This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tensor amplitudes for partial wave analysis of ψΔΔ¯\psi\to\Delta\bar{\Delta} within helicity frame

Xiang Dong Wuhan University, Wuhan 430072, People’s Republic of China    Kexin Su Wuhan University, Wuhan 430072, People’s Republic of China    Hao Cai [email protected] Wuhan University, Wuhan 430072, People’s Republic of China    Kai Zhu [email protected] Institute of High Energy Physics, Beijing 100049, China    Yonggui Gao Institute of High Energy Physics, Beijing 100049, China
Abstract

We have derived the tensor amplitudes for partial wave analysis of ψΔΔ¯\psi\to\Delta\bar{\Delta}, Δpπ\Delta\to p\pi within the helicity frame, as well as the amplitudes for the other decay sequences with same final states. These formulae are practical for the experiments measuring ψ\psi decaying into pp¯π+πp\bar{p}\pi^{+}\pi^{-} final states, such as BESIII with its recently collected huge J/ψJ/\psi and ψ(2S)\psi(2S) data samples.

ψ\psi decay, baryon, partial wave analysis, tensor formalism
pacs:
13.20.Gd, 13.30.Eg, 14.40.-n

I Introduction

Recently, many measurements of J/ψJ/\psi or ψ(2S)\psi(2S) decays into baryon-pairs are reported by BESIII collaboration, such as ψ(2S)ΩΩ¯+\psi(2S)\to\Omega^{-}\bar{\Omega}^{+} BESIII:2020lkm , ψ(2S)pp¯(nn¯)\psi(2S)\to p\bar{p}(n\bar{n}) 1803.02039 , J/ψ(ψ(2S))Σ+Σ¯J/\psi\left(\psi(2S)\right)\to\Sigma^{+}\bar{\Sigma}^{-} 2004.07701 , J/ψ(ψ(2S))Ξ0Ξ¯0J/\psi\left(\psi(2S)\right)\to\Xi^{0}\bar{\Xi}^{0} 1612.08664 , J/ψ(ψ(2S))ΞΞ¯+J/\psi\left(\psi(2S)\right)\to\Xi^{-}\bar{\Xi}^{+} 1602.06754 , J/ψΞ(1530)Ξ¯+J/\psi\to\Xi(1530)^{-}\bar{\Xi}^{+} 1911.06669 , ψ(2S)Ξ(1530)Ξ(1530)+(Ξ(1530)Ξ+)\psi(2S)\to\Xi(1530)^{-}\Xi(1530)^{+}(\Xi(1530)^{-}\Xi^{+}) 1907.13041 etc. These measurements are based on the huge J/ψJ/\psi or ψ(2S)\psi(2S) samples collected at the BESIII detector, who is operating at the electron position collider BEPCII. Taking advantage of the improved statistics, more precise measurements have been achieved and some insights on the physics have been provided, such as the polarization parameters of baryons, relative phase between electric-magnetic and strong amplitudes, decay mechanism of ψ\psi decaying into baryon pairs, and search for excited baryon states, etc. However, there is no measurement of ψΔΔ¯\psi\to\Delta\bar{\Delta} among these new exciting experimental results. A single ψ\psi will represent both J/ψJ/\psi and ψ(2S)\psi(2S) states later in this paper if not specified. The latest measurement of ψΔΔ¯\psi\to\Delta\bar{\Delta} is done by BESII about 20 years ago Bai:2000ye . The lack of ΔΔ¯\Delta\bar{\Delta} study does not mean this channel is not essential. In contrast, a careful analysis of ψΔΔ¯\psi\to\Delta\bar{\Delta} would provide a lot of important information of the decay mechanism of the vector charmonia to the pair of Δ\Delta, the first discovered resonance in particle physics, as well as the line-shape of the invariant mass of the final states of this resonance. The main difficulty of this measurement is that Δ\Delta has a much broader width than other baryon states. From PDG Zyla:2020zbs , the Breit-Wigner width of the Δ(1232)++\Delta(1232)^{++} is about 117 MeV, the widths of other excited Δ\Delta states are at the same level. It makes the interference effect significant in the measurement, but that has been ignored in previous measurements Bai:2000ye ; Eaton:1983kb . When we try to measure ψΔΔ¯\psi\to\Delta\bar{\Delta} via final states protons and pions, that are the products of the strong decays of Δ\Delta, the interference between Δ++Δ\Delta^{++}\Delta^{--} and Δ0Δ¯0\Delta^{0}\bar{\Delta}^{0}, as well as the excited Δ\Delta states and even (excited-)nucleons, is expected to be large. This large interference makes a simple measurement of a two-body decay impossible since the signal yield cannot be extracted by a naive fit with only signal and background components, and need to be considered carefully.

A partial wave analysis (PWA) is necessary to consider this interference correctly, while suitable formulae to describe these complex processes are still in short of. Till now, most studies of Δ\Delta is based on π\piN or γN\gamma N scattering 1810.13086 ; Gridnev:2004mk ; Koch:1980ay ; Svarc:2014zja ; Bernicha:1995gg , where the PWA has applied but not suitable for ψΔΔ¯\psi\to\Delta\bar{\Delta} studies since there are sequent decays in the latter case. Compared with the abundant PWA formulae on the ψ\psi or heavy vectors decaying into final meson states Zou:2002ar ; Dulat:2005in , including radiative decays wuning , the similar results on the baryons are relatively rare. To the best of our knowledge, there are only two papers that discussed the ψ\psi decays containing final baryon states. One has studied ψωpp¯\psi\to\omega p\bar{p} Liang:2002tk , and the other one has studied ψNNM\psi\to NN^{*}M hep-ph/0210164 , but none of them can satisfy our request completely. This situation encourages us to write down the PWA formulae by ourselves.

While there are many different frames and formalism in PWA, we choose to derive our formulae within the helicity frame with the covariant tensor formalism Hara:1964zza ; Chung:1993da ; Chung:1997jn ; Chung:1971ri . This choice is based on the following considerations. Firstly, the helicity frame is suitable for processes of sequent decays. In this frame, all the helicity states are defined in the rest frame of the mother particles, and the whole amplitude is a product of the amplitudes of sequent processes. It reduces the complexity of the derivation of the formulae compared with the PWA based on canonical forms, where a L-S coupling method is used such as that in Refs. Liang:2002tk ; hep-ph/0210164 ; Filippini:1995yc . Secondly, the advantage of the tensor formalism, compared to the helicity formalism, is that a spin tensor can couple to any four-momentum or another spin tensor to form the Lorentz invariant amplitudes, and the momentum dependence is separated explicitly from couplings. This paper is organized as follows. After this introduction, we discuss all the possible processes, i.e, the intermediate resonances involved in our partial wave analysis in the second section. Then we give the Lorentz invariant amplitudes in the third section, composed of the constructions of each state’s wave function, concerns of the parity and charge conjugation translations, and the explicit covariant tensor formulae. Finally, we discuss some validations of these formulae and their possible applications on the present and future electron-positron colliding experiments.

