary LCD BCH cyclic code with parameters [3mβˆ’1,1,3mβˆ’1][3^{m}-1,1,3^{m}-1] and its designed distance 3mβˆ’13^{m}-1.

Proof.

By Theorem 3.1, Ξ΄1\delta_{1} is the largest abstract coset leader, the parity-check polynomial of π’ž(3,3mβˆ’1,2​δ1,βˆ’Ξ΄1)\mathcal{C}_{(3,3^{m}-1,2\delta_{1},-\delta_{1})} is h​(x)=xnβˆ’1g​(x)=x+1h(x)=\frac{x^{n}-1}{g(x)}=x+1, where h​(x)h(x) is irreducible over 𝔽3\mathbb{F}_{3}, if Ξ±\alpha is an nnth root of unit in 𝔽3m\mathbb{F}_{3^{m}}, h​(Ξ±Ξ΄1)=0h(\alpha^{\delta_{1}})=0, deg⁑(h​(x))=1\deg(h(x))=1, and h​(x)h(x) is a self-reciprocal polynomial.

Let Ξ²=Ξ±Ξ΄1\beta=\alpha^{\delta_{1}}. Then

π’ž(3,3mβˆ’1,2​δ1,βˆ’Ξ΄1)={c​(a)=(a​βi)i=0nβˆ’1:aβˆˆπ”½3}.\mathcal{C}_{(3,3^{m}-1,2\delta_{1},-\delta_{1})}=\{c(a)=(a\beta^{i})_{i=0}^{n-1}:a\in\mathbb{F}_{3}\}.

So, it has parameters [3mβˆ’1,1,3mβˆ’1][3^{m}-1,1,3^{m}-1] and it has one all zeros codeword and two codewords with weight 3mβˆ’13^{m}-1. ∎

Theorem 4.5.

Let mm be an odd integer, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}, Ξ΄2=3mβˆ’1βˆ’14+3mβˆ’2\delta_{2}=\frac{3^{m-1}-1}{4}+3^{m-2}, Z=(⋃|s|<Ξ΄2Cs)​⋃CΞ΄1Z=(\bigcup_{|s|<\delta_{2}}C_{s})\bigcup C_{\delta_{1}}, and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)={c​(a,b)=(Tr3m/3⁑(a​x+b​xβˆ’1))xβˆˆπ”½3mβˆ—:a,bβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(ax+bx^{-1}))_{x\in\mathbb{F}_{3^{m}}^{*}}:a,b\in\mathbb{F}_{3^{m}}\}

is a ternary LCD cyclic code with parameters [3mβˆ’1,2m,β‰₯2Ξ΄2][3^{m}-1,2m,\geq 2\delta_{2}] and its designed distance 2​δ22\delta_{2}.

Proof.

By Theorem 3.2, Ξ΄2\delta_{2} is the second largest absolute coset leader, the parity-check polynomial of π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})} is h​(x)=xnβˆ’1g​(x)=f​(x)​f^​(x)h(x)=\frac{x^{n}-1}{g(x)}=f(x)\widehat{f}(x), where f​(x)f(x) is irreducible over 𝔽3\mathbb{F}_{3}, f​(Ξ±Ξ΄2)=0f(\alpha^{\delta_{2}})=0, deg⁑(f​(x))=m\deg(f(x))=m, and f^​(x)\widehat{f}(x) is a reciprocal polynomial of f​(x)f(x).

Let Ξ²=Ξ±Ξ΄2\beta=\alpha^{\delta_{2}}. Then by Delsarte’s Theorem [5],

π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)={c​(a,b)=(Tr3m/3⁑(a​βi+b​(Ξ²βˆ’1)i))i=0nβˆ’1:a,bβˆˆπ”½3m}.\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(a\beta^{i}+b(\beta^{-1})^{i}))_{i=0}^{n-1}:a,b\in\mathbb{F}_{3^{m}}\}.

On the other hand, by mm odd, βˆ’3m+14∈CΞ΄2-\frac{3^{m}+1}{4}\in C_{\delta_{2}} and gcd⁑(4,3m+1)=1\gcd(4,3^{m}+1)=1, we get that gcd⁑(Ξ΄2,3mβˆ’1)=1\gcd(\delta_{2},3^{m}-1)=1 and Ξ²\beta is a primitive element of 𝔽3m\mathbb{F}_{3^{m}}. Hence

π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)={c​(a,b)=(Tr3m/3⁑(a​x+b​xβˆ’1))xβˆˆπ”½3mβˆ—:a,bβˆˆπ”½3m}.\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(ax+bx^{-1}))_{x\in\mathbb{F}^{*}_{3^{m}}}:a,b\in\mathbb{F}_{3^{m}}\}.

