Termination dependence of the surface states in Pb2Pd
Abstract
Topological properies of systems lead to the emergence of surface states which can be observed experimentally within the angle-resolved photoemission spectroscopy (ARPES) measurements. Recently, the topological properties of Pb2Pd were reported. In this paper, we discuss the role of the surface termination on the realized surface states. We discuss the termination dependence of the surface state for (001) and (110) surface. We demonstrate that the Pd terminated (001) surface allow realization of the Dirac cone-like surface state. In the case (110) we observe well visible surface states with parabolic-like dispersion relation in close vicinity of the Fermi level.
I Introduction

The surface states and their topological behaviors were intensively investigated in past years [1, 2]. Best example of such states are the “metallic” surface states observed experimentally within the angle-resolved photoemission spectroscopy (ARPES) in the topological insulators [3, 4, 5]. The topological surface states preserve theirs properties also in presence of the magnetic impurities [6, 7, 8], and that in the presence of intrinsic magnetism can be source of new classes of magnetic topological insulators [9, 10, 11, 12]. More recently, realization of the Dirac [13, 14, 15], Weyl [16, 17, 18, 19, 20], or nodal line [21, 22, 23, 24, 25, 26, 27] semimetals have drawn a lot of attention too.
Metalic systems can also exhibit the topological properties. One such example is Pb2Pd, which was first recognized as a superconductor in 1962 [28]. Powder XRD measurements confirm realization of the I4/mcm space group [29]. System remained the same after Bi-doping and the cell volume monotonically increased with higher Bi content [30]. Similarly to PdTe2 [31], Pb2Pd exhibit conventional s-wave superconducting behavior of the specific heat jump at around K [28, 32, 29].
Independent of the realized symmetry, the Pd-compounds (like PdAu2 [33], PdSb2 [34], PdTe2 [35, 36, 37, 38], or PdBi2 [39, 40]) typically exhibit topological properties. For example, in case of PdTe2 (with Pm1 symmetry) the bulk Dirac point and topological surface states were reported [35, 36, 37, 38]. Initial theoretical results also suggest topological properties in the case of Pb2Pd [29], however, this feature is yet to be studied properly. In this paper, we discuss the electronic properties of Pb2Pd (electronic bulk band structure, and termination dependence of the surface states). This paper is organized as follows. In Sec. II we present and discuss our numerical results, which are concluded in Sec. III.
II Numerical results and discussion
II.1 Calculations details
The first-principle calculations were performed within density-functional theory (DFT) using the projector augmented-wave (PAW) method [41] implemented in the Vienna Ab initio Simulation Package (vasp) [42, 43, 44]. The exchange-correlation potential was obtained by the generalized gradient approximation (GGA) in the form proposed by Perdew, Burke, and Enzerhof (PBE) [45]. The energy cut-off for the plane-wave expansion was equal to eV. The optimization of the conventional cell was performed using a Monkhorst-Pack k-grid [46]. The structures were relaxed using the conjugate gradient technique with the energy convergence criteria set at eV and eV for the electronic and ionic iterations, respectively. Symmetry of the structures were analyzed with FindSym [47] and Seek-path [48, 49] packages.
Using results of the DFT calculation for electronic band structure we can find the tight binding model in the basis of the maximally localized Wannier orbitals [50, 51, 52]. It can be performed via the Wannier90 software [53, 54, 55]. In our calculations, we used the full -point DFT calculation, starting from orbitals for Pb atoms, and orbitals for Pd atoms. This gives us -orbital tight binding model of the Pb2Pd. Finally, to study the surface states, the surface Green’s function for semi-infinite system [56] was calculated using WannierTools [57].
II.2 Crystal structure
Pb2Pd crystallize with I4/mcm symmetry (space group No. 140), i.e. a body-centered tetragonal unit cell with Pd atoms at the body center. After the DFT optimization, the lattice constants were found to be Å, and Å, which are close to the experimentally reported values Å, and Å [29]. The Pd and Pb atoms are located in the high symmetry Wyckoff positions (,,), and (,,), respectively. Here it should be noted that the experimentally obtained Pb atom position was (,,), which is close to the theoretical one [29].
II.3 Bulk electronic band structure


The bulk electronic band structure is presented in Fig. 2 (orange and blue lines correspond to the results in the absence and presence of the spin–orbit coupling, respectively). In the band structure, several nearly-flat bands (approximately eV below the Fermi level) can be distinguished. However, around the Fermi level, the bands exhibit strong dispersion.
This spin–orbit coupling lead to lift the band degeneracy. This is well visible, e.g., at the point, where splitting is in range of eV. However, largest impact of the spin–orbit coupling on the band structure is visible mostly above the Fermi level – e.g. at M point, around eV above the Fermi level, where the strong band structure is observed.