II Intermediate resonances and their JPJ^{P}

We only consider two kinds of first level decays of ψ\psi, that are ψΔΔ¯\psi\to\Delta\bar{\Delta} and ψNN\psi\to NN^{*}. Since our original physics motivation is to measure ψΔ++(1232)Δ(1232)\psi\to\Delta^{++}(1232)\Delta^{--}(1232) with Δ++(1232)\Delta^{++}(1232) almost one hundred percent decaying to pp and π+\pi^{+}, the suitable final states in experiments are pp¯π+πp\bar{p}\pi^{+}\pi^{-}. The final states determine that there are three possible decay chains, that are ψΔΔ¯\psi\to\Delta\bar{\Delta}, Δpπ\Delta\to p\pi; ψp¯N\psi\to\bar{p}N^{*}, NΔπN^{*}\to\Delta\pi, Δpπ\Delta\to p\pi and ψp¯N\psi\to\bar{p}N^{*}, Npρ0(σ)N^{*}\to p\rho_{0}(\sigma), ρ(σ)π+π\rho(\sigma)\to\pi^{+}\pi^{-} as shown in Figs. 1 2 3. The reason why we do not consider the process of ψϕX(1870)\psi\to\phi X(1870), ϕπ+π,X(1870)pp¯\phi\to\pi^{+}\pi^{-},X(1870)\to p\bar{p} is that the mass of X(1870)X(1870) is near the threshold of the pp¯p\bar{p} invariant mass spectrum. Then the relevant events can be removed easily during the date analysis. In the present and later descriptions we shall omit the discussion on the charge-conjugated modes for compactness when no ambiguity will be caused. Notice there are many possible combinations even in the first level decays. For example, ψ\psi can decay into the following ΔΔ¯\Delta\bar{\Delta} pairs if the phase space allows: Δ(1232)Δ¯(1620)\Delta(1232)\bar{\Delta}(1620), Δ(1620)Δ¯(1620)\Delta(1620)\bar{\Delta}(1620), Δ(1232)Δ¯(1910)\Delta(1232)\bar{\Delta}(1910), Δ(1620)Δ¯(1910)\Delta(1620)\bar{\Delta}(1910) with Δ\Delta represent both Δ++\Delta^{++} and Δ0\Delta^{0} here. Δ+\Delta^{+} will not be considered since it cannot decay into both charged p and π\pi. For the ψp¯N\psi\to\bar{p}N^{*} mode, the decay product at the first level can be such as p¯N(1440)\bar{p}N(1440), p¯N(1520)\bar{p}N(1520), p¯N(1675)\bar{p}N(1675), etc.

Refer to caption
Figure 1: Illustration of decay ψΔΔ¯\psi\to\Delta\bar{\Delta}, Δpπ\Delta\to p\pi.
Refer to caption
Figure 2: Illustration of decay ψp¯N\psi\to\bar{p}N^{*}, NΔπN^{*}\to\Delta\pi, Δpπ\Delta\to p\pi.
Refer to caption
Figure 3: Illustration of decay ψp¯N\psi\to\bar{p}N^{*}, Npρ0(σ)N^{*}\to p\rho_{0}(\sigma), ρ(σ)π+π\rho(\sigma)\to\pi^{+}\pi^{-}.

From the physical consideration, a complex spin and parity combination sets are obtained. At the first level, decaying from a vector mother particle, i.e. 11^{--}, the JPJ^{P} of the decay products could be 12+12+\frac{1}{2}^{+}\frac{1}{2}^{+}, 12+12\frac{1}{2}^{+}\frac{1}{2}^{-}, 12+32+\frac{1}{2}^{+}\frac{3}{2}^{+}, 12+32\frac{1}{2}^{+}\frac{3}{2}^{-}, 32+32+\frac{3}{2}^{+}\frac{3}{2}^{+}, 32+32\frac{3}{2}^{+}\frac{3}{2}^{-}, 52+12+\frac{5}{2}^{+}\frac{1}{2}^{+}, 52+12\frac{5}{2}^{+}\frac{1}{2}^{-}, 52+32+\frac{5}{2}^{+}\frac{3}{2}^{+}, 52+32\frac{5}{2}^{+}\frac{3}{2}^{-}, 72+32+\frac{7}{2}^{+}\frac{3}{2}^{+}j, and 72+32\frac{7}{2}^{+}\frac{3}{2}^{-} ; at the second level, if the decays are from Δ\Delta, the final states are always 12+0\frac{1}{2}^{+}0^{-} while the JPJ^{P} of the Δ\Delta can be 12+\frac{1}{2}^{+}, 12\frac{1}{2}^{-}, 32+\frac{3}{2}^{+}, 32\frac{3}{2}^{-}, 52+\frac{5}{2}^{+}, 52\frac{5}{2}^{-}, 72+\frac{7}{2}^{+}, and 72\frac{7}{2}^{-}; if a decay chain contains NN^{*} then there is another decay mode with final states Δπ\Delta\pi, i.e. JP=32+0J^{P}=\frac{3}{2}^{+}0^{-}, while the JPJ^{P} of the initial NN^{*} can be 12+\frac{1}{2}^{+}, 12\frac{1}{2}^{-}, 32+\frac{3}{2}^{+}, 32\frac{3}{2}^{-}, 52+\frac{5}{2}^{+}, 52\frac{5}{2}^{-} 72+\frac{7}{2}^{+}, and 72\frac{7}{2}^{-};

III Preparations

III.1 Wave functions

To construct the covariant tensor amplitudes, we need the tensor wave functions describing relativistic particles with arbitrary spin (helicity) and satisfying the Rarita-Schwinger formalism Rarita:1941mf . We will follow the method proposed by Auvil and Brehm Auvil:1966eao to write down these wave functions explicitly. The wave function of a scalar particle is constant. We start with a particle of spin-11 at rest, whose wave functions may be expressed explicitly as column vectors:

e(±1)=12(1±i0),e(0)=(001).e(\pm 1)=\mp\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ \pm\mathrm{i}\\ 0\end{pmatrix},\ \ \ e(0)=\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}. (1)

Since a particle at rest cannot have the energy component if the spin (helicity) wave function is presented in the momentum space, the four-vector describing a spin-11 particle at rest is defined as:

eμ(0,λ)={0,e(λ)},eμ(0,λ)={0,e(λ)}.e^{\mu}(0,\lambda)=\{0,\vec{e}(\lambda)\},\ \ \ e_{\mu}(0,\lambda)=\{0,-\vec{e}(\lambda)\}. (2)

Then the general helicity state vector with four-momentum pp can be obtained by performing a Lorentz boost in zz direction and a proper rotation:

eμ(p,0)=Em(p/Esinθcosϕsinθsinϕcosθ),eμ(p,±1)=12(0cosθcosϕ+isinϕcosθsinϕicosϕ±sinθ),e^{\mu}(p,0)=\frac{E}{m}\begin{pmatrix}-p/E\\ \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta\end{pmatrix},\ \ \ e^{\mu}(p,\pm 1)=\frac{1}{\sqrt{2}}\begin{pmatrix}0\\ \mp\cos\theta\cos\phi+\mathrm{i}\sin\phi\\ \mp\cos\theta\sin\phi-\mathrm{i}\cos\phi\\ \pm\sin\theta\end{pmatrix}, (3)

where mm, EE, pp and (θ,ϕ)(\theta,\phi) are the invariant mass, energy, momentum, and helicity angles of the particle, respectively, and satisfy E2=p2+m2E^{2}=p^{2}+m^{2} with the natural unit. The wave function describing spin-2 particles can be constructed out of the wave functions of spin-1 via C-G coefficients as follows:

eμν(p,2λ)=λ1λ2(1λ11λ2|2λ)eμ(p,λ1)eν(p,λ2).e^{\mu\nu}(p,2\lambda)=\sum_{\lambda_{1}\lambda_{2}}(1\lambda_{1}1\lambda_{2}|2\lambda)e^{\mu}(p,\lambda_{1})e^{\nu}(p,\lambda_{2}). (4)