By Theorem 3.1 and BCH bound, it has parameters [3mβˆ’1,2m,β‰₯2Ξ΄2][3^{m}-1,2m,\geq 2\delta_{2}]. ∎

Let a,bβˆˆπ”½3ma,b\in\mathbb{F}_{3^{m}}, the Kloosterman sum Km​(a,b)K_{m}(a,b) is defined over 𝔽3m\mathbb{F}_{3^{m}} as follows:

Km​(a,b)=βˆ‘xβˆˆπ”½3mβˆ—Ο‡β€‹(a​x+b​xβˆ’1),K_{m}(a,b)=\sum_{x\in\mathbb{F}^{*}_{3^{m}}}\chi(ax+bx^{-1}),

where Ο‡\chi is the canonical additive character of 𝔽3m\mathbb{F}_{3^{m}}.

Corollary 1.

Let mm be an odd integer. Then for a,bβˆˆπ”½3ma,b\in\mathbb{F}_{3^{m}} and (a,b)β‰ (0,0)(a,b)\neq(0,0),

Km​(a,b)≀3m+2β‹…3mβˆ’1βˆ’14.K_{m}(a,b)\leq\frac{3^{m}+2\cdot 3^{m-1}-1}{4}.
Proof.

For a,bβˆˆπ”½3ma,b\in\mathbb{F}_{3^{m}} and (a,b)β‰ (0,0)(a,b)\neq(0,0), by Theorem 4.5,

WH​(c​(a,b))\displaystyle W_{H}(c(a,b)) =\displaystyle= nβˆ’|{xβˆˆπ”½3mβˆ—:Tr3m/3⁑(a​x+b​xβˆ’1)=0}|\displaystyle n-|\{x\in\mathbb{F}_{3^{m}}^{*}:\operatorname{Tr}_{3^{m}/3}(ax+bx^{-1})=0\}|
=\displaystyle= nβˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ‘xβˆˆπ”½3mβˆ—Ο‡β€‹(y​(a​x+b​xβˆ’1))\displaystyle n-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}}\sum_{x\in\mathbb{F}_{3^{m}}^{*}}\chi(y(ax+bx^{-1}))
=\displaystyle= 2​n3βˆ’23​Km​(a,b).\displaystyle\frac{2n}{3}-\frac{2}{3}K_{m}(a,b).

Hence 2​n3βˆ’23​Km​(a,b)β‰₯2​(3mβˆ’1βˆ’14+3mβˆ’2)\frac{2n}{3}-\frac{2}{3}K_{m}(a,b)\geq 2(\frac{3^{m-1}-1}{4}+3^{m-2}) and Km​(a,b)≀3m+2β‹…3mβˆ’1βˆ’14K_{m}(a,b)\leq\frac{3^{m}+2\cdot 3^{m-1}-1}{4}. ∎

Remark.

Numerical examples by Magma show that the bound here is not tight in general.

Theorem 4.6.

Let mm be an even integer, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}, Ξ΄2=3mβˆ’14\delta_{2}=\frac{3^{m}-1}{4}, Z=⋃|s|<Ξ΄2CsZ=\bigcup_{|s|<\delta_{2}}C_{s}, and g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)={c​(a,b)=(a​αδ1​i+Tr32/3⁑(b​αδ2​i))i=0nβˆ’1:aβˆˆπ”½3,bβˆˆπ”½32}\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})}=\{c(a,b)=(a\alpha^{\delta_{1}i}+\operatorname{Tr}_{3^{2}/3}(b\alpha^{\delta_{2}i}))_{i=0}^{n-1}:a\in\mathbb{F}_{3},b\in\mathbb{F}_{3^{2}}\}

is a ternary LCD BCH code with parameters [3mβˆ’1,3,12β‹…(3mβˆ’1)][3^{m}-1,3,\frac{1}{2}\cdot(3^{m}-1)] and the weight distribution in Table 3.