II.4 Surface states
Now, we will present analyses of the surface states for (001) and (110) surfaces (Fig. 4 and Fig. 5, respectively), which hosts the surface states in close vicinity of the Fermi level.
The electronic band structure calculated for the slab geometry [panels (b)] presentes a very complex structure [blue to the projection of the 3D bulk Brillouin zone to 2D surface Brillouin zone, presented in panels (a)]. Absence of periodic boundary conditions along the direction parallel to the surface allow realization of the surface states as a consequence dangling bonds of the atoms on the surface. Indeed, direct analyses of the band projection on the surface atoms reflects the presence of the surface states [color contours on panels (b)]. The realized geometry allows us to find the surface states realized by the surface terminated by the Pb atoms (blue color), as well as by the Pd atoms (red color). As we can see, in case of the (001) surface [Fig. 4(b)], the Dirac cone-like structure at the point is well visible. In the presented range of energies around the Fermi level we do not observe any surface states coming from the Pb terminated surface. Contrary to this, for the surface (110), both the terminated surfaces allow the realization of the surface states. Here we can distinguish several surface states in close vicinity of the Fermi level (from both type of terminations).
We also calculate the surface Green’s function (spectral function) for semi-infinite system with Pb and Pd termination [panels (c) and (d) on Fig. 4 and Fig. 5, respectively]. In the case of the Pb terminated (110) surface, the surface state form parabolic-like band crossing the Fermi level [marked by green dashed line in Fig. 5(c)]. However, also for deeper energies the surface states are visible as separate sharp lines with high spectral weights (marked by black arrows around eV in Fig. 5(c)).
In the case of Pd termination of (001) surface, the earlier mentioned Dirac cone-like structures are also well visible in the spectral function [marked by black arrows in Fig. 4(d)]. For (110) surface, the surface states coming from Pd termination are better visible for several energies at point. Firstly, the parabolic like surface states crossing the Fermi level. Also two separated surface states at eV and eV are visible [marked by the black arrows in Fig. 5(d)].
As we mentioned above, in the case of the (110) surface, the parabolic-like surface states are well visible in the spectrum. Here it is worth mentioning that this parabolic dispersion relations have different character for Pb termination (electron like) and for Pd termination (hole like).
III Summary
In summary, we discussed the surface states realized in the Pb2Pd, for (001) and (110) surfaces terminated by Pb or Pd atoms. As a consequence of dangling bonds of the atoms at the surface, the electronic surface states can be realized. We calculate the surface Green’s (spectral) functions for the mentioned surfaces. In the case the (001) surface, the Dirac cone surface states at the point can be observed. However this surface state is located deep down the Fermi surface, and should not play an important role in the physical properties of the Pb2Pd. Contrary to this, for (110) surface, the surface states can be realized for both termination of the surface. Additionally, the surface states around point, exist in close vicinity of the Fermi surface. Moreover, this states exhibit parabolic-like relation with different (electron- or hole-like) character. In our opinion, such states should be observed experimentally in a relatively simple way within the ARPES measurements.
Acknowledgements.
Some figures in this work were rendered using Vesta [58] and XCrySDen [59] software. S.B. is grateful to IT4Innovations (VŠB-TU Ostrava) for hospitality during a part of the work on this project. This work was supported by the National Science Centre (NCN, Poland) under grants No. 2017/25/B/ST3/02586 (S.B.) and 2021/43/B/ST3/02166 (A.P.). A.P. appreciates funding in the frame of scholarships of the Minister of Science and Higher Education (Poland) for outstanding young scientists (2019 edition, no. 818/STYP/14/2019).References
- Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
- Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- Zhang et al. [2009] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009).
- Xia et al. [2009] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5, 398 (2009).
- Chen et al. [2009] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325, 178 (2009).
- Chen et al. [2010] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Massive Dirac fermion on the surface of a magnetically doped topological insulator, Science 329, 659 (2010).
- Xu et al. [2012] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. Andrew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. Hugo Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Zahid Hasan, Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator, Nature Physics 8, 616 (2012).
- Ptok et al. [2020] A. Ptok, K. J. Kapcia, and A. Ciechan, Electronic properties of Bi2Se3 dopped by transition metal (Mn, Fe, Co, or Ni) ions, J. Phys.: Condens. Matter 33, 065501 (2020).
- Otrokov et al. [2019] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576, 416 (2019).
- Gong et al. [2019] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S.-C. Zhang, X. Ma, Q.-K. Xue, and K. He, Experimental realization of an intrinsic magnetic topological insulator, Chinese Phys. Lett. 36, 076801 (2019).