Then the wave function of spin-nn (nIn\in\mathrm{I}) particles can be derived in a cumulative way as tensor eμ1μn(p,nλ)e^{\mu_{1}\cdots\mu_{n}}(p,n\lambda) Zhu:1999pu :

eμ1μn(p,nλ)=λ1,λ2(n1λ11λ2|nλ)eμ1μn1(p,n1λ1)eμn(p,λ2)e^{\mu_{1}\cdots\mu_{n}}(p,n\lambda)=\sum_{\lambda_{1},\lambda_{2}}(n\!\!-\!\!1\lambda_{1}1\lambda_{2}|n\lambda)e^{\mu_{1}\cdots\mu_{n-1}}(p,n\!\!-\!\!1\lambda_{1})e^{\mu_{n}}(p,\lambda_{2}) (5)

Therefore, the wave functions should satisfy the Rarita-Schwinger conditions:

pμ1eμ1μn=0p^{\mu_{1}}e_{\mu_{1}\cdots\mu_{n}}=0 (6)
eμiμj=eμjμie_{\cdots\mu_{i}\cdots\mu_{j}\cdots}=e_{\cdots\mu_{j}\cdots\mu_{i}\cdots} (7)
gμ1μ2eμ1μn=0g^{\mu_{1}\mu_{2}}e_{\mu_{1}\cdots\mu_{n}}=0 (8)

We shall turn to the Fermion particles now. Consider a spin-1/21/2 particle at rest and its basis vectors may be given by the spinors or two-dimensional column vectors:

χ(+12)=(10),χ(12)=(01).\chi(+\frac{1}{2})=\begin{pmatrix}1\\ 0\end{pmatrix},\ \ \ \chi(-\frac{1}{2})=\begin{pmatrix}0\\ 1\end{pmatrix}. (9)

We adopt the four-component Dirac spinor to describe the relativistic spin 1/21/2 particles. Then the two-component spinors χ(λ)\chi(\lambda) are generalized to the four-component spinors u(0,λ)u(0,\lambda):

u(0,λ)=(χ(λ)0),u(0,\lambda)=\begin{pmatrix}\chi(\lambda)\\ 0\end{pmatrix}, (10)

where λ=±12\lambda=\pm\frac{1}{2}. After a boost, the helicity wave functions’ explicit expressions can be cast into the form

u(p,+1/2)=12m(E+mcos(θ/2)[cos(ϕ/2)isin(ϕ/2)]E+msin(θ/2)[cos(ϕ/2)+isin(ϕ/2)]Emcos(θ/2)[cos(ϕ/2)isin(ϕ/2)]Emsin(θ/2)[cos(ϕ/2)+isin(ϕ/2)]),u(p,1/2)=12m(E+msin(θ/2)[cos(ϕ/2)isin(ϕ/2)]E+mcos(θ/2)[cos(ϕ/2)+isin(ϕ/2)]Emsin(θ/2)[cos(ϕ/2)isin(ϕ/2)]Emcos(θ/2)[cos(ϕ/2)+isin(ϕ/2)]).u(p,+1/2)=\frac{1}{\sqrt{2m}}\begin{pmatrix}\sqrt{E+m}\cos(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E+m}\sin(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\\ \sqrt{E-m}\cos(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E-m}\sin(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\end{pmatrix},u(p,-1/2)=\frac{1}{\sqrt{2m}}\begin{pmatrix}-\sqrt{E+m}\sin(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E+m}\cos(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\\ \sqrt{E-m}\sin(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ -\sqrt{E-m}\cos(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\end{pmatrix}. (11)

The “adjoint” spinor is defined as

u¯(p,λ)=u(p,λ)γ0.\bar{u}(p,\lambda)=u^{\dagger}(p,\lambda)\gamma^{0}\ . (12)

The helicity wave functions for the anti-Fermion can be written down similarly as

v(p,+1/2)=12m(Emcos(θ/2)[cos(ϕ/2)isin(ϕ/2)]Emsin(θ/2)[cos(ϕ/2)+isin(ϕ/2)]E+mcos(θ/2)[cos(ϕ/2)isin(ϕ/2)]E+msin(θ/2)[cos(ϕ/2)+isin(ϕ/2)]),v(p,1/2)=12m(Emsin(θ/2)[cos(ϕ/2)isin(ϕ/2)]Emcos(θ/2)[cos(ϕ/2)+isin(ϕ/2)]E+msin(θ/2)[cos(ϕ/2)isin(ϕ/2)]E+mcos(θ/2)[cos(ϕ/2)+isin(ϕ/2)]).v(p,+1/2)=\frac{1}{\sqrt{2m}}\begin{pmatrix}\sqrt{E-m}\cos(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E-m}\sin(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\\ \sqrt{E+m}\cos(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E+m}\sin(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\end{pmatrix},v(p,-1/2)=\frac{1}{\sqrt{2m}}\begin{pmatrix}\sqrt{E-m}\sin(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ -\sqrt{E-m}\cos(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\\ -\sqrt{E+m}\sin(\theta/2)[\cos(\phi/2)-\mathrm{i}\sin(\phi/2)]\\ \sqrt{E+m}\cos(\theta/2)[\cos(\phi/2)+\mathrm{i}\sin(\phi/2)]\end{pmatrix}. (13)

Following Auvil and Brehm, wave functions corresponding to particles of spin j=n+1/2j=n+1/2 can be constructed by the spin-1/21/2 wave functions and spin-nn wave functions with C-G coefficients as the following:

uμ1μn(p,jλ)=λ1λ2(nλ112λ2|jλ)eμ1μn(p,nλ1)u(p,λ2)u^{\mu_{1}\cdots\mu_{n}}(p,j\lambda)=\sum_{\lambda_{1}\lambda_{2}}(n\lambda_{1}\frac{1}{2}\lambda_{2}|j\lambda)e^{\mu_{1}\cdots\mu_{n}}(p,n\lambda_{1})u(p,\lambda_{2}) (14)

The spin-j wave function Eq. 14 is a four-component spinor with the four-vector indices μ1μn\mu_{1}\cdots\mu_{n}. Since it describes a state of spin jj, it can have only (2j+1)(2j+1) independent components. The desired supplementary conditions are just the Rarita-Schwinger equations:

(γμpμm)uμ1μn=0(\gamma^{\mu}p_{\mu}-m)u_{\mu_{1}\cdots\mu_{n}}=0 (15)
uμiμj=uμjμiu_{\cdots\mu_{i}\cdots\mu_{j}\cdots}=u_{\cdots\mu_{j}\cdots\mu_{i}\cdots} (16)
pμ1uμ1μn=0p^{\mu_{1}}u_{\mu_{1}\cdots\mu_{n}}=0 (17)
γμ1uμ1μn=0\gamma^{\mu_{1}}u_{\mu_{1}\cdots\mu_{n}}=0 (18)
gμ1μ2uμ1μn=0g^{\mu_{1}\mu_{2}}u_{\mu_{1}\cdots\mu_{n}}=0 (19)

where mm is the mass of the spin-j particle and pp is its four-momentum.