Table 3
Weight Frequency 0 1 12β‹…(3mβˆ’1)\frac{1}{2}\cdot(3^{m}-1) 12 34β‹…(3mβˆ’1)\frac{3}{4}\cdot(3^{m}-1) 8 3mβˆ’13^{m}-1 6

Proof.

By Theorem 3.2, Ξ΄2\delta_{2} is the second largest abstract coset leader and the parity-check polynomial of π’ž(3,3mβˆ’1,2​δ2,βˆ’Ξ΄2)\mathcal{C}_{(3,3^{m}-1,2\delta_{2},-\delta_{2})} is h​(x)=xnβˆ’1g​(x)=f1​(x)​f2​(x)h(x)=\frac{x^{n}-1}{g(x)}=f_{1}(x)f_{2}(x), where f1​(x)f_{1}(x) and f2​(x)f_{2}(x) are irreducible over 𝔽3\mathbb{F}_{3}, f1​(x)=x+1f_{1}(x)=x+1, f1​(Ξ΄1)=0f_{1}(\delta_{1})=0, f2​(x)=x2+1f_{2}(x)=x^{2}+1, and f2​(Ξ΄2)=0f_{2}(\delta_{2})=0.

Let ΞΆ4=Ξ±Ξ΄2βˆˆπ”½32\zeta_{4}=\alpha^{\delta_{2}}\in\mathbb{F}_{3^{2}} be a 44-th primitive root of unit and Ξ±Ξ΄1=βˆ’1\alpha^{\delta_{1}}=-1. Then by Delsarte’s Theorem [5],

π’ž(3,3mβˆ’1,βˆ’Ξ΄2,2​δ2)={c(a)=(a(βˆ’1)i)+Tr32/3(bΞΆ4i))i=0nβˆ’1:aβˆˆπ”½3,bβˆˆπ”½32}.\mathcal{C}_{(3,3^{m}-1,-\delta_{2},2\delta_{2})}=\{c(a)=(a(-1)^{i})+\operatorname{Tr}_{3^{2}/3}(b\zeta_{4}^{i}))_{i=0}^{n-1}:a\in\mathbb{F}_{3},b\in\mathbb{F}_{3^{2}}\}.

Let Ο‰\omega be a 3-th primitive root of unit in the complex field. By m≑0(mod4)m\equiv 0\pmod{4}, 8|3mβˆ’18|3^{m}-1 and 𝔽3βˆ—βŠ‚(𝔽32βˆ—)2\mathbb{F}_{3}^{*}\subset(\mathbb{F}_{3^{2}}^{*})^{2}. Denote Z(c(a,b))=|i∈{0,1,…,nβˆ’1}:a(βˆ’1)i+Tr32/3(bΞΆ4i)=0|.Z(c(a,b))=|i\in\{0,1,\ldots,n-1\}:a(-1)^{i}+\operatorname{Tr}_{3^{2}/3}(b\zeta_{4}^{i})=0|. Then

WH​(c​(a,b))=nβˆ’Z​(c​(a,b))\displaystyle W_{H}(c(a,b))=n-Z(c(a,b))
=\displaystyle= nβˆ’13β€‹βˆ‘yβˆˆπ”½3βˆ‘i=0nβˆ’1Ο‰y(a(βˆ’1)i)+Tr32/3(bΞΆ4i))\displaystyle n-\frac{1}{3}\sum_{y\in\mathbb{F}_{3}}\sum_{i=0}^{n-1}\omega^{y(a(-1)^{i})+\operatorname{Tr}_{3^{2}/3}(b\zeta_{4}^{i}))}
=\displaystyle= 2​n3βˆ’n12β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰a​yβ€‹βˆ‘i=03Ο‰Tr32/3(by(βˆ’ΞΆ4)i))\displaystyle\frac{2n}{3}-\frac{n}{12}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ay}\sum_{i=0}^{3}\omega^{\operatorname{Tr}_{3^{2}/3}(by(-\zeta_{4})^{i}))}
=\displaystyle= 2​n3βˆ’n24β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰a​yβ€‹βˆ‘xβˆˆπ”½32βˆ—Ο‰Tr32/3⁑(b​x2).\displaystyle\frac{2n}{3}-\frac{n}{24}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ay}\sum_{x\in\mathbb{F}_{3^{2}}^{*}}\omega^{\operatorname{Tr}_{3^{2}/3}(bx^{2})}.