- Yan et al. [2019] J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney, Crystal growth and magnetic structure of MnBi2Te4, Phys. Rev. Materials 3, 064202 (2019).
- Swatek et al. [2020] P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B 101, 161109 (2020).
- Young et al. [2012] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108, 140405 (2012).
- Liu et al. [2014] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological dirac semimetal, Na3Bi, Science 343, 864 (2014).
- Schoop et al. [2018] L. M. Schoop, A. Topp, J. Lippmann, F. Orlandi, L. Müchler, M. G. Vergniory, Y. Sun, A. W. Rost, V. Duppel, M. Krivenkov, S. Sheoran, P. Manuel, A. Varykhalov, B. Yan, R. K. Kremer, C. R. Ast, and B. V. Lotsch, Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe, Sci. Adv. 4, eaar2317 (2018).
- Xu et al. [2015] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349, 613 (2015).
- Weng et al. [2015] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5, 011029 (2015).
- Lv et al. [2015] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 (2015).
- Wang et al. [2016] Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversal-breaking Weyl fermions in magnetic heusler alloys, Phys. Rev. Lett. 117, 236401 (2016).
- Yu et al. [2017] R. Yu, Q. Wu, Z. Fang, and H. Weng, From nodal chain semimetal to Weyl semimetal in HfC, Phys. Rev. Lett. 119, 036401 (2017).
- Fang et al. [2016] C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chinese Phys. B 25, 117106 (2016).
- Schoop et al. [2016] L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in zrsis, Nature Communications 7, 11696 (2016).
- Takane et al. [2016] D. Takane, Z. Wang, S. Souma, K. Nakayama, C. X. Trang, T. Sato, T. Takahashi, and Y. Ando, Dirac-node arc in the topological line-node semimetal HfSiS, Phys. Rev. B 94, 121108 (2016).
- Chen et al. [2017] C. Chen, X. Xu, J. Jiang, S.-C. Wu, Y. P. Qi, L. X. Yang, M. X. Wang, Y. Sun, N. B. M. Schröter, H. F. Yang, L. M. Schoop, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, and Y. L. Chen, Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals SiS (Hf, Zr), Phys. Rev. B 95, 125126 (2017).
- Hosen et al. [2017] M. M. Hosen, K. Dimitri, I. Belopolski, P. Maldonado, R. Sankar, N. Dhakal, G. Dhakal, T. Cole, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, T. Durakiewicz, and M. Neupane, Tunability of the topological nodal-line semimetal phase in ZrSi-type materials (S, Se, Te), Phys. Rev. B 95, 161101 (2017).
- Wang et al. [2018] R. Wang, J. Z. Zhao, Y. J. Jin, Y. P. Du, Y. X. Zhao, H. Xu, and S. Y. Tong, Nodal line fermions in magnetic oxides, Phys. Rev. B 97, 241111 (2018).
- Fu et al. [2019] B.-B. Fu, C.-J. Yi, T.-T. Zhang, M. Caputo, J.-Z. Ma, X. Gao, B. Q. Lv, L.-Y. Kong, Y.-B. Huang, P. Richard, M. Shi, V. N. Strocov, C. Fang, H.-M. Weng, Y.-G. Shi, T. Qian, and H. Ding, Dirac nodal surfaces and nodal lines in ZrSiS, Sci. Adv. 5, eaau6459 (2019).
- Gendron and Jones [1962] M. Gendron and R. Jones, Superconductivity in the CuAl2 (C16) crystal class, J. Phys. Chem. Solids 23, 405 (1962).
- Sharma et al. [2022] M. M. Sharma, N. K. Karn, P. Rani, R. N. Bhowmik, and V. P. S. Awana, Bulk superconductivity and non-trivial band topology analysis of Pb2Pd, Supercond. Sci. Technol. 35, 084010 (2022).
- Wang and Tang [2019] M. Wang and K. Tang, Bi substitution effect on superconductivity of novel Pb2Pd alloy, Phys. C 565, 1353518 (2019).
- Leng et al. [2019] H. Leng, J.-C. Orain, A. Amato, Y. K. Huang, and A. de Visser, Type-I superconductivity in the Dirac semimetal PdTe2 probed by SR, Phys. Rev. B 100, 224501 (2019).
- Arushi et al. [2021] Arushi, K. Motla, A. Kataria, S. Sharma, J. Beare, M. Pula, M. Nugent, G. M. Luke, and R. P. Singh, Type-I superconductivity in single-crystal Pb2Pd, Phys. Rev. B 103, 184506 (2021).
- Martín-Vega et al. [2022] F. Martín-Vega, E. Herrera, B. Wu, V. Barrena, F. Mompeán, M. García-Hernández, P. C. Canfield, A. M. Black-Schaffer, J. J. Baldoví, I. Guillamón, and H. Suderow, Superconducting density of states and band structure at the surface of the candidate topological superconductor Au2Pb, Phys. Rev. Research 4, 023241 (2022).