III.2 Effective vertices

We also need effective vertices to construct various partial wave amplitudes. The principle idea is that the decay mechanism has been considered as effective interactions, then all the loops in the Feynman diagrams have been absorbed into the effective vertices Scadron:1968zz . A general form of any amplitude in a single decay chain can be expressed as

A=u¯1Γu2eB,A=\bar{u}_{1}\Gamma u_{2}eB, (20)

in which u¯1\bar{u}_{1}, u2u_{2} and ee are wave functions of two baryons and a meson, respectively; BB is considered as the kernel of the propagator and usually parameterized as Breit-Wigner functions; Γ\Gammas are tensors representing effective vertices, who are composed by 𝕀\mathbb{I}, pμp^{\mu}, γ5\gamma^{5}, γμ\gamma^{\mu}, σμν\sigma^{\mu\nu}, gμνg^{\mu\nu}, ϵμναβ\epsilon^{\mu\nu\alpha\beta}. The main target of this paper is to find out all the independent effective vertices. Before that, it is worthy taking some time to consider the constraints on them due to symmetry. Since in these decays, the strong interaction is dominant, the conservation is expected under the transformation of parity P and charge conjugate C, respectively Stapp:1962nxd . However, u¯1\bar{u}_{1} and u2u_{2} do not correspond to precisely a particle and its anti-particle, and the charged particles do not have determined C-parity, so we only consider the symmetry of parity, and its conservation requires

η1η2ηAΓP=1,\eta^{*}_{1}\eta_{2}\eta_{A}\Gamma_{P}=1, (21)

where ΓP\Gamma_{P} is the transformation property of different tensors and η1\eta_{1}, η2\eta_{2}, ηA\eta_{A} are the parities of the two baryons and one meson, respectively. The properties of different tensors under the P transformation are listed in Table 1. And we also notice the transformation property of wave function eμ1μne^{\mu_{1}\cdots\mu_{n}} will be i=1n(1)μi\prod_{i=1}^{n}(-1)^{\mu_{i}} as pμp^{\mu} and ϵμναβ\epsilon^{\mu\nu\alpha\beta} since each of them only takes Lorentz indexes without the Dirac ones.

Table 1: The parity transformation properties of some tensors, the shorthand (1)μ1(-1)^{\mu}\equiv 1 for μ=0\mu=0 while 1-1 for μ=1,2,3\mu=1,2,3 is used as in Peskin:1995ev .
𝕀\mathbb{I} γ5\gamma^{5} γμ\gamma^{\mu} γμγ5\gamma^{\mu}\gamma^{5} σμν\sigma^{\mu\nu} pμp^{\mu} σμνγ5\sigma^{\mu\nu}\gamma^{5}
ΓP\Gamma_{P} 11 1-1 (1)μ(-1)^{\mu} (1)μ-(-1)^{\mu} (1)μ(1)ν(-1)^{\mu}(-1)^{\nu} (1)μ(-1)^{\mu} (1)μ(1)ν-(-1)^{\mu}(-1)^{\nu}

IV Decay Amplitudes in tensor formalism

Now we are ready to derive the covariant invariant amplitudes in the tensor formalism for resonance decays. Let us consider a resonance of spin-parity JPJ^{P} and mass mm, decaying into two particles 1 and 2:

J1+2.J\to 1+2\ .

In the rest frame of the mother resonance, let pp is the momentum of the particle 1 with helicity angles (θ,ϕ)(\theta,\phi). Usually the amplitude AA describing the decay process into two particles with helicity λ1\lambda_{1} and λ2\lambda_{2} may be written as

A(λ1,λ2,θ,ϕ)=NJFλ1λ2JDM,λ1λ2J(ϕ,θ,0)A(\lambda_{1},\lambda_{2},\theta,\phi)=N_{J}F^{J}_{\lambda_{1}\lambda_{2}}D^{J*}_{M,\lambda_{1}-\lambda_{2}}(\phi,\theta,0) (22)

in the helicity formalism, where NJN_{J} is the normalization factor, Fλ1λ2JF^{J}_{\lambda_{1}\lambda_{2}} is the helicity coupling, and DM,λ1λ2JD^{J*}_{M,\lambda_{1}-\lambda_{2}} is the D function with MM is the z-component of the mother’s spin. However, with the explicit wave functions and effective vertices, we could construct the independent covariant invariant amplitudes in the tensor formalism.