Note that (𝔽32βˆ—)2=⟨΢4⟩(\mathbb{F}_{3^{2}}^{*})^{2}=\langle\zeta_{4}\rangle and 𝔽3βˆ—βŠ‚(𝔽32βˆ—)2\mathbb{F}_{3}^{*}\subset(\mathbb{F}_{3^{2}}^{*})^{2}.

Suppose that a=0a=0 and b=0b=0. Then WH​(c​(a,b))=0W_{H}(c(a,b))=0.

Suppose that a=0a=0 and b≠0b\neq 0. Then by Lemma 2.3,

WH​(c​(a,b))\displaystyle W_{H}(c(a,b)) =\displaystyle= 2​n3βˆ’n12​(βˆ‘xβˆˆπ”½9Ο‰y​(Tr32/3⁑(b​x2))βˆ’1)=2​n3βˆ’n12​(η′​(b)​G​(Ξ·β€²)βˆ’1)\displaystyle\frac{2n}{3}-\frac{n}{12}(\sum_{x\in\mathbb{F}_{9}}\omega^{y(\operatorname{Tr}_{3^{2}/3}(bx^{2}))}-1)=\frac{2n}{3}-\frac{n}{12}(\eta^{\prime}(b)G(\eta^{\prime})-1)
=\displaystyle= 3​n4βˆ’n12​η′​(b)​G​(Ξ·β€²)\displaystyle\frac{3n}{4}-\frac{n}{12}\eta^{\prime}(b)G(\eta^{\prime})
=\displaystyle= {n2,Β if ​b​ is a square,Β n,Β if ​b​ is not a square.Β \displaystyle\left\{\begin{array}[]{ll}\frac{n}{2},&\mbox{ if }b\mbox{ is a square, }\\ n,&\mbox{ if }b\mbox{ is not a square. }\end{array}\right.

where Ξ·β€²\eta^{\prime} is a multiplicative character of order 22 in 𝔽9\mathbb{F}_{9}.

Suppose that a≠0a\neq 0 and b=0b=0. Then

WH​(c​(a,b))=2​n3βˆ’n24β€‹βˆ‘yβˆˆπ”½3βˆ—Ο‰a​y​(32βˆ’1)=n.\displaystyle W_{H}(c(a,b))=\frac{2n}{3}-\frac{n}{24}\sum_{y\in\mathbb{F}_{3}^{*}}\omega^{ay}(3^{2}-1)=n.

Suppose that a≠0a\neq 0 and b≠0b\neq 0. By Lemma 2.3,

WH​(c​(a,b))\displaystyle W_{H}(c(a,b)) =\displaystyle= 2​n3βˆ’n24​(βˆ’1)​(βˆ‘xβˆˆπ”½9Ο‰y​(Tr32/3⁑(b​x2))βˆ’1)\displaystyle\frac{2n}{3}-\frac{n}{24}(-1)(\sum_{x\in\mathbb{F}_{9}}\omega^{y(\operatorname{Tr}_{3^{2}/3}(bx^{2}))}-1)
=\displaystyle= 2​n3+n24​(η′​(b)​G​(Ξ·β€²)βˆ’1)=3​n4+n24​η′​(b)​G​(Ξ·β€²)\displaystyle\frac{2n}{3}+\frac{n}{24}(\eta^{\prime}(b)G(\eta^{\prime})-1)=\frac{3n}{4}+\frac{n}{24}\eta^{\prime}(b)G(\eta^{\prime})
=\displaystyle= {3​n4,Β if ​b​ is a square,Β n2,Β if ​b​ is not a square.Β \displaystyle\left\{\begin{array}[]{ll}\frac{3n}{4},&\mbox{ if }b\mbox{ is a square, }\\ \frac{n}{2},&\mbox{ if }b\mbox{ is not a square. }\end{array}\right.

Note that it is easy to obtain their frequencies and this completes the proof. ∎

Example 4.

Let p=3p=3, m=4m=4, and n=pmβˆ’1=81n=p^{m}-1=81. Then the LCD BCH code in Theorem 4.6 has weight enumerator 1+12​z40+8​z60+6​z80,1+12z^{40}+8z^{60}+6z^{80}, which is confirmed by Magma.

Theorem 4.7.