- Kumar et al. [2020] N. Kumar, M. Yao, J. Nayak, M. G. Vergniory, J. Bannies, Z. Wang, N. B. M. Schröter, V. N. Strocov, L. Müchler, W. Shi, E. D. L. Rienks, J. L. Mañes, C. Shekhar, S. S. P. Parkin, J. Fink, G. H. Fecher, Y. Sun, B. A. Bernevig, and C. Felser, Signatures of sixfold degenerate exotic fermions in a superconducting metal PdSb2, Adv. Mater. 32, 1906046 (2020).
- Liu et al. [2015] Y. Liu, J.-Z. Zhao, L. Yu, C.-T. Lin, A.-J. Liang, C. Hu, Y. Ding, Y. Xu, S.-L. He, L. Zhao, G.-D. Liu, X.-L. Dong, J. Zhang, C.-T. Chen, Z.-Y. Xu, H.-M. Weng, X. Dai, Z. Fang, and X.-J. Zhou, Identification of topological surface state in PdTe2 superconductor by angle-resolved photoemission spectroscopy, Chinese Phys. Lett. 32, 067303 (2015).
- Fei et al. [2017] F. Fei, X. Bo, R. Wang, B. Wu, J. Jiang, D. Fu, M. Gao, H. Zheng, Y. Chen, X. Wang, H. Bu, F. Song, X. Wan, B. Wang, and G. Wang, Nontrivial Berry phase and type-II Dirac transport in the layered material PdTe2, Phys. Rev. B 96, 041201 (2017).
- Noh et al. [2017] H.-J. Noh, J. Jeong, E.-J. Cho, K. Kim, B. I. Min, and B.-G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett. 119, 016401 (2017).
- Bahramy et al. [2018] M. S. Bahramy, O. J. Clark, B.-J. Yang, J. Feng, L. Bawden, J. M. Riley, I. Marković, F. Mazzola, V. Sunko, D. Biswas, S. P. Cooil, M. Jorge, J. W. Wells, M. Leandersson, T. Balasubramanian, J. Fujii, I. Vobornik, J. E. Rault, T. K. Kim, M. Hoesch, K. Okawa, M. Asakawa, T. Sasagawa, T. Eknapakul, W. Meevasana, and P. D. C. King, Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides, Nat. Mater. 17, 28 (2018).
- Iwaya et al. [2017] K. Iwaya, Y. Kohsaka, K. Okawa, T. Machida, M. S. Bahramy, T. Hanaguri, and T. Sasagawa, Full-gap superconductivity in spin-polarised surface states of topological semimetal -PdBi2, Nat. Commun. 8, 976 (2017).
- Liu et al. [2020] P.-F. Liu, J. Li, X.-H. Tu, H. Yin, B. Sa, J. Zhang, D. J. Singh, and B.-T. Wang, Prediction of superconductivity and topological aspects in single-layer -Bi2Pd, Phys. Rev. B 102, 155406 (2020).
- Blöchl [1994] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
- Kresse and Hafner [1994] G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B 49, 14251 (1994).
- Kresse and Furthmüller [1996] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
- Kresse and Joubert [1999] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- Perdew et al. [1996] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
- Monkhorst and Pack [1976] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976).
- Stokes and Hatch [2005] H. T. Stokes and D. M. Hatch, FindSym: program for identifying the space-group symmetry of a crystal, J. Appl. Crystallogr. 38, 237 (2005).
- Hinuma et al. [2017] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka, Band structure diagram paths based on crystallography, Comput. Mater. Sci. 128, 140 (2017).
- Togo and Tanaka [2018] A. Togo and I. Tanaka, Spglib: a software library for crystal symmetry search (2018), arXiv:1808.01590 .
- Marzari et al. [2012] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012).
- Marzari and Vanderbilt [1997] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).
- Souza et al. [2001] I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).
- Mostofi et al. [2008] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Commun. 178, 685 (2008).
- Mostofi et al. [2014] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, An updated version of wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Commun. 185, 2309 (2014).
- Pizzi et al. [2020] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: new features and applications, J. Phys.: Condens. Matter 32, 165902 (2020).
- Sancho et al. [1985] M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F: Met. Phys. 15, 851 (1985).
- Wu et al. [2018] Q. S. Wu, S. N. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, WannierTools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018).
- Momma and Izumi [2011] K. Momma and F. Izumi, vesta3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272 (2011).
- Kokalj [1999] A. Kokalj, XCrySDen–a new program for displaying crystalline structures and electron densities, J. Mol. Graph. and Model. 17, 176 (1999).