IV.1 ψΔΔ¯\psi\rightarrow\Delta\bar{\Delta}

ψΔ(12+)Δ¯(12):g1u¯(p1,12λ1)γμv(p2,12λ2)eμ(P,λ)+g2u¯(p1,12λ1)σμνPνv(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{1}{2}^{+})\bar{\Delta}(\frac{1}{2}^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{\mu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\sigma^{\mu\nu}P_{\nu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (23)
ψΔ(12+)Δ¯(12+):g1u¯(p1,12λ1)γμγ5v(p2,12λ2)eμ(P,λ)+g2u¯(p1,12λ1)σμνPνγ5v(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{1}{2}^{+})\bar{\Delta}(\frac{1}{2}^{+}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\sigma^{\mu\nu}P_{\nu}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (24)
ψΔ(32+)Δ¯(12):g1u¯μ(p1,32λ1)v(p2,12λ2)eμ(P,λ)+g2u¯ν(p1,32λ1)γμPνv(p2,12λ2)eμ(P,λ)+g3u¯ν(p1,32λ1)p2μPνv(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{3}{2}^{+})\bar{\Delta}(\frac{1}{2}^{-}):\quad&g_{1}\bar{u}^{\mu}(p_{1},\frac{3}{2}\lambda_{1})v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}P^{\nu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\mu}P^{\nu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (25)
ψΔ(32+)Δ¯(12+):g1u¯ν(p1,32λ1)γ5v(p2,12λ2)eμ(P,λ)+g2u¯ν(p1,32λ1)γμγ5Pνv(p2,12λ2)eμ(P,λ)+g3u¯ν(p1,32λ1)p2μPνγ5v(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{3}{2}^{+})\bar{\Delta}(\frac{1}{2}^{+}):\quad&g_{1}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\mu}P^{\nu}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (26)
ψΔ(32+)Δ¯(32):g1u¯ν(p1,32λ1)γμvν(p2,32λ2)eμ(P,λ)+g2u¯ν(p1,32λ1)p2μvν(p2,32λ2)eμ(P,λ)+g3u¯ν(p1,32λ1)p2νvμ(p2,32λ2)eμ(P,λ)+g4u¯ν(p1,32λ1)γμPνPαvα(p2,32λ2)eμ(P,λ)+g5u¯ν(p1,32λ1)p1μPνPαvα(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{3}{2}^{+})\bar{\Delta}(\frac{3}{2}^{-}):\quad&g_{1}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}v^{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\mu}v^{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\nu}v^{\mu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}P^{\nu}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (27)
ψΔ(32+)Δ¯(32+):g1u¯ν(p1,32λ1)γμγ5vν(p2,32λ2)eμ(P,λ)+g2u¯ν(p1,32λ1)p2μγ5vν(p2,32λ2)eμ(P,λ)+g3u¯ν(p1,32λ1)p2νγ5vμ(p2,32λ2)eμ(P,λ)+g4u¯ν(p1,32λ1)γμγ5PνPαvα(p2,32λ2)eμ(P,λ)+g5u¯ν(p1,32λ1)p1μPνPαγ5vα(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{3}{2}^{+})\bar{\Delta}(\frac{3}{2}^{+}):\quad&g_{1}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}v^{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\mu}\gamma^{5}v^{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{2}^{\nu}\gamma^{5}v^{\mu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P_{\alpha}\gamma^{5}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (28)
ψΔ(52+)Δ¯(12):g1u¯μν(p1,52λ1)Pνv(p2,12λ2)eμ(P,λ)+g2u¯να(p1,52λ1)γμPνPαv(p2,12λ2)eμ(P,λ)+g3u¯να(p1,52λ1)p1μPνPαv(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{5}{2}^{+})\bar{\Delta}(\frac{1}{2}^{-}):\quad&g_{1}\bar{u}_{\mu\nu}(p_{1},\frac{5}{2}\lambda_{1})P^{\nu}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}P^{\nu}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (29)
ψΔ(52+)Δ¯(12+):g1u¯μν(p1,52λ1)Pνγ5v(p2,12λ2)eμ(P,λ)+g2u¯να(p1,52λ1)γμγ5PνPαv(p2,12λ2)eμ(P,λ)+g3u¯να(p1,52λ1)p1μPνPαγ5v(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{5}{2}^{+})\bar{\Delta}(\frac{1}{2}^{+}):\quad&g_{1}\bar{u}_{\mu\nu}(p_{1},\frac{5}{2}\lambda_{1})P^{\nu}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\alpha}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (30)
ψΔ(52+)Δ¯(32):g1u¯μν(p1,52λ1)vν(p2,32λ2)eμ(P,λ)+g2u¯να(p1,52λ1)γμPνvα(p2,32λ2)eμ(P,λ)+g3u¯να(p1,52λ1)p1μPνvα(p2,32λ2)eμ(P,λ)+g4u¯να(p1,52λ1)PνPαvμ(p2,32λ2)eμ(P,λ)+g5u¯νβ(p1,52λ1)γμPνPβPαvα(p2,32λ2)eμ(P,λ)+g6u¯νβ(p1,52λ1)p1μPνPβPαvα(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{5}{2}^{+})\bar{\Delta}(\frac{3}{2}^{-}):\quad&g_{1}\bar{u}^{\mu\nu}(p_{1},\frac{5}{2}\lambda_{1})v_{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}P_{\nu}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P_{\nu}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})P^{\nu}P_{\alpha}v^{\mu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}^{\nu\beta}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}P_{\nu}P_{\beta}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{6}\bar{u}^{\nu\beta}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P_{\nu}P_{\beta}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\\ \end{split} (31)
ψΔ(52+)Δ¯(32+):g1u¯μν(p1,52λ1)γ5vν(p2,32λ2)eμ(P,λ)+g2u¯να(p1,52λ1)γμγ5Pνvα(p2,32λ2)eμ(P,λ)+g3u¯να(p1,52λ1)p1μPνγ5vα(p2,32λ2)eμ(P,λ)+g4u¯να(p1,52λ1)PνPαγ5vμ(p2,32λ2)eμ(P,λ)+g5u¯νβ(p1,52λ1)γμγ5PνPβPαvα(p2,32λ2)eμ(P,λ)+g6u¯νβ(p1,52λ1)p1μPνPβPαγ5vα(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{5}{2}^{+})\bar{\Delta}(\frac{3}{2}^{+}):\quad&g_{1}\bar{u}^{\mu\nu}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{5}v_{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P_{\nu}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P_{\nu}\gamma^{5}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}^{\nu\alpha}(p_{1},\frac{5}{2}\lambda_{1})P^{\nu}P_{\alpha}\gamma^{5}v^{\mu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}^{\nu\beta}(p_{1},\frac{5}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P_{\nu}P_{\beta}P_{\alpha}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{6}\bar{u}^{\nu\beta}(p_{1},\frac{5}{2}\lambda_{1})p_{1}^{\mu}P_{\nu}P_{\beta}P_{\alpha}\gamma^{5}v^{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (32)
ψΔ(72+)Δ¯(12):g1u¯μνα(p1,72λ1)PνPαv(p2,12λ2)eμ(P,λ)+g2u¯νβα(p1,72λ1)γμPνPβPαv(p2,12λ2)eμ(P,λ)+g3u¯νβα(p1,72λ1)p1μPνPβPαv(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{7}{2}^{+})\bar{\Delta}(\frac{1}{2}^{-}):\quad&g_{1}\bar{u}^{\mu\nu\alpha}(p_{1},\frac{7}{2}\lambda_{1})P_{\nu}P_{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}P^{\nu}P^{\beta}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\beta}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (33)
ψΔ(72+)Δ¯(12+):g1u¯μνα(p1,72λ1)PνPαγ5v(p2,12λ2)eμ(P,λ)+g2u¯νβα(p1,72λ1)γμγ5PνPβPαv(p2,12λ2)eμ(P,λ)+g3u¯νβα(p1,72λ1)p1μPνPβPαγ5v(p2,12λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{7}{2}^{+})\bar{\Delta}(\frac{1}{2}^{+}):\quad&g_{1}\bar{u}^{\mu\nu\alpha}(p_{1},\frac{7}{2}\lambda_{1})P_{\nu}P_{\alpha}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}P^{\beta}P^{\alpha}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\beta}P^{\alpha}\gamma^{5}v(p_{2},\frac{1}{2}\lambda_{2})e_{\mu}(P,\lambda)\end{split} (34)
ψΔ(72+)Δ¯(32):g1u¯μνα(p1,72λ1)Pνvα(p2,32λ2)eμ(P,λ)+g2u¯νβα(p1,72λ1)γμPνPαvβ(p2,32λ2)eμ(P,λ)+g3u¯νβα(p1,72λ1)p1μPνPαvβ(p2,32λ2)eμ(P,λ)+g4u¯μβα(p1,72λ1)PνPβPαvν(p2,32λ2)eμ(P,λ)+g5u¯νδα(p1,72λ1)γμPνPδPαPβvβ(p2,32λ2)eμ(P,λ)+g6u¯νδα(p1,72λ1)p1μPνPδPαPβvβ(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{7}{2}^{+})\bar{\Delta}(\frac{3}{2}^{-}):\quad&g_{1}\bar{u}^{\mu\nu\alpha}(p_{1},\frac{7}{2}\lambda_{1})P_{\nu}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}P^{\nu}P^{\alpha}v^{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P_{\alpha}v^{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}_{\mu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})P^{\nu}P^{\beta}P^{\alpha}v_{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}_{\nu\delta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}P^{\nu}P^{\delta}P^{\alpha}P^{\beta}v_{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{6}\bar{u}_{\nu\delta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\delta}P^{\alpha}P^{\beta}v_{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\\ \end{split} (35)
ψΔ(72+)Δ¯(32+):g1u¯μνα(p1,72λ1)Pνγ5vα(p2,32λ2)eμ(P,λ)+g2u¯νβα(p1,72λ1)γμγ5PνPαvβ(p2,32λ2)eμ(P,λ)+g3u¯νβα(p1,72λ1)p1μPνPαγ5vβ(p2,32λ2)eμ(P,λ)+g4u¯μβα(p1,72λ1)PνPβPαγ5vν(p2,32λ2)eμ(P,λ)+g5u¯νδα(p1,72λ1)γμγ5PνPδPαPβvβ(p2,32λ2)eμ(P,λ)+g6u¯νδα(p1,72λ1)p1μPνPδPαPβγ5vβ(p2,32λ2)eμ(P,λ)\begin{split}\psi\rightarrow\Delta(\frac{7}{2}^{+})\bar{\Delta}(\frac{3}{2}^{+}):\quad&g_{1}\bar{u}^{\mu\nu\alpha}(p_{1},\frac{7}{2}\lambda_{1})P_{\nu}\gamma^{5}v_{\alpha}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{2}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}P^{\alpha}v^{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{3}\bar{u}_{\nu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P_{\alpha}\gamma^{5}v^{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{4}\bar{u}_{\mu\beta\alpha}(p_{1},\frac{7}{2}\lambda_{1})P^{\nu}P^{\beta}P^{\alpha}\gamma^{5}v_{\nu}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{5}\bar{u}_{\nu\delta\alpha}(p_{1},\frac{7}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}P^{\nu}P^{\delta}P^{\alpha}P^{\beta}v_{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)+\\ &g_{6}\bar{u}_{\nu\delta\alpha}(p_{1},\frac{7}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}P^{\delta}P^{\alpha}P^{\beta}\gamma^{5}v_{\beta}(p_{2},\frac{3}{2}\lambda_{2})e_{\mu}(P,\lambda)\\ \end{split} (36)