Let m≑2(mod4)m\equiv 2\pmod{4}, Ξ΄1=3mβˆ’12\delta_{1}=\frac{3^{m}-1}{2}, Ξ΄2=3mβˆ’14\delta_{2}=\frac{3^{m}-1}{4} Ξ΄3=3mβˆ’6βˆ’15+3mβˆ’6+2β‹…3mβˆ’5+2β‹…3mβˆ’3+3mβˆ’2\delta_{3}=\frac{3^{m-6}-1}{5}+3^{m-6}+2\cdot 3^{m-5}+2\cdot 3^{m-3}+3^{m-2}, Z=(⋃|s|<Ξ΄3Cs)​⋃CΞ΄1​⋃CΞ΄2Z=(\bigcup_{|s|<\delta_{3}}C_{s})\bigcup C_{\delta_{1}}\bigcup C_{\delta_{2}}, g​(x)=∏i∈Z(xβˆ’Ξ±i)g(x)=\prod_{i\in Z}(x-\alpha^{i}). Then

π’ž(3,3mβˆ’1,2​δ3,βˆ’Ξ΄3)={c​(a,b)=(Tr3m/3⁑(a​x2+b​xβˆ’2))xβˆˆπ”½3mβˆ—:a,bβˆˆπ”½3m}\mathcal{C}_{(3,3^{m}-1,2\delta_{3},-\delta_{3})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(ax^{2}+bx^{-2}))_{x\in\mathbb{F}_{3^{m}}^{*}}:a,b\in\mathbb{F}_{3^{m}}\}

is a ternary LCD BCH code with parameters [3mβˆ’1,2m,β‰₯2Ξ΄3][3^{m}-1,2m,\geq 2\delta_{3}] and its designed distance 2​δ32\delta_{3}.

Proof.

By Theorem 3.3, Ξ΄3\delta_{3} is the third largest abstract coset leader, the parity-check polynomial of π’ž(3,3mβˆ’1,βˆ’Ξ΄3,2​δ3)\mathcal{C}_{(3,3^{m}-1,-\delta_{3},2\delta_{3})} is h​(x)=xnβˆ’1g​(x)=f​(x)​f^​(x)h(x)=\frac{x^{n}-1}{g(x)}=f(x)\widehat{f}(x), where f​(x)f(x) is irreducible over 𝔽3\mathbb{F}_{3}, f​(Ξ±Ξ΄3)=0f(\alpha^{\delta_{3}})=0, deg⁑(f​(x))=m\deg(f(x))=m, and f^​(x)\widehat{f}(x) is a reciprocal polynomial of f​(x)f(x).

Let Ξ²=Ξ±Ξ΄3\beta=\alpha^{\delta_{3}}. Then by Delsarte’s Theorem [5],

π’ž(3,3mβˆ’1,2​δ3,βˆ’Ξ΄3)={c​(a,b)=(Tr3m/3⁑(a​βi+b​(Ξ²βˆ’1)i))i=0nβˆ’1:a,bβˆˆπ”½3m}.\mathcal{C}_{(3,3^{m}-1,2\delta_{3},-\delta_{3})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(a\beta^{i}+b(\beta^{-1})^{i}))_{i=0}^{n-1}:a,b\in\mathbb{F}_{3^{m}}\}.

On the other hand, by m≑2(mod4)m\equiv 2\pmod{4} , 3mβˆ’195∈CΞ΄3\frac{3^{m}-19}{5}\in C_{\delta_{3}} , gcd⁑(5,3mβˆ’1)=1\gcd(5,3^{m}-1)=1, and gcd⁑(3mβˆ’19,3mβˆ’1)=gcd⁑(18,3mβˆ’1)=2\gcd(3^{m}-19,3^{m}-1)=\gcd(18,3^{m}-1)=2, we get that gcd⁑(Ξ΄3,3mβˆ’1)=2\gcd(\delta_{3},3^{m}-1)=2 and Ξ²\beta is a semi-primitive element of 𝔽3m\mathbb{F}_{3^{m}}. Hence

π’ž(3,3mβˆ’1,2​δ3,βˆ’Ξ΄3)={c​(a,b)=(Tr3m/3⁑(a​x2+b​xβˆ’2))xβˆˆπ”½3mβˆ—:a,bβˆˆπ”½3m}.\mathcal{C}_{(3,3^{m}-1,2\delta_{3},-\delta_{3})}=\{c(a,b)=(\operatorname{Tr}_{3^{m}/3}(ax^{2}+bx^{-2}))_{x\in\mathbb{F}^{*}_{3^{m}}}:a,b\in\mathbb{F}_{3^{m}}\}.