IV.2 The formula of Δpπ\Delta\to p\pi

Δ(12+)p(12+)π(0):gu¯(p1,12λ1)γ5u(P,12λ)\begin{split}\Delta(\frac{1}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{5}u(P,\frac{1}{2}\lambda)\end{split} (37)
Δ(12)p(12+)π(0):gu¯(p1,12λ1)u(P,12λ)\begin{split}\Delta(\frac{1}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})u(P,\frac{1}{2}\lambda)\end{split} (38)
Δ(32+)p(12+)π(0):gu¯(p1,12λ1)p1μγ5uμ(P,32λ)\begin{split}\Delta(\frac{3}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}\gamma^{5}u_{\mu}(P,\frac{3}{2}\lambda)\end{split} (39)
Δ(32)p(12+)π(0):gu¯(p1,12λ1)p1μuμ(P,32λ)\begin{split}\Delta(\frac{3}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}u_{\mu}(P,\frac{3}{2}\lambda)\end{split} (40)
Δ(52+)p(12+)π(0):gu¯(p1,12λ1)p1μp1νγ5uμν(P,52λ)\begin{split}\Delta(\frac{5}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (41)
Δ(52)p(12+)π(0):gu¯(p1,12λ1)p1μp1νuμν(P,52λ)\begin{split}\Delta(\frac{5}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (42)
Δ(72+)p(12+)π(0):gu¯(p1,12λ1)p1μp1νp1αγ5uμνα(P,72λ)\begin{split}\Delta(\frac{7}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}\gamma^{5}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (43)
Δ(72)p(12+)π(0):gu¯(p1,12λ1)p1μp1νp1αuμνα(P,72λ)\begin{split}\Delta(\frac{7}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\pi(0^{-}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (44)

IV.3 The formula of ψNN¯\psi\to N^{*}\bar{N}

This type of partial wave formulas for ψNN¯\psi\rightarrow N^{*}\bar{N} with the spin of N¯\bar{N} is 12\frac{1}{2}^{-} has been included in ψΔΔ¯\psi\rightarrow\Delta\bar{\Delta} and will not be repeated.

IV.4 The formula of NΔπN^{*}\to\Delta\pi

N(12+)Δ(32+)π(0):gu¯μ(p1,32λ1)Pμγ5u(P,12λ)\begin{split}N^{*}(\frac{1}{2}^{+})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad g\bar{u}_{\mu}(p_{1},\frac{3}{2}\lambda_{1})P^{\mu}\gamma^{5}u(P,\frac{1}{2}\lambda)\end{split} (45)
N(12)Δ(32+)π(0):gu¯μ(p1,32λ1)Pμu(P,12λ)\begin{split}N^{*}(\frac{1}{2}^{-})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad g\bar{u}_{\mu}(p_{1},\frac{3}{2}\lambda_{1})P^{\mu}u(P,\frac{1}{2}\lambda)\end{split} (46)
N(32+)Δ(32+)π(0):g1u¯μ(p1,32λ1)γ5uμ(P,32λ)+g2u¯ν(p1,32λ1)p1μPνγ5uμ(P,32λ)\begin{split}N^{*}(\frac{3}{2}^{+})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}_{\mu}(p_{1},\frac{3}{2}\lambda_{1})\gamma^{5}u^{\mu}(P,\frac{3}{2}\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}\gamma^{5}u_{\mu}(P,\frac{3}{2}\lambda)\end{split} (47)
N(32)Δ(32+)π(0):g1u¯μ(p1,32λ1)uμ(P,32λ)+g2u¯ν(p1,32λ1)p1μPνuμ(P,32λ)\begin{split}N^{*}(\frac{3}{2}^{-})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}_{\mu}(p_{1},\frac{3}{2}\lambda_{1})u^{\mu}(P,\frac{3}{2}\lambda)+\\ &g_{2}\bar{u}_{\nu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}u_{\mu}(P,\frac{3}{2}\lambda)\end{split} (48)
N(52+)Δ(32+)π(0):g1u¯μ(p1,32λ1)p1μγ5uμν(P,52λ)+g2u¯α(p1,32λ1)p1μp1νPαγ5uμν(P,52λ)\begin{split}N^{*}(\frac{5}{2}^{+})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}^{\mu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)+\\ &g_{2}\bar{u}_{\alpha}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}P^{\alpha}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (49)
N(52)Δ(32+)π(0):g1u¯ν(p1,32λ1)Pμuμν(P,52λ)+g2u¯α(p1,32λ1)p1μp1νPαuμν(P,52λ)\begin{split}N^{*}(\frac{5}{2}^{-})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}^{\nu}(p_{1},\frac{3}{2}\lambda_{1})P^{\mu}u_{\mu\nu}(P,\frac{5}{2}\lambda)+\\ &g_{2}\bar{u}_{\alpha}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}P^{\alpha}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (50)
N(72+)Δ(32+)π(0):g1u¯μ(p1,32λ1)p1νp1αγ5uμνα(P,72λ)+g2u¯β(p1,32λ1)p1μp1νp1αPβγ5uμνα(P,72λ)\begin{split}N^{*}(\frac{7}{2}^{+})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}^{\mu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\nu}p_{1}^{\alpha}\gamma^{5}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)+\\ &g_{2}\bar{u}_{\beta}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}P^{\beta}\gamma^{5}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (51)
N(72)Δ(32+)π(0):g1u¯μ(p1,32λ1)p1νp1αuμνα(P,72λ)+g2u¯β(p1,32λ1)p1μp1νp1αPβuμνα(P,72λ)\begin{split}N^{*}(\frac{7}{2}^{-})\rightarrow\Delta(\frac{3}{2}^{+})\pi(0^{-}):\quad&g_{1}\bar{u}^{\mu}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\nu}p_{1}^{\alpha}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)+\\ &g_{2}\bar{u}_{\beta}(p_{1},\frac{3}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}P^{\beta}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (52)

IV.5 The formula of Npρ0N^{*}\to p\rho^{0}

N(12+)p(12+)ρ0(1):g1u¯(p1,12λ1)γμγ5u(P,12λ)eμ(p2,λ2)+g2u¯(p1,12λ1)Pμγ5u(P,12λ)eμ(p2,λ2)\begin{split}N^{*}(\frac{1}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{\mu}\gamma^{5}u(P,\frac{1}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})P^{\mu}\gamma^{5}u(P,\frac{1}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})\end{split} (53)
N(12)p(12+)ρ0(1):g1u¯(p1,12λ1)γμu(P,12λ)eμ(p2,λ2)+g2u¯(p1,12λ1)Pμu(P,12λ)eμ(p2,λ2)\begin{split}N^{*}(\frac{1}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{\mu}u(P,\frac{1}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})P^{\mu}u(P,\frac{1}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})\end{split} (54)
N(32+)p(12+)ρ0(1):g1u¯(p1,12λ1)γ5uμ(P,32λ)eμ(p2,λ2)+g2u¯(p1,12λ1)p1μγνγ5uμ(P,32λ)eν(p2,λ2)+g3u¯(p1,12λ1)p1μPνγ5uμ(P,32λ)eν(p2,λ2)\begin{split}N^{*}(\frac{3}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{5}u^{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}\gamma^{\nu}\gamma^{5}u_{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\nu}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}\gamma^{5}u_{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\nu}(p_{2},\lambda_{2})\end{split} (55)
N(32)p(12+)ρ0(1):g1u¯(p1,12λ1)uμ(P,32λ)eμ(p2,λ2)+g2u¯(p1,12λ1)p1μγνuμ(P,32λ)eν(p2,λ2)+g3u¯(p1,12λ1)p1μPνuμ(P,32λ)eν(p2,λ2)\begin{split}N^{*}(\frac{3}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})u^{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\mu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}\gamma^{\nu}u_{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\nu}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}P^{\nu}u_{\mu}(P,\frac{3}{2}\lambda)e^{*}_{\nu}(p_{2},\lambda_{2})\end{split} (56)
N(52+)p(12+)ρ0(1):g1u¯(p1,12λ1)p1μγ5uμν(P,52λ)eν(p2,λ2)+g2u¯(p1,12λ1)p1μp2νγαγ5uμν(P,52λ)eα(p2,λ2)+g3u¯(p1,12λ1)p1μp2νPαγ5uμν(P,52λ)eα(p2,λ2)\begin{split}N^{*}(\frac{5}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*\nu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}\gamma^{\alpha}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}P^{\alpha}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})\end{split} (57)
N(52)p(12+)ρ0(1):g1u¯(p1,12λ1)p1μuμν(P,52λ)eν(p2,λ2)+g2u¯(p1,12λ1)p1μp2νγαuμν(P,52λ)eα(p2,λ2)+g3u¯(p1,12λ1)p1μp2νPαuμν(P,52λ)eα(p2,λ2)\begin{split}N^{*}(\frac{5}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*\nu}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}\gamma^{\alpha}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}P^{\alpha}u_{\mu\nu}(P,\frac{5}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})\end{split} (58)
N(72+)p(12+)ρ0(1):g1u¯(p1,12λ1)p1μp2νuμνα(P,72λ)γ5eα(p2,λ2)+g2u¯(p1,12λ1)p1μp2νp1βγαuμνβ(P,72λ)γ5eα(p2,λ2)+g3u¯(p1,12λ1)p1μp2νp2βPαuμνβ(P,72λ)γ5eα(p2,λ2)\begin{split}N^{*}(\frac{7}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\gamma^{5}e^{*\alpha}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}p_{1}^{\beta}\gamma^{\alpha}u_{\mu\nu\beta}(P,\frac{7}{2}\lambda)\gamma^{5}e^{*}_{\alpha}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}p_{2}^{\beta}P^{\alpha}u_{\mu\nu\beta}(P,\frac{7}{2}\lambda)\gamma^{5}e^{*}_{\alpha}(p_{2},\lambda_{2})\end{split} (59)
N(72)p(12+)ρ0(1):g1u¯(p1,12λ1)p1μp2νuμνα(P,72λ)eα(p2,λ2)+g2u¯(p1,12λ1)p1μp2νp1βγαuμνβ(P,72λ)eα(p2,λ2)+g3u¯(p1,12λ1)p1μp2νp2βPαuμνβ(P,72λ)eα(p2,λ2)\begin{split}N^{*}(\frac{7}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\rho^{0}(1^{-}):\quad&g_{1}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)e^{*\alpha}(p_{2},\lambda_{2})+\\ &g_{2}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}p_{1}^{\beta}\gamma^{\alpha}u_{\mu\nu\beta}(P,\frac{7}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})+\\ &g_{3}\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{2}^{\nu}p_{2}^{\beta}P^{\alpha}u_{\mu\nu\beta}(P,\frac{7}{2}\lambda)e^{*}_{\alpha}(p_{2},\lambda_{2})\end{split} (60)

IV.6 The formula of NpσN^{*}\to p\sigma

N(12+)p(12+)σ(0+):gu¯(p1,12λ1)u(P,12λ)\begin{split}N^{*}(\frac{1}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})u(P,\frac{1}{2}\lambda)\end{split} (61)
N(12)p(12+)σ(0+):gu¯(p1,12λ1)γ5u(P,12λ)\begin{split}N^{*}(\frac{1}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{5}u(P,\frac{1}{2}\lambda)\end{split} (62)
N(32+)p(12+)σ(0+):gu¯(p1,12λ1)p1μuμ(P,32λ)\begin{split}N^{*}(\frac{3}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1\mu}u^{\mu}(P,\frac{3}{2}\lambda)\end{split} (63)
N(32)p(12+)σ(0+):gu¯(p1,12λ1)γ5uμ(P,32λ)p1μ\begin{split}N^{*}(\frac{3}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})\gamma^{5}u^{\mu}(P,\frac{3}{2}\lambda)p_{1\mu}\end{split} (64)
N(52+)p(12+)σ(0+):gu¯(p1,12λ1)p1μp1νuμν(P,52λ)\begin{split}N^{*}(\frac{5}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (65)
N(52)p(12+)σ(0+):gu¯(p1,12λ1)p1μp1νγ5uμν(P,52λ)\begin{split}N^{*}(\frac{5}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}\gamma^{5}u_{\mu\nu}(P,\frac{5}{2}\lambda)\end{split} (66)
N(72+)p(12+)σ(0+):gu¯(p1,12λ1)p1μp1νp1αuμνα(P,72λ)\begin{split}N^{*}(\frac{7}{2}^{+})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (67)
N(72)p(12+)σ(0+):gu¯(p1,12λ1)p1μp1νp1αγ5uμνα(P,72λ)\begin{split}N^{*}(\frac{7}{2}^{-})\rightarrow p(\frac{1}{2}^{+})\sigma(0^{+}):\quad g\bar{u}(p_{1},\frac{1}{2}\lambda_{1})p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\alpha}\gamma^{5}u_{\mu\nu\alpha}(P,\frac{7}{2}\lambda)\end{split} (68)

IV.7 The formula of ρ0(σ)π+π\rho^{0}(\sigma)\to\pi^{+}\pi^{-}

For completeness of the given formulae, we give the amplitudes of σ(0+)π+π\sigma(0^{+})\rightarrow\pi^{+}\pi^{-} and ρ0π+π\rho^{0}\rightarrow\pi^{+}\pi^{-}. The amplitude formula of σ(0+)π+π\sigma(0^{+})\rightarrow\pi^{+}\pi^{-} is 1. The amplitude formula of ρ0π+π\rho^{0}\rightarrow\pi^{+}\pi^{-} is

ρ0(1)π+(0)π(0):gp1μeμ(P,λ)\begin{split}\rho^{0}(1^{-})\rightarrow\pi^{+}(0^{-})\pi^{-}(0^{-}):\quad gp_{1}^{\mu}e_{\mu}(P,\lambda)\end{split} (69)

V Discussion

V.1 Comparison to helicity formalism

Compared with the amplitudes in helicity formalism Eq. 22, it is obvious that the helicity coupling Fλ1λ2JF^{J}_{\lambda_{1}\lambda_{2}} ought have momentum dependence but not expressed explicitly as what in the tensor formalism. When the measurements deal with narrow resonances such as Λ\Lambda and Σ\Sigma, this momentum dependence could be safely ignored. However, when the target resonance is the broad Δ\Delta, separating the momentum dependence, i.e. the kinematic effect, from the dynamic part is crucial for the study of the Δ\Delta line-shape that reflects the internal interactions. As a cross check, we have also calculated the number of Fλ1λ2JF^{J}_{\lambda_{1}\lambda_{2}}’s considering relevant symmetry, and it is found to be consistent with the number of gig_{i}’s in the tensor formalism.