By Theorem 3.1 and BCH bound, the code has parameters [3mβˆ’1,2m,β‰₯2Ξ΄3][3^{m}-1,2m,\geq 2\delta_{3}]. ∎

5. Concluding remarks

In this paper, several classes of ternary primitive BCH codes and LCD BCH codes were studied according to the first, second and third largest absolute coset leaders. The weight distributions of these codes were given except two of them, whose weight distributions rely on the calculation of Kloosterman sums.

Acknowledgments

The authors are very grateful to the reviewers and the Editor for their valuable suggestions that improved the quality of this paper.

References

  • [1] C. Carlet and S. Guilley, \doititleComplementary dual codes for countermeasures to side-channel attacks, Adv. Math. Commun., 10(1)(2016), 131–150.
  • [2] C. Carlet, S. Mesnager, C. Tang and Y. Qi, \doititleEuclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86(2018), 2605–2618.
  • [3] C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, \doititleLinear codes over 𝔽q\mathbb{F}_{q} which are equivalent to LCD codes, IEEE Trans. Inf. Theory, 64(2018), 3010–3017.
  • [4] B. Chen and H. Liu, \doititleNew constructions of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63(2017), 2843–2847.
  • [5] P. Delsarte, \doititleOn subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21(1975), 575–576.
  • [6] C. Ding, \doititleParameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61(2015), 5322–5330.
  • [7] C. Ding, C. Fan and Z. Zhou, \doititleThe dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45(2017), 237–263.
  • [8] X. Huang, Q. Yue, Y. Wu and X. Shi, \doititleBinary Primitive LCD BCH codes, Des. Codes Cryptogr., 88(2020), 2453–2473.
  • [9] L. Jin, \doititleConstruction of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63(2017), 2843–2847.
  • [10] C. Li, \doititleHermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86(2018), 2261–2278.
  • [11] C. Li, C. Ding and S. Li, \doititleLCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63(2017), 4344–4356.
  • [12] C. Li, P. Wu and F. Liu, \doititleOn two classes of primitive BCH codes and some related codes, IEEE Trans. Inf. Theory, 65(2019), 3830–3840.
  • [13] C. Li, Q. Yue and F. Li, \doititleWeight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28(2014), 94–114.
  • [14] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Inc.,1983.
  • [15] F. Li, Q. Yue and Y. Wu, \doititleDesigned distances and parameters of new LCD BCH codes over finite fields, Cryptogr. Commun., 12(2020), 147–163.
  • [16] S. Li, C. Ding, M. Xiong and G. Ge, \doititleNarrow-sense BCH codes over GF(q)(q) with length n=qmβˆ’1qβˆ’1n=\frac{q^{m}-1}{q-1}, IEEE Trans. Inf. Theory, 63(2017), 7219-7236.
  • [17] S. Li , C. Li, C. Ding and H. Liu, \doititleTwo families of LCD BCH codes, IEEE Trans. Inf. Theory, 63( 2017), 5699–5717.
  • [18] H. Liu, C. Ding and C. Li, \doititleDimensions of three types of BCH codes over GF(q)(q), Discrete Math., 340(2017), 1910–1927.
  • [19] J. L. Massey, \doititleReversible codes, Information and Control, 7(1964), 369–380.
  • [20] X. Shi, Q. Yue and S. Yang, \doititleNew LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18(2018), 1950150.
  • [21] K. K. Tzeng and C. R. P. Hartmann, \doititleOn the minimum distance of certain reversible cyclic codes, IEEE Trans. Inf. Theory, 16(1970),644–646.
  • [22] Y. Wu and Q. Yue, \doititleFactorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes, IEEE Trans. Inf. Theory, 65(2019),1740–1751.
  • [23] H. Yan, H. Liu, C. Li and S. Yang, \doititleParameters of LCD BCH codes with two lengths, Adv. Math. Commun., 12(2018), 579–594,.
  • [24] X. Yang and J. L. Massey, \doititleThe necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126(1994), 391–393.
  • [25] Z. Zhou, X. Li, C. Tang and C. Ding, \doititleBinary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inf. Theory, 65(2019), 16–27.

Received March 2021; 1st revision ; final revision .

E-mail address: [email protected]
E-mail address: [email protected]
E-mail address: [email protected]
E-mail address: [email protected]