V.2 Amplitude for sequent decays

In the previous section, we have given the sub-amplitudes for each interaction vertex. The whole amplitude of a decay chain then can be obtained straightforward by the product of each sub-amplitudes in the cascading decays. Thus the cross section can be written as

σ=dΩ||2\sigma=\int\mathrm{d}\Omega\left|\cal M\right|^{2} (70)

with

=ΛiMi(Λ)=ΛiBWijgijAij(Λ){\cal M}=\sum_{\Lambda}\prod_{i}M_{i}(\Lambda)=\sum_{\Lambda}\prod_{i}BW_{i}\sum_{j}g_{i}^{j}A_{i}^{j}(\Lambda)\ \, (71)

where Ω\Omega and Λ\Lambda are the helicity angels and the whole configuration of the decay chains and the helicities of each intermediate/final states, respectively. And BWiBW_{i}’s are the propagators describing the dynamic interactions of each decay process and usually in a Breit-Wigner form. Notice in the helicity frame, the direction of a polarization of a state would be different when this state is in different decay chains. So an alignment, usually a rotation, is required to align the directions. This kind of alignment has been handled by experimentalists already 0806.4098 ; Aaij:2015tga and been discussed further by new means in Chen:2017gtx ; Marangotto:2019ucc ; Wang:2020giv .

VI Summary

In this paper, we have derived the helicity amplitudes in the tensor formalism needed for the measurement of ψΔΔ¯\psi\rightarrow\Delta\bar{\Delta}, Δpπ\Delta\to p\pi, as well as the formulae for the sequent decays of the other processes with the same final states. The covariant tensor formalism is adopted instead of the helicity formalism to make the momentum dependence explicit then more suitable to the measurements with broad resonances such as Δ\Delta and its excited states. The number of independent terms in each decay chain has been checked and confirmed to be same to the number of helicity amplitudes, and of course, same to the number of partial waves in the decay too. These formulae are prepared for the measurements of ψ\psi decaying into pp¯π+πp\bar{p}\pi^{+}\pi^{-} final states, and also can be extended to the final states such as pp¯K+Kp\bar{p}K^{+}K^{-} since their spins and parities are same. Experiments collected large J/ψJ/\psi and ψ(2S)\psi(2S) data samples, such as BESIII, would be benefit from this study.

It should be noticed only P-parity but not C-parity conservation is considered during the formula derivation since the fermions do not have certain C-parity. But in some special cases, where the daughter states are particle and anti-particle to each other, the C-parity is determined to be (1)L+S(-1)^{L+S}. It means if the L-S coupling scheme has been adopted, there is a chance to check the C violation by measuring the amplitude of the corresponding wave. However, the construction of pure spin wave functions based on high fractional spin states such as two 3/23/2-spin states is beyond our ability. It also should be noticed that sometimes the momentum notations PP, p1p_{1} and p2p_{2} are replaceable in the formulae since the constructed terms are dependent on each other, so the choice of them is somewhat just arbitrary. Breit-Wigner functions and projection operators are important in the experimental measurements too. But the projection operators can be obtained by the construction of wave functions mentioned in this paper straightforwardly. So we ignore the discussion of them. Furthermore, a complete discussion of the Breit-Wigner functions is beyond this paper’s scope, and their choices are left to experimentalists when some specific forms are needed for specific resonances or decay channels.

Acknowledgements

We would like to thank Gang Li, ZhenTian Sun, JiaoJiao Song for useful discussion. This work was supported by grants from Natural Science Foundation of China (No.11735010, U1932108, U1632104, U2032102, 12061131006).

References

  • (1) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 126 092002 (2021).
  • (2) M. Ablikim et al. [BESIII], Phys. Rev. D 98, 032006 (2018).
  • (3) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 125, 052004 (2020).
  • (4) M. Ablikim et al. [BESIII], Phys. Lett. B 770, 217-225 (2017).
  • (5) M. Ablikim et al. [BESIII], Phys. Rev. D 93, 072003 (2016).
  • (6) M. Ablikim et al. [BESIII], Phys. Rev. D 101, 012004 (2020).
  • (7) M. Ablikim et al. [BESIII], Phys. Rev. D 100, 051101 (2019).
  • (8) J. Z. Bai et al. [BES], Phys. Rev. D 63, 032002 (2001).
  • (9) P. A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
  • (10) M. W. Eaton, G. Goldhaber, G. S. Abrams, C. A. Blocker, W. C. Carithers, W. Chinowsky, M. W. Coles, S. Cooper, W. E. Dieterle and J. B. Dillon, et al. Phys. Rev. D 29, 804 (1984).
  • (11) B. C. Hunt and D. M. Manley, Phys. Rev. C 99, 055205 (2019).
  • (12) A. B. Gridnev, I. Horn, W. J. Briscoe and I. I. Strakovsky, Phys. Atom. Nucl. 69, 1542-1551 (2006).
  • (13) R. Koch and E. Pietarinen, Nucl. Phys. A 336, 331-346 (1980).
  • (14) A. Švarc, M. Hadžimehmedović, R. Omerović, H. Osmanović and J. Stahov, Phys. Rev. C 89, 045205 (2014).
  • (15) A. Bernicha, G. Lopez Castro and J. Pestieau, Nucl. Phys. A 597, 623-635 (1996).
  • (16) B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537-547 (2003).
  • (17) S. Dulat and B. S. Zou, Eur. Phys. J. A 26, 125-134 (2005) [erratum: Eur. Phys. J. A 56, 275 (2020)].
  • (18) Wu Ning and Ruan Tu-Nan, Commun. Theor. Phys. 35, 547 (2001).
  • (19) W. H. Liang, P. N. Shen, J. X. Wang and B. S. Zou, J. Phys. G 28, 333-343 (2002).
  • (20) B. S. Zou and F. Hussain, Phys. Rev. C 67, 015204 (2003).
  • (21) S. U. Chung, Phys. Rev. D 48, 1225-1239 (1993) [erratum: Phys. Rev. D 56, 4419 (1997)].
  • (22) S. U. Chung, Phys. Rev. D 57, 431-442 (1998).
  • (23) S. U. Chung, “SPIN FORMALISMS”, BNL preprint, BNL-QGS-02-0900, CERN 71-8.
  • (24) V. Filippini, A. Fontana and A. Rotondi, Phys. Rev. D 51, 2247-2261 (1995).
  • (25) W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
  • (26) P. R. Auvil and J. J. Brehm, Phys. Rev. 145, 1152 (1966).
  • (27) J. J. Zhu and M. L. Yan, [arXiv:hep-ph/9903349 [hep-ph]].
  • (28) M. D. Scadron, Phys. Rev. 165, 1640-1647 (1968).
  • (29) H. P. Stapp, Phys. Rev. 125, 2139 (1962).
  • (30) Y. Hara, Phys. Rev. 136, B507-B514 (1964).
  • (31) M. E. Peskin and D. V. Schroeder.  An Introduction to quantum field theory[M]. Beijing: World Publishing Corporation, 2011: 64-71.
  • (32) R. Mizuk et al. [Belle], Phys. Rev. D 78, 072004 (2008).
  • (33) R. Aaij et al. [LHCb], Phys. Rev. Lett. 115, 072001 (2015).
  • (34) H. Chen and R. G. Ping, Phys. Rev. D 95, 076010 (2017).
  • (35) D. Marangotto, Adv. High Energy Phys. 2020, 6674595 (2020).
  • (36) M. Wang, Y. Jiang, Y. Liu, W. Qian, X. Lyu and L. Zhang, Chin. Phys. C 45, 063103 (2021).